xref: /openbmc/linux/fs/namei.c (revision 96c63fa7393d0a346acfe5a91e0c7d4c7782641b)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <asm/uaccess.h>
40 
41 #include "internal.h"
42 #include "mount.h"
43 
44 /* [Feb-1997 T. Schoebel-Theuer]
45  * Fundamental changes in the pathname lookup mechanisms (namei)
46  * were necessary because of omirr.  The reason is that omirr needs
47  * to know the _real_ pathname, not the user-supplied one, in case
48  * of symlinks (and also when transname replacements occur).
49  *
50  * The new code replaces the old recursive symlink resolution with
51  * an iterative one (in case of non-nested symlink chains).  It does
52  * this with calls to <fs>_follow_link().
53  * As a side effect, dir_namei(), _namei() and follow_link() are now
54  * replaced with a single function lookup_dentry() that can handle all
55  * the special cases of the former code.
56  *
57  * With the new dcache, the pathname is stored at each inode, at least as
58  * long as the refcount of the inode is positive.  As a side effect, the
59  * size of the dcache depends on the inode cache and thus is dynamic.
60  *
61  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
62  * resolution to correspond with current state of the code.
63  *
64  * Note that the symlink resolution is not *completely* iterative.
65  * There is still a significant amount of tail- and mid- recursion in
66  * the algorithm.  Also, note that <fs>_readlink() is not used in
67  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
68  * may return different results than <fs>_follow_link().  Many virtual
69  * filesystems (including /proc) exhibit this behavior.
70  */
71 
72 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
73  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
74  * and the name already exists in form of a symlink, try to create the new
75  * name indicated by the symlink. The old code always complained that the
76  * name already exists, due to not following the symlink even if its target
77  * is nonexistent.  The new semantics affects also mknod() and link() when
78  * the name is a symlink pointing to a non-existent name.
79  *
80  * I don't know which semantics is the right one, since I have no access
81  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
82  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
83  * "old" one. Personally, I think the new semantics is much more logical.
84  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
85  * file does succeed in both HP-UX and SunOs, but not in Solaris
86  * and in the old Linux semantics.
87  */
88 
89 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
90  * semantics.  See the comments in "open_namei" and "do_link" below.
91  *
92  * [10-Sep-98 Alan Modra] Another symlink change.
93  */
94 
95 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
96  *	inside the path - always follow.
97  *	in the last component in creation/removal/renaming - never follow.
98  *	if LOOKUP_FOLLOW passed - follow.
99  *	if the pathname has trailing slashes - follow.
100  *	otherwise - don't follow.
101  * (applied in that order).
102  *
103  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
104  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
105  * During the 2.4 we need to fix the userland stuff depending on it -
106  * hopefully we will be able to get rid of that wart in 2.5. So far only
107  * XEmacs seems to be relying on it...
108  */
109 /*
110  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
111  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
112  * any extra contention...
113  */
114 
115 /* In order to reduce some races, while at the same time doing additional
116  * checking and hopefully speeding things up, we copy filenames to the
117  * kernel data space before using them..
118  *
119  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
120  * PATH_MAX includes the nul terminator --RR.
121  */
122 
123 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
124 
125 struct filename *
126 getname_flags(const char __user *filename, int flags, int *empty)
127 {
128 	struct filename *result;
129 	char *kname;
130 	int len;
131 
132 	result = audit_reusename(filename);
133 	if (result)
134 		return result;
135 
136 	result = __getname();
137 	if (unlikely(!result))
138 		return ERR_PTR(-ENOMEM);
139 
140 	/*
141 	 * First, try to embed the struct filename inside the names_cache
142 	 * allocation
143 	 */
144 	kname = (char *)result->iname;
145 	result->name = kname;
146 
147 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148 	if (unlikely(len < 0)) {
149 		__putname(result);
150 		return ERR_PTR(len);
151 	}
152 
153 	/*
154 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155 	 * separate struct filename so we can dedicate the entire
156 	 * names_cache allocation for the pathname, and re-do the copy from
157 	 * userland.
158 	 */
159 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
160 		const size_t size = offsetof(struct filename, iname[1]);
161 		kname = (char *)result;
162 
163 		/*
164 		 * size is chosen that way we to guarantee that
165 		 * result->iname[0] is within the same object and that
166 		 * kname can't be equal to result->iname, no matter what.
167 		 */
168 		result = kzalloc(size, GFP_KERNEL);
169 		if (unlikely(!result)) {
170 			__putname(kname);
171 			return ERR_PTR(-ENOMEM);
172 		}
173 		result->name = kname;
174 		len = strncpy_from_user(kname, filename, PATH_MAX);
175 		if (unlikely(len < 0)) {
176 			__putname(kname);
177 			kfree(result);
178 			return ERR_PTR(len);
179 		}
180 		if (unlikely(len == PATH_MAX)) {
181 			__putname(kname);
182 			kfree(result);
183 			return ERR_PTR(-ENAMETOOLONG);
184 		}
185 	}
186 
187 	result->refcnt = 1;
188 	/* The empty path is special. */
189 	if (unlikely(!len)) {
190 		if (empty)
191 			*empty = 1;
192 		if (!(flags & LOOKUP_EMPTY)) {
193 			putname(result);
194 			return ERR_PTR(-ENOENT);
195 		}
196 	}
197 
198 	result->uptr = filename;
199 	result->aname = NULL;
200 	audit_getname(result);
201 	return result;
202 }
203 
204 struct filename *
205 getname(const char __user * filename)
206 {
207 	return getname_flags(filename, 0, NULL);
208 }
209 
210 struct filename *
211 getname_kernel(const char * filename)
212 {
213 	struct filename *result;
214 	int len = strlen(filename) + 1;
215 
216 	result = __getname();
217 	if (unlikely(!result))
218 		return ERR_PTR(-ENOMEM);
219 
220 	if (len <= EMBEDDED_NAME_MAX) {
221 		result->name = (char *)result->iname;
222 	} else if (len <= PATH_MAX) {
223 		struct filename *tmp;
224 
225 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
226 		if (unlikely(!tmp)) {
227 			__putname(result);
228 			return ERR_PTR(-ENOMEM);
229 		}
230 		tmp->name = (char *)result;
231 		result = tmp;
232 	} else {
233 		__putname(result);
234 		return ERR_PTR(-ENAMETOOLONG);
235 	}
236 	memcpy((char *)result->name, filename, len);
237 	result->uptr = NULL;
238 	result->aname = NULL;
239 	result->refcnt = 1;
240 	audit_getname(result);
241 
242 	return result;
243 }
244 
245 void putname(struct filename *name)
246 {
247 	BUG_ON(name->refcnt <= 0);
248 
249 	if (--name->refcnt > 0)
250 		return;
251 
252 	if (name->name != name->iname) {
253 		__putname(name->name);
254 		kfree(name);
255 	} else
256 		__putname(name);
257 }
258 
259 static int check_acl(struct inode *inode, int mask)
260 {
261 #ifdef CONFIG_FS_POSIX_ACL
262 	struct posix_acl *acl;
263 
264 	if (mask & MAY_NOT_BLOCK) {
265 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 	        if (!acl)
267 	                return -EAGAIN;
268 		/* no ->get_acl() calls in RCU mode... */
269 		if (is_uncached_acl(acl))
270 			return -ECHILD;
271 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 	}
273 
274 	acl = get_acl(inode, ACL_TYPE_ACCESS);
275 	if (IS_ERR(acl))
276 		return PTR_ERR(acl);
277 	if (acl) {
278 	        int error = posix_acl_permission(inode, acl, mask);
279 	        posix_acl_release(acl);
280 	        return error;
281 	}
282 #endif
283 
284 	return -EAGAIN;
285 }
286 
287 /*
288  * This does the basic permission checking
289  */
290 static int acl_permission_check(struct inode *inode, int mask)
291 {
292 	unsigned int mode = inode->i_mode;
293 
294 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 		mode >>= 6;
296 	else {
297 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 			int error = check_acl(inode, mask);
299 			if (error != -EAGAIN)
300 				return error;
301 		}
302 
303 		if (in_group_p(inode->i_gid))
304 			mode >>= 3;
305 	}
306 
307 	/*
308 	 * If the DACs are ok we don't need any capability check.
309 	 */
310 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 		return 0;
312 	return -EACCES;
313 }
314 
315 /**
316  * generic_permission -  check for access rights on a Posix-like filesystem
317  * @inode:	inode to check access rights for
318  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319  *
320  * Used to check for read/write/execute permissions on a file.
321  * We use "fsuid" for this, letting us set arbitrary permissions
322  * for filesystem access without changing the "normal" uids which
323  * are used for other things.
324  *
325  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326  * request cannot be satisfied (eg. requires blocking or too much complexity).
327  * It would then be called again in ref-walk mode.
328  */
329 int generic_permission(struct inode *inode, int mask)
330 {
331 	int ret;
332 
333 	/*
334 	 * Do the basic permission checks.
335 	 */
336 	ret = acl_permission_check(inode, mask);
337 	if (ret != -EACCES)
338 		return ret;
339 
340 	if (S_ISDIR(inode->i_mode)) {
341 		/* DACs are overridable for directories */
342 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 			return 0;
344 		if (!(mask & MAY_WRITE))
345 			if (capable_wrt_inode_uidgid(inode,
346 						     CAP_DAC_READ_SEARCH))
347 				return 0;
348 		return -EACCES;
349 	}
350 	/*
351 	 * Read/write DACs are always overridable.
352 	 * Executable DACs are overridable when there is
353 	 * at least one exec bit set.
354 	 */
355 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 			return 0;
358 
359 	/*
360 	 * Searching includes executable on directories, else just read.
361 	 */
362 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 	if (mask == MAY_READ)
364 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 			return 0;
366 
367 	return -EACCES;
368 }
369 EXPORT_SYMBOL(generic_permission);
370 
371 /*
372  * We _really_ want to just do "generic_permission()" without
373  * even looking at the inode->i_op values. So we keep a cache
374  * flag in inode->i_opflags, that says "this has not special
375  * permission function, use the fast case".
376  */
377 static inline int do_inode_permission(struct inode *inode, int mask)
378 {
379 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 		if (likely(inode->i_op->permission))
381 			return inode->i_op->permission(inode, mask);
382 
383 		/* This gets set once for the inode lifetime */
384 		spin_lock(&inode->i_lock);
385 		inode->i_opflags |= IOP_FASTPERM;
386 		spin_unlock(&inode->i_lock);
387 	}
388 	return generic_permission(inode, mask);
389 }
390 
391 /**
392  * __inode_permission - Check for access rights to a given inode
393  * @inode: Inode to check permission on
394  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395  *
396  * Check for read/write/execute permissions on an inode.
397  *
398  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399  *
400  * This does not check for a read-only file system.  You probably want
401  * inode_permission().
402  */
403 int __inode_permission(struct inode *inode, int mask)
404 {
405 	int retval;
406 
407 	if (unlikely(mask & MAY_WRITE)) {
408 		/*
409 		 * Nobody gets write access to an immutable file.
410 		 */
411 		if (IS_IMMUTABLE(inode))
412 			return -EACCES;
413 	}
414 
415 	retval = do_inode_permission(inode, mask);
416 	if (retval)
417 		return retval;
418 
419 	retval = devcgroup_inode_permission(inode, mask);
420 	if (retval)
421 		return retval;
422 
423 	return security_inode_permission(inode, mask);
424 }
425 EXPORT_SYMBOL(__inode_permission);
426 
427 /**
428  * sb_permission - Check superblock-level permissions
429  * @sb: Superblock of inode to check permission on
430  * @inode: Inode to check permission on
431  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432  *
433  * Separate out file-system wide checks from inode-specific permission checks.
434  */
435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436 {
437 	if (unlikely(mask & MAY_WRITE)) {
438 		umode_t mode = inode->i_mode;
439 
440 		/* Nobody gets write access to a read-only fs. */
441 		if ((sb->s_flags & MS_RDONLY) &&
442 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
443 			return -EROFS;
444 	}
445 	return 0;
446 }
447 
448 /**
449  * inode_permission - Check for access rights to a given inode
450  * @inode: Inode to check permission on
451  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452  *
453  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
454  * this, letting us set arbitrary permissions for filesystem access without
455  * changing the "normal" UIDs which are used for other things.
456  *
457  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458  */
459 int inode_permission(struct inode *inode, int mask)
460 {
461 	int retval;
462 
463 	retval = sb_permission(inode->i_sb, inode, mask);
464 	if (retval)
465 		return retval;
466 	return __inode_permission(inode, mask);
467 }
468 EXPORT_SYMBOL(inode_permission);
469 
470 /**
471  * path_get - get a reference to a path
472  * @path: path to get the reference to
473  *
474  * Given a path increment the reference count to the dentry and the vfsmount.
475  */
476 void path_get(const struct path *path)
477 {
478 	mntget(path->mnt);
479 	dget(path->dentry);
480 }
481 EXPORT_SYMBOL(path_get);
482 
483 /**
484  * path_put - put a reference to a path
485  * @path: path to put the reference to
486  *
487  * Given a path decrement the reference count to the dentry and the vfsmount.
488  */
489 void path_put(const struct path *path)
490 {
491 	dput(path->dentry);
492 	mntput(path->mnt);
493 }
494 EXPORT_SYMBOL(path_put);
495 
496 #define EMBEDDED_LEVELS 2
497 struct nameidata {
498 	struct path	path;
499 	struct qstr	last;
500 	struct path	root;
501 	struct inode	*inode; /* path.dentry.d_inode */
502 	unsigned int	flags;
503 	unsigned	seq, m_seq;
504 	int		last_type;
505 	unsigned	depth;
506 	int		total_link_count;
507 	struct saved {
508 		struct path link;
509 		struct delayed_call done;
510 		const char *name;
511 		unsigned seq;
512 	} *stack, internal[EMBEDDED_LEVELS];
513 	struct filename	*name;
514 	struct nameidata *saved;
515 	struct inode	*link_inode;
516 	unsigned	root_seq;
517 	int		dfd;
518 };
519 
520 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
521 {
522 	struct nameidata *old = current->nameidata;
523 	p->stack = p->internal;
524 	p->dfd = dfd;
525 	p->name = name;
526 	p->total_link_count = old ? old->total_link_count : 0;
527 	p->saved = old;
528 	current->nameidata = p;
529 }
530 
531 static void restore_nameidata(void)
532 {
533 	struct nameidata *now = current->nameidata, *old = now->saved;
534 
535 	current->nameidata = old;
536 	if (old)
537 		old->total_link_count = now->total_link_count;
538 	if (now->stack != now->internal)
539 		kfree(now->stack);
540 }
541 
542 static int __nd_alloc_stack(struct nameidata *nd)
543 {
544 	struct saved *p;
545 
546 	if (nd->flags & LOOKUP_RCU) {
547 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
548 				  GFP_ATOMIC);
549 		if (unlikely(!p))
550 			return -ECHILD;
551 	} else {
552 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
553 				  GFP_KERNEL);
554 		if (unlikely(!p))
555 			return -ENOMEM;
556 	}
557 	memcpy(p, nd->internal, sizeof(nd->internal));
558 	nd->stack = p;
559 	return 0;
560 }
561 
562 /**
563  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
564  * @path: nameidate to verify
565  *
566  * Rename can sometimes move a file or directory outside of a bind
567  * mount, path_connected allows those cases to be detected.
568  */
569 static bool path_connected(const struct path *path)
570 {
571 	struct vfsmount *mnt = path->mnt;
572 
573 	/* Only bind mounts can have disconnected paths */
574 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
575 		return true;
576 
577 	return is_subdir(path->dentry, mnt->mnt_root);
578 }
579 
580 static inline int nd_alloc_stack(struct nameidata *nd)
581 {
582 	if (likely(nd->depth != EMBEDDED_LEVELS))
583 		return 0;
584 	if (likely(nd->stack != nd->internal))
585 		return 0;
586 	return __nd_alloc_stack(nd);
587 }
588 
589 static void drop_links(struct nameidata *nd)
590 {
591 	int i = nd->depth;
592 	while (i--) {
593 		struct saved *last = nd->stack + i;
594 		do_delayed_call(&last->done);
595 		clear_delayed_call(&last->done);
596 	}
597 }
598 
599 static void terminate_walk(struct nameidata *nd)
600 {
601 	drop_links(nd);
602 	if (!(nd->flags & LOOKUP_RCU)) {
603 		int i;
604 		path_put(&nd->path);
605 		for (i = 0; i < nd->depth; i++)
606 			path_put(&nd->stack[i].link);
607 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
608 			path_put(&nd->root);
609 			nd->root.mnt = NULL;
610 		}
611 	} else {
612 		nd->flags &= ~LOOKUP_RCU;
613 		if (!(nd->flags & LOOKUP_ROOT))
614 			nd->root.mnt = NULL;
615 		rcu_read_unlock();
616 	}
617 	nd->depth = 0;
618 }
619 
620 /* path_put is needed afterwards regardless of success or failure */
621 static bool legitimize_path(struct nameidata *nd,
622 			    struct path *path, unsigned seq)
623 {
624 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
625 	if (unlikely(res)) {
626 		if (res > 0)
627 			path->mnt = NULL;
628 		path->dentry = NULL;
629 		return false;
630 	}
631 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
632 		path->dentry = NULL;
633 		return false;
634 	}
635 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
636 }
637 
638 static bool legitimize_links(struct nameidata *nd)
639 {
640 	int i;
641 	for (i = 0; i < nd->depth; i++) {
642 		struct saved *last = nd->stack + i;
643 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
644 			drop_links(nd);
645 			nd->depth = i + 1;
646 			return false;
647 		}
648 	}
649 	return true;
650 }
651 
652 /*
653  * Path walking has 2 modes, rcu-walk and ref-walk (see
654  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
655  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
656  * normal reference counts on dentries and vfsmounts to transition to ref-walk
657  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
658  * got stuck, so ref-walk may continue from there. If this is not successful
659  * (eg. a seqcount has changed), then failure is returned and it's up to caller
660  * to restart the path walk from the beginning in ref-walk mode.
661  */
662 
663 /**
664  * unlazy_walk - try to switch to ref-walk mode.
665  * @nd: nameidata pathwalk data
666  * @dentry: child of nd->path.dentry or NULL
667  * @seq: seq number to check dentry against
668  * Returns: 0 on success, -ECHILD on failure
669  *
670  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
671  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
672  * @nd or NULL.  Must be called from rcu-walk context.
673  * Nothing should touch nameidata between unlazy_walk() failure and
674  * terminate_walk().
675  */
676 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
677 {
678 	struct dentry *parent = nd->path.dentry;
679 
680 	BUG_ON(!(nd->flags & LOOKUP_RCU));
681 
682 	nd->flags &= ~LOOKUP_RCU;
683 	if (unlikely(!legitimize_links(nd)))
684 		goto out2;
685 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
686 		goto out2;
687 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
688 		goto out1;
689 
690 	/*
691 	 * For a negative lookup, the lookup sequence point is the parents
692 	 * sequence point, and it only needs to revalidate the parent dentry.
693 	 *
694 	 * For a positive lookup, we need to move both the parent and the
695 	 * dentry from the RCU domain to be properly refcounted. And the
696 	 * sequence number in the dentry validates *both* dentry counters,
697 	 * since we checked the sequence number of the parent after we got
698 	 * the child sequence number. So we know the parent must still
699 	 * be valid if the child sequence number is still valid.
700 	 */
701 	if (!dentry) {
702 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
703 			goto out;
704 		BUG_ON(nd->inode != parent->d_inode);
705 	} else {
706 		if (!lockref_get_not_dead(&dentry->d_lockref))
707 			goto out;
708 		if (read_seqcount_retry(&dentry->d_seq, seq))
709 			goto drop_dentry;
710 	}
711 
712 	/*
713 	 * Sequence counts matched. Now make sure that the root is
714 	 * still valid and get it if required.
715 	 */
716 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
717 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
718 			rcu_read_unlock();
719 			dput(dentry);
720 			return -ECHILD;
721 		}
722 	}
723 
724 	rcu_read_unlock();
725 	return 0;
726 
727 drop_dentry:
728 	rcu_read_unlock();
729 	dput(dentry);
730 	goto drop_root_mnt;
731 out2:
732 	nd->path.mnt = NULL;
733 out1:
734 	nd->path.dentry = NULL;
735 out:
736 	rcu_read_unlock();
737 drop_root_mnt:
738 	if (!(nd->flags & LOOKUP_ROOT))
739 		nd->root.mnt = NULL;
740 	return -ECHILD;
741 }
742 
743 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
744 {
745 	if (unlikely(!legitimize_path(nd, link, seq))) {
746 		drop_links(nd);
747 		nd->depth = 0;
748 		nd->flags &= ~LOOKUP_RCU;
749 		nd->path.mnt = NULL;
750 		nd->path.dentry = NULL;
751 		if (!(nd->flags & LOOKUP_ROOT))
752 			nd->root.mnt = NULL;
753 		rcu_read_unlock();
754 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
755 		return 0;
756 	}
757 	path_put(link);
758 	return -ECHILD;
759 }
760 
761 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
762 {
763 	return dentry->d_op->d_revalidate(dentry, flags);
764 }
765 
766 /**
767  * complete_walk - successful completion of path walk
768  * @nd:  pointer nameidata
769  *
770  * If we had been in RCU mode, drop out of it and legitimize nd->path.
771  * Revalidate the final result, unless we'd already done that during
772  * the path walk or the filesystem doesn't ask for it.  Return 0 on
773  * success, -error on failure.  In case of failure caller does not
774  * need to drop nd->path.
775  */
776 static int complete_walk(struct nameidata *nd)
777 {
778 	struct dentry *dentry = nd->path.dentry;
779 	int status;
780 
781 	if (nd->flags & LOOKUP_RCU) {
782 		if (!(nd->flags & LOOKUP_ROOT))
783 			nd->root.mnt = NULL;
784 		if (unlikely(unlazy_walk(nd, NULL, 0)))
785 			return -ECHILD;
786 	}
787 
788 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
789 		return 0;
790 
791 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
792 		return 0;
793 
794 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
795 	if (status > 0)
796 		return 0;
797 
798 	if (!status)
799 		status = -ESTALE;
800 
801 	return status;
802 }
803 
804 static void set_root(struct nameidata *nd)
805 {
806 	struct fs_struct *fs = current->fs;
807 
808 	if (nd->flags & LOOKUP_RCU) {
809 		unsigned seq;
810 
811 		do {
812 			seq = read_seqcount_begin(&fs->seq);
813 			nd->root = fs->root;
814 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
815 		} while (read_seqcount_retry(&fs->seq, seq));
816 	} else {
817 		get_fs_root(fs, &nd->root);
818 	}
819 }
820 
821 static void path_put_conditional(struct path *path, struct nameidata *nd)
822 {
823 	dput(path->dentry);
824 	if (path->mnt != nd->path.mnt)
825 		mntput(path->mnt);
826 }
827 
828 static inline void path_to_nameidata(const struct path *path,
829 					struct nameidata *nd)
830 {
831 	if (!(nd->flags & LOOKUP_RCU)) {
832 		dput(nd->path.dentry);
833 		if (nd->path.mnt != path->mnt)
834 			mntput(nd->path.mnt);
835 	}
836 	nd->path.mnt = path->mnt;
837 	nd->path.dentry = path->dentry;
838 }
839 
840 static int nd_jump_root(struct nameidata *nd)
841 {
842 	if (nd->flags & LOOKUP_RCU) {
843 		struct dentry *d;
844 		nd->path = nd->root;
845 		d = nd->path.dentry;
846 		nd->inode = d->d_inode;
847 		nd->seq = nd->root_seq;
848 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
849 			return -ECHILD;
850 	} else {
851 		path_put(&nd->path);
852 		nd->path = nd->root;
853 		path_get(&nd->path);
854 		nd->inode = nd->path.dentry->d_inode;
855 	}
856 	nd->flags |= LOOKUP_JUMPED;
857 	return 0;
858 }
859 
860 /*
861  * Helper to directly jump to a known parsed path from ->get_link,
862  * caller must have taken a reference to path beforehand.
863  */
864 void nd_jump_link(struct path *path)
865 {
866 	struct nameidata *nd = current->nameidata;
867 	path_put(&nd->path);
868 
869 	nd->path = *path;
870 	nd->inode = nd->path.dentry->d_inode;
871 	nd->flags |= LOOKUP_JUMPED;
872 }
873 
874 static inline void put_link(struct nameidata *nd)
875 {
876 	struct saved *last = nd->stack + --nd->depth;
877 	do_delayed_call(&last->done);
878 	if (!(nd->flags & LOOKUP_RCU))
879 		path_put(&last->link);
880 }
881 
882 int sysctl_protected_symlinks __read_mostly = 0;
883 int sysctl_protected_hardlinks __read_mostly = 0;
884 
885 /**
886  * may_follow_link - Check symlink following for unsafe situations
887  * @nd: nameidata pathwalk data
888  *
889  * In the case of the sysctl_protected_symlinks sysctl being enabled,
890  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891  * in a sticky world-writable directory. This is to protect privileged
892  * processes from failing races against path names that may change out
893  * from under them by way of other users creating malicious symlinks.
894  * It will permit symlinks to be followed only when outside a sticky
895  * world-writable directory, or when the uid of the symlink and follower
896  * match, or when the directory owner matches the symlink's owner.
897  *
898  * Returns 0 if following the symlink is allowed, -ve on error.
899  */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 	const struct inode *inode;
903 	const struct inode *parent;
904 
905 	if (!sysctl_protected_symlinks)
906 		return 0;
907 
908 	/* Allowed if owner and follower match. */
909 	inode = nd->link_inode;
910 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
911 		return 0;
912 
913 	/* Allowed if parent directory not sticky and world-writable. */
914 	parent = nd->inode;
915 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
916 		return 0;
917 
918 	/* Allowed if parent directory and link owner match. */
919 	if (uid_eq(parent->i_uid, inode->i_uid))
920 		return 0;
921 
922 	if (nd->flags & LOOKUP_RCU)
923 		return -ECHILD;
924 
925 	audit_log_link_denied("follow_link", &nd->stack[0].link);
926 	return -EACCES;
927 }
928 
929 /**
930  * safe_hardlink_source - Check for safe hardlink conditions
931  * @inode: the source inode to hardlink from
932  *
933  * Return false if at least one of the following conditions:
934  *    - inode is not a regular file
935  *    - inode is setuid
936  *    - inode is setgid and group-exec
937  *    - access failure for read and write
938  *
939  * Otherwise returns true.
940  */
941 static bool safe_hardlink_source(struct inode *inode)
942 {
943 	umode_t mode = inode->i_mode;
944 
945 	/* Special files should not get pinned to the filesystem. */
946 	if (!S_ISREG(mode))
947 		return false;
948 
949 	/* Setuid files should not get pinned to the filesystem. */
950 	if (mode & S_ISUID)
951 		return false;
952 
953 	/* Executable setgid files should not get pinned to the filesystem. */
954 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
955 		return false;
956 
957 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
958 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
959 		return false;
960 
961 	return true;
962 }
963 
964 /**
965  * may_linkat - Check permissions for creating a hardlink
966  * @link: the source to hardlink from
967  *
968  * Block hardlink when all of:
969  *  - sysctl_protected_hardlinks enabled
970  *  - fsuid does not match inode
971  *  - hardlink source is unsafe (see safe_hardlink_source() above)
972  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
973  *
974  * Returns 0 if successful, -ve on error.
975  */
976 static int may_linkat(struct path *link)
977 {
978 	struct inode *inode;
979 
980 	if (!sysctl_protected_hardlinks)
981 		return 0;
982 
983 	inode = link->dentry->d_inode;
984 
985 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
986 	 * otherwise, it must be a safe source.
987 	 */
988 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
989 		return 0;
990 
991 	audit_log_link_denied("linkat", link);
992 	return -EPERM;
993 }
994 
995 static __always_inline
996 const char *get_link(struct nameidata *nd)
997 {
998 	struct saved *last = nd->stack + nd->depth - 1;
999 	struct dentry *dentry = last->link.dentry;
1000 	struct inode *inode = nd->link_inode;
1001 	int error;
1002 	const char *res;
1003 
1004 	if (!(nd->flags & LOOKUP_RCU)) {
1005 		touch_atime(&last->link);
1006 		cond_resched();
1007 	} else if (atime_needs_update(&last->link, inode)) {
1008 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1009 			return ERR_PTR(-ECHILD);
1010 		touch_atime(&last->link);
1011 	}
1012 
1013 	error = security_inode_follow_link(dentry, inode,
1014 					   nd->flags & LOOKUP_RCU);
1015 	if (unlikely(error))
1016 		return ERR_PTR(error);
1017 
1018 	nd->last_type = LAST_BIND;
1019 	res = inode->i_link;
1020 	if (!res) {
1021 		const char * (*get)(struct dentry *, struct inode *,
1022 				struct delayed_call *);
1023 		get = inode->i_op->get_link;
1024 		if (nd->flags & LOOKUP_RCU) {
1025 			res = get(NULL, inode, &last->done);
1026 			if (res == ERR_PTR(-ECHILD)) {
1027 				if (unlikely(unlazy_walk(nd, NULL, 0)))
1028 					return ERR_PTR(-ECHILD);
1029 				res = get(dentry, inode, &last->done);
1030 			}
1031 		} else {
1032 			res = get(dentry, inode, &last->done);
1033 		}
1034 		if (IS_ERR_OR_NULL(res))
1035 			return res;
1036 	}
1037 	if (*res == '/') {
1038 		if (!nd->root.mnt)
1039 			set_root(nd);
1040 		if (unlikely(nd_jump_root(nd)))
1041 			return ERR_PTR(-ECHILD);
1042 		while (unlikely(*++res == '/'))
1043 			;
1044 	}
1045 	if (!*res)
1046 		res = NULL;
1047 	return res;
1048 }
1049 
1050 /*
1051  * follow_up - Find the mountpoint of path's vfsmount
1052  *
1053  * Given a path, find the mountpoint of its source file system.
1054  * Replace @path with the path of the mountpoint in the parent mount.
1055  * Up is towards /.
1056  *
1057  * Return 1 if we went up a level and 0 if we were already at the
1058  * root.
1059  */
1060 int follow_up(struct path *path)
1061 {
1062 	struct mount *mnt = real_mount(path->mnt);
1063 	struct mount *parent;
1064 	struct dentry *mountpoint;
1065 
1066 	read_seqlock_excl(&mount_lock);
1067 	parent = mnt->mnt_parent;
1068 	if (parent == mnt) {
1069 		read_sequnlock_excl(&mount_lock);
1070 		return 0;
1071 	}
1072 	mntget(&parent->mnt);
1073 	mountpoint = dget(mnt->mnt_mountpoint);
1074 	read_sequnlock_excl(&mount_lock);
1075 	dput(path->dentry);
1076 	path->dentry = mountpoint;
1077 	mntput(path->mnt);
1078 	path->mnt = &parent->mnt;
1079 	return 1;
1080 }
1081 EXPORT_SYMBOL(follow_up);
1082 
1083 /*
1084  * Perform an automount
1085  * - return -EISDIR to tell follow_managed() to stop and return the path we
1086  *   were called with.
1087  */
1088 static int follow_automount(struct path *path, struct nameidata *nd,
1089 			    bool *need_mntput)
1090 {
1091 	struct vfsmount *mnt;
1092 	int err;
1093 
1094 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1095 		return -EREMOTE;
1096 
1097 	/* We don't want to mount if someone's just doing a stat -
1098 	 * unless they're stat'ing a directory and appended a '/' to
1099 	 * the name.
1100 	 *
1101 	 * We do, however, want to mount if someone wants to open or
1102 	 * create a file of any type under the mountpoint, wants to
1103 	 * traverse through the mountpoint or wants to open the
1104 	 * mounted directory.  Also, autofs may mark negative dentries
1105 	 * as being automount points.  These will need the attentions
1106 	 * of the daemon to instantiate them before they can be used.
1107 	 */
1108 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1109 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1110 	    path->dentry->d_inode)
1111 		return -EISDIR;
1112 
1113 	nd->total_link_count++;
1114 	if (nd->total_link_count >= 40)
1115 		return -ELOOP;
1116 
1117 	mnt = path->dentry->d_op->d_automount(path);
1118 	if (IS_ERR(mnt)) {
1119 		/*
1120 		 * The filesystem is allowed to return -EISDIR here to indicate
1121 		 * it doesn't want to automount.  For instance, autofs would do
1122 		 * this so that its userspace daemon can mount on this dentry.
1123 		 *
1124 		 * However, we can only permit this if it's a terminal point in
1125 		 * the path being looked up; if it wasn't then the remainder of
1126 		 * the path is inaccessible and we should say so.
1127 		 */
1128 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1129 			return -EREMOTE;
1130 		return PTR_ERR(mnt);
1131 	}
1132 
1133 	if (!mnt) /* mount collision */
1134 		return 0;
1135 
1136 	if (!*need_mntput) {
1137 		/* lock_mount() may release path->mnt on error */
1138 		mntget(path->mnt);
1139 		*need_mntput = true;
1140 	}
1141 	err = finish_automount(mnt, path);
1142 
1143 	switch (err) {
1144 	case -EBUSY:
1145 		/* Someone else made a mount here whilst we were busy */
1146 		return 0;
1147 	case 0:
1148 		path_put(path);
1149 		path->mnt = mnt;
1150 		path->dentry = dget(mnt->mnt_root);
1151 		return 0;
1152 	default:
1153 		return err;
1154 	}
1155 
1156 }
1157 
1158 /*
1159  * Handle a dentry that is managed in some way.
1160  * - Flagged for transit management (autofs)
1161  * - Flagged as mountpoint
1162  * - Flagged as automount point
1163  *
1164  * This may only be called in refwalk mode.
1165  *
1166  * Serialization is taken care of in namespace.c
1167  */
1168 static int follow_managed(struct path *path, struct nameidata *nd)
1169 {
1170 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1171 	unsigned managed;
1172 	bool need_mntput = false;
1173 	int ret = 0;
1174 
1175 	/* Given that we're not holding a lock here, we retain the value in a
1176 	 * local variable for each dentry as we look at it so that we don't see
1177 	 * the components of that value change under us */
1178 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1179 	       managed &= DCACHE_MANAGED_DENTRY,
1180 	       unlikely(managed != 0)) {
1181 		/* Allow the filesystem to manage the transit without i_mutex
1182 		 * being held. */
1183 		if (managed & DCACHE_MANAGE_TRANSIT) {
1184 			BUG_ON(!path->dentry->d_op);
1185 			BUG_ON(!path->dentry->d_op->d_manage);
1186 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1187 			if (ret < 0)
1188 				break;
1189 		}
1190 
1191 		/* Transit to a mounted filesystem. */
1192 		if (managed & DCACHE_MOUNTED) {
1193 			struct vfsmount *mounted = lookup_mnt(path);
1194 			if (mounted) {
1195 				dput(path->dentry);
1196 				if (need_mntput)
1197 					mntput(path->mnt);
1198 				path->mnt = mounted;
1199 				path->dentry = dget(mounted->mnt_root);
1200 				need_mntput = true;
1201 				continue;
1202 			}
1203 
1204 			/* Something is mounted on this dentry in another
1205 			 * namespace and/or whatever was mounted there in this
1206 			 * namespace got unmounted before lookup_mnt() could
1207 			 * get it */
1208 		}
1209 
1210 		/* Handle an automount point */
1211 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1212 			ret = follow_automount(path, nd, &need_mntput);
1213 			if (ret < 0)
1214 				break;
1215 			continue;
1216 		}
1217 
1218 		/* We didn't change the current path point */
1219 		break;
1220 	}
1221 
1222 	if (need_mntput && path->mnt == mnt)
1223 		mntput(path->mnt);
1224 	if (ret == -EISDIR || !ret)
1225 		ret = 1;
1226 	if (need_mntput)
1227 		nd->flags |= LOOKUP_JUMPED;
1228 	if (unlikely(ret < 0))
1229 		path_put_conditional(path, nd);
1230 	return ret;
1231 }
1232 
1233 int follow_down_one(struct path *path)
1234 {
1235 	struct vfsmount *mounted;
1236 
1237 	mounted = lookup_mnt(path);
1238 	if (mounted) {
1239 		dput(path->dentry);
1240 		mntput(path->mnt);
1241 		path->mnt = mounted;
1242 		path->dentry = dget(mounted->mnt_root);
1243 		return 1;
1244 	}
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL(follow_down_one);
1248 
1249 static inline int managed_dentry_rcu(struct dentry *dentry)
1250 {
1251 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1252 		dentry->d_op->d_manage(dentry, true) : 0;
1253 }
1254 
1255 /*
1256  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1257  * we meet a managed dentry that would need blocking.
1258  */
1259 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1260 			       struct inode **inode, unsigned *seqp)
1261 {
1262 	for (;;) {
1263 		struct mount *mounted;
1264 		/*
1265 		 * Don't forget we might have a non-mountpoint managed dentry
1266 		 * that wants to block transit.
1267 		 */
1268 		switch (managed_dentry_rcu(path->dentry)) {
1269 		case -ECHILD:
1270 		default:
1271 			return false;
1272 		case -EISDIR:
1273 			return true;
1274 		case 0:
1275 			break;
1276 		}
1277 
1278 		if (!d_mountpoint(path->dentry))
1279 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1280 
1281 		mounted = __lookup_mnt(path->mnt, path->dentry);
1282 		if (!mounted)
1283 			break;
1284 		path->mnt = &mounted->mnt;
1285 		path->dentry = mounted->mnt.mnt_root;
1286 		nd->flags |= LOOKUP_JUMPED;
1287 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1288 		/*
1289 		 * Update the inode too. We don't need to re-check the
1290 		 * dentry sequence number here after this d_inode read,
1291 		 * because a mount-point is always pinned.
1292 		 */
1293 		*inode = path->dentry->d_inode;
1294 	}
1295 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1296 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297 }
1298 
1299 static int follow_dotdot_rcu(struct nameidata *nd)
1300 {
1301 	struct inode *inode = nd->inode;
1302 
1303 	while (1) {
1304 		if (path_equal(&nd->path, &nd->root))
1305 			break;
1306 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 			struct dentry *old = nd->path.dentry;
1308 			struct dentry *parent = old->d_parent;
1309 			unsigned seq;
1310 
1311 			inode = parent->d_inode;
1312 			seq = read_seqcount_begin(&parent->d_seq);
1313 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1314 				return -ECHILD;
1315 			nd->path.dentry = parent;
1316 			nd->seq = seq;
1317 			if (unlikely(!path_connected(&nd->path)))
1318 				return -ENOENT;
1319 			break;
1320 		} else {
1321 			struct mount *mnt = real_mount(nd->path.mnt);
1322 			struct mount *mparent = mnt->mnt_parent;
1323 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1324 			struct inode *inode2 = mountpoint->d_inode;
1325 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1326 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1327 				return -ECHILD;
1328 			if (&mparent->mnt == nd->path.mnt)
1329 				break;
1330 			/* we know that mountpoint was pinned */
1331 			nd->path.dentry = mountpoint;
1332 			nd->path.mnt = &mparent->mnt;
1333 			inode = inode2;
1334 			nd->seq = seq;
1335 		}
1336 	}
1337 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1338 		struct mount *mounted;
1339 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1340 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 			return -ECHILD;
1342 		if (!mounted)
1343 			break;
1344 		nd->path.mnt = &mounted->mnt;
1345 		nd->path.dentry = mounted->mnt.mnt_root;
1346 		inode = nd->path.dentry->d_inode;
1347 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1348 	}
1349 	nd->inode = inode;
1350 	return 0;
1351 }
1352 
1353 /*
1354  * Follow down to the covering mount currently visible to userspace.  At each
1355  * point, the filesystem owning that dentry may be queried as to whether the
1356  * caller is permitted to proceed or not.
1357  */
1358 int follow_down(struct path *path)
1359 {
1360 	unsigned managed;
1361 	int ret;
1362 
1363 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1364 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1365 		/* Allow the filesystem to manage the transit without i_mutex
1366 		 * being held.
1367 		 *
1368 		 * We indicate to the filesystem if someone is trying to mount
1369 		 * something here.  This gives autofs the chance to deny anyone
1370 		 * other than its daemon the right to mount on its
1371 		 * superstructure.
1372 		 *
1373 		 * The filesystem may sleep at this point.
1374 		 */
1375 		if (managed & DCACHE_MANAGE_TRANSIT) {
1376 			BUG_ON(!path->dentry->d_op);
1377 			BUG_ON(!path->dentry->d_op->d_manage);
1378 			ret = path->dentry->d_op->d_manage(
1379 				path->dentry, false);
1380 			if (ret < 0)
1381 				return ret == -EISDIR ? 0 : ret;
1382 		}
1383 
1384 		/* Transit to a mounted filesystem. */
1385 		if (managed & DCACHE_MOUNTED) {
1386 			struct vfsmount *mounted = lookup_mnt(path);
1387 			if (!mounted)
1388 				break;
1389 			dput(path->dentry);
1390 			mntput(path->mnt);
1391 			path->mnt = mounted;
1392 			path->dentry = dget(mounted->mnt_root);
1393 			continue;
1394 		}
1395 
1396 		/* Don't handle automount points here */
1397 		break;
1398 	}
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL(follow_down);
1402 
1403 /*
1404  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1405  */
1406 static void follow_mount(struct path *path)
1407 {
1408 	while (d_mountpoint(path->dentry)) {
1409 		struct vfsmount *mounted = lookup_mnt(path);
1410 		if (!mounted)
1411 			break;
1412 		dput(path->dentry);
1413 		mntput(path->mnt);
1414 		path->mnt = mounted;
1415 		path->dentry = dget(mounted->mnt_root);
1416 	}
1417 }
1418 
1419 static int follow_dotdot(struct nameidata *nd)
1420 {
1421 	while(1) {
1422 		struct dentry *old = nd->path.dentry;
1423 
1424 		if (nd->path.dentry == nd->root.dentry &&
1425 		    nd->path.mnt == nd->root.mnt) {
1426 			break;
1427 		}
1428 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1429 			/* rare case of legitimate dget_parent()... */
1430 			nd->path.dentry = dget_parent(nd->path.dentry);
1431 			dput(old);
1432 			if (unlikely(!path_connected(&nd->path)))
1433 				return -ENOENT;
1434 			break;
1435 		}
1436 		if (!follow_up(&nd->path))
1437 			break;
1438 	}
1439 	follow_mount(&nd->path);
1440 	nd->inode = nd->path.dentry->d_inode;
1441 	return 0;
1442 }
1443 
1444 /*
1445  * This looks up the name in dcache, possibly revalidates the old dentry and
1446  * allocates a new one if not found or not valid.  In the need_lookup argument
1447  * returns whether i_op->lookup is necessary.
1448  */
1449 static struct dentry *lookup_dcache(const struct qstr *name,
1450 				    struct dentry *dir,
1451 				    unsigned int flags)
1452 {
1453 	struct dentry *dentry;
1454 	int error;
1455 
1456 	dentry = d_lookup(dir, name);
1457 	if (dentry) {
1458 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1459 			error = d_revalidate(dentry, flags);
1460 			if (unlikely(error <= 0)) {
1461 				if (!error)
1462 					d_invalidate(dentry);
1463 				dput(dentry);
1464 				return ERR_PTR(error);
1465 			}
1466 		}
1467 	}
1468 	return dentry;
1469 }
1470 
1471 /*
1472  * Call i_op->lookup on the dentry.  The dentry must be negative and
1473  * unhashed.
1474  *
1475  * dir->d_inode->i_mutex must be held
1476  */
1477 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1478 				  unsigned int flags)
1479 {
1480 	struct dentry *old;
1481 
1482 	/* Don't create child dentry for a dead directory. */
1483 	if (unlikely(IS_DEADDIR(dir))) {
1484 		dput(dentry);
1485 		return ERR_PTR(-ENOENT);
1486 	}
1487 
1488 	old = dir->i_op->lookup(dir, dentry, flags);
1489 	if (unlikely(old)) {
1490 		dput(dentry);
1491 		dentry = old;
1492 	}
1493 	return dentry;
1494 }
1495 
1496 static struct dentry *__lookup_hash(const struct qstr *name,
1497 		struct dentry *base, unsigned int flags)
1498 {
1499 	struct dentry *dentry = lookup_dcache(name, base, flags);
1500 
1501 	if (dentry)
1502 		return dentry;
1503 
1504 	dentry = d_alloc(base, name);
1505 	if (unlikely(!dentry))
1506 		return ERR_PTR(-ENOMEM);
1507 
1508 	return lookup_real(base->d_inode, dentry, flags);
1509 }
1510 
1511 static int lookup_fast(struct nameidata *nd,
1512 		       struct path *path, struct inode **inode,
1513 		       unsigned *seqp)
1514 {
1515 	struct vfsmount *mnt = nd->path.mnt;
1516 	struct dentry *dentry, *parent = nd->path.dentry;
1517 	int status = 1;
1518 	int err;
1519 
1520 	/*
1521 	 * Rename seqlock is not required here because in the off chance
1522 	 * of a false negative due to a concurrent rename, the caller is
1523 	 * going to fall back to non-racy lookup.
1524 	 */
1525 	if (nd->flags & LOOKUP_RCU) {
1526 		unsigned seq;
1527 		bool negative;
1528 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1529 		if (unlikely(!dentry)) {
1530 			if (unlazy_walk(nd, NULL, 0))
1531 				return -ECHILD;
1532 			return 0;
1533 		}
1534 
1535 		/*
1536 		 * This sequence count validates that the inode matches
1537 		 * the dentry name information from lookup.
1538 		 */
1539 		*inode = d_backing_inode(dentry);
1540 		negative = d_is_negative(dentry);
1541 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1542 			return -ECHILD;
1543 
1544 		/*
1545 		 * This sequence count validates that the parent had no
1546 		 * changes while we did the lookup of the dentry above.
1547 		 *
1548 		 * The memory barrier in read_seqcount_begin of child is
1549 		 *  enough, we can use __read_seqcount_retry here.
1550 		 */
1551 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1552 			return -ECHILD;
1553 
1554 		*seqp = seq;
1555 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1556 			status = d_revalidate(dentry, nd->flags);
1557 		if (unlikely(status <= 0)) {
1558 			if (unlazy_walk(nd, dentry, seq))
1559 				return -ECHILD;
1560 			if (status == -ECHILD)
1561 				status = d_revalidate(dentry, nd->flags);
1562 		} else {
1563 			/*
1564 			 * Note: do negative dentry check after revalidation in
1565 			 * case that drops it.
1566 			 */
1567 			if (unlikely(negative))
1568 				return -ENOENT;
1569 			path->mnt = mnt;
1570 			path->dentry = dentry;
1571 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1572 				return 1;
1573 			if (unlazy_walk(nd, dentry, seq))
1574 				return -ECHILD;
1575 		}
1576 	} else {
1577 		dentry = __d_lookup(parent, &nd->last);
1578 		if (unlikely(!dentry))
1579 			return 0;
1580 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1581 			status = d_revalidate(dentry, nd->flags);
1582 	}
1583 	if (unlikely(status <= 0)) {
1584 		if (!status)
1585 			d_invalidate(dentry);
1586 		dput(dentry);
1587 		return status;
1588 	}
1589 	if (unlikely(d_is_negative(dentry))) {
1590 		dput(dentry);
1591 		return -ENOENT;
1592 	}
1593 
1594 	path->mnt = mnt;
1595 	path->dentry = dentry;
1596 	err = follow_managed(path, nd);
1597 	if (likely(err > 0))
1598 		*inode = d_backing_inode(path->dentry);
1599 	return err;
1600 }
1601 
1602 /* Fast lookup failed, do it the slow way */
1603 static struct dentry *lookup_slow(const struct qstr *name,
1604 				  struct dentry *dir,
1605 				  unsigned int flags)
1606 {
1607 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1608 	struct inode *inode = dir->d_inode;
1609 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1610 
1611 	inode_lock_shared(inode);
1612 	/* Don't go there if it's already dead */
1613 	if (unlikely(IS_DEADDIR(inode)))
1614 		goto out;
1615 again:
1616 	dentry = d_alloc_parallel(dir, name, &wq);
1617 	if (IS_ERR(dentry))
1618 		goto out;
1619 	if (unlikely(!d_in_lookup(dentry))) {
1620 		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1621 		    !(flags & LOOKUP_NO_REVAL)) {
1622 			int error = d_revalidate(dentry, flags);
1623 			if (unlikely(error <= 0)) {
1624 				if (!error) {
1625 					d_invalidate(dentry);
1626 					dput(dentry);
1627 					goto again;
1628 				}
1629 				dput(dentry);
1630 				dentry = ERR_PTR(error);
1631 			}
1632 		}
1633 	} else {
1634 		old = inode->i_op->lookup(inode, dentry, flags);
1635 		d_lookup_done(dentry);
1636 		if (unlikely(old)) {
1637 			dput(dentry);
1638 			dentry = old;
1639 		}
1640 	}
1641 out:
1642 	inode_unlock_shared(inode);
1643 	return dentry;
1644 }
1645 
1646 static inline int may_lookup(struct nameidata *nd)
1647 {
1648 	if (nd->flags & LOOKUP_RCU) {
1649 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1650 		if (err != -ECHILD)
1651 			return err;
1652 		if (unlazy_walk(nd, NULL, 0))
1653 			return -ECHILD;
1654 	}
1655 	return inode_permission(nd->inode, MAY_EXEC);
1656 }
1657 
1658 static inline int handle_dots(struct nameidata *nd, int type)
1659 {
1660 	if (type == LAST_DOTDOT) {
1661 		if (!nd->root.mnt)
1662 			set_root(nd);
1663 		if (nd->flags & LOOKUP_RCU) {
1664 			return follow_dotdot_rcu(nd);
1665 		} else
1666 			return follow_dotdot(nd);
1667 	}
1668 	return 0;
1669 }
1670 
1671 static int pick_link(struct nameidata *nd, struct path *link,
1672 		     struct inode *inode, unsigned seq)
1673 {
1674 	int error;
1675 	struct saved *last;
1676 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1677 		path_to_nameidata(link, nd);
1678 		return -ELOOP;
1679 	}
1680 	if (!(nd->flags & LOOKUP_RCU)) {
1681 		if (link->mnt == nd->path.mnt)
1682 			mntget(link->mnt);
1683 	}
1684 	error = nd_alloc_stack(nd);
1685 	if (unlikely(error)) {
1686 		if (error == -ECHILD) {
1687 			if (unlikely(unlazy_link(nd, link, seq)))
1688 				return -ECHILD;
1689 			error = nd_alloc_stack(nd);
1690 		}
1691 		if (error) {
1692 			path_put(link);
1693 			return error;
1694 		}
1695 	}
1696 
1697 	last = nd->stack + nd->depth++;
1698 	last->link = *link;
1699 	clear_delayed_call(&last->done);
1700 	nd->link_inode = inode;
1701 	last->seq = seq;
1702 	return 1;
1703 }
1704 
1705 /*
1706  * Do we need to follow links? We _really_ want to be able
1707  * to do this check without having to look at inode->i_op,
1708  * so we keep a cache of "no, this doesn't need follow_link"
1709  * for the common case.
1710  */
1711 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1712 				     int follow,
1713 				     struct inode *inode, unsigned seq)
1714 {
1715 	if (likely(!d_is_symlink(link->dentry)))
1716 		return 0;
1717 	if (!follow)
1718 		return 0;
1719 	/* make sure that d_is_symlink above matches inode */
1720 	if (nd->flags & LOOKUP_RCU) {
1721 		if (read_seqcount_retry(&link->dentry->d_seq, seq))
1722 			return -ECHILD;
1723 	}
1724 	return pick_link(nd, link, inode, seq);
1725 }
1726 
1727 enum {WALK_GET = 1, WALK_PUT = 2};
1728 
1729 static int walk_component(struct nameidata *nd, int flags)
1730 {
1731 	struct path path;
1732 	struct inode *inode;
1733 	unsigned seq;
1734 	int err;
1735 	/*
1736 	 * "." and ".." are special - ".." especially so because it has
1737 	 * to be able to know about the current root directory and
1738 	 * parent relationships.
1739 	 */
1740 	if (unlikely(nd->last_type != LAST_NORM)) {
1741 		err = handle_dots(nd, nd->last_type);
1742 		if (flags & WALK_PUT)
1743 			put_link(nd);
1744 		return err;
1745 	}
1746 	err = lookup_fast(nd, &path, &inode, &seq);
1747 	if (unlikely(err <= 0)) {
1748 		if (err < 0)
1749 			return err;
1750 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1751 					  nd->flags);
1752 		if (IS_ERR(path.dentry))
1753 			return PTR_ERR(path.dentry);
1754 
1755 		path.mnt = nd->path.mnt;
1756 		err = follow_managed(&path, nd);
1757 		if (unlikely(err < 0))
1758 			return err;
1759 
1760 		if (unlikely(d_is_negative(path.dentry))) {
1761 			path_to_nameidata(&path, nd);
1762 			return -ENOENT;
1763 		}
1764 
1765 		seq = 0;	/* we are already out of RCU mode */
1766 		inode = d_backing_inode(path.dentry);
1767 	}
1768 
1769 	if (flags & WALK_PUT)
1770 		put_link(nd);
1771 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1772 	if (unlikely(err))
1773 		return err;
1774 	path_to_nameidata(&path, nd);
1775 	nd->inode = inode;
1776 	nd->seq = seq;
1777 	return 0;
1778 }
1779 
1780 /*
1781  * We can do the critical dentry name comparison and hashing
1782  * operations one word at a time, but we are limited to:
1783  *
1784  * - Architectures with fast unaligned word accesses. We could
1785  *   do a "get_unaligned()" if this helps and is sufficiently
1786  *   fast.
1787  *
1788  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1789  *   do not trap on the (extremely unlikely) case of a page
1790  *   crossing operation.
1791  *
1792  * - Furthermore, we need an efficient 64-bit compile for the
1793  *   64-bit case in order to generate the "number of bytes in
1794  *   the final mask". Again, that could be replaced with a
1795  *   efficient population count instruction or similar.
1796  */
1797 #ifdef CONFIG_DCACHE_WORD_ACCESS
1798 
1799 #include <asm/word-at-a-time.h>
1800 
1801 #ifdef HASH_MIX
1802 
1803 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1804 
1805 #elif defined(CONFIG_64BIT)
1806 /*
1807  * Register pressure in the mixing function is an issue, particularly
1808  * on 32-bit x86, but almost any function requires one state value and
1809  * one temporary.  Instead, use a function designed for two state values
1810  * and no temporaries.
1811  *
1812  * This function cannot create a collision in only two iterations, so
1813  * we have two iterations to achieve avalanche.  In those two iterations,
1814  * we have six layers of mixing, which is enough to spread one bit's
1815  * influence out to 2^6 = 64 state bits.
1816  *
1817  * Rotate constants are scored by considering either 64 one-bit input
1818  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1819  * probability of that delta causing a change to each of the 128 output
1820  * bits, using a sample of random initial states.
1821  *
1822  * The Shannon entropy of the computed probabilities is then summed
1823  * to produce a score.  Ideally, any input change has a 50% chance of
1824  * toggling any given output bit.
1825  *
1826  * Mixing scores (in bits) for (12,45):
1827  * Input delta: 1-bit      2-bit
1828  * 1 round:     713.3    42542.6
1829  * 2 rounds:   2753.7   140389.8
1830  * 3 rounds:   5954.1   233458.2
1831  * 4 rounds:   7862.6   256672.2
1832  * Perfect:    8192     258048
1833  *            (64*128) (64*63/2 * 128)
1834  */
1835 #define HASH_MIX(x, y, a)	\
1836 	(	x ^= (a),	\
1837 	y ^= x,	x = rol64(x,12),\
1838 	x += y,	y = rol64(y,45),\
1839 	y *= 9			)
1840 
1841 /*
1842  * Fold two longs into one 32-bit hash value.  This must be fast, but
1843  * latency isn't quite as critical, as there is a fair bit of additional
1844  * work done before the hash value is used.
1845  */
1846 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1847 {
1848 	y ^= x * GOLDEN_RATIO_64;
1849 	y *= GOLDEN_RATIO_64;
1850 	return y >> 32;
1851 }
1852 
1853 #else	/* 32-bit case */
1854 
1855 /*
1856  * Mixing scores (in bits) for (7,20):
1857  * Input delta: 1-bit      2-bit
1858  * 1 round:     330.3     9201.6
1859  * 2 rounds:   1246.4    25475.4
1860  * 3 rounds:   1907.1    31295.1
1861  * 4 rounds:   2042.3    31718.6
1862  * Perfect:    2048      31744
1863  *            (32*64)   (32*31/2 * 64)
1864  */
1865 #define HASH_MIX(x, y, a)	\
1866 	(	x ^= (a),	\
1867 	y ^= x,	x = rol32(x, 7),\
1868 	x += y,	y = rol32(y,20),\
1869 	y *= 9			)
1870 
1871 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1872 {
1873 	/* Use arch-optimized multiply if one exists */
1874 	return __hash_32(y ^ __hash_32(x));
1875 }
1876 
1877 #endif
1878 
1879 /*
1880  * Return the hash of a string of known length.  This is carfully
1881  * designed to match hash_name(), which is the more critical function.
1882  * In particular, we must end by hashing a final word containing 0..7
1883  * payload bytes, to match the way that hash_name() iterates until it
1884  * finds the delimiter after the name.
1885  */
1886 unsigned int full_name_hash(const char *name, unsigned int len)
1887 {
1888 	unsigned long a, x = 0, y = 0;
1889 
1890 	for (;;) {
1891 		if (!len)
1892 			goto done;
1893 		a = load_unaligned_zeropad(name);
1894 		if (len < sizeof(unsigned long))
1895 			break;
1896 		HASH_MIX(x, y, a);
1897 		name += sizeof(unsigned long);
1898 		len -= sizeof(unsigned long);
1899 	}
1900 	x ^= a & bytemask_from_count(len);
1901 done:
1902 	return fold_hash(x, y);
1903 }
1904 EXPORT_SYMBOL(full_name_hash);
1905 
1906 /* Return the "hash_len" (hash and length) of a null-terminated string */
1907 u64 hashlen_string(const char *name)
1908 {
1909 	unsigned long a = 0, x = 0, y = 0, adata, mask, len;
1910 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1911 
1912 	len = -sizeof(unsigned long);
1913 	do {
1914 		HASH_MIX(x, y, a);
1915 		len += sizeof(unsigned long);
1916 		a = load_unaligned_zeropad(name+len);
1917 	} while (!has_zero(a, &adata, &constants));
1918 
1919 	adata = prep_zero_mask(a, adata, &constants);
1920 	mask = create_zero_mask(adata);
1921 	x ^= a & zero_bytemask(mask);
1922 
1923 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1924 }
1925 EXPORT_SYMBOL(hashlen_string);
1926 
1927 /*
1928  * Calculate the length and hash of the path component, and
1929  * return the "hash_len" as the result.
1930  */
1931 static inline u64 hash_name(const char *name)
1932 {
1933 	unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len;
1934 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1935 
1936 	len = -sizeof(unsigned long);
1937 	do {
1938 		HASH_MIX(x, y, a);
1939 		len += sizeof(unsigned long);
1940 		a = load_unaligned_zeropad(name+len);
1941 		b = a ^ REPEAT_BYTE('/');
1942 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1943 
1944 	adata = prep_zero_mask(a, adata, &constants);
1945 	bdata = prep_zero_mask(b, bdata, &constants);
1946 	mask = create_zero_mask(adata | bdata);
1947 	x ^= a & zero_bytemask(mask);
1948 
1949 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1950 }
1951 
1952 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1953 
1954 /* Return the hash of a string of known length */
1955 unsigned int full_name_hash(const char *name, unsigned int len)
1956 {
1957 	unsigned long hash = init_name_hash();
1958 	while (len--)
1959 		hash = partial_name_hash((unsigned char)*name++, hash);
1960 	return end_name_hash(hash);
1961 }
1962 EXPORT_SYMBOL(full_name_hash);
1963 
1964 /* Return the "hash_len" (hash and length) of a null-terminated string */
1965 u64 hashlen_string(const char *name)
1966 {
1967 	unsigned long hash = init_name_hash();
1968 	unsigned long len = 0, c;
1969 
1970 	c = (unsigned char)*name;
1971 	while (c) {
1972 		len++;
1973 		hash = partial_name_hash(c, hash);
1974 		c = (unsigned char)name[len];
1975 	}
1976 	return hashlen_create(end_name_hash(hash), len);
1977 }
1978 EXPORT_SYMBOL(hashlen_string);
1979 
1980 /*
1981  * We know there's a real path component here of at least
1982  * one character.
1983  */
1984 static inline u64 hash_name(const char *name)
1985 {
1986 	unsigned long hash = init_name_hash();
1987 	unsigned long len = 0, c;
1988 
1989 	c = (unsigned char)*name;
1990 	do {
1991 		len++;
1992 		hash = partial_name_hash(c, hash);
1993 		c = (unsigned char)name[len];
1994 	} while (c && c != '/');
1995 	return hashlen_create(end_name_hash(hash), len);
1996 }
1997 
1998 #endif
1999 
2000 /*
2001  * Name resolution.
2002  * This is the basic name resolution function, turning a pathname into
2003  * the final dentry. We expect 'base' to be positive and a directory.
2004  *
2005  * Returns 0 and nd will have valid dentry and mnt on success.
2006  * Returns error and drops reference to input namei data on failure.
2007  */
2008 static int link_path_walk(const char *name, struct nameidata *nd)
2009 {
2010 	int err;
2011 
2012 	while (*name=='/')
2013 		name++;
2014 	if (!*name)
2015 		return 0;
2016 
2017 	/* At this point we know we have a real path component. */
2018 	for(;;) {
2019 		u64 hash_len;
2020 		int type;
2021 
2022 		err = may_lookup(nd);
2023 		if (err)
2024 			return err;
2025 
2026 		hash_len = hash_name(name);
2027 
2028 		type = LAST_NORM;
2029 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2030 			case 2:
2031 				if (name[1] == '.') {
2032 					type = LAST_DOTDOT;
2033 					nd->flags |= LOOKUP_JUMPED;
2034 				}
2035 				break;
2036 			case 1:
2037 				type = LAST_DOT;
2038 		}
2039 		if (likely(type == LAST_NORM)) {
2040 			struct dentry *parent = nd->path.dentry;
2041 			nd->flags &= ~LOOKUP_JUMPED;
2042 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2043 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2044 				err = parent->d_op->d_hash(parent, &this);
2045 				if (err < 0)
2046 					return err;
2047 				hash_len = this.hash_len;
2048 				name = this.name;
2049 			}
2050 		}
2051 
2052 		nd->last.hash_len = hash_len;
2053 		nd->last.name = name;
2054 		nd->last_type = type;
2055 
2056 		name += hashlen_len(hash_len);
2057 		if (!*name)
2058 			goto OK;
2059 		/*
2060 		 * If it wasn't NUL, we know it was '/'. Skip that
2061 		 * slash, and continue until no more slashes.
2062 		 */
2063 		do {
2064 			name++;
2065 		} while (unlikely(*name == '/'));
2066 		if (unlikely(!*name)) {
2067 OK:
2068 			/* pathname body, done */
2069 			if (!nd->depth)
2070 				return 0;
2071 			name = nd->stack[nd->depth - 1].name;
2072 			/* trailing symlink, done */
2073 			if (!name)
2074 				return 0;
2075 			/* last component of nested symlink */
2076 			err = walk_component(nd, WALK_GET | WALK_PUT);
2077 		} else {
2078 			err = walk_component(nd, WALK_GET);
2079 		}
2080 		if (err < 0)
2081 			return err;
2082 
2083 		if (err) {
2084 			const char *s = get_link(nd);
2085 
2086 			if (IS_ERR(s))
2087 				return PTR_ERR(s);
2088 			err = 0;
2089 			if (unlikely(!s)) {
2090 				/* jumped */
2091 				put_link(nd);
2092 			} else {
2093 				nd->stack[nd->depth - 1].name = name;
2094 				name = s;
2095 				continue;
2096 			}
2097 		}
2098 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2099 			if (nd->flags & LOOKUP_RCU) {
2100 				if (unlazy_walk(nd, NULL, 0))
2101 					return -ECHILD;
2102 			}
2103 			return -ENOTDIR;
2104 		}
2105 	}
2106 }
2107 
2108 static const char *path_init(struct nameidata *nd, unsigned flags)
2109 {
2110 	int retval = 0;
2111 	const char *s = nd->name->name;
2112 
2113 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2114 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2115 	nd->depth = 0;
2116 	if (flags & LOOKUP_ROOT) {
2117 		struct dentry *root = nd->root.dentry;
2118 		struct inode *inode = root->d_inode;
2119 		if (*s) {
2120 			if (!d_can_lookup(root))
2121 				return ERR_PTR(-ENOTDIR);
2122 			retval = inode_permission(inode, MAY_EXEC);
2123 			if (retval)
2124 				return ERR_PTR(retval);
2125 		}
2126 		nd->path = nd->root;
2127 		nd->inode = inode;
2128 		if (flags & LOOKUP_RCU) {
2129 			rcu_read_lock();
2130 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2131 			nd->root_seq = nd->seq;
2132 			nd->m_seq = read_seqbegin(&mount_lock);
2133 		} else {
2134 			path_get(&nd->path);
2135 		}
2136 		return s;
2137 	}
2138 
2139 	nd->root.mnt = NULL;
2140 	nd->path.mnt = NULL;
2141 	nd->path.dentry = NULL;
2142 
2143 	nd->m_seq = read_seqbegin(&mount_lock);
2144 	if (*s == '/') {
2145 		if (flags & LOOKUP_RCU)
2146 			rcu_read_lock();
2147 		set_root(nd);
2148 		if (likely(!nd_jump_root(nd)))
2149 			return s;
2150 		nd->root.mnt = NULL;
2151 		rcu_read_unlock();
2152 		return ERR_PTR(-ECHILD);
2153 	} else if (nd->dfd == AT_FDCWD) {
2154 		if (flags & LOOKUP_RCU) {
2155 			struct fs_struct *fs = current->fs;
2156 			unsigned seq;
2157 
2158 			rcu_read_lock();
2159 
2160 			do {
2161 				seq = read_seqcount_begin(&fs->seq);
2162 				nd->path = fs->pwd;
2163 				nd->inode = nd->path.dentry->d_inode;
2164 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2165 			} while (read_seqcount_retry(&fs->seq, seq));
2166 		} else {
2167 			get_fs_pwd(current->fs, &nd->path);
2168 			nd->inode = nd->path.dentry->d_inode;
2169 		}
2170 		return s;
2171 	} else {
2172 		/* Caller must check execute permissions on the starting path component */
2173 		struct fd f = fdget_raw(nd->dfd);
2174 		struct dentry *dentry;
2175 
2176 		if (!f.file)
2177 			return ERR_PTR(-EBADF);
2178 
2179 		dentry = f.file->f_path.dentry;
2180 
2181 		if (*s) {
2182 			if (!d_can_lookup(dentry)) {
2183 				fdput(f);
2184 				return ERR_PTR(-ENOTDIR);
2185 			}
2186 		}
2187 
2188 		nd->path = f.file->f_path;
2189 		if (flags & LOOKUP_RCU) {
2190 			rcu_read_lock();
2191 			nd->inode = nd->path.dentry->d_inode;
2192 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2193 		} else {
2194 			path_get(&nd->path);
2195 			nd->inode = nd->path.dentry->d_inode;
2196 		}
2197 		fdput(f);
2198 		return s;
2199 	}
2200 }
2201 
2202 static const char *trailing_symlink(struct nameidata *nd)
2203 {
2204 	const char *s;
2205 	int error = may_follow_link(nd);
2206 	if (unlikely(error))
2207 		return ERR_PTR(error);
2208 	nd->flags |= LOOKUP_PARENT;
2209 	nd->stack[0].name = NULL;
2210 	s = get_link(nd);
2211 	return s ? s : "";
2212 }
2213 
2214 static inline int lookup_last(struct nameidata *nd)
2215 {
2216 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2217 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2218 
2219 	nd->flags &= ~LOOKUP_PARENT;
2220 	return walk_component(nd,
2221 			nd->flags & LOOKUP_FOLLOW
2222 				? nd->depth
2223 					? WALK_PUT | WALK_GET
2224 					: WALK_GET
2225 				: 0);
2226 }
2227 
2228 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2229 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2230 {
2231 	const char *s = path_init(nd, flags);
2232 	int err;
2233 
2234 	if (IS_ERR(s))
2235 		return PTR_ERR(s);
2236 	while (!(err = link_path_walk(s, nd))
2237 		&& ((err = lookup_last(nd)) > 0)) {
2238 		s = trailing_symlink(nd);
2239 		if (IS_ERR(s)) {
2240 			err = PTR_ERR(s);
2241 			break;
2242 		}
2243 	}
2244 	if (!err)
2245 		err = complete_walk(nd);
2246 
2247 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2248 		if (!d_can_lookup(nd->path.dentry))
2249 			err = -ENOTDIR;
2250 	if (!err) {
2251 		*path = nd->path;
2252 		nd->path.mnt = NULL;
2253 		nd->path.dentry = NULL;
2254 	}
2255 	terminate_walk(nd);
2256 	return err;
2257 }
2258 
2259 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2260 			   struct path *path, struct path *root)
2261 {
2262 	int retval;
2263 	struct nameidata nd;
2264 	if (IS_ERR(name))
2265 		return PTR_ERR(name);
2266 	if (unlikely(root)) {
2267 		nd.root = *root;
2268 		flags |= LOOKUP_ROOT;
2269 	}
2270 	set_nameidata(&nd, dfd, name);
2271 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2272 	if (unlikely(retval == -ECHILD))
2273 		retval = path_lookupat(&nd, flags, path);
2274 	if (unlikely(retval == -ESTALE))
2275 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2276 
2277 	if (likely(!retval))
2278 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2279 	restore_nameidata();
2280 	putname(name);
2281 	return retval;
2282 }
2283 
2284 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2285 static int path_parentat(struct nameidata *nd, unsigned flags,
2286 				struct path *parent)
2287 {
2288 	const char *s = path_init(nd, flags);
2289 	int err;
2290 	if (IS_ERR(s))
2291 		return PTR_ERR(s);
2292 	err = link_path_walk(s, nd);
2293 	if (!err)
2294 		err = complete_walk(nd);
2295 	if (!err) {
2296 		*parent = nd->path;
2297 		nd->path.mnt = NULL;
2298 		nd->path.dentry = NULL;
2299 	}
2300 	terminate_walk(nd);
2301 	return err;
2302 }
2303 
2304 static struct filename *filename_parentat(int dfd, struct filename *name,
2305 				unsigned int flags, struct path *parent,
2306 				struct qstr *last, int *type)
2307 {
2308 	int retval;
2309 	struct nameidata nd;
2310 
2311 	if (IS_ERR(name))
2312 		return name;
2313 	set_nameidata(&nd, dfd, name);
2314 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2315 	if (unlikely(retval == -ECHILD))
2316 		retval = path_parentat(&nd, flags, parent);
2317 	if (unlikely(retval == -ESTALE))
2318 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2319 	if (likely(!retval)) {
2320 		*last = nd.last;
2321 		*type = nd.last_type;
2322 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2323 	} else {
2324 		putname(name);
2325 		name = ERR_PTR(retval);
2326 	}
2327 	restore_nameidata();
2328 	return name;
2329 }
2330 
2331 /* does lookup, returns the object with parent locked */
2332 struct dentry *kern_path_locked(const char *name, struct path *path)
2333 {
2334 	struct filename *filename;
2335 	struct dentry *d;
2336 	struct qstr last;
2337 	int type;
2338 
2339 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2340 				    &last, &type);
2341 	if (IS_ERR(filename))
2342 		return ERR_CAST(filename);
2343 	if (unlikely(type != LAST_NORM)) {
2344 		path_put(path);
2345 		putname(filename);
2346 		return ERR_PTR(-EINVAL);
2347 	}
2348 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2349 	d = __lookup_hash(&last, path->dentry, 0);
2350 	if (IS_ERR(d)) {
2351 		inode_unlock(path->dentry->d_inode);
2352 		path_put(path);
2353 	}
2354 	putname(filename);
2355 	return d;
2356 }
2357 
2358 int kern_path(const char *name, unsigned int flags, struct path *path)
2359 {
2360 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2361 			       flags, path, NULL);
2362 }
2363 EXPORT_SYMBOL(kern_path);
2364 
2365 /**
2366  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2367  * @dentry:  pointer to dentry of the base directory
2368  * @mnt: pointer to vfs mount of the base directory
2369  * @name: pointer to file name
2370  * @flags: lookup flags
2371  * @path: pointer to struct path to fill
2372  */
2373 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2374 		    const char *name, unsigned int flags,
2375 		    struct path *path)
2376 {
2377 	struct path root = {.mnt = mnt, .dentry = dentry};
2378 	/* the first argument of filename_lookup() is ignored with root */
2379 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2380 			       flags , path, &root);
2381 }
2382 EXPORT_SYMBOL(vfs_path_lookup);
2383 
2384 /**
2385  * lookup_hash - lookup single pathname component on already hashed name
2386  * @name:	name and hash to lookup
2387  * @base:	base directory to lookup from
2388  *
2389  * The name must have been verified and hashed (see lookup_one_len()).  Using
2390  * this after just full_name_hash() is unsafe.
2391  *
2392  * This function also doesn't check for search permission on base directory.
2393  *
2394  * Use lookup_one_len_unlocked() instead, unless you really know what you are
2395  * doing.
2396  *
2397  * Do not hold i_mutex; this helper takes i_mutex if necessary.
2398  */
2399 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2400 {
2401 	struct dentry *ret;
2402 
2403 	ret = lookup_dcache(name, base, 0);
2404 	if (!ret)
2405 		ret = lookup_slow(name, base, 0);
2406 
2407 	return ret;
2408 }
2409 EXPORT_SYMBOL(lookup_hash);
2410 
2411 /**
2412  * lookup_one_len - filesystem helper to lookup single pathname component
2413  * @name:	pathname component to lookup
2414  * @base:	base directory to lookup from
2415  * @len:	maximum length @len should be interpreted to
2416  *
2417  * Note that this routine is purely a helper for filesystem usage and should
2418  * not be called by generic code.
2419  *
2420  * The caller must hold base->i_mutex.
2421  */
2422 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2423 {
2424 	struct qstr this;
2425 	unsigned int c;
2426 	int err;
2427 
2428 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2429 
2430 	this.name = name;
2431 	this.len = len;
2432 	this.hash = full_name_hash(name, len);
2433 	if (!len)
2434 		return ERR_PTR(-EACCES);
2435 
2436 	if (unlikely(name[0] == '.')) {
2437 		if (len < 2 || (len == 2 && name[1] == '.'))
2438 			return ERR_PTR(-EACCES);
2439 	}
2440 
2441 	while (len--) {
2442 		c = *(const unsigned char *)name++;
2443 		if (c == '/' || c == '\0')
2444 			return ERR_PTR(-EACCES);
2445 	}
2446 	/*
2447 	 * See if the low-level filesystem might want
2448 	 * to use its own hash..
2449 	 */
2450 	if (base->d_flags & DCACHE_OP_HASH) {
2451 		int err = base->d_op->d_hash(base, &this);
2452 		if (err < 0)
2453 			return ERR_PTR(err);
2454 	}
2455 
2456 	err = inode_permission(base->d_inode, MAY_EXEC);
2457 	if (err)
2458 		return ERR_PTR(err);
2459 
2460 	return __lookup_hash(&this, base, 0);
2461 }
2462 EXPORT_SYMBOL(lookup_one_len);
2463 
2464 /**
2465  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2466  * @name:	pathname component to lookup
2467  * @base:	base directory to lookup from
2468  * @len:	maximum length @len should be interpreted to
2469  *
2470  * Note that this routine is purely a helper for filesystem usage and should
2471  * not be called by generic code.
2472  *
2473  * Unlike lookup_one_len, it should be called without the parent
2474  * i_mutex held, and will take the i_mutex itself if necessary.
2475  */
2476 struct dentry *lookup_one_len_unlocked(const char *name,
2477 				       struct dentry *base, int len)
2478 {
2479 	struct qstr this;
2480 	unsigned int c;
2481 	int err;
2482 
2483 	this.name = name;
2484 	this.len = len;
2485 	this.hash = full_name_hash(name, len);
2486 	if (!len)
2487 		return ERR_PTR(-EACCES);
2488 
2489 	if (unlikely(name[0] == '.')) {
2490 		if (len < 2 || (len == 2 && name[1] == '.'))
2491 			return ERR_PTR(-EACCES);
2492 	}
2493 
2494 	while (len--) {
2495 		c = *(const unsigned char *)name++;
2496 		if (c == '/' || c == '\0')
2497 			return ERR_PTR(-EACCES);
2498 	}
2499 	/*
2500 	 * See if the low-level filesystem might want
2501 	 * to use its own hash..
2502 	 */
2503 	if (base->d_flags & DCACHE_OP_HASH) {
2504 		int err = base->d_op->d_hash(base, &this);
2505 		if (err < 0)
2506 			return ERR_PTR(err);
2507 	}
2508 
2509 	err = inode_permission(base->d_inode, MAY_EXEC);
2510 	if (err)
2511 		return ERR_PTR(err);
2512 
2513 	return lookup_hash(&this, base);
2514 }
2515 EXPORT_SYMBOL(lookup_one_len_unlocked);
2516 
2517 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2518 		 struct path *path, int *empty)
2519 {
2520 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2521 			       flags, path, NULL);
2522 }
2523 EXPORT_SYMBOL(user_path_at_empty);
2524 
2525 /*
2526  * NB: most callers don't do anything directly with the reference to the
2527  *     to struct filename, but the nd->last pointer points into the name string
2528  *     allocated by getname. So we must hold the reference to it until all
2529  *     path-walking is complete.
2530  */
2531 static inline struct filename *
2532 user_path_parent(int dfd, const char __user *path,
2533 		 struct path *parent,
2534 		 struct qstr *last,
2535 		 int *type,
2536 		 unsigned int flags)
2537 {
2538 	/* only LOOKUP_REVAL is allowed in extra flags */
2539 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2540 				 parent, last, type);
2541 }
2542 
2543 /**
2544  * mountpoint_last - look up last component for umount
2545  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2546  * @path: pointer to container for result
2547  *
2548  * This is a special lookup_last function just for umount. In this case, we
2549  * need to resolve the path without doing any revalidation.
2550  *
2551  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2552  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2553  * in almost all cases, this lookup will be served out of the dcache. The only
2554  * cases where it won't are if nd->last refers to a symlink or the path is
2555  * bogus and it doesn't exist.
2556  *
2557  * Returns:
2558  * -error: if there was an error during lookup. This includes -ENOENT if the
2559  *         lookup found a negative dentry. The nd->path reference will also be
2560  *         put in this case.
2561  *
2562  * 0:      if we successfully resolved nd->path and found it to not to be a
2563  *         symlink that needs to be followed. "path" will also be populated.
2564  *         The nd->path reference will also be put.
2565  *
2566  * 1:      if we successfully resolved nd->last and found it to be a symlink
2567  *         that needs to be followed. "path" will be populated with the path
2568  *         to the link, and nd->path will *not* be put.
2569  */
2570 static int
2571 mountpoint_last(struct nameidata *nd, struct path *path)
2572 {
2573 	int error = 0;
2574 	struct dentry *dentry;
2575 	struct dentry *dir = nd->path.dentry;
2576 
2577 	/* If we're in rcuwalk, drop out of it to handle last component */
2578 	if (nd->flags & LOOKUP_RCU) {
2579 		if (unlazy_walk(nd, NULL, 0))
2580 			return -ECHILD;
2581 	}
2582 
2583 	nd->flags &= ~LOOKUP_PARENT;
2584 
2585 	if (unlikely(nd->last_type != LAST_NORM)) {
2586 		error = handle_dots(nd, nd->last_type);
2587 		if (error)
2588 			return error;
2589 		dentry = dget(nd->path.dentry);
2590 	} else {
2591 		dentry = d_lookup(dir, &nd->last);
2592 		if (!dentry) {
2593 			/*
2594 			 * No cached dentry. Mounted dentries are pinned in the
2595 			 * cache, so that means that this dentry is probably
2596 			 * a symlink or the path doesn't actually point
2597 			 * to a mounted dentry.
2598 			 */
2599 			dentry = lookup_slow(&nd->last, dir,
2600 					     nd->flags | LOOKUP_NO_REVAL);
2601 			if (IS_ERR(dentry))
2602 				return PTR_ERR(dentry);
2603 		}
2604 	}
2605 	if (d_is_negative(dentry)) {
2606 		dput(dentry);
2607 		return -ENOENT;
2608 	}
2609 	if (nd->depth)
2610 		put_link(nd);
2611 	path->dentry = dentry;
2612 	path->mnt = nd->path.mnt;
2613 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2614 				   d_backing_inode(dentry), 0);
2615 	if (unlikely(error))
2616 		return error;
2617 	mntget(path->mnt);
2618 	follow_mount(path);
2619 	return 0;
2620 }
2621 
2622 /**
2623  * path_mountpoint - look up a path to be umounted
2624  * @nd:		lookup context
2625  * @flags:	lookup flags
2626  * @path:	pointer to container for result
2627  *
2628  * Look up the given name, but don't attempt to revalidate the last component.
2629  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2630  */
2631 static int
2632 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2633 {
2634 	const char *s = path_init(nd, flags);
2635 	int err;
2636 	if (IS_ERR(s))
2637 		return PTR_ERR(s);
2638 	while (!(err = link_path_walk(s, nd)) &&
2639 		(err = mountpoint_last(nd, path)) > 0) {
2640 		s = trailing_symlink(nd);
2641 		if (IS_ERR(s)) {
2642 			err = PTR_ERR(s);
2643 			break;
2644 		}
2645 	}
2646 	terminate_walk(nd);
2647 	return err;
2648 }
2649 
2650 static int
2651 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2652 			unsigned int flags)
2653 {
2654 	struct nameidata nd;
2655 	int error;
2656 	if (IS_ERR(name))
2657 		return PTR_ERR(name);
2658 	set_nameidata(&nd, dfd, name);
2659 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2660 	if (unlikely(error == -ECHILD))
2661 		error = path_mountpoint(&nd, flags, path);
2662 	if (unlikely(error == -ESTALE))
2663 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2664 	if (likely(!error))
2665 		audit_inode(name, path->dentry, 0);
2666 	restore_nameidata();
2667 	putname(name);
2668 	return error;
2669 }
2670 
2671 /**
2672  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2673  * @dfd:	directory file descriptor
2674  * @name:	pathname from userland
2675  * @flags:	lookup flags
2676  * @path:	pointer to container to hold result
2677  *
2678  * A umount is a special case for path walking. We're not actually interested
2679  * in the inode in this situation, and ESTALE errors can be a problem. We
2680  * simply want track down the dentry and vfsmount attached at the mountpoint
2681  * and avoid revalidating the last component.
2682  *
2683  * Returns 0 and populates "path" on success.
2684  */
2685 int
2686 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2687 			struct path *path)
2688 {
2689 	return filename_mountpoint(dfd, getname(name), path, flags);
2690 }
2691 
2692 int
2693 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2694 			unsigned int flags)
2695 {
2696 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2697 }
2698 EXPORT_SYMBOL(kern_path_mountpoint);
2699 
2700 int __check_sticky(struct inode *dir, struct inode *inode)
2701 {
2702 	kuid_t fsuid = current_fsuid();
2703 
2704 	if (uid_eq(inode->i_uid, fsuid))
2705 		return 0;
2706 	if (uid_eq(dir->i_uid, fsuid))
2707 		return 0;
2708 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2709 }
2710 EXPORT_SYMBOL(__check_sticky);
2711 
2712 /*
2713  *	Check whether we can remove a link victim from directory dir, check
2714  *  whether the type of victim is right.
2715  *  1. We can't do it if dir is read-only (done in permission())
2716  *  2. We should have write and exec permissions on dir
2717  *  3. We can't remove anything from append-only dir
2718  *  4. We can't do anything with immutable dir (done in permission())
2719  *  5. If the sticky bit on dir is set we should either
2720  *	a. be owner of dir, or
2721  *	b. be owner of victim, or
2722  *	c. have CAP_FOWNER capability
2723  *  6. If the victim is append-only or immutable we can't do antyhing with
2724  *     links pointing to it.
2725  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2726  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2727  *  9. We can't remove a root or mountpoint.
2728  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2729  *     nfs_async_unlink().
2730  */
2731 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2732 {
2733 	struct inode *inode = d_backing_inode(victim);
2734 	int error;
2735 
2736 	if (d_is_negative(victim))
2737 		return -ENOENT;
2738 	BUG_ON(!inode);
2739 
2740 	BUG_ON(victim->d_parent->d_inode != dir);
2741 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2742 
2743 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2744 	if (error)
2745 		return error;
2746 	if (IS_APPEND(dir))
2747 		return -EPERM;
2748 
2749 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2750 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2751 		return -EPERM;
2752 	if (isdir) {
2753 		if (!d_is_dir(victim))
2754 			return -ENOTDIR;
2755 		if (IS_ROOT(victim))
2756 			return -EBUSY;
2757 	} else if (d_is_dir(victim))
2758 		return -EISDIR;
2759 	if (IS_DEADDIR(dir))
2760 		return -ENOENT;
2761 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2762 		return -EBUSY;
2763 	return 0;
2764 }
2765 
2766 /*	Check whether we can create an object with dentry child in directory
2767  *  dir.
2768  *  1. We can't do it if child already exists (open has special treatment for
2769  *     this case, but since we are inlined it's OK)
2770  *  2. We can't do it if dir is read-only (done in permission())
2771  *  3. We should have write and exec permissions on dir
2772  *  4. We can't do it if dir is immutable (done in permission())
2773  */
2774 static inline int may_create(struct inode *dir, struct dentry *child)
2775 {
2776 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2777 	if (child->d_inode)
2778 		return -EEXIST;
2779 	if (IS_DEADDIR(dir))
2780 		return -ENOENT;
2781 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2782 }
2783 
2784 /*
2785  * p1 and p2 should be directories on the same fs.
2786  */
2787 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2788 {
2789 	struct dentry *p;
2790 
2791 	if (p1 == p2) {
2792 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2793 		return NULL;
2794 	}
2795 
2796 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2797 
2798 	p = d_ancestor(p2, p1);
2799 	if (p) {
2800 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2801 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2802 		return p;
2803 	}
2804 
2805 	p = d_ancestor(p1, p2);
2806 	if (p) {
2807 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2808 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2809 		return p;
2810 	}
2811 
2812 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2813 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2814 	return NULL;
2815 }
2816 EXPORT_SYMBOL(lock_rename);
2817 
2818 void unlock_rename(struct dentry *p1, struct dentry *p2)
2819 {
2820 	inode_unlock(p1->d_inode);
2821 	if (p1 != p2) {
2822 		inode_unlock(p2->d_inode);
2823 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2824 	}
2825 }
2826 EXPORT_SYMBOL(unlock_rename);
2827 
2828 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2829 		bool want_excl)
2830 {
2831 	int error = may_create(dir, dentry);
2832 	if (error)
2833 		return error;
2834 
2835 	if (!dir->i_op->create)
2836 		return -EACCES;	/* shouldn't it be ENOSYS? */
2837 	mode &= S_IALLUGO;
2838 	mode |= S_IFREG;
2839 	error = security_inode_create(dir, dentry, mode);
2840 	if (error)
2841 		return error;
2842 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2843 	if (!error)
2844 		fsnotify_create(dir, dentry);
2845 	return error;
2846 }
2847 EXPORT_SYMBOL(vfs_create);
2848 
2849 static int may_open(struct path *path, int acc_mode, int flag)
2850 {
2851 	struct dentry *dentry = path->dentry;
2852 	struct inode *inode = dentry->d_inode;
2853 	int error;
2854 
2855 	if (!inode)
2856 		return -ENOENT;
2857 
2858 	switch (inode->i_mode & S_IFMT) {
2859 	case S_IFLNK:
2860 		return -ELOOP;
2861 	case S_IFDIR:
2862 		if (acc_mode & MAY_WRITE)
2863 			return -EISDIR;
2864 		break;
2865 	case S_IFBLK:
2866 	case S_IFCHR:
2867 		if (path->mnt->mnt_flags & MNT_NODEV)
2868 			return -EACCES;
2869 		/*FALLTHRU*/
2870 	case S_IFIFO:
2871 	case S_IFSOCK:
2872 		flag &= ~O_TRUNC;
2873 		break;
2874 	}
2875 
2876 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2877 	if (error)
2878 		return error;
2879 
2880 	/*
2881 	 * An append-only file must be opened in append mode for writing.
2882 	 */
2883 	if (IS_APPEND(inode)) {
2884 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2885 			return -EPERM;
2886 		if (flag & O_TRUNC)
2887 			return -EPERM;
2888 	}
2889 
2890 	/* O_NOATIME can only be set by the owner or superuser */
2891 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2892 		return -EPERM;
2893 
2894 	return 0;
2895 }
2896 
2897 static int handle_truncate(struct file *filp)
2898 {
2899 	struct path *path = &filp->f_path;
2900 	struct inode *inode = path->dentry->d_inode;
2901 	int error = get_write_access(inode);
2902 	if (error)
2903 		return error;
2904 	/*
2905 	 * Refuse to truncate files with mandatory locks held on them.
2906 	 */
2907 	error = locks_verify_locked(filp);
2908 	if (!error)
2909 		error = security_path_truncate(path);
2910 	if (!error) {
2911 		error = do_truncate(path->dentry, 0,
2912 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2913 				    filp);
2914 	}
2915 	put_write_access(inode);
2916 	return error;
2917 }
2918 
2919 static inline int open_to_namei_flags(int flag)
2920 {
2921 	if ((flag & O_ACCMODE) == 3)
2922 		flag--;
2923 	return flag;
2924 }
2925 
2926 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2927 {
2928 	int error = security_path_mknod(dir, dentry, mode, 0);
2929 	if (error)
2930 		return error;
2931 
2932 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2933 	if (error)
2934 		return error;
2935 
2936 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2937 }
2938 
2939 /*
2940  * Attempt to atomically look up, create and open a file from a negative
2941  * dentry.
2942  *
2943  * Returns 0 if successful.  The file will have been created and attached to
2944  * @file by the filesystem calling finish_open().
2945  *
2946  * Returns 1 if the file was looked up only or didn't need creating.  The
2947  * caller will need to perform the open themselves.  @path will have been
2948  * updated to point to the new dentry.  This may be negative.
2949  *
2950  * Returns an error code otherwise.
2951  */
2952 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2953 			struct path *path, struct file *file,
2954 			const struct open_flags *op,
2955 			int open_flag, umode_t mode,
2956 			int *opened)
2957 {
2958 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2959 	struct inode *dir =  nd->path.dentry->d_inode;
2960 	int error;
2961 
2962 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
2963 		open_flag &= ~O_TRUNC;
2964 
2965 	if (nd->flags & LOOKUP_DIRECTORY)
2966 		open_flag |= O_DIRECTORY;
2967 
2968 	file->f_path.dentry = DENTRY_NOT_SET;
2969 	file->f_path.mnt = nd->path.mnt;
2970 	error = dir->i_op->atomic_open(dir, dentry, file,
2971 				       open_to_namei_flags(open_flag),
2972 				       mode, opened);
2973 	d_lookup_done(dentry);
2974 	if (!error) {
2975 		/*
2976 		 * We didn't have the inode before the open, so check open
2977 		 * permission here.
2978 		 */
2979 		int acc_mode = op->acc_mode;
2980 		if (*opened & FILE_CREATED) {
2981 			WARN_ON(!(open_flag & O_CREAT));
2982 			fsnotify_create(dir, dentry);
2983 			acc_mode = 0;
2984 		}
2985 		error = may_open(&file->f_path, acc_mode, open_flag);
2986 		if (WARN_ON(error > 0))
2987 			error = -EINVAL;
2988 	} else if (error > 0) {
2989 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2990 			error = -EIO;
2991 		} else {
2992 			if (file->f_path.dentry) {
2993 				dput(dentry);
2994 				dentry = file->f_path.dentry;
2995 			}
2996 			if (*opened & FILE_CREATED)
2997 				fsnotify_create(dir, dentry);
2998 			path->dentry = dentry;
2999 			path->mnt = nd->path.mnt;
3000 			return 1;
3001 		}
3002 	}
3003 	dput(dentry);
3004 	return error;
3005 }
3006 
3007 /*
3008  * Look up and maybe create and open the last component.
3009  *
3010  * Must be called with i_mutex held on parent.
3011  *
3012  * Returns 0 if the file was successfully atomically created (if necessary) and
3013  * opened.  In this case the file will be returned attached to @file.
3014  *
3015  * Returns 1 if the file was not completely opened at this time, though lookups
3016  * and creations will have been performed and the dentry returned in @path will
3017  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3018  * specified then a negative dentry may be returned.
3019  *
3020  * An error code is returned otherwise.
3021  *
3022  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3023  * cleared otherwise prior to returning.
3024  */
3025 static int lookup_open(struct nameidata *nd, struct path *path,
3026 			struct file *file,
3027 			const struct open_flags *op,
3028 			bool got_write, int *opened)
3029 {
3030 	struct dentry *dir = nd->path.dentry;
3031 	struct inode *dir_inode = dir->d_inode;
3032 	int open_flag = op->open_flag;
3033 	struct dentry *dentry;
3034 	int error, create_error = 0;
3035 	umode_t mode = op->mode;
3036 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3037 
3038 	if (unlikely(IS_DEADDIR(dir_inode)))
3039 		return -ENOENT;
3040 
3041 	*opened &= ~FILE_CREATED;
3042 	dentry = d_lookup(dir, &nd->last);
3043 	for (;;) {
3044 		if (!dentry) {
3045 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3046 			if (IS_ERR(dentry))
3047 				return PTR_ERR(dentry);
3048 		}
3049 		if (d_in_lookup(dentry))
3050 			break;
3051 
3052 		if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3053 			break;
3054 
3055 		error = d_revalidate(dentry, nd->flags);
3056 		if (likely(error > 0))
3057 			break;
3058 		if (error)
3059 			goto out_dput;
3060 		d_invalidate(dentry);
3061 		dput(dentry);
3062 		dentry = NULL;
3063 	}
3064 	if (dentry->d_inode) {
3065 		/* Cached positive dentry: will open in f_op->open */
3066 		goto out_no_open;
3067 	}
3068 
3069 	/*
3070 	 * Checking write permission is tricky, bacuse we don't know if we are
3071 	 * going to actually need it: O_CREAT opens should work as long as the
3072 	 * file exists.  But checking existence breaks atomicity.  The trick is
3073 	 * to check access and if not granted clear O_CREAT from the flags.
3074 	 *
3075 	 * Another problem is returing the "right" error value (e.g. for an
3076 	 * O_EXCL open we want to return EEXIST not EROFS).
3077 	 */
3078 	if (open_flag & O_CREAT) {
3079 		if (!IS_POSIXACL(dir->d_inode))
3080 			mode &= ~current_umask();
3081 		if (unlikely(!got_write)) {
3082 			create_error = -EROFS;
3083 			open_flag &= ~O_CREAT;
3084 			if (open_flag & (O_EXCL | O_TRUNC))
3085 				goto no_open;
3086 			/* No side effects, safe to clear O_CREAT */
3087 		} else {
3088 			create_error = may_o_create(&nd->path, dentry, mode);
3089 			if (create_error) {
3090 				open_flag &= ~O_CREAT;
3091 				if (open_flag & O_EXCL)
3092 					goto no_open;
3093 			}
3094 		}
3095 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3096 		   unlikely(!got_write)) {
3097 		/*
3098 		 * No O_CREATE -> atomicity not a requirement -> fall
3099 		 * back to lookup + open
3100 		 */
3101 		goto no_open;
3102 	}
3103 
3104 	if (dir_inode->i_op->atomic_open) {
3105 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3106 				    mode, opened);
3107 		if (unlikely(error == -ENOENT) && create_error)
3108 			error = create_error;
3109 		return error;
3110 	}
3111 
3112 no_open:
3113 	if (d_in_lookup(dentry)) {
3114 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3115 							     nd->flags);
3116 		d_lookup_done(dentry);
3117 		if (unlikely(res)) {
3118 			if (IS_ERR(res)) {
3119 				error = PTR_ERR(res);
3120 				goto out_dput;
3121 			}
3122 			dput(dentry);
3123 			dentry = res;
3124 		}
3125 	}
3126 
3127 	/* Negative dentry, just create the file */
3128 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3129 		*opened |= FILE_CREATED;
3130 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3131 		if (!dir_inode->i_op->create) {
3132 			error = -EACCES;
3133 			goto out_dput;
3134 		}
3135 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3136 						open_flag & O_EXCL);
3137 		if (error)
3138 			goto out_dput;
3139 		fsnotify_create(dir_inode, dentry);
3140 	}
3141 	if (unlikely(create_error) && !dentry->d_inode) {
3142 		error = create_error;
3143 		goto out_dput;
3144 	}
3145 out_no_open:
3146 	path->dentry = dentry;
3147 	path->mnt = nd->path.mnt;
3148 	return 1;
3149 
3150 out_dput:
3151 	dput(dentry);
3152 	return error;
3153 }
3154 
3155 /*
3156  * Handle the last step of open()
3157  */
3158 static int do_last(struct nameidata *nd,
3159 		   struct file *file, const struct open_flags *op,
3160 		   int *opened)
3161 {
3162 	struct dentry *dir = nd->path.dentry;
3163 	int open_flag = op->open_flag;
3164 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3165 	bool got_write = false;
3166 	int acc_mode = op->acc_mode;
3167 	unsigned seq;
3168 	struct inode *inode;
3169 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3170 	struct path path;
3171 	bool retried = false;
3172 	int error;
3173 
3174 	nd->flags &= ~LOOKUP_PARENT;
3175 	nd->flags |= op->intent;
3176 
3177 	if (nd->last_type != LAST_NORM) {
3178 		error = handle_dots(nd, nd->last_type);
3179 		if (unlikely(error))
3180 			return error;
3181 		goto finish_open;
3182 	}
3183 
3184 	if (!(open_flag & O_CREAT)) {
3185 		if (nd->last.name[nd->last.len])
3186 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3187 		/* we _can_ be in RCU mode here */
3188 		error = lookup_fast(nd, &path, &inode, &seq);
3189 		if (likely(error > 0))
3190 			goto finish_lookup;
3191 
3192 		if (error < 0)
3193 			return error;
3194 
3195 		BUG_ON(nd->inode != dir->d_inode);
3196 		BUG_ON(nd->flags & LOOKUP_RCU);
3197 	} else {
3198 		/* create side of things */
3199 		/*
3200 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3201 		 * has been cleared when we got to the last component we are
3202 		 * about to look up
3203 		 */
3204 		error = complete_walk(nd);
3205 		if (error)
3206 			return error;
3207 
3208 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3209 		/* trailing slashes? */
3210 		if (unlikely(nd->last.name[nd->last.len]))
3211 			return -EISDIR;
3212 	}
3213 
3214 retry_lookup:
3215 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3216 		error = mnt_want_write(nd->path.mnt);
3217 		if (!error)
3218 			got_write = true;
3219 		/*
3220 		 * do _not_ fail yet - we might not need that or fail with
3221 		 * a different error; let lookup_open() decide; we'll be
3222 		 * dropping this one anyway.
3223 		 */
3224 	}
3225 	if (open_flag & O_CREAT)
3226 		inode_lock(dir->d_inode);
3227 	else
3228 		inode_lock_shared(dir->d_inode);
3229 	error = lookup_open(nd, &path, file, op, got_write, opened);
3230 	if (open_flag & O_CREAT)
3231 		inode_unlock(dir->d_inode);
3232 	else
3233 		inode_unlock_shared(dir->d_inode);
3234 
3235 	if (error <= 0) {
3236 		if (error)
3237 			goto out;
3238 
3239 		if ((*opened & FILE_CREATED) ||
3240 		    !S_ISREG(file_inode(file)->i_mode))
3241 			will_truncate = false;
3242 
3243 		audit_inode(nd->name, file->f_path.dentry, 0);
3244 		goto opened;
3245 	}
3246 
3247 	if (*opened & FILE_CREATED) {
3248 		/* Don't check for write permission, don't truncate */
3249 		open_flag &= ~O_TRUNC;
3250 		will_truncate = false;
3251 		acc_mode = 0;
3252 		path_to_nameidata(&path, nd);
3253 		goto finish_open_created;
3254 	}
3255 
3256 	/*
3257 	 * If atomic_open() acquired write access it is dropped now due to
3258 	 * possible mount and symlink following (this might be optimized away if
3259 	 * necessary...)
3260 	 */
3261 	if (got_write) {
3262 		mnt_drop_write(nd->path.mnt);
3263 		got_write = false;
3264 	}
3265 
3266 	if (unlikely(d_is_negative(path.dentry))) {
3267 		path_to_nameidata(&path, nd);
3268 		return -ENOENT;
3269 	}
3270 
3271 	/*
3272 	 * create/update audit record if it already exists.
3273 	 */
3274 	audit_inode(nd->name, path.dentry, 0);
3275 
3276 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3277 		path_to_nameidata(&path, nd);
3278 		return -EEXIST;
3279 	}
3280 
3281 	error = follow_managed(&path, nd);
3282 	if (unlikely(error < 0))
3283 		return error;
3284 
3285 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3286 	inode = d_backing_inode(path.dentry);
3287 finish_lookup:
3288 	if (nd->depth)
3289 		put_link(nd);
3290 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3291 				   inode, seq);
3292 	if (unlikely(error))
3293 		return error;
3294 
3295 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3296 		path_to_nameidata(&path, nd);
3297 	} else {
3298 		save_parent.dentry = nd->path.dentry;
3299 		save_parent.mnt = mntget(path.mnt);
3300 		nd->path.dentry = path.dentry;
3301 
3302 	}
3303 	nd->inode = inode;
3304 	nd->seq = seq;
3305 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3306 finish_open:
3307 	error = complete_walk(nd);
3308 	if (error) {
3309 		path_put(&save_parent);
3310 		return error;
3311 	}
3312 	audit_inode(nd->name, nd->path.dentry, 0);
3313 	error = -EISDIR;
3314 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3315 		goto out;
3316 	error = -ENOTDIR;
3317 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3318 		goto out;
3319 	if (!d_is_reg(nd->path.dentry))
3320 		will_truncate = false;
3321 
3322 	if (will_truncate) {
3323 		error = mnt_want_write(nd->path.mnt);
3324 		if (error)
3325 			goto out;
3326 		got_write = true;
3327 	}
3328 finish_open_created:
3329 	error = may_open(&nd->path, acc_mode, open_flag);
3330 	if (error)
3331 		goto out;
3332 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3333 	error = vfs_open(&nd->path, file, current_cred());
3334 	if (!error) {
3335 		*opened |= FILE_OPENED;
3336 	} else {
3337 		if (error == -EOPENSTALE)
3338 			goto stale_open;
3339 		goto out;
3340 	}
3341 opened:
3342 	error = open_check_o_direct(file);
3343 	if (!error)
3344 		error = ima_file_check(file, op->acc_mode, *opened);
3345 	if (!error && will_truncate)
3346 		error = handle_truncate(file);
3347 out:
3348 	if (unlikely(error) && (*opened & FILE_OPENED))
3349 		fput(file);
3350 	if (unlikely(error > 0)) {
3351 		WARN_ON(1);
3352 		error = -EINVAL;
3353 	}
3354 	if (got_write)
3355 		mnt_drop_write(nd->path.mnt);
3356 	path_put(&save_parent);
3357 	return error;
3358 
3359 stale_open:
3360 	/* If no saved parent or already retried then can't retry */
3361 	if (!save_parent.dentry || retried)
3362 		goto out;
3363 
3364 	BUG_ON(save_parent.dentry != dir);
3365 	path_put(&nd->path);
3366 	nd->path = save_parent;
3367 	nd->inode = dir->d_inode;
3368 	save_parent.mnt = NULL;
3369 	save_parent.dentry = NULL;
3370 	if (got_write) {
3371 		mnt_drop_write(nd->path.mnt);
3372 		got_write = false;
3373 	}
3374 	retried = true;
3375 	goto retry_lookup;
3376 }
3377 
3378 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3379 		const struct open_flags *op,
3380 		struct file *file, int *opened)
3381 {
3382 	static const struct qstr name = QSTR_INIT("/", 1);
3383 	struct dentry *child;
3384 	struct inode *dir;
3385 	struct path path;
3386 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3387 	if (unlikely(error))
3388 		return error;
3389 	error = mnt_want_write(path.mnt);
3390 	if (unlikely(error))
3391 		goto out;
3392 	dir = path.dentry->d_inode;
3393 	/* we want directory to be writable */
3394 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3395 	if (error)
3396 		goto out2;
3397 	if (!dir->i_op->tmpfile) {
3398 		error = -EOPNOTSUPP;
3399 		goto out2;
3400 	}
3401 	child = d_alloc(path.dentry, &name);
3402 	if (unlikely(!child)) {
3403 		error = -ENOMEM;
3404 		goto out2;
3405 	}
3406 	dput(path.dentry);
3407 	path.dentry = child;
3408 	error = dir->i_op->tmpfile(dir, child, op->mode);
3409 	if (error)
3410 		goto out2;
3411 	audit_inode(nd->name, child, 0);
3412 	/* Don't check for other permissions, the inode was just created */
3413 	error = may_open(&path, 0, op->open_flag);
3414 	if (error)
3415 		goto out2;
3416 	file->f_path.mnt = path.mnt;
3417 	error = finish_open(file, child, NULL, opened);
3418 	if (error)
3419 		goto out2;
3420 	error = open_check_o_direct(file);
3421 	if (error) {
3422 		fput(file);
3423 	} else if (!(op->open_flag & O_EXCL)) {
3424 		struct inode *inode = file_inode(file);
3425 		spin_lock(&inode->i_lock);
3426 		inode->i_state |= I_LINKABLE;
3427 		spin_unlock(&inode->i_lock);
3428 	}
3429 out2:
3430 	mnt_drop_write(path.mnt);
3431 out:
3432 	path_put(&path);
3433 	return error;
3434 }
3435 
3436 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3437 {
3438 	struct path path;
3439 	int error = path_lookupat(nd, flags, &path);
3440 	if (!error) {
3441 		audit_inode(nd->name, path.dentry, 0);
3442 		error = vfs_open(&path, file, current_cred());
3443 		path_put(&path);
3444 	}
3445 	return error;
3446 }
3447 
3448 static struct file *path_openat(struct nameidata *nd,
3449 			const struct open_flags *op, unsigned flags)
3450 {
3451 	const char *s;
3452 	struct file *file;
3453 	int opened = 0;
3454 	int error;
3455 
3456 	file = get_empty_filp();
3457 	if (IS_ERR(file))
3458 		return file;
3459 
3460 	file->f_flags = op->open_flag;
3461 
3462 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3463 		error = do_tmpfile(nd, flags, op, file, &opened);
3464 		goto out2;
3465 	}
3466 
3467 	if (unlikely(file->f_flags & O_PATH)) {
3468 		error = do_o_path(nd, flags, file);
3469 		if (!error)
3470 			opened |= FILE_OPENED;
3471 		goto out2;
3472 	}
3473 
3474 	s = path_init(nd, flags);
3475 	if (IS_ERR(s)) {
3476 		put_filp(file);
3477 		return ERR_CAST(s);
3478 	}
3479 	while (!(error = link_path_walk(s, nd)) &&
3480 		(error = do_last(nd, file, op, &opened)) > 0) {
3481 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3482 		s = trailing_symlink(nd);
3483 		if (IS_ERR(s)) {
3484 			error = PTR_ERR(s);
3485 			break;
3486 		}
3487 	}
3488 	terminate_walk(nd);
3489 out2:
3490 	if (!(opened & FILE_OPENED)) {
3491 		BUG_ON(!error);
3492 		put_filp(file);
3493 	}
3494 	if (unlikely(error)) {
3495 		if (error == -EOPENSTALE) {
3496 			if (flags & LOOKUP_RCU)
3497 				error = -ECHILD;
3498 			else
3499 				error = -ESTALE;
3500 		}
3501 		file = ERR_PTR(error);
3502 	}
3503 	return file;
3504 }
3505 
3506 struct file *do_filp_open(int dfd, struct filename *pathname,
3507 		const struct open_flags *op)
3508 {
3509 	struct nameidata nd;
3510 	int flags = op->lookup_flags;
3511 	struct file *filp;
3512 
3513 	set_nameidata(&nd, dfd, pathname);
3514 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3515 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3516 		filp = path_openat(&nd, op, flags);
3517 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3518 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3519 	restore_nameidata();
3520 	return filp;
3521 }
3522 
3523 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3524 		const char *name, const struct open_flags *op)
3525 {
3526 	struct nameidata nd;
3527 	struct file *file;
3528 	struct filename *filename;
3529 	int flags = op->lookup_flags | LOOKUP_ROOT;
3530 
3531 	nd.root.mnt = mnt;
3532 	nd.root.dentry = dentry;
3533 
3534 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3535 		return ERR_PTR(-ELOOP);
3536 
3537 	filename = getname_kernel(name);
3538 	if (IS_ERR(filename))
3539 		return ERR_CAST(filename);
3540 
3541 	set_nameidata(&nd, -1, filename);
3542 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3543 	if (unlikely(file == ERR_PTR(-ECHILD)))
3544 		file = path_openat(&nd, op, flags);
3545 	if (unlikely(file == ERR_PTR(-ESTALE)))
3546 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3547 	restore_nameidata();
3548 	putname(filename);
3549 	return file;
3550 }
3551 
3552 static struct dentry *filename_create(int dfd, struct filename *name,
3553 				struct path *path, unsigned int lookup_flags)
3554 {
3555 	struct dentry *dentry = ERR_PTR(-EEXIST);
3556 	struct qstr last;
3557 	int type;
3558 	int err2;
3559 	int error;
3560 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3561 
3562 	/*
3563 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3564 	 * other flags passed in are ignored!
3565 	 */
3566 	lookup_flags &= LOOKUP_REVAL;
3567 
3568 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3569 	if (IS_ERR(name))
3570 		return ERR_CAST(name);
3571 
3572 	/*
3573 	 * Yucky last component or no last component at all?
3574 	 * (foo/., foo/.., /////)
3575 	 */
3576 	if (unlikely(type != LAST_NORM))
3577 		goto out;
3578 
3579 	/* don't fail immediately if it's r/o, at least try to report other errors */
3580 	err2 = mnt_want_write(path->mnt);
3581 	/*
3582 	 * Do the final lookup.
3583 	 */
3584 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3585 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3586 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3587 	if (IS_ERR(dentry))
3588 		goto unlock;
3589 
3590 	error = -EEXIST;
3591 	if (d_is_positive(dentry))
3592 		goto fail;
3593 
3594 	/*
3595 	 * Special case - lookup gave negative, but... we had foo/bar/
3596 	 * From the vfs_mknod() POV we just have a negative dentry -
3597 	 * all is fine. Let's be bastards - you had / on the end, you've
3598 	 * been asking for (non-existent) directory. -ENOENT for you.
3599 	 */
3600 	if (unlikely(!is_dir && last.name[last.len])) {
3601 		error = -ENOENT;
3602 		goto fail;
3603 	}
3604 	if (unlikely(err2)) {
3605 		error = err2;
3606 		goto fail;
3607 	}
3608 	putname(name);
3609 	return dentry;
3610 fail:
3611 	dput(dentry);
3612 	dentry = ERR_PTR(error);
3613 unlock:
3614 	inode_unlock(path->dentry->d_inode);
3615 	if (!err2)
3616 		mnt_drop_write(path->mnt);
3617 out:
3618 	path_put(path);
3619 	putname(name);
3620 	return dentry;
3621 }
3622 
3623 struct dentry *kern_path_create(int dfd, const char *pathname,
3624 				struct path *path, unsigned int lookup_flags)
3625 {
3626 	return filename_create(dfd, getname_kernel(pathname),
3627 				path, lookup_flags);
3628 }
3629 EXPORT_SYMBOL(kern_path_create);
3630 
3631 void done_path_create(struct path *path, struct dentry *dentry)
3632 {
3633 	dput(dentry);
3634 	inode_unlock(path->dentry->d_inode);
3635 	mnt_drop_write(path->mnt);
3636 	path_put(path);
3637 }
3638 EXPORT_SYMBOL(done_path_create);
3639 
3640 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3641 				struct path *path, unsigned int lookup_flags)
3642 {
3643 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3644 }
3645 EXPORT_SYMBOL(user_path_create);
3646 
3647 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3648 {
3649 	int error = may_create(dir, dentry);
3650 
3651 	if (error)
3652 		return error;
3653 
3654 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3655 		return -EPERM;
3656 
3657 	if (!dir->i_op->mknod)
3658 		return -EPERM;
3659 
3660 	error = devcgroup_inode_mknod(mode, dev);
3661 	if (error)
3662 		return error;
3663 
3664 	error = security_inode_mknod(dir, dentry, mode, dev);
3665 	if (error)
3666 		return error;
3667 
3668 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3669 	if (!error)
3670 		fsnotify_create(dir, dentry);
3671 	return error;
3672 }
3673 EXPORT_SYMBOL(vfs_mknod);
3674 
3675 static int may_mknod(umode_t mode)
3676 {
3677 	switch (mode & S_IFMT) {
3678 	case S_IFREG:
3679 	case S_IFCHR:
3680 	case S_IFBLK:
3681 	case S_IFIFO:
3682 	case S_IFSOCK:
3683 	case 0: /* zero mode translates to S_IFREG */
3684 		return 0;
3685 	case S_IFDIR:
3686 		return -EPERM;
3687 	default:
3688 		return -EINVAL;
3689 	}
3690 }
3691 
3692 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3693 		unsigned, dev)
3694 {
3695 	struct dentry *dentry;
3696 	struct path path;
3697 	int error;
3698 	unsigned int lookup_flags = 0;
3699 
3700 	error = may_mknod(mode);
3701 	if (error)
3702 		return error;
3703 retry:
3704 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3705 	if (IS_ERR(dentry))
3706 		return PTR_ERR(dentry);
3707 
3708 	if (!IS_POSIXACL(path.dentry->d_inode))
3709 		mode &= ~current_umask();
3710 	error = security_path_mknod(&path, dentry, mode, dev);
3711 	if (error)
3712 		goto out;
3713 	switch (mode & S_IFMT) {
3714 		case 0: case S_IFREG:
3715 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3716 			if (!error)
3717 				ima_post_path_mknod(dentry);
3718 			break;
3719 		case S_IFCHR: case S_IFBLK:
3720 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3721 					new_decode_dev(dev));
3722 			break;
3723 		case S_IFIFO: case S_IFSOCK:
3724 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3725 			break;
3726 	}
3727 out:
3728 	done_path_create(&path, dentry);
3729 	if (retry_estale(error, lookup_flags)) {
3730 		lookup_flags |= LOOKUP_REVAL;
3731 		goto retry;
3732 	}
3733 	return error;
3734 }
3735 
3736 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3737 {
3738 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3739 }
3740 
3741 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3742 {
3743 	int error = may_create(dir, dentry);
3744 	unsigned max_links = dir->i_sb->s_max_links;
3745 
3746 	if (error)
3747 		return error;
3748 
3749 	if (!dir->i_op->mkdir)
3750 		return -EPERM;
3751 
3752 	mode &= (S_IRWXUGO|S_ISVTX);
3753 	error = security_inode_mkdir(dir, dentry, mode);
3754 	if (error)
3755 		return error;
3756 
3757 	if (max_links && dir->i_nlink >= max_links)
3758 		return -EMLINK;
3759 
3760 	error = dir->i_op->mkdir(dir, dentry, mode);
3761 	if (!error)
3762 		fsnotify_mkdir(dir, dentry);
3763 	return error;
3764 }
3765 EXPORT_SYMBOL(vfs_mkdir);
3766 
3767 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3768 {
3769 	struct dentry *dentry;
3770 	struct path path;
3771 	int error;
3772 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3773 
3774 retry:
3775 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3776 	if (IS_ERR(dentry))
3777 		return PTR_ERR(dentry);
3778 
3779 	if (!IS_POSIXACL(path.dentry->d_inode))
3780 		mode &= ~current_umask();
3781 	error = security_path_mkdir(&path, dentry, mode);
3782 	if (!error)
3783 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3784 	done_path_create(&path, dentry);
3785 	if (retry_estale(error, lookup_flags)) {
3786 		lookup_flags |= LOOKUP_REVAL;
3787 		goto retry;
3788 	}
3789 	return error;
3790 }
3791 
3792 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3793 {
3794 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3795 }
3796 
3797 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3798 {
3799 	int error = may_delete(dir, dentry, 1);
3800 
3801 	if (error)
3802 		return error;
3803 
3804 	if (!dir->i_op->rmdir)
3805 		return -EPERM;
3806 
3807 	dget(dentry);
3808 	inode_lock(dentry->d_inode);
3809 
3810 	error = -EBUSY;
3811 	if (is_local_mountpoint(dentry))
3812 		goto out;
3813 
3814 	error = security_inode_rmdir(dir, dentry);
3815 	if (error)
3816 		goto out;
3817 
3818 	shrink_dcache_parent(dentry);
3819 	error = dir->i_op->rmdir(dir, dentry);
3820 	if (error)
3821 		goto out;
3822 
3823 	dentry->d_inode->i_flags |= S_DEAD;
3824 	dont_mount(dentry);
3825 	detach_mounts(dentry);
3826 
3827 out:
3828 	inode_unlock(dentry->d_inode);
3829 	dput(dentry);
3830 	if (!error)
3831 		d_delete(dentry);
3832 	return error;
3833 }
3834 EXPORT_SYMBOL(vfs_rmdir);
3835 
3836 static long do_rmdir(int dfd, const char __user *pathname)
3837 {
3838 	int error = 0;
3839 	struct filename *name;
3840 	struct dentry *dentry;
3841 	struct path path;
3842 	struct qstr last;
3843 	int type;
3844 	unsigned int lookup_flags = 0;
3845 retry:
3846 	name = user_path_parent(dfd, pathname,
3847 				&path, &last, &type, lookup_flags);
3848 	if (IS_ERR(name))
3849 		return PTR_ERR(name);
3850 
3851 	switch (type) {
3852 	case LAST_DOTDOT:
3853 		error = -ENOTEMPTY;
3854 		goto exit1;
3855 	case LAST_DOT:
3856 		error = -EINVAL;
3857 		goto exit1;
3858 	case LAST_ROOT:
3859 		error = -EBUSY;
3860 		goto exit1;
3861 	}
3862 
3863 	error = mnt_want_write(path.mnt);
3864 	if (error)
3865 		goto exit1;
3866 
3867 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3868 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3869 	error = PTR_ERR(dentry);
3870 	if (IS_ERR(dentry))
3871 		goto exit2;
3872 	if (!dentry->d_inode) {
3873 		error = -ENOENT;
3874 		goto exit3;
3875 	}
3876 	error = security_path_rmdir(&path, dentry);
3877 	if (error)
3878 		goto exit3;
3879 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3880 exit3:
3881 	dput(dentry);
3882 exit2:
3883 	inode_unlock(path.dentry->d_inode);
3884 	mnt_drop_write(path.mnt);
3885 exit1:
3886 	path_put(&path);
3887 	putname(name);
3888 	if (retry_estale(error, lookup_flags)) {
3889 		lookup_flags |= LOOKUP_REVAL;
3890 		goto retry;
3891 	}
3892 	return error;
3893 }
3894 
3895 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3896 {
3897 	return do_rmdir(AT_FDCWD, pathname);
3898 }
3899 
3900 /**
3901  * vfs_unlink - unlink a filesystem object
3902  * @dir:	parent directory
3903  * @dentry:	victim
3904  * @delegated_inode: returns victim inode, if the inode is delegated.
3905  *
3906  * The caller must hold dir->i_mutex.
3907  *
3908  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3909  * return a reference to the inode in delegated_inode.  The caller
3910  * should then break the delegation on that inode and retry.  Because
3911  * breaking a delegation may take a long time, the caller should drop
3912  * dir->i_mutex before doing so.
3913  *
3914  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3915  * be appropriate for callers that expect the underlying filesystem not
3916  * to be NFS exported.
3917  */
3918 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3919 {
3920 	struct inode *target = dentry->d_inode;
3921 	int error = may_delete(dir, dentry, 0);
3922 
3923 	if (error)
3924 		return error;
3925 
3926 	if (!dir->i_op->unlink)
3927 		return -EPERM;
3928 
3929 	inode_lock(target);
3930 	if (is_local_mountpoint(dentry))
3931 		error = -EBUSY;
3932 	else {
3933 		error = security_inode_unlink(dir, dentry);
3934 		if (!error) {
3935 			error = try_break_deleg(target, delegated_inode);
3936 			if (error)
3937 				goto out;
3938 			error = dir->i_op->unlink(dir, dentry);
3939 			if (!error) {
3940 				dont_mount(dentry);
3941 				detach_mounts(dentry);
3942 			}
3943 		}
3944 	}
3945 out:
3946 	inode_unlock(target);
3947 
3948 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3949 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3950 		fsnotify_link_count(target);
3951 		d_delete(dentry);
3952 	}
3953 
3954 	return error;
3955 }
3956 EXPORT_SYMBOL(vfs_unlink);
3957 
3958 /*
3959  * Make sure that the actual truncation of the file will occur outside its
3960  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3961  * writeout happening, and we don't want to prevent access to the directory
3962  * while waiting on the I/O.
3963  */
3964 static long do_unlinkat(int dfd, const char __user *pathname)
3965 {
3966 	int error;
3967 	struct filename *name;
3968 	struct dentry *dentry;
3969 	struct path path;
3970 	struct qstr last;
3971 	int type;
3972 	struct inode *inode = NULL;
3973 	struct inode *delegated_inode = NULL;
3974 	unsigned int lookup_flags = 0;
3975 retry:
3976 	name = user_path_parent(dfd, pathname,
3977 				&path, &last, &type, lookup_flags);
3978 	if (IS_ERR(name))
3979 		return PTR_ERR(name);
3980 
3981 	error = -EISDIR;
3982 	if (type != LAST_NORM)
3983 		goto exit1;
3984 
3985 	error = mnt_want_write(path.mnt);
3986 	if (error)
3987 		goto exit1;
3988 retry_deleg:
3989 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3990 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3991 	error = PTR_ERR(dentry);
3992 	if (!IS_ERR(dentry)) {
3993 		/* Why not before? Because we want correct error value */
3994 		if (last.name[last.len])
3995 			goto slashes;
3996 		inode = dentry->d_inode;
3997 		if (d_is_negative(dentry))
3998 			goto slashes;
3999 		ihold(inode);
4000 		error = security_path_unlink(&path, dentry);
4001 		if (error)
4002 			goto exit2;
4003 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4004 exit2:
4005 		dput(dentry);
4006 	}
4007 	inode_unlock(path.dentry->d_inode);
4008 	if (inode)
4009 		iput(inode);	/* truncate the inode here */
4010 	inode = NULL;
4011 	if (delegated_inode) {
4012 		error = break_deleg_wait(&delegated_inode);
4013 		if (!error)
4014 			goto retry_deleg;
4015 	}
4016 	mnt_drop_write(path.mnt);
4017 exit1:
4018 	path_put(&path);
4019 	putname(name);
4020 	if (retry_estale(error, lookup_flags)) {
4021 		lookup_flags |= LOOKUP_REVAL;
4022 		inode = NULL;
4023 		goto retry;
4024 	}
4025 	return error;
4026 
4027 slashes:
4028 	if (d_is_negative(dentry))
4029 		error = -ENOENT;
4030 	else if (d_is_dir(dentry))
4031 		error = -EISDIR;
4032 	else
4033 		error = -ENOTDIR;
4034 	goto exit2;
4035 }
4036 
4037 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4038 {
4039 	if ((flag & ~AT_REMOVEDIR) != 0)
4040 		return -EINVAL;
4041 
4042 	if (flag & AT_REMOVEDIR)
4043 		return do_rmdir(dfd, pathname);
4044 
4045 	return do_unlinkat(dfd, pathname);
4046 }
4047 
4048 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4049 {
4050 	return do_unlinkat(AT_FDCWD, pathname);
4051 }
4052 
4053 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4054 {
4055 	int error = may_create(dir, dentry);
4056 
4057 	if (error)
4058 		return error;
4059 
4060 	if (!dir->i_op->symlink)
4061 		return -EPERM;
4062 
4063 	error = security_inode_symlink(dir, dentry, oldname);
4064 	if (error)
4065 		return error;
4066 
4067 	error = dir->i_op->symlink(dir, dentry, oldname);
4068 	if (!error)
4069 		fsnotify_create(dir, dentry);
4070 	return error;
4071 }
4072 EXPORT_SYMBOL(vfs_symlink);
4073 
4074 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4075 		int, newdfd, const char __user *, newname)
4076 {
4077 	int error;
4078 	struct filename *from;
4079 	struct dentry *dentry;
4080 	struct path path;
4081 	unsigned int lookup_flags = 0;
4082 
4083 	from = getname(oldname);
4084 	if (IS_ERR(from))
4085 		return PTR_ERR(from);
4086 retry:
4087 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4088 	error = PTR_ERR(dentry);
4089 	if (IS_ERR(dentry))
4090 		goto out_putname;
4091 
4092 	error = security_path_symlink(&path, dentry, from->name);
4093 	if (!error)
4094 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4095 	done_path_create(&path, dentry);
4096 	if (retry_estale(error, lookup_flags)) {
4097 		lookup_flags |= LOOKUP_REVAL;
4098 		goto retry;
4099 	}
4100 out_putname:
4101 	putname(from);
4102 	return error;
4103 }
4104 
4105 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4106 {
4107 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4108 }
4109 
4110 /**
4111  * vfs_link - create a new link
4112  * @old_dentry:	object to be linked
4113  * @dir:	new parent
4114  * @new_dentry:	where to create the new link
4115  * @delegated_inode: returns inode needing a delegation break
4116  *
4117  * The caller must hold dir->i_mutex
4118  *
4119  * If vfs_link discovers a delegation on the to-be-linked file in need
4120  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4121  * inode in delegated_inode.  The caller should then break the delegation
4122  * and retry.  Because breaking a delegation may take a long time, the
4123  * caller should drop the i_mutex before doing so.
4124  *
4125  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4126  * be appropriate for callers that expect the underlying filesystem not
4127  * to be NFS exported.
4128  */
4129 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4130 {
4131 	struct inode *inode = old_dentry->d_inode;
4132 	unsigned max_links = dir->i_sb->s_max_links;
4133 	int error;
4134 
4135 	if (!inode)
4136 		return -ENOENT;
4137 
4138 	error = may_create(dir, new_dentry);
4139 	if (error)
4140 		return error;
4141 
4142 	if (dir->i_sb != inode->i_sb)
4143 		return -EXDEV;
4144 
4145 	/*
4146 	 * A link to an append-only or immutable file cannot be created.
4147 	 */
4148 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4149 		return -EPERM;
4150 	if (!dir->i_op->link)
4151 		return -EPERM;
4152 	if (S_ISDIR(inode->i_mode))
4153 		return -EPERM;
4154 
4155 	error = security_inode_link(old_dentry, dir, new_dentry);
4156 	if (error)
4157 		return error;
4158 
4159 	inode_lock(inode);
4160 	/* Make sure we don't allow creating hardlink to an unlinked file */
4161 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4162 		error =  -ENOENT;
4163 	else if (max_links && inode->i_nlink >= max_links)
4164 		error = -EMLINK;
4165 	else {
4166 		error = try_break_deleg(inode, delegated_inode);
4167 		if (!error)
4168 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4169 	}
4170 
4171 	if (!error && (inode->i_state & I_LINKABLE)) {
4172 		spin_lock(&inode->i_lock);
4173 		inode->i_state &= ~I_LINKABLE;
4174 		spin_unlock(&inode->i_lock);
4175 	}
4176 	inode_unlock(inode);
4177 	if (!error)
4178 		fsnotify_link(dir, inode, new_dentry);
4179 	return error;
4180 }
4181 EXPORT_SYMBOL(vfs_link);
4182 
4183 /*
4184  * Hardlinks are often used in delicate situations.  We avoid
4185  * security-related surprises by not following symlinks on the
4186  * newname.  --KAB
4187  *
4188  * We don't follow them on the oldname either to be compatible
4189  * with linux 2.0, and to avoid hard-linking to directories
4190  * and other special files.  --ADM
4191  */
4192 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4193 		int, newdfd, const char __user *, newname, int, flags)
4194 {
4195 	struct dentry *new_dentry;
4196 	struct path old_path, new_path;
4197 	struct inode *delegated_inode = NULL;
4198 	int how = 0;
4199 	int error;
4200 
4201 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4202 		return -EINVAL;
4203 	/*
4204 	 * To use null names we require CAP_DAC_READ_SEARCH
4205 	 * This ensures that not everyone will be able to create
4206 	 * handlink using the passed filedescriptor.
4207 	 */
4208 	if (flags & AT_EMPTY_PATH) {
4209 		if (!capable(CAP_DAC_READ_SEARCH))
4210 			return -ENOENT;
4211 		how = LOOKUP_EMPTY;
4212 	}
4213 
4214 	if (flags & AT_SYMLINK_FOLLOW)
4215 		how |= LOOKUP_FOLLOW;
4216 retry:
4217 	error = user_path_at(olddfd, oldname, how, &old_path);
4218 	if (error)
4219 		return error;
4220 
4221 	new_dentry = user_path_create(newdfd, newname, &new_path,
4222 					(how & LOOKUP_REVAL));
4223 	error = PTR_ERR(new_dentry);
4224 	if (IS_ERR(new_dentry))
4225 		goto out;
4226 
4227 	error = -EXDEV;
4228 	if (old_path.mnt != new_path.mnt)
4229 		goto out_dput;
4230 	error = may_linkat(&old_path);
4231 	if (unlikely(error))
4232 		goto out_dput;
4233 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4234 	if (error)
4235 		goto out_dput;
4236 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4237 out_dput:
4238 	done_path_create(&new_path, new_dentry);
4239 	if (delegated_inode) {
4240 		error = break_deleg_wait(&delegated_inode);
4241 		if (!error) {
4242 			path_put(&old_path);
4243 			goto retry;
4244 		}
4245 	}
4246 	if (retry_estale(error, how)) {
4247 		path_put(&old_path);
4248 		how |= LOOKUP_REVAL;
4249 		goto retry;
4250 	}
4251 out:
4252 	path_put(&old_path);
4253 
4254 	return error;
4255 }
4256 
4257 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4258 {
4259 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4260 }
4261 
4262 /**
4263  * vfs_rename - rename a filesystem object
4264  * @old_dir:	parent of source
4265  * @old_dentry:	source
4266  * @new_dir:	parent of destination
4267  * @new_dentry:	destination
4268  * @delegated_inode: returns an inode needing a delegation break
4269  * @flags:	rename flags
4270  *
4271  * The caller must hold multiple mutexes--see lock_rename()).
4272  *
4273  * If vfs_rename discovers a delegation in need of breaking at either
4274  * the source or destination, it will return -EWOULDBLOCK and return a
4275  * reference to the inode in delegated_inode.  The caller should then
4276  * break the delegation and retry.  Because breaking a delegation may
4277  * take a long time, the caller should drop all locks before doing
4278  * so.
4279  *
4280  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4281  * be appropriate for callers that expect the underlying filesystem not
4282  * to be NFS exported.
4283  *
4284  * The worst of all namespace operations - renaming directory. "Perverted"
4285  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4286  * Problems:
4287  *	a) we can get into loop creation.
4288  *	b) race potential - two innocent renames can create a loop together.
4289  *	   That's where 4.4 screws up. Current fix: serialization on
4290  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4291  *	   story.
4292  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4293  *	   and source (if it is not a directory).
4294  *	   And that - after we got ->i_mutex on parents (until then we don't know
4295  *	   whether the target exists).  Solution: try to be smart with locking
4296  *	   order for inodes.  We rely on the fact that tree topology may change
4297  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4298  *	   move will be locked.  Thus we can rank directories by the tree
4299  *	   (ancestors first) and rank all non-directories after them.
4300  *	   That works since everybody except rename does "lock parent, lookup,
4301  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4302  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4303  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4304  *	   we'd better make sure that there's no link(2) for them.
4305  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4306  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4307  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4308  *	   ->i_mutex on parents, which works but leads to some truly excessive
4309  *	   locking].
4310  */
4311 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4312 	       struct inode *new_dir, struct dentry *new_dentry,
4313 	       struct inode **delegated_inode, unsigned int flags)
4314 {
4315 	int error;
4316 	bool is_dir = d_is_dir(old_dentry);
4317 	const unsigned char *old_name;
4318 	struct inode *source = old_dentry->d_inode;
4319 	struct inode *target = new_dentry->d_inode;
4320 	bool new_is_dir = false;
4321 	unsigned max_links = new_dir->i_sb->s_max_links;
4322 
4323 	/*
4324 	 * Check source == target.
4325 	 * On overlayfs need to look at underlying inodes.
4326 	 */
4327 	if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4328 		return 0;
4329 
4330 	error = may_delete(old_dir, old_dentry, is_dir);
4331 	if (error)
4332 		return error;
4333 
4334 	if (!target) {
4335 		error = may_create(new_dir, new_dentry);
4336 	} else {
4337 		new_is_dir = d_is_dir(new_dentry);
4338 
4339 		if (!(flags & RENAME_EXCHANGE))
4340 			error = may_delete(new_dir, new_dentry, is_dir);
4341 		else
4342 			error = may_delete(new_dir, new_dentry, new_is_dir);
4343 	}
4344 	if (error)
4345 		return error;
4346 
4347 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4348 		return -EPERM;
4349 
4350 	if (flags && !old_dir->i_op->rename2)
4351 		return -EINVAL;
4352 
4353 	/*
4354 	 * If we are going to change the parent - check write permissions,
4355 	 * we'll need to flip '..'.
4356 	 */
4357 	if (new_dir != old_dir) {
4358 		if (is_dir) {
4359 			error = inode_permission(source, MAY_WRITE);
4360 			if (error)
4361 				return error;
4362 		}
4363 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4364 			error = inode_permission(target, MAY_WRITE);
4365 			if (error)
4366 				return error;
4367 		}
4368 	}
4369 
4370 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4371 				      flags);
4372 	if (error)
4373 		return error;
4374 
4375 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4376 	dget(new_dentry);
4377 	if (!is_dir || (flags & RENAME_EXCHANGE))
4378 		lock_two_nondirectories(source, target);
4379 	else if (target)
4380 		inode_lock(target);
4381 
4382 	error = -EBUSY;
4383 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4384 		goto out;
4385 
4386 	if (max_links && new_dir != old_dir) {
4387 		error = -EMLINK;
4388 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4389 			goto out;
4390 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4391 		    old_dir->i_nlink >= max_links)
4392 			goto out;
4393 	}
4394 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4395 		shrink_dcache_parent(new_dentry);
4396 	if (!is_dir) {
4397 		error = try_break_deleg(source, delegated_inode);
4398 		if (error)
4399 			goto out;
4400 	}
4401 	if (target && !new_is_dir) {
4402 		error = try_break_deleg(target, delegated_inode);
4403 		if (error)
4404 			goto out;
4405 	}
4406 	if (!old_dir->i_op->rename2) {
4407 		error = old_dir->i_op->rename(old_dir, old_dentry,
4408 					      new_dir, new_dentry);
4409 	} else {
4410 		WARN_ON(old_dir->i_op->rename != NULL);
4411 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4412 					       new_dir, new_dentry, flags);
4413 	}
4414 	if (error)
4415 		goto out;
4416 
4417 	if (!(flags & RENAME_EXCHANGE) && target) {
4418 		if (is_dir)
4419 			target->i_flags |= S_DEAD;
4420 		dont_mount(new_dentry);
4421 		detach_mounts(new_dentry);
4422 	}
4423 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4424 		if (!(flags & RENAME_EXCHANGE))
4425 			d_move(old_dentry, new_dentry);
4426 		else
4427 			d_exchange(old_dentry, new_dentry);
4428 	}
4429 out:
4430 	if (!is_dir || (flags & RENAME_EXCHANGE))
4431 		unlock_two_nondirectories(source, target);
4432 	else if (target)
4433 		inode_unlock(target);
4434 	dput(new_dentry);
4435 	if (!error) {
4436 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4437 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4438 		if (flags & RENAME_EXCHANGE) {
4439 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4440 				      new_is_dir, NULL, new_dentry);
4441 		}
4442 	}
4443 	fsnotify_oldname_free(old_name);
4444 
4445 	return error;
4446 }
4447 EXPORT_SYMBOL(vfs_rename);
4448 
4449 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4450 		int, newdfd, const char __user *, newname, unsigned int, flags)
4451 {
4452 	struct dentry *old_dentry, *new_dentry;
4453 	struct dentry *trap;
4454 	struct path old_path, new_path;
4455 	struct qstr old_last, new_last;
4456 	int old_type, new_type;
4457 	struct inode *delegated_inode = NULL;
4458 	struct filename *from;
4459 	struct filename *to;
4460 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4461 	bool should_retry = false;
4462 	int error;
4463 
4464 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4465 		return -EINVAL;
4466 
4467 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4468 	    (flags & RENAME_EXCHANGE))
4469 		return -EINVAL;
4470 
4471 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4472 		return -EPERM;
4473 
4474 	if (flags & RENAME_EXCHANGE)
4475 		target_flags = 0;
4476 
4477 retry:
4478 	from = user_path_parent(olddfd, oldname,
4479 				&old_path, &old_last, &old_type, lookup_flags);
4480 	if (IS_ERR(from)) {
4481 		error = PTR_ERR(from);
4482 		goto exit;
4483 	}
4484 
4485 	to = user_path_parent(newdfd, newname,
4486 				&new_path, &new_last, &new_type, lookup_flags);
4487 	if (IS_ERR(to)) {
4488 		error = PTR_ERR(to);
4489 		goto exit1;
4490 	}
4491 
4492 	error = -EXDEV;
4493 	if (old_path.mnt != new_path.mnt)
4494 		goto exit2;
4495 
4496 	error = -EBUSY;
4497 	if (old_type != LAST_NORM)
4498 		goto exit2;
4499 
4500 	if (flags & RENAME_NOREPLACE)
4501 		error = -EEXIST;
4502 	if (new_type != LAST_NORM)
4503 		goto exit2;
4504 
4505 	error = mnt_want_write(old_path.mnt);
4506 	if (error)
4507 		goto exit2;
4508 
4509 retry_deleg:
4510 	trap = lock_rename(new_path.dentry, old_path.dentry);
4511 
4512 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4513 	error = PTR_ERR(old_dentry);
4514 	if (IS_ERR(old_dentry))
4515 		goto exit3;
4516 	/* source must exist */
4517 	error = -ENOENT;
4518 	if (d_is_negative(old_dentry))
4519 		goto exit4;
4520 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4521 	error = PTR_ERR(new_dentry);
4522 	if (IS_ERR(new_dentry))
4523 		goto exit4;
4524 	error = -EEXIST;
4525 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4526 		goto exit5;
4527 	if (flags & RENAME_EXCHANGE) {
4528 		error = -ENOENT;
4529 		if (d_is_negative(new_dentry))
4530 			goto exit5;
4531 
4532 		if (!d_is_dir(new_dentry)) {
4533 			error = -ENOTDIR;
4534 			if (new_last.name[new_last.len])
4535 				goto exit5;
4536 		}
4537 	}
4538 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4539 	if (!d_is_dir(old_dentry)) {
4540 		error = -ENOTDIR;
4541 		if (old_last.name[old_last.len])
4542 			goto exit5;
4543 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4544 			goto exit5;
4545 	}
4546 	/* source should not be ancestor of target */
4547 	error = -EINVAL;
4548 	if (old_dentry == trap)
4549 		goto exit5;
4550 	/* target should not be an ancestor of source */
4551 	if (!(flags & RENAME_EXCHANGE))
4552 		error = -ENOTEMPTY;
4553 	if (new_dentry == trap)
4554 		goto exit5;
4555 
4556 	error = security_path_rename(&old_path, old_dentry,
4557 				     &new_path, new_dentry, flags);
4558 	if (error)
4559 		goto exit5;
4560 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4561 			   new_path.dentry->d_inode, new_dentry,
4562 			   &delegated_inode, flags);
4563 exit5:
4564 	dput(new_dentry);
4565 exit4:
4566 	dput(old_dentry);
4567 exit3:
4568 	unlock_rename(new_path.dentry, old_path.dentry);
4569 	if (delegated_inode) {
4570 		error = break_deleg_wait(&delegated_inode);
4571 		if (!error)
4572 			goto retry_deleg;
4573 	}
4574 	mnt_drop_write(old_path.mnt);
4575 exit2:
4576 	if (retry_estale(error, lookup_flags))
4577 		should_retry = true;
4578 	path_put(&new_path);
4579 	putname(to);
4580 exit1:
4581 	path_put(&old_path);
4582 	putname(from);
4583 	if (should_retry) {
4584 		should_retry = false;
4585 		lookup_flags |= LOOKUP_REVAL;
4586 		goto retry;
4587 	}
4588 exit:
4589 	return error;
4590 }
4591 
4592 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4593 		int, newdfd, const char __user *, newname)
4594 {
4595 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4596 }
4597 
4598 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4599 {
4600 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4601 }
4602 
4603 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4604 {
4605 	int error = may_create(dir, dentry);
4606 	if (error)
4607 		return error;
4608 
4609 	if (!dir->i_op->mknod)
4610 		return -EPERM;
4611 
4612 	return dir->i_op->mknod(dir, dentry,
4613 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4614 }
4615 EXPORT_SYMBOL(vfs_whiteout);
4616 
4617 int readlink_copy(char __user *buffer, int buflen, const char *link)
4618 {
4619 	int len = PTR_ERR(link);
4620 	if (IS_ERR(link))
4621 		goto out;
4622 
4623 	len = strlen(link);
4624 	if (len > (unsigned) buflen)
4625 		len = buflen;
4626 	if (copy_to_user(buffer, link, len))
4627 		len = -EFAULT;
4628 out:
4629 	return len;
4630 }
4631 
4632 /*
4633  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4634  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4635  * for any given inode is up to filesystem.
4636  */
4637 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4638 {
4639 	DEFINE_DELAYED_CALL(done);
4640 	struct inode *inode = d_inode(dentry);
4641 	const char *link = inode->i_link;
4642 	int res;
4643 
4644 	if (!link) {
4645 		link = inode->i_op->get_link(dentry, inode, &done);
4646 		if (IS_ERR(link))
4647 			return PTR_ERR(link);
4648 	}
4649 	res = readlink_copy(buffer, buflen, link);
4650 	do_delayed_call(&done);
4651 	return res;
4652 }
4653 EXPORT_SYMBOL(generic_readlink);
4654 
4655 /* get the link contents into pagecache */
4656 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4657 			  struct delayed_call *callback)
4658 {
4659 	char *kaddr;
4660 	struct page *page;
4661 	struct address_space *mapping = inode->i_mapping;
4662 
4663 	if (!dentry) {
4664 		page = find_get_page(mapping, 0);
4665 		if (!page)
4666 			return ERR_PTR(-ECHILD);
4667 		if (!PageUptodate(page)) {
4668 			put_page(page);
4669 			return ERR_PTR(-ECHILD);
4670 		}
4671 	} else {
4672 		page = read_mapping_page(mapping, 0, NULL);
4673 		if (IS_ERR(page))
4674 			return (char*)page;
4675 	}
4676 	set_delayed_call(callback, page_put_link, page);
4677 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4678 	kaddr = page_address(page);
4679 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4680 	return kaddr;
4681 }
4682 
4683 EXPORT_SYMBOL(page_get_link);
4684 
4685 void page_put_link(void *arg)
4686 {
4687 	put_page(arg);
4688 }
4689 EXPORT_SYMBOL(page_put_link);
4690 
4691 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4692 {
4693 	DEFINE_DELAYED_CALL(done);
4694 	int res = readlink_copy(buffer, buflen,
4695 				page_get_link(dentry, d_inode(dentry),
4696 					      &done));
4697 	do_delayed_call(&done);
4698 	return res;
4699 }
4700 EXPORT_SYMBOL(page_readlink);
4701 
4702 /*
4703  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4704  */
4705 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4706 {
4707 	struct address_space *mapping = inode->i_mapping;
4708 	struct page *page;
4709 	void *fsdata;
4710 	int err;
4711 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4712 	if (nofs)
4713 		flags |= AOP_FLAG_NOFS;
4714 
4715 retry:
4716 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4717 				flags, &page, &fsdata);
4718 	if (err)
4719 		goto fail;
4720 
4721 	memcpy(page_address(page), symname, len-1);
4722 
4723 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4724 							page, fsdata);
4725 	if (err < 0)
4726 		goto fail;
4727 	if (err < len-1)
4728 		goto retry;
4729 
4730 	mark_inode_dirty(inode);
4731 	return 0;
4732 fail:
4733 	return err;
4734 }
4735 EXPORT_SYMBOL(__page_symlink);
4736 
4737 int page_symlink(struct inode *inode, const char *symname, int len)
4738 {
4739 	return __page_symlink(inode, symname, len,
4740 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4741 }
4742 EXPORT_SYMBOL(page_symlink);
4743 
4744 const struct inode_operations page_symlink_inode_operations = {
4745 	.readlink	= generic_readlink,
4746 	.get_link	= page_get_link,
4747 };
4748 EXPORT_SYMBOL(page_symlink_inode_operations);
4749