1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 static char *getname_flags(const char __user *filename, int flags, int *empty) 121 { 122 char *result = __getname(), *err; 123 int len; 124 125 if (unlikely(!result)) 126 return ERR_PTR(-ENOMEM); 127 128 len = strncpy_from_user(result, filename, PATH_MAX); 129 err = ERR_PTR(len); 130 if (unlikely(len < 0)) 131 goto error; 132 133 /* The empty path is special. */ 134 if (unlikely(!len)) { 135 if (empty) 136 *empty = 1; 137 err = ERR_PTR(-ENOENT); 138 if (!(flags & LOOKUP_EMPTY)) 139 goto error; 140 } 141 142 err = ERR_PTR(-ENAMETOOLONG); 143 if (likely(len < PATH_MAX)) { 144 audit_getname(result); 145 return result; 146 } 147 148 error: 149 __putname(result); 150 return err; 151 } 152 153 char *getname(const char __user * filename) 154 { 155 return getname_flags(filename, 0, NULL); 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 static int check_acl(struct inode *inode, int mask) 170 { 171 #ifdef CONFIG_FS_POSIX_ACL 172 struct posix_acl *acl; 173 174 if (mask & MAY_NOT_BLOCK) { 175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 176 if (!acl) 177 return -EAGAIN; 178 /* no ->get_acl() calls in RCU mode... */ 179 if (acl == ACL_NOT_CACHED) 180 return -ECHILD; 181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 182 } 183 184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 185 186 /* 187 * A filesystem can force a ACL callback by just never filling the 188 * ACL cache. But normally you'd fill the cache either at inode 189 * instantiation time, or on the first ->get_acl call. 190 * 191 * If the filesystem doesn't have a get_acl() function at all, we'll 192 * just create the negative cache entry. 193 */ 194 if (acl == ACL_NOT_CACHED) { 195 if (inode->i_op->get_acl) { 196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 197 if (IS_ERR(acl)) 198 return PTR_ERR(acl); 199 } else { 200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 201 return -EAGAIN; 202 } 203 } 204 205 if (acl) { 206 int error = posix_acl_permission(inode, acl, mask); 207 posix_acl_release(acl); 208 return error; 209 } 210 #endif 211 212 return -EAGAIN; 213 } 214 215 /* 216 * This does the basic permission checking 217 */ 218 static int acl_permission_check(struct inode *inode, int mask) 219 { 220 unsigned int mode = inode->i_mode; 221 222 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 223 mode >>= 6; 224 else { 225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 226 int error = check_acl(inode, mask); 227 if (error != -EAGAIN) 228 return error; 229 } 230 231 if (in_group_p(inode->i_gid)) 232 mode >>= 3; 233 } 234 235 /* 236 * If the DACs are ok we don't need any capability check. 237 */ 238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 239 return 0; 240 return -EACCES; 241 } 242 243 /** 244 * generic_permission - check for access rights on a Posix-like filesystem 245 * @inode: inode to check access rights for 246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 247 * 248 * Used to check for read/write/execute permissions on a file. 249 * We use "fsuid" for this, letting us set arbitrary permissions 250 * for filesystem access without changing the "normal" uids which 251 * are used for other things. 252 * 253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 254 * request cannot be satisfied (eg. requires blocking or too much complexity). 255 * It would then be called again in ref-walk mode. 256 */ 257 int generic_permission(struct inode *inode, int mask) 258 { 259 int ret; 260 261 /* 262 * Do the basic permission checks. 263 */ 264 ret = acl_permission_check(inode, mask); 265 if (ret != -EACCES) 266 return ret; 267 268 if (S_ISDIR(inode->i_mode)) { 269 /* DACs are overridable for directories */ 270 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 271 return 0; 272 if (!(mask & MAY_WRITE)) 273 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 274 return 0; 275 return -EACCES; 276 } 277 /* 278 * Read/write DACs are always overridable. 279 * Executable DACs are overridable when there is 280 * at least one exec bit set. 281 */ 282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 283 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 284 return 0; 285 286 /* 287 * Searching includes executable on directories, else just read. 288 */ 289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 290 if (mask == MAY_READ) 291 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 292 return 0; 293 294 return -EACCES; 295 } 296 297 /* 298 * We _really_ want to just do "generic_permission()" without 299 * even looking at the inode->i_op values. So we keep a cache 300 * flag in inode->i_opflags, that says "this has not special 301 * permission function, use the fast case". 302 */ 303 static inline int do_inode_permission(struct inode *inode, int mask) 304 { 305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 306 if (likely(inode->i_op->permission)) 307 return inode->i_op->permission(inode, mask); 308 309 /* This gets set once for the inode lifetime */ 310 spin_lock(&inode->i_lock); 311 inode->i_opflags |= IOP_FASTPERM; 312 spin_unlock(&inode->i_lock); 313 } 314 return generic_permission(inode, mask); 315 } 316 317 /** 318 * __inode_permission - Check for access rights to a given inode 319 * @inode: Inode to check permission on 320 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 321 * 322 * Check for read/write/execute permissions on an inode. 323 * 324 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 325 * 326 * This does not check for a read-only file system. You probably want 327 * inode_permission(). 328 */ 329 int __inode_permission(struct inode *inode, int mask) 330 { 331 int retval; 332 333 if (unlikely(mask & MAY_WRITE)) { 334 /* 335 * Nobody gets write access to an immutable file. 336 */ 337 if (IS_IMMUTABLE(inode)) 338 return -EACCES; 339 } 340 341 retval = do_inode_permission(inode, mask); 342 if (retval) 343 return retval; 344 345 retval = devcgroup_inode_permission(inode, mask); 346 if (retval) 347 return retval; 348 349 return security_inode_permission(inode, mask); 350 } 351 352 /** 353 * sb_permission - Check superblock-level permissions 354 * @sb: Superblock of inode to check permission on 355 * @inode: Inode to check permission on 356 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 357 * 358 * Separate out file-system wide checks from inode-specific permission checks. 359 */ 360 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 361 { 362 if (unlikely(mask & MAY_WRITE)) { 363 umode_t mode = inode->i_mode; 364 365 /* Nobody gets write access to a read-only fs. */ 366 if ((sb->s_flags & MS_RDONLY) && 367 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 368 return -EROFS; 369 } 370 return 0; 371 } 372 373 /** 374 * inode_permission - Check for access rights to a given inode 375 * @inode: Inode to check permission on 376 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 377 * 378 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 379 * this, letting us set arbitrary permissions for filesystem access without 380 * changing the "normal" UIDs which are used for other things. 381 * 382 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 383 */ 384 int inode_permission(struct inode *inode, int mask) 385 { 386 int retval; 387 388 retval = sb_permission(inode->i_sb, inode, mask); 389 if (retval) 390 return retval; 391 return __inode_permission(inode, mask); 392 } 393 394 /** 395 * path_get - get a reference to a path 396 * @path: path to get the reference to 397 * 398 * Given a path increment the reference count to the dentry and the vfsmount. 399 */ 400 void path_get(struct path *path) 401 { 402 mntget(path->mnt); 403 dget(path->dentry); 404 } 405 EXPORT_SYMBOL(path_get); 406 407 /** 408 * path_put - put a reference to a path 409 * @path: path to put the reference to 410 * 411 * Given a path decrement the reference count to the dentry and the vfsmount. 412 */ 413 void path_put(struct path *path) 414 { 415 dput(path->dentry); 416 mntput(path->mnt); 417 } 418 EXPORT_SYMBOL(path_put); 419 420 /* 421 * Path walking has 2 modes, rcu-walk and ref-walk (see 422 * Documentation/filesystems/path-lookup.txt). In situations when we can't 423 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 424 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 425 * mode. Refcounts are grabbed at the last known good point before rcu-walk 426 * got stuck, so ref-walk may continue from there. If this is not successful 427 * (eg. a seqcount has changed), then failure is returned and it's up to caller 428 * to restart the path walk from the beginning in ref-walk mode. 429 */ 430 431 static inline void lock_rcu_walk(void) 432 { 433 br_read_lock(&vfsmount_lock); 434 rcu_read_lock(); 435 } 436 437 static inline void unlock_rcu_walk(void) 438 { 439 rcu_read_unlock(); 440 br_read_unlock(&vfsmount_lock); 441 } 442 443 /** 444 * unlazy_walk - try to switch to ref-walk mode. 445 * @nd: nameidata pathwalk data 446 * @dentry: child of nd->path.dentry or NULL 447 * Returns: 0 on success, -ECHILD on failure 448 * 449 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 450 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 451 * @nd or NULL. Must be called from rcu-walk context. 452 */ 453 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 454 { 455 struct fs_struct *fs = current->fs; 456 struct dentry *parent = nd->path.dentry; 457 int want_root = 0; 458 459 BUG_ON(!(nd->flags & LOOKUP_RCU)); 460 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 461 want_root = 1; 462 spin_lock(&fs->lock); 463 if (nd->root.mnt != fs->root.mnt || 464 nd->root.dentry != fs->root.dentry) 465 goto err_root; 466 } 467 spin_lock(&parent->d_lock); 468 if (!dentry) { 469 if (!__d_rcu_to_refcount(parent, nd->seq)) 470 goto err_parent; 471 BUG_ON(nd->inode != parent->d_inode); 472 } else { 473 if (dentry->d_parent != parent) 474 goto err_parent; 475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 476 if (!__d_rcu_to_refcount(dentry, nd->seq)) 477 goto err_child; 478 /* 479 * If the sequence check on the child dentry passed, then 480 * the child has not been removed from its parent. This 481 * means the parent dentry must be valid and able to take 482 * a reference at this point. 483 */ 484 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 485 BUG_ON(!parent->d_count); 486 parent->d_count++; 487 spin_unlock(&dentry->d_lock); 488 } 489 spin_unlock(&parent->d_lock); 490 if (want_root) { 491 path_get(&nd->root); 492 spin_unlock(&fs->lock); 493 } 494 mntget(nd->path.mnt); 495 496 unlock_rcu_walk(); 497 nd->flags &= ~LOOKUP_RCU; 498 return 0; 499 500 err_child: 501 spin_unlock(&dentry->d_lock); 502 err_parent: 503 spin_unlock(&parent->d_lock); 504 err_root: 505 if (want_root) 506 spin_unlock(&fs->lock); 507 return -ECHILD; 508 } 509 510 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 511 { 512 return dentry->d_op->d_revalidate(dentry, flags); 513 } 514 515 /** 516 * complete_walk - successful completion of path walk 517 * @nd: pointer nameidata 518 * 519 * If we had been in RCU mode, drop out of it and legitimize nd->path. 520 * Revalidate the final result, unless we'd already done that during 521 * the path walk or the filesystem doesn't ask for it. Return 0 on 522 * success, -error on failure. In case of failure caller does not 523 * need to drop nd->path. 524 */ 525 static int complete_walk(struct nameidata *nd) 526 { 527 struct dentry *dentry = nd->path.dentry; 528 int status; 529 530 if (nd->flags & LOOKUP_RCU) { 531 nd->flags &= ~LOOKUP_RCU; 532 if (!(nd->flags & LOOKUP_ROOT)) 533 nd->root.mnt = NULL; 534 spin_lock(&dentry->d_lock); 535 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 536 spin_unlock(&dentry->d_lock); 537 unlock_rcu_walk(); 538 return -ECHILD; 539 } 540 BUG_ON(nd->inode != dentry->d_inode); 541 spin_unlock(&dentry->d_lock); 542 mntget(nd->path.mnt); 543 unlock_rcu_walk(); 544 } 545 546 if (likely(!(nd->flags & LOOKUP_JUMPED))) 547 return 0; 548 549 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 550 return 0; 551 552 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 553 return 0; 554 555 /* Note: we do not d_invalidate() */ 556 status = d_revalidate(dentry, nd->flags); 557 if (status > 0) 558 return 0; 559 560 if (!status) 561 status = -ESTALE; 562 563 path_put(&nd->path); 564 return status; 565 } 566 567 static __always_inline void set_root(struct nameidata *nd) 568 { 569 if (!nd->root.mnt) 570 get_fs_root(current->fs, &nd->root); 571 } 572 573 static int link_path_walk(const char *, struct nameidata *); 574 575 static __always_inline void set_root_rcu(struct nameidata *nd) 576 { 577 if (!nd->root.mnt) { 578 struct fs_struct *fs = current->fs; 579 unsigned seq; 580 581 do { 582 seq = read_seqcount_begin(&fs->seq); 583 nd->root = fs->root; 584 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 585 } while (read_seqcount_retry(&fs->seq, seq)); 586 } 587 } 588 589 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 590 { 591 int ret; 592 593 if (IS_ERR(link)) 594 goto fail; 595 596 if (*link == '/') { 597 set_root(nd); 598 path_put(&nd->path); 599 nd->path = nd->root; 600 path_get(&nd->root); 601 nd->flags |= LOOKUP_JUMPED; 602 } 603 nd->inode = nd->path.dentry->d_inode; 604 605 ret = link_path_walk(link, nd); 606 return ret; 607 fail: 608 path_put(&nd->path); 609 return PTR_ERR(link); 610 } 611 612 static void path_put_conditional(struct path *path, struct nameidata *nd) 613 { 614 dput(path->dentry); 615 if (path->mnt != nd->path.mnt) 616 mntput(path->mnt); 617 } 618 619 static inline void path_to_nameidata(const struct path *path, 620 struct nameidata *nd) 621 { 622 if (!(nd->flags & LOOKUP_RCU)) { 623 dput(nd->path.dentry); 624 if (nd->path.mnt != path->mnt) 625 mntput(nd->path.mnt); 626 } 627 nd->path.mnt = path->mnt; 628 nd->path.dentry = path->dentry; 629 } 630 631 /* 632 * Helper to directly jump to a known parsed path from ->follow_link, 633 * caller must have taken a reference to path beforehand. 634 */ 635 void nd_jump_link(struct nameidata *nd, struct path *path) 636 { 637 path_put(&nd->path); 638 639 nd->path = *path; 640 nd->inode = nd->path.dentry->d_inode; 641 nd->flags |= LOOKUP_JUMPED; 642 643 BUG_ON(nd->inode->i_op->follow_link); 644 } 645 646 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 647 { 648 struct inode *inode = link->dentry->d_inode; 649 if (inode->i_op->put_link) 650 inode->i_op->put_link(link->dentry, nd, cookie); 651 path_put(link); 652 } 653 654 int sysctl_protected_symlinks __read_mostly = 1; 655 int sysctl_protected_hardlinks __read_mostly = 1; 656 657 /** 658 * may_follow_link - Check symlink following for unsafe situations 659 * @link: The path of the symlink 660 * @nd: nameidata pathwalk data 661 * 662 * In the case of the sysctl_protected_symlinks sysctl being enabled, 663 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 664 * in a sticky world-writable directory. This is to protect privileged 665 * processes from failing races against path names that may change out 666 * from under them by way of other users creating malicious symlinks. 667 * It will permit symlinks to be followed only when outside a sticky 668 * world-writable directory, or when the uid of the symlink and follower 669 * match, or when the directory owner matches the symlink's owner. 670 * 671 * Returns 0 if following the symlink is allowed, -ve on error. 672 */ 673 static inline int may_follow_link(struct path *link, struct nameidata *nd) 674 { 675 const struct inode *inode; 676 const struct inode *parent; 677 678 if (!sysctl_protected_symlinks) 679 return 0; 680 681 /* Allowed if owner and follower match. */ 682 inode = link->dentry->d_inode; 683 if (current_cred()->fsuid == inode->i_uid) 684 return 0; 685 686 /* Allowed if parent directory not sticky and world-writable. */ 687 parent = nd->path.dentry->d_inode; 688 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 689 return 0; 690 691 /* Allowed if parent directory and link owner match. */ 692 if (parent->i_uid == inode->i_uid) 693 return 0; 694 695 path_put_conditional(link, nd); 696 path_put(&nd->path); 697 audit_log_link_denied("follow_link", link); 698 return -EACCES; 699 } 700 701 /** 702 * safe_hardlink_source - Check for safe hardlink conditions 703 * @inode: the source inode to hardlink from 704 * 705 * Return false if at least one of the following conditions: 706 * - inode is not a regular file 707 * - inode is setuid 708 * - inode is setgid and group-exec 709 * - access failure for read and write 710 * 711 * Otherwise returns true. 712 */ 713 static bool safe_hardlink_source(struct inode *inode) 714 { 715 umode_t mode = inode->i_mode; 716 717 /* Special files should not get pinned to the filesystem. */ 718 if (!S_ISREG(mode)) 719 return false; 720 721 /* Setuid files should not get pinned to the filesystem. */ 722 if (mode & S_ISUID) 723 return false; 724 725 /* Executable setgid files should not get pinned to the filesystem. */ 726 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 727 return false; 728 729 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 730 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 731 return false; 732 733 return true; 734 } 735 736 /** 737 * may_linkat - Check permissions for creating a hardlink 738 * @link: the source to hardlink from 739 * 740 * Block hardlink when all of: 741 * - sysctl_protected_hardlinks enabled 742 * - fsuid does not match inode 743 * - hardlink source is unsafe (see safe_hardlink_source() above) 744 * - not CAP_FOWNER 745 * 746 * Returns 0 if successful, -ve on error. 747 */ 748 static int may_linkat(struct path *link) 749 { 750 const struct cred *cred; 751 struct inode *inode; 752 753 if (!sysctl_protected_hardlinks) 754 return 0; 755 756 cred = current_cred(); 757 inode = link->dentry->d_inode; 758 759 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 760 * otherwise, it must be a safe source. 761 */ 762 if (cred->fsuid == inode->i_uid || safe_hardlink_source(inode) || 763 capable(CAP_FOWNER)) 764 return 0; 765 766 audit_log_link_denied("linkat", link); 767 return -EPERM; 768 } 769 770 static __always_inline int 771 follow_link(struct path *link, struct nameidata *nd, void **p) 772 { 773 struct dentry *dentry = link->dentry; 774 int error; 775 char *s; 776 777 BUG_ON(nd->flags & LOOKUP_RCU); 778 779 if (link->mnt == nd->path.mnt) 780 mntget(link->mnt); 781 782 error = -ELOOP; 783 if (unlikely(current->total_link_count >= 40)) 784 goto out_put_nd_path; 785 786 cond_resched(); 787 current->total_link_count++; 788 789 touch_atime(link); 790 nd_set_link(nd, NULL); 791 792 error = security_inode_follow_link(link->dentry, nd); 793 if (error) 794 goto out_put_nd_path; 795 796 nd->last_type = LAST_BIND; 797 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 798 error = PTR_ERR(*p); 799 if (IS_ERR(*p)) 800 goto out_put_nd_path; 801 802 error = 0; 803 s = nd_get_link(nd); 804 if (s) { 805 error = __vfs_follow_link(nd, s); 806 if (unlikely(error)) 807 put_link(nd, link, *p); 808 } 809 810 return error; 811 812 out_put_nd_path: 813 path_put(&nd->path); 814 path_put(link); 815 return error; 816 } 817 818 static int follow_up_rcu(struct path *path) 819 { 820 struct mount *mnt = real_mount(path->mnt); 821 struct mount *parent; 822 struct dentry *mountpoint; 823 824 parent = mnt->mnt_parent; 825 if (&parent->mnt == path->mnt) 826 return 0; 827 mountpoint = mnt->mnt_mountpoint; 828 path->dentry = mountpoint; 829 path->mnt = &parent->mnt; 830 return 1; 831 } 832 833 /* 834 * follow_up - Find the mountpoint of path's vfsmount 835 * 836 * Given a path, find the mountpoint of its source file system. 837 * Replace @path with the path of the mountpoint in the parent mount. 838 * Up is towards /. 839 * 840 * Return 1 if we went up a level and 0 if we were already at the 841 * root. 842 */ 843 int follow_up(struct path *path) 844 { 845 struct mount *mnt = real_mount(path->mnt); 846 struct mount *parent; 847 struct dentry *mountpoint; 848 849 br_read_lock(&vfsmount_lock); 850 parent = mnt->mnt_parent; 851 if (parent == mnt) { 852 br_read_unlock(&vfsmount_lock); 853 return 0; 854 } 855 mntget(&parent->mnt); 856 mountpoint = dget(mnt->mnt_mountpoint); 857 br_read_unlock(&vfsmount_lock); 858 dput(path->dentry); 859 path->dentry = mountpoint; 860 mntput(path->mnt); 861 path->mnt = &parent->mnt; 862 return 1; 863 } 864 865 /* 866 * Perform an automount 867 * - return -EISDIR to tell follow_managed() to stop and return the path we 868 * were called with. 869 */ 870 static int follow_automount(struct path *path, unsigned flags, 871 bool *need_mntput) 872 { 873 struct vfsmount *mnt; 874 int err; 875 876 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 877 return -EREMOTE; 878 879 /* We don't want to mount if someone's just doing a stat - 880 * unless they're stat'ing a directory and appended a '/' to 881 * the name. 882 * 883 * We do, however, want to mount if someone wants to open or 884 * create a file of any type under the mountpoint, wants to 885 * traverse through the mountpoint or wants to open the 886 * mounted directory. Also, autofs may mark negative dentries 887 * as being automount points. These will need the attentions 888 * of the daemon to instantiate them before they can be used. 889 */ 890 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 891 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 892 path->dentry->d_inode) 893 return -EISDIR; 894 895 current->total_link_count++; 896 if (current->total_link_count >= 40) 897 return -ELOOP; 898 899 mnt = path->dentry->d_op->d_automount(path); 900 if (IS_ERR(mnt)) { 901 /* 902 * The filesystem is allowed to return -EISDIR here to indicate 903 * it doesn't want to automount. For instance, autofs would do 904 * this so that its userspace daemon can mount on this dentry. 905 * 906 * However, we can only permit this if it's a terminal point in 907 * the path being looked up; if it wasn't then the remainder of 908 * the path is inaccessible and we should say so. 909 */ 910 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 911 return -EREMOTE; 912 return PTR_ERR(mnt); 913 } 914 915 if (!mnt) /* mount collision */ 916 return 0; 917 918 if (!*need_mntput) { 919 /* lock_mount() may release path->mnt on error */ 920 mntget(path->mnt); 921 *need_mntput = true; 922 } 923 err = finish_automount(mnt, path); 924 925 switch (err) { 926 case -EBUSY: 927 /* Someone else made a mount here whilst we were busy */ 928 return 0; 929 case 0: 930 path_put(path); 931 path->mnt = mnt; 932 path->dentry = dget(mnt->mnt_root); 933 return 0; 934 default: 935 return err; 936 } 937 938 } 939 940 /* 941 * Handle a dentry that is managed in some way. 942 * - Flagged for transit management (autofs) 943 * - Flagged as mountpoint 944 * - Flagged as automount point 945 * 946 * This may only be called in refwalk mode. 947 * 948 * Serialization is taken care of in namespace.c 949 */ 950 static int follow_managed(struct path *path, unsigned flags) 951 { 952 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 953 unsigned managed; 954 bool need_mntput = false; 955 int ret = 0; 956 957 /* Given that we're not holding a lock here, we retain the value in a 958 * local variable for each dentry as we look at it so that we don't see 959 * the components of that value change under us */ 960 while (managed = ACCESS_ONCE(path->dentry->d_flags), 961 managed &= DCACHE_MANAGED_DENTRY, 962 unlikely(managed != 0)) { 963 /* Allow the filesystem to manage the transit without i_mutex 964 * being held. */ 965 if (managed & DCACHE_MANAGE_TRANSIT) { 966 BUG_ON(!path->dentry->d_op); 967 BUG_ON(!path->dentry->d_op->d_manage); 968 ret = path->dentry->d_op->d_manage(path->dentry, false); 969 if (ret < 0) 970 break; 971 } 972 973 /* Transit to a mounted filesystem. */ 974 if (managed & DCACHE_MOUNTED) { 975 struct vfsmount *mounted = lookup_mnt(path); 976 if (mounted) { 977 dput(path->dentry); 978 if (need_mntput) 979 mntput(path->mnt); 980 path->mnt = mounted; 981 path->dentry = dget(mounted->mnt_root); 982 need_mntput = true; 983 continue; 984 } 985 986 /* Something is mounted on this dentry in another 987 * namespace and/or whatever was mounted there in this 988 * namespace got unmounted before we managed to get the 989 * vfsmount_lock */ 990 } 991 992 /* Handle an automount point */ 993 if (managed & DCACHE_NEED_AUTOMOUNT) { 994 ret = follow_automount(path, flags, &need_mntput); 995 if (ret < 0) 996 break; 997 continue; 998 } 999 1000 /* We didn't change the current path point */ 1001 break; 1002 } 1003 1004 if (need_mntput && path->mnt == mnt) 1005 mntput(path->mnt); 1006 if (ret == -EISDIR) 1007 ret = 0; 1008 return ret < 0 ? ret : need_mntput; 1009 } 1010 1011 int follow_down_one(struct path *path) 1012 { 1013 struct vfsmount *mounted; 1014 1015 mounted = lookup_mnt(path); 1016 if (mounted) { 1017 dput(path->dentry); 1018 mntput(path->mnt); 1019 path->mnt = mounted; 1020 path->dentry = dget(mounted->mnt_root); 1021 return 1; 1022 } 1023 return 0; 1024 } 1025 1026 static inline bool managed_dentry_might_block(struct dentry *dentry) 1027 { 1028 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 1029 dentry->d_op->d_manage(dentry, true) < 0); 1030 } 1031 1032 /* 1033 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1034 * we meet a managed dentry that would need blocking. 1035 */ 1036 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1037 struct inode **inode) 1038 { 1039 for (;;) { 1040 struct mount *mounted; 1041 /* 1042 * Don't forget we might have a non-mountpoint managed dentry 1043 * that wants to block transit. 1044 */ 1045 if (unlikely(managed_dentry_might_block(path->dentry))) 1046 return false; 1047 1048 if (!d_mountpoint(path->dentry)) 1049 break; 1050 1051 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 1052 if (!mounted) 1053 break; 1054 path->mnt = &mounted->mnt; 1055 path->dentry = mounted->mnt.mnt_root; 1056 nd->flags |= LOOKUP_JUMPED; 1057 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1058 /* 1059 * Update the inode too. We don't need to re-check the 1060 * dentry sequence number here after this d_inode read, 1061 * because a mount-point is always pinned. 1062 */ 1063 *inode = path->dentry->d_inode; 1064 } 1065 return true; 1066 } 1067 1068 static void follow_mount_rcu(struct nameidata *nd) 1069 { 1070 while (d_mountpoint(nd->path.dentry)) { 1071 struct mount *mounted; 1072 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 1073 if (!mounted) 1074 break; 1075 nd->path.mnt = &mounted->mnt; 1076 nd->path.dentry = mounted->mnt.mnt_root; 1077 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1078 } 1079 } 1080 1081 static int follow_dotdot_rcu(struct nameidata *nd) 1082 { 1083 set_root_rcu(nd); 1084 1085 while (1) { 1086 if (nd->path.dentry == nd->root.dentry && 1087 nd->path.mnt == nd->root.mnt) { 1088 break; 1089 } 1090 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1091 struct dentry *old = nd->path.dentry; 1092 struct dentry *parent = old->d_parent; 1093 unsigned seq; 1094 1095 seq = read_seqcount_begin(&parent->d_seq); 1096 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1097 goto failed; 1098 nd->path.dentry = parent; 1099 nd->seq = seq; 1100 break; 1101 } 1102 if (!follow_up_rcu(&nd->path)) 1103 break; 1104 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1105 } 1106 follow_mount_rcu(nd); 1107 nd->inode = nd->path.dentry->d_inode; 1108 return 0; 1109 1110 failed: 1111 nd->flags &= ~LOOKUP_RCU; 1112 if (!(nd->flags & LOOKUP_ROOT)) 1113 nd->root.mnt = NULL; 1114 unlock_rcu_walk(); 1115 return -ECHILD; 1116 } 1117 1118 /* 1119 * Follow down to the covering mount currently visible to userspace. At each 1120 * point, the filesystem owning that dentry may be queried as to whether the 1121 * caller is permitted to proceed or not. 1122 */ 1123 int follow_down(struct path *path) 1124 { 1125 unsigned managed; 1126 int ret; 1127 1128 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1129 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1130 /* Allow the filesystem to manage the transit without i_mutex 1131 * being held. 1132 * 1133 * We indicate to the filesystem if someone is trying to mount 1134 * something here. This gives autofs the chance to deny anyone 1135 * other than its daemon the right to mount on its 1136 * superstructure. 1137 * 1138 * The filesystem may sleep at this point. 1139 */ 1140 if (managed & DCACHE_MANAGE_TRANSIT) { 1141 BUG_ON(!path->dentry->d_op); 1142 BUG_ON(!path->dentry->d_op->d_manage); 1143 ret = path->dentry->d_op->d_manage( 1144 path->dentry, false); 1145 if (ret < 0) 1146 return ret == -EISDIR ? 0 : ret; 1147 } 1148 1149 /* Transit to a mounted filesystem. */ 1150 if (managed & DCACHE_MOUNTED) { 1151 struct vfsmount *mounted = lookup_mnt(path); 1152 if (!mounted) 1153 break; 1154 dput(path->dentry); 1155 mntput(path->mnt); 1156 path->mnt = mounted; 1157 path->dentry = dget(mounted->mnt_root); 1158 continue; 1159 } 1160 1161 /* Don't handle automount points here */ 1162 break; 1163 } 1164 return 0; 1165 } 1166 1167 /* 1168 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1169 */ 1170 static void follow_mount(struct path *path) 1171 { 1172 while (d_mountpoint(path->dentry)) { 1173 struct vfsmount *mounted = lookup_mnt(path); 1174 if (!mounted) 1175 break; 1176 dput(path->dentry); 1177 mntput(path->mnt); 1178 path->mnt = mounted; 1179 path->dentry = dget(mounted->mnt_root); 1180 } 1181 } 1182 1183 static void follow_dotdot(struct nameidata *nd) 1184 { 1185 set_root(nd); 1186 1187 while(1) { 1188 struct dentry *old = nd->path.dentry; 1189 1190 if (nd->path.dentry == nd->root.dentry && 1191 nd->path.mnt == nd->root.mnt) { 1192 break; 1193 } 1194 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1195 /* rare case of legitimate dget_parent()... */ 1196 nd->path.dentry = dget_parent(nd->path.dentry); 1197 dput(old); 1198 break; 1199 } 1200 if (!follow_up(&nd->path)) 1201 break; 1202 } 1203 follow_mount(&nd->path); 1204 nd->inode = nd->path.dentry->d_inode; 1205 } 1206 1207 /* 1208 * This looks up the name in dcache, possibly revalidates the old dentry and 1209 * allocates a new one if not found or not valid. In the need_lookup argument 1210 * returns whether i_op->lookup is necessary. 1211 * 1212 * dir->d_inode->i_mutex must be held 1213 */ 1214 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1215 unsigned int flags, bool *need_lookup) 1216 { 1217 struct dentry *dentry; 1218 int error; 1219 1220 *need_lookup = false; 1221 dentry = d_lookup(dir, name); 1222 if (dentry) { 1223 if (d_need_lookup(dentry)) { 1224 *need_lookup = true; 1225 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1226 error = d_revalidate(dentry, flags); 1227 if (unlikely(error <= 0)) { 1228 if (error < 0) { 1229 dput(dentry); 1230 return ERR_PTR(error); 1231 } else if (!d_invalidate(dentry)) { 1232 dput(dentry); 1233 dentry = NULL; 1234 } 1235 } 1236 } 1237 } 1238 1239 if (!dentry) { 1240 dentry = d_alloc(dir, name); 1241 if (unlikely(!dentry)) 1242 return ERR_PTR(-ENOMEM); 1243 1244 *need_lookup = true; 1245 } 1246 return dentry; 1247 } 1248 1249 /* 1250 * Call i_op->lookup on the dentry. The dentry must be negative but may be 1251 * hashed if it was pouplated with DCACHE_NEED_LOOKUP. 1252 * 1253 * dir->d_inode->i_mutex must be held 1254 */ 1255 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1256 unsigned int flags) 1257 { 1258 struct dentry *old; 1259 1260 /* Don't create child dentry for a dead directory. */ 1261 if (unlikely(IS_DEADDIR(dir))) { 1262 dput(dentry); 1263 return ERR_PTR(-ENOENT); 1264 } 1265 1266 old = dir->i_op->lookup(dir, dentry, flags); 1267 if (unlikely(old)) { 1268 dput(dentry); 1269 dentry = old; 1270 } 1271 return dentry; 1272 } 1273 1274 static struct dentry *__lookup_hash(struct qstr *name, 1275 struct dentry *base, unsigned int flags) 1276 { 1277 bool need_lookup; 1278 struct dentry *dentry; 1279 1280 dentry = lookup_dcache(name, base, flags, &need_lookup); 1281 if (!need_lookup) 1282 return dentry; 1283 1284 return lookup_real(base->d_inode, dentry, flags); 1285 } 1286 1287 /* 1288 * It's more convoluted than I'd like it to be, but... it's still fairly 1289 * small and for now I'd prefer to have fast path as straight as possible. 1290 * It _is_ time-critical. 1291 */ 1292 static int lookup_fast(struct nameidata *nd, struct qstr *name, 1293 struct path *path, struct inode **inode) 1294 { 1295 struct vfsmount *mnt = nd->path.mnt; 1296 struct dentry *dentry, *parent = nd->path.dentry; 1297 int need_reval = 1; 1298 int status = 1; 1299 int err; 1300 1301 /* 1302 * Rename seqlock is not required here because in the off chance 1303 * of a false negative due to a concurrent rename, we're going to 1304 * do the non-racy lookup, below. 1305 */ 1306 if (nd->flags & LOOKUP_RCU) { 1307 unsigned seq; 1308 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode); 1309 if (!dentry) 1310 goto unlazy; 1311 1312 /* 1313 * This sequence count validates that the inode matches 1314 * the dentry name information from lookup. 1315 */ 1316 *inode = dentry->d_inode; 1317 if (read_seqcount_retry(&dentry->d_seq, seq)) 1318 return -ECHILD; 1319 1320 /* 1321 * This sequence count validates that the parent had no 1322 * changes while we did the lookup of the dentry above. 1323 * 1324 * The memory barrier in read_seqcount_begin of child is 1325 * enough, we can use __read_seqcount_retry here. 1326 */ 1327 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1328 return -ECHILD; 1329 nd->seq = seq; 1330 1331 if (unlikely(d_need_lookup(dentry))) 1332 goto unlazy; 1333 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1334 status = d_revalidate(dentry, nd->flags); 1335 if (unlikely(status <= 0)) { 1336 if (status != -ECHILD) 1337 need_reval = 0; 1338 goto unlazy; 1339 } 1340 } 1341 path->mnt = mnt; 1342 path->dentry = dentry; 1343 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1344 goto unlazy; 1345 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1346 goto unlazy; 1347 return 0; 1348 unlazy: 1349 if (unlazy_walk(nd, dentry)) 1350 return -ECHILD; 1351 } else { 1352 dentry = __d_lookup(parent, name); 1353 } 1354 1355 if (unlikely(!dentry)) 1356 goto need_lookup; 1357 1358 if (unlikely(d_need_lookup(dentry))) { 1359 dput(dentry); 1360 goto need_lookup; 1361 } 1362 1363 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1364 status = d_revalidate(dentry, nd->flags); 1365 if (unlikely(status <= 0)) { 1366 if (status < 0) { 1367 dput(dentry); 1368 return status; 1369 } 1370 if (!d_invalidate(dentry)) { 1371 dput(dentry); 1372 goto need_lookup; 1373 } 1374 } 1375 1376 path->mnt = mnt; 1377 path->dentry = dentry; 1378 err = follow_managed(path, nd->flags); 1379 if (unlikely(err < 0)) { 1380 path_put_conditional(path, nd); 1381 return err; 1382 } 1383 if (err) 1384 nd->flags |= LOOKUP_JUMPED; 1385 *inode = path->dentry->d_inode; 1386 return 0; 1387 1388 need_lookup: 1389 return 1; 1390 } 1391 1392 /* Fast lookup failed, do it the slow way */ 1393 static int lookup_slow(struct nameidata *nd, struct qstr *name, 1394 struct path *path) 1395 { 1396 struct dentry *dentry, *parent; 1397 int err; 1398 1399 parent = nd->path.dentry; 1400 BUG_ON(nd->inode != parent->d_inode); 1401 1402 mutex_lock(&parent->d_inode->i_mutex); 1403 dentry = __lookup_hash(name, parent, nd->flags); 1404 mutex_unlock(&parent->d_inode->i_mutex); 1405 if (IS_ERR(dentry)) 1406 return PTR_ERR(dentry); 1407 path->mnt = nd->path.mnt; 1408 path->dentry = dentry; 1409 err = follow_managed(path, nd->flags); 1410 if (unlikely(err < 0)) { 1411 path_put_conditional(path, nd); 1412 return err; 1413 } 1414 if (err) 1415 nd->flags |= LOOKUP_JUMPED; 1416 return 0; 1417 } 1418 1419 static inline int may_lookup(struct nameidata *nd) 1420 { 1421 if (nd->flags & LOOKUP_RCU) { 1422 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1423 if (err != -ECHILD) 1424 return err; 1425 if (unlazy_walk(nd, NULL)) 1426 return -ECHILD; 1427 } 1428 return inode_permission(nd->inode, MAY_EXEC); 1429 } 1430 1431 static inline int handle_dots(struct nameidata *nd, int type) 1432 { 1433 if (type == LAST_DOTDOT) { 1434 if (nd->flags & LOOKUP_RCU) { 1435 if (follow_dotdot_rcu(nd)) 1436 return -ECHILD; 1437 } else 1438 follow_dotdot(nd); 1439 } 1440 return 0; 1441 } 1442 1443 static void terminate_walk(struct nameidata *nd) 1444 { 1445 if (!(nd->flags & LOOKUP_RCU)) { 1446 path_put(&nd->path); 1447 } else { 1448 nd->flags &= ~LOOKUP_RCU; 1449 if (!(nd->flags & LOOKUP_ROOT)) 1450 nd->root.mnt = NULL; 1451 unlock_rcu_walk(); 1452 } 1453 } 1454 1455 /* 1456 * Do we need to follow links? We _really_ want to be able 1457 * to do this check without having to look at inode->i_op, 1458 * so we keep a cache of "no, this doesn't need follow_link" 1459 * for the common case. 1460 */ 1461 static inline int should_follow_link(struct inode *inode, int follow) 1462 { 1463 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1464 if (likely(inode->i_op->follow_link)) 1465 return follow; 1466 1467 /* This gets set once for the inode lifetime */ 1468 spin_lock(&inode->i_lock); 1469 inode->i_opflags |= IOP_NOFOLLOW; 1470 spin_unlock(&inode->i_lock); 1471 } 1472 return 0; 1473 } 1474 1475 static inline int walk_component(struct nameidata *nd, struct path *path, 1476 struct qstr *name, int type, int follow) 1477 { 1478 struct inode *inode; 1479 int err; 1480 /* 1481 * "." and ".." are special - ".." especially so because it has 1482 * to be able to know about the current root directory and 1483 * parent relationships. 1484 */ 1485 if (unlikely(type != LAST_NORM)) 1486 return handle_dots(nd, type); 1487 err = lookup_fast(nd, name, path, &inode); 1488 if (unlikely(err)) { 1489 if (err < 0) 1490 goto out_err; 1491 1492 err = lookup_slow(nd, name, path); 1493 if (err < 0) 1494 goto out_err; 1495 1496 inode = path->dentry->d_inode; 1497 } 1498 err = -ENOENT; 1499 if (!inode) 1500 goto out_path_put; 1501 1502 if (should_follow_link(inode, follow)) { 1503 if (nd->flags & LOOKUP_RCU) { 1504 if (unlikely(unlazy_walk(nd, path->dentry))) { 1505 err = -ECHILD; 1506 goto out_err; 1507 } 1508 } 1509 BUG_ON(inode != path->dentry->d_inode); 1510 return 1; 1511 } 1512 path_to_nameidata(path, nd); 1513 nd->inode = inode; 1514 return 0; 1515 1516 out_path_put: 1517 path_to_nameidata(path, nd); 1518 out_err: 1519 terminate_walk(nd); 1520 return err; 1521 } 1522 1523 /* 1524 * This limits recursive symlink follows to 8, while 1525 * limiting consecutive symlinks to 40. 1526 * 1527 * Without that kind of total limit, nasty chains of consecutive 1528 * symlinks can cause almost arbitrarily long lookups. 1529 */ 1530 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1531 { 1532 int res; 1533 1534 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1535 path_put_conditional(path, nd); 1536 path_put(&nd->path); 1537 return -ELOOP; 1538 } 1539 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1540 1541 nd->depth++; 1542 current->link_count++; 1543 1544 do { 1545 struct path link = *path; 1546 void *cookie; 1547 1548 res = follow_link(&link, nd, &cookie); 1549 if (res) 1550 break; 1551 res = walk_component(nd, path, &nd->last, 1552 nd->last_type, LOOKUP_FOLLOW); 1553 put_link(nd, &link, cookie); 1554 } while (res > 0); 1555 1556 current->link_count--; 1557 nd->depth--; 1558 return res; 1559 } 1560 1561 /* 1562 * We really don't want to look at inode->i_op->lookup 1563 * when we don't have to. So we keep a cache bit in 1564 * the inode ->i_opflags field that says "yes, we can 1565 * do lookup on this inode". 1566 */ 1567 static inline int can_lookup(struct inode *inode) 1568 { 1569 if (likely(inode->i_opflags & IOP_LOOKUP)) 1570 return 1; 1571 if (likely(!inode->i_op->lookup)) 1572 return 0; 1573 1574 /* We do this once for the lifetime of the inode */ 1575 spin_lock(&inode->i_lock); 1576 inode->i_opflags |= IOP_LOOKUP; 1577 spin_unlock(&inode->i_lock); 1578 return 1; 1579 } 1580 1581 /* 1582 * We can do the critical dentry name comparison and hashing 1583 * operations one word at a time, but we are limited to: 1584 * 1585 * - Architectures with fast unaligned word accesses. We could 1586 * do a "get_unaligned()" if this helps and is sufficiently 1587 * fast. 1588 * 1589 * - Little-endian machines (so that we can generate the mask 1590 * of low bytes efficiently). Again, we *could* do a byte 1591 * swapping load on big-endian architectures if that is not 1592 * expensive enough to make the optimization worthless. 1593 * 1594 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1595 * do not trap on the (extremely unlikely) case of a page 1596 * crossing operation. 1597 * 1598 * - Furthermore, we need an efficient 64-bit compile for the 1599 * 64-bit case in order to generate the "number of bytes in 1600 * the final mask". Again, that could be replaced with a 1601 * efficient population count instruction or similar. 1602 */ 1603 #ifdef CONFIG_DCACHE_WORD_ACCESS 1604 1605 #include <asm/word-at-a-time.h> 1606 1607 #ifdef CONFIG_64BIT 1608 1609 static inline unsigned int fold_hash(unsigned long hash) 1610 { 1611 hash += hash >> (8*sizeof(int)); 1612 return hash; 1613 } 1614 1615 #else /* 32-bit case */ 1616 1617 #define fold_hash(x) (x) 1618 1619 #endif 1620 1621 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1622 { 1623 unsigned long a, mask; 1624 unsigned long hash = 0; 1625 1626 for (;;) { 1627 a = load_unaligned_zeropad(name); 1628 if (len < sizeof(unsigned long)) 1629 break; 1630 hash += a; 1631 hash *= 9; 1632 name += sizeof(unsigned long); 1633 len -= sizeof(unsigned long); 1634 if (!len) 1635 goto done; 1636 } 1637 mask = ~(~0ul << len*8); 1638 hash += mask & a; 1639 done: 1640 return fold_hash(hash); 1641 } 1642 EXPORT_SYMBOL(full_name_hash); 1643 1644 /* 1645 * Calculate the length and hash of the path component, and 1646 * return the length of the component; 1647 */ 1648 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1649 { 1650 unsigned long a, b, adata, bdata, mask, hash, len; 1651 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1652 1653 hash = a = 0; 1654 len = -sizeof(unsigned long); 1655 do { 1656 hash = (hash + a) * 9; 1657 len += sizeof(unsigned long); 1658 a = load_unaligned_zeropad(name+len); 1659 b = a ^ REPEAT_BYTE('/'); 1660 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1661 1662 adata = prep_zero_mask(a, adata, &constants); 1663 bdata = prep_zero_mask(b, bdata, &constants); 1664 1665 mask = create_zero_mask(adata | bdata); 1666 1667 hash += a & zero_bytemask(mask); 1668 *hashp = fold_hash(hash); 1669 1670 return len + find_zero(mask); 1671 } 1672 1673 #else 1674 1675 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1676 { 1677 unsigned long hash = init_name_hash(); 1678 while (len--) 1679 hash = partial_name_hash(*name++, hash); 1680 return end_name_hash(hash); 1681 } 1682 EXPORT_SYMBOL(full_name_hash); 1683 1684 /* 1685 * We know there's a real path component here of at least 1686 * one character. 1687 */ 1688 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1689 { 1690 unsigned long hash = init_name_hash(); 1691 unsigned long len = 0, c; 1692 1693 c = (unsigned char)*name; 1694 do { 1695 len++; 1696 hash = partial_name_hash(c, hash); 1697 c = (unsigned char)name[len]; 1698 } while (c && c != '/'); 1699 *hashp = end_name_hash(hash); 1700 return len; 1701 } 1702 1703 #endif 1704 1705 /* 1706 * Name resolution. 1707 * This is the basic name resolution function, turning a pathname into 1708 * the final dentry. We expect 'base' to be positive and a directory. 1709 * 1710 * Returns 0 and nd will have valid dentry and mnt on success. 1711 * Returns error and drops reference to input namei data on failure. 1712 */ 1713 static int link_path_walk(const char *name, struct nameidata *nd) 1714 { 1715 struct path next; 1716 int err; 1717 1718 while (*name=='/') 1719 name++; 1720 if (!*name) 1721 return 0; 1722 1723 /* At this point we know we have a real path component. */ 1724 for(;;) { 1725 struct qstr this; 1726 long len; 1727 int type; 1728 1729 err = may_lookup(nd); 1730 if (err) 1731 break; 1732 1733 len = hash_name(name, &this.hash); 1734 this.name = name; 1735 this.len = len; 1736 1737 type = LAST_NORM; 1738 if (name[0] == '.') switch (len) { 1739 case 2: 1740 if (name[1] == '.') { 1741 type = LAST_DOTDOT; 1742 nd->flags |= LOOKUP_JUMPED; 1743 } 1744 break; 1745 case 1: 1746 type = LAST_DOT; 1747 } 1748 if (likely(type == LAST_NORM)) { 1749 struct dentry *parent = nd->path.dentry; 1750 nd->flags &= ~LOOKUP_JUMPED; 1751 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1752 err = parent->d_op->d_hash(parent, nd->inode, 1753 &this); 1754 if (err < 0) 1755 break; 1756 } 1757 } 1758 1759 if (!name[len]) 1760 goto last_component; 1761 /* 1762 * If it wasn't NUL, we know it was '/'. Skip that 1763 * slash, and continue until no more slashes. 1764 */ 1765 do { 1766 len++; 1767 } while (unlikely(name[len] == '/')); 1768 if (!name[len]) 1769 goto last_component; 1770 name += len; 1771 1772 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1773 if (err < 0) 1774 return err; 1775 1776 if (err) { 1777 err = nested_symlink(&next, nd); 1778 if (err) 1779 return err; 1780 } 1781 if (can_lookup(nd->inode)) 1782 continue; 1783 err = -ENOTDIR; 1784 break; 1785 /* here ends the main loop */ 1786 1787 last_component: 1788 nd->last = this; 1789 nd->last_type = type; 1790 return 0; 1791 } 1792 terminate_walk(nd); 1793 return err; 1794 } 1795 1796 static int path_init(int dfd, const char *name, unsigned int flags, 1797 struct nameidata *nd, struct file **fp) 1798 { 1799 int retval = 0; 1800 int fput_needed; 1801 struct file *file; 1802 1803 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1804 nd->flags = flags | LOOKUP_JUMPED; 1805 nd->depth = 0; 1806 if (flags & LOOKUP_ROOT) { 1807 struct inode *inode = nd->root.dentry->d_inode; 1808 if (*name) { 1809 if (!inode->i_op->lookup) 1810 return -ENOTDIR; 1811 retval = inode_permission(inode, MAY_EXEC); 1812 if (retval) 1813 return retval; 1814 } 1815 nd->path = nd->root; 1816 nd->inode = inode; 1817 if (flags & LOOKUP_RCU) { 1818 lock_rcu_walk(); 1819 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1820 } else { 1821 path_get(&nd->path); 1822 } 1823 return 0; 1824 } 1825 1826 nd->root.mnt = NULL; 1827 1828 if (*name=='/') { 1829 if (flags & LOOKUP_RCU) { 1830 lock_rcu_walk(); 1831 set_root_rcu(nd); 1832 } else { 1833 set_root(nd); 1834 path_get(&nd->root); 1835 } 1836 nd->path = nd->root; 1837 } else if (dfd == AT_FDCWD) { 1838 if (flags & LOOKUP_RCU) { 1839 struct fs_struct *fs = current->fs; 1840 unsigned seq; 1841 1842 lock_rcu_walk(); 1843 1844 do { 1845 seq = read_seqcount_begin(&fs->seq); 1846 nd->path = fs->pwd; 1847 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1848 } while (read_seqcount_retry(&fs->seq, seq)); 1849 } else { 1850 get_fs_pwd(current->fs, &nd->path); 1851 } 1852 } else { 1853 struct dentry *dentry; 1854 1855 file = fget_raw_light(dfd, &fput_needed); 1856 retval = -EBADF; 1857 if (!file) 1858 goto out_fail; 1859 1860 dentry = file->f_path.dentry; 1861 1862 if (*name) { 1863 retval = -ENOTDIR; 1864 if (!S_ISDIR(dentry->d_inode->i_mode)) 1865 goto fput_fail; 1866 1867 retval = inode_permission(dentry->d_inode, MAY_EXEC); 1868 if (retval) 1869 goto fput_fail; 1870 } 1871 1872 nd->path = file->f_path; 1873 if (flags & LOOKUP_RCU) { 1874 if (fput_needed) 1875 *fp = file; 1876 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1877 lock_rcu_walk(); 1878 } else { 1879 path_get(&file->f_path); 1880 fput_light(file, fput_needed); 1881 } 1882 } 1883 1884 nd->inode = nd->path.dentry->d_inode; 1885 return 0; 1886 1887 fput_fail: 1888 fput_light(file, fput_needed); 1889 out_fail: 1890 return retval; 1891 } 1892 1893 static inline int lookup_last(struct nameidata *nd, struct path *path) 1894 { 1895 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1896 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1897 1898 nd->flags &= ~LOOKUP_PARENT; 1899 return walk_component(nd, path, &nd->last, nd->last_type, 1900 nd->flags & LOOKUP_FOLLOW); 1901 } 1902 1903 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1904 static int path_lookupat(int dfd, const char *name, 1905 unsigned int flags, struct nameidata *nd) 1906 { 1907 struct file *base = NULL; 1908 struct path path; 1909 int err; 1910 1911 /* 1912 * Path walking is largely split up into 2 different synchronisation 1913 * schemes, rcu-walk and ref-walk (explained in 1914 * Documentation/filesystems/path-lookup.txt). These share much of the 1915 * path walk code, but some things particularly setup, cleanup, and 1916 * following mounts are sufficiently divergent that functions are 1917 * duplicated. Typically there is a function foo(), and its RCU 1918 * analogue, foo_rcu(). 1919 * 1920 * -ECHILD is the error number of choice (just to avoid clashes) that 1921 * is returned if some aspect of an rcu-walk fails. Such an error must 1922 * be handled by restarting a traditional ref-walk (which will always 1923 * be able to complete). 1924 */ 1925 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1926 1927 if (unlikely(err)) 1928 return err; 1929 1930 current->total_link_count = 0; 1931 err = link_path_walk(name, nd); 1932 1933 if (!err && !(flags & LOOKUP_PARENT)) { 1934 err = lookup_last(nd, &path); 1935 while (err > 0) { 1936 void *cookie; 1937 struct path link = path; 1938 err = may_follow_link(&link, nd); 1939 if (unlikely(err)) 1940 break; 1941 nd->flags |= LOOKUP_PARENT; 1942 err = follow_link(&link, nd, &cookie); 1943 if (err) 1944 break; 1945 err = lookup_last(nd, &path); 1946 put_link(nd, &link, cookie); 1947 } 1948 } 1949 1950 if (!err) 1951 err = complete_walk(nd); 1952 1953 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1954 if (!nd->inode->i_op->lookup) { 1955 path_put(&nd->path); 1956 err = -ENOTDIR; 1957 } 1958 } 1959 1960 if (base) 1961 fput(base); 1962 1963 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1964 path_put(&nd->root); 1965 nd->root.mnt = NULL; 1966 } 1967 return err; 1968 } 1969 1970 static int do_path_lookup(int dfd, const char *name, 1971 unsigned int flags, struct nameidata *nd) 1972 { 1973 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1974 if (unlikely(retval == -ECHILD)) 1975 retval = path_lookupat(dfd, name, flags, nd); 1976 if (unlikely(retval == -ESTALE)) 1977 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1978 1979 if (likely(!retval)) { 1980 if (unlikely(!audit_dummy_context())) { 1981 if (nd->path.dentry && nd->inode) 1982 audit_inode(name, nd->path.dentry); 1983 } 1984 } 1985 return retval; 1986 } 1987 1988 /* does lookup, returns the object with parent locked */ 1989 struct dentry *kern_path_locked(const char *name, struct path *path) 1990 { 1991 struct nameidata nd; 1992 struct dentry *d; 1993 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 1994 if (err) 1995 return ERR_PTR(err); 1996 if (nd.last_type != LAST_NORM) { 1997 path_put(&nd.path); 1998 return ERR_PTR(-EINVAL); 1999 } 2000 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2001 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2002 if (IS_ERR(d)) { 2003 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2004 path_put(&nd.path); 2005 return d; 2006 } 2007 *path = nd.path; 2008 return d; 2009 } 2010 2011 int kern_path(const char *name, unsigned int flags, struct path *path) 2012 { 2013 struct nameidata nd; 2014 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2015 if (!res) 2016 *path = nd.path; 2017 return res; 2018 } 2019 2020 /** 2021 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2022 * @dentry: pointer to dentry of the base directory 2023 * @mnt: pointer to vfs mount of the base directory 2024 * @name: pointer to file name 2025 * @flags: lookup flags 2026 * @path: pointer to struct path to fill 2027 */ 2028 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2029 const char *name, unsigned int flags, 2030 struct path *path) 2031 { 2032 struct nameidata nd; 2033 int err; 2034 nd.root.dentry = dentry; 2035 nd.root.mnt = mnt; 2036 BUG_ON(flags & LOOKUP_PARENT); 2037 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2038 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2039 if (!err) 2040 *path = nd.path; 2041 return err; 2042 } 2043 2044 /* 2045 * Restricted form of lookup. Doesn't follow links, single-component only, 2046 * needs parent already locked. Doesn't follow mounts. 2047 * SMP-safe. 2048 */ 2049 static struct dentry *lookup_hash(struct nameidata *nd) 2050 { 2051 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2052 } 2053 2054 /** 2055 * lookup_one_len - filesystem helper to lookup single pathname component 2056 * @name: pathname component to lookup 2057 * @base: base directory to lookup from 2058 * @len: maximum length @len should be interpreted to 2059 * 2060 * Note that this routine is purely a helper for filesystem usage and should 2061 * not be called by generic code. Also note that by using this function the 2062 * nameidata argument is passed to the filesystem methods and a filesystem 2063 * using this helper needs to be prepared for that. 2064 */ 2065 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2066 { 2067 struct qstr this; 2068 unsigned int c; 2069 int err; 2070 2071 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2072 2073 this.name = name; 2074 this.len = len; 2075 this.hash = full_name_hash(name, len); 2076 if (!len) 2077 return ERR_PTR(-EACCES); 2078 2079 while (len--) { 2080 c = *(const unsigned char *)name++; 2081 if (c == '/' || c == '\0') 2082 return ERR_PTR(-EACCES); 2083 } 2084 /* 2085 * See if the low-level filesystem might want 2086 * to use its own hash.. 2087 */ 2088 if (base->d_flags & DCACHE_OP_HASH) { 2089 int err = base->d_op->d_hash(base, base->d_inode, &this); 2090 if (err < 0) 2091 return ERR_PTR(err); 2092 } 2093 2094 err = inode_permission(base->d_inode, MAY_EXEC); 2095 if (err) 2096 return ERR_PTR(err); 2097 2098 return __lookup_hash(&this, base, 0); 2099 } 2100 2101 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2102 struct path *path, int *empty) 2103 { 2104 struct nameidata nd; 2105 char *tmp = getname_flags(name, flags, empty); 2106 int err = PTR_ERR(tmp); 2107 if (!IS_ERR(tmp)) { 2108 2109 BUG_ON(flags & LOOKUP_PARENT); 2110 2111 err = do_path_lookup(dfd, tmp, flags, &nd); 2112 putname(tmp); 2113 if (!err) 2114 *path = nd.path; 2115 } 2116 return err; 2117 } 2118 2119 int user_path_at(int dfd, const char __user *name, unsigned flags, 2120 struct path *path) 2121 { 2122 return user_path_at_empty(dfd, name, flags, path, NULL); 2123 } 2124 2125 static int user_path_parent(int dfd, const char __user *path, 2126 struct nameidata *nd, char **name) 2127 { 2128 char *s = getname(path); 2129 int error; 2130 2131 if (IS_ERR(s)) 2132 return PTR_ERR(s); 2133 2134 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 2135 if (error) 2136 putname(s); 2137 else 2138 *name = s; 2139 2140 return error; 2141 } 2142 2143 /* 2144 * It's inline, so penalty for filesystems that don't use sticky bit is 2145 * minimal. 2146 */ 2147 static inline int check_sticky(struct inode *dir, struct inode *inode) 2148 { 2149 kuid_t fsuid = current_fsuid(); 2150 2151 if (!(dir->i_mode & S_ISVTX)) 2152 return 0; 2153 if (uid_eq(inode->i_uid, fsuid)) 2154 return 0; 2155 if (uid_eq(dir->i_uid, fsuid)) 2156 return 0; 2157 return !inode_capable(inode, CAP_FOWNER); 2158 } 2159 2160 /* 2161 * Check whether we can remove a link victim from directory dir, check 2162 * whether the type of victim is right. 2163 * 1. We can't do it if dir is read-only (done in permission()) 2164 * 2. We should have write and exec permissions on dir 2165 * 3. We can't remove anything from append-only dir 2166 * 4. We can't do anything with immutable dir (done in permission()) 2167 * 5. If the sticky bit on dir is set we should either 2168 * a. be owner of dir, or 2169 * b. be owner of victim, or 2170 * c. have CAP_FOWNER capability 2171 * 6. If the victim is append-only or immutable we can't do antyhing with 2172 * links pointing to it. 2173 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2174 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2175 * 9. We can't remove a root or mountpoint. 2176 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2177 * nfs_async_unlink(). 2178 */ 2179 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 2180 { 2181 int error; 2182 2183 if (!victim->d_inode) 2184 return -ENOENT; 2185 2186 BUG_ON(victim->d_parent->d_inode != dir); 2187 audit_inode_child(victim, dir); 2188 2189 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2190 if (error) 2191 return error; 2192 if (IS_APPEND(dir)) 2193 return -EPERM; 2194 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 2195 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 2196 return -EPERM; 2197 if (isdir) { 2198 if (!S_ISDIR(victim->d_inode->i_mode)) 2199 return -ENOTDIR; 2200 if (IS_ROOT(victim)) 2201 return -EBUSY; 2202 } else if (S_ISDIR(victim->d_inode->i_mode)) 2203 return -EISDIR; 2204 if (IS_DEADDIR(dir)) 2205 return -ENOENT; 2206 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2207 return -EBUSY; 2208 return 0; 2209 } 2210 2211 /* Check whether we can create an object with dentry child in directory 2212 * dir. 2213 * 1. We can't do it if child already exists (open has special treatment for 2214 * this case, but since we are inlined it's OK) 2215 * 2. We can't do it if dir is read-only (done in permission()) 2216 * 3. We should have write and exec permissions on dir 2217 * 4. We can't do it if dir is immutable (done in permission()) 2218 */ 2219 static inline int may_create(struct inode *dir, struct dentry *child) 2220 { 2221 if (child->d_inode) 2222 return -EEXIST; 2223 if (IS_DEADDIR(dir)) 2224 return -ENOENT; 2225 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2226 } 2227 2228 /* 2229 * p1 and p2 should be directories on the same fs. 2230 */ 2231 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2232 { 2233 struct dentry *p; 2234 2235 if (p1 == p2) { 2236 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2237 return NULL; 2238 } 2239 2240 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2241 2242 p = d_ancestor(p2, p1); 2243 if (p) { 2244 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2245 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2246 return p; 2247 } 2248 2249 p = d_ancestor(p1, p2); 2250 if (p) { 2251 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2252 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2253 return p; 2254 } 2255 2256 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2257 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2258 return NULL; 2259 } 2260 2261 void unlock_rename(struct dentry *p1, struct dentry *p2) 2262 { 2263 mutex_unlock(&p1->d_inode->i_mutex); 2264 if (p1 != p2) { 2265 mutex_unlock(&p2->d_inode->i_mutex); 2266 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2267 } 2268 } 2269 2270 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2271 bool want_excl) 2272 { 2273 int error = may_create(dir, dentry); 2274 if (error) 2275 return error; 2276 2277 if (!dir->i_op->create) 2278 return -EACCES; /* shouldn't it be ENOSYS? */ 2279 mode &= S_IALLUGO; 2280 mode |= S_IFREG; 2281 error = security_inode_create(dir, dentry, mode); 2282 if (error) 2283 return error; 2284 error = dir->i_op->create(dir, dentry, mode, want_excl); 2285 if (!error) 2286 fsnotify_create(dir, dentry); 2287 return error; 2288 } 2289 2290 static int may_open(struct path *path, int acc_mode, int flag) 2291 { 2292 struct dentry *dentry = path->dentry; 2293 struct inode *inode = dentry->d_inode; 2294 int error; 2295 2296 /* O_PATH? */ 2297 if (!acc_mode) 2298 return 0; 2299 2300 if (!inode) 2301 return -ENOENT; 2302 2303 switch (inode->i_mode & S_IFMT) { 2304 case S_IFLNK: 2305 return -ELOOP; 2306 case S_IFDIR: 2307 if (acc_mode & MAY_WRITE) 2308 return -EISDIR; 2309 break; 2310 case S_IFBLK: 2311 case S_IFCHR: 2312 if (path->mnt->mnt_flags & MNT_NODEV) 2313 return -EACCES; 2314 /*FALLTHRU*/ 2315 case S_IFIFO: 2316 case S_IFSOCK: 2317 flag &= ~O_TRUNC; 2318 break; 2319 } 2320 2321 error = inode_permission(inode, acc_mode); 2322 if (error) 2323 return error; 2324 2325 /* 2326 * An append-only file must be opened in append mode for writing. 2327 */ 2328 if (IS_APPEND(inode)) { 2329 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2330 return -EPERM; 2331 if (flag & O_TRUNC) 2332 return -EPERM; 2333 } 2334 2335 /* O_NOATIME can only be set by the owner or superuser */ 2336 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2337 return -EPERM; 2338 2339 return 0; 2340 } 2341 2342 static int handle_truncate(struct file *filp) 2343 { 2344 struct path *path = &filp->f_path; 2345 struct inode *inode = path->dentry->d_inode; 2346 int error = get_write_access(inode); 2347 if (error) 2348 return error; 2349 /* 2350 * Refuse to truncate files with mandatory locks held on them. 2351 */ 2352 error = locks_verify_locked(inode); 2353 if (!error) 2354 error = security_path_truncate(path); 2355 if (!error) { 2356 error = do_truncate(path->dentry, 0, 2357 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2358 filp); 2359 } 2360 put_write_access(inode); 2361 return error; 2362 } 2363 2364 static inline int open_to_namei_flags(int flag) 2365 { 2366 if ((flag & O_ACCMODE) == 3) 2367 flag--; 2368 return flag; 2369 } 2370 2371 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2372 { 2373 int error = security_path_mknod(dir, dentry, mode, 0); 2374 if (error) 2375 return error; 2376 2377 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2378 if (error) 2379 return error; 2380 2381 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2382 } 2383 2384 /* 2385 * Attempt to atomically look up, create and open a file from a negative 2386 * dentry. 2387 * 2388 * Returns 0 if successful. The file will have been created and attached to 2389 * @file by the filesystem calling finish_open(). 2390 * 2391 * Returns 1 if the file was looked up only or didn't need creating. The 2392 * caller will need to perform the open themselves. @path will have been 2393 * updated to point to the new dentry. This may be negative. 2394 * 2395 * Returns an error code otherwise. 2396 */ 2397 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2398 struct path *path, struct file *file, 2399 const struct open_flags *op, 2400 bool got_write, bool need_lookup, 2401 int *opened) 2402 { 2403 struct inode *dir = nd->path.dentry->d_inode; 2404 unsigned open_flag = open_to_namei_flags(op->open_flag); 2405 umode_t mode; 2406 int error; 2407 int acc_mode; 2408 int create_error = 0; 2409 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2410 2411 BUG_ON(dentry->d_inode); 2412 2413 /* Don't create child dentry for a dead directory. */ 2414 if (unlikely(IS_DEADDIR(dir))) { 2415 error = -ENOENT; 2416 goto out; 2417 } 2418 2419 mode = op->mode; 2420 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2421 mode &= ~current_umask(); 2422 2423 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) { 2424 open_flag &= ~O_TRUNC; 2425 *opened |= FILE_CREATED; 2426 } 2427 2428 /* 2429 * Checking write permission is tricky, bacuse we don't know if we are 2430 * going to actually need it: O_CREAT opens should work as long as the 2431 * file exists. But checking existence breaks atomicity. The trick is 2432 * to check access and if not granted clear O_CREAT from the flags. 2433 * 2434 * Another problem is returing the "right" error value (e.g. for an 2435 * O_EXCL open we want to return EEXIST not EROFS). 2436 */ 2437 if (((open_flag & (O_CREAT | O_TRUNC)) || 2438 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2439 if (!(open_flag & O_CREAT)) { 2440 /* 2441 * No O_CREATE -> atomicity not a requirement -> fall 2442 * back to lookup + open 2443 */ 2444 goto no_open; 2445 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2446 /* Fall back and fail with the right error */ 2447 create_error = -EROFS; 2448 goto no_open; 2449 } else { 2450 /* No side effects, safe to clear O_CREAT */ 2451 create_error = -EROFS; 2452 open_flag &= ~O_CREAT; 2453 } 2454 } 2455 2456 if (open_flag & O_CREAT) { 2457 error = may_o_create(&nd->path, dentry, mode); 2458 if (error) { 2459 create_error = error; 2460 if (open_flag & O_EXCL) 2461 goto no_open; 2462 open_flag &= ~O_CREAT; 2463 } 2464 } 2465 2466 if (nd->flags & LOOKUP_DIRECTORY) 2467 open_flag |= O_DIRECTORY; 2468 2469 file->f_path.dentry = DENTRY_NOT_SET; 2470 file->f_path.mnt = nd->path.mnt; 2471 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2472 opened); 2473 if (error < 0) { 2474 if (create_error && error == -ENOENT) 2475 error = create_error; 2476 goto out; 2477 } 2478 2479 acc_mode = op->acc_mode; 2480 if (*opened & FILE_CREATED) { 2481 fsnotify_create(dir, dentry); 2482 acc_mode = MAY_OPEN; 2483 } 2484 2485 if (error) { /* returned 1, that is */ 2486 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2487 error = -EIO; 2488 goto out; 2489 } 2490 if (file->f_path.dentry) { 2491 dput(dentry); 2492 dentry = file->f_path.dentry; 2493 } 2494 if (create_error && dentry->d_inode == NULL) { 2495 error = create_error; 2496 goto out; 2497 } 2498 goto looked_up; 2499 } 2500 2501 /* 2502 * We didn't have the inode before the open, so check open permission 2503 * here. 2504 */ 2505 error = may_open(&file->f_path, acc_mode, open_flag); 2506 if (error) 2507 fput(file); 2508 2509 out: 2510 dput(dentry); 2511 return error; 2512 2513 no_open: 2514 if (need_lookup) { 2515 dentry = lookup_real(dir, dentry, nd->flags); 2516 if (IS_ERR(dentry)) 2517 return PTR_ERR(dentry); 2518 2519 if (create_error) { 2520 int open_flag = op->open_flag; 2521 2522 error = create_error; 2523 if ((open_flag & O_EXCL)) { 2524 if (!dentry->d_inode) 2525 goto out; 2526 } else if (!dentry->d_inode) { 2527 goto out; 2528 } else if ((open_flag & O_TRUNC) && 2529 S_ISREG(dentry->d_inode->i_mode)) { 2530 goto out; 2531 } 2532 /* will fail later, go on to get the right error */ 2533 } 2534 } 2535 looked_up: 2536 path->dentry = dentry; 2537 path->mnt = nd->path.mnt; 2538 return 1; 2539 } 2540 2541 /* 2542 * Look up and maybe create and open the last component. 2543 * 2544 * Must be called with i_mutex held on parent. 2545 * 2546 * Returns 0 if the file was successfully atomically created (if necessary) and 2547 * opened. In this case the file will be returned attached to @file. 2548 * 2549 * Returns 1 if the file was not completely opened at this time, though lookups 2550 * and creations will have been performed and the dentry returned in @path will 2551 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2552 * specified then a negative dentry may be returned. 2553 * 2554 * An error code is returned otherwise. 2555 * 2556 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2557 * cleared otherwise prior to returning. 2558 */ 2559 static int lookup_open(struct nameidata *nd, struct path *path, 2560 struct file *file, 2561 const struct open_flags *op, 2562 bool got_write, int *opened) 2563 { 2564 struct dentry *dir = nd->path.dentry; 2565 struct inode *dir_inode = dir->d_inode; 2566 struct dentry *dentry; 2567 int error; 2568 bool need_lookup; 2569 2570 *opened &= ~FILE_CREATED; 2571 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2572 if (IS_ERR(dentry)) 2573 return PTR_ERR(dentry); 2574 2575 /* Cached positive dentry: will open in f_op->open */ 2576 if (!need_lookup && dentry->d_inode) 2577 goto out_no_open; 2578 2579 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2580 return atomic_open(nd, dentry, path, file, op, got_write, 2581 need_lookup, opened); 2582 } 2583 2584 if (need_lookup) { 2585 BUG_ON(dentry->d_inode); 2586 2587 dentry = lookup_real(dir_inode, dentry, nd->flags); 2588 if (IS_ERR(dentry)) 2589 return PTR_ERR(dentry); 2590 } 2591 2592 /* Negative dentry, just create the file */ 2593 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2594 umode_t mode = op->mode; 2595 if (!IS_POSIXACL(dir->d_inode)) 2596 mode &= ~current_umask(); 2597 /* 2598 * This write is needed to ensure that a 2599 * rw->ro transition does not occur between 2600 * the time when the file is created and when 2601 * a permanent write count is taken through 2602 * the 'struct file' in finish_open(). 2603 */ 2604 if (!got_write) { 2605 error = -EROFS; 2606 goto out_dput; 2607 } 2608 *opened |= FILE_CREATED; 2609 error = security_path_mknod(&nd->path, dentry, mode, 0); 2610 if (error) 2611 goto out_dput; 2612 error = vfs_create(dir->d_inode, dentry, mode, 2613 nd->flags & LOOKUP_EXCL); 2614 if (error) 2615 goto out_dput; 2616 } 2617 out_no_open: 2618 path->dentry = dentry; 2619 path->mnt = nd->path.mnt; 2620 return 1; 2621 2622 out_dput: 2623 dput(dentry); 2624 return error; 2625 } 2626 2627 /* 2628 * Handle the last step of open() 2629 */ 2630 static int do_last(struct nameidata *nd, struct path *path, 2631 struct file *file, const struct open_flags *op, 2632 int *opened, const char *pathname) 2633 { 2634 struct dentry *dir = nd->path.dentry; 2635 int open_flag = op->open_flag; 2636 bool will_truncate = (open_flag & O_TRUNC) != 0; 2637 bool got_write = false; 2638 int acc_mode = op->acc_mode; 2639 struct inode *inode; 2640 bool symlink_ok = false; 2641 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2642 bool retried = false; 2643 int error; 2644 2645 nd->flags &= ~LOOKUP_PARENT; 2646 nd->flags |= op->intent; 2647 2648 switch (nd->last_type) { 2649 case LAST_DOTDOT: 2650 case LAST_DOT: 2651 error = handle_dots(nd, nd->last_type); 2652 if (error) 2653 return error; 2654 /* fallthrough */ 2655 case LAST_ROOT: 2656 error = complete_walk(nd); 2657 if (error) 2658 return error; 2659 audit_inode(pathname, nd->path.dentry); 2660 if (open_flag & O_CREAT) { 2661 error = -EISDIR; 2662 goto out; 2663 } 2664 goto finish_open; 2665 case LAST_BIND: 2666 error = complete_walk(nd); 2667 if (error) 2668 return error; 2669 audit_inode(pathname, dir); 2670 goto finish_open; 2671 } 2672 2673 if (!(open_flag & O_CREAT)) { 2674 if (nd->last.name[nd->last.len]) 2675 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2676 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2677 symlink_ok = true; 2678 /* we _can_ be in RCU mode here */ 2679 error = lookup_fast(nd, &nd->last, path, &inode); 2680 if (likely(!error)) 2681 goto finish_lookup; 2682 2683 if (error < 0) 2684 goto out; 2685 2686 BUG_ON(nd->inode != dir->d_inode); 2687 } else { 2688 /* create side of things */ 2689 /* 2690 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2691 * has been cleared when we got to the last component we are 2692 * about to look up 2693 */ 2694 error = complete_walk(nd); 2695 if (error) 2696 return error; 2697 2698 audit_inode(pathname, dir); 2699 error = -EISDIR; 2700 /* trailing slashes? */ 2701 if (nd->last.name[nd->last.len]) 2702 goto out; 2703 } 2704 2705 retry_lookup: 2706 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2707 error = mnt_want_write(nd->path.mnt); 2708 if (!error) 2709 got_write = true; 2710 /* 2711 * do _not_ fail yet - we might not need that or fail with 2712 * a different error; let lookup_open() decide; we'll be 2713 * dropping this one anyway. 2714 */ 2715 } 2716 mutex_lock(&dir->d_inode->i_mutex); 2717 error = lookup_open(nd, path, file, op, got_write, opened); 2718 mutex_unlock(&dir->d_inode->i_mutex); 2719 2720 if (error <= 0) { 2721 if (error) 2722 goto out; 2723 2724 if ((*opened & FILE_CREATED) || 2725 !S_ISREG(file->f_path.dentry->d_inode->i_mode)) 2726 will_truncate = false; 2727 2728 audit_inode(pathname, file->f_path.dentry); 2729 goto opened; 2730 } 2731 2732 if (*opened & FILE_CREATED) { 2733 /* Don't check for write permission, don't truncate */ 2734 open_flag &= ~O_TRUNC; 2735 will_truncate = false; 2736 acc_mode = MAY_OPEN; 2737 path_to_nameidata(path, nd); 2738 goto finish_open_created; 2739 } 2740 2741 /* 2742 * create/update audit record if it already exists. 2743 */ 2744 if (path->dentry->d_inode) 2745 audit_inode(pathname, path->dentry); 2746 2747 /* 2748 * If atomic_open() acquired write access it is dropped now due to 2749 * possible mount and symlink following (this might be optimized away if 2750 * necessary...) 2751 */ 2752 if (got_write) { 2753 mnt_drop_write(nd->path.mnt); 2754 got_write = false; 2755 } 2756 2757 error = -EEXIST; 2758 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 2759 goto exit_dput; 2760 2761 error = follow_managed(path, nd->flags); 2762 if (error < 0) 2763 goto exit_dput; 2764 2765 if (error) 2766 nd->flags |= LOOKUP_JUMPED; 2767 2768 BUG_ON(nd->flags & LOOKUP_RCU); 2769 inode = path->dentry->d_inode; 2770 finish_lookup: 2771 /* we _can_ be in RCU mode here */ 2772 error = -ENOENT; 2773 if (!inode) { 2774 path_to_nameidata(path, nd); 2775 goto out; 2776 } 2777 2778 if (should_follow_link(inode, !symlink_ok)) { 2779 if (nd->flags & LOOKUP_RCU) { 2780 if (unlikely(unlazy_walk(nd, path->dentry))) { 2781 error = -ECHILD; 2782 goto out; 2783 } 2784 } 2785 BUG_ON(inode != path->dentry->d_inode); 2786 return 1; 2787 } 2788 2789 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 2790 path_to_nameidata(path, nd); 2791 } else { 2792 save_parent.dentry = nd->path.dentry; 2793 save_parent.mnt = mntget(path->mnt); 2794 nd->path.dentry = path->dentry; 2795 2796 } 2797 nd->inode = inode; 2798 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2799 error = complete_walk(nd); 2800 if (error) { 2801 path_put(&save_parent); 2802 return error; 2803 } 2804 error = -EISDIR; 2805 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode)) 2806 goto out; 2807 error = -ENOTDIR; 2808 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup) 2809 goto out; 2810 audit_inode(pathname, nd->path.dentry); 2811 finish_open: 2812 if (!S_ISREG(nd->inode->i_mode)) 2813 will_truncate = false; 2814 2815 if (will_truncate) { 2816 error = mnt_want_write(nd->path.mnt); 2817 if (error) 2818 goto out; 2819 got_write = true; 2820 } 2821 finish_open_created: 2822 error = may_open(&nd->path, acc_mode, open_flag); 2823 if (error) 2824 goto out; 2825 file->f_path.mnt = nd->path.mnt; 2826 error = finish_open(file, nd->path.dentry, NULL, opened); 2827 if (error) { 2828 if (error == -EOPENSTALE) 2829 goto stale_open; 2830 goto out; 2831 } 2832 opened: 2833 error = open_check_o_direct(file); 2834 if (error) 2835 goto exit_fput; 2836 error = ima_file_check(file, op->acc_mode); 2837 if (error) 2838 goto exit_fput; 2839 2840 if (will_truncate) { 2841 error = handle_truncate(file); 2842 if (error) 2843 goto exit_fput; 2844 } 2845 out: 2846 if (got_write) 2847 mnt_drop_write(nd->path.mnt); 2848 path_put(&save_parent); 2849 terminate_walk(nd); 2850 return error; 2851 2852 exit_dput: 2853 path_put_conditional(path, nd); 2854 goto out; 2855 exit_fput: 2856 fput(file); 2857 goto out; 2858 2859 stale_open: 2860 /* If no saved parent or already retried then can't retry */ 2861 if (!save_parent.dentry || retried) 2862 goto out; 2863 2864 BUG_ON(save_parent.dentry != dir); 2865 path_put(&nd->path); 2866 nd->path = save_parent; 2867 nd->inode = dir->d_inode; 2868 save_parent.mnt = NULL; 2869 save_parent.dentry = NULL; 2870 if (got_write) { 2871 mnt_drop_write(nd->path.mnt); 2872 got_write = false; 2873 } 2874 retried = true; 2875 goto retry_lookup; 2876 } 2877 2878 static struct file *path_openat(int dfd, const char *pathname, 2879 struct nameidata *nd, const struct open_flags *op, int flags) 2880 { 2881 struct file *base = NULL; 2882 struct file *file; 2883 struct path path; 2884 int opened = 0; 2885 int error; 2886 2887 file = get_empty_filp(); 2888 if (!file) 2889 return ERR_PTR(-ENFILE); 2890 2891 file->f_flags = op->open_flag; 2892 2893 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2894 if (unlikely(error)) 2895 goto out; 2896 2897 current->total_link_count = 0; 2898 error = link_path_walk(pathname, nd); 2899 if (unlikely(error)) 2900 goto out; 2901 2902 error = do_last(nd, &path, file, op, &opened, pathname); 2903 while (unlikely(error > 0)) { /* trailing symlink */ 2904 struct path link = path; 2905 void *cookie; 2906 if (!(nd->flags & LOOKUP_FOLLOW)) { 2907 path_put_conditional(&path, nd); 2908 path_put(&nd->path); 2909 error = -ELOOP; 2910 break; 2911 } 2912 error = may_follow_link(&link, nd); 2913 if (unlikely(error)) 2914 break; 2915 nd->flags |= LOOKUP_PARENT; 2916 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2917 error = follow_link(&link, nd, &cookie); 2918 if (unlikely(error)) 2919 break; 2920 error = do_last(nd, &path, file, op, &opened, pathname); 2921 put_link(nd, &link, cookie); 2922 } 2923 out: 2924 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2925 path_put(&nd->root); 2926 if (base) 2927 fput(base); 2928 if (!(opened & FILE_OPENED)) { 2929 BUG_ON(!error); 2930 put_filp(file); 2931 } 2932 if (unlikely(error)) { 2933 if (error == -EOPENSTALE) { 2934 if (flags & LOOKUP_RCU) 2935 error = -ECHILD; 2936 else 2937 error = -ESTALE; 2938 } 2939 file = ERR_PTR(error); 2940 } 2941 return file; 2942 } 2943 2944 struct file *do_filp_open(int dfd, const char *pathname, 2945 const struct open_flags *op, int flags) 2946 { 2947 struct nameidata nd; 2948 struct file *filp; 2949 2950 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2951 if (unlikely(filp == ERR_PTR(-ECHILD))) 2952 filp = path_openat(dfd, pathname, &nd, op, flags); 2953 if (unlikely(filp == ERR_PTR(-ESTALE))) 2954 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2955 return filp; 2956 } 2957 2958 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2959 const char *name, const struct open_flags *op, int flags) 2960 { 2961 struct nameidata nd; 2962 struct file *file; 2963 2964 nd.root.mnt = mnt; 2965 nd.root.dentry = dentry; 2966 2967 flags |= LOOKUP_ROOT; 2968 2969 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2970 return ERR_PTR(-ELOOP); 2971 2972 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2973 if (unlikely(file == ERR_PTR(-ECHILD))) 2974 file = path_openat(-1, name, &nd, op, flags); 2975 if (unlikely(file == ERR_PTR(-ESTALE))) 2976 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2977 return file; 2978 } 2979 2980 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) 2981 { 2982 struct dentry *dentry = ERR_PTR(-EEXIST); 2983 struct nameidata nd; 2984 int err2; 2985 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 2986 if (error) 2987 return ERR_PTR(error); 2988 2989 /* 2990 * Yucky last component or no last component at all? 2991 * (foo/., foo/.., /////) 2992 */ 2993 if (nd.last_type != LAST_NORM) 2994 goto out; 2995 nd.flags &= ~LOOKUP_PARENT; 2996 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2997 2998 /* don't fail immediately if it's r/o, at least try to report other errors */ 2999 err2 = mnt_want_write(nd.path.mnt); 3000 /* 3001 * Do the final lookup. 3002 */ 3003 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3004 dentry = lookup_hash(&nd); 3005 if (IS_ERR(dentry)) 3006 goto unlock; 3007 3008 error = -EEXIST; 3009 if (dentry->d_inode) 3010 goto fail; 3011 /* 3012 * Special case - lookup gave negative, but... we had foo/bar/ 3013 * From the vfs_mknod() POV we just have a negative dentry - 3014 * all is fine. Let's be bastards - you had / on the end, you've 3015 * been asking for (non-existent) directory. -ENOENT for you. 3016 */ 3017 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3018 error = -ENOENT; 3019 goto fail; 3020 } 3021 if (unlikely(err2)) { 3022 error = err2; 3023 goto fail; 3024 } 3025 *path = nd.path; 3026 return dentry; 3027 fail: 3028 dput(dentry); 3029 dentry = ERR_PTR(error); 3030 unlock: 3031 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3032 if (!err2) 3033 mnt_drop_write(nd.path.mnt); 3034 out: 3035 path_put(&nd.path); 3036 return dentry; 3037 } 3038 EXPORT_SYMBOL(kern_path_create); 3039 3040 void done_path_create(struct path *path, struct dentry *dentry) 3041 { 3042 dput(dentry); 3043 mutex_unlock(&path->dentry->d_inode->i_mutex); 3044 mnt_drop_write(path->mnt); 3045 path_put(path); 3046 } 3047 EXPORT_SYMBOL(done_path_create); 3048 3049 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) 3050 { 3051 char *tmp = getname(pathname); 3052 struct dentry *res; 3053 if (IS_ERR(tmp)) 3054 return ERR_CAST(tmp); 3055 res = kern_path_create(dfd, tmp, path, is_dir); 3056 putname(tmp); 3057 return res; 3058 } 3059 EXPORT_SYMBOL(user_path_create); 3060 3061 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3062 { 3063 int error = may_create(dir, dentry); 3064 3065 if (error) 3066 return error; 3067 3068 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3069 return -EPERM; 3070 3071 if (!dir->i_op->mknod) 3072 return -EPERM; 3073 3074 error = devcgroup_inode_mknod(mode, dev); 3075 if (error) 3076 return error; 3077 3078 error = security_inode_mknod(dir, dentry, mode, dev); 3079 if (error) 3080 return error; 3081 3082 error = dir->i_op->mknod(dir, dentry, mode, dev); 3083 if (!error) 3084 fsnotify_create(dir, dentry); 3085 return error; 3086 } 3087 3088 static int may_mknod(umode_t mode) 3089 { 3090 switch (mode & S_IFMT) { 3091 case S_IFREG: 3092 case S_IFCHR: 3093 case S_IFBLK: 3094 case S_IFIFO: 3095 case S_IFSOCK: 3096 case 0: /* zero mode translates to S_IFREG */ 3097 return 0; 3098 case S_IFDIR: 3099 return -EPERM; 3100 default: 3101 return -EINVAL; 3102 } 3103 } 3104 3105 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3106 unsigned, dev) 3107 { 3108 struct dentry *dentry; 3109 struct path path; 3110 int error; 3111 3112 error = may_mknod(mode); 3113 if (error) 3114 return error; 3115 3116 dentry = user_path_create(dfd, filename, &path, 0); 3117 if (IS_ERR(dentry)) 3118 return PTR_ERR(dentry); 3119 3120 if (!IS_POSIXACL(path.dentry->d_inode)) 3121 mode &= ~current_umask(); 3122 error = security_path_mknod(&path, dentry, mode, dev); 3123 if (error) 3124 goto out; 3125 switch (mode & S_IFMT) { 3126 case 0: case S_IFREG: 3127 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3128 break; 3129 case S_IFCHR: case S_IFBLK: 3130 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3131 new_decode_dev(dev)); 3132 break; 3133 case S_IFIFO: case S_IFSOCK: 3134 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3135 break; 3136 } 3137 out: 3138 done_path_create(&path, dentry); 3139 return error; 3140 } 3141 3142 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3143 { 3144 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3145 } 3146 3147 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3148 { 3149 int error = may_create(dir, dentry); 3150 unsigned max_links = dir->i_sb->s_max_links; 3151 3152 if (error) 3153 return error; 3154 3155 if (!dir->i_op->mkdir) 3156 return -EPERM; 3157 3158 mode &= (S_IRWXUGO|S_ISVTX); 3159 error = security_inode_mkdir(dir, dentry, mode); 3160 if (error) 3161 return error; 3162 3163 if (max_links && dir->i_nlink >= max_links) 3164 return -EMLINK; 3165 3166 error = dir->i_op->mkdir(dir, dentry, mode); 3167 if (!error) 3168 fsnotify_mkdir(dir, dentry); 3169 return error; 3170 } 3171 3172 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3173 { 3174 struct dentry *dentry; 3175 struct path path; 3176 int error; 3177 3178 dentry = user_path_create(dfd, pathname, &path, 1); 3179 if (IS_ERR(dentry)) 3180 return PTR_ERR(dentry); 3181 3182 if (!IS_POSIXACL(path.dentry->d_inode)) 3183 mode &= ~current_umask(); 3184 error = security_path_mkdir(&path, dentry, mode); 3185 if (!error) 3186 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3187 done_path_create(&path, dentry); 3188 return error; 3189 } 3190 3191 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3192 { 3193 return sys_mkdirat(AT_FDCWD, pathname, mode); 3194 } 3195 3196 /* 3197 * The dentry_unhash() helper will try to drop the dentry early: we 3198 * should have a usage count of 1 if we're the only user of this 3199 * dentry, and if that is true (possibly after pruning the dcache), 3200 * then we drop the dentry now. 3201 * 3202 * A low-level filesystem can, if it choses, legally 3203 * do a 3204 * 3205 * if (!d_unhashed(dentry)) 3206 * return -EBUSY; 3207 * 3208 * if it cannot handle the case of removing a directory 3209 * that is still in use by something else.. 3210 */ 3211 void dentry_unhash(struct dentry *dentry) 3212 { 3213 shrink_dcache_parent(dentry); 3214 spin_lock(&dentry->d_lock); 3215 if (dentry->d_count == 1) 3216 __d_drop(dentry); 3217 spin_unlock(&dentry->d_lock); 3218 } 3219 3220 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3221 { 3222 int error = may_delete(dir, dentry, 1); 3223 3224 if (error) 3225 return error; 3226 3227 if (!dir->i_op->rmdir) 3228 return -EPERM; 3229 3230 dget(dentry); 3231 mutex_lock(&dentry->d_inode->i_mutex); 3232 3233 error = -EBUSY; 3234 if (d_mountpoint(dentry)) 3235 goto out; 3236 3237 error = security_inode_rmdir(dir, dentry); 3238 if (error) 3239 goto out; 3240 3241 shrink_dcache_parent(dentry); 3242 error = dir->i_op->rmdir(dir, dentry); 3243 if (error) 3244 goto out; 3245 3246 dentry->d_inode->i_flags |= S_DEAD; 3247 dont_mount(dentry); 3248 3249 out: 3250 mutex_unlock(&dentry->d_inode->i_mutex); 3251 dput(dentry); 3252 if (!error) 3253 d_delete(dentry); 3254 return error; 3255 } 3256 3257 static long do_rmdir(int dfd, const char __user *pathname) 3258 { 3259 int error = 0; 3260 char * name; 3261 struct dentry *dentry; 3262 struct nameidata nd; 3263 3264 error = user_path_parent(dfd, pathname, &nd, &name); 3265 if (error) 3266 return error; 3267 3268 switch(nd.last_type) { 3269 case LAST_DOTDOT: 3270 error = -ENOTEMPTY; 3271 goto exit1; 3272 case LAST_DOT: 3273 error = -EINVAL; 3274 goto exit1; 3275 case LAST_ROOT: 3276 error = -EBUSY; 3277 goto exit1; 3278 } 3279 3280 nd.flags &= ~LOOKUP_PARENT; 3281 error = mnt_want_write(nd.path.mnt); 3282 if (error) 3283 goto exit1; 3284 3285 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3286 dentry = lookup_hash(&nd); 3287 error = PTR_ERR(dentry); 3288 if (IS_ERR(dentry)) 3289 goto exit2; 3290 if (!dentry->d_inode) { 3291 error = -ENOENT; 3292 goto exit3; 3293 } 3294 error = security_path_rmdir(&nd.path, dentry); 3295 if (error) 3296 goto exit3; 3297 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3298 exit3: 3299 dput(dentry); 3300 exit2: 3301 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3302 mnt_drop_write(nd.path.mnt); 3303 exit1: 3304 path_put(&nd.path); 3305 putname(name); 3306 return error; 3307 } 3308 3309 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3310 { 3311 return do_rmdir(AT_FDCWD, pathname); 3312 } 3313 3314 int vfs_unlink(struct inode *dir, struct dentry *dentry) 3315 { 3316 int error = may_delete(dir, dentry, 0); 3317 3318 if (error) 3319 return error; 3320 3321 if (!dir->i_op->unlink) 3322 return -EPERM; 3323 3324 mutex_lock(&dentry->d_inode->i_mutex); 3325 if (d_mountpoint(dentry)) 3326 error = -EBUSY; 3327 else { 3328 error = security_inode_unlink(dir, dentry); 3329 if (!error) { 3330 error = dir->i_op->unlink(dir, dentry); 3331 if (!error) 3332 dont_mount(dentry); 3333 } 3334 } 3335 mutex_unlock(&dentry->d_inode->i_mutex); 3336 3337 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3338 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3339 fsnotify_link_count(dentry->d_inode); 3340 d_delete(dentry); 3341 } 3342 3343 return error; 3344 } 3345 3346 /* 3347 * Make sure that the actual truncation of the file will occur outside its 3348 * directory's i_mutex. Truncate can take a long time if there is a lot of 3349 * writeout happening, and we don't want to prevent access to the directory 3350 * while waiting on the I/O. 3351 */ 3352 static long do_unlinkat(int dfd, const char __user *pathname) 3353 { 3354 int error; 3355 char *name; 3356 struct dentry *dentry; 3357 struct nameidata nd; 3358 struct inode *inode = NULL; 3359 3360 error = user_path_parent(dfd, pathname, &nd, &name); 3361 if (error) 3362 return error; 3363 3364 error = -EISDIR; 3365 if (nd.last_type != LAST_NORM) 3366 goto exit1; 3367 3368 nd.flags &= ~LOOKUP_PARENT; 3369 error = mnt_want_write(nd.path.mnt); 3370 if (error) 3371 goto exit1; 3372 3373 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3374 dentry = lookup_hash(&nd); 3375 error = PTR_ERR(dentry); 3376 if (!IS_ERR(dentry)) { 3377 /* Why not before? Because we want correct error value */ 3378 if (nd.last.name[nd.last.len]) 3379 goto slashes; 3380 inode = dentry->d_inode; 3381 if (!inode) 3382 goto slashes; 3383 ihold(inode); 3384 error = security_path_unlink(&nd.path, dentry); 3385 if (error) 3386 goto exit2; 3387 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 3388 exit2: 3389 dput(dentry); 3390 } 3391 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3392 if (inode) 3393 iput(inode); /* truncate the inode here */ 3394 mnt_drop_write(nd.path.mnt); 3395 exit1: 3396 path_put(&nd.path); 3397 putname(name); 3398 return error; 3399 3400 slashes: 3401 error = !dentry->d_inode ? -ENOENT : 3402 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 3403 goto exit2; 3404 } 3405 3406 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3407 { 3408 if ((flag & ~AT_REMOVEDIR) != 0) 3409 return -EINVAL; 3410 3411 if (flag & AT_REMOVEDIR) 3412 return do_rmdir(dfd, pathname); 3413 3414 return do_unlinkat(dfd, pathname); 3415 } 3416 3417 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3418 { 3419 return do_unlinkat(AT_FDCWD, pathname); 3420 } 3421 3422 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3423 { 3424 int error = may_create(dir, dentry); 3425 3426 if (error) 3427 return error; 3428 3429 if (!dir->i_op->symlink) 3430 return -EPERM; 3431 3432 error = security_inode_symlink(dir, dentry, oldname); 3433 if (error) 3434 return error; 3435 3436 error = dir->i_op->symlink(dir, dentry, oldname); 3437 if (!error) 3438 fsnotify_create(dir, dentry); 3439 return error; 3440 } 3441 3442 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3443 int, newdfd, const char __user *, newname) 3444 { 3445 int error; 3446 char *from; 3447 struct dentry *dentry; 3448 struct path path; 3449 3450 from = getname(oldname); 3451 if (IS_ERR(from)) 3452 return PTR_ERR(from); 3453 3454 dentry = user_path_create(newdfd, newname, &path, 0); 3455 error = PTR_ERR(dentry); 3456 if (IS_ERR(dentry)) 3457 goto out_putname; 3458 3459 error = security_path_symlink(&path, dentry, from); 3460 if (!error) 3461 error = vfs_symlink(path.dentry->d_inode, dentry, from); 3462 done_path_create(&path, dentry); 3463 out_putname: 3464 putname(from); 3465 return error; 3466 } 3467 3468 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3469 { 3470 return sys_symlinkat(oldname, AT_FDCWD, newname); 3471 } 3472 3473 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3474 { 3475 struct inode *inode = old_dentry->d_inode; 3476 unsigned max_links = dir->i_sb->s_max_links; 3477 int error; 3478 3479 if (!inode) 3480 return -ENOENT; 3481 3482 error = may_create(dir, new_dentry); 3483 if (error) 3484 return error; 3485 3486 if (dir->i_sb != inode->i_sb) 3487 return -EXDEV; 3488 3489 /* 3490 * A link to an append-only or immutable file cannot be created. 3491 */ 3492 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3493 return -EPERM; 3494 if (!dir->i_op->link) 3495 return -EPERM; 3496 if (S_ISDIR(inode->i_mode)) 3497 return -EPERM; 3498 3499 error = security_inode_link(old_dentry, dir, new_dentry); 3500 if (error) 3501 return error; 3502 3503 mutex_lock(&inode->i_mutex); 3504 /* Make sure we don't allow creating hardlink to an unlinked file */ 3505 if (inode->i_nlink == 0) 3506 error = -ENOENT; 3507 else if (max_links && inode->i_nlink >= max_links) 3508 error = -EMLINK; 3509 else 3510 error = dir->i_op->link(old_dentry, dir, new_dentry); 3511 mutex_unlock(&inode->i_mutex); 3512 if (!error) 3513 fsnotify_link(dir, inode, new_dentry); 3514 return error; 3515 } 3516 3517 /* 3518 * Hardlinks are often used in delicate situations. We avoid 3519 * security-related surprises by not following symlinks on the 3520 * newname. --KAB 3521 * 3522 * We don't follow them on the oldname either to be compatible 3523 * with linux 2.0, and to avoid hard-linking to directories 3524 * and other special files. --ADM 3525 */ 3526 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3527 int, newdfd, const char __user *, newname, int, flags) 3528 { 3529 struct dentry *new_dentry; 3530 struct path old_path, new_path; 3531 int how = 0; 3532 int error; 3533 3534 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3535 return -EINVAL; 3536 /* 3537 * To use null names we require CAP_DAC_READ_SEARCH 3538 * This ensures that not everyone will be able to create 3539 * handlink using the passed filedescriptor. 3540 */ 3541 if (flags & AT_EMPTY_PATH) { 3542 if (!capable(CAP_DAC_READ_SEARCH)) 3543 return -ENOENT; 3544 how = LOOKUP_EMPTY; 3545 } 3546 3547 if (flags & AT_SYMLINK_FOLLOW) 3548 how |= LOOKUP_FOLLOW; 3549 3550 error = user_path_at(olddfd, oldname, how, &old_path); 3551 if (error) 3552 return error; 3553 3554 new_dentry = user_path_create(newdfd, newname, &new_path, 0); 3555 error = PTR_ERR(new_dentry); 3556 if (IS_ERR(new_dentry)) 3557 goto out; 3558 3559 error = -EXDEV; 3560 if (old_path.mnt != new_path.mnt) 3561 goto out_dput; 3562 error = may_linkat(&old_path); 3563 if (unlikely(error)) 3564 goto out_dput; 3565 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3566 if (error) 3567 goto out_dput; 3568 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 3569 out_dput: 3570 done_path_create(&new_path, new_dentry); 3571 out: 3572 path_put(&old_path); 3573 3574 return error; 3575 } 3576 3577 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3578 { 3579 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3580 } 3581 3582 /* 3583 * The worst of all namespace operations - renaming directory. "Perverted" 3584 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3585 * Problems: 3586 * a) we can get into loop creation. Check is done in is_subdir(). 3587 * b) race potential - two innocent renames can create a loop together. 3588 * That's where 4.4 screws up. Current fix: serialization on 3589 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3590 * story. 3591 * c) we have to lock _three_ objects - parents and victim (if it exists). 3592 * And that - after we got ->i_mutex on parents (until then we don't know 3593 * whether the target exists). Solution: try to be smart with locking 3594 * order for inodes. We rely on the fact that tree topology may change 3595 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3596 * move will be locked. Thus we can rank directories by the tree 3597 * (ancestors first) and rank all non-directories after them. 3598 * That works since everybody except rename does "lock parent, lookup, 3599 * lock child" and rename is under ->s_vfs_rename_mutex. 3600 * HOWEVER, it relies on the assumption that any object with ->lookup() 3601 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3602 * we'd better make sure that there's no link(2) for them. 3603 * d) conversion from fhandle to dentry may come in the wrong moment - when 3604 * we are removing the target. Solution: we will have to grab ->i_mutex 3605 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3606 * ->i_mutex on parents, which works but leads to some truly excessive 3607 * locking]. 3608 */ 3609 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3610 struct inode *new_dir, struct dentry *new_dentry) 3611 { 3612 int error = 0; 3613 struct inode *target = new_dentry->d_inode; 3614 unsigned max_links = new_dir->i_sb->s_max_links; 3615 3616 /* 3617 * If we are going to change the parent - check write permissions, 3618 * we'll need to flip '..'. 3619 */ 3620 if (new_dir != old_dir) { 3621 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3622 if (error) 3623 return error; 3624 } 3625 3626 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3627 if (error) 3628 return error; 3629 3630 dget(new_dentry); 3631 if (target) 3632 mutex_lock(&target->i_mutex); 3633 3634 error = -EBUSY; 3635 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3636 goto out; 3637 3638 error = -EMLINK; 3639 if (max_links && !target && new_dir != old_dir && 3640 new_dir->i_nlink >= max_links) 3641 goto out; 3642 3643 if (target) 3644 shrink_dcache_parent(new_dentry); 3645 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3646 if (error) 3647 goto out; 3648 3649 if (target) { 3650 target->i_flags |= S_DEAD; 3651 dont_mount(new_dentry); 3652 } 3653 out: 3654 if (target) 3655 mutex_unlock(&target->i_mutex); 3656 dput(new_dentry); 3657 if (!error) 3658 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3659 d_move(old_dentry,new_dentry); 3660 return error; 3661 } 3662 3663 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3664 struct inode *new_dir, struct dentry *new_dentry) 3665 { 3666 struct inode *target = new_dentry->d_inode; 3667 int error; 3668 3669 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3670 if (error) 3671 return error; 3672 3673 dget(new_dentry); 3674 if (target) 3675 mutex_lock(&target->i_mutex); 3676 3677 error = -EBUSY; 3678 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3679 goto out; 3680 3681 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3682 if (error) 3683 goto out; 3684 3685 if (target) 3686 dont_mount(new_dentry); 3687 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3688 d_move(old_dentry, new_dentry); 3689 out: 3690 if (target) 3691 mutex_unlock(&target->i_mutex); 3692 dput(new_dentry); 3693 return error; 3694 } 3695 3696 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3697 struct inode *new_dir, struct dentry *new_dentry) 3698 { 3699 int error; 3700 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3701 const unsigned char *old_name; 3702 3703 if (old_dentry->d_inode == new_dentry->d_inode) 3704 return 0; 3705 3706 error = may_delete(old_dir, old_dentry, is_dir); 3707 if (error) 3708 return error; 3709 3710 if (!new_dentry->d_inode) 3711 error = may_create(new_dir, new_dentry); 3712 else 3713 error = may_delete(new_dir, new_dentry, is_dir); 3714 if (error) 3715 return error; 3716 3717 if (!old_dir->i_op->rename) 3718 return -EPERM; 3719 3720 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3721 3722 if (is_dir) 3723 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3724 else 3725 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3726 if (!error) 3727 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3728 new_dentry->d_inode, old_dentry); 3729 fsnotify_oldname_free(old_name); 3730 3731 return error; 3732 } 3733 3734 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3735 int, newdfd, const char __user *, newname) 3736 { 3737 struct dentry *old_dir, *new_dir; 3738 struct dentry *old_dentry, *new_dentry; 3739 struct dentry *trap; 3740 struct nameidata oldnd, newnd; 3741 char *from; 3742 char *to; 3743 int error; 3744 3745 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3746 if (error) 3747 goto exit; 3748 3749 error = user_path_parent(newdfd, newname, &newnd, &to); 3750 if (error) 3751 goto exit1; 3752 3753 error = -EXDEV; 3754 if (oldnd.path.mnt != newnd.path.mnt) 3755 goto exit2; 3756 3757 old_dir = oldnd.path.dentry; 3758 error = -EBUSY; 3759 if (oldnd.last_type != LAST_NORM) 3760 goto exit2; 3761 3762 new_dir = newnd.path.dentry; 3763 if (newnd.last_type != LAST_NORM) 3764 goto exit2; 3765 3766 error = mnt_want_write(oldnd.path.mnt); 3767 if (error) 3768 goto exit2; 3769 3770 oldnd.flags &= ~LOOKUP_PARENT; 3771 newnd.flags &= ~LOOKUP_PARENT; 3772 newnd.flags |= LOOKUP_RENAME_TARGET; 3773 3774 trap = lock_rename(new_dir, old_dir); 3775 3776 old_dentry = lookup_hash(&oldnd); 3777 error = PTR_ERR(old_dentry); 3778 if (IS_ERR(old_dentry)) 3779 goto exit3; 3780 /* source must exist */ 3781 error = -ENOENT; 3782 if (!old_dentry->d_inode) 3783 goto exit4; 3784 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3785 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3786 error = -ENOTDIR; 3787 if (oldnd.last.name[oldnd.last.len]) 3788 goto exit4; 3789 if (newnd.last.name[newnd.last.len]) 3790 goto exit4; 3791 } 3792 /* source should not be ancestor of target */ 3793 error = -EINVAL; 3794 if (old_dentry == trap) 3795 goto exit4; 3796 new_dentry = lookup_hash(&newnd); 3797 error = PTR_ERR(new_dentry); 3798 if (IS_ERR(new_dentry)) 3799 goto exit4; 3800 /* target should not be an ancestor of source */ 3801 error = -ENOTEMPTY; 3802 if (new_dentry == trap) 3803 goto exit5; 3804 3805 error = security_path_rename(&oldnd.path, old_dentry, 3806 &newnd.path, new_dentry); 3807 if (error) 3808 goto exit5; 3809 error = vfs_rename(old_dir->d_inode, old_dentry, 3810 new_dir->d_inode, new_dentry); 3811 exit5: 3812 dput(new_dentry); 3813 exit4: 3814 dput(old_dentry); 3815 exit3: 3816 unlock_rename(new_dir, old_dir); 3817 mnt_drop_write(oldnd.path.mnt); 3818 exit2: 3819 path_put(&newnd.path); 3820 putname(to); 3821 exit1: 3822 path_put(&oldnd.path); 3823 putname(from); 3824 exit: 3825 return error; 3826 } 3827 3828 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3829 { 3830 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3831 } 3832 3833 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3834 { 3835 int len; 3836 3837 len = PTR_ERR(link); 3838 if (IS_ERR(link)) 3839 goto out; 3840 3841 len = strlen(link); 3842 if (len > (unsigned) buflen) 3843 len = buflen; 3844 if (copy_to_user(buffer, link, len)) 3845 len = -EFAULT; 3846 out: 3847 return len; 3848 } 3849 3850 /* 3851 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3852 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3853 * using) it for any given inode is up to filesystem. 3854 */ 3855 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3856 { 3857 struct nameidata nd; 3858 void *cookie; 3859 int res; 3860 3861 nd.depth = 0; 3862 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3863 if (IS_ERR(cookie)) 3864 return PTR_ERR(cookie); 3865 3866 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3867 if (dentry->d_inode->i_op->put_link) 3868 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3869 return res; 3870 } 3871 3872 int vfs_follow_link(struct nameidata *nd, const char *link) 3873 { 3874 return __vfs_follow_link(nd, link); 3875 } 3876 3877 /* get the link contents into pagecache */ 3878 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3879 { 3880 char *kaddr; 3881 struct page *page; 3882 struct address_space *mapping = dentry->d_inode->i_mapping; 3883 page = read_mapping_page(mapping, 0, NULL); 3884 if (IS_ERR(page)) 3885 return (char*)page; 3886 *ppage = page; 3887 kaddr = kmap(page); 3888 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3889 return kaddr; 3890 } 3891 3892 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3893 { 3894 struct page *page = NULL; 3895 char *s = page_getlink(dentry, &page); 3896 int res = vfs_readlink(dentry,buffer,buflen,s); 3897 if (page) { 3898 kunmap(page); 3899 page_cache_release(page); 3900 } 3901 return res; 3902 } 3903 3904 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3905 { 3906 struct page *page = NULL; 3907 nd_set_link(nd, page_getlink(dentry, &page)); 3908 return page; 3909 } 3910 3911 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3912 { 3913 struct page *page = cookie; 3914 3915 if (page) { 3916 kunmap(page); 3917 page_cache_release(page); 3918 } 3919 } 3920 3921 /* 3922 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3923 */ 3924 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3925 { 3926 struct address_space *mapping = inode->i_mapping; 3927 struct page *page; 3928 void *fsdata; 3929 int err; 3930 char *kaddr; 3931 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3932 if (nofs) 3933 flags |= AOP_FLAG_NOFS; 3934 3935 retry: 3936 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3937 flags, &page, &fsdata); 3938 if (err) 3939 goto fail; 3940 3941 kaddr = kmap_atomic(page); 3942 memcpy(kaddr, symname, len-1); 3943 kunmap_atomic(kaddr); 3944 3945 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3946 page, fsdata); 3947 if (err < 0) 3948 goto fail; 3949 if (err < len-1) 3950 goto retry; 3951 3952 mark_inode_dirty(inode); 3953 return 0; 3954 fail: 3955 return err; 3956 } 3957 3958 int page_symlink(struct inode *inode, const char *symname, int len) 3959 { 3960 return __page_symlink(inode, symname, len, 3961 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3962 } 3963 3964 const struct inode_operations page_symlink_inode_operations = { 3965 .readlink = generic_readlink, 3966 .follow_link = page_follow_link_light, 3967 .put_link = page_put_link, 3968 }; 3969 3970 EXPORT_SYMBOL(user_path_at); 3971 EXPORT_SYMBOL(follow_down_one); 3972 EXPORT_SYMBOL(follow_down); 3973 EXPORT_SYMBOL(follow_up); 3974 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3975 EXPORT_SYMBOL(getname); 3976 EXPORT_SYMBOL(lock_rename); 3977 EXPORT_SYMBOL(lookup_one_len); 3978 EXPORT_SYMBOL(page_follow_link_light); 3979 EXPORT_SYMBOL(page_put_link); 3980 EXPORT_SYMBOL(page_readlink); 3981 EXPORT_SYMBOL(__page_symlink); 3982 EXPORT_SYMBOL(page_symlink); 3983 EXPORT_SYMBOL(page_symlink_inode_operations); 3984 EXPORT_SYMBOL(kern_path); 3985 EXPORT_SYMBOL(vfs_path_lookup); 3986 EXPORT_SYMBOL(inode_permission); 3987 EXPORT_SYMBOL(unlock_rename); 3988 EXPORT_SYMBOL(vfs_create); 3989 EXPORT_SYMBOL(vfs_follow_link); 3990 EXPORT_SYMBOL(vfs_link); 3991 EXPORT_SYMBOL(vfs_mkdir); 3992 EXPORT_SYMBOL(vfs_mknod); 3993 EXPORT_SYMBOL(generic_permission); 3994 EXPORT_SYMBOL(vfs_readlink); 3995 EXPORT_SYMBOL(vfs_rename); 3996 EXPORT_SYMBOL(vfs_rmdir); 3997 EXPORT_SYMBOL(vfs_symlink); 3998 EXPORT_SYMBOL(vfs_unlink); 3999 EXPORT_SYMBOL(dentry_unhash); 4000 EXPORT_SYMBOL(generic_readlink); 4001