xref: /openbmc/linux/fs/namei.c (revision 95e9fd10)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 	char *result = __getname(), *err;
123 	int len;
124 
125 	if (unlikely(!result))
126 		return ERR_PTR(-ENOMEM);
127 
128 	len = strncpy_from_user(result, filename, PATH_MAX);
129 	err = ERR_PTR(len);
130 	if (unlikely(len < 0))
131 		goto error;
132 
133 	/* The empty path is special. */
134 	if (unlikely(!len)) {
135 		if (empty)
136 			*empty = 1;
137 		err = ERR_PTR(-ENOENT);
138 		if (!(flags & LOOKUP_EMPTY))
139 			goto error;
140 	}
141 
142 	err = ERR_PTR(-ENAMETOOLONG);
143 	if (likely(len < PATH_MAX)) {
144 		audit_getname(result);
145 		return result;
146 	}
147 
148 error:
149 	__putname(result);
150 	return err;
151 }
152 
153 char *getname(const char __user * filename)
154 {
155 	return getname_flags(filename, 0, NULL);
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 	struct posix_acl *acl;
173 
174 	if (mask & MAY_NOT_BLOCK) {
175 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 	        if (!acl)
177 	                return -EAGAIN;
178 		/* no ->get_acl() calls in RCU mode... */
179 		if (acl == ACL_NOT_CACHED)
180 			return -ECHILD;
181 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 	}
183 
184 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185 
186 	/*
187 	 * A filesystem can force a ACL callback by just never filling the
188 	 * ACL cache. But normally you'd fill the cache either at inode
189 	 * instantiation time, or on the first ->get_acl call.
190 	 *
191 	 * If the filesystem doesn't have a get_acl() function at all, we'll
192 	 * just create the negative cache entry.
193 	 */
194 	if (acl == ACL_NOT_CACHED) {
195 	        if (inode->i_op->get_acl) {
196 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 			if (IS_ERR(acl))
198 				return PTR_ERR(acl);
199 		} else {
200 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 		        return -EAGAIN;
202 		}
203 	}
204 
205 	if (acl) {
206 	        int error = posix_acl_permission(inode, acl, mask);
207 	        posix_acl_release(acl);
208 	        return error;
209 	}
210 #endif
211 
212 	return -EAGAIN;
213 }
214 
215 /*
216  * This does the basic permission checking
217  */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 	unsigned int mode = inode->i_mode;
221 
222 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 		mode >>= 6;
224 	else {
225 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 			int error = check_acl(inode, mask);
227 			if (error != -EAGAIN)
228 				return error;
229 		}
230 
231 		if (in_group_p(inode->i_gid))
232 			mode >>= 3;
233 	}
234 
235 	/*
236 	 * If the DACs are ok we don't need any capability check.
237 	 */
238 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 		return 0;
240 	return -EACCES;
241 }
242 
243 /**
244  * generic_permission -  check for access rights on a Posix-like filesystem
245  * @inode:	inode to check access rights for
246  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247  *
248  * Used to check for read/write/execute permissions on a file.
249  * We use "fsuid" for this, letting us set arbitrary permissions
250  * for filesystem access without changing the "normal" uids which
251  * are used for other things.
252  *
253  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254  * request cannot be satisfied (eg. requires blocking or too much complexity).
255  * It would then be called again in ref-walk mode.
256  */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 	int ret;
260 
261 	/*
262 	 * Do the basic permission checks.
263 	 */
264 	ret = acl_permission_check(inode, mask);
265 	if (ret != -EACCES)
266 		return ret;
267 
268 	if (S_ISDIR(inode->i_mode)) {
269 		/* DACs are overridable for directories */
270 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 			return 0;
272 		if (!(mask & MAY_WRITE))
273 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 				return 0;
275 		return -EACCES;
276 	}
277 	/*
278 	 * Read/write DACs are always overridable.
279 	 * Executable DACs are overridable when there is
280 	 * at least one exec bit set.
281 	 */
282 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 			return 0;
285 
286 	/*
287 	 * Searching includes executable on directories, else just read.
288 	 */
289 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 	if (mask == MAY_READ)
291 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 			return 0;
293 
294 	return -EACCES;
295 }
296 
297 /*
298  * We _really_ want to just do "generic_permission()" without
299  * even looking at the inode->i_op values. So we keep a cache
300  * flag in inode->i_opflags, that says "this has not special
301  * permission function, use the fast case".
302  */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 		if (likely(inode->i_op->permission))
307 			return inode->i_op->permission(inode, mask);
308 
309 		/* This gets set once for the inode lifetime */
310 		spin_lock(&inode->i_lock);
311 		inode->i_opflags |= IOP_FASTPERM;
312 		spin_unlock(&inode->i_lock);
313 	}
314 	return generic_permission(inode, mask);
315 }
316 
317 /**
318  * __inode_permission - Check for access rights to a given inode
319  * @inode: Inode to check permission on
320  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
321  *
322  * Check for read/write/execute permissions on an inode.
323  *
324  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
325  *
326  * This does not check for a read-only file system.  You probably want
327  * inode_permission().
328  */
329 int __inode_permission(struct inode *inode, int mask)
330 {
331 	int retval;
332 
333 	if (unlikely(mask & MAY_WRITE)) {
334 		/*
335 		 * Nobody gets write access to an immutable file.
336 		 */
337 		if (IS_IMMUTABLE(inode))
338 			return -EACCES;
339 	}
340 
341 	retval = do_inode_permission(inode, mask);
342 	if (retval)
343 		return retval;
344 
345 	retval = devcgroup_inode_permission(inode, mask);
346 	if (retval)
347 		return retval;
348 
349 	return security_inode_permission(inode, mask);
350 }
351 
352 /**
353  * sb_permission - Check superblock-level permissions
354  * @sb: Superblock of inode to check permission on
355  * @inode: Inode to check permission on
356  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
357  *
358  * Separate out file-system wide checks from inode-specific permission checks.
359  */
360 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
361 {
362 	if (unlikely(mask & MAY_WRITE)) {
363 		umode_t mode = inode->i_mode;
364 
365 		/* Nobody gets write access to a read-only fs. */
366 		if ((sb->s_flags & MS_RDONLY) &&
367 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
368 			return -EROFS;
369 	}
370 	return 0;
371 }
372 
373 /**
374  * inode_permission - Check for access rights to a given inode
375  * @inode: Inode to check permission on
376  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
377  *
378  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
379  * this, letting us set arbitrary permissions for filesystem access without
380  * changing the "normal" UIDs which are used for other things.
381  *
382  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
383  */
384 int inode_permission(struct inode *inode, int mask)
385 {
386 	int retval;
387 
388 	retval = sb_permission(inode->i_sb, inode, mask);
389 	if (retval)
390 		return retval;
391 	return __inode_permission(inode, mask);
392 }
393 
394 /**
395  * path_get - get a reference to a path
396  * @path: path to get the reference to
397  *
398  * Given a path increment the reference count to the dentry and the vfsmount.
399  */
400 void path_get(struct path *path)
401 {
402 	mntget(path->mnt);
403 	dget(path->dentry);
404 }
405 EXPORT_SYMBOL(path_get);
406 
407 /**
408  * path_put - put a reference to a path
409  * @path: path to put the reference to
410  *
411  * Given a path decrement the reference count to the dentry and the vfsmount.
412  */
413 void path_put(struct path *path)
414 {
415 	dput(path->dentry);
416 	mntput(path->mnt);
417 }
418 EXPORT_SYMBOL(path_put);
419 
420 /*
421  * Path walking has 2 modes, rcu-walk and ref-walk (see
422  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
423  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
424  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
425  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
426  * got stuck, so ref-walk may continue from there. If this is not successful
427  * (eg. a seqcount has changed), then failure is returned and it's up to caller
428  * to restart the path walk from the beginning in ref-walk mode.
429  */
430 
431 static inline void lock_rcu_walk(void)
432 {
433 	br_read_lock(&vfsmount_lock);
434 	rcu_read_lock();
435 }
436 
437 static inline void unlock_rcu_walk(void)
438 {
439 	rcu_read_unlock();
440 	br_read_unlock(&vfsmount_lock);
441 }
442 
443 /**
444  * unlazy_walk - try to switch to ref-walk mode.
445  * @nd: nameidata pathwalk data
446  * @dentry: child of nd->path.dentry or NULL
447  * Returns: 0 on success, -ECHILD on failure
448  *
449  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
450  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
451  * @nd or NULL.  Must be called from rcu-walk context.
452  */
453 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
454 {
455 	struct fs_struct *fs = current->fs;
456 	struct dentry *parent = nd->path.dentry;
457 	int want_root = 0;
458 
459 	BUG_ON(!(nd->flags & LOOKUP_RCU));
460 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
461 		want_root = 1;
462 		spin_lock(&fs->lock);
463 		if (nd->root.mnt != fs->root.mnt ||
464 				nd->root.dentry != fs->root.dentry)
465 			goto err_root;
466 	}
467 	spin_lock(&parent->d_lock);
468 	if (!dentry) {
469 		if (!__d_rcu_to_refcount(parent, nd->seq))
470 			goto err_parent;
471 		BUG_ON(nd->inode != parent->d_inode);
472 	} else {
473 		if (dentry->d_parent != parent)
474 			goto err_parent;
475 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 		if (!__d_rcu_to_refcount(dentry, nd->seq))
477 			goto err_child;
478 		/*
479 		 * If the sequence check on the child dentry passed, then
480 		 * the child has not been removed from its parent. This
481 		 * means the parent dentry must be valid and able to take
482 		 * a reference at this point.
483 		 */
484 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
485 		BUG_ON(!parent->d_count);
486 		parent->d_count++;
487 		spin_unlock(&dentry->d_lock);
488 	}
489 	spin_unlock(&parent->d_lock);
490 	if (want_root) {
491 		path_get(&nd->root);
492 		spin_unlock(&fs->lock);
493 	}
494 	mntget(nd->path.mnt);
495 
496 	unlock_rcu_walk();
497 	nd->flags &= ~LOOKUP_RCU;
498 	return 0;
499 
500 err_child:
501 	spin_unlock(&dentry->d_lock);
502 err_parent:
503 	spin_unlock(&parent->d_lock);
504 err_root:
505 	if (want_root)
506 		spin_unlock(&fs->lock);
507 	return -ECHILD;
508 }
509 
510 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
511 {
512 	return dentry->d_op->d_revalidate(dentry, flags);
513 }
514 
515 /**
516  * complete_walk - successful completion of path walk
517  * @nd:  pointer nameidata
518  *
519  * If we had been in RCU mode, drop out of it and legitimize nd->path.
520  * Revalidate the final result, unless we'd already done that during
521  * the path walk or the filesystem doesn't ask for it.  Return 0 on
522  * success, -error on failure.  In case of failure caller does not
523  * need to drop nd->path.
524  */
525 static int complete_walk(struct nameidata *nd)
526 {
527 	struct dentry *dentry = nd->path.dentry;
528 	int status;
529 
530 	if (nd->flags & LOOKUP_RCU) {
531 		nd->flags &= ~LOOKUP_RCU;
532 		if (!(nd->flags & LOOKUP_ROOT))
533 			nd->root.mnt = NULL;
534 		spin_lock(&dentry->d_lock);
535 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
536 			spin_unlock(&dentry->d_lock);
537 			unlock_rcu_walk();
538 			return -ECHILD;
539 		}
540 		BUG_ON(nd->inode != dentry->d_inode);
541 		spin_unlock(&dentry->d_lock);
542 		mntget(nd->path.mnt);
543 		unlock_rcu_walk();
544 	}
545 
546 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
547 		return 0;
548 
549 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
550 		return 0;
551 
552 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
553 		return 0;
554 
555 	/* Note: we do not d_invalidate() */
556 	status = d_revalidate(dentry, nd->flags);
557 	if (status > 0)
558 		return 0;
559 
560 	if (!status)
561 		status = -ESTALE;
562 
563 	path_put(&nd->path);
564 	return status;
565 }
566 
567 static __always_inline void set_root(struct nameidata *nd)
568 {
569 	if (!nd->root.mnt)
570 		get_fs_root(current->fs, &nd->root);
571 }
572 
573 static int link_path_walk(const char *, struct nameidata *);
574 
575 static __always_inline void set_root_rcu(struct nameidata *nd)
576 {
577 	if (!nd->root.mnt) {
578 		struct fs_struct *fs = current->fs;
579 		unsigned seq;
580 
581 		do {
582 			seq = read_seqcount_begin(&fs->seq);
583 			nd->root = fs->root;
584 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
585 		} while (read_seqcount_retry(&fs->seq, seq));
586 	}
587 }
588 
589 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
590 {
591 	int ret;
592 
593 	if (IS_ERR(link))
594 		goto fail;
595 
596 	if (*link == '/') {
597 		set_root(nd);
598 		path_put(&nd->path);
599 		nd->path = nd->root;
600 		path_get(&nd->root);
601 		nd->flags |= LOOKUP_JUMPED;
602 	}
603 	nd->inode = nd->path.dentry->d_inode;
604 
605 	ret = link_path_walk(link, nd);
606 	return ret;
607 fail:
608 	path_put(&nd->path);
609 	return PTR_ERR(link);
610 }
611 
612 static void path_put_conditional(struct path *path, struct nameidata *nd)
613 {
614 	dput(path->dentry);
615 	if (path->mnt != nd->path.mnt)
616 		mntput(path->mnt);
617 }
618 
619 static inline void path_to_nameidata(const struct path *path,
620 					struct nameidata *nd)
621 {
622 	if (!(nd->flags & LOOKUP_RCU)) {
623 		dput(nd->path.dentry);
624 		if (nd->path.mnt != path->mnt)
625 			mntput(nd->path.mnt);
626 	}
627 	nd->path.mnt = path->mnt;
628 	nd->path.dentry = path->dentry;
629 }
630 
631 /*
632  * Helper to directly jump to a known parsed path from ->follow_link,
633  * caller must have taken a reference to path beforehand.
634  */
635 void nd_jump_link(struct nameidata *nd, struct path *path)
636 {
637 	path_put(&nd->path);
638 
639 	nd->path = *path;
640 	nd->inode = nd->path.dentry->d_inode;
641 	nd->flags |= LOOKUP_JUMPED;
642 
643 	BUG_ON(nd->inode->i_op->follow_link);
644 }
645 
646 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
647 {
648 	struct inode *inode = link->dentry->d_inode;
649 	if (inode->i_op->put_link)
650 		inode->i_op->put_link(link->dentry, nd, cookie);
651 	path_put(link);
652 }
653 
654 int sysctl_protected_symlinks __read_mostly = 1;
655 int sysctl_protected_hardlinks __read_mostly = 1;
656 
657 /**
658  * may_follow_link - Check symlink following for unsafe situations
659  * @link: The path of the symlink
660  * @nd: nameidata pathwalk data
661  *
662  * In the case of the sysctl_protected_symlinks sysctl being enabled,
663  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
664  * in a sticky world-writable directory. This is to protect privileged
665  * processes from failing races against path names that may change out
666  * from under them by way of other users creating malicious symlinks.
667  * It will permit symlinks to be followed only when outside a sticky
668  * world-writable directory, or when the uid of the symlink and follower
669  * match, or when the directory owner matches the symlink's owner.
670  *
671  * Returns 0 if following the symlink is allowed, -ve on error.
672  */
673 static inline int may_follow_link(struct path *link, struct nameidata *nd)
674 {
675 	const struct inode *inode;
676 	const struct inode *parent;
677 
678 	if (!sysctl_protected_symlinks)
679 		return 0;
680 
681 	/* Allowed if owner and follower match. */
682 	inode = link->dentry->d_inode;
683 	if (current_cred()->fsuid == inode->i_uid)
684 		return 0;
685 
686 	/* Allowed if parent directory not sticky and world-writable. */
687 	parent = nd->path.dentry->d_inode;
688 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
689 		return 0;
690 
691 	/* Allowed if parent directory and link owner match. */
692 	if (parent->i_uid == inode->i_uid)
693 		return 0;
694 
695 	path_put_conditional(link, nd);
696 	path_put(&nd->path);
697 	audit_log_link_denied("follow_link", link);
698 	return -EACCES;
699 }
700 
701 /**
702  * safe_hardlink_source - Check for safe hardlink conditions
703  * @inode: the source inode to hardlink from
704  *
705  * Return false if at least one of the following conditions:
706  *    - inode is not a regular file
707  *    - inode is setuid
708  *    - inode is setgid and group-exec
709  *    - access failure for read and write
710  *
711  * Otherwise returns true.
712  */
713 static bool safe_hardlink_source(struct inode *inode)
714 {
715 	umode_t mode = inode->i_mode;
716 
717 	/* Special files should not get pinned to the filesystem. */
718 	if (!S_ISREG(mode))
719 		return false;
720 
721 	/* Setuid files should not get pinned to the filesystem. */
722 	if (mode & S_ISUID)
723 		return false;
724 
725 	/* Executable setgid files should not get pinned to the filesystem. */
726 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
727 		return false;
728 
729 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
730 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
731 		return false;
732 
733 	return true;
734 }
735 
736 /**
737  * may_linkat - Check permissions for creating a hardlink
738  * @link: the source to hardlink from
739  *
740  * Block hardlink when all of:
741  *  - sysctl_protected_hardlinks enabled
742  *  - fsuid does not match inode
743  *  - hardlink source is unsafe (see safe_hardlink_source() above)
744  *  - not CAP_FOWNER
745  *
746  * Returns 0 if successful, -ve on error.
747  */
748 static int may_linkat(struct path *link)
749 {
750 	const struct cred *cred;
751 	struct inode *inode;
752 
753 	if (!sysctl_protected_hardlinks)
754 		return 0;
755 
756 	cred = current_cred();
757 	inode = link->dentry->d_inode;
758 
759 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
760 	 * otherwise, it must be a safe source.
761 	 */
762 	if (cred->fsuid == inode->i_uid || safe_hardlink_source(inode) ||
763 	    capable(CAP_FOWNER))
764 		return 0;
765 
766 	audit_log_link_denied("linkat", link);
767 	return -EPERM;
768 }
769 
770 static __always_inline int
771 follow_link(struct path *link, struct nameidata *nd, void **p)
772 {
773 	struct dentry *dentry = link->dentry;
774 	int error;
775 	char *s;
776 
777 	BUG_ON(nd->flags & LOOKUP_RCU);
778 
779 	if (link->mnt == nd->path.mnt)
780 		mntget(link->mnt);
781 
782 	error = -ELOOP;
783 	if (unlikely(current->total_link_count >= 40))
784 		goto out_put_nd_path;
785 
786 	cond_resched();
787 	current->total_link_count++;
788 
789 	touch_atime(link);
790 	nd_set_link(nd, NULL);
791 
792 	error = security_inode_follow_link(link->dentry, nd);
793 	if (error)
794 		goto out_put_nd_path;
795 
796 	nd->last_type = LAST_BIND;
797 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
798 	error = PTR_ERR(*p);
799 	if (IS_ERR(*p))
800 		goto out_put_nd_path;
801 
802 	error = 0;
803 	s = nd_get_link(nd);
804 	if (s) {
805 		error = __vfs_follow_link(nd, s);
806 		if (unlikely(error))
807 			put_link(nd, link, *p);
808 	}
809 
810 	return error;
811 
812 out_put_nd_path:
813 	path_put(&nd->path);
814 	path_put(link);
815 	return error;
816 }
817 
818 static int follow_up_rcu(struct path *path)
819 {
820 	struct mount *mnt = real_mount(path->mnt);
821 	struct mount *parent;
822 	struct dentry *mountpoint;
823 
824 	parent = mnt->mnt_parent;
825 	if (&parent->mnt == path->mnt)
826 		return 0;
827 	mountpoint = mnt->mnt_mountpoint;
828 	path->dentry = mountpoint;
829 	path->mnt = &parent->mnt;
830 	return 1;
831 }
832 
833 /*
834  * follow_up - Find the mountpoint of path's vfsmount
835  *
836  * Given a path, find the mountpoint of its source file system.
837  * Replace @path with the path of the mountpoint in the parent mount.
838  * Up is towards /.
839  *
840  * Return 1 if we went up a level and 0 if we were already at the
841  * root.
842  */
843 int follow_up(struct path *path)
844 {
845 	struct mount *mnt = real_mount(path->mnt);
846 	struct mount *parent;
847 	struct dentry *mountpoint;
848 
849 	br_read_lock(&vfsmount_lock);
850 	parent = mnt->mnt_parent;
851 	if (parent == mnt) {
852 		br_read_unlock(&vfsmount_lock);
853 		return 0;
854 	}
855 	mntget(&parent->mnt);
856 	mountpoint = dget(mnt->mnt_mountpoint);
857 	br_read_unlock(&vfsmount_lock);
858 	dput(path->dentry);
859 	path->dentry = mountpoint;
860 	mntput(path->mnt);
861 	path->mnt = &parent->mnt;
862 	return 1;
863 }
864 
865 /*
866  * Perform an automount
867  * - return -EISDIR to tell follow_managed() to stop and return the path we
868  *   were called with.
869  */
870 static int follow_automount(struct path *path, unsigned flags,
871 			    bool *need_mntput)
872 {
873 	struct vfsmount *mnt;
874 	int err;
875 
876 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
877 		return -EREMOTE;
878 
879 	/* We don't want to mount if someone's just doing a stat -
880 	 * unless they're stat'ing a directory and appended a '/' to
881 	 * the name.
882 	 *
883 	 * We do, however, want to mount if someone wants to open or
884 	 * create a file of any type under the mountpoint, wants to
885 	 * traverse through the mountpoint or wants to open the
886 	 * mounted directory.  Also, autofs may mark negative dentries
887 	 * as being automount points.  These will need the attentions
888 	 * of the daemon to instantiate them before they can be used.
889 	 */
890 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
891 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
892 	    path->dentry->d_inode)
893 		return -EISDIR;
894 
895 	current->total_link_count++;
896 	if (current->total_link_count >= 40)
897 		return -ELOOP;
898 
899 	mnt = path->dentry->d_op->d_automount(path);
900 	if (IS_ERR(mnt)) {
901 		/*
902 		 * The filesystem is allowed to return -EISDIR here to indicate
903 		 * it doesn't want to automount.  For instance, autofs would do
904 		 * this so that its userspace daemon can mount on this dentry.
905 		 *
906 		 * However, we can only permit this if it's a terminal point in
907 		 * the path being looked up; if it wasn't then the remainder of
908 		 * the path is inaccessible and we should say so.
909 		 */
910 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
911 			return -EREMOTE;
912 		return PTR_ERR(mnt);
913 	}
914 
915 	if (!mnt) /* mount collision */
916 		return 0;
917 
918 	if (!*need_mntput) {
919 		/* lock_mount() may release path->mnt on error */
920 		mntget(path->mnt);
921 		*need_mntput = true;
922 	}
923 	err = finish_automount(mnt, path);
924 
925 	switch (err) {
926 	case -EBUSY:
927 		/* Someone else made a mount here whilst we were busy */
928 		return 0;
929 	case 0:
930 		path_put(path);
931 		path->mnt = mnt;
932 		path->dentry = dget(mnt->mnt_root);
933 		return 0;
934 	default:
935 		return err;
936 	}
937 
938 }
939 
940 /*
941  * Handle a dentry that is managed in some way.
942  * - Flagged for transit management (autofs)
943  * - Flagged as mountpoint
944  * - Flagged as automount point
945  *
946  * This may only be called in refwalk mode.
947  *
948  * Serialization is taken care of in namespace.c
949  */
950 static int follow_managed(struct path *path, unsigned flags)
951 {
952 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
953 	unsigned managed;
954 	bool need_mntput = false;
955 	int ret = 0;
956 
957 	/* Given that we're not holding a lock here, we retain the value in a
958 	 * local variable for each dentry as we look at it so that we don't see
959 	 * the components of that value change under us */
960 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
961 	       managed &= DCACHE_MANAGED_DENTRY,
962 	       unlikely(managed != 0)) {
963 		/* Allow the filesystem to manage the transit without i_mutex
964 		 * being held. */
965 		if (managed & DCACHE_MANAGE_TRANSIT) {
966 			BUG_ON(!path->dentry->d_op);
967 			BUG_ON(!path->dentry->d_op->d_manage);
968 			ret = path->dentry->d_op->d_manage(path->dentry, false);
969 			if (ret < 0)
970 				break;
971 		}
972 
973 		/* Transit to a mounted filesystem. */
974 		if (managed & DCACHE_MOUNTED) {
975 			struct vfsmount *mounted = lookup_mnt(path);
976 			if (mounted) {
977 				dput(path->dentry);
978 				if (need_mntput)
979 					mntput(path->mnt);
980 				path->mnt = mounted;
981 				path->dentry = dget(mounted->mnt_root);
982 				need_mntput = true;
983 				continue;
984 			}
985 
986 			/* Something is mounted on this dentry in another
987 			 * namespace and/or whatever was mounted there in this
988 			 * namespace got unmounted before we managed to get the
989 			 * vfsmount_lock */
990 		}
991 
992 		/* Handle an automount point */
993 		if (managed & DCACHE_NEED_AUTOMOUNT) {
994 			ret = follow_automount(path, flags, &need_mntput);
995 			if (ret < 0)
996 				break;
997 			continue;
998 		}
999 
1000 		/* We didn't change the current path point */
1001 		break;
1002 	}
1003 
1004 	if (need_mntput && path->mnt == mnt)
1005 		mntput(path->mnt);
1006 	if (ret == -EISDIR)
1007 		ret = 0;
1008 	return ret < 0 ? ret : need_mntput;
1009 }
1010 
1011 int follow_down_one(struct path *path)
1012 {
1013 	struct vfsmount *mounted;
1014 
1015 	mounted = lookup_mnt(path);
1016 	if (mounted) {
1017 		dput(path->dentry);
1018 		mntput(path->mnt);
1019 		path->mnt = mounted;
1020 		path->dentry = dget(mounted->mnt_root);
1021 		return 1;
1022 	}
1023 	return 0;
1024 }
1025 
1026 static inline bool managed_dentry_might_block(struct dentry *dentry)
1027 {
1028 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1029 		dentry->d_op->d_manage(dentry, true) < 0);
1030 }
1031 
1032 /*
1033  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1034  * we meet a managed dentry that would need blocking.
1035  */
1036 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1037 			       struct inode **inode)
1038 {
1039 	for (;;) {
1040 		struct mount *mounted;
1041 		/*
1042 		 * Don't forget we might have a non-mountpoint managed dentry
1043 		 * that wants to block transit.
1044 		 */
1045 		if (unlikely(managed_dentry_might_block(path->dentry)))
1046 			return false;
1047 
1048 		if (!d_mountpoint(path->dentry))
1049 			break;
1050 
1051 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1052 		if (!mounted)
1053 			break;
1054 		path->mnt = &mounted->mnt;
1055 		path->dentry = mounted->mnt.mnt_root;
1056 		nd->flags |= LOOKUP_JUMPED;
1057 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1058 		/*
1059 		 * Update the inode too. We don't need to re-check the
1060 		 * dentry sequence number here after this d_inode read,
1061 		 * because a mount-point is always pinned.
1062 		 */
1063 		*inode = path->dentry->d_inode;
1064 	}
1065 	return true;
1066 }
1067 
1068 static void follow_mount_rcu(struct nameidata *nd)
1069 {
1070 	while (d_mountpoint(nd->path.dentry)) {
1071 		struct mount *mounted;
1072 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1073 		if (!mounted)
1074 			break;
1075 		nd->path.mnt = &mounted->mnt;
1076 		nd->path.dentry = mounted->mnt.mnt_root;
1077 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1078 	}
1079 }
1080 
1081 static int follow_dotdot_rcu(struct nameidata *nd)
1082 {
1083 	set_root_rcu(nd);
1084 
1085 	while (1) {
1086 		if (nd->path.dentry == nd->root.dentry &&
1087 		    nd->path.mnt == nd->root.mnt) {
1088 			break;
1089 		}
1090 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1091 			struct dentry *old = nd->path.dentry;
1092 			struct dentry *parent = old->d_parent;
1093 			unsigned seq;
1094 
1095 			seq = read_seqcount_begin(&parent->d_seq);
1096 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1097 				goto failed;
1098 			nd->path.dentry = parent;
1099 			nd->seq = seq;
1100 			break;
1101 		}
1102 		if (!follow_up_rcu(&nd->path))
1103 			break;
1104 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1105 	}
1106 	follow_mount_rcu(nd);
1107 	nd->inode = nd->path.dentry->d_inode;
1108 	return 0;
1109 
1110 failed:
1111 	nd->flags &= ~LOOKUP_RCU;
1112 	if (!(nd->flags & LOOKUP_ROOT))
1113 		nd->root.mnt = NULL;
1114 	unlock_rcu_walk();
1115 	return -ECHILD;
1116 }
1117 
1118 /*
1119  * Follow down to the covering mount currently visible to userspace.  At each
1120  * point, the filesystem owning that dentry may be queried as to whether the
1121  * caller is permitted to proceed or not.
1122  */
1123 int follow_down(struct path *path)
1124 {
1125 	unsigned managed;
1126 	int ret;
1127 
1128 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1129 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1130 		/* Allow the filesystem to manage the transit without i_mutex
1131 		 * being held.
1132 		 *
1133 		 * We indicate to the filesystem if someone is trying to mount
1134 		 * something here.  This gives autofs the chance to deny anyone
1135 		 * other than its daemon the right to mount on its
1136 		 * superstructure.
1137 		 *
1138 		 * The filesystem may sleep at this point.
1139 		 */
1140 		if (managed & DCACHE_MANAGE_TRANSIT) {
1141 			BUG_ON(!path->dentry->d_op);
1142 			BUG_ON(!path->dentry->d_op->d_manage);
1143 			ret = path->dentry->d_op->d_manage(
1144 				path->dentry, false);
1145 			if (ret < 0)
1146 				return ret == -EISDIR ? 0 : ret;
1147 		}
1148 
1149 		/* Transit to a mounted filesystem. */
1150 		if (managed & DCACHE_MOUNTED) {
1151 			struct vfsmount *mounted = lookup_mnt(path);
1152 			if (!mounted)
1153 				break;
1154 			dput(path->dentry);
1155 			mntput(path->mnt);
1156 			path->mnt = mounted;
1157 			path->dentry = dget(mounted->mnt_root);
1158 			continue;
1159 		}
1160 
1161 		/* Don't handle automount points here */
1162 		break;
1163 	}
1164 	return 0;
1165 }
1166 
1167 /*
1168  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1169  */
1170 static void follow_mount(struct path *path)
1171 {
1172 	while (d_mountpoint(path->dentry)) {
1173 		struct vfsmount *mounted = lookup_mnt(path);
1174 		if (!mounted)
1175 			break;
1176 		dput(path->dentry);
1177 		mntput(path->mnt);
1178 		path->mnt = mounted;
1179 		path->dentry = dget(mounted->mnt_root);
1180 	}
1181 }
1182 
1183 static void follow_dotdot(struct nameidata *nd)
1184 {
1185 	set_root(nd);
1186 
1187 	while(1) {
1188 		struct dentry *old = nd->path.dentry;
1189 
1190 		if (nd->path.dentry == nd->root.dentry &&
1191 		    nd->path.mnt == nd->root.mnt) {
1192 			break;
1193 		}
1194 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1195 			/* rare case of legitimate dget_parent()... */
1196 			nd->path.dentry = dget_parent(nd->path.dentry);
1197 			dput(old);
1198 			break;
1199 		}
1200 		if (!follow_up(&nd->path))
1201 			break;
1202 	}
1203 	follow_mount(&nd->path);
1204 	nd->inode = nd->path.dentry->d_inode;
1205 }
1206 
1207 /*
1208  * This looks up the name in dcache, possibly revalidates the old dentry and
1209  * allocates a new one if not found or not valid.  In the need_lookup argument
1210  * returns whether i_op->lookup is necessary.
1211  *
1212  * dir->d_inode->i_mutex must be held
1213  */
1214 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1215 				    unsigned int flags, bool *need_lookup)
1216 {
1217 	struct dentry *dentry;
1218 	int error;
1219 
1220 	*need_lookup = false;
1221 	dentry = d_lookup(dir, name);
1222 	if (dentry) {
1223 		if (d_need_lookup(dentry)) {
1224 			*need_lookup = true;
1225 		} else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1226 			error = d_revalidate(dentry, flags);
1227 			if (unlikely(error <= 0)) {
1228 				if (error < 0) {
1229 					dput(dentry);
1230 					return ERR_PTR(error);
1231 				} else if (!d_invalidate(dentry)) {
1232 					dput(dentry);
1233 					dentry = NULL;
1234 				}
1235 			}
1236 		}
1237 	}
1238 
1239 	if (!dentry) {
1240 		dentry = d_alloc(dir, name);
1241 		if (unlikely(!dentry))
1242 			return ERR_PTR(-ENOMEM);
1243 
1244 		*need_lookup = true;
1245 	}
1246 	return dentry;
1247 }
1248 
1249 /*
1250  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1251  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1252  *
1253  * dir->d_inode->i_mutex must be held
1254  */
1255 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1256 				  unsigned int flags)
1257 {
1258 	struct dentry *old;
1259 
1260 	/* Don't create child dentry for a dead directory. */
1261 	if (unlikely(IS_DEADDIR(dir))) {
1262 		dput(dentry);
1263 		return ERR_PTR(-ENOENT);
1264 	}
1265 
1266 	old = dir->i_op->lookup(dir, dentry, flags);
1267 	if (unlikely(old)) {
1268 		dput(dentry);
1269 		dentry = old;
1270 	}
1271 	return dentry;
1272 }
1273 
1274 static struct dentry *__lookup_hash(struct qstr *name,
1275 		struct dentry *base, unsigned int flags)
1276 {
1277 	bool need_lookup;
1278 	struct dentry *dentry;
1279 
1280 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1281 	if (!need_lookup)
1282 		return dentry;
1283 
1284 	return lookup_real(base->d_inode, dentry, flags);
1285 }
1286 
1287 /*
1288  *  It's more convoluted than I'd like it to be, but... it's still fairly
1289  *  small and for now I'd prefer to have fast path as straight as possible.
1290  *  It _is_ time-critical.
1291  */
1292 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1293 		       struct path *path, struct inode **inode)
1294 {
1295 	struct vfsmount *mnt = nd->path.mnt;
1296 	struct dentry *dentry, *parent = nd->path.dentry;
1297 	int need_reval = 1;
1298 	int status = 1;
1299 	int err;
1300 
1301 	/*
1302 	 * Rename seqlock is not required here because in the off chance
1303 	 * of a false negative due to a concurrent rename, we're going to
1304 	 * do the non-racy lookup, below.
1305 	 */
1306 	if (nd->flags & LOOKUP_RCU) {
1307 		unsigned seq;
1308 		dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1309 		if (!dentry)
1310 			goto unlazy;
1311 
1312 		/*
1313 		 * This sequence count validates that the inode matches
1314 		 * the dentry name information from lookup.
1315 		 */
1316 		*inode = dentry->d_inode;
1317 		if (read_seqcount_retry(&dentry->d_seq, seq))
1318 			return -ECHILD;
1319 
1320 		/*
1321 		 * This sequence count validates that the parent had no
1322 		 * changes while we did the lookup of the dentry above.
1323 		 *
1324 		 * The memory barrier in read_seqcount_begin of child is
1325 		 *  enough, we can use __read_seqcount_retry here.
1326 		 */
1327 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1328 			return -ECHILD;
1329 		nd->seq = seq;
1330 
1331 		if (unlikely(d_need_lookup(dentry)))
1332 			goto unlazy;
1333 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1334 			status = d_revalidate(dentry, nd->flags);
1335 			if (unlikely(status <= 0)) {
1336 				if (status != -ECHILD)
1337 					need_reval = 0;
1338 				goto unlazy;
1339 			}
1340 		}
1341 		path->mnt = mnt;
1342 		path->dentry = dentry;
1343 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1344 			goto unlazy;
1345 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1346 			goto unlazy;
1347 		return 0;
1348 unlazy:
1349 		if (unlazy_walk(nd, dentry))
1350 			return -ECHILD;
1351 	} else {
1352 		dentry = __d_lookup(parent, name);
1353 	}
1354 
1355 	if (unlikely(!dentry))
1356 		goto need_lookup;
1357 
1358 	if (unlikely(d_need_lookup(dentry))) {
1359 		dput(dentry);
1360 		goto need_lookup;
1361 	}
1362 
1363 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1364 		status = d_revalidate(dentry, nd->flags);
1365 	if (unlikely(status <= 0)) {
1366 		if (status < 0) {
1367 			dput(dentry);
1368 			return status;
1369 		}
1370 		if (!d_invalidate(dentry)) {
1371 			dput(dentry);
1372 			goto need_lookup;
1373 		}
1374 	}
1375 
1376 	path->mnt = mnt;
1377 	path->dentry = dentry;
1378 	err = follow_managed(path, nd->flags);
1379 	if (unlikely(err < 0)) {
1380 		path_put_conditional(path, nd);
1381 		return err;
1382 	}
1383 	if (err)
1384 		nd->flags |= LOOKUP_JUMPED;
1385 	*inode = path->dentry->d_inode;
1386 	return 0;
1387 
1388 need_lookup:
1389 	return 1;
1390 }
1391 
1392 /* Fast lookup failed, do it the slow way */
1393 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1394 		       struct path *path)
1395 {
1396 	struct dentry *dentry, *parent;
1397 	int err;
1398 
1399 	parent = nd->path.dentry;
1400 	BUG_ON(nd->inode != parent->d_inode);
1401 
1402 	mutex_lock(&parent->d_inode->i_mutex);
1403 	dentry = __lookup_hash(name, parent, nd->flags);
1404 	mutex_unlock(&parent->d_inode->i_mutex);
1405 	if (IS_ERR(dentry))
1406 		return PTR_ERR(dentry);
1407 	path->mnt = nd->path.mnt;
1408 	path->dentry = dentry;
1409 	err = follow_managed(path, nd->flags);
1410 	if (unlikely(err < 0)) {
1411 		path_put_conditional(path, nd);
1412 		return err;
1413 	}
1414 	if (err)
1415 		nd->flags |= LOOKUP_JUMPED;
1416 	return 0;
1417 }
1418 
1419 static inline int may_lookup(struct nameidata *nd)
1420 {
1421 	if (nd->flags & LOOKUP_RCU) {
1422 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1423 		if (err != -ECHILD)
1424 			return err;
1425 		if (unlazy_walk(nd, NULL))
1426 			return -ECHILD;
1427 	}
1428 	return inode_permission(nd->inode, MAY_EXEC);
1429 }
1430 
1431 static inline int handle_dots(struct nameidata *nd, int type)
1432 {
1433 	if (type == LAST_DOTDOT) {
1434 		if (nd->flags & LOOKUP_RCU) {
1435 			if (follow_dotdot_rcu(nd))
1436 				return -ECHILD;
1437 		} else
1438 			follow_dotdot(nd);
1439 	}
1440 	return 0;
1441 }
1442 
1443 static void terminate_walk(struct nameidata *nd)
1444 {
1445 	if (!(nd->flags & LOOKUP_RCU)) {
1446 		path_put(&nd->path);
1447 	} else {
1448 		nd->flags &= ~LOOKUP_RCU;
1449 		if (!(nd->flags & LOOKUP_ROOT))
1450 			nd->root.mnt = NULL;
1451 		unlock_rcu_walk();
1452 	}
1453 }
1454 
1455 /*
1456  * Do we need to follow links? We _really_ want to be able
1457  * to do this check without having to look at inode->i_op,
1458  * so we keep a cache of "no, this doesn't need follow_link"
1459  * for the common case.
1460  */
1461 static inline int should_follow_link(struct inode *inode, int follow)
1462 {
1463 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1464 		if (likely(inode->i_op->follow_link))
1465 			return follow;
1466 
1467 		/* This gets set once for the inode lifetime */
1468 		spin_lock(&inode->i_lock);
1469 		inode->i_opflags |= IOP_NOFOLLOW;
1470 		spin_unlock(&inode->i_lock);
1471 	}
1472 	return 0;
1473 }
1474 
1475 static inline int walk_component(struct nameidata *nd, struct path *path,
1476 		struct qstr *name, int type, int follow)
1477 {
1478 	struct inode *inode;
1479 	int err;
1480 	/*
1481 	 * "." and ".." are special - ".." especially so because it has
1482 	 * to be able to know about the current root directory and
1483 	 * parent relationships.
1484 	 */
1485 	if (unlikely(type != LAST_NORM))
1486 		return handle_dots(nd, type);
1487 	err = lookup_fast(nd, name, path, &inode);
1488 	if (unlikely(err)) {
1489 		if (err < 0)
1490 			goto out_err;
1491 
1492 		err = lookup_slow(nd, name, path);
1493 		if (err < 0)
1494 			goto out_err;
1495 
1496 		inode = path->dentry->d_inode;
1497 	}
1498 	err = -ENOENT;
1499 	if (!inode)
1500 		goto out_path_put;
1501 
1502 	if (should_follow_link(inode, follow)) {
1503 		if (nd->flags & LOOKUP_RCU) {
1504 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1505 				err = -ECHILD;
1506 				goto out_err;
1507 			}
1508 		}
1509 		BUG_ON(inode != path->dentry->d_inode);
1510 		return 1;
1511 	}
1512 	path_to_nameidata(path, nd);
1513 	nd->inode = inode;
1514 	return 0;
1515 
1516 out_path_put:
1517 	path_to_nameidata(path, nd);
1518 out_err:
1519 	terminate_walk(nd);
1520 	return err;
1521 }
1522 
1523 /*
1524  * This limits recursive symlink follows to 8, while
1525  * limiting consecutive symlinks to 40.
1526  *
1527  * Without that kind of total limit, nasty chains of consecutive
1528  * symlinks can cause almost arbitrarily long lookups.
1529  */
1530 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1531 {
1532 	int res;
1533 
1534 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1535 		path_put_conditional(path, nd);
1536 		path_put(&nd->path);
1537 		return -ELOOP;
1538 	}
1539 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1540 
1541 	nd->depth++;
1542 	current->link_count++;
1543 
1544 	do {
1545 		struct path link = *path;
1546 		void *cookie;
1547 
1548 		res = follow_link(&link, nd, &cookie);
1549 		if (res)
1550 			break;
1551 		res = walk_component(nd, path, &nd->last,
1552 				     nd->last_type, LOOKUP_FOLLOW);
1553 		put_link(nd, &link, cookie);
1554 	} while (res > 0);
1555 
1556 	current->link_count--;
1557 	nd->depth--;
1558 	return res;
1559 }
1560 
1561 /*
1562  * We really don't want to look at inode->i_op->lookup
1563  * when we don't have to. So we keep a cache bit in
1564  * the inode ->i_opflags field that says "yes, we can
1565  * do lookup on this inode".
1566  */
1567 static inline int can_lookup(struct inode *inode)
1568 {
1569 	if (likely(inode->i_opflags & IOP_LOOKUP))
1570 		return 1;
1571 	if (likely(!inode->i_op->lookup))
1572 		return 0;
1573 
1574 	/* We do this once for the lifetime of the inode */
1575 	spin_lock(&inode->i_lock);
1576 	inode->i_opflags |= IOP_LOOKUP;
1577 	spin_unlock(&inode->i_lock);
1578 	return 1;
1579 }
1580 
1581 /*
1582  * We can do the critical dentry name comparison and hashing
1583  * operations one word at a time, but we are limited to:
1584  *
1585  * - Architectures with fast unaligned word accesses. We could
1586  *   do a "get_unaligned()" if this helps and is sufficiently
1587  *   fast.
1588  *
1589  * - Little-endian machines (so that we can generate the mask
1590  *   of low bytes efficiently). Again, we *could* do a byte
1591  *   swapping load on big-endian architectures if that is not
1592  *   expensive enough to make the optimization worthless.
1593  *
1594  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1595  *   do not trap on the (extremely unlikely) case of a page
1596  *   crossing operation.
1597  *
1598  * - Furthermore, we need an efficient 64-bit compile for the
1599  *   64-bit case in order to generate the "number of bytes in
1600  *   the final mask". Again, that could be replaced with a
1601  *   efficient population count instruction or similar.
1602  */
1603 #ifdef CONFIG_DCACHE_WORD_ACCESS
1604 
1605 #include <asm/word-at-a-time.h>
1606 
1607 #ifdef CONFIG_64BIT
1608 
1609 static inline unsigned int fold_hash(unsigned long hash)
1610 {
1611 	hash += hash >> (8*sizeof(int));
1612 	return hash;
1613 }
1614 
1615 #else	/* 32-bit case */
1616 
1617 #define fold_hash(x) (x)
1618 
1619 #endif
1620 
1621 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1622 {
1623 	unsigned long a, mask;
1624 	unsigned long hash = 0;
1625 
1626 	for (;;) {
1627 		a = load_unaligned_zeropad(name);
1628 		if (len < sizeof(unsigned long))
1629 			break;
1630 		hash += a;
1631 		hash *= 9;
1632 		name += sizeof(unsigned long);
1633 		len -= sizeof(unsigned long);
1634 		if (!len)
1635 			goto done;
1636 	}
1637 	mask = ~(~0ul << len*8);
1638 	hash += mask & a;
1639 done:
1640 	return fold_hash(hash);
1641 }
1642 EXPORT_SYMBOL(full_name_hash);
1643 
1644 /*
1645  * Calculate the length and hash of the path component, and
1646  * return the length of the component;
1647  */
1648 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1649 {
1650 	unsigned long a, b, adata, bdata, mask, hash, len;
1651 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1652 
1653 	hash = a = 0;
1654 	len = -sizeof(unsigned long);
1655 	do {
1656 		hash = (hash + a) * 9;
1657 		len += sizeof(unsigned long);
1658 		a = load_unaligned_zeropad(name+len);
1659 		b = a ^ REPEAT_BYTE('/');
1660 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1661 
1662 	adata = prep_zero_mask(a, adata, &constants);
1663 	bdata = prep_zero_mask(b, bdata, &constants);
1664 
1665 	mask = create_zero_mask(adata | bdata);
1666 
1667 	hash += a & zero_bytemask(mask);
1668 	*hashp = fold_hash(hash);
1669 
1670 	return len + find_zero(mask);
1671 }
1672 
1673 #else
1674 
1675 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1676 {
1677 	unsigned long hash = init_name_hash();
1678 	while (len--)
1679 		hash = partial_name_hash(*name++, hash);
1680 	return end_name_hash(hash);
1681 }
1682 EXPORT_SYMBOL(full_name_hash);
1683 
1684 /*
1685  * We know there's a real path component here of at least
1686  * one character.
1687  */
1688 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1689 {
1690 	unsigned long hash = init_name_hash();
1691 	unsigned long len = 0, c;
1692 
1693 	c = (unsigned char)*name;
1694 	do {
1695 		len++;
1696 		hash = partial_name_hash(c, hash);
1697 		c = (unsigned char)name[len];
1698 	} while (c && c != '/');
1699 	*hashp = end_name_hash(hash);
1700 	return len;
1701 }
1702 
1703 #endif
1704 
1705 /*
1706  * Name resolution.
1707  * This is the basic name resolution function, turning a pathname into
1708  * the final dentry. We expect 'base' to be positive and a directory.
1709  *
1710  * Returns 0 and nd will have valid dentry and mnt on success.
1711  * Returns error and drops reference to input namei data on failure.
1712  */
1713 static int link_path_walk(const char *name, struct nameidata *nd)
1714 {
1715 	struct path next;
1716 	int err;
1717 
1718 	while (*name=='/')
1719 		name++;
1720 	if (!*name)
1721 		return 0;
1722 
1723 	/* At this point we know we have a real path component. */
1724 	for(;;) {
1725 		struct qstr this;
1726 		long len;
1727 		int type;
1728 
1729 		err = may_lookup(nd);
1730  		if (err)
1731 			break;
1732 
1733 		len = hash_name(name, &this.hash);
1734 		this.name = name;
1735 		this.len = len;
1736 
1737 		type = LAST_NORM;
1738 		if (name[0] == '.') switch (len) {
1739 			case 2:
1740 				if (name[1] == '.') {
1741 					type = LAST_DOTDOT;
1742 					nd->flags |= LOOKUP_JUMPED;
1743 				}
1744 				break;
1745 			case 1:
1746 				type = LAST_DOT;
1747 		}
1748 		if (likely(type == LAST_NORM)) {
1749 			struct dentry *parent = nd->path.dentry;
1750 			nd->flags &= ~LOOKUP_JUMPED;
1751 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1752 				err = parent->d_op->d_hash(parent, nd->inode,
1753 							   &this);
1754 				if (err < 0)
1755 					break;
1756 			}
1757 		}
1758 
1759 		if (!name[len])
1760 			goto last_component;
1761 		/*
1762 		 * If it wasn't NUL, we know it was '/'. Skip that
1763 		 * slash, and continue until no more slashes.
1764 		 */
1765 		do {
1766 			len++;
1767 		} while (unlikely(name[len] == '/'));
1768 		if (!name[len])
1769 			goto last_component;
1770 		name += len;
1771 
1772 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1773 		if (err < 0)
1774 			return err;
1775 
1776 		if (err) {
1777 			err = nested_symlink(&next, nd);
1778 			if (err)
1779 				return err;
1780 		}
1781 		if (can_lookup(nd->inode))
1782 			continue;
1783 		err = -ENOTDIR;
1784 		break;
1785 		/* here ends the main loop */
1786 
1787 last_component:
1788 		nd->last = this;
1789 		nd->last_type = type;
1790 		return 0;
1791 	}
1792 	terminate_walk(nd);
1793 	return err;
1794 }
1795 
1796 static int path_init(int dfd, const char *name, unsigned int flags,
1797 		     struct nameidata *nd, struct file **fp)
1798 {
1799 	int retval = 0;
1800 	int fput_needed;
1801 	struct file *file;
1802 
1803 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1804 	nd->flags = flags | LOOKUP_JUMPED;
1805 	nd->depth = 0;
1806 	if (flags & LOOKUP_ROOT) {
1807 		struct inode *inode = nd->root.dentry->d_inode;
1808 		if (*name) {
1809 			if (!inode->i_op->lookup)
1810 				return -ENOTDIR;
1811 			retval = inode_permission(inode, MAY_EXEC);
1812 			if (retval)
1813 				return retval;
1814 		}
1815 		nd->path = nd->root;
1816 		nd->inode = inode;
1817 		if (flags & LOOKUP_RCU) {
1818 			lock_rcu_walk();
1819 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1820 		} else {
1821 			path_get(&nd->path);
1822 		}
1823 		return 0;
1824 	}
1825 
1826 	nd->root.mnt = NULL;
1827 
1828 	if (*name=='/') {
1829 		if (flags & LOOKUP_RCU) {
1830 			lock_rcu_walk();
1831 			set_root_rcu(nd);
1832 		} else {
1833 			set_root(nd);
1834 			path_get(&nd->root);
1835 		}
1836 		nd->path = nd->root;
1837 	} else if (dfd == AT_FDCWD) {
1838 		if (flags & LOOKUP_RCU) {
1839 			struct fs_struct *fs = current->fs;
1840 			unsigned seq;
1841 
1842 			lock_rcu_walk();
1843 
1844 			do {
1845 				seq = read_seqcount_begin(&fs->seq);
1846 				nd->path = fs->pwd;
1847 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1848 			} while (read_seqcount_retry(&fs->seq, seq));
1849 		} else {
1850 			get_fs_pwd(current->fs, &nd->path);
1851 		}
1852 	} else {
1853 		struct dentry *dentry;
1854 
1855 		file = fget_raw_light(dfd, &fput_needed);
1856 		retval = -EBADF;
1857 		if (!file)
1858 			goto out_fail;
1859 
1860 		dentry = file->f_path.dentry;
1861 
1862 		if (*name) {
1863 			retval = -ENOTDIR;
1864 			if (!S_ISDIR(dentry->d_inode->i_mode))
1865 				goto fput_fail;
1866 
1867 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1868 			if (retval)
1869 				goto fput_fail;
1870 		}
1871 
1872 		nd->path = file->f_path;
1873 		if (flags & LOOKUP_RCU) {
1874 			if (fput_needed)
1875 				*fp = file;
1876 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1877 			lock_rcu_walk();
1878 		} else {
1879 			path_get(&file->f_path);
1880 			fput_light(file, fput_needed);
1881 		}
1882 	}
1883 
1884 	nd->inode = nd->path.dentry->d_inode;
1885 	return 0;
1886 
1887 fput_fail:
1888 	fput_light(file, fput_needed);
1889 out_fail:
1890 	return retval;
1891 }
1892 
1893 static inline int lookup_last(struct nameidata *nd, struct path *path)
1894 {
1895 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1896 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1897 
1898 	nd->flags &= ~LOOKUP_PARENT;
1899 	return walk_component(nd, path, &nd->last, nd->last_type,
1900 					nd->flags & LOOKUP_FOLLOW);
1901 }
1902 
1903 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1904 static int path_lookupat(int dfd, const char *name,
1905 				unsigned int flags, struct nameidata *nd)
1906 {
1907 	struct file *base = NULL;
1908 	struct path path;
1909 	int err;
1910 
1911 	/*
1912 	 * Path walking is largely split up into 2 different synchronisation
1913 	 * schemes, rcu-walk and ref-walk (explained in
1914 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1915 	 * path walk code, but some things particularly setup, cleanup, and
1916 	 * following mounts are sufficiently divergent that functions are
1917 	 * duplicated. Typically there is a function foo(), and its RCU
1918 	 * analogue, foo_rcu().
1919 	 *
1920 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1921 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1922 	 * be handled by restarting a traditional ref-walk (which will always
1923 	 * be able to complete).
1924 	 */
1925 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1926 
1927 	if (unlikely(err))
1928 		return err;
1929 
1930 	current->total_link_count = 0;
1931 	err = link_path_walk(name, nd);
1932 
1933 	if (!err && !(flags & LOOKUP_PARENT)) {
1934 		err = lookup_last(nd, &path);
1935 		while (err > 0) {
1936 			void *cookie;
1937 			struct path link = path;
1938 			err = may_follow_link(&link, nd);
1939 			if (unlikely(err))
1940 				break;
1941 			nd->flags |= LOOKUP_PARENT;
1942 			err = follow_link(&link, nd, &cookie);
1943 			if (err)
1944 				break;
1945 			err = lookup_last(nd, &path);
1946 			put_link(nd, &link, cookie);
1947 		}
1948 	}
1949 
1950 	if (!err)
1951 		err = complete_walk(nd);
1952 
1953 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1954 		if (!nd->inode->i_op->lookup) {
1955 			path_put(&nd->path);
1956 			err = -ENOTDIR;
1957 		}
1958 	}
1959 
1960 	if (base)
1961 		fput(base);
1962 
1963 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1964 		path_put(&nd->root);
1965 		nd->root.mnt = NULL;
1966 	}
1967 	return err;
1968 }
1969 
1970 static int do_path_lookup(int dfd, const char *name,
1971 				unsigned int flags, struct nameidata *nd)
1972 {
1973 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1974 	if (unlikely(retval == -ECHILD))
1975 		retval = path_lookupat(dfd, name, flags, nd);
1976 	if (unlikely(retval == -ESTALE))
1977 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1978 
1979 	if (likely(!retval)) {
1980 		if (unlikely(!audit_dummy_context())) {
1981 			if (nd->path.dentry && nd->inode)
1982 				audit_inode(name, nd->path.dentry);
1983 		}
1984 	}
1985 	return retval;
1986 }
1987 
1988 /* does lookup, returns the object with parent locked */
1989 struct dentry *kern_path_locked(const char *name, struct path *path)
1990 {
1991 	struct nameidata nd;
1992 	struct dentry *d;
1993 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1994 	if (err)
1995 		return ERR_PTR(err);
1996 	if (nd.last_type != LAST_NORM) {
1997 		path_put(&nd.path);
1998 		return ERR_PTR(-EINVAL);
1999 	}
2000 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2001 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2002 	if (IS_ERR(d)) {
2003 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2004 		path_put(&nd.path);
2005 		return d;
2006 	}
2007 	*path = nd.path;
2008 	return d;
2009 }
2010 
2011 int kern_path(const char *name, unsigned int flags, struct path *path)
2012 {
2013 	struct nameidata nd;
2014 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2015 	if (!res)
2016 		*path = nd.path;
2017 	return res;
2018 }
2019 
2020 /**
2021  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2022  * @dentry:  pointer to dentry of the base directory
2023  * @mnt: pointer to vfs mount of the base directory
2024  * @name: pointer to file name
2025  * @flags: lookup flags
2026  * @path: pointer to struct path to fill
2027  */
2028 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2029 		    const char *name, unsigned int flags,
2030 		    struct path *path)
2031 {
2032 	struct nameidata nd;
2033 	int err;
2034 	nd.root.dentry = dentry;
2035 	nd.root.mnt = mnt;
2036 	BUG_ON(flags & LOOKUP_PARENT);
2037 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2038 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2039 	if (!err)
2040 		*path = nd.path;
2041 	return err;
2042 }
2043 
2044 /*
2045  * Restricted form of lookup. Doesn't follow links, single-component only,
2046  * needs parent already locked. Doesn't follow mounts.
2047  * SMP-safe.
2048  */
2049 static struct dentry *lookup_hash(struct nameidata *nd)
2050 {
2051 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2052 }
2053 
2054 /**
2055  * lookup_one_len - filesystem helper to lookup single pathname component
2056  * @name:	pathname component to lookup
2057  * @base:	base directory to lookup from
2058  * @len:	maximum length @len should be interpreted to
2059  *
2060  * Note that this routine is purely a helper for filesystem usage and should
2061  * not be called by generic code.  Also note that by using this function the
2062  * nameidata argument is passed to the filesystem methods and a filesystem
2063  * using this helper needs to be prepared for that.
2064  */
2065 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2066 {
2067 	struct qstr this;
2068 	unsigned int c;
2069 	int err;
2070 
2071 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2072 
2073 	this.name = name;
2074 	this.len = len;
2075 	this.hash = full_name_hash(name, len);
2076 	if (!len)
2077 		return ERR_PTR(-EACCES);
2078 
2079 	while (len--) {
2080 		c = *(const unsigned char *)name++;
2081 		if (c == '/' || c == '\0')
2082 			return ERR_PTR(-EACCES);
2083 	}
2084 	/*
2085 	 * See if the low-level filesystem might want
2086 	 * to use its own hash..
2087 	 */
2088 	if (base->d_flags & DCACHE_OP_HASH) {
2089 		int err = base->d_op->d_hash(base, base->d_inode, &this);
2090 		if (err < 0)
2091 			return ERR_PTR(err);
2092 	}
2093 
2094 	err = inode_permission(base->d_inode, MAY_EXEC);
2095 	if (err)
2096 		return ERR_PTR(err);
2097 
2098 	return __lookup_hash(&this, base, 0);
2099 }
2100 
2101 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2102 		 struct path *path, int *empty)
2103 {
2104 	struct nameidata nd;
2105 	char *tmp = getname_flags(name, flags, empty);
2106 	int err = PTR_ERR(tmp);
2107 	if (!IS_ERR(tmp)) {
2108 
2109 		BUG_ON(flags & LOOKUP_PARENT);
2110 
2111 		err = do_path_lookup(dfd, tmp, flags, &nd);
2112 		putname(tmp);
2113 		if (!err)
2114 			*path = nd.path;
2115 	}
2116 	return err;
2117 }
2118 
2119 int user_path_at(int dfd, const char __user *name, unsigned flags,
2120 		 struct path *path)
2121 {
2122 	return user_path_at_empty(dfd, name, flags, path, NULL);
2123 }
2124 
2125 static int user_path_parent(int dfd, const char __user *path,
2126 			struct nameidata *nd, char **name)
2127 {
2128 	char *s = getname(path);
2129 	int error;
2130 
2131 	if (IS_ERR(s))
2132 		return PTR_ERR(s);
2133 
2134 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
2135 	if (error)
2136 		putname(s);
2137 	else
2138 		*name = s;
2139 
2140 	return error;
2141 }
2142 
2143 /*
2144  * It's inline, so penalty for filesystems that don't use sticky bit is
2145  * minimal.
2146  */
2147 static inline int check_sticky(struct inode *dir, struct inode *inode)
2148 {
2149 	kuid_t fsuid = current_fsuid();
2150 
2151 	if (!(dir->i_mode & S_ISVTX))
2152 		return 0;
2153 	if (uid_eq(inode->i_uid, fsuid))
2154 		return 0;
2155 	if (uid_eq(dir->i_uid, fsuid))
2156 		return 0;
2157 	return !inode_capable(inode, CAP_FOWNER);
2158 }
2159 
2160 /*
2161  *	Check whether we can remove a link victim from directory dir, check
2162  *  whether the type of victim is right.
2163  *  1. We can't do it if dir is read-only (done in permission())
2164  *  2. We should have write and exec permissions on dir
2165  *  3. We can't remove anything from append-only dir
2166  *  4. We can't do anything with immutable dir (done in permission())
2167  *  5. If the sticky bit on dir is set we should either
2168  *	a. be owner of dir, or
2169  *	b. be owner of victim, or
2170  *	c. have CAP_FOWNER capability
2171  *  6. If the victim is append-only or immutable we can't do antyhing with
2172  *     links pointing to it.
2173  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2174  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2175  *  9. We can't remove a root or mountpoint.
2176  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2177  *     nfs_async_unlink().
2178  */
2179 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2180 {
2181 	int error;
2182 
2183 	if (!victim->d_inode)
2184 		return -ENOENT;
2185 
2186 	BUG_ON(victim->d_parent->d_inode != dir);
2187 	audit_inode_child(victim, dir);
2188 
2189 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2190 	if (error)
2191 		return error;
2192 	if (IS_APPEND(dir))
2193 		return -EPERM;
2194 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2195 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2196 		return -EPERM;
2197 	if (isdir) {
2198 		if (!S_ISDIR(victim->d_inode->i_mode))
2199 			return -ENOTDIR;
2200 		if (IS_ROOT(victim))
2201 			return -EBUSY;
2202 	} else if (S_ISDIR(victim->d_inode->i_mode))
2203 		return -EISDIR;
2204 	if (IS_DEADDIR(dir))
2205 		return -ENOENT;
2206 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2207 		return -EBUSY;
2208 	return 0;
2209 }
2210 
2211 /*	Check whether we can create an object with dentry child in directory
2212  *  dir.
2213  *  1. We can't do it if child already exists (open has special treatment for
2214  *     this case, but since we are inlined it's OK)
2215  *  2. We can't do it if dir is read-only (done in permission())
2216  *  3. We should have write and exec permissions on dir
2217  *  4. We can't do it if dir is immutable (done in permission())
2218  */
2219 static inline int may_create(struct inode *dir, struct dentry *child)
2220 {
2221 	if (child->d_inode)
2222 		return -EEXIST;
2223 	if (IS_DEADDIR(dir))
2224 		return -ENOENT;
2225 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2226 }
2227 
2228 /*
2229  * p1 and p2 should be directories on the same fs.
2230  */
2231 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2232 {
2233 	struct dentry *p;
2234 
2235 	if (p1 == p2) {
2236 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2237 		return NULL;
2238 	}
2239 
2240 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2241 
2242 	p = d_ancestor(p2, p1);
2243 	if (p) {
2244 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2245 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2246 		return p;
2247 	}
2248 
2249 	p = d_ancestor(p1, p2);
2250 	if (p) {
2251 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2252 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2253 		return p;
2254 	}
2255 
2256 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2257 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2258 	return NULL;
2259 }
2260 
2261 void unlock_rename(struct dentry *p1, struct dentry *p2)
2262 {
2263 	mutex_unlock(&p1->d_inode->i_mutex);
2264 	if (p1 != p2) {
2265 		mutex_unlock(&p2->d_inode->i_mutex);
2266 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2267 	}
2268 }
2269 
2270 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2271 		bool want_excl)
2272 {
2273 	int error = may_create(dir, dentry);
2274 	if (error)
2275 		return error;
2276 
2277 	if (!dir->i_op->create)
2278 		return -EACCES;	/* shouldn't it be ENOSYS? */
2279 	mode &= S_IALLUGO;
2280 	mode |= S_IFREG;
2281 	error = security_inode_create(dir, dentry, mode);
2282 	if (error)
2283 		return error;
2284 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2285 	if (!error)
2286 		fsnotify_create(dir, dentry);
2287 	return error;
2288 }
2289 
2290 static int may_open(struct path *path, int acc_mode, int flag)
2291 {
2292 	struct dentry *dentry = path->dentry;
2293 	struct inode *inode = dentry->d_inode;
2294 	int error;
2295 
2296 	/* O_PATH? */
2297 	if (!acc_mode)
2298 		return 0;
2299 
2300 	if (!inode)
2301 		return -ENOENT;
2302 
2303 	switch (inode->i_mode & S_IFMT) {
2304 	case S_IFLNK:
2305 		return -ELOOP;
2306 	case S_IFDIR:
2307 		if (acc_mode & MAY_WRITE)
2308 			return -EISDIR;
2309 		break;
2310 	case S_IFBLK:
2311 	case S_IFCHR:
2312 		if (path->mnt->mnt_flags & MNT_NODEV)
2313 			return -EACCES;
2314 		/*FALLTHRU*/
2315 	case S_IFIFO:
2316 	case S_IFSOCK:
2317 		flag &= ~O_TRUNC;
2318 		break;
2319 	}
2320 
2321 	error = inode_permission(inode, acc_mode);
2322 	if (error)
2323 		return error;
2324 
2325 	/*
2326 	 * An append-only file must be opened in append mode for writing.
2327 	 */
2328 	if (IS_APPEND(inode)) {
2329 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2330 			return -EPERM;
2331 		if (flag & O_TRUNC)
2332 			return -EPERM;
2333 	}
2334 
2335 	/* O_NOATIME can only be set by the owner or superuser */
2336 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2337 		return -EPERM;
2338 
2339 	return 0;
2340 }
2341 
2342 static int handle_truncate(struct file *filp)
2343 {
2344 	struct path *path = &filp->f_path;
2345 	struct inode *inode = path->dentry->d_inode;
2346 	int error = get_write_access(inode);
2347 	if (error)
2348 		return error;
2349 	/*
2350 	 * Refuse to truncate files with mandatory locks held on them.
2351 	 */
2352 	error = locks_verify_locked(inode);
2353 	if (!error)
2354 		error = security_path_truncate(path);
2355 	if (!error) {
2356 		error = do_truncate(path->dentry, 0,
2357 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2358 				    filp);
2359 	}
2360 	put_write_access(inode);
2361 	return error;
2362 }
2363 
2364 static inline int open_to_namei_flags(int flag)
2365 {
2366 	if ((flag & O_ACCMODE) == 3)
2367 		flag--;
2368 	return flag;
2369 }
2370 
2371 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2372 {
2373 	int error = security_path_mknod(dir, dentry, mode, 0);
2374 	if (error)
2375 		return error;
2376 
2377 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2378 	if (error)
2379 		return error;
2380 
2381 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2382 }
2383 
2384 /*
2385  * Attempt to atomically look up, create and open a file from a negative
2386  * dentry.
2387  *
2388  * Returns 0 if successful.  The file will have been created and attached to
2389  * @file by the filesystem calling finish_open().
2390  *
2391  * Returns 1 if the file was looked up only or didn't need creating.  The
2392  * caller will need to perform the open themselves.  @path will have been
2393  * updated to point to the new dentry.  This may be negative.
2394  *
2395  * Returns an error code otherwise.
2396  */
2397 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2398 			struct path *path, struct file *file,
2399 			const struct open_flags *op,
2400 			bool got_write, bool need_lookup,
2401 			int *opened)
2402 {
2403 	struct inode *dir =  nd->path.dentry->d_inode;
2404 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2405 	umode_t mode;
2406 	int error;
2407 	int acc_mode;
2408 	int create_error = 0;
2409 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2410 
2411 	BUG_ON(dentry->d_inode);
2412 
2413 	/* Don't create child dentry for a dead directory. */
2414 	if (unlikely(IS_DEADDIR(dir))) {
2415 		error = -ENOENT;
2416 		goto out;
2417 	}
2418 
2419 	mode = op->mode;
2420 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2421 		mode &= ~current_umask();
2422 
2423 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2424 		open_flag &= ~O_TRUNC;
2425 		*opened |= FILE_CREATED;
2426 	}
2427 
2428 	/*
2429 	 * Checking write permission is tricky, bacuse we don't know if we are
2430 	 * going to actually need it: O_CREAT opens should work as long as the
2431 	 * file exists.  But checking existence breaks atomicity.  The trick is
2432 	 * to check access and if not granted clear O_CREAT from the flags.
2433 	 *
2434 	 * Another problem is returing the "right" error value (e.g. for an
2435 	 * O_EXCL open we want to return EEXIST not EROFS).
2436 	 */
2437 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2438 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2439 		if (!(open_flag & O_CREAT)) {
2440 			/*
2441 			 * No O_CREATE -> atomicity not a requirement -> fall
2442 			 * back to lookup + open
2443 			 */
2444 			goto no_open;
2445 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2446 			/* Fall back and fail with the right error */
2447 			create_error = -EROFS;
2448 			goto no_open;
2449 		} else {
2450 			/* No side effects, safe to clear O_CREAT */
2451 			create_error = -EROFS;
2452 			open_flag &= ~O_CREAT;
2453 		}
2454 	}
2455 
2456 	if (open_flag & O_CREAT) {
2457 		error = may_o_create(&nd->path, dentry, mode);
2458 		if (error) {
2459 			create_error = error;
2460 			if (open_flag & O_EXCL)
2461 				goto no_open;
2462 			open_flag &= ~O_CREAT;
2463 		}
2464 	}
2465 
2466 	if (nd->flags & LOOKUP_DIRECTORY)
2467 		open_flag |= O_DIRECTORY;
2468 
2469 	file->f_path.dentry = DENTRY_NOT_SET;
2470 	file->f_path.mnt = nd->path.mnt;
2471 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2472 				      opened);
2473 	if (error < 0) {
2474 		if (create_error && error == -ENOENT)
2475 			error = create_error;
2476 		goto out;
2477 	}
2478 
2479 	acc_mode = op->acc_mode;
2480 	if (*opened & FILE_CREATED) {
2481 		fsnotify_create(dir, dentry);
2482 		acc_mode = MAY_OPEN;
2483 	}
2484 
2485 	if (error) {	/* returned 1, that is */
2486 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2487 			error = -EIO;
2488 			goto out;
2489 		}
2490 		if (file->f_path.dentry) {
2491 			dput(dentry);
2492 			dentry = file->f_path.dentry;
2493 		}
2494 		if (create_error && dentry->d_inode == NULL) {
2495 			error = create_error;
2496 			goto out;
2497 		}
2498 		goto looked_up;
2499 	}
2500 
2501 	/*
2502 	 * We didn't have the inode before the open, so check open permission
2503 	 * here.
2504 	 */
2505 	error = may_open(&file->f_path, acc_mode, open_flag);
2506 	if (error)
2507 		fput(file);
2508 
2509 out:
2510 	dput(dentry);
2511 	return error;
2512 
2513 no_open:
2514 	if (need_lookup) {
2515 		dentry = lookup_real(dir, dentry, nd->flags);
2516 		if (IS_ERR(dentry))
2517 			return PTR_ERR(dentry);
2518 
2519 		if (create_error) {
2520 			int open_flag = op->open_flag;
2521 
2522 			error = create_error;
2523 			if ((open_flag & O_EXCL)) {
2524 				if (!dentry->d_inode)
2525 					goto out;
2526 			} else if (!dentry->d_inode) {
2527 				goto out;
2528 			} else if ((open_flag & O_TRUNC) &&
2529 				   S_ISREG(dentry->d_inode->i_mode)) {
2530 				goto out;
2531 			}
2532 			/* will fail later, go on to get the right error */
2533 		}
2534 	}
2535 looked_up:
2536 	path->dentry = dentry;
2537 	path->mnt = nd->path.mnt;
2538 	return 1;
2539 }
2540 
2541 /*
2542  * Look up and maybe create and open the last component.
2543  *
2544  * Must be called with i_mutex held on parent.
2545  *
2546  * Returns 0 if the file was successfully atomically created (if necessary) and
2547  * opened.  In this case the file will be returned attached to @file.
2548  *
2549  * Returns 1 if the file was not completely opened at this time, though lookups
2550  * and creations will have been performed and the dentry returned in @path will
2551  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2552  * specified then a negative dentry may be returned.
2553  *
2554  * An error code is returned otherwise.
2555  *
2556  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2557  * cleared otherwise prior to returning.
2558  */
2559 static int lookup_open(struct nameidata *nd, struct path *path,
2560 			struct file *file,
2561 			const struct open_flags *op,
2562 			bool got_write, int *opened)
2563 {
2564 	struct dentry *dir = nd->path.dentry;
2565 	struct inode *dir_inode = dir->d_inode;
2566 	struct dentry *dentry;
2567 	int error;
2568 	bool need_lookup;
2569 
2570 	*opened &= ~FILE_CREATED;
2571 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2572 	if (IS_ERR(dentry))
2573 		return PTR_ERR(dentry);
2574 
2575 	/* Cached positive dentry: will open in f_op->open */
2576 	if (!need_lookup && dentry->d_inode)
2577 		goto out_no_open;
2578 
2579 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2580 		return atomic_open(nd, dentry, path, file, op, got_write,
2581 				   need_lookup, opened);
2582 	}
2583 
2584 	if (need_lookup) {
2585 		BUG_ON(dentry->d_inode);
2586 
2587 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2588 		if (IS_ERR(dentry))
2589 			return PTR_ERR(dentry);
2590 	}
2591 
2592 	/* Negative dentry, just create the file */
2593 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2594 		umode_t mode = op->mode;
2595 		if (!IS_POSIXACL(dir->d_inode))
2596 			mode &= ~current_umask();
2597 		/*
2598 		 * This write is needed to ensure that a
2599 		 * rw->ro transition does not occur between
2600 		 * the time when the file is created and when
2601 		 * a permanent write count is taken through
2602 		 * the 'struct file' in finish_open().
2603 		 */
2604 		if (!got_write) {
2605 			error = -EROFS;
2606 			goto out_dput;
2607 		}
2608 		*opened |= FILE_CREATED;
2609 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2610 		if (error)
2611 			goto out_dput;
2612 		error = vfs_create(dir->d_inode, dentry, mode,
2613 				   nd->flags & LOOKUP_EXCL);
2614 		if (error)
2615 			goto out_dput;
2616 	}
2617 out_no_open:
2618 	path->dentry = dentry;
2619 	path->mnt = nd->path.mnt;
2620 	return 1;
2621 
2622 out_dput:
2623 	dput(dentry);
2624 	return error;
2625 }
2626 
2627 /*
2628  * Handle the last step of open()
2629  */
2630 static int do_last(struct nameidata *nd, struct path *path,
2631 		   struct file *file, const struct open_flags *op,
2632 		   int *opened, const char *pathname)
2633 {
2634 	struct dentry *dir = nd->path.dentry;
2635 	int open_flag = op->open_flag;
2636 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2637 	bool got_write = false;
2638 	int acc_mode = op->acc_mode;
2639 	struct inode *inode;
2640 	bool symlink_ok = false;
2641 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2642 	bool retried = false;
2643 	int error;
2644 
2645 	nd->flags &= ~LOOKUP_PARENT;
2646 	nd->flags |= op->intent;
2647 
2648 	switch (nd->last_type) {
2649 	case LAST_DOTDOT:
2650 	case LAST_DOT:
2651 		error = handle_dots(nd, nd->last_type);
2652 		if (error)
2653 			return error;
2654 		/* fallthrough */
2655 	case LAST_ROOT:
2656 		error = complete_walk(nd);
2657 		if (error)
2658 			return error;
2659 		audit_inode(pathname, nd->path.dentry);
2660 		if (open_flag & O_CREAT) {
2661 			error = -EISDIR;
2662 			goto out;
2663 		}
2664 		goto finish_open;
2665 	case LAST_BIND:
2666 		error = complete_walk(nd);
2667 		if (error)
2668 			return error;
2669 		audit_inode(pathname, dir);
2670 		goto finish_open;
2671 	}
2672 
2673 	if (!(open_flag & O_CREAT)) {
2674 		if (nd->last.name[nd->last.len])
2675 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2676 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2677 			symlink_ok = true;
2678 		/* we _can_ be in RCU mode here */
2679 		error = lookup_fast(nd, &nd->last, path, &inode);
2680 		if (likely(!error))
2681 			goto finish_lookup;
2682 
2683 		if (error < 0)
2684 			goto out;
2685 
2686 		BUG_ON(nd->inode != dir->d_inode);
2687 	} else {
2688 		/* create side of things */
2689 		/*
2690 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2691 		 * has been cleared when we got to the last component we are
2692 		 * about to look up
2693 		 */
2694 		error = complete_walk(nd);
2695 		if (error)
2696 			return error;
2697 
2698 		audit_inode(pathname, dir);
2699 		error = -EISDIR;
2700 		/* trailing slashes? */
2701 		if (nd->last.name[nd->last.len])
2702 			goto out;
2703 	}
2704 
2705 retry_lookup:
2706 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2707 		error = mnt_want_write(nd->path.mnt);
2708 		if (!error)
2709 			got_write = true;
2710 		/*
2711 		 * do _not_ fail yet - we might not need that or fail with
2712 		 * a different error; let lookup_open() decide; we'll be
2713 		 * dropping this one anyway.
2714 		 */
2715 	}
2716 	mutex_lock(&dir->d_inode->i_mutex);
2717 	error = lookup_open(nd, path, file, op, got_write, opened);
2718 	mutex_unlock(&dir->d_inode->i_mutex);
2719 
2720 	if (error <= 0) {
2721 		if (error)
2722 			goto out;
2723 
2724 		if ((*opened & FILE_CREATED) ||
2725 		    !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2726 			will_truncate = false;
2727 
2728 		audit_inode(pathname, file->f_path.dentry);
2729 		goto opened;
2730 	}
2731 
2732 	if (*opened & FILE_CREATED) {
2733 		/* Don't check for write permission, don't truncate */
2734 		open_flag &= ~O_TRUNC;
2735 		will_truncate = false;
2736 		acc_mode = MAY_OPEN;
2737 		path_to_nameidata(path, nd);
2738 		goto finish_open_created;
2739 	}
2740 
2741 	/*
2742 	 * create/update audit record if it already exists.
2743 	 */
2744 	if (path->dentry->d_inode)
2745 		audit_inode(pathname, path->dentry);
2746 
2747 	/*
2748 	 * If atomic_open() acquired write access it is dropped now due to
2749 	 * possible mount and symlink following (this might be optimized away if
2750 	 * necessary...)
2751 	 */
2752 	if (got_write) {
2753 		mnt_drop_write(nd->path.mnt);
2754 		got_write = false;
2755 	}
2756 
2757 	error = -EEXIST;
2758 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2759 		goto exit_dput;
2760 
2761 	error = follow_managed(path, nd->flags);
2762 	if (error < 0)
2763 		goto exit_dput;
2764 
2765 	if (error)
2766 		nd->flags |= LOOKUP_JUMPED;
2767 
2768 	BUG_ON(nd->flags & LOOKUP_RCU);
2769 	inode = path->dentry->d_inode;
2770 finish_lookup:
2771 	/* we _can_ be in RCU mode here */
2772 	error = -ENOENT;
2773 	if (!inode) {
2774 		path_to_nameidata(path, nd);
2775 		goto out;
2776 	}
2777 
2778 	if (should_follow_link(inode, !symlink_ok)) {
2779 		if (nd->flags & LOOKUP_RCU) {
2780 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2781 				error = -ECHILD;
2782 				goto out;
2783 			}
2784 		}
2785 		BUG_ON(inode != path->dentry->d_inode);
2786 		return 1;
2787 	}
2788 
2789 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2790 		path_to_nameidata(path, nd);
2791 	} else {
2792 		save_parent.dentry = nd->path.dentry;
2793 		save_parent.mnt = mntget(path->mnt);
2794 		nd->path.dentry = path->dentry;
2795 
2796 	}
2797 	nd->inode = inode;
2798 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2799 	error = complete_walk(nd);
2800 	if (error) {
2801 		path_put(&save_parent);
2802 		return error;
2803 	}
2804 	error = -EISDIR;
2805 	if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2806 		goto out;
2807 	error = -ENOTDIR;
2808 	if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2809 		goto out;
2810 	audit_inode(pathname, nd->path.dentry);
2811 finish_open:
2812 	if (!S_ISREG(nd->inode->i_mode))
2813 		will_truncate = false;
2814 
2815 	if (will_truncate) {
2816 		error = mnt_want_write(nd->path.mnt);
2817 		if (error)
2818 			goto out;
2819 		got_write = true;
2820 	}
2821 finish_open_created:
2822 	error = may_open(&nd->path, acc_mode, open_flag);
2823 	if (error)
2824 		goto out;
2825 	file->f_path.mnt = nd->path.mnt;
2826 	error = finish_open(file, nd->path.dentry, NULL, opened);
2827 	if (error) {
2828 		if (error == -EOPENSTALE)
2829 			goto stale_open;
2830 		goto out;
2831 	}
2832 opened:
2833 	error = open_check_o_direct(file);
2834 	if (error)
2835 		goto exit_fput;
2836 	error = ima_file_check(file, op->acc_mode);
2837 	if (error)
2838 		goto exit_fput;
2839 
2840 	if (will_truncate) {
2841 		error = handle_truncate(file);
2842 		if (error)
2843 			goto exit_fput;
2844 	}
2845 out:
2846 	if (got_write)
2847 		mnt_drop_write(nd->path.mnt);
2848 	path_put(&save_parent);
2849 	terminate_walk(nd);
2850 	return error;
2851 
2852 exit_dput:
2853 	path_put_conditional(path, nd);
2854 	goto out;
2855 exit_fput:
2856 	fput(file);
2857 	goto out;
2858 
2859 stale_open:
2860 	/* If no saved parent or already retried then can't retry */
2861 	if (!save_parent.dentry || retried)
2862 		goto out;
2863 
2864 	BUG_ON(save_parent.dentry != dir);
2865 	path_put(&nd->path);
2866 	nd->path = save_parent;
2867 	nd->inode = dir->d_inode;
2868 	save_parent.mnt = NULL;
2869 	save_parent.dentry = NULL;
2870 	if (got_write) {
2871 		mnt_drop_write(nd->path.mnt);
2872 		got_write = false;
2873 	}
2874 	retried = true;
2875 	goto retry_lookup;
2876 }
2877 
2878 static struct file *path_openat(int dfd, const char *pathname,
2879 		struct nameidata *nd, const struct open_flags *op, int flags)
2880 {
2881 	struct file *base = NULL;
2882 	struct file *file;
2883 	struct path path;
2884 	int opened = 0;
2885 	int error;
2886 
2887 	file = get_empty_filp();
2888 	if (!file)
2889 		return ERR_PTR(-ENFILE);
2890 
2891 	file->f_flags = op->open_flag;
2892 
2893 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2894 	if (unlikely(error))
2895 		goto out;
2896 
2897 	current->total_link_count = 0;
2898 	error = link_path_walk(pathname, nd);
2899 	if (unlikely(error))
2900 		goto out;
2901 
2902 	error = do_last(nd, &path, file, op, &opened, pathname);
2903 	while (unlikely(error > 0)) { /* trailing symlink */
2904 		struct path link = path;
2905 		void *cookie;
2906 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2907 			path_put_conditional(&path, nd);
2908 			path_put(&nd->path);
2909 			error = -ELOOP;
2910 			break;
2911 		}
2912 		error = may_follow_link(&link, nd);
2913 		if (unlikely(error))
2914 			break;
2915 		nd->flags |= LOOKUP_PARENT;
2916 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2917 		error = follow_link(&link, nd, &cookie);
2918 		if (unlikely(error))
2919 			break;
2920 		error = do_last(nd, &path, file, op, &opened, pathname);
2921 		put_link(nd, &link, cookie);
2922 	}
2923 out:
2924 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2925 		path_put(&nd->root);
2926 	if (base)
2927 		fput(base);
2928 	if (!(opened & FILE_OPENED)) {
2929 		BUG_ON(!error);
2930 		put_filp(file);
2931 	}
2932 	if (unlikely(error)) {
2933 		if (error == -EOPENSTALE) {
2934 			if (flags & LOOKUP_RCU)
2935 				error = -ECHILD;
2936 			else
2937 				error = -ESTALE;
2938 		}
2939 		file = ERR_PTR(error);
2940 	}
2941 	return file;
2942 }
2943 
2944 struct file *do_filp_open(int dfd, const char *pathname,
2945 		const struct open_flags *op, int flags)
2946 {
2947 	struct nameidata nd;
2948 	struct file *filp;
2949 
2950 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2951 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2952 		filp = path_openat(dfd, pathname, &nd, op, flags);
2953 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2954 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2955 	return filp;
2956 }
2957 
2958 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2959 		const char *name, const struct open_flags *op, int flags)
2960 {
2961 	struct nameidata nd;
2962 	struct file *file;
2963 
2964 	nd.root.mnt = mnt;
2965 	nd.root.dentry = dentry;
2966 
2967 	flags |= LOOKUP_ROOT;
2968 
2969 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2970 		return ERR_PTR(-ELOOP);
2971 
2972 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2973 	if (unlikely(file == ERR_PTR(-ECHILD)))
2974 		file = path_openat(-1, name, &nd, op, flags);
2975 	if (unlikely(file == ERR_PTR(-ESTALE)))
2976 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2977 	return file;
2978 }
2979 
2980 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2981 {
2982 	struct dentry *dentry = ERR_PTR(-EEXIST);
2983 	struct nameidata nd;
2984 	int err2;
2985 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2986 	if (error)
2987 		return ERR_PTR(error);
2988 
2989 	/*
2990 	 * Yucky last component or no last component at all?
2991 	 * (foo/., foo/.., /////)
2992 	 */
2993 	if (nd.last_type != LAST_NORM)
2994 		goto out;
2995 	nd.flags &= ~LOOKUP_PARENT;
2996 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2997 
2998 	/* don't fail immediately if it's r/o, at least try to report other errors */
2999 	err2 = mnt_want_write(nd.path.mnt);
3000 	/*
3001 	 * Do the final lookup.
3002 	 */
3003 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3004 	dentry = lookup_hash(&nd);
3005 	if (IS_ERR(dentry))
3006 		goto unlock;
3007 
3008 	error = -EEXIST;
3009 	if (dentry->d_inode)
3010 		goto fail;
3011 	/*
3012 	 * Special case - lookup gave negative, but... we had foo/bar/
3013 	 * From the vfs_mknod() POV we just have a negative dentry -
3014 	 * all is fine. Let's be bastards - you had / on the end, you've
3015 	 * been asking for (non-existent) directory. -ENOENT for you.
3016 	 */
3017 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3018 		error = -ENOENT;
3019 		goto fail;
3020 	}
3021 	if (unlikely(err2)) {
3022 		error = err2;
3023 		goto fail;
3024 	}
3025 	*path = nd.path;
3026 	return dentry;
3027 fail:
3028 	dput(dentry);
3029 	dentry = ERR_PTR(error);
3030 unlock:
3031 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3032 	if (!err2)
3033 		mnt_drop_write(nd.path.mnt);
3034 out:
3035 	path_put(&nd.path);
3036 	return dentry;
3037 }
3038 EXPORT_SYMBOL(kern_path_create);
3039 
3040 void done_path_create(struct path *path, struct dentry *dentry)
3041 {
3042 	dput(dentry);
3043 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3044 	mnt_drop_write(path->mnt);
3045 	path_put(path);
3046 }
3047 EXPORT_SYMBOL(done_path_create);
3048 
3049 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3050 {
3051 	char *tmp = getname(pathname);
3052 	struct dentry *res;
3053 	if (IS_ERR(tmp))
3054 		return ERR_CAST(tmp);
3055 	res = kern_path_create(dfd, tmp, path, is_dir);
3056 	putname(tmp);
3057 	return res;
3058 }
3059 EXPORT_SYMBOL(user_path_create);
3060 
3061 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3062 {
3063 	int error = may_create(dir, dentry);
3064 
3065 	if (error)
3066 		return error;
3067 
3068 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3069 		return -EPERM;
3070 
3071 	if (!dir->i_op->mknod)
3072 		return -EPERM;
3073 
3074 	error = devcgroup_inode_mknod(mode, dev);
3075 	if (error)
3076 		return error;
3077 
3078 	error = security_inode_mknod(dir, dentry, mode, dev);
3079 	if (error)
3080 		return error;
3081 
3082 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3083 	if (!error)
3084 		fsnotify_create(dir, dentry);
3085 	return error;
3086 }
3087 
3088 static int may_mknod(umode_t mode)
3089 {
3090 	switch (mode & S_IFMT) {
3091 	case S_IFREG:
3092 	case S_IFCHR:
3093 	case S_IFBLK:
3094 	case S_IFIFO:
3095 	case S_IFSOCK:
3096 	case 0: /* zero mode translates to S_IFREG */
3097 		return 0;
3098 	case S_IFDIR:
3099 		return -EPERM;
3100 	default:
3101 		return -EINVAL;
3102 	}
3103 }
3104 
3105 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3106 		unsigned, dev)
3107 {
3108 	struct dentry *dentry;
3109 	struct path path;
3110 	int error;
3111 
3112 	error = may_mknod(mode);
3113 	if (error)
3114 		return error;
3115 
3116 	dentry = user_path_create(dfd, filename, &path, 0);
3117 	if (IS_ERR(dentry))
3118 		return PTR_ERR(dentry);
3119 
3120 	if (!IS_POSIXACL(path.dentry->d_inode))
3121 		mode &= ~current_umask();
3122 	error = security_path_mknod(&path, dentry, mode, dev);
3123 	if (error)
3124 		goto out;
3125 	switch (mode & S_IFMT) {
3126 		case 0: case S_IFREG:
3127 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3128 			break;
3129 		case S_IFCHR: case S_IFBLK:
3130 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3131 					new_decode_dev(dev));
3132 			break;
3133 		case S_IFIFO: case S_IFSOCK:
3134 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3135 			break;
3136 	}
3137 out:
3138 	done_path_create(&path, dentry);
3139 	return error;
3140 }
3141 
3142 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3143 {
3144 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3145 }
3146 
3147 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3148 {
3149 	int error = may_create(dir, dentry);
3150 	unsigned max_links = dir->i_sb->s_max_links;
3151 
3152 	if (error)
3153 		return error;
3154 
3155 	if (!dir->i_op->mkdir)
3156 		return -EPERM;
3157 
3158 	mode &= (S_IRWXUGO|S_ISVTX);
3159 	error = security_inode_mkdir(dir, dentry, mode);
3160 	if (error)
3161 		return error;
3162 
3163 	if (max_links && dir->i_nlink >= max_links)
3164 		return -EMLINK;
3165 
3166 	error = dir->i_op->mkdir(dir, dentry, mode);
3167 	if (!error)
3168 		fsnotify_mkdir(dir, dentry);
3169 	return error;
3170 }
3171 
3172 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3173 {
3174 	struct dentry *dentry;
3175 	struct path path;
3176 	int error;
3177 
3178 	dentry = user_path_create(dfd, pathname, &path, 1);
3179 	if (IS_ERR(dentry))
3180 		return PTR_ERR(dentry);
3181 
3182 	if (!IS_POSIXACL(path.dentry->d_inode))
3183 		mode &= ~current_umask();
3184 	error = security_path_mkdir(&path, dentry, mode);
3185 	if (!error)
3186 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3187 	done_path_create(&path, dentry);
3188 	return error;
3189 }
3190 
3191 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3192 {
3193 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3194 }
3195 
3196 /*
3197  * The dentry_unhash() helper will try to drop the dentry early: we
3198  * should have a usage count of 1 if we're the only user of this
3199  * dentry, and if that is true (possibly after pruning the dcache),
3200  * then we drop the dentry now.
3201  *
3202  * A low-level filesystem can, if it choses, legally
3203  * do a
3204  *
3205  *	if (!d_unhashed(dentry))
3206  *		return -EBUSY;
3207  *
3208  * if it cannot handle the case of removing a directory
3209  * that is still in use by something else..
3210  */
3211 void dentry_unhash(struct dentry *dentry)
3212 {
3213 	shrink_dcache_parent(dentry);
3214 	spin_lock(&dentry->d_lock);
3215 	if (dentry->d_count == 1)
3216 		__d_drop(dentry);
3217 	spin_unlock(&dentry->d_lock);
3218 }
3219 
3220 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3221 {
3222 	int error = may_delete(dir, dentry, 1);
3223 
3224 	if (error)
3225 		return error;
3226 
3227 	if (!dir->i_op->rmdir)
3228 		return -EPERM;
3229 
3230 	dget(dentry);
3231 	mutex_lock(&dentry->d_inode->i_mutex);
3232 
3233 	error = -EBUSY;
3234 	if (d_mountpoint(dentry))
3235 		goto out;
3236 
3237 	error = security_inode_rmdir(dir, dentry);
3238 	if (error)
3239 		goto out;
3240 
3241 	shrink_dcache_parent(dentry);
3242 	error = dir->i_op->rmdir(dir, dentry);
3243 	if (error)
3244 		goto out;
3245 
3246 	dentry->d_inode->i_flags |= S_DEAD;
3247 	dont_mount(dentry);
3248 
3249 out:
3250 	mutex_unlock(&dentry->d_inode->i_mutex);
3251 	dput(dentry);
3252 	if (!error)
3253 		d_delete(dentry);
3254 	return error;
3255 }
3256 
3257 static long do_rmdir(int dfd, const char __user *pathname)
3258 {
3259 	int error = 0;
3260 	char * name;
3261 	struct dentry *dentry;
3262 	struct nameidata nd;
3263 
3264 	error = user_path_parent(dfd, pathname, &nd, &name);
3265 	if (error)
3266 		return error;
3267 
3268 	switch(nd.last_type) {
3269 	case LAST_DOTDOT:
3270 		error = -ENOTEMPTY;
3271 		goto exit1;
3272 	case LAST_DOT:
3273 		error = -EINVAL;
3274 		goto exit1;
3275 	case LAST_ROOT:
3276 		error = -EBUSY;
3277 		goto exit1;
3278 	}
3279 
3280 	nd.flags &= ~LOOKUP_PARENT;
3281 	error = mnt_want_write(nd.path.mnt);
3282 	if (error)
3283 		goto exit1;
3284 
3285 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3286 	dentry = lookup_hash(&nd);
3287 	error = PTR_ERR(dentry);
3288 	if (IS_ERR(dentry))
3289 		goto exit2;
3290 	if (!dentry->d_inode) {
3291 		error = -ENOENT;
3292 		goto exit3;
3293 	}
3294 	error = security_path_rmdir(&nd.path, dentry);
3295 	if (error)
3296 		goto exit3;
3297 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3298 exit3:
3299 	dput(dentry);
3300 exit2:
3301 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3302 	mnt_drop_write(nd.path.mnt);
3303 exit1:
3304 	path_put(&nd.path);
3305 	putname(name);
3306 	return error;
3307 }
3308 
3309 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3310 {
3311 	return do_rmdir(AT_FDCWD, pathname);
3312 }
3313 
3314 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3315 {
3316 	int error = may_delete(dir, dentry, 0);
3317 
3318 	if (error)
3319 		return error;
3320 
3321 	if (!dir->i_op->unlink)
3322 		return -EPERM;
3323 
3324 	mutex_lock(&dentry->d_inode->i_mutex);
3325 	if (d_mountpoint(dentry))
3326 		error = -EBUSY;
3327 	else {
3328 		error = security_inode_unlink(dir, dentry);
3329 		if (!error) {
3330 			error = dir->i_op->unlink(dir, dentry);
3331 			if (!error)
3332 				dont_mount(dentry);
3333 		}
3334 	}
3335 	mutex_unlock(&dentry->d_inode->i_mutex);
3336 
3337 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3338 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3339 		fsnotify_link_count(dentry->d_inode);
3340 		d_delete(dentry);
3341 	}
3342 
3343 	return error;
3344 }
3345 
3346 /*
3347  * Make sure that the actual truncation of the file will occur outside its
3348  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3349  * writeout happening, and we don't want to prevent access to the directory
3350  * while waiting on the I/O.
3351  */
3352 static long do_unlinkat(int dfd, const char __user *pathname)
3353 {
3354 	int error;
3355 	char *name;
3356 	struct dentry *dentry;
3357 	struct nameidata nd;
3358 	struct inode *inode = NULL;
3359 
3360 	error = user_path_parent(dfd, pathname, &nd, &name);
3361 	if (error)
3362 		return error;
3363 
3364 	error = -EISDIR;
3365 	if (nd.last_type != LAST_NORM)
3366 		goto exit1;
3367 
3368 	nd.flags &= ~LOOKUP_PARENT;
3369 	error = mnt_want_write(nd.path.mnt);
3370 	if (error)
3371 		goto exit1;
3372 
3373 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3374 	dentry = lookup_hash(&nd);
3375 	error = PTR_ERR(dentry);
3376 	if (!IS_ERR(dentry)) {
3377 		/* Why not before? Because we want correct error value */
3378 		if (nd.last.name[nd.last.len])
3379 			goto slashes;
3380 		inode = dentry->d_inode;
3381 		if (!inode)
3382 			goto slashes;
3383 		ihold(inode);
3384 		error = security_path_unlink(&nd.path, dentry);
3385 		if (error)
3386 			goto exit2;
3387 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3388 exit2:
3389 		dput(dentry);
3390 	}
3391 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3392 	if (inode)
3393 		iput(inode);	/* truncate the inode here */
3394 	mnt_drop_write(nd.path.mnt);
3395 exit1:
3396 	path_put(&nd.path);
3397 	putname(name);
3398 	return error;
3399 
3400 slashes:
3401 	error = !dentry->d_inode ? -ENOENT :
3402 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3403 	goto exit2;
3404 }
3405 
3406 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3407 {
3408 	if ((flag & ~AT_REMOVEDIR) != 0)
3409 		return -EINVAL;
3410 
3411 	if (flag & AT_REMOVEDIR)
3412 		return do_rmdir(dfd, pathname);
3413 
3414 	return do_unlinkat(dfd, pathname);
3415 }
3416 
3417 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3418 {
3419 	return do_unlinkat(AT_FDCWD, pathname);
3420 }
3421 
3422 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3423 {
3424 	int error = may_create(dir, dentry);
3425 
3426 	if (error)
3427 		return error;
3428 
3429 	if (!dir->i_op->symlink)
3430 		return -EPERM;
3431 
3432 	error = security_inode_symlink(dir, dentry, oldname);
3433 	if (error)
3434 		return error;
3435 
3436 	error = dir->i_op->symlink(dir, dentry, oldname);
3437 	if (!error)
3438 		fsnotify_create(dir, dentry);
3439 	return error;
3440 }
3441 
3442 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3443 		int, newdfd, const char __user *, newname)
3444 {
3445 	int error;
3446 	char *from;
3447 	struct dentry *dentry;
3448 	struct path path;
3449 
3450 	from = getname(oldname);
3451 	if (IS_ERR(from))
3452 		return PTR_ERR(from);
3453 
3454 	dentry = user_path_create(newdfd, newname, &path, 0);
3455 	error = PTR_ERR(dentry);
3456 	if (IS_ERR(dentry))
3457 		goto out_putname;
3458 
3459 	error = security_path_symlink(&path, dentry, from);
3460 	if (!error)
3461 		error = vfs_symlink(path.dentry->d_inode, dentry, from);
3462 	done_path_create(&path, dentry);
3463 out_putname:
3464 	putname(from);
3465 	return error;
3466 }
3467 
3468 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3469 {
3470 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3471 }
3472 
3473 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3474 {
3475 	struct inode *inode = old_dentry->d_inode;
3476 	unsigned max_links = dir->i_sb->s_max_links;
3477 	int error;
3478 
3479 	if (!inode)
3480 		return -ENOENT;
3481 
3482 	error = may_create(dir, new_dentry);
3483 	if (error)
3484 		return error;
3485 
3486 	if (dir->i_sb != inode->i_sb)
3487 		return -EXDEV;
3488 
3489 	/*
3490 	 * A link to an append-only or immutable file cannot be created.
3491 	 */
3492 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3493 		return -EPERM;
3494 	if (!dir->i_op->link)
3495 		return -EPERM;
3496 	if (S_ISDIR(inode->i_mode))
3497 		return -EPERM;
3498 
3499 	error = security_inode_link(old_dentry, dir, new_dentry);
3500 	if (error)
3501 		return error;
3502 
3503 	mutex_lock(&inode->i_mutex);
3504 	/* Make sure we don't allow creating hardlink to an unlinked file */
3505 	if (inode->i_nlink == 0)
3506 		error =  -ENOENT;
3507 	else if (max_links && inode->i_nlink >= max_links)
3508 		error = -EMLINK;
3509 	else
3510 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3511 	mutex_unlock(&inode->i_mutex);
3512 	if (!error)
3513 		fsnotify_link(dir, inode, new_dentry);
3514 	return error;
3515 }
3516 
3517 /*
3518  * Hardlinks are often used in delicate situations.  We avoid
3519  * security-related surprises by not following symlinks on the
3520  * newname.  --KAB
3521  *
3522  * We don't follow them on the oldname either to be compatible
3523  * with linux 2.0, and to avoid hard-linking to directories
3524  * and other special files.  --ADM
3525  */
3526 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3527 		int, newdfd, const char __user *, newname, int, flags)
3528 {
3529 	struct dentry *new_dentry;
3530 	struct path old_path, new_path;
3531 	int how = 0;
3532 	int error;
3533 
3534 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3535 		return -EINVAL;
3536 	/*
3537 	 * To use null names we require CAP_DAC_READ_SEARCH
3538 	 * This ensures that not everyone will be able to create
3539 	 * handlink using the passed filedescriptor.
3540 	 */
3541 	if (flags & AT_EMPTY_PATH) {
3542 		if (!capable(CAP_DAC_READ_SEARCH))
3543 			return -ENOENT;
3544 		how = LOOKUP_EMPTY;
3545 	}
3546 
3547 	if (flags & AT_SYMLINK_FOLLOW)
3548 		how |= LOOKUP_FOLLOW;
3549 
3550 	error = user_path_at(olddfd, oldname, how, &old_path);
3551 	if (error)
3552 		return error;
3553 
3554 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3555 	error = PTR_ERR(new_dentry);
3556 	if (IS_ERR(new_dentry))
3557 		goto out;
3558 
3559 	error = -EXDEV;
3560 	if (old_path.mnt != new_path.mnt)
3561 		goto out_dput;
3562 	error = may_linkat(&old_path);
3563 	if (unlikely(error))
3564 		goto out_dput;
3565 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3566 	if (error)
3567 		goto out_dput;
3568 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3569 out_dput:
3570 	done_path_create(&new_path, new_dentry);
3571 out:
3572 	path_put(&old_path);
3573 
3574 	return error;
3575 }
3576 
3577 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3578 {
3579 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3580 }
3581 
3582 /*
3583  * The worst of all namespace operations - renaming directory. "Perverted"
3584  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3585  * Problems:
3586  *	a) we can get into loop creation. Check is done in is_subdir().
3587  *	b) race potential - two innocent renames can create a loop together.
3588  *	   That's where 4.4 screws up. Current fix: serialization on
3589  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3590  *	   story.
3591  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3592  *	   And that - after we got ->i_mutex on parents (until then we don't know
3593  *	   whether the target exists).  Solution: try to be smart with locking
3594  *	   order for inodes.  We rely on the fact that tree topology may change
3595  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3596  *	   move will be locked.  Thus we can rank directories by the tree
3597  *	   (ancestors first) and rank all non-directories after them.
3598  *	   That works since everybody except rename does "lock parent, lookup,
3599  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3600  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3601  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3602  *	   we'd better make sure that there's no link(2) for them.
3603  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3604  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3605  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3606  *	   ->i_mutex on parents, which works but leads to some truly excessive
3607  *	   locking].
3608  */
3609 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3610 			  struct inode *new_dir, struct dentry *new_dentry)
3611 {
3612 	int error = 0;
3613 	struct inode *target = new_dentry->d_inode;
3614 	unsigned max_links = new_dir->i_sb->s_max_links;
3615 
3616 	/*
3617 	 * If we are going to change the parent - check write permissions,
3618 	 * we'll need to flip '..'.
3619 	 */
3620 	if (new_dir != old_dir) {
3621 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3622 		if (error)
3623 			return error;
3624 	}
3625 
3626 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3627 	if (error)
3628 		return error;
3629 
3630 	dget(new_dentry);
3631 	if (target)
3632 		mutex_lock(&target->i_mutex);
3633 
3634 	error = -EBUSY;
3635 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3636 		goto out;
3637 
3638 	error = -EMLINK;
3639 	if (max_links && !target && new_dir != old_dir &&
3640 	    new_dir->i_nlink >= max_links)
3641 		goto out;
3642 
3643 	if (target)
3644 		shrink_dcache_parent(new_dentry);
3645 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3646 	if (error)
3647 		goto out;
3648 
3649 	if (target) {
3650 		target->i_flags |= S_DEAD;
3651 		dont_mount(new_dentry);
3652 	}
3653 out:
3654 	if (target)
3655 		mutex_unlock(&target->i_mutex);
3656 	dput(new_dentry);
3657 	if (!error)
3658 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3659 			d_move(old_dentry,new_dentry);
3660 	return error;
3661 }
3662 
3663 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3664 			    struct inode *new_dir, struct dentry *new_dentry)
3665 {
3666 	struct inode *target = new_dentry->d_inode;
3667 	int error;
3668 
3669 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3670 	if (error)
3671 		return error;
3672 
3673 	dget(new_dentry);
3674 	if (target)
3675 		mutex_lock(&target->i_mutex);
3676 
3677 	error = -EBUSY;
3678 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3679 		goto out;
3680 
3681 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3682 	if (error)
3683 		goto out;
3684 
3685 	if (target)
3686 		dont_mount(new_dentry);
3687 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3688 		d_move(old_dentry, new_dentry);
3689 out:
3690 	if (target)
3691 		mutex_unlock(&target->i_mutex);
3692 	dput(new_dentry);
3693 	return error;
3694 }
3695 
3696 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3697 	       struct inode *new_dir, struct dentry *new_dentry)
3698 {
3699 	int error;
3700 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3701 	const unsigned char *old_name;
3702 
3703 	if (old_dentry->d_inode == new_dentry->d_inode)
3704  		return 0;
3705 
3706 	error = may_delete(old_dir, old_dentry, is_dir);
3707 	if (error)
3708 		return error;
3709 
3710 	if (!new_dentry->d_inode)
3711 		error = may_create(new_dir, new_dentry);
3712 	else
3713 		error = may_delete(new_dir, new_dentry, is_dir);
3714 	if (error)
3715 		return error;
3716 
3717 	if (!old_dir->i_op->rename)
3718 		return -EPERM;
3719 
3720 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3721 
3722 	if (is_dir)
3723 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3724 	else
3725 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3726 	if (!error)
3727 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3728 			      new_dentry->d_inode, old_dentry);
3729 	fsnotify_oldname_free(old_name);
3730 
3731 	return error;
3732 }
3733 
3734 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3735 		int, newdfd, const char __user *, newname)
3736 {
3737 	struct dentry *old_dir, *new_dir;
3738 	struct dentry *old_dentry, *new_dentry;
3739 	struct dentry *trap;
3740 	struct nameidata oldnd, newnd;
3741 	char *from;
3742 	char *to;
3743 	int error;
3744 
3745 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3746 	if (error)
3747 		goto exit;
3748 
3749 	error = user_path_parent(newdfd, newname, &newnd, &to);
3750 	if (error)
3751 		goto exit1;
3752 
3753 	error = -EXDEV;
3754 	if (oldnd.path.mnt != newnd.path.mnt)
3755 		goto exit2;
3756 
3757 	old_dir = oldnd.path.dentry;
3758 	error = -EBUSY;
3759 	if (oldnd.last_type != LAST_NORM)
3760 		goto exit2;
3761 
3762 	new_dir = newnd.path.dentry;
3763 	if (newnd.last_type != LAST_NORM)
3764 		goto exit2;
3765 
3766 	error = mnt_want_write(oldnd.path.mnt);
3767 	if (error)
3768 		goto exit2;
3769 
3770 	oldnd.flags &= ~LOOKUP_PARENT;
3771 	newnd.flags &= ~LOOKUP_PARENT;
3772 	newnd.flags |= LOOKUP_RENAME_TARGET;
3773 
3774 	trap = lock_rename(new_dir, old_dir);
3775 
3776 	old_dentry = lookup_hash(&oldnd);
3777 	error = PTR_ERR(old_dentry);
3778 	if (IS_ERR(old_dentry))
3779 		goto exit3;
3780 	/* source must exist */
3781 	error = -ENOENT;
3782 	if (!old_dentry->d_inode)
3783 		goto exit4;
3784 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3785 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3786 		error = -ENOTDIR;
3787 		if (oldnd.last.name[oldnd.last.len])
3788 			goto exit4;
3789 		if (newnd.last.name[newnd.last.len])
3790 			goto exit4;
3791 	}
3792 	/* source should not be ancestor of target */
3793 	error = -EINVAL;
3794 	if (old_dentry == trap)
3795 		goto exit4;
3796 	new_dentry = lookup_hash(&newnd);
3797 	error = PTR_ERR(new_dentry);
3798 	if (IS_ERR(new_dentry))
3799 		goto exit4;
3800 	/* target should not be an ancestor of source */
3801 	error = -ENOTEMPTY;
3802 	if (new_dentry == trap)
3803 		goto exit5;
3804 
3805 	error = security_path_rename(&oldnd.path, old_dentry,
3806 				     &newnd.path, new_dentry);
3807 	if (error)
3808 		goto exit5;
3809 	error = vfs_rename(old_dir->d_inode, old_dentry,
3810 				   new_dir->d_inode, new_dentry);
3811 exit5:
3812 	dput(new_dentry);
3813 exit4:
3814 	dput(old_dentry);
3815 exit3:
3816 	unlock_rename(new_dir, old_dir);
3817 	mnt_drop_write(oldnd.path.mnt);
3818 exit2:
3819 	path_put(&newnd.path);
3820 	putname(to);
3821 exit1:
3822 	path_put(&oldnd.path);
3823 	putname(from);
3824 exit:
3825 	return error;
3826 }
3827 
3828 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3829 {
3830 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3831 }
3832 
3833 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3834 {
3835 	int len;
3836 
3837 	len = PTR_ERR(link);
3838 	if (IS_ERR(link))
3839 		goto out;
3840 
3841 	len = strlen(link);
3842 	if (len > (unsigned) buflen)
3843 		len = buflen;
3844 	if (copy_to_user(buffer, link, len))
3845 		len = -EFAULT;
3846 out:
3847 	return len;
3848 }
3849 
3850 /*
3851  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3852  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3853  * using) it for any given inode is up to filesystem.
3854  */
3855 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3856 {
3857 	struct nameidata nd;
3858 	void *cookie;
3859 	int res;
3860 
3861 	nd.depth = 0;
3862 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3863 	if (IS_ERR(cookie))
3864 		return PTR_ERR(cookie);
3865 
3866 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3867 	if (dentry->d_inode->i_op->put_link)
3868 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3869 	return res;
3870 }
3871 
3872 int vfs_follow_link(struct nameidata *nd, const char *link)
3873 {
3874 	return __vfs_follow_link(nd, link);
3875 }
3876 
3877 /* get the link contents into pagecache */
3878 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3879 {
3880 	char *kaddr;
3881 	struct page *page;
3882 	struct address_space *mapping = dentry->d_inode->i_mapping;
3883 	page = read_mapping_page(mapping, 0, NULL);
3884 	if (IS_ERR(page))
3885 		return (char*)page;
3886 	*ppage = page;
3887 	kaddr = kmap(page);
3888 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3889 	return kaddr;
3890 }
3891 
3892 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3893 {
3894 	struct page *page = NULL;
3895 	char *s = page_getlink(dentry, &page);
3896 	int res = vfs_readlink(dentry,buffer,buflen,s);
3897 	if (page) {
3898 		kunmap(page);
3899 		page_cache_release(page);
3900 	}
3901 	return res;
3902 }
3903 
3904 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3905 {
3906 	struct page *page = NULL;
3907 	nd_set_link(nd, page_getlink(dentry, &page));
3908 	return page;
3909 }
3910 
3911 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3912 {
3913 	struct page *page = cookie;
3914 
3915 	if (page) {
3916 		kunmap(page);
3917 		page_cache_release(page);
3918 	}
3919 }
3920 
3921 /*
3922  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3923  */
3924 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3925 {
3926 	struct address_space *mapping = inode->i_mapping;
3927 	struct page *page;
3928 	void *fsdata;
3929 	int err;
3930 	char *kaddr;
3931 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3932 	if (nofs)
3933 		flags |= AOP_FLAG_NOFS;
3934 
3935 retry:
3936 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3937 				flags, &page, &fsdata);
3938 	if (err)
3939 		goto fail;
3940 
3941 	kaddr = kmap_atomic(page);
3942 	memcpy(kaddr, symname, len-1);
3943 	kunmap_atomic(kaddr);
3944 
3945 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3946 							page, fsdata);
3947 	if (err < 0)
3948 		goto fail;
3949 	if (err < len-1)
3950 		goto retry;
3951 
3952 	mark_inode_dirty(inode);
3953 	return 0;
3954 fail:
3955 	return err;
3956 }
3957 
3958 int page_symlink(struct inode *inode, const char *symname, int len)
3959 {
3960 	return __page_symlink(inode, symname, len,
3961 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3962 }
3963 
3964 const struct inode_operations page_symlink_inode_operations = {
3965 	.readlink	= generic_readlink,
3966 	.follow_link	= page_follow_link_light,
3967 	.put_link	= page_put_link,
3968 };
3969 
3970 EXPORT_SYMBOL(user_path_at);
3971 EXPORT_SYMBOL(follow_down_one);
3972 EXPORT_SYMBOL(follow_down);
3973 EXPORT_SYMBOL(follow_up);
3974 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3975 EXPORT_SYMBOL(getname);
3976 EXPORT_SYMBOL(lock_rename);
3977 EXPORT_SYMBOL(lookup_one_len);
3978 EXPORT_SYMBOL(page_follow_link_light);
3979 EXPORT_SYMBOL(page_put_link);
3980 EXPORT_SYMBOL(page_readlink);
3981 EXPORT_SYMBOL(__page_symlink);
3982 EXPORT_SYMBOL(page_symlink);
3983 EXPORT_SYMBOL(page_symlink_inode_operations);
3984 EXPORT_SYMBOL(kern_path);
3985 EXPORT_SYMBOL(vfs_path_lookup);
3986 EXPORT_SYMBOL(inode_permission);
3987 EXPORT_SYMBOL(unlock_rename);
3988 EXPORT_SYMBOL(vfs_create);
3989 EXPORT_SYMBOL(vfs_follow_link);
3990 EXPORT_SYMBOL(vfs_link);
3991 EXPORT_SYMBOL(vfs_mkdir);
3992 EXPORT_SYMBOL(vfs_mknod);
3993 EXPORT_SYMBOL(generic_permission);
3994 EXPORT_SYMBOL(vfs_readlink);
3995 EXPORT_SYMBOL(vfs_rename);
3996 EXPORT_SYMBOL(vfs_rmdir);
3997 EXPORT_SYMBOL(vfs_symlink);
3998 EXPORT_SYMBOL(vfs_unlink);
3999 EXPORT_SYMBOL(dentry_unhash);
4000 EXPORT_SYMBOL(generic_readlink);
4001