1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <linux/bitops.h> 39 #include <asm/uaccess.h> 40 41 #include "internal.h" 42 #include "mount.h" 43 44 /* [Feb-1997 T. Schoebel-Theuer] 45 * Fundamental changes in the pathname lookup mechanisms (namei) 46 * were necessary because of omirr. The reason is that omirr needs 47 * to know the _real_ pathname, not the user-supplied one, in case 48 * of symlinks (and also when transname replacements occur). 49 * 50 * The new code replaces the old recursive symlink resolution with 51 * an iterative one (in case of non-nested symlink chains). It does 52 * this with calls to <fs>_follow_link(). 53 * As a side effect, dir_namei(), _namei() and follow_link() are now 54 * replaced with a single function lookup_dentry() that can handle all 55 * the special cases of the former code. 56 * 57 * With the new dcache, the pathname is stored at each inode, at least as 58 * long as the refcount of the inode is positive. As a side effect, the 59 * size of the dcache depends on the inode cache and thus is dynamic. 60 * 61 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 62 * resolution to correspond with current state of the code. 63 * 64 * Note that the symlink resolution is not *completely* iterative. 65 * There is still a significant amount of tail- and mid- recursion in 66 * the algorithm. Also, note that <fs>_readlink() is not used in 67 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 68 * may return different results than <fs>_follow_link(). Many virtual 69 * filesystems (including /proc) exhibit this behavior. 70 */ 71 72 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 73 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 74 * and the name already exists in form of a symlink, try to create the new 75 * name indicated by the symlink. The old code always complained that the 76 * name already exists, due to not following the symlink even if its target 77 * is nonexistent. The new semantics affects also mknod() and link() when 78 * the name is a symlink pointing to a non-existent name. 79 * 80 * I don't know which semantics is the right one, since I have no access 81 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 82 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 83 * "old" one. Personally, I think the new semantics is much more logical. 84 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 85 * file does succeed in both HP-UX and SunOs, but not in Solaris 86 * and in the old Linux semantics. 87 */ 88 89 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 90 * semantics. See the comments in "open_namei" and "do_link" below. 91 * 92 * [10-Sep-98 Alan Modra] Another symlink change. 93 */ 94 95 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 96 * inside the path - always follow. 97 * in the last component in creation/removal/renaming - never follow. 98 * if LOOKUP_FOLLOW passed - follow. 99 * if the pathname has trailing slashes - follow. 100 * otherwise - don't follow. 101 * (applied in that order). 102 * 103 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 104 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 105 * During the 2.4 we need to fix the userland stuff depending on it - 106 * hopefully we will be able to get rid of that wart in 2.5. So far only 107 * XEmacs seems to be relying on it... 108 */ 109 /* 110 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 111 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 112 * any extra contention... 113 */ 114 115 /* In order to reduce some races, while at the same time doing additional 116 * checking and hopefully speeding things up, we copy filenames to the 117 * kernel data space before using them.. 118 * 119 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 120 * PATH_MAX includes the nul terminator --RR. 121 */ 122 123 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 124 125 struct filename * 126 getname_flags(const char __user *filename, int flags, int *empty) 127 { 128 struct filename *result; 129 char *kname; 130 int len; 131 132 result = audit_reusename(filename); 133 if (result) 134 return result; 135 136 result = __getname(); 137 if (unlikely(!result)) 138 return ERR_PTR(-ENOMEM); 139 140 /* 141 * First, try to embed the struct filename inside the names_cache 142 * allocation 143 */ 144 kname = (char *)result->iname; 145 result->name = kname; 146 147 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 148 if (unlikely(len < 0)) { 149 __putname(result); 150 return ERR_PTR(len); 151 } 152 153 /* 154 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 155 * separate struct filename so we can dedicate the entire 156 * names_cache allocation for the pathname, and re-do the copy from 157 * userland. 158 */ 159 if (unlikely(len == EMBEDDED_NAME_MAX)) { 160 const size_t size = offsetof(struct filename, iname[1]); 161 kname = (char *)result; 162 163 /* 164 * size is chosen that way we to guarantee that 165 * result->iname[0] is within the same object and that 166 * kname can't be equal to result->iname, no matter what. 167 */ 168 result = kzalloc(size, GFP_KERNEL); 169 if (unlikely(!result)) { 170 __putname(kname); 171 return ERR_PTR(-ENOMEM); 172 } 173 result->name = kname; 174 len = strncpy_from_user(kname, filename, PATH_MAX); 175 if (unlikely(len < 0)) { 176 __putname(kname); 177 kfree(result); 178 return ERR_PTR(len); 179 } 180 if (unlikely(len == PATH_MAX)) { 181 __putname(kname); 182 kfree(result); 183 return ERR_PTR(-ENAMETOOLONG); 184 } 185 } 186 187 result->refcnt = 1; 188 /* The empty path is special. */ 189 if (unlikely(!len)) { 190 if (empty) 191 *empty = 1; 192 if (!(flags & LOOKUP_EMPTY)) { 193 putname(result); 194 return ERR_PTR(-ENOENT); 195 } 196 } 197 198 result->uptr = filename; 199 result->aname = NULL; 200 audit_getname(result); 201 return result; 202 } 203 204 struct filename * 205 getname(const char __user * filename) 206 { 207 return getname_flags(filename, 0, NULL); 208 } 209 210 struct filename * 211 getname_kernel(const char * filename) 212 { 213 struct filename *result; 214 int len = strlen(filename) + 1; 215 216 result = __getname(); 217 if (unlikely(!result)) 218 return ERR_PTR(-ENOMEM); 219 220 if (len <= EMBEDDED_NAME_MAX) { 221 result->name = (char *)result->iname; 222 } else if (len <= PATH_MAX) { 223 struct filename *tmp; 224 225 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 226 if (unlikely(!tmp)) { 227 __putname(result); 228 return ERR_PTR(-ENOMEM); 229 } 230 tmp->name = (char *)result; 231 result = tmp; 232 } else { 233 __putname(result); 234 return ERR_PTR(-ENAMETOOLONG); 235 } 236 memcpy((char *)result->name, filename, len); 237 result->uptr = NULL; 238 result->aname = NULL; 239 result->refcnt = 1; 240 audit_getname(result); 241 242 return result; 243 } 244 245 void putname(struct filename *name) 246 { 247 BUG_ON(name->refcnt <= 0); 248 249 if (--name->refcnt > 0) 250 return; 251 252 if (name->name != name->iname) { 253 __putname(name->name); 254 kfree(name); 255 } else 256 __putname(name); 257 } 258 259 static int check_acl(struct inode *inode, int mask) 260 { 261 #ifdef CONFIG_FS_POSIX_ACL 262 struct posix_acl *acl; 263 264 if (mask & MAY_NOT_BLOCK) { 265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 266 if (!acl) 267 return -EAGAIN; 268 /* no ->get_acl() calls in RCU mode... */ 269 if (is_uncached_acl(acl)) 270 return -ECHILD; 271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 272 } 273 274 acl = get_acl(inode, ACL_TYPE_ACCESS); 275 if (IS_ERR(acl)) 276 return PTR_ERR(acl); 277 if (acl) { 278 int error = posix_acl_permission(inode, acl, mask); 279 posix_acl_release(acl); 280 return error; 281 } 282 #endif 283 284 return -EAGAIN; 285 } 286 287 /* 288 * This does the basic permission checking 289 */ 290 static int acl_permission_check(struct inode *inode, int mask) 291 { 292 unsigned int mode = inode->i_mode; 293 294 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 295 mode >>= 6; 296 else { 297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 298 int error = check_acl(inode, mask); 299 if (error != -EAGAIN) 300 return error; 301 } 302 303 if (in_group_p(inode->i_gid)) 304 mode >>= 3; 305 } 306 307 /* 308 * If the DACs are ok we don't need any capability check. 309 */ 310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 311 return 0; 312 return -EACCES; 313 } 314 315 /** 316 * generic_permission - check for access rights on a Posix-like filesystem 317 * @inode: inode to check access rights for 318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 319 * 320 * Used to check for read/write/execute permissions on a file. 321 * We use "fsuid" for this, letting us set arbitrary permissions 322 * for filesystem access without changing the "normal" uids which 323 * are used for other things. 324 * 325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 326 * request cannot be satisfied (eg. requires blocking or too much complexity). 327 * It would then be called again in ref-walk mode. 328 */ 329 int generic_permission(struct inode *inode, int mask) 330 { 331 int ret; 332 333 /* 334 * Do the basic permission checks. 335 */ 336 ret = acl_permission_check(inode, mask); 337 if (ret != -EACCES) 338 return ret; 339 340 if (S_ISDIR(inode->i_mode)) { 341 /* DACs are overridable for directories */ 342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 343 return 0; 344 if (!(mask & MAY_WRITE)) 345 if (capable_wrt_inode_uidgid(inode, 346 CAP_DAC_READ_SEARCH)) 347 return 0; 348 return -EACCES; 349 } 350 /* 351 * Read/write DACs are always overridable. 352 * Executable DACs are overridable when there is 353 * at least one exec bit set. 354 */ 355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 357 return 0; 358 359 /* 360 * Searching includes executable on directories, else just read. 361 */ 362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 363 if (mask == MAY_READ) 364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 365 return 0; 366 367 return -EACCES; 368 } 369 EXPORT_SYMBOL(generic_permission); 370 371 /* 372 * We _really_ want to just do "generic_permission()" without 373 * even looking at the inode->i_op values. So we keep a cache 374 * flag in inode->i_opflags, that says "this has not special 375 * permission function, use the fast case". 376 */ 377 static inline int do_inode_permission(struct inode *inode, int mask) 378 { 379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 380 if (likely(inode->i_op->permission)) 381 return inode->i_op->permission(inode, mask); 382 383 /* This gets set once for the inode lifetime */ 384 spin_lock(&inode->i_lock); 385 inode->i_opflags |= IOP_FASTPERM; 386 spin_unlock(&inode->i_lock); 387 } 388 return generic_permission(inode, mask); 389 } 390 391 /** 392 * __inode_permission - Check for access rights to a given inode 393 * @inode: Inode to check permission on 394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 395 * 396 * Check for read/write/execute permissions on an inode. 397 * 398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 399 * 400 * This does not check for a read-only file system. You probably want 401 * inode_permission(). 402 */ 403 int __inode_permission(struct inode *inode, int mask) 404 { 405 int retval; 406 407 if (unlikely(mask & MAY_WRITE)) { 408 /* 409 * Nobody gets write access to an immutable file. 410 */ 411 if (IS_IMMUTABLE(inode)) 412 return -EACCES; 413 } 414 415 retval = do_inode_permission(inode, mask); 416 if (retval) 417 return retval; 418 419 retval = devcgroup_inode_permission(inode, mask); 420 if (retval) 421 return retval; 422 423 return security_inode_permission(inode, mask); 424 } 425 EXPORT_SYMBOL(__inode_permission); 426 427 /** 428 * sb_permission - Check superblock-level permissions 429 * @sb: Superblock of inode to check permission on 430 * @inode: Inode to check permission on 431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 432 * 433 * Separate out file-system wide checks from inode-specific permission checks. 434 */ 435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 436 { 437 if (unlikely(mask & MAY_WRITE)) { 438 umode_t mode = inode->i_mode; 439 440 /* Nobody gets write access to a read-only fs. */ 441 if ((sb->s_flags & MS_RDONLY) && 442 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 443 return -EROFS; 444 } 445 return 0; 446 } 447 448 /** 449 * inode_permission - Check for access rights to a given inode 450 * @inode: Inode to check permission on 451 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 452 * 453 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 454 * this, letting us set arbitrary permissions for filesystem access without 455 * changing the "normal" UIDs which are used for other things. 456 * 457 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 458 */ 459 int inode_permission(struct inode *inode, int mask) 460 { 461 int retval; 462 463 retval = sb_permission(inode->i_sb, inode, mask); 464 if (retval) 465 return retval; 466 return __inode_permission(inode, mask); 467 } 468 EXPORT_SYMBOL(inode_permission); 469 470 /** 471 * path_get - get a reference to a path 472 * @path: path to get the reference to 473 * 474 * Given a path increment the reference count to the dentry and the vfsmount. 475 */ 476 void path_get(const struct path *path) 477 { 478 mntget(path->mnt); 479 dget(path->dentry); 480 } 481 EXPORT_SYMBOL(path_get); 482 483 /** 484 * path_put - put a reference to a path 485 * @path: path to put the reference to 486 * 487 * Given a path decrement the reference count to the dentry and the vfsmount. 488 */ 489 void path_put(const struct path *path) 490 { 491 dput(path->dentry); 492 mntput(path->mnt); 493 } 494 EXPORT_SYMBOL(path_put); 495 496 #define EMBEDDED_LEVELS 2 497 struct nameidata { 498 struct path path; 499 struct qstr last; 500 struct path root; 501 struct inode *inode; /* path.dentry.d_inode */ 502 unsigned int flags; 503 unsigned seq, m_seq; 504 int last_type; 505 unsigned depth; 506 int total_link_count; 507 struct saved { 508 struct path link; 509 struct delayed_call done; 510 const char *name; 511 unsigned seq; 512 } *stack, internal[EMBEDDED_LEVELS]; 513 struct filename *name; 514 struct nameidata *saved; 515 struct inode *link_inode; 516 unsigned root_seq; 517 int dfd; 518 }; 519 520 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 521 { 522 struct nameidata *old = current->nameidata; 523 p->stack = p->internal; 524 p->dfd = dfd; 525 p->name = name; 526 p->total_link_count = old ? old->total_link_count : 0; 527 p->saved = old; 528 current->nameidata = p; 529 } 530 531 static void restore_nameidata(void) 532 { 533 struct nameidata *now = current->nameidata, *old = now->saved; 534 535 current->nameidata = old; 536 if (old) 537 old->total_link_count = now->total_link_count; 538 if (now->stack != now->internal) 539 kfree(now->stack); 540 } 541 542 static int __nd_alloc_stack(struct nameidata *nd) 543 { 544 struct saved *p; 545 546 if (nd->flags & LOOKUP_RCU) { 547 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 548 GFP_ATOMIC); 549 if (unlikely(!p)) 550 return -ECHILD; 551 } else { 552 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 553 GFP_KERNEL); 554 if (unlikely(!p)) 555 return -ENOMEM; 556 } 557 memcpy(p, nd->internal, sizeof(nd->internal)); 558 nd->stack = p; 559 return 0; 560 } 561 562 /** 563 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 564 * @path: nameidate to verify 565 * 566 * Rename can sometimes move a file or directory outside of a bind 567 * mount, path_connected allows those cases to be detected. 568 */ 569 static bool path_connected(const struct path *path) 570 { 571 struct vfsmount *mnt = path->mnt; 572 573 /* Only bind mounts can have disconnected paths */ 574 if (mnt->mnt_root == mnt->mnt_sb->s_root) 575 return true; 576 577 return is_subdir(path->dentry, mnt->mnt_root); 578 } 579 580 static inline int nd_alloc_stack(struct nameidata *nd) 581 { 582 if (likely(nd->depth != EMBEDDED_LEVELS)) 583 return 0; 584 if (likely(nd->stack != nd->internal)) 585 return 0; 586 return __nd_alloc_stack(nd); 587 } 588 589 static void drop_links(struct nameidata *nd) 590 { 591 int i = nd->depth; 592 while (i--) { 593 struct saved *last = nd->stack + i; 594 do_delayed_call(&last->done); 595 clear_delayed_call(&last->done); 596 } 597 } 598 599 static void terminate_walk(struct nameidata *nd) 600 { 601 drop_links(nd); 602 if (!(nd->flags & LOOKUP_RCU)) { 603 int i; 604 path_put(&nd->path); 605 for (i = 0; i < nd->depth; i++) 606 path_put(&nd->stack[i].link); 607 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 608 path_put(&nd->root); 609 nd->root.mnt = NULL; 610 } 611 } else { 612 nd->flags &= ~LOOKUP_RCU; 613 if (!(nd->flags & LOOKUP_ROOT)) 614 nd->root.mnt = NULL; 615 rcu_read_unlock(); 616 } 617 nd->depth = 0; 618 } 619 620 /* path_put is needed afterwards regardless of success or failure */ 621 static bool legitimize_path(struct nameidata *nd, 622 struct path *path, unsigned seq) 623 { 624 int res = __legitimize_mnt(path->mnt, nd->m_seq); 625 if (unlikely(res)) { 626 if (res > 0) 627 path->mnt = NULL; 628 path->dentry = NULL; 629 return false; 630 } 631 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 632 path->dentry = NULL; 633 return false; 634 } 635 return !read_seqcount_retry(&path->dentry->d_seq, seq); 636 } 637 638 static bool legitimize_links(struct nameidata *nd) 639 { 640 int i; 641 for (i = 0; i < nd->depth; i++) { 642 struct saved *last = nd->stack + i; 643 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 644 drop_links(nd); 645 nd->depth = i + 1; 646 return false; 647 } 648 } 649 return true; 650 } 651 652 /* 653 * Path walking has 2 modes, rcu-walk and ref-walk (see 654 * Documentation/filesystems/path-lookup.txt). In situations when we can't 655 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 656 * normal reference counts on dentries and vfsmounts to transition to ref-walk 657 * mode. Refcounts are grabbed at the last known good point before rcu-walk 658 * got stuck, so ref-walk may continue from there. If this is not successful 659 * (eg. a seqcount has changed), then failure is returned and it's up to caller 660 * to restart the path walk from the beginning in ref-walk mode. 661 */ 662 663 /** 664 * unlazy_walk - try to switch to ref-walk mode. 665 * @nd: nameidata pathwalk data 666 * @dentry: child of nd->path.dentry or NULL 667 * @seq: seq number to check dentry against 668 * Returns: 0 on success, -ECHILD on failure 669 * 670 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 671 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 672 * @nd or NULL. Must be called from rcu-walk context. 673 * Nothing should touch nameidata between unlazy_walk() failure and 674 * terminate_walk(). 675 */ 676 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 677 { 678 struct dentry *parent = nd->path.dentry; 679 680 BUG_ON(!(nd->flags & LOOKUP_RCU)); 681 682 nd->flags &= ~LOOKUP_RCU; 683 if (unlikely(!legitimize_links(nd))) 684 goto out2; 685 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 686 goto out2; 687 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 688 goto out1; 689 690 /* 691 * For a negative lookup, the lookup sequence point is the parents 692 * sequence point, and it only needs to revalidate the parent dentry. 693 * 694 * For a positive lookup, we need to move both the parent and the 695 * dentry from the RCU domain to be properly refcounted. And the 696 * sequence number in the dentry validates *both* dentry counters, 697 * since we checked the sequence number of the parent after we got 698 * the child sequence number. So we know the parent must still 699 * be valid if the child sequence number is still valid. 700 */ 701 if (!dentry) { 702 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 703 goto out; 704 BUG_ON(nd->inode != parent->d_inode); 705 } else { 706 if (!lockref_get_not_dead(&dentry->d_lockref)) 707 goto out; 708 if (read_seqcount_retry(&dentry->d_seq, seq)) 709 goto drop_dentry; 710 } 711 712 /* 713 * Sequence counts matched. Now make sure that the root is 714 * still valid and get it if required. 715 */ 716 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 717 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 718 rcu_read_unlock(); 719 dput(dentry); 720 return -ECHILD; 721 } 722 } 723 724 rcu_read_unlock(); 725 return 0; 726 727 drop_dentry: 728 rcu_read_unlock(); 729 dput(dentry); 730 goto drop_root_mnt; 731 out2: 732 nd->path.mnt = NULL; 733 out1: 734 nd->path.dentry = NULL; 735 out: 736 rcu_read_unlock(); 737 drop_root_mnt: 738 if (!(nd->flags & LOOKUP_ROOT)) 739 nd->root.mnt = NULL; 740 return -ECHILD; 741 } 742 743 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 744 { 745 if (unlikely(!legitimize_path(nd, link, seq))) { 746 drop_links(nd); 747 nd->depth = 0; 748 nd->flags &= ~LOOKUP_RCU; 749 nd->path.mnt = NULL; 750 nd->path.dentry = NULL; 751 if (!(nd->flags & LOOKUP_ROOT)) 752 nd->root.mnt = NULL; 753 rcu_read_unlock(); 754 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 755 return 0; 756 } 757 path_put(link); 758 return -ECHILD; 759 } 760 761 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 762 { 763 return dentry->d_op->d_revalidate(dentry, flags); 764 } 765 766 /** 767 * complete_walk - successful completion of path walk 768 * @nd: pointer nameidata 769 * 770 * If we had been in RCU mode, drop out of it and legitimize nd->path. 771 * Revalidate the final result, unless we'd already done that during 772 * the path walk or the filesystem doesn't ask for it. Return 0 on 773 * success, -error on failure. In case of failure caller does not 774 * need to drop nd->path. 775 */ 776 static int complete_walk(struct nameidata *nd) 777 { 778 struct dentry *dentry = nd->path.dentry; 779 int status; 780 781 if (nd->flags & LOOKUP_RCU) { 782 if (!(nd->flags & LOOKUP_ROOT)) 783 nd->root.mnt = NULL; 784 if (unlikely(unlazy_walk(nd, NULL, 0))) 785 return -ECHILD; 786 } 787 788 if (likely(!(nd->flags & LOOKUP_JUMPED))) 789 return 0; 790 791 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 792 return 0; 793 794 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 795 if (status > 0) 796 return 0; 797 798 if (!status) 799 status = -ESTALE; 800 801 return status; 802 } 803 804 static void set_root(struct nameidata *nd) 805 { 806 struct fs_struct *fs = current->fs; 807 808 if (nd->flags & LOOKUP_RCU) { 809 unsigned seq; 810 811 do { 812 seq = read_seqcount_begin(&fs->seq); 813 nd->root = fs->root; 814 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 815 } while (read_seqcount_retry(&fs->seq, seq)); 816 } else { 817 get_fs_root(fs, &nd->root); 818 } 819 } 820 821 static void path_put_conditional(struct path *path, struct nameidata *nd) 822 { 823 dput(path->dentry); 824 if (path->mnt != nd->path.mnt) 825 mntput(path->mnt); 826 } 827 828 static inline void path_to_nameidata(const struct path *path, 829 struct nameidata *nd) 830 { 831 if (!(nd->flags & LOOKUP_RCU)) { 832 dput(nd->path.dentry); 833 if (nd->path.mnt != path->mnt) 834 mntput(nd->path.mnt); 835 } 836 nd->path.mnt = path->mnt; 837 nd->path.dentry = path->dentry; 838 } 839 840 static int nd_jump_root(struct nameidata *nd) 841 { 842 if (nd->flags & LOOKUP_RCU) { 843 struct dentry *d; 844 nd->path = nd->root; 845 d = nd->path.dentry; 846 nd->inode = d->d_inode; 847 nd->seq = nd->root_seq; 848 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 849 return -ECHILD; 850 } else { 851 path_put(&nd->path); 852 nd->path = nd->root; 853 path_get(&nd->path); 854 nd->inode = nd->path.dentry->d_inode; 855 } 856 nd->flags |= LOOKUP_JUMPED; 857 return 0; 858 } 859 860 /* 861 * Helper to directly jump to a known parsed path from ->get_link, 862 * caller must have taken a reference to path beforehand. 863 */ 864 void nd_jump_link(struct path *path) 865 { 866 struct nameidata *nd = current->nameidata; 867 path_put(&nd->path); 868 869 nd->path = *path; 870 nd->inode = nd->path.dentry->d_inode; 871 nd->flags |= LOOKUP_JUMPED; 872 } 873 874 static inline void put_link(struct nameidata *nd) 875 { 876 struct saved *last = nd->stack + --nd->depth; 877 do_delayed_call(&last->done); 878 if (!(nd->flags & LOOKUP_RCU)) 879 path_put(&last->link); 880 } 881 882 int sysctl_protected_symlinks __read_mostly = 0; 883 int sysctl_protected_hardlinks __read_mostly = 0; 884 885 /** 886 * may_follow_link - Check symlink following for unsafe situations 887 * @nd: nameidata pathwalk data 888 * 889 * In the case of the sysctl_protected_symlinks sysctl being enabled, 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 891 * in a sticky world-writable directory. This is to protect privileged 892 * processes from failing races against path names that may change out 893 * from under them by way of other users creating malicious symlinks. 894 * It will permit symlinks to be followed only when outside a sticky 895 * world-writable directory, or when the uid of the symlink and follower 896 * match, or when the directory owner matches the symlink's owner. 897 * 898 * Returns 0 if following the symlink is allowed, -ve on error. 899 */ 900 static inline int may_follow_link(struct nameidata *nd) 901 { 902 const struct inode *inode; 903 const struct inode *parent; 904 905 if (!sysctl_protected_symlinks) 906 return 0; 907 908 /* Allowed if owner and follower match. */ 909 inode = nd->link_inode; 910 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 911 return 0; 912 913 /* Allowed if parent directory not sticky and world-writable. */ 914 parent = nd->inode; 915 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 916 return 0; 917 918 /* Allowed if parent directory and link owner match. */ 919 if (uid_eq(parent->i_uid, inode->i_uid)) 920 return 0; 921 922 if (nd->flags & LOOKUP_RCU) 923 return -ECHILD; 924 925 audit_log_link_denied("follow_link", &nd->stack[0].link); 926 return -EACCES; 927 } 928 929 /** 930 * safe_hardlink_source - Check for safe hardlink conditions 931 * @inode: the source inode to hardlink from 932 * 933 * Return false if at least one of the following conditions: 934 * - inode is not a regular file 935 * - inode is setuid 936 * - inode is setgid and group-exec 937 * - access failure for read and write 938 * 939 * Otherwise returns true. 940 */ 941 static bool safe_hardlink_source(struct inode *inode) 942 { 943 umode_t mode = inode->i_mode; 944 945 /* Special files should not get pinned to the filesystem. */ 946 if (!S_ISREG(mode)) 947 return false; 948 949 /* Setuid files should not get pinned to the filesystem. */ 950 if (mode & S_ISUID) 951 return false; 952 953 /* Executable setgid files should not get pinned to the filesystem. */ 954 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 955 return false; 956 957 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 958 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 959 return false; 960 961 return true; 962 } 963 964 /** 965 * may_linkat - Check permissions for creating a hardlink 966 * @link: the source to hardlink from 967 * 968 * Block hardlink when all of: 969 * - sysctl_protected_hardlinks enabled 970 * - fsuid does not match inode 971 * - hardlink source is unsafe (see safe_hardlink_source() above) 972 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 973 * 974 * Returns 0 if successful, -ve on error. 975 */ 976 static int may_linkat(struct path *link) 977 { 978 struct inode *inode; 979 980 if (!sysctl_protected_hardlinks) 981 return 0; 982 983 inode = link->dentry->d_inode; 984 985 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 986 * otherwise, it must be a safe source. 987 */ 988 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode)) 989 return 0; 990 991 audit_log_link_denied("linkat", link); 992 return -EPERM; 993 } 994 995 static __always_inline 996 const char *get_link(struct nameidata *nd) 997 { 998 struct saved *last = nd->stack + nd->depth - 1; 999 struct dentry *dentry = last->link.dentry; 1000 struct inode *inode = nd->link_inode; 1001 int error; 1002 const char *res; 1003 1004 if (!(nd->flags & LOOKUP_RCU)) { 1005 touch_atime(&last->link); 1006 cond_resched(); 1007 } else if (atime_needs_update(&last->link, inode)) { 1008 if (unlikely(unlazy_walk(nd, NULL, 0))) 1009 return ERR_PTR(-ECHILD); 1010 touch_atime(&last->link); 1011 } 1012 1013 error = security_inode_follow_link(dentry, inode, 1014 nd->flags & LOOKUP_RCU); 1015 if (unlikely(error)) 1016 return ERR_PTR(error); 1017 1018 nd->last_type = LAST_BIND; 1019 res = inode->i_link; 1020 if (!res) { 1021 const char * (*get)(struct dentry *, struct inode *, 1022 struct delayed_call *); 1023 get = inode->i_op->get_link; 1024 if (nd->flags & LOOKUP_RCU) { 1025 res = get(NULL, inode, &last->done); 1026 if (res == ERR_PTR(-ECHILD)) { 1027 if (unlikely(unlazy_walk(nd, NULL, 0))) 1028 return ERR_PTR(-ECHILD); 1029 res = get(dentry, inode, &last->done); 1030 } 1031 } else { 1032 res = get(dentry, inode, &last->done); 1033 } 1034 if (IS_ERR_OR_NULL(res)) 1035 return res; 1036 } 1037 if (*res == '/') { 1038 if (!nd->root.mnt) 1039 set_root(nd); 1040 if (unlikely(nd_jump_root(nd))) 1041 return ERR_PTR(-ECHILD); 1042 while (unlikely(*++res == '/')) 1043 ; 1044 } 1045 if (!*res) 1046 res = NULL; 1047 return res; 1048 } 1049 1050 /* 1051 * follow_up - Find the mountpoint of path's vfsmount 1052 * 1053 * Given a path, find the mountpoint of its source file system. 1054 * Replace @path with the path of the mountpoint in the parent mount. 1055 * Up is towards /. 1056 * 1057 * Return 1 if we went up a level and 0 if we were already at the 1058 * root. 1059 */ 1060 int follow_up(struct path *path) 1061 { 1062 struct mount *mnt = real_mount(path->mnt); 1063 struct mount *parent; 1064 struct dentry *mountpoint; 1065 1066 read_seqlock_excl(&mount_lock); 1067 parent = mnt->mnt_parent; 1068 if (parent == mnt) { 1069 read_sequnlock_excl(&mount_lock); 1070 return 0; 1071 } 1072 mntget(&parent->mnt); 1073 mountpoint = dget(mnt->mnt_mountpoint); 1074 read_sequnlock_excl(&mount_lock); 1075 dput(path->dentry); 1076 path->dentry = mountpoint; 1077 mntput(path->mnt); 1078 path->mnt = &parent->mnt; 1079 return 1; 1080 } 1081 EXPORT_SYMBOL(follow_up); 1082 1083 /* 1084 * Perform an automount 1085 * - return -EISDIR to tell follow_managed() to stop and return the path we 1086 * were called with. 1087 */ 1088 static int follow_automount(struct path *path, struct nameidata *nd, 1089 bool *need_mntput) 1090 { 1091 struct vfsmount *mnt; 1092 int err; 1093 1094 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1095 return -EREMOTE; 1096 1097 /* We don't want to mount if someone's just doing a stat - 1098 * unless they're stat'ing a directory and appended a '/' to 1099 * the name. 1100 * 1101 * We do, however, want to mount if someone wants to open or 1102 * create a file of any type under the mountpoint, wants to 1103 * traverse through the mountpoint or wants to open the 1104 * mounted directory. Also, autofs may mark negative dentries 1105 * as being automount points. These will need the attentions 1106 * of the daemon to instantiate them before they can be used. 1107 */ 1108 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1109 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1110 path->dentry->d_inode) 1111 return -EISDIR; 1112 1113 nd->total_link_count++; 1114 if (nd->total_link_count >= 40) 1115 return -ELOOP; 1116 1117 mnt = path->dentry->d_op->d_automount(path); 1118 if (IS_ERR(mnt)) { 1119 /* 1120 * The filesystem is allowed to return -EISDIR here to indicate 1121 * it doesn't want to automount. For instance, autofs would do 1122 * this so that its userspace daemon can mount on this dentry. 1123 * 1124 * However, we can only permit this if it's a terminal point in 1125 * the path being looked up; if it wasn't then the remainder of 1126 * the path is inaccessible and we should say so. 1127 */ 1128 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1129 return -EREMOTE; 1130 return PTR_ERR(mnt); 1131 } 1132 1133 if (!mnt) /* mount collision */ 1134 return 0; 1135 1136 if (!*need_mntput) { 1137 /* lock_mount() may release path->mnt on error */ 1138 mntget(path->mnt); 1139 *need_mntput = true; 1140 } 1141 err = finish_automount(mnt, path); 1142 1143 switch (err) { 1144 case -EBUSY: 1145 /* Someone else made a mount here whilst we were busy */ 1146 return 0; 1147 case 0: 1148 path_put(path); 1149 path->mnt = mnt; 1150 path->dentry = dget(mnt->mnt_root); 1151 return 0; 1152 default: 1153 return err; 1154 } 1155 1156 } 1157 1158 /* 1159 * Handle a dentry that is managed in some way. 1160 * - Flagged for transit management (autofs) 1161 * - Flagged as mountpoint 1162 * - Flagged as automount point 1163 * 1164 * This may only be called in refwalk mode. 1165 * 1166 * Serialization is taken care of in namespace.c 1167 */ 1168 static int follow_managed(struct path *path, struct nameidata *nd) 1169 { 1170 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1171 unsigned managed; 1172 bool need_mntput = false; 1173 int ret = 0; 1174 1175 /* Given that we're not holding a lock here, we retain the value in a 1176 * local variable for each dentry as we look at it so that we don't see 1177 * the components of that value change under us */ 1178 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1179 managed &= DCACHE_MANAGED_DENTRY, 1180 unlikely(managed != 0)) { 1181 /* Allow the filesystem to manage the transit without i_mutex 1182 * being held. */ 1183 if (managed & DCACHE_MANAGE_TRANSIT) { 1184 BUG_ON(!path->dentry->d_op); 1185 BUG_ON(!path->dentry->d_op->d_manage); 1186 ret = path->dentry->d_op->d_manage(path->dentry, false); 1187 if (ret < 0) 1188 break; 1189 } 1190 1191 /* Transit to a mounted filesystem. */ 1192 if (managed & DCACHE_MOUNTED) { 1193 struct vfsmount *mounted = lookup_mnt(path); 1194 if (mounted) { 1195 dput(path->dentry); 1196 if (need_mntput) 1197 mntput(path->mnt); 1198 path->mnt = mounted; 1199 path->dentry = dget(mounted->mnt_root); 1200 need_mntput = true; 1201 continue; 1202 } 1203 1204 /* Something is mounted on this dentry in another 1205 * namespace and/or whatever was mounted there in this 1206 * namespace got unmounted before lookup_mnt() could 1207 * get it */ 1208 } 1209 1210 /* Handle an automount point */ 1211 if (managed & DCACHE_NEED_AUTOMOUNT) { 1212 ret = follow_automount(path, nd, &need_mntput); 1213 if (ret < 0) 1214 break; 1215 continue; 1216 } 1217 1218 /* We didn't change the current path point */ 1219 break; 1220 } 1221 1222 if (need_mntput && path->mnt == mnt) 1223 mntput(path->mnt); 1224 if (ret == -EISDIR || !ret) 1225 ret = 1; 1226 if (need_mntput) 1227 nd->flags |= LOOKUP_JUMPED; 1228 if (unlikely(ret < 0)) 1229 path_put_conditional(path, nd); 1230 return ret; 1231 } 1232 1233 int follow_down_one(struct path *path) 1234 { 1235 struct vfsmount *mounted; 1236 1237 mounted = lookup_mnt(path); 1238 if (mounted) { 1239 dput(path->dentry); 1240 mntput(path->mnt); 1241 path->mnt = mounted; 1242 path->dentry = dget(mounted->mnt_root); 1243 return 1; 1244 } 1245 return 0; 1246 } 1247 EXPORT_SYMBOL(follow_down_one); 1248 1249 static inline int managed_dentry_rcu(struct dentry *dentry) 1250 { 1251 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1252 dentry->d_op->d_manage(dentry, true) : 0; 1253 } 1254 1255 /* 1256 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1257 * we meet a managed dentry that would need blocking. 1258 */ 1259 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1260 struct inode **inode, unsigned *seqp) 1261 { 1262 for (;;) { 1263 struct mount *mounted; 1264 /* 1265 * Don't forget we might have a non-mountpoint managed dentry 1266 * that wants to block transit. 1267 */ 1268 switch (managed_dentry_rcu(path->dentry)) { 1269 case -ECHILD: 1270 default: 1271 return false; 1272 case -EISDIR: 1273 return true; 1274 case 0: 1275 break; 1276 } 1277 1278 if (!d_mountpoint(path->dentry)) 1279 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1280 1281 mounted = __lookup_mnt(path->mnt, path->dentry); 1282 if (!mounted) 1283 break; 1284 path->mnt = &mounted->mnt; 1285 path->dentry = mounted->mnt.mnt_root; 1286 nd->flags |= LOOKUP_JUMPED; 1287 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1288 /* 1289 * Update the inode too. We don't need to re-check the 1290 * dentry sequence number here after this d_inode read, 1291 * because a mount-point is always pinned. 1292 */ 1293 *inode = path->dentry->d_inode; 1294 } 1295 return !read_seqretry(&mount_lock, nd->m_seq) && 1296 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1297 } 1298 1299 static int follow_dotdot_rcu(struct nameidata *nd) 1300 { 1301 struct inode *inode = nd->inode; 1302 1303 while (1) { 1304 if (path_equal(&nd->path, &nd->root)) 1305 break; 1306 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1307 struct dentry *old = nd->path.dentry; 1308 struct dentry *parent = old->d_parent; 1309 unsigned seq; 1310 1311 inode = parent->d_inode; 1312 seq = read_seqcount_begin(&parent->d_seq); 1313 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1314 return -ECHILD; 1315 nd->path.dentry = parent; 1316 nd->seq = seq; 1317 if (unlikely(!path_connected(&nd->path))) 1318 return -ENOENT; 1319 break; 1320 } else { 1321 struct mount *mnt = real_mount(nd->path.mnt); 1322 struct mount *mparent = mnt->mnt_parent; 1323 struct dentry *mountpoint = mnt->mnt_mountpoint; 1324 struct inode *inode2 = mountpoint->d_inode; 1325 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1326 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1327 return -ECHILD; 1328 if (&mparent->mnt == nd->path.mnt) 1329 break; 1330 /* we know that mountpoint was pinned */ 1331 nd->path.dentry = mountpoint; 1332 nd->path.mnt = &mparent->mnt; 1333 inode = inode2; 1334 nd->seq = seq; 1335 } 1336 } 1337 while (unlikely(d_mountpoint(nd->path.dentry))) { 1338 struct mount *mounted; 1339 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1341 return -ECHILD; 1342 if (!mounted) 1343 break; 1344 nd->path.mnt = &mounted->mnt; 1345 nd->path.dentry = mounted->mnt.mnt_root; 1346 inode = nd->path.dentry->d_inode; 1347 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1348 } 1349 nd->inode = inode; 1350 return 0; 1351 } 1352 1353 /* 1354 * Follow down to the covering mount currently visible to userspace. At each 1355 * point, the filesystem owning that dentry may be queried as to whether the 1356 * caller is permitted to proceed or not. 1357 */ 1358 int follow_down(struct path *path) 1359 { 1360 unsigned managed; 1361 int ret; 1362 1363 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1364 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1365 /* Allow the filesystem to manage the transit without i_mutex 1366 * being held. 1367 * 1368 * We indicate to the filesystem if someone is trying to mount 1369 * something here. This gives autofs the chance to deny anyone 1370 * other than its daemon the right to mount on its 1371 * superstructure. 1372 * 1373 * The filesystem may sleep at this point. 1374 */ 1375 if (managed & DCACHE_MANAGE_TRANSIT) { 1376 BUG_ON(!path->dentry->d_op); 1377 BUG_ON(!path->dentry->d_op->d_manage); 1378 ret = path->dentry->d_op->d_manage( 1379 path->dentry, false); 1380 if (ret < 0) 1381 return ret == -EISDIR ? 0 : ret; 1382 } 1383 1384 /* Transit to a mounted filesystem. */ 1385 if (managed & DCACHE_MOUNTED) { 1386 struct vfsmount *mounted = lookup_mnt(path); 1387 if (!mounted) 1388 break; 1389 dput(path->dentry); 1390 mntput(path->mnt); 1391 path->mnt = mounted; 1392 path->dentry = dget(mounted->mnt_root); 1393 continue; 1394 } 1395 1396 /* Don't handle automount points here */ 1397 break; 1398 } 1399 return 0; 1400 } 1401 EXPORT_SYMBOL(follow_down); 1402 1403 /* 1404 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1405 */ 1406 static void follow_mount(struct path *path) 1407 { 1408 while (d_mountpoint(path->dentry)) { 1409 struct vfsmount *mounted = lookup_mnt(path); 1410 if (!mounted) 1411 break; 1412 dput(path->dentry); 1413 mntput(path->mnt); 1414 path->mnt = mounted; 1415 path->dentry = dget(mounted->mnt_root); 1416 } 1417 } 1418 1419 static int follow_dotdot(struct nameidata *nd) 1420 { 1421 while(1) { 1422 struct dentry *old = nd->path.dentry; 1423 1424 if (nd->path.dentry == nd->root.dentry && 1425 nd->path.mnt == nd->root.mnt) { 1426 break; 1427 } 1428 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1429 /* rare case of legitimate dget_parent()... */ 1430 nd->path.dentry = dget_parent(nd->path.dentry); 1431 dput(old); 1432 if (unlikely(!path_connected(&nd->path))) 1433 return -ENOENT; 1434 break; 1435 } 1436 if (!follow_up(&nd->path)) 1437 break; 1438 } 1439 follow_mount(&nd->path); 1440 nd->inode = nd->path.dentry->d_inode; 1441 return 0; 1442 } 1443 1444 /* 1445 * This looks up the name in dcache, possibly revalidates the old dentry and 1446 * allocates a new one if not found or not valid. In the need_lookup argument 1447 * returns whether i_op->lookup is necessary. 1448 */ 1449 static struct dentry *lookup_dcache(const struct qstr *name, 1450 struct dentry *dir, 1451 unsigned int flags) 1452 { 1453 struct dentry *dentry; 1454 int error; 1455 1456 dentry = d_lookup(dir, name); 1457 if (dentry) { 1458 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1459 error = d_revalidate(dentry, flags); 1460 if (unlikely(error <= 0)) { 1461 if (!error) 1462 d_invalidate(dentry); 1463 dput(dentry); 1464 return ERR_PTR(error); 1465 } 1466 } 1467 } 1468 return dentry; 1469 } 1470 1471 /* 1472 * Call i_op->lookup on the dentry. The dentry must be negative and 1473 * unhashed. 1474 * 1475 * dir->d_inode->i_mutex must be held 1476 */ 1477 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1478 unsigned int flags) 1479 { 1480 struct dentry *old; 1481 1482 /* Don't create child dentry for a dead directory. */ 1483 if (unlikely(IS_DEADDIR(dir))) { 1484 dput(dentry); 1485 return ERR_PTR(-ENOENT); 1486 } 1487 1488 old = dir->i_op->lookup(dir, dentry, flags); 1489 if (unlikely(old)) { 1490 dput(dentry); 1491 dentry = old; 1492 } 1493 return dentry; 1494 } 1495 1496 static struct dentry *__lookup_hash(const struct qstr *name, 1497 struct dentry *base, unsigned int flags) 1498 { 1499 struct dentry *dentry = lookup_dcache(name, base, flags); 1500 1501 if (dentry) 1502 return dentry; 1503 1504 dentry = d_alloc(base, name); 1505 if (unlikely(!dentry)) 1506 return ERR_PTR(-ENOMEM); 1507 1508 return lookup_real(base->d_inode, dentry, flags); 1509 } 1510 1511 static int lookup_fast(struct nameidata *nd, 1512 struct path *path, struct inode **inode, 1513 unsigned *seqp) 1514 { 1515 struct vfsmount *mnt = nd->path.mnt; 1516 struct dentry *dentry, *parent = nd->path.dentry; 1517 int status = 1; 1518 int err; 1519 1520 /* 1521 * Rename seqlock is not required here because in the off chance 1522 * of a false negative due to a concurrent rename, the caller is 1523 * going to fall back to non-racy lookup. 1524 */ 1525 if (nd->flags & LOOKUP_RCU) { 1526 unsigned seq; 1527 bool negative; 1528 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1529 if (unlikely(!dentry)) { 1530 if (unlazy_walk(nd, NULL, 0)) 1531 return -ECHILD; 1532 return 0; 1533 } 1534 1535 /* 1536 * This sequence count validates that the inode matches 1537 * the dentry name information from lookup. 1538 */ 1539 *inode = d_backing_inode(dentry); 1540 negative = d_is_negative(dentry); 1541 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1542 return -ECHILD; 1543 1544 /* 1545 * This sequence count validates that the parent had no 1546 * changes while we did the lookup of the dentry above. 1547 * 1548 * The memory barrier in read_seqcount_begin of child is 1549 * enough, we can use __read_seqcount_retry here. 1550 */ 1551 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1552 return -ECHILD; 1553 1554 *seqp = seq; 1555 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1556 status = d_revalidate(dentry, nd->flags); 1557 if (unlikely(status <= 0)) { 1558 if (unlazy_walk(nd, dentry, seq)) 1559 return -ECHILD; 1560 if (status == -ECHILD) 1561 status = d_revalidate(dentry, nd->flags); 1562 } else { 1563 /* 1564 * Note: do negative dentry check after revalidation in 1565 * case that drops it. 1566 */ 1567 if (unlikely(negative)) 1568 return -ENOENT; 1569 path->mnt = mnt; 1570 path->dentry = dentry; 1571 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1572 return 1; 1573 if (unlazy_walk(nd, dentry, seq)) 1574 return -ECHILD; 1575 } 1576 } else { 1577 dentry = __d_lookup(parent, &nd->last); 1578 if (unlikely(!dentry)) 1579 return 0; 1580 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 1581 status = d_revalidate(dentry, nd->flags); 1582 } 1583 if (unlikely(status <= 0)) { 1584 if (!status) 1585 d_invalidate(dentry); 1586 dput(dentry); 1587 return status; 1588 } 1589 if (unlikely(d_is_negative(dentry))) { 1590 dput(dentry); 1591 return -ENOENT; 1592 } 1593 1594 path->mnt = mnt; 1595 path->dentry = dentry; 1596 err = follow_managed(path, nd); 1597 if (likely(err > 0)) 1598 *inode = d_backing_inode(path->dentry); 1599 return err; 1600 } 1601 1602 /* Fast lookup failed, do it the slow way */ 1603 static struct dentry *lookup_slow(const struct qstr *name, 1604 struct dentry *dir, 1605 unsigned int flags) 1606 { 1607 struct dentry *dentry = ERR_PTR(-ENOENT), *old; 1608 struct inode *inode = dir->d_inode; 1609 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1610 1611 inode_lock_shared(inode); 1612 /* Don't go there if it's already dead */ 1613 if (unlikely(IS_DEADDIR(inode))) 1614 goto out; 1615 again: 1616 dentry = d_alloc_parallel(dir, name, &wq); 1617 if (IS_ERR(dentry)) 1618 goto out; 1619 if (unlikely(!d_in_lookup(dentry))) { 1620 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) && 1621 !(flags & LOOKUP_NO_REVAL)) { 1622 int error = d_revalidate(dentry, flags); 1623 if (unlikely(error <= 0)) { 1624 if (!error) { 1625 d_invalidate(dentry); 1626 dput(dentry); 1627 goto again; 1628 } 1629 dput(dentry); 1630 dentry = ERR_PTR(error); 1631 } 1632 } 1633 } else { 1634 old = inode->i_op->lookup(inode, dentry, flags); 1635 d_lookup_done(dentry); 1636 if (unlikely(old)) { 1637 dput(dentry); 1638 dentry = old; 1639 } 1640 } 1641 out: 1642 inode_unlock_shared(inode); 1643 return dentry; 1644 } 1645 1646 static inline int may_lookup(struct nameidata *nd) 1647 { 1648 if (nd->flags & LOOKUP_RCU) { 1649 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1650 if (err != -ECHILD) 1651 return err; 1652 if (unlazy_walk(nd, NULL, 0)) 1653 return -ECHILD; 1654 } 1655 return inode_permission(nd->inode, MAY_EXEC); 1656 } 1657 1658 static inline int handle_dots(struct nameidata *nd, int type) 1659 { 1660 if (type == LAST_DOTDOT) { 1661 if (!nd->root.mnt) 1662 set_root(nd); 1663 if (nd->flags & LOOKUP_RCU) { 1664 return follow_dotdot_rcu(nd); 1665 } else 1666 return follow_dotdot(nd); 1667 } 1668 return 0; 1669 } 1670 1671 static int pick_link(struct nameidata *nd, struct path *link, 1672 struct inode *inode, unsigned seq) 1673 { 1674 int error; 1675 struct saved *last; 1676 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1677 path_to_nameidata(link, nd); 1678 return -ELOOP; 1679 } 1680 if (!(nd->flags & LOOKUP_RCU)) { 1681 if (link->mnt == nd->path.mnt) 1682 mntget(link->mnt); 1683 } 1684 error = nd_alloc_stack(nd); 1685 if (unlikely(error)) { 1686 if (error == -ECHILD) { 1687 if (unlikely(unlazy_link(nd, link, seq))) 1688 return -ECHILD; 1689 error = nd_alloc_stack(nd); 1690 } 1691 if (error) { 1692 path_put(link); 1693 return error; 1694 } 1695 } 1696 1697 last = nd->stack + nd->depth++; 1698 last->link = *link; 1699 clear_delayed_call(&last->done); 1700 nd->link_inode = inode; 1701 last->seq = seq; 1702 return 1; 1703 } 1704 1705 /* 1706 * Do we need to follow links? We _really_ want to be able 1707 * to do this check without having to look at inode->i_op, 1708 * so we keep a cache of "no, this doesn't need follow_link" 1709 * for the common case. 1710 */ 1711 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1712 int follow, 1713 struct inode *inode, unsigned seq) 1714 { 1715 if (likely(!d_is_symlink(link->dentry))) 1716 return 0; 1717 if (!follow) 1718 return 0; 1719 /* make sure that d_is_symlink above matches inode */ 1720 if (nd->flags & LOOKUP_RCU) { 1721 if (read_seqcount_retry(&link->dentry->d_seq, seq)) 1722 return -ECHILD; 1723 } 1724 return pick_link(nd, link, inode, seq); 1725 } 1726 1727 enum {WALK_GET = 1, WALK_PUT = 2}; 1728 1729 static int walk_component(struct nameidata *nd, int flags) 1730 { 1731 struct path path; 1732 struct inode *inode; 1733 unsigned seq; 1734 int err; 1735 /* 1736 * "." and ".." are special - ".." especially so because it has 1737 * to be able to know about the current root directory and 1738 * parent relationships. 1739 */ 1740 if (unlikely(nd->last_type != LAST_NORM)) { 1741 err = handle_dots(nd, nd->last_type); 1742 if (flags & WALK_PUT) 1743 put_link(nd); 1744 return err; 1745 } 1746 err = lookup_fast(nd, &path, &inode, &seq); 1747 if (unlikely(err <= 0)) { 1748 if (err < 0) 1749 return err; 1750 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1751 nd->flags); 1752 if (IS_ERR(path.dentry)) 1753 return PTR_ERR(path.dentry); 1754 1755 path.mnt = nd->path.mnt; 1756 err = follow_managed(&path, nd); 1757 if (unlikely(err < 0)) 1758 return err; 1759 1760 if (unlikely(d_is_negative(path.dentry))) { 1761 path_to_nameidata(&path, nd); 1762 return -ENOENT; 1763 } 1764 1765 seq = 0; /* we are already out of RCU mode */ 1766 inode = d_backing_inode(path.dentry); 1767 } 1768 1769 if (flags & WALK_PUT) 1770 put_link(nd); 1771 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1772 if (unlikely(err)) 1773 return err; 1774 path_to_nameidata(&path, nd); 1775 nd->inode = inode; 1776 nd->seq = seq; 1777 return 0; 1778 } 1779 1780 /* 1781 * We can do the critical dentry name comparison and hashing 1782 * operations one word at a time, but we are limited to: 1783 * 1784 * - Architectures with fast unaligned word accesses. We could 1785 * do a "get_unaligned()" if this helps and is sufficiently 1786 * fast. 1787 * 1788 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1789 * do not trap on the (extremely unlikely) case of a page 1790 * crossing operation. 1791 * 1792 * - Furthermore, we need an efficient 64-bit compile for the 1793 * 64-bit case in order to generate the "number of bytes in 1794 * the final mask". Again, that could be replaced with a 1795 * efficient population count instruction or similar. 1796 */ 1797 #ifdef CONFIG_DCACHE_WORD_ACCESS 1798 1799 #include <asm/word-at-a-time.h> 1800 1801 #ifdef HASH_MIX 1802 1803 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1804 1805 #elif defined(CONFIG_64BIT) 1806 /* 1807 * Register pressure in the mixing function is an issue, particularly 1808 * on 32-bit x86, but almost any function requires one state value and 1809 * one temporary. Instead, use a function designed for two state values 1810 * and no temporaries. 1811 * 1812 * This function cannot create a collision in only two iterations, so 1813 * we have two iterations to achieve avalanche. In those two iterations, 1814 * we have six layers of mixing, which is enough to spread one bit's 1815 * influence out to 2^6 = 64 state bits. 1816 * 1817 * Rotate constants are scored by considering either 64 one-bit input 1818 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1819 * probability of that delta causing a change to each of the 128 output 1820 * bits, using a sample of random initial states. 1821 * 1822 * The Shannon entropy of the computed probabilities is then summed 1823 * to produce a score. Ideally, any input change has a 50% chance of 1824 * toggling any given output bit. 1825 * 1826 * Mixing scores (in bits) for (12,45): 1827 * Input delta: 1-bit 2-bit 1828 * 1 round: 713.3 42542.6 1829 * 2 rounds: 2753.7 140389.8 1830 * 3 rounds: 5954.1 233458.2 1831 * 4 rounds: 7862.6 256672.2 1832 * Perfect: 8192 258048 1833 * (64*128) (64*63/2 * 128) 1834 */ 1835 #define HASH_MIX(x, y, a) \ 1836 ( x ^= (a), \ 1837 y ^= x, x = rol64(x,12),\ 1838 x += y, y = rol64(y,45),\ 1839 y *= 9 ) 1840 1841 /* 1842 * Fold two longs into one 32-bit hash value. This must be fast, but 1843 * latency isn't quite as critical, as there is a fair bit of additional 1844 * work done before the hash value is used. 1845 */ 1846 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1847 { 1848 y ^= x * GOLDEN_RATIO_64; 1849 y *= GOLDEN_RATIO_64; 1850 return y >> 32; 1851 } 1852 1853 #else /* 32-bit case */ 1854 1855 /* 1856 * Mixing scores (in bits) for (7,20): 1857 * Input delta: 1-bit 2-bit 1858 * 1 round: 330.3 9201.6 1859 * 2 rounds: 1246.4 25475.4 1860 * 3 rounds: 1907.1 31295.1 1861 * 4 rounds: 2042.3 31718.6 1862 * Perfect: 2048 31744 1863 * (32*64) (32*31/2 * 64) 1864 */ 1865 #define HASH_MIX(x, y, a) \ 1866 ( x ^= (a), \ 1867 y ^= x, x = rol32(x, 7),\ 1868 x += y, y = rol32(y,20),\ 1869 y *= 9 ) 1870 1871 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1872 { 1873 /* Use arch-optimized multiply if one exists */ 1874 return __hash_32(y ^ __hash_32(x)); 1875 } 1876 1877 #endif 1878 1879 /* 1880 * Return the hash of a string of known length. This is carfully 1881 * designed to match hash_name(), which is the more critical function. 1882 * In particular, we must end by hashing a final word containing 0..7 1883 * payload bytes, to match the way that hash_name() iterates until it 1884 * finds the delimiter after the name. 1885 */ 1886 unsigned int full_name_hash(const char *name, unsigned int len) 1887 { 1888 unsigned long a, x = 0, y = 0; 1889 1890 for (;;) { 1891 if (!len) 1892 goto done; 1893 a = load_unaligned_zeropad(name); 1894 if (len < sizeof(unsigned long)) 1895 break; 1896 HASH_MIX(x, y, a); 1897 name += sizeof(unsigned long); 1898 len -= sizeof(unsigned long); 1899 } 1900 x ^= a & bytemask_from_count(len); 1901 done: 1902 return fold_hash(x, y); 1903 } 1904 EXPORT_SYMBOL(full_name_hash); 1905 1906 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1907 u64 hashlen_string(const char *name) 1908 { 1909 unsigned long a = 0, x = 0, y = 0, adata, mask, len; 1910 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1911 1912 len = -sizeof(unsigned long); 1913 do { 1914 HASH_MIX(x, y, a); 1915 len += sizeof(unsigned long); 1916 a = load_unaligned_zeropad(name+len); 1917 } while (!has_zero(a, &adata, &constants)); 1918 1919 adata = prep_zero_mask(a, adata, &constants); 1920 mask = create_zero_mask(adata); 1921 x ^= a & zero_bytemask(mask); 1922 1923 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1924 } 1925 EXPORT_SYMBOL(hashlen_string); 1926 1927 /* 1928 * Calculate the length and hash of the path component, and 1929 * return the "hash_len" as the result. 1930 */ 1931 static inline u64 hash_name(const char *name) 1932 { 1933 unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len; 1934 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1935 1936 len = -sizeof(unsigned long); 1937 do { 1938 HASH_MIX(x, y, a); 1939 len += sizeof(unsigned long); 1940 a = load_unaligned_zeropad(name+len); 1941 b = a ^ REPEAT_BYTE('/'); 1942 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1943 1944 adata = prep_zero_mask(a, adata, &constants); 1945 bdata = prep_zero_mask(b, bdata, &constants); 1946 mask = create_zero_mask(adata | bdata); 1947 x ^= a & zero_bytemask(mask); 1948 1949 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1950 } 1951 1952 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1953 1954 /* Return the hash of a string of known length */ 1955 unsigned int full_name_hash(const char *name, unsigned int len) 1956 { 1957 unsigned long hash = init_name_hash(); 1958 while (len--) 1959 hash = partial_name_hash((unsigned char)*name++, hash); 1960 return end_name_hash(hash); 1961 } 1962 EXPORT_SYMBOL(full_name_hash); 1963 1964 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1965 u64 hashlen_string(const char *name) 1966 { 1967 unsigned long hash = init_name_hash(); 1968 unsigned long len = 0, c; 1969 1970 c = (unsigned char)*name; 1971 while (c) { 1972 len++; 1973 hash = partial_name_hash(c, hash); 1974 c = (unsigned char)name[len]; 1975 } 1976 return hashlen_create(end_name_hash(hash), len); 1977 } 1978 EXPORT_SYMBOL(hashlen_string); 1979 1980 /* 1981 * We know there's a real path component here of at least 1982 * one character. 1983 */ 1984 static inline u64 hash_name(const char *name) 1985 { 1986 unsigned long hash = init_name_hash(); 1987 unsigned long len = 0, c; 1988 1989 c = (unsigned char)*name; 1990 do { 1991 len++; 1992 hash = partial_name_hash(c, hash); 1993 c = (unsigned char)name[len]; 1994 } while (c && c != '/'); 1995 return hashlen_create(end_name_hash(hash), len); 1996 } 1997 1998 #endif 1999 2000 /* 2001 * Name resolution. 2002 * This is the basic name resolution function, turning a pathname into 2003 * the final dentry. We expect 'base' to be positive and a directory. 2004 * 2005 * Returns 0 and nd will have valid dentry and mnt on success. 2006 * Returns error and drops reference to input namei data on failure. 2007 */ 2008 static int link_path_walk(const char *name, struct nameidata *nd) 2009 { 2010 int err; 2011 2012 while (*name=='/') 2013 name++; 2014 if (!*name) 2015 return 0; 2016 2017 /* At this point we know we have a real path component. */ 2018 for(;;) { 2019 u64 hash_len; 2020 int type; 2021 2022 err = may_lookup(nd); 2023 if (err) 2024 return err; 2025 2026 hash_len = hash_name(name); 2027 2028 type = LAST_NORM; 2029 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2030 case 2: 2031 if (name[1] == '.') { 2032 type = LAST_DOTDOT; 2033 nd->flags |= LOOKUP_JUMPED; 2034 } 2035 break; 2036 case 1: 2037 type = LAST_DOT; 2038 } 2039 if (likely(type == LAST_NORM)) { 2040 struct dentry *parent = nd->path.dentry; 2041 nd->flags &= ~LOOKUP_JUMPED; 2042 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2043 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2044 err = parent->d_op->d_hash(parent, &this); 2045 if (err < 0) 2046 return err; 2047 hash_len = this.hash_len; 2048 name = this.name; 2049 } 2050 } 2051 2052 nd->last.hash_len = hash_len; 2053 nd->last.name = name; 2054 nd->last_type = type; 2055 2056 name += hashlen_len(hash_len); 2057 if (!*name) 2058 goto OK; 2059 /* 2060 * If it wasn't NUL, we know it was '/'. Skip that 2061 * slash, and continue until no more slashes. 2062 */ 2063 do { 2064 name++; 2065 } while (unlikely(*name == '/')); 2066 if (unlikely(!*name)) { 2067 OK: 2068 /* pathname body, done */ 2069 if (!nd->depth) 2070 return 0; 2071 name = nd->stack[nd->depth - 1].name; 2072 /* trailing symlink, done */ 2073 if (!name) 2074 return 0; 2075 /* last component of nested symlink */ 2076 err = walk_component(nd, WALK_GET | WALK_PUT); 2077 } else { 2078 err = walk_component(nd, WALK_GET); 2079 } 2080 if (err < 0) 2081 return err; 2082 2083 if (err) { 2084 const char *s = get_link(nd); 2085 2086 if (IS_ERR(s)) 2087 return PTR_ERR(s); 2088 err = 0; 2089 if (unlikely(!s)) { 2090 /* jumped */ 2091 put_link(nd); 2092 } else { 2093 nd->stack[nd->depth - 1].name = name; 2094 name = s; 2095 continue; 2096 } 2097 } 2098 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2099 if (nd->flags & LOOKUP_RCU) { 2100 if (unlazy_walk(nd, NULL, 0)) 2101 return -ECHILD; 2102 } 2103 return -ENOTDIR; 2104 } 2105 } 2106 } 2107 2108 static const char *path_init(struct nameidata *nd, unsigned flags) 2109 { 2110 int retval = 0; 2111 const char *s = nd->name->name; 2112 2113 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2114 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2115 nd->depth = 0; 2116 if (flags & LOOKUP_ROOT) { 2117 struct dentry *root = nd->root.dentry; 2118 struct inode *inode = root->d_inode; 2119 if (*s) { 2120 if (!d_can_lookup(root)) 2121 return ERR_PTR(-ENOTDIR); 2122 retval = inode_permission(inode, MAY_EXEC); 2123 if (retval) 2124 return ERR_PTR(retval); 2125 } 2126 nd->path = nd->root; 2127 nd->inode = inode; 2128 if (flags & LOOKUP_RCU) { 2129 rcu_read_lock(); 2130 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2131 nd->root_seq = nd->seq; 2132 nd->m_seq = read_seqbegin(&mount_lock); 2133 } else { 2134 path_get(&nd->path); 2135 } 2136 return s; 2137 } 2138 2139 nd->root.mnt = NULL; 2140 nd->path.mnt = NULL; 2141 nd->path.dentry = NULL; 2142 2143 nd->m_seq = read_seqbegin(&mount_lock); 2144 if (*s == '/') { 2145 if (flags & LOOKUP_RCU) 2146 rcu_read_lock(); 2147 set_root(nd); 2148 if (likely(!nd_jump_root(nd))) 2149 return s; 2150 nd->root.mnt = NULL; 2151 rcu_read_unlock(); 2152 return ERR_PTR(-ECHILD); 2153 } else if (nd->dfd == AT_FDCWD) { 2154 if (flags & LOOKUP_RCU) { 2155 struct fs_struct *fs = current->fs; 2156 unsigned seq; 2157 2158 rcu_read_lock(); 2159 2160 do { 2161 seq = read_seqcount_begin(&fs->seq); 2162 nd->path = fs->pwd; 2163 nd->inode = nd->path.dentry->d_inode; 2164 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2165 } while (read_seqcount_retry(&fs->seq, seq)); 2166 } else { 2167 get_fs_pwd(current->fs, &nd->path); 2168 nd->inode = nd->path.dentry->d_inode; 2169 } 2170 return s; 2171 } else { 2172 /* Caller must check execute permissions on the starting path component */ 2173 struct fd f = fdget_raw(nd->dfd); 2174 struct dentry *dentry; 2175 2176 if (!f.file) 2177 return ERR_PTR(-EBADF); 2178 2179 dentry = f.file->f_path.dentry; 2180 2181 if (*s) { 2182 if (!d_can_lookup(dentry)) { 2183 fdput(f); 2184 return ERR_PTR(-ENOTDIR); 2185 } 2186 } 2187 2188 nd->path = f.file->f_path; 2189 if (flags & LOOKUP_RCU) { 2190 rcu_read_lock(); 2191 nd->inode = nd->path.dentry->d_inode; 2192 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2193 } else { 2194 path_get(&nd->path); 2195 nd->inode = nd->path.dentry->d_inode; 2196 } 2197 fdput(f); 2198 return s; 2199 } 2200 } 2201 2202 static const char *trailing_symlink(struct nameidata *nd) 2203 { 2204 const char *s; 2205 int error = may_follow_link(nd); 2206 if (unlikely(error)) 2207 return ERR_PTR(error); 2208 nd->flags |= LOOKUP_PARENT; 2209 nd->stack[0].name = NULL; 2210 s = get_link(nd); 2211 return s ? s : ""; 2212 } 2213 2214 static inline int lookup_last(struct nameidata *nd) 2215 { 2216 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2217 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2218 2219 nd->flags &= ~LOOKUP_PARENT; 2220 return walk_component(nd, 2221 nd->flags & LOOKUP_FOLLOW 2222 ? nd->depth 2223 ? WALK_PUT | WALK_GET 2224 : WALK_GET 2225 : 0); 2226 } 2227 2228 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2229 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2230 { 2231 const char *s = path_init(nd, flags); 2232 int err; 2233 2234 if (IS_ERR(s)) 2235 return PTR_ERR(s); 2236 while (!(err = link_path_walk(s, nd)) 2237 && ((err = lookup_last(nd)) > 0)) { 2238 s = trailing_symlink(nd); 2239 if (IS_ERR(s)) { 2240 err = PTR_ERR(s); 2241 break; 2242 } 2243 } 2244 if (!err) 2245 err = complete_walk(nd); 2246 2247 if (!err && nd->flags & LOOKUP_DIRECTORY) 2248 if (!d_can_lookup(nd->path.dentry)) 2249 err = -ENOTDIR; 2250 if (!err) { 2251 *path = nd->path; 2252 nd->path.mnt = NULL; 2253 nd->path.dentry = NULL; 2254 } 2255 terminate_walk(nd); 2256 return err; 2257 } 2258 2259 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2260 struct path *path, struct path *root) 2261 { 2262 int retval; 2263 struct nameidata nd; 2264 if (IS_ERR(name)) 2265 return PTR_ERR(name); 2266 if (unlikely(root)) { 2267 nd.root = *root; 2268 flags |= LOOKUP_ROOT; 2269 } 2270 set_nameidata(&nd, dfd, name); 2271 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2272 if (unlikely(retval == -ECHILD)) 2273 retval = path_lookupat(&nd, flags, path); 2274 if (unlikely(retval == -ESTALE)) 2275 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2276 2277 if (likely(!retval)) 2278 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2279 restore_nameidata(); 2280 putname(name); 2281 return retval; 2282 } 2283 2284 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2285 static int path_parentat(struct nameidata *nd, unsigned flags, 2286 struct path *parent) 2287 { 2288 const char *s = path_init(nd, flags); 2289 int err; 2290 if (IS_ERR(s)) 2291 return PTR_ERR(s); 2292 err = link_path_walk(s, nd); 2293 if (!err) 2294 err = complete_walk(nd); 2295 if (!err) { 2296 *parent = nd->path; 2297 nd->path.mnt = NULL; 2298 nd->path.dentry = NULL; 2299 } 2300 terminate_walk(nd); 2301 return err; 2302 } 2303 2304 static struct filename *filename_parentat(int dfd, struct filename *name, 2305 unsigned int flags, struct path *parent, 2306 struct qstr *last, int *type) 2307 { 2308 int retval; 2309 struct nameidata nd; 2310 2311 if (IS_ERR(name)) 2312 return name; 2313 set_nameidata(&nd, dfd, name); 2314 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2315 if (unlikely(retval == -ECHILD)) 2316 retval = path_parentat(&nd, flags, parent); 2317 if (unlikely(retval == -ESTALE)) 2318 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2319 if (likely(!retval)) { 2320 *last = nd.last; 2321 *type = nd.last_type; 2322 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2323 } else { 2324 putname(name); 2325 name = ERR_PTR(retval); 2326 } 2327 restore_nameidata(); 2328 return name; 2329 } 2330 2331 /* does lookup, returns the object with parent locked */ 2332 struct dentry *kern_path_locked(const char *name, struct path *path) 2333 { 2334 struct filename *filename; 2335 struct dentry *d; 2336 struct qstr last; 2337 int type; 2338 2339 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2340 &last, &type); 2341 if (IS_ERR(filename)) 2342 return ERR_CAST(filename); 2343 if (unlikely(type != LAST_NORM)) { 2344 path_put(path); 2345 putname(filename); 2346 return ERR_PTR(-EINVAL); 2347 } 2348 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2349 d = __lookup_hash(&last, path->dentry, 0); 2350 if (IS_ERR(d)) { 2351 inode_unlock(path->dentry->d_inode); 2352 path_put(path); 2353 } 2354 putname(filename); 2355 return d; 2356 } 2357 2358 int kern_path(const char *name, unsigned int flags, struct path *path) 2359 { 2360 return filename_lookup(AT_FDCWD, getname_kernel(name), 2361 flags, path, NULL); 2362 } 2363 EXPORT_SYMBOL(kern_path); 2364 2365 /** 2366 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2367 * @dentry: pointer to dentry of the base directory 2368 * @mnt: pointer to vfs mount of the base directory 2369 * @name: pointer to file name 2370 * @flags: lookup flags 2371 * @path: pointer to struct path to fill 2372 */ 2373 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2374 const char *name, unsigned int flags, 2375 struct path *path) 2376 { 2377 struct path root = {.mnt = mnt, .dentry = dentry}; 2378 /* the first argument of filename_lookup() is ignored with root */ 2379 return filename_lookup(AT_FDCWD, getname_kernel(name), 2380 flags , path, &root); 2381 } 2382 EXPORT_SYMBOL(vfs_path_lookup); 2383 2384 /** 2385 * lookup_hash - lookup single pathname component on already hashed name 2386 * @name: name and hash to lookup 2387 * @base: base directory to lookup from 2388 * 2389 * The name must have been verified and hashed (see lookup_one_len()). Using 2390 * this after just full_name_hash() is unsafe. 2391 * 2392 * This function also doesn't check for search permission on base directory. 2393 * 2394 * Use lookup_one_len_unlocked() instead, unless you really know what you are 2395 * doing. 2396 * 2397 * Do not hold i_mutex; this helper takes i_mutex if necessary. 2398 */ 2399 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base) 2400 { 2401 struct dentry *ret; 2402 2403 ret = lookup_dcache(name, base, 0); 2404 if (!ret) 2405 ret = lookup_slow(name, base, 0); 2406 2407 return ret; 2408 } 2409 EXPORT_SYMBOL(lookup_hash); 2410 2411 /** 2412 * lookup_one_len - filesystem helper to lookup single pathname component 2413 * @name: pathname component to lookup 2414 * @base: base directory to lookup from 2415 * @len: maximum length @len should be interpreted to 2416 * 2417 * Note that this routine is purely a helper for filesystem usage and should 2418 * not be called by generic code. 2419 * 2420 * The caller must hold base->i_mutex. 2421 */ 2422 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2423 { 2424 struct qstr this; 2425 unsigned int c; 2426 int err; 2427 2428 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2429 2430 this.name = name; 2431 this.len = len; 2432 this.hash = full_name_hash(name, len); 2433 if (!len) 2434 return ERR_PTR(-EACCES); 2435 2436 if (unlikely(name[0] == '.')) { 2437 if (len < 2 || (len == 2 && name[1] == '.')) 2438 return ERR_PTR(-EACCES); 2439 } 2440 2441 while (len--) { 2442 c = *(const unsigned char *)name++; 2443 if (c == '/' || c == '\0') 2444 return ERR_PTR(-EACCES); 2445 } 2446 /* 2447 * See if the low-level filesystem might want 2448 * to use its own hash.. 2449 */ 2450 if (base->d_flags & DCACHE_OP_HASH) { 2451 int err = base->d_op->d_hash(base, &this); 2452 if (err < 0) 2453 return ERR_PTR(err); 2454 } 2455 2456 err = inode_permission(base->d_inode, MAY_EXEC); 2457 if (err) 2458 return ERR_PTR(err); 2459 2460 return __lookup_hash(&this, base, 0); 2461 } 2462 EXPORT_SYMBOL(lookup_one_len); 2463 2464 /** 2465 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2466 * @name: pathname component to lookup 2467 * @base: base directory to lookup from 2468 * @len: maximum length @len should be interpreted to 2469 * 2470 * Note that this routine is purely a helper for filesystem usage and should 2471 * not be called by generic code. 2472 * 2473 * Unlike lookup_one_len, it should be called without the parent 2474 * i_mutex held, and will take the i_mutex itself if necessary. 2475 */ 2476 struct dentry *lookup_one_len_unlocked(const char *name, 2477 struct dentry *base, int len) 2478 { 2479 struct qstr this; 2480 unsigned int c; 2481 int err; 2482 2483 this.name = name; 2484 this.len = len; 2485 this.hash = full_name_hash(name, len); 2486 if (!len) 2487 return ERR_PTR(-EACCES); 2488 2489 if (unlikely(name[0] == '.')) { 2490 if (len < 2 || (len == 2 && name[1] == '.')) 2491 return ERR_PTR(-EACCES); 2492 } 2493 2494 while (len--) { 2495 c = *(const unsigned char *)name++; 2496 if (c == '/' || c == '\0') 2497 return ERR_PTR(-EACCES); 2498 } 2499 /* 2500 * See if the low-level filesystem might want 2501 * to use its own hash.. 2502 */ 2503 if (base->d_flags & DCACHE_OP_HASH) { 2504 int err = base->d_op->d_hash(base, &this); 2505 if (err < 0) 2506 return ERR_PTR(err); 2507 } 2508 2509 err = inode_permission(base->d_inode, MAY_EXEC); 2510 if (err) 2511 return ERR_PTR(err); 2512 2513 return lookup_hash(&this, base); 2514 } 2515 EXPORT_SYMBOL(lookup_one_len_unlocked); 2516 2517 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2518 struct path *path, int *empty) 2519 { 2520 return filename_lookup(dfd, getname_flags(name, flags, empty), 2521 flags, path, NULL); 2522 } 2523 EXPORT_SYMBOL(user_path_at_empty); 2524 2525 /* 2526 * NB: most callers don't do anything directly with the reference to the 2527 * to struct filename, but the nd->last pointer points into the name string 2528 * allocated by getname. So we must hold the reference to it until all 2529 * path-walking is complete. 2530 */ 2531 static inline struct filename * 2532 user_path_parent(int dfd, const char __user *path, 2533 struct path *parent, 2534 struct qstr *last, 2535 int *type, 2536 unsigned int flags) 2537 { 2538 /* only LOOKUP_REVAL is allowed in extra flags */ 2539 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2540 parent, last, type); 2541 } 2542 2543 /** 2544 * mountpoint_last - look up last component for umount 2545 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2546 * @path: pointer to container for result 2547 * 2548 * This is a special lookup_last function just for umount. In this case, we 2549 * need to resolve the path without doing any revalidation. 2550 * 2551 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2552 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2553 * in almost all cases, this lookup will be served out of the dcache. The only 2554 * cases where it won't are if nd->last refers to a symlink or the path is 2555 * bogus and it doesn't exist. 2556 * 2557 * Returns: 2558 * -error: if there was an error during lookup. This includes -ENOENT if the 2559 * lookup found a negative dentry. The nd->path reference will also be 2560 * put in this case. 2561 * 2562 * 0: if we successfully resolved nd->path and found it to not to be a 2563 * symlink that needs to be followed. "path" will also be populated. 2564 * The nd->path reference will also be put. 2565 * 2566 * 1: if we successfully resolved nd->last and found it to be a symlink 2567 * that needs to be followed. "path" will be populated with the path 2568 * to the link, and nd->path will *not* be put. 2569 */ 2570 static int 2571 mountpoint_last(struct nameidata *nd, struct path *path) 2572 { 2573 int error = 0; 2574 struct dentry *dentry; 2575 struct dentry *dir = nd->path.dentry; 2576 2577 /* If we're in rcuwalk, drop out of it to handle last component */ 2578 if (nd->flags & LOOKUP_RCU) { 2579 if (unlazy_walk(nd, NULL, 0)) 2580 return -ECHILD; 2581 } 2582 2583 nd->flags &= ~LOOKUP_PARENT; 2584 2585 if (unlikely(nd->last_type != LAST_NORM)) { 2586 error = handle_dots(nd, nd->last_type); 2587 if (error) 2588 return error; 2589 dentry = dget(nd->path.dentry); 2590 } else { 2591 dentry = d_lookup(dir, &nd->last); 2592 if (!dentry) { 2593 /* 2594 * No cached dentry. Mounted dentries are pinned in the 2595 * cache, so that means that this dentry is probably 2596 * a symlink or the path doesn't actually point 2597 * to a mounted dentry. 2598 */ 2599 dentry = lookup_slow(&nd->last, dir, 2600 nd->flags | LOOKUP_NO_REVAL); 2601 if (IS_ERR(dentry)) 2602 return PTR_ERR(dentry); 2603 } 2604 } 2605 if (d_is_negative(dentry)) { 2606 dput(dentry); 2607 return -ENOENT; 2608 } 2609 if (nd->depth) 2610 put_link(nd); 2611 path->dentry = dentry; 2612 path->mnt = nd->path.mnt; 2613 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2614 d_backing_inode(dentry), 0); 2615 if (unlikely(error)) 2616 return error; 2617 mntget(path->mnt); 2618 follow_mount(path); 2619 return 0; 2620 } 2621 2622 /** 2623 * path_mountpoint - look up a path to be umounted 2624 * @nd: lookup context 2625 * @flags: lookup flags 2626 * @path: pointer to container for result 2627 * 2628 * Look up the given name, but don't attempt to revalidate the last component. 2629 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2630 */ 2631 static int 2632 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2633 { 2634 const char *s = path_init(nd, flags); 2635 int err; 2636 if (IS_ERR(s)) 2637 return PTR_ERR(s); 2638 while (!(err = link_path_walk(s, nd)) && 2639 (err = mountpoint_last(nd, path)) > 0) { 2640 s = trailing_symlink(nd); 2641 if (IS_ERR(s)) { 2642 err = PTR_ERR(s); 2643 break; 2644 } 2645 } 2646 terminate_walk(nd); 2647 return err; 2648 } 2649 2650 static int 2651 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2652 unsigned int flags) 2653 { 2654 struct nameidata nd; 2655 int error; 2656 if (IS_ERR(name)) 2657 return PTR_ERR(name); 2658 set_nameidata(&nd, dfd, name); 2659 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2660 if (unlikely(error == -ECHILD)) 2661 error = path_mountpoint(&nd, flags, path); 2662 if (unlikely(error == -ESTALE)) 2663 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2664 if (likely(!error)) 2665 audit_inode(name, path->dentry, 0); 2666 restore_nameidata(); 2667 putname(name); 2668 return error; 2669 } 2670 2671 /** 2672 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2673 * @dfd: directory file descriptor 2674 * @name: pathname from userland 2675 * @flags: lookup flags 2676 * @path: pointer to container to hold result 2677 * 2678 * A umount is a special case for path walking. We're not actually interested 2679 * in the inode in this situation, and ESTALE errors can be a problem. We 2680 * simply want track down the dentry and vfsmount attached at the mountpoint 2681 * and avoid revalidating the last component. 2682 * 2683 * Returns 0 and populates "path" on success. 2684 */ 2685 int 2686 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2687 struct path *path) 2688 { 2689 return filename_mountpoint(dfd, getname(name), path, flags); 2690 } 2691 2692 int 2693 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2694 unsigned int flags) 2695 { 2696 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2697 } 2698 EXPORT_SYMBOL(kern_path_mountpoint); 2699 2700 int __check_sticky(struct inode *dir, struct inode *inode) 2701 { 2702 kuid_t fsuid = current_fsuid(); 2703 2704 if (uid_eq(inode->i_uid, fsuid)) 2705 return 0; 2706 if (uid_eq(dir->i_uid, fsuid)) 2707 return 0; 2708 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2709 } 2710 EXPORT_SYMBOL(__check_sticky); 2711 2712 /* 2713 * Check whether we can remove a link victim from directory dir, check 2714 * whether the type of victim is right. 2715 * 1. We can't do it if dir is read-only (done in permission()) 2716 * 2. We should have write and exec permissions on dir 2717 * 3. We can't remove anything from append-only dir 2718 * 4. We can't do anything with immutable dir (done in permission()) 2719 * 5. If the sticky bit on dir is set we should either 2720 * a. be owner of dir, or 2721 * b. be owner of victim, or 2722 * c. have CAP_FOWNER capability 2723 * 6. If the victim is append-only or immutable we can't do antyhing with 2724 * links pointing to it. 2725 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2726 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2727 * 9. We can't remove a root or mountpoint. 2728 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2729 * nfs_async_unlink(). 2730 */ 2731 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2732 { 2733 struct inode *inode = d_backing_inode(victim); 2734 int error; 2735 2736 if (d_is_negative(victim)) 2737 return -ENOENT; 2738 BUG_ON(!inode); 2739 2740 BUG_ON(victim->d_parent->d_inode != dir); 2741 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2742 2743 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2744 if (error) 2745 return error; 2746 if (IS_APPEND(dir)) 2747 return -EPERM; 2748 2749 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2750 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2751 return -EPERM; 2752 if (isdir) { 2753 if (!d_is_dir(victim)) 2754 return -ENOTDIR; 2755 if (IS_ROOT(victim)) 2756 return -EBUSY; 2757 } else if (d_is_dir(victim)) 2758 return -EISDIR; 2759 if (IS_DEADDIR(dir)) 2760 return -ENOENT; 2761 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2762 return -EBUSY; 2763 return 0; 2764 } 2765 2766 /* Check whether we can create an object with dentry child in directory 2767 * dir. 2768 * 1. We can't do it if child already exists (open has special treatment for 2769 * this case, but since we are inlined it's OK) 2770 * 2. We can't do it if dir is read-only (done in permission()) 2771 * 3. We should have write and exec permissions on dir 2772 * 4. We can't do it if dir is immutable (done in permission()) 2773 */ 2774 static inline int may_create(struct inode *dir, struct dentry *child) 2775 { 2776 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2777 if (child->d_inode) 2778 return -EEXIST; 2779 if (IS_DEADDIR(dir)) 2780 return -ENOENT; 2781 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2782 } 2783 2784 /* 2785 * p1 and p2 should be directories on the same fs. 2786 */ 2787 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2788 { 2789 struct dentry *p; 2790 2791 if (p1 == p2) { 2792 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2793 return NULL; 2794 } 2795 2796 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2797 2798 p = d_ancestor(p2, p1); 2799 if (p) { 2800 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2801 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2802 return p; 2803 } 2804 2805 p = d_ancestor(p1, p2); 2806 if (p) { 2807 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2808 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2809 return p; 2810 } 2811 2812 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2813 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2814 return NULL; 2815 } 2816 EXPORT_SYMBOL(lock_rename); 2817 2818 void unlock_rename(struct dentry *p1, struct dentry *p2) 2819 { 2820 inode_unlock(p1->d_inode); 2821 if (p1 != p2) { 2822 inode_unlock(p2->d_inode); 2823 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2824 } 2825 } 2826 EXPORT_SYMBOL(unlock_rename); 2827 2828 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2829 bool want_excl) 2830 { 2831 int error = may_create(dir, dentry); 2832 if (error) 2833 return error; 2834 2835 if (!dir->i_op->create) 2836 return -EACCES; /* shouldn't it be ENOSYS? */ 2837 mode &= S_IALLUGO; 2838 mode |= S_IFREG; 2839 error = security_inode_create(dir, dentry, mode); 2840 if (error) 2841 return error; 2842 error = dir->i_op->create(dir, dentry, mode, want_excl); 2843 if (!error) 2844 fsnotify_create(dir, dentry); 2845 return error; 2846 } 2847 EXPORT_SYMBOL(vfs_create); 2848 2849 static int may_open(struct path *path, int acc_mode, int flag) 2850 { 2851 struct dentry *dentry = path->dentry; 2852 struct inode *inode = dentry->d_inode; 2853 int error; 2854 2855 if (!inode) 2856 return -ENOENT; 2857 2858 switch (inode->i_mode & S_IFMT) { 2859 case S_IFLNK: 2860 return -ELOOP; 2861 case S_IFDIR: 2862 if (acc_mode & MAY_WRITE) 2863 return -EISDIR; 2864 break; 2865 case S_IFBLK: 2866 case S_IFCHR: 2867 if (path->mnt->mnt_flags & MNT_NODEV) 2868 return -EACCES; 2869 /*FALLTHRU*/ 2870 case S_IFIFO: 2871 case S_IFSOCK: 2872 flag &= ~O_TRUNC; 2873 break; 2874 } 2875 2876 error = inode_permission(inode, MAY_OPEN | acc_mode); 2877 if (error) 2878 return error; 2879 2880 /* 2881 * An append-only file must be opened in append mode for writing. 2882 */ 2883 if (IS_APPEND(inode)) { 2884 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2885 return -EPERM; 2886 if (flag & O_TRUNC) 2887 return -EPERM; 2888 } 2889 2890 /* O_NOATIME can only be set by the owner or superuser */ 2891 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2892 return -EPERM; 2893 2894 return 0; 2895 } 2896 2897 static int handle_truncate(struct file *filp) 2898 { 2899 struct path *path = &filp->f_path; 2900 struct inode *inode = path->dentry->d_inode; 2901 int error = get_write_access(inode); 2902 if (error) 2903 return error; 2904 /* 2905 * Refuse to truncate files with mandatory locks held on them. 2906 */ 2907 error = locks_verify_locked(filp); 2908 if (!error) 2909 error = security_path_truncate(path); 2910 if (!error) { 2911 error = do_truncate(path->dentry, 0, 2912 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2913 filp); 2914 } 2915 put_write_access(inode); 2916 return error; 2917 } 2918 2919 static inline int open_to_namei_flags(int flag) 2920 { 2921 if ((flag & O_ACCMODE) == 3) 2922 flag--; 2923 return flag; 2924 } 2925 2926 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2927 { 2928 int error = security_path_mknod(dir, dentry, mode, 0); 2929 if (error) 2930 return error; 2931 2932 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2933 if (error) 2934 return error; 2935 2936 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2937 } 2938 2939 /* 2940 * Attempt to atomically look up, create and open a file from a negative 2941 * dentry. 2942 * 2943 * Returns 0 if successful. The file will have been created and attached to 2944 * @file by the filesystem calling finish_open(). 2945 * 2946 * Returns 1 if the file was looked up only or didn't need creating. The 2947 * caller will need to perform the open themselves. @path will have been 2948 * updated to point to the new dentry. This may be negative. 2949 * 2950 * Returns an error code otherwise. 2951 */ 2952 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2953 struct path *path, struct file *file, 2954 const struct open_flags *op, 2955 int open_flag, umode_t mode, 2956 int *opened) 2957 { 2958 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2959 struct inode *dir = nd->path.dentry->d_inode; 2960 int error; 2961 2962 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 2963 open_flag &= ~O_TRUNC; 2964 2965 if (nd->flags & LOOKUP_DIRECTORY) 2966 open_flag |= O_DIRECTORY; 2967 2968 file->f_path.dentry = DENTRY_NOT_SET; 2969 file->f_path.mnt = nd->path.mnt; 2970 error = dir->i_op->atomic_open(dir, dentry, file, 2971 open_to_namei_flags(open_flag), 2972 mode, opened); 2973 d_lookup_done(dentry); 2974 if (!error) { 2975 /* 2976 * We didn't have the inode before the open, so check open 2977 * permission here. 2978 */ 2979 int acc_mode = op->acc_mode; 2980 if (*opened & FILE_CREATED) { 2981 WARN_ON(!(open_flag & O_CREAT)); 2982 fsnotify_create(dir, dentry); 2983 acc_mode = 0; 2984 } 2985 error = may_open(&file->f_path, acc_mode, open_flag); 2986 if (WARN_ON(error > 0)) 2987 error = -EINVAL; 2988 } else if (error > 0) { 2989 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2990 error = -EIO; 2991 } else { 2992 if (file->f_path.dentry) { 2993 dput(dentry); 2994 dentry = file->f_path.dentry; 2995 } 2996 if (*opened & FILE_CREATED) 2997 fsnotify_create(dir, dentry); 2998 path->dentry = dentry; 2999 path->mnt = nd->path.mnt; 3000 return 1; 3001 } 3002 } 3003 dput(dentry); 3004 return error; 3005 } 3006 3007 /* 3008 * Look up and maybe create and open the last component. 3009 * 3010 * Must be called with i_mutex held on parent. 3011 * 3012 * Returns 0 if the file was successfully atomically created (if necessary) and 3013 * opened. In this case the file will be returned attached to @file. 3014 * 3015 * Returns 1 if the file was not completely opened at this time, though lookups 3016 * and creations will have been performed and the dentry returned in @path will 3017 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3018 * specified then a negative dentry may be returned. 3019 * 3020 * An error code is returned otherwise. 3021 * 3022 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3023 * cleared otherwise prior to returning. 3024 */ 3025 static int lookup_open(struct nameidata *nd, struct path *path, 3026 struct file *file, 3027 const struct open_flags *op, 3028 bool got_write, int *opened) 3029 { 3030 struct dentry *dir = nd->path.dentry; 3031 struct inode *dir_inode = dir->d_inode; 3032 int open_flag = op->open_flag; 3033 struct dentry *dentry; 3034 int error, create_error = 0; 3035 umode_t mode = op->mode; 3036 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3037 3038 if (unlikely(IS_DEADDIR(dir_inode))) 3039 return -ENOENT; 3040 3041 *opened &= ~FILE_CREATED; 3042 dentry = d_lookup(dir, &nd->last); 3043 for (;;) { 3044 if (!dentry) { 3045 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3046 if (IS_ERR(dentry)) 3047 return PTR_ERR(dentry); 3048 } 3049 if (d_in_lookup(dentry)) 3050 break; 3051 3052 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE)) 3053 break; 3054 3055 error = d_revalidate(dentry, nd->flags); 3056 if (likely(error > 0)) 3057 break; 3058 if (error) 3059 goto out_dput; 3060 d_invalidate(dentry); 3061 dput(dentry); 3062 dentry = NULL; 3063 } 3064 if (dentry->d_inode) { 3065 /* Cached positive dentry: will open in f_op->open */ 3066 goto out_no_open; 3067 } 3068 3069 /* 3070 * Checking write permission is tricky, bacuse we don't know if we are 3071 * going to actually need it: O_CREAT opens should work as long as the 3072 * file exists. But checking existence breaks atomicity. The trick is 3073 * to check access and if not granted clear O_CREAT from the flags. 3074 * 3075 * Another problem is returing the "right" error value (e.g. for an 3076 * O_EXCL open we want to return EEXIST not EROFS). 3077 */ 3078 if (open_flag & O_CREAT) { 3079 if (!IS_POSIXACL(dir->d_inode)) 3080 mode &= ~current_umask(); 3081 if (unlikely(!got_write)) { 3082 create_error = -EROFS; 3083 open_flag &= ~O_CREAT; 3084 if (open_flag & (O_EXCL | O_TRUNC)) 3085 goto no_open; 3086 /* No side effects, safe to clear O_CREAT */ 3087 } else { 3088 create_error = may_o_create(&nd->path, dentry, mode); 3089 if (create_error) { 3090 open_flag &= ~O_CREAT; 3091 if (open_flag & O_EXCL) 3092 goto no_open; 3093 } 3094 } 3095 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3096 unlikely(!got_write)) { 3097 /* 3098 * No O_CREATE -> atomicity not a requirement -> fall 3099 * back to lookup + open 3100 */ 3101 goto no_open; 3102 } 3103 3104 if (dir_inode->i_op->atomic_open) { 3105 error = atomic_open(nd, dentry, path, file, op, open_flag, 3106 mode, opened); 3107 if (unlikely(error == -ENOENT) && create_error) 3108 error = create_error; 3109 return error; 3110 } 3111 3112 no_open: 3113 if (d_in_lookup(dentry)) { 3114 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3115 nd->flags); 3116 d_lookup_done(dentry); 3117 if (unlikely(res)) { 3118 if (IS_ERR(res)) { 3119 error = PTR_ERR(res); 3120 goto out_dput; 3121 } 3122 dput(dentry); 3123 dentry = res; 3124 } 3125 } 3126 3127 /* Negative dentry, just create the file */ 3128 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3129 *opened |= FILE_CREATED; 3130 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3131 if (!dir_inode->i_op->create) { 3132 error = -EACCES; 3133 goto out_dput; 3134 } 3135 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3136 open_flag & O_EXCL); 3137 if (error) 3138 goto out_dput; 3139 fsnotify_create(dir_inode, dentry); 3140 } 3141 if (unlikely(create_error) && !dentry->d_inode) { 3142 error = create_error; 3143 goto out_dput; 3144 } 3145 out_no_open: 3146 path->dentry = dentry; 3147 path->mnt = nd->path.mnt; 3148 return 1; 3149 3150 out_dput: 3151 dput(dentry); 3152 return error; 3153 } 3154 3155 /* 3156 * Handle the last step of open() 3157 */ 3158 static int do_last(struct nameidata *nd, 3159 struct file *file, const struct open_flags *op, 3160 int *opened) 3161 { 3162 struct dentry *dir = nd->path.dentry; 3163 int open_flag = op->open_flag; 3164 bool will_truncate = (open_flag & O_TRUNC) != 0; 3165 bool got_write = false; 3166 int acc_mode = op->acc_mode; 3167 unsigned seq; 3168 struct inode *inode; 3169 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3170 struct path path; 3171 bool retried = false; 3172 int error; 3173 3174 nd->flags &= ~LOOKUP_PARENT; 3175 nd->flags |= op->intent; 3176 3177 if (nd->last_type != LAST_NORM) { 3178 error = handle_dots(nd, nd->last_type); 3179 if (unlikely(error)) 3180 return error; 3181 goto finish_open; 3182 } 3183 3184 if (!(open_flag & O_CREAT)) { 3185 if (nd->last.name[nd->last.len]) 3186 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3187 /* we _can_ be in RCU mode here */ 3188 error = lookup_fast(nd, &path, &inode, &seq); 3189 if (likely(error > 0)) 3190 goto finish_lookup; 3191 3192 if (error < 0) 3193 return error; 3194 3195 BUG_ON(nd->inode != dir->d_inode); 3196 BUG_ON(nd->flags & LOOKUP_RCU); 3197 } else { 3198 /* create side of things */ 3199 /* 3200 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3201 * has been cleared when we got to the last component we are 3202 * about to look up 3203 */ 3204 error = complete_walk(nd); 3205 if (error) 3206 return error; 3207 3208 audit_inode(nd->name, dir, LOOKUP_PARENT); 3209 /* trailing slashes? */ 3210 if (unlikely(nd->last.name[nd->last.len])) 3211 return -EISDIR; 3212 } 3213 3214 retry_lookup: 3215 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3216 error = mnt_want_write(nd->path.mnt); 3217 if (!error) 3218 got_write = true; 3219 /* 3220 * do _not_ fail yet - we might not need that or fail with 3221 * a different error; let lookup_open() decide; we'll be 3222 * dropping this one anyway. 3223 */ 3224 } 3225 if (open_flag & O_CREAT) 3226 inode_lock(dir->d_inode); 3227 else 3228 inode_lock_shared(dir->d_inode); 3229 error = lookup_open(nd, &path, file, op, got_write, opened); 3230 if (open_flag & O_CREAT) 3231 inode_unlock(dir->d_inode); 3232 else 3233 inode_unlock_shared(dir->d_inode); 3234 3235 if (error <= 0) { 3236 if (error) 3237 goto out; 3238 3239 if ((*opened & FILE_CREATED) || 3240 !S_ISREG(file_inode(file)->i_mode)) 3241 will_truncate = false; 3242 3243 audit_inode(nd->name, file->f_path.dentry, 0); 3244 goto opened; 3245 } 3246 3247 if (*opened & FILE_CREATED) { 3248 /* Don't check for write permission, don't truncate */ 3249 open_flag &= ~O_TRUNC; 3250 will_truncate = false; 3251 acc_mode = 0; 3252 path_to_nameidata(&path, nd); 3253 goto finish_open_created; 3254 } 3255 3256 /* 3257 * If atomic_open() acquired write access it is dropped now due to 3258 * possible mount and symlink following (this might be optimized away if 3259 * necessary...) 3260 */ 3261 if (got_write) { 3262 mnt_drop_write(nd->path.mnt); 3263 got_write = false; 3264 } 3265 3266 if (unlikely(d_is_negative(path.dentry))) { 3267 path_to_nameidata(&path, nd); 3268 return -ENOENT; 3269 } 3270 3271 /* 3272 * create/update audit record if it already exists. 3273 */ 3274 audit_inode(nd->name, path.dentry, 0); 3275 3276 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3277 path_to_nameidata(&path, nd); 3278 return -EEXIST; 3279 } 3280 3281 error = follow_managed(&path, nd); 3282 if (unlikely(error < 0)) 3283 return error; 3284 3285 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3286 inode = d_backing_inode(path.dentry); 3287 finish_lookup: 3288 if (nd->depth) 3289 put_link(nd); 3290 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3291 inode, seq); 3292 if (unlikely(error)) 3293 return error; 3294 3295 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3296 path_to_nameidata(&path, nd); 3297 } else { 3298 save_parent.dentry = nd->path.dentry; 3299 save_parent.mnt = mntget(path.mnt); 3300 nd->path.dentry = path.dentry; 3301 3302 } 3303 nd->inode = inode; 3304 nd->seq = seq; 3305 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3306 finish_open: 3307 error = complete_walk(nd); 3308 if (error) { 3309 path_put(&save_parent); 3310 return error; 3311 } 3312 audit_inode(nd->name, nd->path.dentry, 0); 3313 error = -EISDIR; 3314 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3315 goto out; 3316 error = -ENOTDIR; 3317 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3318 goto out; 3319 if (!d_is_reg(nd->path.dentry)) 3320 will_truncate = false; 3321 3322 if (will_truncate) { 3323 error = mnt_want_write(nd->path.mnt); 3324 if (error) 3325 goto out; 3326 got_write = true; 3327 } 3328 finish_open_created: 3329 error = may_open(&nd->path, acc_mode, open_flag); 3330 if (error) 3331 goto out; 3332 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3333 error = vfs_open(&nd->path, file, current_cred()); 3334 if (!error) { 3335 *opened |= FILE_OPENED; 3336 } else { 3337 if (error == -EOPENSTALE) 3338 goto stale_open; 3339 goto out; 3340 } 3341 opened: 3342 error = open_check_o_direct(file); 3343 if (!error) 3344 error = ima_file_check(file, op->acc_mode, *opened); 3345 if (!error && will_truncate) 3346 error = handle_truncate(file); 3347 out: 3348 if (unlikely(error) && (*opened & FILE_OPENED)) 3349 fput(file); 3350 if (unlikely(error > 0)) { 3351 WARN_ON(1); 3352 error = -EINVAL; 3353 } 3354 if (got_write) 3355 mnt_drop_write(nd->path.mnt); 3356 path_put(&save_parent); 3357 return error; 3358 3359 stale_open: 3360 /* If no saved parent or already retried then can't retry */ 3361 if (!save_parent.dentry || retried) 3362 goto out; 3363 3364 BUG_ON(save_parent.dentry != dir); 3365 path_put(&nd->path); 3366 nd->path = save_parent; 3367 nd->inode = dir->d_inode; 3368 save_parent.mnt = NULL; 3369 save_parent.dentry = NULL; 3370 if (got_write) { 3371 mnt_drop_write(nd->path.mnt); 3372 got_write = false; 3373 } 3374 retried = true; 3375 goto retry_lookup; 3376 } 3377 3378 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3379 const struct open_flags *op, 3380 struct file *file, int *opened) 3381 { 3382 static const struct qstr name = QSTR_INIT("/", 1); 3383 struct dentry *child; 3384 struct inode *dir; 3385 struct path path; 3386 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3387 if (unlikely(error)) 3388 return error; 3389 error = mnt_want_write(path.mnt); 3390 if (unlikely(error)) 3391 goto out; 3392 dir = path.dentry->d_inode; 3393 /* we want directory to be writable */ 3394 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3395 if (error) 3396 goto out2; 3397 if (!dir->i_op->tmpfile) { 3398 error = -EOPNOTSUPP; 3399 goto out2; 3400 } 3401 child = d_alloc(path.dentry, &name); 3402 if (unlikely(!child)) { 3403 error = -ENOMEM; 3404 goto out2; 3405 } 3406 dput(path.dentry); 3407 path.dentry = child; 3408 error = dir->i_op->tmpfile(dir, child, op->mode); 3409 if (error) 3410 goto out2; 3411 audit_inode(nd->name, child, 0); 3412 /* Don't check for other permissions, the inode was just created */ 3413 error = may_open(&path, 0, op->open_flag); 3414 if (error) 3415 goto out2; 3416 file->f_path.mnt = path.mnt; 3417 error = finish_open(file, child, NULL, opened); 3418 if (error) 3419 goto out2; 3420 error = open_check_o_direct(file); 3421 if (error) { 3422 fput(file); 3423 } else if (!(op->open_flag & O_EXCL)) { 3424 struct inode *inode = file_inode(file); 3425 spin_lock(&inode->i_lock); 3426 inode->i_state |= I_LINKABLE; 3427 spin_unlock(&inode->i_lock); 3428 } 3429 out2: 3430 mnt_drop_write(path.mnt); 3431 out: 3432 path_put(&path); 3433 return error; 3434 } 3435 3436 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3437 { 3438 struct path path; 3439 int error = path_lookupat(nd, flags, &path); 3440 if (!error) { 3441 audit_inode(nd->name, path.dentry, 0); 3442 error = vfs_open(&path, file, current_cred()); 3443 path_put(&path); 3444 } 3445 return error; 3446 } 3447 3448 static struct file *path_openat(struct nameidata *nd, 3449 const struct open_flags *op, unsigned flags) 3450 { 3451 const char *s; 3452 struct file *file; 3453 int opened = 0; 3454 int error; 3455 3456 file = get_empty_filp(); 3457 if (IS_ERR(file)) 3458 return file; 3459 3460 file->f_flags = op->open_flag; 3461 3462 if (unlikely(file->f_flags & __O_TMPFILE)) { 3463 error = do_tmpfile(nd, flags, op, file, &opened); 3464 goto out2; 3465 } 3466 3467 if (unlikely(file->f_flags & O_PATH)) { 3468 error = do_o_path(nd, flags, file); 3469 if (!error) 3470 opened |= FILE_OPENED; 3471 goto out2; 3472 } 3473 3474 s = path_init(nd, flags); 3475 if (IS_ERR(s)) { 3476 put_filp(file); 3477 return ERR_CAST(s); 3478 } 3479 while (!(error = link_path_walk(s, nd)) && 3480 (error = do_last(nd, file, op, &opened)) > 0) { 3481 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3482 s = trailing_symlink(nd); 3483 if (IS_ERR(s)) { 3484 error = PTR_ERR(s); 3485 break; 3486 } 3487 } 3488 terminate_walk(nd); 3489 out2: 3490 if (!(opened & FILE_OPENED)) { 3491 BUG_ON(!error); 3492 put_filp(file); 3493 } 3494 if (unlikely(error)) { 3495 if (error == -EOPENSTALE) { 3496 if (flags & LOOKUP_RCU) 3497 error = -ECHILD; 3498 else 3499 error = -ESTALE; 3500 } 3501 file = ERR_PTR(error); 3502 } 3503 return file; 3504 } 3505 3506 struct file *do_filp_open(int dfd, struct filename *pathname, 3507 const struct open_flags *op) 3508 { 3509 struct nameidata nd; 3510 int flags = op->lookup_flags; 3511 struct file *filp; 3512 3513 set_nameidata(&nd, dfd, pathname); 3514 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3515 if (unlikely(filp == ERR_PTR(-ECHILD))) 3516 filp = path_openat(&nd, op, flags); 3517 if (unlikely(filp == ERR_PTR(-ESTALE))) 3518 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3519 restore_nameidata(); 3520 return filp; 3521 } 3522 3523 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3524 const char *name, const struct open_flags *op) 3525 { 3526 struct nameidata nd; 3527 struct file *file; 3528 struct filename *filename; 3529 int flags = op->lookup_flags | LOOKUP_ROOT; 3530 3531 nd.root.mnt = mnt; 3532 nd.root.dentry = dentry; 3533 3534 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3535 return ERR_PTR(-ELOOP); 3536 3537 filename = getname_kernel(name); 3538 if (IS_ERR(filename)) 3539 return ERR_CAST(filename); 3540 3541 set_nameidata(&nd, -1, filename); 3542 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3543 if (unlikely(file == ERR_PTR(-ECHILD))) 3544 file = path_openat(&nd, op, flags); 3545 if (unlikely(file == ERR_PTR(-ESTALE))) 3546 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3547 restore_nameidata(); 3548 putname(filename); 3549 return file; 3550 } 3551 3552 static struct dentry *filename_create(int dfd, struct filename *name, 3553 struct path *path, unsigned int lookup_flags) 3554 { 3555 struct dentry *dentry = ERR_PTR(-EEXIST); 3556 struct qstr last; 3557 int type; 3558 int err2; 3559 int error; 3560 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3561 3562 /* 3563 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3564 * other flags passed in are ignored! 3565 */ 3566 lookup_flags &= LOOKUP_REVAL; 3567 3568 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3569 if (IS_ERR(name)) 3570 return ERR_CAST(name); 3571 3572 /* 3573 * Yucky last component or no last component at all? 3574 * (foo/., foo/.., /////) 3575 */ 3576 if (unlikely(type != LAST_NORM)) 3577 goto out; 3578 3579 /* don't fail immediately if it's r/o, at least try to report other errors */ 3580 err2 = mnt_want_write(path->mnt); 3581 /* 3582 * Do the final lookup. 3583 */ 3584 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3585 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3586 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3587 if (IS_ERR(dentry)) 3588 goto unlock; 3589 3590 error = -EEXIST; 3591 if (d_is_positive(dentry)) 3592 goto fail; 3593 3594 /* 3595 * Special case - lookup gave negative, but... we had foo/bar/ 3596 * From the vfs_mknod() POV we just have a negative dentry - 3597 * all is fine. Let's be bastards - you had / on the end, you've 3598 * been asking for (non-existent) directory. -ENOENT for you. 3599 */ 3600 if (unlikely(!is_dir && last.name[last.len])) { 3601 error = -ENOENT; 3602 goto fail; 3603 } 3604 if (unlikely(err2)) { 3605 error = err2; 3606 goto fail; 3607 } 3608 putname(name); 3609 return dentry; 3610 fail: 3611 dput(dentry); 3612 dentry = ERR_PTR(error); 3613 unlock: 3614 inode_unlock(path->dentry->d_inode); 3615 if (!err2) 3616 mnt_drop_write(path->mnt); 3617 out: 3618 path_put(path); 3619 putname(name); 3620 return dentry; 3621 } 3622 3623 struct dentry *kern_path_create(int dfd, const char *pathname, 3624 struct path *path, unsigned int lookup_flags) 3625 { 3626 return filename_create(dfd, getname_kernel(pathname), 3627 path, lookup_flags); 3628 } 3629 EXPORT_SYMBOL(kern_path_create); 3630 3631 void done_path_create(struct path *path, struct dentry *dentry) 3632 { 3633 dput(dentry); 3634 inode_unlock(path->dentry->d_inode); 3635 mnt_drop_write(path->mnt); 3636 path_put(path); 3637 } 3638 EXPORT_SYMBOL(done_path_create); 3639 3640 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3641 struct path *path, unsigned int lookup_flags) 3642 { 3643 return filename_create(dfd, getname(pathname), path, lookup_flags); 3644 } 3645 EXPORT_SYMBOL(user_path_create); 3646 3647 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3648 { 3649 int error = may_create(dir, dentry); 3650 3651 if (error) 3652 return error; 3653 3654 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3655 return -EPERM; 3656 3657 if (!dir->i_op->mknod) 3658 return -EPERM; 3659 3660 error = devcgroup_inode_mknod(mode, dev); 3661 if (error) 3662 return error; 3663 3664 error = security_inode_mknod(dir, dentry, mode, dev); 3665 if (error) 3666 return error; 3667 3668 error = dir->i_op->mknod(dir, dentry, mode, dev); 3669 if (!error) 3670 fsnotify_create(dir, dentry); 3671 return error; 3672 } 3673 EXPORT_SYMBOL(vfs_mknod); 3674 3675 static int may_mknod(umode_t mode) 3676 { 3677 switch (mode & S_IFMT) { 3678 case S_IFREG: 3679 case S_IFCHR: 3680 case S_IFBLK: 3681 case S_IFIFO: 3682 case S_IFSOCK: 3683 case 0: /* zero mode translates to S_IFREG */ 3684 return 0; 3685 case S_IFDIR: 3686 return -EPERM; 3687 default: 3688 return -EINVAL; 3689 } 3690 } 3691 3692 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3693 unsigned, dev) 3694 { 3695 struct dentry *dentry; 3696 struct path path; 3697 int error; 3698 unsigned int lookup_flags = 0; 3699 3700 error = may_mknod(mode); 3701 if (error) 3702 return error; 3703 retry: 3704 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3705 if (IS_ERR(dentry)) 3706 return PTR_ERR(dentry); 3707 3708 if (!IS_POSIXACL(path.dentry->d_inode)) 3709 mode &= ~current_umask(); 3710 error = security_path_mknod(&path, dentry, mode, dev); 3711 if (error) 3712 goto out; 3713 switch (mode & S_IFMT) { 3714 case 0: case S_IFREG: 3715 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3716 if (!error) 3717 ima_post_path_mknod(dentry); 3718 break; 3719 case S_IFCHR: case S_IFBLK: 3720 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3721 new_decode_dev(dev)); 3722 break; 3723 case S_IFIFO: case S_IFSOCK: 3724 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3725 break; 3726 } 3727 out: 3728 done_path_create(&path, dentry); 3729 if (retry_estale(error, lookup_flags)) { 3730 lookup_flags |= LOOKUP_REVAL; 3731 goto retry; 3732 } 3733 return error; 3734 } 3735 3736 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3737 { 3738 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3739 } 3740 3741 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3742 { 3743 int error = may_create(dir, dentry); 3744 unsigned max_links = dir->i_sb->s_max_links; 3745 3746 if (error) 3747 return error; 3748 3749 if (!dir->i_op->mkdir) 3750 return -EPERM; 3751 3752 mode &= (S_IRWXUGO|S_ISVTX); 3753 error = security_inode_mkdir(dir, dentry, mode); 3754 if (error) 3755 return error; 3756 3757 if (max_links && dir->i_nlink >= max_links) 3758 return -EMLINK; 3759 3760 error = dir->i_op->mkdir(dir, dentry, mode); 3761 if (!error) 3762 fsnotify_mkdir(dir, dentry); 3763 return error; 3764 } 3765 EXPORT_SYMBOL(vfs_mkdir); 3766 3767 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3768 { 3769 struct dentry *dentry; 3770 struct path path; 3771 int error; 3772 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3773 3774 retry: 3775 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3776 if (IS_ERR(dentry)) 3777 return PTR_ERR(dentry); 3778 3779 if (!IS_POSIXACL(path.dentry->d_inode)) 3780 mode &= ~current_umask(); 3781 error = security_path_mkdir(&path, dentry, mode); 3782 if (!error) 3783 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3784 done_path_create(&path, dentry); 3785 if (retry_estale(error, lookup_flags)) { 3786 lookup_flags |= LOOKUP_REVAL; 3787 goto retry; 3788 } 3789 return error; 3790 } 3791 3792 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3793 { 3794 return sys_mkdirat(AT_FDCWD, pathname, mode); 3795 } 3796 3797 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3798 { 3799 int error = may_delete(dir, dentry, 1); 3800 3801 if (error) 3802 return error; 3803 3804 if (!dir->i_op->rmdir) 3805 return -EPERM; 3806 3807 dget(dentry); 3808 inode_lock(dentry->d_inode); 3809 3810 error = -EBUSY; 3811 if (is_local_mountpoint(dentry)) 3812 goto out; 3813 3814 error = security_inode_rmdir(dir, dentry); 3815 if (error) 3816 goto out; 3817 3818 shrink_dcache_parent(dentry); 3819 error = dir->i_op->rmdir(dir, dentry); 3820 if (error) 3821 goto out; 3822 3823 dentry->d_inode->i_flags |= S_DEAD; 3824 dont_mount(dentry); 3825 detach_mounts(dentry); 3826 3827 out: 3828 inode_unlock(dentry->d_inode); 3829 dput(dentry); 3830 if (!error) 3831 d_delete(dentry); 3832 return error; 3833 } 3834 EXPORT_SYMBOL(vfs_rmdir); 3835 3836 static long do_rmdir(int dfd, const char __user *pathname) 3837 { 3838 int error = 0; 3839 struct filename *name; 3840 struct dentry *dentry; 3841 struct path path; 3842 struct qstr last; 3843 int type; 3844 unsigned int lookup_flags = 0; 3845 retry: 3846 name = user_path_parent(dfd, pathname, 3847 &path, &last, &type, lookup_flags); 3848 if (IS_ERR(name)) 3849 return PTR_ERR(name); 3850 3851 switch (type) { 3852 case LAST_DOTDOT: 3853 error = -ENOTEMPTY; 3854 goto exit1; 3855 case LAST_DOT: 3856 error = -EINVAL; 3857 goto exit1; 3858 case LAST_ROOT: 3859 error = -EBUSY; 3860 goto exit1; 3861 } 3862 3863 error = mnt_want_write(path.mnt); 3864 if (error) 3865 goto exit1; 3866 3867 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3868 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3869 error = PTR_ERR(dentry); 3870 if (IS_ERR(dentry)) 3871 goto exit2; 3872 if (!dentry->d_inode) { 3873 error = -ENOENT; 3874 goto exit3; 3875 } 3876 error = security_path_rmdir(&path, dentry); 3877 if (error) 3878 goto exit3; 3879 error = vfs_rmdir(path.dentry->d_inode, dentry); 3880 exit3: 3881 dput(dentry); 3882 exit2: 3883 inode_unlock(path.dentry->d_inode); 3884 mnt_drop_write(path.mnt); 3885 exit1: 3886 path_put(&path); 3887 putname(name); 3888 if (retry_estale(error, lookup_flags)) { 3889 lookup_flags |= LOOKUP_REVAL; 3890 goto retry; 3891 } 3892 return error; 3893 } 3894 3895 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3896 { 3897 return do_rmdir(AT_FDCWD, pathname); 3898 } 3899 3900 /** 3901 * vfs_unlink - unlink a filesystem object 3902 * @dir: parent directory 3903 * @dentry: victim 3904 * @delegated_inode: returns victim inode, if the inode is delegated. 3905 * 3906 * The caller must hold dir->i_mutex. 3907 * 3908 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3909 * return a reference to the inode in delegated_inode. The caller 3910 * should then break the delegation on that inode and retry. Because 3911 * breaking a delegation may take a long time, the caller should drop 3912 * dir->i_mutex before doing so. 3913 * 3914 * Alternatively, a caller may pass NULL for delegated_inode. This may 3915 * be appropriate for callers that expect the underlying filesystem not 3916 * to be NFS exported. 3917 */ 3918 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3919 { 3920 struct inode *target = dentry->d_inode; 3921 int error = may_delete(dir, dentry, 0); 3922 3923 if (error) 3924 return error; 3925 3926 if (!dir->i_op->unlink) 3927 return -EPERM; 3928 3929 inode_lock(target); 3930 if (is_local_mountpoint(dentry)) 3931 error = -EBUSY; 3932 else { 3933 error = security_inode_unlink(dir, dentry); 3934 if (!error) { 3935 error = try_break_deleg(target, delegated_inode); 3936 if (error) 3937 goto out; 3938 error = dir->i_op->unlink(dir, dentry); 3939 if (!error) { 3940 dont_mount(dentry); 3941 detach_mounts(dentry); 3942 } 3943 } 3944 } 3945 out: 3946 inode_unlock(target); 3947 3948 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3949 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3950 fsnotify_link_count(target); 3951 d_delete(dentry); 3952 } 3953 3954 return error; 3955 } 3956 EXPORT_SYMBOL(vfs_unlink); 3957 3958 /* 3959 * Make sure that the actual truncation of the file will occur outside its 3960 * directory's i_mutex. Truncate can take a long time if there is a lot of 3961 * writeout happening, and we don't want to prevent access to the directory 3962 * while waiting on the I/O. 3963 */ 3964 static long do_unlinkat(int dfd, const char __user *pathname) 3965 { 3966 int error; 3967 struct filename *name; 3968 struct dentry *dentry; 3969 struct path path; 3970 struct qstr last; 3971 int type; 3972 struct inode *inode = NULL; 3973 struct inode *delegated_inode = NULL; 3974 unsigned int lookup_flags = 0; 3975 retry: 3976 name = user_path_parent(dfd, pathname, 3977 &path, &last, &type, lookup_flags); 3978 if (IS_ERR(name)) 3979 return PTR_ERR(name); 3980 3981 error = -EISDIR; 3982 if (type != LAST_NORM) 3983 goto exit1; 3984 3985 error = mnt_want_write(path.mnt); 3986 if (error) 3987 goto exit1; 3988 retry_deleg: 3989 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3990 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3991 error = PTR_ERR(dentry); 3992 if (!IS_ERR(dentry)) { 3993 /* Why not before? Because we want correct error value */ 3994 if (last.name[last.len]) 3995 goto slashes; 3996 inode = dentry->d_inode; 3997 if (d_is_negative(dentry)) 3998 goto slashes; 3999 ihold(inode); 4000 error = security_path_unlink(&path, dentry); 4001 if (error) 4002 goto exit2; 4003 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4004 exit2: 4005 dput(dentry); 4006 } 4007 inode_unlock(path.dentry->d_inode); 4008 if (inode) 4009 iput(inode); /* truncate the inode here */ 4010 inode = NULL; 4011 if (delegated_inode) { 4012 error = break_deleg_wait(&delegated_inode); 4013 if (!error) 4014 goto retry_deleg; 4015 } 4016 mnt_drop_write(path.mnt); 4017 exit1: 4018 path_put(&path); 4019 putname(name); 4020 if (retry_estale(error, lookup_flags)) { 4021 lookup_flags |= LOOKUP_REVAL; 4022 inode = NULL; 4023 goto retry; 4024 } 4025 return error; 4026 4027 slashes: 4028 if (d_is_negative(dentry)) 4029 error = -ENOENT; 4030 else if (d_is_dir(dentry)) 4031 error = -EISDIR; 4032 else 4033 error = -ENOTDIR; 4034 goto exit2; 4035 } 4036 4037 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4038 { 4039 if ((flag & ~AT_REMOVEDIR) != 0) 4040 return -EINVAL; 4041 4042 if (flag & AT_REMOVEDIR) 4043 return do_rmdir(dfd, pathname); 4044 4045 return do_unlinkat(dfd, pathname); 4046 } 4047 4048 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4049 { 4050 return do_unlinkat(AT_FDCWD, pathname); 4051 } 4052 4053 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4054 { 4055 int error = may_create(dir, dentry); 4056 4057 if (error) 4058 return error; 4059 4060 if (!dir->i_op->symlink) 4061 return -EPERM; 4062 4063 error = security_inode_symlink(dir, dentry, oldname); 4064 if (error) 4065 return error; 4066 4067 error = dir->i_op->symlink(dir, dentry, oldname); 4068 if (!error) 4069 fsnotify_create(dir, dentry); 4070 return error; 4071 } 4072 EXPORT_SYMBOL(vfs_symlink); 4073 4074 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4075 int, newdfd, const char __user *, newname) 4076 { 4077 int error; 4078 struct filename *from; 4079 struct dentry *dentry; 4080 struct path path; 4081 unsigned int lookup_flags = 0; 4082 4083 from = getname(oldname); 4084 if (IS_ERR(from)) 4085 return PTR_ERR(from); 4086 retry: 4087 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4088 error = PTR_ERR(dentry); 4089 if (IS_ERR(dentry)) 4090 goto out_putname; 4091 4092 error = security_path_symlink(&path, dentry, from->name); 4093 if (!error) 4094 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4095 done_path_create(&path, dentry); 4096 if (retry_estale(error, lookup_flags)) { 4097 lookup_flags |= LOOKUP_REVAL; 4098 goto retry; 4099 } 4100 out_putname: 4101 putname(from); 4102 return error; 4103 } 4104 4105 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4106 { 4107 return sys_symlinkat(oldname, AT_FDCWD, newname); 4108 } 4109 4110 /** 4111 * vfs_link - create a new link 4112 * @old_dentry: object to be linked 4113 * @dir: new parent 4114 * @new_dentry: where to create the new link 4115 * @delegated_inode: returns inode needing a delegation break 4116 * 4117 * The caller must hold dir->i_mutex 4118 * 4119 * If vfs_link discovers a delegation on the to-be-linked file in need 4120 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4121 * inode in delegated_inode. The caller should then break the delegation 4122 * and retry. Because breaking a delegation may take a long time, the 4123 * caller should drop the i_mutex before doing so. 4124 * 4125 * Alternatively, a caller may pass NULL for delegated_inode. This may 4126 * be appropriate for callers that expect the underlying filesystem not 4127 * to be NFS exported. 4128 */ 4129 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4130 { 4131 struct inode *inode = old_dentry->d_inode; 4132 unsigned max_links = dir->i_sb->s_max_links; 4133 int error; 4134 4135 if (!inode) 4136 return -ENOENT; 4137 4138 error = may_create(dir, new_dentry); 4139 if (error) 4140 return error; 4141 4142 if (dir->i_sb != inode->i_sb) 4143 return -EXDEV; 4144 4145 /* 4146 * A link to an append-only or immutable file cannot be created. 4147 */ 4148 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4149 return -EPERM; 4150 if (!dir->i_op->link) 4151 return -EPERM; 4152 if (S_ISDIR(inode->i_mode)) 4153 return -EPERM; 4154 4155 error = security_inode_link(old_dentry, dir, new_dentry); 4156 if (error) 4157 return error; 4158 4159 inode_lock(inode); 4160 /* Make sure we don't allow creating hardlink to an unlinked file */ 4161 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4162 error = -ENOENT; 4163 else if (max_links && inode->i_nlink >= max_links) 4164 error = -EMLINK; 4165 else { 4166 error = try_break_deleg(inode, delegated_inode); 4167 if (!error) 4168 error = dir->i_op->link(old_dentry, dir, new_dentry); 4169 } 4170 4171 if (!error && (inode->i_state & I_LINKABLE)) { 4172 spin_lock(&inode->i_lock); 4173 inode->i_state &= ~I_LINKABLE; 4174 spin_unlock(&inode->i_lock); 4175 } 4176 inode_unlock(inode); 4177 if (!error) 4178 fsnotify_link(dir, inode, new_dentry); 4179 return error; 4180 } 4181 EXPORT_SYMBOL(vfs_link); 4182 4183 /* 4184 * Hardlinks are often used in delicate situations. We avoid 4185 * security-related surprises by not following symlinks on the 4186 * newname. --KAB 4187 * 4188 * We don't follow them on the oldname either to be compatible 4189 * with linux 2.0, and to avoid hard-linking to directories 4190 * and other special files. --ADM 4191 */ 4192 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4193 int, newdfd, const char __user *, newname, int, flags) 4194 { 4195 struct dentry *new_dentry; 4196 struct path old_path, new_path; 4197 struct inode *delegated_inode = NULL; 4198 int how = 0; 4199 int error; 4200 4201 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4202 return -EINVAL; 4203 /* 4204 * To use null names we require CAP_DAC_READ_SEARCH 4205 * This ensures that not everyone will be able to create 4206 * handlink using the passed filedescriptor. 4207 */ 4208 if (flags & AT_EMPTY_PATH) { 4209 if (!capable(CAP_DAC_READ_SEARCH)) 4210 return -ENOENT; 4211 how = LOOKUP_EMPTY; 4212 } 4213 4214 if (flags & AT_SYMLINK_FOLLOW) 4215 how |= LOOKUP_FOLLOW; 4216 retry: 4217 error = user_path_at(olddfd, oldname, how, &old_path); 4218 if (error) 4219 return error; 4220 4221 new_dentry = user_path_create(newdfd, newname, &new_path, 4222 (how & LOOKUP_REVAL)); 4223 error = PTR_ERR(new_dentry); 4224 if (IS_ERR(new_dentry)) 4225 goto out; 4226 4227 error = -EXDEV; 4228 if (old_path.mnt != new_path.mnt) 4229 goto out_dput; 4230 error = may_linkat(&old_path); 4231 if (unlikely(error)) 4232 goto out_dput; 4233 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4234 if (error) 4235 goto out_dput; 4236 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4237 out_dput: 4238 done_path_create(&new_path, new_dentry); 4239 if (delegated_inode) { 4240 error = break_deleg_wait(&delegated_inode); 4241 if (!error) { 4242 path_put(&old_path); 4243 goto retry; 4244 } 4245 } 4246 if (retry_estale(error, how)) { 4247 path_put(&old_path); 4248 how |= LOOKUP_REVAL; 4249 goto retry; 4250 } 4251 out: 4252 path_put(&old_path); 4253 4254 return error; 4255 } 4256 4257 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4258 { 4259 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4260 } 4261 4262 /** 4263 * vfs_rename - rename a filesystem object 4264 * @old_dir: parent of source 4265 * @old_dentry: source 4266 * @new_dir: parent of destination 4267 * @new_dentry: destination 4268 * @delegated_inode: returns an inode needing a delegation break 4269 * @flags: rename flags 4270 * 4271 * The caller must hold multiple mutexes--see lock_rename()). 4272 * 4273 * If vfs_rename discovers a delegation in need of breaking at either 4274 * the source or destination, it will return -EWOULDBLOCK and return a 4275 * reference to the inode in delegated_inode. The caller should then 4276 * break the delegation and retry. Because breaking a delegation may 4277 * take a long time, the caller should drop all locks before doing 4278 * so. 4279 * 4280 * Alternatively, a caller may pass NULL for delegated_inode. This may 4281 * be appropriate for callers that expect the underlying filesystem not 4282 * to be NFS exported. 4283 * 4284 * The worst of all namespace operations - renaming directory. "Perverted" 4285 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4286 * Problems: 4287 * a) we can get into loop creation. 4288 * b) race potential - two innocent renames can create a loop together. 4289 * That's where 4.4 screws up. Current fix: serialization on 4290 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4291 * story. 4292 * c) we have to lock _four_ objects - parents and victim (if it exists), 4293 * and source (if it is not a directory). 4294 * And that - after we got ->i_mutex on parents (until then we don't know 4295 * whether the target exists). Solution: try to be smart with locking 4296 * order for inodes. We rely on the fact that tree topology may change 4297 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4298 * move will be locked. Thus we can rank directories by the tree 4299 * (ancestors first) and rank all non-directories after them. 4300 * That works since everybody except rename does "lock parent, lookup, 4301 * lock child" and rename is under ->s_vfs_rename_mutex. 4302 * HOWEVER, it relies on the assumption that any object with ->lookup() 4303 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4304 * we'd better make sure that there's no link(2) for them. 4305 * d) conversion from fhandle to dentry may come in the wrong moment - when 4306 * we are removing the target. Solution: we will have to grab ->i_mutex 4307 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4308 * ->i_mutex on parents, which works but leads to some truly excessive 4309 * locking]. 4310 */ 4311 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4312 struct inode *new_dir, struct dentry *new_dentry, 4313 struct inode **delegated_inode, unsigned int flags) 4314 { 4315 int error; 4316 bool is_dir = d_is_dir(old_dentry); 4317 const unsigned char *old_name; 4318 struct inode *source = old_dentry->d_inode; 4319 struct inode *target = new_dentry->d_inode; 4320 bool new_is_dir = false; 4321 unsigned max_links = new_dir->i_sb->s_max_links; 4322 4323 /* 4324 * Check source == target. 4325 * On overlayfs need to look at underlying inodes. 4326 */ 4327 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0)) 4328 return 0; 4329 4330 error = may_delete(old_dir, old_dentry, is_dir); 4331 if (error) 4332 return error; 4333 4334 if (!target) { 4335 error = may_create(new_dir, new_dentry); 4336 } else { 4337 new_is_dir = d_is_dir(new_dentry); 4338 4339 if (!(flags & RENAME_EXCHANGE)) 4340 error = may_delete(new_dir, new_dentry, is_dir); 4341 else 4342 error = may_delete(new_dir, new_dentry, new_is_dir); 4343 } 4344 if (error) 4345 return error; 4346 4347 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4348 return -EPERM; 4349 4350 if (flags && !old_dir->i_op->rename2) 4351 return -EINVAL; 4352 4353 /* 4354 * If we are going to change the parent - check write permissions, 4355 * we'll need to flip '..'. 4356 */ 4357 if (new_dir != old_dir) { 4358 if (is_dir) { 4359 error = inode_permission(source, MAY_WRITE); 4360 if (error) 4361 return error; 4362 } 4363 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4364 error = inode_permission(target, MAY_WRITE); 4365 if (error) 4366 return error; 4367 } 4368 } 4369 4370 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4371 flags); 4372 if (error) 4373 return error; 4374 4375 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4376 dget(new_dentry); 4377 if (!is_dir || (flags & RENAME_EXCHANGE)) 4378 lock_two_nondirectories(source, target); 4379 else if (target) 4380 inode_lock(target); 4381 4382 error = -EBUSY; 4383 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4384 goto out; 4385 4386 if (max_links && new_dir != old_dir) { 4387 error = -EMLINK; 4388 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4389 goto out; 4390 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4391 old_dir->i_nlink >= max_links) 4392 goto out; 4393 } 4394 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4395 shrink_dcache_parent(new_dentry); 4396 if (!is_dir) { 4397 error = try_break_deleg(source, delegated_inode); 4398 if (error) 4399 goto out; 4400 } 4401 if (target && !new_is_dir) { 4402 error = try_break_deleg(target, delegated_inode); 4403 if (error) 4404 goto out; 4405 } 4406 if (!old_dir->i_op->rename2) { 4407 error = old_dir->i_op->rename(old_dir, old_dentry, 4408 new_dir, new_dentry); 4409 } else { 4410 WARN_ON(old_dir->i_op->rename != NULL); 4411 error = old_dir->i_op->rename2(old_dir, old_dentry, 4412 new_dir, new_dentry, flags); 4413 } 4414 if (error) 4415 goto out; 4416 4417 if (!(flags & RENAME_EXCHANGE) && target) { 4418 if (is_dir) 4419 target->i_flags |= S_DEAD; 4420 dont_mount(new_dentry); 4421 detach_mounts(new_dentry); 4422 } 4423 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4424 if (!(flags & RENAME_EXCHANGE)) 4425 d_move(old_dentry, new_dentry); 4426 else 4427 d_exchange(old_dentry, new_dentry); 4428 } 4429 out: 4430 if (!is_dir || (flags & RENAME_EXCHANGE)) 4431 unlock_two_nondirectories(source, target); 4432 else if (target) 4433 inode_unlock(target); 4434 dput(new_dentry); 4435 if (!error) { 4436 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4437 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4438 if (flags & RENAME_EXCHANGE) { 4439 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4440 new_is_dir, NULL, new_dentry); 4441 } 4442 } 4443 fsnotify_oldname_free(old_name); 4444 4445 return error; 4446 } 4447 EXPORT_SYMBOL(vfs_rename); 4448 4449 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4450 int, newdfd, const char __user *, newname, unsigned int, flags) 4451 { 4452 struct dentry *old_dentry, *new_dentry; 4453 struct dentry *trap; 4454 struct path old_path, new_path; 4455 struct qstr old_last, new_last; 4456 int old_type, new_type; 4457 struct inode *delegated_inode = NULL; 4458 struct filename *from; 4459 struct filename *to; 4460 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4461 bool should_retry = false; 4462 int error; 4463 4464 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4465 return -EINVAL; 4466 4467 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4468 (flags & RENAME_EXCHANGE)) 4469 return -EINVAL; 4470 4471 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4472 return -EPERM; 4473 4474 if (flags & RENAME_EXCHANGE) 4475 target_flags = 0; 4476 4477 retry: 4478 from = user_path_parent(olddfd, oldname, 4479 &old_path, &old_last, &old_type, lookup_flags); 4480 if (IS_ERR(from)) { 4481 error = PTR_ERR(from); 4482 goto exit; 4483 } 4484 4485 to = user_path_parent(newdfd, newname, 4486 &new_path, &new_last, &new_type, lookup_flags); 4487 if (IS_ERR(to)) { 4488 error = PTR_ERR(to); 4489 goto exit1; 4490 } 4491 4492 error = -EXDEV; 4493 if (old_path.mnt != new_path.mnt) 4494 goto exit2; 4495 4496 error = -EBUSY; 4497 if (old_type != LAST_NORM) 4498 goto exit2; 4499 4500 if (flags & RENAME_NOREPLACE) 4501 error = -EEXIST; 4502 if (new_type != LAST_NORM) 4503 goto exit2; 4504 4505 error = mnt_want_write(old_path.mnt); 4506 if (error) 4507 goto exit2; 4508 4509 retry_deleg: 4510 trap = lock_rename(new_path.dentry, old_path.dentry); 4511 4512 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4513 error = PTR_ERR(old_dentry); 4514 if (IS_ERR(old_dentry)) 4515 goto exit3; 4516 /* source must exist */ 4517 error = -ENOENT; 4518 if (d_is_negative(old_dentry)) 4519 goto exit4; 4520 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4521 error = PTR_ERR(new_dentry); 4522 if (IS_ERR(new_dentry)) 4523 goto exit4; 4524 error = -EEXIST; 4525 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4526 goto exit5; 4527 if (flags & RENAME_EXCHANGE) { 4528 error = -ENOENT; 4529 if (d_is_negative(new_dentry)) 4530 goto exit5; 4531 4532 if (!d_is_dir(new_dentry)) { 4533 error = -ENOTDIR; 4534 if (new_last.name[new_last.len]) 4535 goto exit5; 4536 } 4537 } 4538 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4539 if (!d_is_dir(old_dentry)) { 4540 error = -ENOTDIR; 4541 if (old_last.name[old_last.len]) 4542 goto exit5; 4543 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4544 goto exit5; 4545 } 4546 /* source should not be ancestor of target */ 4547 error = -EINVAL; 4548 if (old_dentry == trap) 4549 goto exit5; 4550 /* target should not be an ancestor of source */ 4551 if (!(flags & RENAME_EXCHANGE)) 4552 error = -ENOTEMPTY; 4553 if (new_dentry == trap) 4554 goto exit5; 4555 4556 error = security_path_rename(&old_path, old_dentry, 4557 &new_path, new_dentry, flags); 4558 if (error) 4559 goto exit5; 4560 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4561 new_path.dentry->d_inode, new_dentry, 4562 &delegated_inode, flags); 4563 exit5: 4564 dput(new_dentry); 4565 exit4: 4566 dput(old_dentry); 4567 exit3: 4568 unlock_rename(new_path.dentry, old_path.dentry); 4569 if (delegated_inode) { 4570 error = break_deleg_wait(&delegated_inode); 4571 if (!error) 4572 goto retry_deleg; 4573 } 4574 mnt_drop_write(old_path.mnt); 4575 exit2: 4576 if (retry_estale(error, lookup_flags)) 4577 should_retry = true; 4578 path_put(&new_path); 4579 putname(to); 4580 exit1: 4581 path_put(&old_path); 4582 putname(from); 4583 if (should_retry) { 4584 should_retry = false; 4585 lookup_flags |= LOOKUP_REVAL; 4586 goto retry; 4587 } 4588 exit: 4589 return error; 4590 } 4591 4592 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4593 int, newdfd, const char __user *, newname) 4594 { 4595 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4596 } 4597 4598 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4599 { 4600 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4601 } 4602 4603 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4604 { 4605 int error = may_create(dir, dentry); 4606 if (error) 4607 return error; 4608 4609 if (!dir->i_op->mknod) 4610 return -EPERM; 4611 4612 return dir->i_op->mknod(dir, dentry, 4613 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4614 } 4615 EXPORT_SYMBOL(vfs_whiteout); 4616 4617 int readlink_copy(char __user *buffer, int buflen, const char *link) 4618 { 4619 int len = PTR_ERR(link); 4620 if (IS_ERR(link)) 4621 goto out; 4622 4623 len = strlen(link); 4624 if (len > (unsigned) buflen) 4625 len = buflen; 4626 if (copy_to_user(buffer, link, len)) 4627 len = -EFAULT; 4628 out: 4629 return len; 4630 } 4631 4632 /* 4633 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4634 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4635 * for any given inode is up to filesystem. 4636 */ 4637 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4638 { 4639 DEFINE_DELAYED_CALL(done); 4640 struct inode *inode = d_inode(dentry); 4641 const char *link = inode->i_link; 4642 int res; 4643 4644 if (!link) { 4645 link = inode->i_op->get_link(dentry, inode, &done); 4646 if (IS_ERR(link)) 4647 return PTR_ERR(link); 4648 } 4649 res = readlink_copy(buffer, buflen, link); 4650 do_delayed_call(&done); 4651 return res; 4652 } 4653 EXPORT_SYMBOL(generic_readlink); 4654 4655 /* get the link contents into pagecache */ 4656 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4657 struct delayed_call *callback) 4658 { 4659 char *kaddr; 4660 struct page *page; 4661 struct address_space *mapping = inode->i_mapping; 4662 4663 if (!dentry) { 4664 page = find_get_page(mapping, 0); 4665 if (!page) 4666 return ERR_PTR(-ECHILD); 4667 if (!PageUptodate(page)) { 4668 put_page(page); 4669 return ERR_PTR(-ECHILD); 4670 } 4671 } else { 4672 page = read_mapping_page(mapping, 0, NULL); 4673 if (IS_ERR(page)) 4674 return (char*)page; 4675 } 4676 set_delayed_call(callback, page_put_link, page); 4677 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4678 kaddr = page_address(page); 4679 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4680 return kaddr; 4681 } 4682 4683 EXPORT_SYMBOL(page_get_link); 4684 4685 void page_put_link(void *arg) 4686 { 4687 put_page(arg); 4688 } 4689 EXPORT_SYMBOL(page_put_link); 4690 4691 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4692 { 4693 DEFINE_DELAYED_CALL(done); 4694 int res = readlink_copy(buffer, buflen, 4695 page_get_link(dentry, d_inode(dentry), 4696 &done)); 4697 do_delayed_call(&done); 4698 return res; 4699 } 4700 EXPORT_SYMBOL(page_readlink); 4701 4702 /* 4703 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4704 */ 4705 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4706 { 4707 struct address_space *mapping = inode->i_mapping; 4708 struct page *page; 4709 void *fsdata; 4710 int err; 4711 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4712 if (nofs) 4713 flags |= AOP_FLAG_NOFS; 4714 4715 retry: 4716 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4717 flags, &page, &fsdata); 4718 if (err) 4719 goto fail; 4720 4721 memcpy(page_address(page), symname, len-1); 4722 4723 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4724 page, fsdata); 4725 if (err < 0) 4726 goto fail; 4727 if (err < len-1) 4728 goto retry; 4729 4730 mark_inode_dirty(inode); 4731 return 0; 4732 fail: 4733 return err; 4734 } 4735 EXPORT_SYMBOL(__page_symlink); 4736 4737 int page_symlink(struct inode *inode, const char *symname, int len) 4738 { 4739 return __page_symlink(inode, symname, len, 4740 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4741 } 4742 EXPORT_SYMBOL(page_symlink); 4743 4744 const struct inode_operations page_symlink_inode_operations = { 4745 .readlink = generic_readlink, 4746 .get_link = page_get_link, 4747 }; 4748 EXPORT_SYMBOL(page_symlink_inode_operations); 4749