xref: /openbmc/linux/fs/namei.c (revision 94c7b6fc)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	result->aname = NULL;
200 	audit_getname(result);
201 	return result;
202 
203 error:
204 	final_putname(result);
205 	return err;
206 }
207 
208 struct filename *
209 getname(const char __user * filename)
210 {
211 	return getname_flags(filename, 0, NULL);
212 }
213 
214 /*
215  * The "getname_kernel()" interface doesn't do pathnames longer
216  * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
217  */
218 struct filename *
219 getname_kernel(const char * filename)
220 {
221 	struct filename *result;
222 	char *kname;
223 	int len;
224 
225 	len = strlen(filename);
226 	if (len >= EMBEDDED_NAME_MAX)
227 		return ERR_PTR(-ENAMETOOLONG);
228 
229 	result = __getname();
230 	if (unlikely(!result))
231 		return ERR_PTR(-ENOMEM);
232 
233 	kname = (char *)result + sizeof(*result);
234 	result->name = kname;
235 	result->uptr = NULL;
236 	result->aname = NULL;
237 	result->separate = false;
238 
239 	strlcpy(kname, filename, EMBEDDED_NAME_MAX);
240 	return result;
241 }
242 
243 #ifdef CONFIG_AUDITSYSCALL
244 void putname(struct filename *name)
245 {
246 	if (unlikely(!audit_dummy_context()))
247 		return audit_putname(name);
248 	final_putname(name);
249 }
250 #endif
251 
252 static int check_acl(struct inode *inode, int mask)
253 {
254 #ifdef CONFIG_FS_POSIX_ACL
255 	struct posix_acl *acl;
256 
257 	if (mask & MAY_NOT_BLOCK) {
258 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
259 	        if (!acl)
260 	                return -EAGAIN;
261 		/* no ->get_acl() calls in RCU mode... */
262 		if (acl == ACL_NOT_CACHED)
263 			return -ECHILD;
264 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
265 	}
266 
267 	acl = get_acl(inode, ACL_TYPE_ACCESS);
268 	if (IS_ERR(acl))
269 		return PTR_ERR(acl);
270 	if (acl) {
271 	        int error = posix_acl_permission(inode, acl, mask);
272 	        posix_acl_release(acl);
273 	        return error;
274 	}
275 #endif
276 
277 	return -EAGAIN;
278 }
279 
280 /*
281  * This does the basic permission checking
282  */
283 static int acl_permission_check(struct inode *inode, int mask)
284 {
285 	unsigned int mode = inode->i_mode;
286 
287 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
288 		mode >>= 6;
289 	else {
290 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
291 			int error = check_acl(inode, mask);
292 			if (error != -EAGAIN)
293 				return error;
294 		}
295 
296 		if (in_group_p(inode->i_gid))
297 			mode >>= 3;
298 	}
299 
300 	/*
301 	 * If the DACs are ok we don't need any capability check.
302 	 */
303 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
304 		return 0;
305 	return -EACCES;
306 }
307 
308 /**
309  * generic_permission -  check for access rights on a Posix-like filesystem
310  * @inode:	inode to check access rights for
311  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
312  *
313  * Used to check for read/write/execute permissions on a file.
314  * We use "fsuid" for this, letting us set arbitrary permissions
315  * for filesystem access without changing the "normal" uids which
316  * are used for other things.
317  *
318  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
319  * request cannot be satisfied (eg. requires blocking or too much complexity).
320  * It would then be called again in ref-walk mode.
321  */
322 int generic_permission(struct inode *inode, int mask)
323 {
324 	int ret;
325 
326 	/*
327 	 * Do the basic permission checks.
328 	 */
329 	ret = acl_permission_check(inode, mask);
330 	if (ret != -EACCES)
331 		return ret;
332 
333 	if (S_ISDIR(inode->i_mode)) {
334 		/* DACs are overridable for directories */
335 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
336 			return 0;
337 		if (!(mask & MAY_WRITE))
338 			if (capable_wrt_inode_uidgid(inode,
339 						     CAP_DAC_READ_SEARCH))
340 				return 0;
341 		return -EACCES;
342 	}
343 	/*
344 	 * Read/write DACs are always overridable.
345 	 * Executable DACs are overridable when there is
346 	 * at least one exec bit set.
347 	 */
348 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
349 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 			return 0;
351 
352 	/*
353 	 * Searching includes executable on directories, else just read.
354 	 */
355 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
356 	if (mask == MAY_READ)
357 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
358 			return 0;
359 
360 	return -EACCES;
361 }
362 EXPORT_SYMBOL(generic_permission);
363 
364 /*
365  * We _really_ want to just do "generic_permission()" without
366  * even looking at the inode->i_op values. So we keep a cache
367  * flag in inode->i_opflags, that says "this has not special
368  * permission function, use the fast case".
369  */
370 static inline int do_inode_permission(struct inode *inode, int mask)
371 {
372 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
373 		if (likely(inode->i_op->permission))
374 			return inode->i_op->permission(inode, mask);
375 
376 		/* This gets set once for the inode lifetime */
377 		spin_lock(&inode->i_lock);
378 		inode->i_opflags |= IOP_FASTPERM;
379 		spin_unlock(&inode->i_lock);
380 	}
381 	return generic_permission(inode, mask);
382 }
383 
384 /**
385  * __inode_permission - Check for access rights to a given inode
386  * @inode: Inode to check permission on
387  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
388  *
389  * Check for read/write/execute permissions on an inode.
390  *
391  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
392  *
393  * This does not check for a read-only file system.  You probably want
394  * inode_permission().
395  */
396 int __inode_permission(struct inode *inode, int mask)
397 {
398 	int retval;
399 
400 	if (unlikely(mask & MAY_WRITE)) {
401 		/*
402 		 * Nobody gets write access to an immutable file.
403 		 */
404 		if (IS_IMMUTABLE(inode))
405 			return -EACCES;
406 	}
407 
408 	retval = do_inode_permission(inode, mask);
409 	if (retval)
410 		return retval;
411 
412 	retval = devcgroup_inode_permission(inode, mask);
413 	if (retval)
414 		return retval;
415 
416 	return security_inode_permission(inode, mask);
417 }
418 
419 /**
420  * sb_permission - Check superblock-level permissions
421  * @sb: Superblock of inode to check permission on
422  * @inode: Inode to check permission on
423  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
424  *
425  * Separate out file-system wide checks from inode-specific permission checks.
426  */
427 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
428 {
429 	if (unlikely(mask & MAY_WRITE)) {
430 		umode_t mode = inode->i_mode;
431 
432 		/* Nobody gets write access to a read-only fs. */
433 		if ((sb->s_flags & MS_RDONLY) &&
434 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
435 			return -EROFS;
436 	}
437 	return 0;
438 }
439 
440 /**
441  * inode_permission - Check for access rights to a given inode
442  * @inode: Inode to check permission on
443  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
444  *
445  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
446  * this, letting us set arbitrary permissions for filesystem access without
447  * changing the "normal" UIDs which are used for other things.
448  *
449  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
450  */
451 int inode_permission(struct inode *inode, int mask)
452 {
453 	int retval;
454 
455 	retval = sb_permission(inode->i_sb, inode, mask);
456 	if (retval)
457 		return retval;
458 	return __inode_permission(inode, mask);
459 }
460 EXPORT_SYMBOL(inode_permission);
461 
462 /**
463  * path_get - get a reference to a path
464  * @path: path to get the reference to
465  *
466  * Given a path increment the reference count to the dentry and the vfsmount.
467  */
468 void path_get(const struct path *path)
469 {
470 	mntget(path->mnt);
471 	dget(path->dentry);
472 }
473 EXPORT_SYMBOL(path_get);
474 
475 /**
476  * path_put - put a reference to a path
477  * @path: path to put the reference to
478  *
479  * Given a path decrement the reference count to the dentry and the vfsmount.
480  */
481 void path_put(const struct path *path)
482 {
483 	dput(path->dentry);
484 	mntput(path->mnt);
485 }
486 EXPORT_SYMBOL(path_put);
487 
488 /*
489  * Path walking has 2 modes, rcu-walk and ref-walk (see
490  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
491  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
492  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
493  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
494  * got stuck, so ref-walk may continue from there. If this is not successful
495  * (eg. a seqcount has changed), then failure is returned and it's up to caller
496  * to restart the path walk from the beginning in ref-walk mode.
497  */
498 
499 /**
500  * unlazy_walk - try to switch to ref-walk mode.
501  * @nd: nameidata pathwalk data
502  * @dentry: child of nd->path.dentry or NULL
503  * Returns: 0 on success, -ECHILD on failure
504  *
505  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
506  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
507  * @nd or NULL.  Must be called from rcu-walk context.
508  */
509 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
510 {
511 	struct fs_struct *fs = current->fs;
512 	struct dentry *parent = nd->path.dentry;
513 
514 	BUG_ON(!(nd->flags & LOOKUP_RCU));
515 
516 	/*
517 	 * After legitimizing the bastards, terminate_walk()
518 	 * will do the right thing for non-RCU mode, and all our
519 	 * subsequent exit cases should rcu_read_unlock()
520 	 * before returning.  Do vfsmount first; if dentry
521 	 * can't be legitimized, just set nd->path.dentry to NULL
522 	 * and rely on dput(NULL) being a no-op.
523 	 */
524 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
525 		return -ECHILD;
526 	nd->flags &= ~LOOKUP_RCU;
527 
528 	if (!lockref_get_not_dead(&parent->d_lockref)) {
529 		nd->path.dentry = NULL;
530 		goto out;
531 	}
532 
533 	/*
534 	 * For a negative lookup, the lookup sequence point is the parents
535 	 * sequence point, and it only needs to revalidate the parent dentry.
536 	 *
537 	 * For a positive lookup, we need to move both the parent and the
538 	 * dentry from the RCU domain to be properly refcounted. And the
539 	 * sequence number in the dentry validates *both* dentry counters,
540 	 * since we checked the sequence number of the parent after we got
541 	 * the child sequence number. So we know the parent must still
542 	 * be valid if the child sequence number is still valid.
543 	 */
544 	if (!dentry) {
545 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
546 			goto out;
547 		BUG_ON(nd->inode != parent->d_inode);
548 	} else {
549 		if (!lockref_get_not_dead(&dentry->d_lockref))
550 			goto out;
551 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
552 			goto drop_dentry;
553 	}
554 
555 	/*
556 	 * Sequence counts matched. Now make sure that the root is
557 	 * still valid and get it if required.
558 	 */
559 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
560 		spin_lock(&fs->lock);
561 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
562 			goto unlock_and_drop_dentry;
563 		path_get(&nd->root);
564 		spin_unlock(&fs->lock);
565 	}
566 
567 	rcu_read_unlock();
568 	return 0;
569 
570 unlock_and_drop_dentry:
571 	spin_unlock(&fs->lock);
572 drop_dentry:
573 	rcu_read_unlock();
574 	dput(dentry);
575 	goto drop_root_mnt;
576 out:
577 	rcu_read_unlock();
578 drop_root_mnt:
579 	if (!(nd->flags & LOOKUP_ROOT))
580 		nd->root.mnt = NULL;
581 	return -ECHILD;
582 }
583 
584 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
585 {
586 	return dentry->d_op->d_revalidate(dentry, flags);
587 }
588 
589 /**
590  * complete_walk - successful completion of path walk
591  * @nd:  pointer nameidata
592  *
593  * If we had been in RCU mode, drop out of it and legitimize nd->path.
594  * Revalidate the final result, unless we'd already done that during
595  * the path walk or the filesystem doesn't ask for it.  Return 0 on
596  * success, -error on failure.  In case of failure caller does not
597  * need to drop nd->path.
598  */
599 static int complete_walk(struct nameidata *nd)
600 {
601 	struct dentry *dentry = nd->path.dentry;
602 	int status;
603 
604 	if (nd->flags & LOOKUP_RCU) {
605 		nd->flags &= ~LOOKUP_RCU;
606 		if (!(nd->flags & LOOKUP_ROOT))
607 			nd->root.mnt = NULL;
608 
609 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
610 			rcu_read_unlock();
611 			return -ECHILD;
612 		}
613 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
614 			rcu_read_unlock();
615 			mntput(nd->path.mnt);
616 			return -ECHILD;
617 		}
618 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
619 			rcu_read_unlock();
620 			dput(dentry);
621 			mntput(nd->path.mnt);
622 			return -ECHILD;
623 		}
624 		rcu_read_unlock();
625 	}
626 
627 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
628 		return 0;
629 
630 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
631 		return 0;
632 
633 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
634 	if (status > 0)
635 		return 0;
636 
637 	if (!status)
638 		status = -ESTALE;
639 
640 	path_put(&nd->path);
641 	return status;
642 }
643 
644 static __always_inline void set_root(struct nameidata *nd)
645 {
646 	if (!nd->root.mnt)
647 		get_fs_root(current->fs, &nd->root);
648 }
649 
650 static int link_path_walk(const char *, struct nameidata *);
651 
652 static __always_inline void set_root_rcu(struct nameidata *nd)
653 {
654 	if (!nd->root.mnt) {
655 		struct fs_struct *fs = current->fs;
656 		unsigned seq;
657 
658 		do {
659 			seq = read_seqcount_begin(&fs->seq);
660 			nd->root = fs->root;
661 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
662 		} while (read_seqcount_retry(&fs->seq, seq));
663 	}
664 }
665 
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 	dput(path->dentry);
669 	if (path->mnt != nd->path.mnt)
670 		mntput(path->mnt);
671 }
672 
673 static inline void path_to_nameidata(const struct path *path,
674 					struct nameidata *nd)
675 {
676 	if (!(nd->flags & LOOKUP_RCU)) {
677 		dput(nd->path.dentry);
678 		if (nd->path.mnt != path->mnt)
679 			mntput(nd->path.mnt);
680 	}
681 	nd->path.mnt = path->mnt;
682 	nd->path.dentry = path->dentry;
683 }
684 
685 /*
686  * Helper to directly jump to a known parsed path from ->follow_link,
687  * caller must have taken a reference to path beforehand.
688  */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 	path_put(&nd->path);
692 
693 	nd->path = *path;
694 	nd->inode = nd->path.dentry->d_inode;
695 	nd->flags |= LOOKUP_JUMPED;
696 }
697 
698 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
699 {
700 	struct inode *inode = link->dentry->d_inode;
701 	if (inode->i_op->put_link)
702 		inode->i_op->put_link(link->dentry, nd, cookie);
703 	path_put(link);
704 }
705 
706 int sysctl_protected_symlinks __read_mostly = 0;
707 int sysctl_protected_hardlinks __read_mostly = 0;
708 
709 /**
710  * may_follow_link - Check symlink following for unsafe situations
711  * @link: The path of the symlink
712  * @nd: nameidata pathwalk data
713  *
714  * In the case of the sysctl_protected_symlinks sysctl being enabled,
715  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
716  * in a sticky world-writable directory. This is to protect privileged
717  * processes from failing races against path names that may change out
718  * from under them by way of other users creating malicious symlinks.
719  * It will permit symlinks to be followed only when outside a sticky
720  * world-writable directory, or when the uid of the symlink and follower
721  * match, or when the directory owner matches the symlink's owner.
722  *
723  * Returns 0 if following the symlink is allowed, -ve on error.
724  */
725 static inline int may_follow_link(struct path *link, struct nameidata *nd)
726 {
727 	const struct inode *inode;
728 	const struct inode *parent;
729 
730 	if (!sysctl_protected_symlinks)
731 		return 0;
732 
733 	/* Allowed if owner and follower match. */
734 	inode = link->dentry->d_inode;
735 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
736 		return 0;
737 
738 	/* Allowed if parent directory not sticky and world-writable. */
739 	parent = nd->path.dentry->d_inode;
740 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
741 		return 0;
742 
743 	/* Allowed if parent directory and link owner match. */
744 	if (uid_eq(parent->i_uid, inode->i_uid))
745 		return 0;
746 
747 	audit_log_link_denied("follow_link", link);
748 	path_put_conditional(link, nd);
749 	path_put(&nd->path);
750 	return -EACCES;
751 }
752 
753 /**
754  * safe_hardlink_source - Check for safe hardlink conditions
755  * @inode: the source inode to hardlink from
756  *
757  * Return false if at least one of the following conditions:
758  *    - inode is not a regular file
759  *    - inode is setuid
760  *    - inode is setgid and group-exec
761  *    - access failure for read and write
762  *
763  * Otherwise returns true.
764  */
765 static bool safe_hardlink_source(struct inode *inode)
766 {
767 	umode_t mode = inode->i_mode;
768 
769 	/* Special files should not get pinned to the filesystem. */
770 	if (!S_ISREG(mode))
771 		return false;
772 
773 	/* Setuid files should not get pinned to the filesystem. */
774 	if (mode & S_ISUID)
775 		return false;
776 
777 	/* Executable setgid files should not get pinned to the filesystem. */
778 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
779 		return false;
780 
781 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
782 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
783 		return false;
784 
785 	return true;
786 }
787 
788 /**
789  * may_linkat - Check permissions for creating a hardlink
790  * @link: the source to hardlink from
791  *
792  * Block hardlink when all of:
793  *  - sysctl_protected_hardlinks enabled
794  *  - fsuid does not match inode
795  *  - hardlink source is unsafe (see safe_hardlink_source() above)
796  *  - not CAP_FOWNER
797  *
798  * Returns 0 if successful, -ve on error.
799  */
800 static int may_linkat(struct path *link)
801 {
802 	const struct cred *cred;
803 	struct inode *inode;
804 
805 	if (!sysctl_protected_hardlinks)
806 		return 0;
807 
808 	cred = current_cred();
809 	inode = link->dentry->d_inode;
810 
811 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
812 	 * otherwise, it must be a safe source.
813 	 */
814 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
815 	    capable(CAP_FOWNER))
816 		return 0;
817 
818 	audit_log_link_denied("linkat", link);
819 	return -EPERM;
820 }
821 
822 static __always_inline int
823 follow_link(struct path *link, struct nameidata *nd, void **p)
824 {
825 	struct dentry *dentry = link->dentry;
826 	int error;
827 	char *s;
828 
829 	BUG_ON(nd->flags & LOOKUP_RCU);
830 
831 	if (link->mnt == nd->path.mnt)
832 		mntget(link->mnt);
833 
834 	error = -ELOOP;
835 	if (unlikely(current->total_link_count >= 40))
836 		goto out_put_nd_path;
837 
838 	cond_resched();
839 	current->total_link_count++;
840 
841 	touch_atime(link);
842 	nd_set_link(nd, NULL);
843 
844 	error = security_inode_follow_link(link->dentry, nd);
845 	if (error)
846 		goto out_put_nd_path;
847 
848 	nd->last_type = LAST_BIND;
849 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
850 	error = PTR_ERR(*p);
851 	if (IS_ERR(*p))
852 		goto out_put_nd_path;
853 
854 	error = 0;
855 	s = nd_get_link(nd);
856 	if (s) {
857 		if (unlikely(IS_ERR(s))) {
858 			path_put(&nd->path);
859 			put_link(nd, link, *p);
860 			return PTR_ERR(s);
861 		}
862 		if (*s == '/') {
863 			set_root(nd);
864 			path_put(&nd->path);
865 			nd->path = nd->root;
866 			path_get(&nd->root);
867 			nd->flags |= LOOKUP_JUMPED;
868 		}
869 		nd->inode = nd->path.dentry->d_inode;
870 		error = link_path_walk(s, nd);
871 		if (unlikely(error))
872 			put_link(nd, link, *p);
873 	}
874 
875 	return error;
876 
877 out_put_nd_path:
878 	*p = NULL;
879 	path_put(&nd->path);
880 	path_put(link);
881 	return error;
882 }
883 
884 static int follow_up_rcu(struct path *path)
885 {
886 	struct mount *mnt = real_mount(path->mnt);
887 	struct mount *parent;
888 	struct dentry *mountpoint;
889 
890 	parent = mnt->mnt_parent;
891 	if (&parent->mnt == path->mnt)
892 		return 0;
893 	mountpoint = mnt->mnt_mountpoint;
894 	path->dentry = mountpoint;
895 	path->mnt = &parent->mnt;
896 	return 1;
897 }
898 
899 /*
900  * follow_up - Find the mountpoint of path's vfsmount
901  *
902  * Given a path, find the mountpoint of its source file system.
903  * Replace @path with the path of the mountpoint in the parent mount.
904  * Up is towards /.
905  *
906  * Return 1 if we went up a level and 0 if we were already at the
907  * root.
908  */
909 int follow_up(struct path *path)
910 {
911 	struct mount *mnt = real_mount(path->mnt);
912 	struct mount *parent;
913 	struct dentry *mountpoint;
914 
915 	read_seqlock_excl(&mount_lock);
916 	parent = mnt->mnt_parent;
917 	if (parent == mnt) {
918 		read_sequnlock_excl(&mount_lock);
919 		return 0;
920 	}
921 	mntget(&parent->mnt);
922 	mountpoint = dget(mnt->mnt_mountpoint);
923 	read_sequnlock_excl(&mount_lock);
924 	dput(path->dentry);
925 	path->dentry = mountpoint;
926 	mntput(path->mnt);
927 	path->mnt = &parent->mnt;
928 	return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931 
932 /*
933  * Perform an automount
934  * - return -EISDIR to tell follow_managed() to stop and return the path we
935  *   were called with.
936  */
937 static int follow_automount(struct path *path, unsigned flags,
938 			    bool *need_mntput)
939 {
940 	struct vfsmount *mnt;
941 	int err;
942 
943 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 		return -EREMOTE;
945 
946 	/* We don't want to mount if someone's just doing a stat -
947 	 * unless they're stat'ing a directory and appended a '/' to
948 	 * the name.
949 	 *
950 	 * We do, however, want to mount if someone wants to open or
951 	 * create a file of any type under the mountpoint, wants to
952 	 * traverse through the mountpoint or wants to open the
953 	 * mounted directory.  Also, autofs may mark negative dentries
954 	 * as being automount points.  These will need the attentions
955 	 * of the daemon to instantiate them before they can be used.
956 	 */
957 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 	    path->dentry->d_inode)
960 		return -EISDIR;
961 
962 	current->total_link_count++;
963 	if (current->total_link_count >= 40)
964 		return -ELOOP;
965 
966 	mnt = path->dentry->d_op->d_automount(path);
967 	if (IS_ERR(mnt)) {
968 		/*
969 		 * The filesystem is allowed to return -EISDIR here to indicate
970 		 * it doesn't want to automount.  For instance, autofs would do
971 		 * this so that its userspace daemon can mount on this dentry.
972 		 *
973 		 * However, we can only permit this if it's a terminal point in
974 		 * the path being looked up; if it wasn't then the remainder of
975 		 * the path is inaccessible and we should say so.
976 		 */
977 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 			return -EREMOTE;
979 		return PTR_ERR(mnt);
980 	}
981 
982 	if (!mnt) /* mount collision */
983 		return 0;
984 
985 	if (!*need_mntput) {
986 		/* lock_mount() may release path->mnt on error */
987 		mntget(path->mnt);
988 		*need_mntput = true;
989 	}
990 	err = finish_automount(mnt, path);
991 
992 	switch (err) {
993 	case -EBUSY:
994 		/* Someone else made a mount here whilst we were busy */
995 		return 0;
996 	case 0:
997 		path_put(path);
998 		path->mnt = mnt;
999 		path->dentry = dget(mnt->mnt_root);
1000 		return 0;
1001 	default:
1002 		return err;
1003 	}
1004 
1005 }
1006 
1007 /*
1008  * Handle a dentry that is managed in some way.
1009  * - Flagged for transit management (autofs)
1010  * - Flagged as mountpoint
1011  * - Flagged as automount point
1012  *
1013  * This may only be called in refwalk mode.
1014  *
1015  * Serialization is taken care of in namespace.c
1016  */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 	unsigned managed;
1021 	bool need_mntput = false;
1022 	int ret = 0;
1023 
1024 	/* Given that we're not holding a lock here, we retain the value in a
1025 	 * local variable for each dentry as we look at it so that we don't see
1026 	 * the components of that value change under us */
1027 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 	       managed &= DCACHE_MANAGED_DENTRY,
1029 	       unlikely(managed != 0)) {
1030 		/* Allow the filesystem to manage the transit without i_mutex
1031 		 * being held. */
1032 		if (managed & DCACHE_MANAGE_TRANSIT) {
1033 			BUG_ON(!path->dentry->d_op);
1034 			BUG_ON(!path->dentry->d_op->d_manage);
1035 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 			if (ret < 0)
1037 				break;
1038 		}
1039 
1040 		/* Transit to a mounted filesystem. */
1041 		if (managed & DCACHE_MOUNTED) {
1042 			struct vfsmount *mounted = lookup_mnt(path);
1043 			if (mounted) {
1044 				dput(path->dentry);
1045 				if (need_mntput)
1046 					mntput(path->mnt);
1047 				path->mnt = mounted;
1048 				path->dentry = dget(mounted->mnt_root);
1049 				need_mntput = true;
1050 				continue;
1051 			}
1052 
1053 			/* Something is mounted on this dentry in another
1054 			 * namespace and/or whatever was mounted there in this
1055 			 * namespace got unmounted before lookup_mnt() could
1056 			 * get it */
1057 		}
1058 
1059 		/* Handle an automount point */
1060 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 			ret = follow_automount(path, flags, &need_mntput);
1062 			if (ret < 0)
1063 				break;
1064 			continue;
1065 		}
1066 
1067 		/* We didn't change the current path point */
1068 		break;
1069 	}
1070 
1071 	if (need_mntput && path->mnt == mnt)
1072 		mntput(path->mnt);
1073 	if (ret == -EISDIR)
1074 		ret = 0;
1075 	return ret < 0 ? ret : need_mntput;
1076 }
1077 
1078 int follow_down_one(struct path *path)
1079 {
1080 	struct vfsmount *mounted;
1081 
1082 	mounted = lookup_mnt(path);
1083 	if (mounted) {
1084 		dput(path->dentry);
1085 		mntput(path->mnt);
1086 		path->mnt = mounted;
1087 		path->dentry = dget(mounted->mnt_root);
1088 		return 1;
1089 	}
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093 
1094 static inline bool managed_dentry_might_block(struct dentry *dentry)
1095 {
1096 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1097 		dentry->d_op->d_manage(dentry, true) < 0);
1098 }
1099 
1100 /*
1101  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1102  * we meet a managed dentry that would need blocking.
1103  */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 			       struct inode **inode)
1106 {
1107 	for (;;) {
1108 		struct mount *mounted;
1109 		/*
1110 		 * Don't forget we might have a non-mountpoint managed dentry
1111 		 * that wants to block transit.
1112 		 */
1113 		if (unlikely(managed_dentry_might_block(path->dentry)))
1114 			return false;
1115 
1116 		if (!d_mountpoint(path->dentry))
1117 			return true;
1118 
1119 		mounted = __lookup_mnt(path->mnt, path->dentry);
1120 		if (!mounted)
1121 			break;
1122 		path->mnt = &mounted->mnt;
1123 		path->dentry = mounted->mnt.mnt_root;
1124 		nd->flags |= LOOKUP_JUMPED;
1125 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1126 		/*
1127 		 * Update the inode too. We don't need to re-check the
1128 		 * dentry sequence number here after this d_inode read,
1129 		 * because a mount-point is always pinned.
1130 		 */
1131 		*inode = path->dentry->d_inode;
1132 	}
1133 	return read_seqretry(&mount_lock, nd->m_seq);
1134 }
1135 
1136 static int follow_dotdot_rcu(struct nameidata *nd)
1137 {
1138 	set_root_rcu(nd);
1139 
1140 	while (1) {
1141 		if (nd->path.dentry == nd->root.dentry &&
1142 		    nd->path.mnt == nd->root.mnt) {
1143 			break;
1144 		}
1145 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1146 			struct dentry *old = nd->path.dentry;
1147 			struct dentry *parent = old->d_parent;
1148 			unsigned seq;
1149 
1150 			seq = read_seqcount_begin(&parent->d_seq);
1151 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1152 				goto failed;
1153 			nd->path.dentry = parent;
1154 			nd->seq = seq;
1155 			break;
1156 		}
1157 		if (!follow_up_rcu(&nd->path))
1158 			break;
1159 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1160 	}
1161 	while (d_mountpoint(nd->path.dentry)) {
1162 		struct mount *mounted;
1163 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1164 		if (!mounted)
1165 			break;
1166 		nd->path.mnt = &mounted->mnt;
1167 		nd->path.dentry = mounted->mnt.mnt_root;
1168 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1169 		if (!read_seqretry(&mount_lock, nd->m_seq))
1170 			goto failed;
1171 	}
1172 	nd->inode = nd->path.dentry->d_inode;
1173 	return 0;
1174 
1175 failed:
1176 	nd->flags &= ~LOOKUP_RCU;
1177 	if (!(nd->flags & LOOKUP_ROOT))
1178 		nd->root.mnt = NULL;
1179 	rcu_read_unlock();
1180 	return -ECHILD;
1181 }
1182 
1183 /*
1184  * Follow down to the covering mount currently visible to userspace.  At each
1185  * point, the filesystem owning that dentry may be queried as to whether the
1186  * caller is permitted to proceed or not.
1187  */
1188 int follow_down(struct path *path)
1189 {
1190 	unsigned managed;
1191 	int ret;
1192 
1193 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1194 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1195 		/* Allow the filesystem to manage the transit without i_mutex
1196 		 * being held.
1197 		 *
1198 		 * We indicate to the filesystem if someone is trying to mount
1199 		 * something here.  This gives autofs the chance to deny anyone
1200 		 * other than its daemon the right to mount on its
1201 		 * superstructure.
1202 		 *
1203 		 * The filesystem may sleep at this point.
1204 		 */
1205 		if (managed & DCACHE_MANAGE_TRANSIT) {
1206 			BUG_ON(!path->dentry->d_op);
1207 			BUG_ON(!path->dentry->d_op->d_manage);
1208 			ret = path->dentry->d_op->d_manage(
1209 				path->dentry, false);
1210 			if (ret < 0)
1211 				return ret == -EISDIR ? 0 : ret;
1212 		}
1213 
1214 		/* Transit to a mounted filesystem. */
1215 		if (managed & DCACHE_MOUNTED) {
1216 			struct vfsmount *mounted = lookup_mnt(path);
1217 			if (!mounted)
1218 				break;
1219 			dput(path->dentry);
1220 			mntput(path->mnt);
1221 			path->mnt = mounted;
1222 			path->dentry = dget(mounted->mnt_root);
1223 			continue;
1224 		}
1225 
1226 		/* Don't handle automount points here */
1227 		break;
1228 	}
1229 	return 0;
1230 }
1231 EXPORT_SYMBOL(follow_down);
1232 
1233 /*
1234  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1235  */
1236 static void follow_mount(struct path *path)
1237 {
1238 	while (d_mountpoint(path->dentry)) {
1239 		struct vfsmount *mounted = lookup_mnt(path);
1240 		if (!mounted)
1241 			break;
1242 		dput(path->dentry);
1243 		mntput(path->mnt);
1244 		path->mnt = mounted;
1245 		path->dentry = dget(mounted->mnt_root);
1246 	}
1247 }
1248 
1249 static void follow_dotdot(struct nameidata *nd)
1250 {
1251 	set_root(nd);
1252 
1253 	while(1) {
1254 		struct dentry *old = nd->path.dentry;
1255 
1256 		if (nd->path.dentry == nd->root.dentry &&
1257 		    nd->path.mnt == nd->root.mnt) {
1258 			break;
1259 		}
1260 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1261 			/* rare case of legitimate dget_parent()... */
1262 			nd->path.dentry = dget_parent(nd->path.dentry);
1263 			dput(old);
1264 			break;
1265 		}
1266 		if (!follow_up(&nd->path))
1267 			break;
1268 	}
1269 	follow_mount(&nd->path);
1270 	nd->inode = nd->path.dentry->d_inode;
1271 }
1272 
1273 /*
1274  * This looks up the name in dcache, possibly revalidates the old dentry and
1275  * allocates a new one if not found or not valid.  In the need_lookup argument
1276  * returns whether i_op->lookup is necessary.
1277  *
1278  * dir->d_inode->i_mutex must be held
1279  */
1280 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1281 				    unsigned int flags, bool *need_lookup)
1282 {
1283 	struct dentry *dentry;
1284 	int error;
1285 
1286 	*need_lookup = false;
1287 	dentry = d_lookup(dir, name);
1288 	if (dentry) {
1289 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1290 			error = d_revalidate(dentry, flags);
1291 			if (unlikely(error <= 0)) {
1292 				if (error < 0) {
1293 					dput(dentry);
1294 					return ERR_PTR(error);
1295 				} else if (!d_invalidate(dentry)) {
1296 					dput(dentry);
1297 					dentry = NULL;
1298 				}
1299 			}
1300 		}
1301 	}
1302 
1303 	if (!dentry) {
1304 		dentry = d_alloc(dir, name);
1305 		if (unlikely(!dentry))
1306 			return ERR_PTR(-ENOMEM);
1307 
1308 		*need_lookup = true;
1309 	}
1310 	return dentry;
1311 }
1312 
1313 /*
1314  * Call i_op->lookup on the dentry.  The dentry must be negative and
1315  * unhashed.
1316  *
1317  * dir->d_inode->i_mutex must be held
1318  */
1319 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1320 				  unsigned int flags)
1321 {
1322 	struct dentry *old;
1323 
1324 	/* Don't create child dentry for a dead directory. */
1325 	if (unlikely(IS_DEADDIR(dir))) {
1326 		dput(dentry);
1327 		return ERR_PTR(-ENOENT);
1328 	}
1329 
1330 	old = dir->i_op->lookup(dir, dentry, flags);
1331 	if (unlikely(old)) {
1332 		dput(dentry);
1333 		dentry = old;
1334 	}
1335 	return dentry;
1336 }
1337 
1338 static struct dentry *__lookup_hash(struct qstr *name,
1339 		struct dentry *base, unsigned int flags)
1340 {
1341 	bool need_lookup;
1342 	struct dentry *dentry;
1343 
1344 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1345 	if (!need_lookup)
1346 		return dentry;
1347 
1348 	return lookup_real(base->d_inode, dentry, flags);
1349 }
1350 
1351 /*
1352  *  It's more convoluted than I'd like it to be, but... it's still fairly
1353  *  small and for now I'd prefer to have fast path as straight as possible.
1354  *  It _is_ time-critical.
1355  */
1356 static int lookup_fast(struct nameidata *nd,
1357 		       struct path *path, struct inode **inode)
1358 {
1359 	struct vfsmount *mnt = nd->path.mnt;
1360 	struct dentry *dentry, *parent = nd->path.dentry;
1361 	int need_reval = 1;
1362 	int status = 1;
1363 	int err;
1364 
1365 	/*
1366 	 * Rename seqlock is not required here because in the off chance
1367 	 * of a false negative due to a concurrent rename, we're going to
1368 	 * do the non-racy lookup, below.
1369 	 */
1370 	if (nd->flags & LOOKUP_RCU) {
1371 		unsigned seq;
1372 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1373 		if (!dentry)
1374 			goto unlazy;
1375 
1376 		/*
1377 		 * This sequence count validates that the inode matches
1378 		 * the dentry name information from lookup.
1379 		 */
1380 		*inode = dentry->d_inode;
1381 		if (read_seqcount_retry(&dentry->d_seq, seq))
1382 			return -ECHILD;
1383 
1384 		/*
1385 		 * This sequence count validates that the parent had no
1386 		 * changes while we did the lookup of the dentry above.
1387 		 *
1388 		 * The memory barrier in read_seqcount_begin of child is
1389 		 *  enough, we can use __read_seqcount_retry here.
1390 		 */
1391 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1392 			return -ECHILD;
1393 		nd->seq = seq;
1394 
1395 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1396 			status = d_revalidate(dentry, nd->flags);
1397 			if (unlikely(status <= 0)) {
1398 				if (status != -ECHILD)
1399 					need_reval = 0;
1400 				goto unlazy;
1401 			}
1402 		}
1403 		path->mnt = mnt;
1404 		path->dentry = dentry;
1405 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1406 			goto unlazy;
1407 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1408 			goto unlazy;
1409 		return 0;
1410 unlazy:
1411 		if (unlazy_walk(nd, dentry))
1412 			return -ECHILD;
1413 	} else {
1414 		dentry = __d_lookup(parent, &nd->last);
1415 	}
1416 
1417 	if (unlikely(!dentry))
1418 		goto need_lookup;
1419 
1420 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1421 		status = d_revalidate(dentry, nd->flags);
1422 	if (unlikely(status <= 0)) {
1423 		if (status < 0) {
1424 			dput(dentry);
1425 			return status;
1426 		}
1427 		if (!d_invalidate(dentry)) {
1428 			dput(dentry);
1429 			goto need_lookup;
1430 		}
1431 	}
1432 
1433 	path->mnt = mnt;
1434 	path->dentry = dentry;
1435 	err = follow_managed(path, nd->flags);
1436 	if (unlikely(err < 0)) {
1437 		path_put_conditional(path, nd);
1438 		return err;
1439 	}
1440 	if (err)
1441 		nd->flags |= LOOKUP_JUMPED;
1442 	*inode = path->dentry->d_inode;
1443 	return 0;
1444 
1445 need_lookup:
1446 	return 1;
1447 }
1448 
1449 /* Fast lookup failed, do it the slow way */
1450 static int lookup_slow(struct nameidata *nd, struct path *path)
1451 {
1452 	struct dentry *dentry, *parent;
1453 	int err;
1454 
1455 	parent = nd->path.dentry;
1456 	BUG_ON(nd->inode != parent->d_inode);
1457 
1458 	mutex_lock(&parent->d_inode->i_mutex);
1459 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1460 	mutex_unlock(&parent->d_inode->i_mutex);
1461 	if (IS_ERR(dentry))
1462 		return PTR_ERR(dentry);
1463 	path->mnt = nd->path.mnt;
1464 	path->dentry = dentry;
1465 	err = follow_managed(path, nd->flags);
1466 	if (unlikely(err < 0)) {
1467 		path_put_conditional(path, nd);
1468 		return err;
1469 	}
1470 	if (err)
1471 		nd->flags |= LOOKUP_JUMPED;
1472 	return 0;
1473 }
1474 
1475 static inline int may_lookup(struct nameidata *nd)
1476 {
1477 	if (nd->flags & LOOKUP_RCU) {
1478 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1479 		if (err != -ECHILD)
1480 			return err;
1481 		if (unlazy_walk(nd, NULL))
1482 			return -ECHILD;
1483 	}
1484 	return inode_permission(nd->inode, MAY_EXEC);
1485 }
1486 
1487 static inline int handle_dots(struct nameidata *nd, int type)
1488 {
1489 	if (type == LAST_DOTDOT) {
1490 		if (nd->flags & LOOKUP_RCU) {
1491 			if (follow_dotdot_rcu(nd))
1492 				return -ECHILD;
1493 		} else
1494 			follow_dotdot(nd);
1495 	}
1496 	return 0;
1497 }
1498 
1499 static void terminate_walk(struct nameidata *nd)
1500 {
1501 	if (!(nd->flags & LOOKUP_RCU)) {
1502 		path_put(&nd->path);
1503 	} else {
1504 		nd->flags &= ~LOOKUP_RCU;
1505 		if (!(nd->flags & LOOKUP_ROOT))
1506 			nd->root.mnt = NULL;
1507 		rcu_read_unlock();
1508 	}
1509 }
1510 
1511 /*
1512  * Do we need to follow links? We _really_ want to be able
1513  * to do this check without having to look at inode->i_op,
1514  * so we keep a cache of "no, this doesn't need follow_link"
1515  * for the common case.
1516  */
1517 static inline int should_follow_link(struct dentry *dentry, int follow)
1518 {
1519 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1520 }
1521 
1522 static inline int walk_component(struct nameidata *nd, struct path *path,
1523 		int follow)
1524 {
1525 	struct inode *inode;
1526 	int err;
1527 	/*
1528 	 * "." and ".." are special - ".." especially so because it has
1529 	 * to be able to know about the current root directory and
1530 	 * parent relationships.
1531 	 */
1532 	if (unlikely(nd->last_type != LAST_NORM))
1533 		return handle_dots(nd, nd->last_type);
1534 	err = lookup_fast(nd, path, &inode);
1535 	if (unlikely(err)) {
1536 		if (err < 0)
1537 			goto out_err;
1538 
1539 		err = lookup_slow(nd, path);
1540 		if (err < 0)
1541 			goto out_err;
1542 
1543 		inode = path->dentry->d_inode;
1544 	}
1545 	err = -ENOENT;
1546 	if (!inode || d_is_negative(path->dentry))
1547 		goto out_path_put;
1548 
1549 	if (should_follow_link(path->dentry, follow)) {
1550 		if (nd->flags & LOOKUP_RCU) {
1551 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1552 				err = -ECHILD;
1553 				goto out_err;
1554 			}
1555 		}
1556 		BUG_ON(inode != path->dentry->d_inode);
1557 		return 1;
1558 	}
1559 	path_to_nameidata(path, nd);
1560 	nd->inode = inode;
1561 	return 0;
1562 
1563 out_path_put:
1564 	path_to_nameidata(path, nd);
1565 out_err:
1566 	terminate_walk(nd);
1567 	return err;
1568 }
1569 
1570 /*
1571  * This limits recursive symlink follows to 8, while
1572  * limiting consecutive symlinks to 40.
1573  *
1574  * Without that kind of total limit, nasty chains of consecutive
1575  * symlinks can cause almost arbitrarily long lookups.
1576  */
1577 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1578 {
1579 	int res;
1580 
1581 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1582 		path_put_conditional(path, nd);
1583 		path_put(&nd->path);
1584 		return -ELOOP;
1585 	}
1586 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1587 
1588 	nd->depth++;
1589 	current->link_count++;
1590 
1591 	do {
1592 		struct path link = *path;
1593 		void *cookie;
1594 
1595 		res = follow_link(&link, nd, &cookie);
1596 		if (res)
1597 			break;
1598 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1599 		put_link(nd, &link, cookie);
1600 	} while (res > 0);
1601 
1602 	current->link_count--;
1603 	nd->depth--;
1604 	return res;
1605 }
1606 
1607 /*
1608  * We can do the critical dentry name comparison and hashing
1609  * operations one word at a time, but we are limited to:
1610  *
1611  * - Architectures with fast unaligned word accesses. We could
1612  *   do a "get_unaligned()" if this helps and is sufficiently
1613  *   fast.
1614  *
1615  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1616  *   do not trap on the (extremely unlikely) case of a page
1617  *   crossing operation.
1618  *
1619  * - Furthermore, we need an efficient 64-bit compile for the
1620  *   64-bit case in order to generate the "number of bytes in
1621  *   the final mask". Again, that could be replaced with a
1622  *   efficient population count instruction or similar.
1623  */
1624 #ifdef CONFIG_DCACHE_WORD_ACCESS
1625 
1626 #include <asm/word-at-a-time.h>
1627 
1628 #ifdef CONFIG_64BIT
1629 
1630 static inline unsigned int fold_hash(unsigned long hash)
1631 {
1632 	hash += hash >> (8*sizeof(int));
1633 	return hash;
1634 }
1635 
1636 #else	/* 32-bit case */
1637 
1638 #define fold_hash(x) (x)
1639 
1640 #endif
1641 
1642 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1643 {
1644 	unsigned long a, mask;
1645 	unsigned long hash = 0;
1646 
1647 	for (;;) {
1648 		a = load_unaligned_zeropad(name);
1649 		if (len < sizeof(unsigned long))
1650 			break;
1651 		hash += a;
1652 		hash *= 9;
1653 		name += sizeof(unsigned long);
1654 		len -= sizeof(unsigned long);
1655 		if (!len)
1656 			goto done;
1657 	}
1658 	mask = bytemask_from_count(len);
1659 	hash += mask & a;
1660 done:
1661 	return fold_hash(hash);
1662 }
1663 EXPORT_SYMBOL(full_name_hash);
1664 
1665 /*
1666  * Calculate the length and hash of the path component, and
1667  * return the length of the component;
1668  */
1669 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1670 {
1671 	unsigned long a, b, adata, bdata, mask, hash, len;
1672 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1673 
1674 	hash = a = 0;
1675 	len = -sizeof(unsigned long);
1676 	do {
1677 		hash = (hash + a) * 9;
1678 		len += sizeof(unsigned long);
1679 		a = load_unaligned_zeropad(name+len);
1680 		b = a ^ REPEAT_BYTE('/');
1681 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1682 
1683 	adata = prep_zero_mask(a, adata, &constants);
1684 	bdata = prep_zero_mask(b, bdata, &constants);
1685 
1686 	mask = create_zero_mask(adata | bdata);
1687 
1688 	hash += a & zero_bytemask(mask);
1689 	*hashp = fold_hash(hash);
1690 
1691 	return len + find_zero(mask);
1692 }
1693 
1694 #else
1695 
1696 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1697 {
1698 	unsigned long hash = init_name_hash();
1699 	while (len--)
1700 		hash = partial_name_hash(*name++, hash);
1701 	return end_name_hash(hash);
1702 }
1703 EXPORT_SYMBOL(full_name_hash);
1704 
1705 /*
1706  * We know there's a real path component here of at least
1707  * one character.
1708  */
1709 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1710 {
1711 	unsigned long hash = init_name_hash();
1712 	unsigned long len = 0, c;
1713 
1714 	c = (unsigned char)*name;
1715 	do {
1716 		len++;
1717 		hash = partial_name_hash(c, hash);
1718 		c = (unsigned char)name[len];
1719 	} while (c && c != '/');
1720 	*hashp = end_name_hash(hash);
1721 	return len;
1722 }
1723 
1724 #endif
1725 
1726 /*
1727  * Name resolution.
1728  * This is the basic name resolution function, turning a pathname into
1729  * the final dentry. We expect 'base' to be positive and a directory.
1730  *
1731  * Returns 0 and nd will have valid dentry and mnt on success.
1732  * Returns error and drops reference to input namei data on failure.
1733  */
1734 static int link_path_walk(const char *name, struct nameidata *nd)
1735 {
1736 	struct path next;
1737 	int err;
1738 
1739 	while (*name=='/')
1740 		name++;
1741 	if (!*name)
1742 		return 0;
1743 
1744 	/* At this point we know we have a real path component. */
1745 	for(;;) {
1746 		struct qstr this;
1747 		long len;
1748 		int type;
1749 
1750 		err = may_lookup(nd);
1751  		if (err)
1752 			break;
1753 
1754 		len = hash_name(name, &this.hash);
1755 		this.name = name;
1756 		this.len = len;
1757 
1758 		type = LAST_NORM;
1759 		if (name[0] == '.') switch (len) {
1760 			case 2:
1761 				if (name[1] == '.') {
1762 					type = LAST_DOTDOT;
1763 					nd->flags |= LOOKUP_JUMPED;
1764 				}
1765 				break;
1766 			case 1:
1767 				type = LAST_DOT;
1768 		}
1769 		if (likely(type == LAST_NORM)) {
1770 			struct dentry *parent = nd->path.dentry;
1771 			nd->flags &= ~LOOKUP_JUMPED;
1772 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1773 				err = parent->d_op->d_hash(parent, &this);
1774 				if (err < 0)
1775 					break;
1776 			}
1777 		}
1778 
1779 		nd->last = this;
1780 		nd->last_type = type;
1781 
1782 		if (!name[len])
1783 			return 0;
1784 		/*
1785 		 * If it wasn't NUL, we know it was '/'. Skip that
1786 		 * slash, and continue until no more slashes.
1787 		 */
1788 		do {
1789 			len++;
1790 		} while (unlikely(name[len] == '/'));
1791 		if (!name[len])
1792 			return 0;
1793 
1794 		name += len;
1795 
1796 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1797 		if (err < 0)
1798 			return err;
1799 
1800 		if (err) {
1801 			err = nested_symlink(&next, nd);
1802 			if (err)
1803 				return err;
1804 		}
1805 		if (!d_can_lookup(nd->path.dentry)) {
1806 			err = -ENOTDIR;
1807 			break;
1808 		}
1809 	}
1810 	terminate_walk(nd);
1811 	return err;
1812 }
1813 
1814 static int path_init(int dfd, const char *name, unsigned int flags,
1815 		     struct nameidata *nd, struct file **fp)
1816 {
1817 	int retval = 0;
1818 
1819 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1820 	nd->flags = flags | LOOKUP_JUMPED;
1821 	nd->depth = 0;
1822 	if (flags & LOOKUP_ROOT) {
1823 		struct dentry *root = nd->root.dentry;
1824 		struct inode *inode = root->d_inode;
1825 		if (*name) {
1826 			if (!d_can_lookup(root))
1827 				return -ENOTDIR;
1828 			retval = inode_permission(inode, MAY_EXEC);
1829 			if (retval)
1830 				return retval;
1831 		}
1832 		nd->path = nd->root;
1833 		nd->inode = inode;
1834 		if (flags & LOOKUP_RCU) {
1835 			rcu_read_lock();
1836 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1837 			nd->m_seq = read_seqbegin(&mount_lock);
1838 		} else {
1839 			path_get(&nd->path);
1840 		}
1841 		return 0;
1842 	}
1843 
1844 	nd->root.mnt = NULL;
1845 
1846 	nd->m_seq = read_seqbegin(&mount_lock);
1847 	if (*name=='/') {
1848 		if (flags & LOOKUP_RCU) {
1849 			rcu_read_lock();
1850 			set_root_rcu(nd);
1851 		} else {
1852 			set_root(nd);
1853 			path_get(&nd->root);
1854 		}
1855 		nd->path = nd->root;
1856 	} else if (dfd == AT_FDCWD) {
1857 		if (flags & LOOKUP_RCU) {
1858 			struct fs_struct *fs = current->fs;
1859 			unsigned seq;
1860 
1861 			rcu_read_lock();
1862 
1863 			do {
1864 				seq = read_seqcount_begin(&fs->seq);
1865 				nd->path = fs->pwd;
1866 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1867 			} while (read_seqcount_retry(&fs->seq, seq));
1868 		} else {
1869 			get_fs_pwd(current->fs, &nd->path);
1870 		}
1871 	} else {
1872 		/* Caller must check execute permissions on the starting path component */
1873 		struct fd f = fdget_raw(dfd);
1874 		struct dentry *dentry;
1875 
1876 		if (!f.file)
1877 			return -EBADF;
1878 
1879 		dentry = f.file->f_path.dentry;
1880 
1881 		if (*name) {
1882 			if (!d_can_lookup(dentry)) {
1883 				fdput(f);
1884 				return -ENOTDIR;
1885 			}
1886 		}
1887 
1888 		nd->path = f.file->f_path;
1889 		if (flags & LOOKUP_RCU) {
1890 			if (f.flags & FDPUT_FPUT)
1891 				*fp = f.file;
1892 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1893 			rcu_read_lock();
1894 		} else {
1895 			path_get(&nd->path);
1896 			fdput(f);
1897 		}
1898 	}
1899 
1900 	nd->inode = nd->path.dentry->d_inode;
1901 	return 0;
1902 }
1903 
1904 static inline int lookup_last(struct nameidata *nd, struct path *path)
1905 {
1906 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1907 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1908 
1909 	nd->flags &= ~LOOKUP_PARENT;
1910 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1911 }
1912 
1913 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1914 static int path_lookupat(int dfd, const char *name,
1915 				unsigned int flags, struct nameidata *nd)
1916 {
1917 	struct file *base = NULL;
1918 	struct path path;
1919 	int err;
1920 
1921 	/*
1922 	 * Path walking is largely split up into 2 different synchronisation
1923 	 * schemes, rcu-walk and ref-walk (explained in
1924 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1925 	 * path walk code, but some things particularly setup, cleanup, and
1926 	 * following mounts are sufficiently divergent that functions are
1927 	 * duplicated. Typically there is a function foo(), and its RCU
1928 	 * analogue, foo_rcu().
1929 	 *
1930 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1931 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1932 	 * be handled by restarting a traditional ref-walk (which will always
1933 	 * be able to complete).
1934 	 */
1935 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1936 
1937 	if (unlikely(err))
1938 		return err;
1939 
1940 	current->total_link_count = 0;
1941 	err = link_path_walk(name, nd);
1942 
1943 	if (!err && !(flags & LOOKUP_PARENT)) {
1944 		err = lookup_last(nd, &path);
1945 		while (err > 0) {
1946 			void *cookie;
1947 			struct path link = path;
1948 			err = may_follow_link(&link, nd);
1949 			if (unlikely(err))
1950 				break;
1951 			nd->flags |= LOOKUP_PARENT;
1952 			err = follow_link(&link, nd, &cookie);
1953 			if (err)
1954 				break;
1955 			err = lookup_last(nd, &path);
1956 			put_link(nd, &link, cookie);
1957 		}
1958 	}
1959 
1960 	if (!err)
1961 		err = complete_walk(nd);
1962 
1963 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1964 		if (!d_can_lookup(nd->path.dentry)) {
1965 			path_put(&nd->path);
1966 			err = -ENOTDIR;
1967 		}
1968 	}
1969 
1970 	if (base)
1971 		fput(base);
1972 
1973 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1974 		path_put(&nd->root);
1975 		nd->root.mnt = NULL;
1976 	}
1977 	return err;
1978 }
1979 
1980 static int filename_lookup(int dfd, struct filename *name,
1981 				unsigned int flags, struct nameidata *nd)
1982 {
1983 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1984 	if (unlikely(retval == -ECHILD))
1985 		retval = path_lookupat(dfd, name->name, flags, nd);
1986 	if (unlikely(retval == -ESTALE))
1987 		retval = path_lookupat(dfd, name->name,
1988 						flags | LOOKUP_REVAL, nd);
1989 
1990 	if (likely(!retval))
1991 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1992 	return retval;
1993 }
1994 
1995 static int do_path_lookup(int dfd, const char *name,
1996 				unsigned int flags, struct nameidata *nd)
1997 {
1998 	struct filename filename = { .name = name };
1999 
2000 	return filename_lookup(dfd, &filename, flags, nd);
2001 }
2002 
2003 /* does lookup, returns the object with parent locked */
2004 struct dentry *kern_path_locked(const char *name, struct path *path)
2005 {
2006 	struct nameidata nd;
2007 	struct dentry *d;
2008 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2009 	if (err)
2010 		return ERR_PTR(err);
2011 	if (nd.last_type != LAST_NORM) {
2012 		path_put(&nd.path);
2013 		return ERR_PTR(-EINVAL);
2014 	}
2015 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2016 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2017 	if (IS_ERR(d)) {
2018 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2019 		path_put(&nd.path);
2020 		return d;
2021 	}
2022 	*path = nd.path;
2023 	return d;
2024 }
2025 
2026 int kern_path(const char *name, unsigned int flags, struct path *path)
2027 {
2028 	struct nameidata nd;
2029 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2030 	if (!res)
2031 		*path = nd.path;
2032 	return res;
2033 }
2034 EXPORT_SYMBOL(kern_path);
2035 
2036 /**
2037  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2038  * @dentry:  pointer to dentry of the base directory
2039  * @mnt: pointer to vfs mount of the base directory
2040  * @name: pointer to file name
2041  * @flags: lookup flags
2042  * @path: pointer to struct path to fill
2043  */
2044 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2045 		    const char *name, unsigned int flags,
2046 		    struct path *path)
2047 {
2048 	struct nameidata nd;
2049 	int err;
2050 	nd.root.dentry = dentry;
2051 	nd.root.mnt = mnt;
2052 	BUG_ON(flags & LOOKUP_PARENT);
2053 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2054 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2055 	if (!err)
2056 		*path = nd.path;
2057 	return err;
2058 }
2059 EXPORT_SYMBOL(vfs_path_lookup);
2060 
2061 /*
2062  * Restricted form of lookup. Doesn't follow links, single-component only,
2063  * needs parent already locked. Doesn't follow mounts.
2064  * SMP-safe.
2065  */
2066 static struct dentry *lookup_hash(struct nameidata *nd)
2067 {
2068 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2069 }
2070 
2071 /**
2072  * lookup_one_len - filesystem helper to lookup single pathname component
2073  * @name:	pathname component to lookup
2074  * @base:	base directory to lookup from
2075  * @len:	maximum length @len should be interpreted to
2076  *
2077  * Note that this routine is purely a helper for filesystem usage and should
2078  * not be called by generic code.  Also note that by using this function the
2079  * nameidata argument is passed to the filesystem methods and a filesystem
2080  * using this helper needs to be prepared for that.
2081  */
2082 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2083 {
2084 	struct qstr this;
2085 	unsigned int c;
2086 	int err;
2087 
2088 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2089 
2090 	this.name = name;
2091 	this.len = len;
2092 	this.hash = full_name_hash(name, len);
2093 	if (!len)
2094 		return ERR_PTR(-EACCES);
2095 
2096 	if (unlikely(name[0] == '.')) {
2097 		if (len < 2 || (len == 2 && name[1] == '.'))
2098 			return ERR_PTR(-EACCES);
2099 	}
2100 
2101 	while (len--) {
2102 		c = *(const unsigned char *)name++;
2103 		if (c == '/' || c == '\0')
2104 			return ERR_PTR(-EACCES);
2105 	}
2106 	/*
2107 	 * See if the low-level filesystem might want
2108 	 * to use its own hash..
2109 	 */
2110 	if (base->d_flags & DCACHE_OP_HASH) {
2111 		int err = base->d_op->d_hash(base, &this);
2112 		if (err < 0)
2113 			return ERR_PTR(err);
2114 	}
2115 
2116 	err = inode_permission(base->d_inode, MAY_EXEC);
2117 	if (err)
2118 		return ERR_PTR(err);
2119 
2120 	return __lookup_hash(&this, base, 0);
2121 }
2122 EXPORT_SYMBOL(lookup_one_len);
2123 
2124 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2125 		 struct path *path, int *empty)
2126 {
2127 	struct nameidata nd;
2128 	struct filename *tmp = getname_flags(name, flags, empty);
2129 	int err = PTR_ERR(tmp);
2130 	if (!IS_ERR(tmp)) {
2131 
2132 		BUG_ON(flags & LOOKUP_PARENT);
2133 
2134 		err = filename_lookup(dfd, tmp, flags, &nd);
2135 		putname(tmp);
2136 		if (!err)
2137 			*path = nd.path;
2138 	}
2139 	return err;
2140 }
2141 
2142 int user_path_at(int dfd, const char __user *name, unsigned flags,
2143 		 struct path *path)
2144 {
2145 	return user_path_at_empty(dfd, name, flags, path, NULL);
2146 }
2147 EXPORT_SYMBOL(user_path_at);
2148 
2149 /*
2150  * NB: most callers don't do anything directly with the reference to the
2151  *     to struct filename, but the nd->last pointer points into the name string
2152  *     allocated by getname. So we must hold the reference to it until all
2153  *     path-walking is complete.
2154  */
2155 static struct filename *
2156 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2157 		 unsigned int flags)
2158 {
2159 	struct filename *s = getname(path);
2160 	int error;
2161 
2162 	/* only LOOKUP_REVAL is allowed in extra flags */
2163 	flags &= LOOKUP_REVAL;
2164 
2165 	if (IS_ERR(s))
2166 		return s;
2167 
2168 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2169 	if (error) {
2170 		putname(s);
2171 		return ERR_PTR(error);
2172 	}
2173 
2174 	return s;
2175 }
2176 
2177 /**
2178  * mountpoint_last - look up last component for umount
2179  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2180  * @path: pointer to container for result
2181  *
2182  * This is a special lookup_last function just for umount. In this case, we
2183  * need to resolve the path without doing any revalidation.
2184  *
2185  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2186  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2187  * in almost all cases, this lookup will be served out of the dcache. The only
2188  * cases where it won't are if nd->last refers to a symlink or the path is
2189  * bogus and it doesn't exist.
2190  *
2191  * Returns:
2192  * -error: if there was an error during lookup. This includes -ENOENT if the
2193  *         lookup found a negative dentry. The nd->path reference will also be
2194  *         put in this case.
2195  *
2196  * 0:      if we successfully resolved nd->path and found it to not to be a
2197  *         symlink that needs to be followed. "path" will also be populated.
2198  *         The nd->path reference will also be put.
2199  *
2200  * 1:      if we successfully resolved nd->last and found it to be a symlink
2201  *         that needs to be followed. "path" will be populated with the path
2202  *         to the link, and nd->path will *not* be put.
2203  */
2204 static int
2205 mountpoint_last(struct nameidata *nd, struct path *path)
2206 {
2207 	int error = 0;
2208 	struct dentry *dentry;
2209 	struct dentry *dir = nd->path.dentry;
2210 
2211 	/* If we're in rcuwalk, drop out of it to handle last component */
2212 	if (nd->flags & LOOKUP_RCU) {
2213 		if (unlazy_walk(nd, NULL)) {
2214 			error = -ECHILD;
2215 			goto out;
2216 		}
2217 	}
2218 
2219 	nd->flags &= ~LOOKUP_PARENT;
2220 
2221 	if (unlikely(nd->last_type != LAST_NORM)) {
2222 		error = handle_dots(nd, nd->last_type);
2223 		if (error)
2224 			goto out;
2225 		dentry = dget(nd->path.dentry);
2226 		goto done;
2227 	}
2228 
2229 	mutex_lock(&dir->d_inode->i_mutex);
2230 	dentry = d_lookup(dir, &nd->last);
2231 	if (!dentry) {
2232 		/*
2233 		 * No cached dentry. Mounted dentries are pinned in the cache,
2234 		 * so that means that this dentry is probably a symlink or the
2235 		 * path doesn't actually point to a mounted dentry.
2236 		 */
2237 		dentry = d_alloc(dir, &nd->last);
2238 		if (!dentry) {
2239 			error = -ENOMEM;
2240 			mutex_unlock(&dir->d_inode->i_mutex);
2241 			goto out;
2242 		}
2243 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2244 		error = PTR_ERR(dentry);
2245 		if (IS_ERR(dentry)) {
2246 			mutex_unlock(&dir->d_inode->i_mutex);
2247 			goto out;
2248 		}
2249 	}
2250 	mutex_unlock(&dir->d_inode->i_mutex);
2251 
2252 done:
2253 	if (!dentry->d_inode || d_is_negative(dentry)) {
2254 		error = -ENOENT;
2255 		dput(dentry);
2256 		goto out;
2257 	}
2258 	path->dentry = dentry;
2259 	path->mnt = mntget(nd->path.mnt);
2260 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2261 		return 1;
2262 	follow_mount(path);
2263 	error = 0;
2264 out:
2265 	terminate_walk(nd);
2266 	return error;
2267 }
2268 
2269 /**
2270  * path_mountpoint - look up a path to be umounted
2271  * @dfd:	directory file descriptor to start walk from
2272  * @name:	full pathname to walk
2273  * @path:	pointer to container for result
2274  * @flags:	lookup flags
2275  *
2276  * Look up the given name, but don't attempt to revalidate the last component.
2277  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2278  */
2279 static int
2280 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2281 {
2282 	struct file *base = NULL;
2283 	struct nameidata nd;
2284 	int err;
2285 
2286 	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2287 	if (unlikely(err))
2288 		return err;
2289 
2290 	current->total_link_count = 0;
2291 	err = link_path_walk(name, &nd);
2292 	if (err)
2293 		goto out;
2294 
2295 	err = mountpoint_last(&nd, path);
2296 	while (err > 0) {
2297 		void *cookie;
2298 		struct path link = *path;
2299 		err = may_follow_link(&link, &nd);
2300 		if (unlikely(err))
2301 			break;
2302 		nd.flags |= LOOKUP_PARENT;
2303 		err = follow_link(&link, &nd, &cookie);
2304 		if (err)
2305 			break;
2306 		err = mountpoint_last(&nd, path);
2307 		put_link(&nd, &link, cookie);
2308 	}
2309 out:
2310 	if (base)
2311 		fput(base);
2312 
2313 	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2314 		path_put(&nd.root);
2315 
2316 	return err;
2317 }
2318 
2319 static int
2320 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2321 			unsigned int flags)
2322 {
2323 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2324 	if (unlikely(error == -ECHILD))
2325 		error = path_mountpoint(dfd, s->name, path, flags);
2326 	if (unlikely(error == -ESTALE))
2327 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2328 	if (likely(!error))
2329 		audit_inode(s, path->dentry, 0);
2330 	return error;
2331 }
2332 
2333 /**
2334  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2335  * @dfd:	directory file descriptor
2336  * @name:	pathname from userland
2337  * @flags:	lookup flags
2338  * @path:	pointer to container to hold result
2339  *
2340  * A umount is a special case for path walking. We're not actually interested
2341  * in the inode in this situation, and ESTALE errors can be a problem. We
2342  * simply want track down the dentry and vfsmount attached at the mountpoint
2343  * and avoid revalidating the last component.
2344  *
2345  * Returns 0 and populates "path" on success.
2346  */
2347 int
2348 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2349 			struct path *path)
2350 {
2351 	struct filename *s = getname(name);
2352 	int error;
2353 	if (IS_ERR(s))
2354 		return PTR_ERR(s);
2355 	error = filename_mountpoint(dfd, s, path, flags);
2356 	putname(s);
2357 	return error;
2358 }
2359 
2360 int
2361 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2362 			unsigned int flags)
2363 {
2364 	struct filename s = {.name = name};
2365 	return filename_mountpoint(dfd, &s, path, flags);
2366 }
2367 EXPORT_SYMBOL(kern_path_mountpoint);
2368 
2369 /*
2370  * It's inline, so penalty for filesystems that don't use sticky bit is
2371  * minimal.
2372  */
2373 static inline int check_sticky(struct inode *dir, struct inode *inode)
2374 {
2375 	kuid_t fsuid = current_fsuid();
2376 
2377 	if (!(dir->i_mode & S_ISVTX))
2378 		return 0;
2379 	if (uid_eq(inode->i_uid, fsuid))
2380 		return 0;
2381 	if (uid_eq(dir->i_uid, fsuid))
2382 		return 0;
2383 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2384 }
2385 
2386 /*
2387  *	Check whether we can remove a link victim from directory dir, check
2388  *  whether the type of victim is right.
2389  *  1. We can't do it if dir is read-only (done in permission())
2390  *  2. We should have write and exec permissions on dir
2391  *  3. We can't remove anything from append-only dir
2392  *  4. We can't do anything with immutable dir (done in permission())
2393  *  5. If the sticky bit on dir is set we should either
2394  *	a. be owner of dir, or
2395  *	b. be owner of victim, or
2396  *	c. have CAP_FOWNER capability
2397  *  6. If the victim is append-only or immutable we can't do antyhing with
2398  *     links pointing to it.
2399  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2400  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2401  *  9. We can't remove a root or mountpoint.
2402  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2403  *     nfs_async_unlink().
2404  */
2405 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2406 {
2407 	struct inode *inode = victim->d_inode;
2408 	int error;
2409 
2410 	if (d_is_negative(victim))
2411 		return -ENOENT;
2412 	BUG_ON(!inode);
2413 
2414 	BUG_ON(victim->d_parent->d_inode != dir);
2415 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2416 
2417 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2418 	if (error)
2419 		return error;
2420 	if (IS_APPEND(dir))
2421 		return -EPERM;
2422 
2423 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2424 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2425 		return -EPERM;
2426 	if (isdir) {
2427 		if (!d_is_dir(victim))
2428 			return -ENOTDIR;
2429 		if (IS_ROOT(victim))
2430 			return -EBUSY;
2431 	} else if (d_is_dir(victim))
2432 		return -EISDIR;
2433 	if (IS_DEADDIR(dir))
2434 		return -ENOENT;
2435 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2436 		return -EBUSY;
2437 	return 0;
2438 }
2439 
2440 /*	Check whether we can create an object with dentry child in directory
2441  *  dir.
2442  *  1. We can't do it if child already exists (open has special treatment for
2443  *     this case, but since we are inlined it's OK)
2444  *  2. We can't do it if dir is read-only (done in permission())
2445  *  3. We should have write and exec permissions on dir
2446  *  4. We can't do it if dir is immutable (done in permission())
2447  */
2448 static inline int may_create(struct inode *dir, struct dentry *child)
2449 {
2450 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2451 	if (child->d_inode)
2452 		return -EEXIST;
2453 	if (IS_DEADDIR(dir))
2454 		return -ENOENT;
2455 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2456 }
2457 
2458 /*
2459  * p1 and p2 should be directories on the same fs.
2460  */
2461 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2462 {
2463 	struct dentry *p;
2464 
2465 	if (p1 == p2) {
2466 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2467 		return NULL;
2468 	}
2469 
2470 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2471 
2472 	p = d_ancestor(p2, p1);
2473 	if (p) {
2474 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2475 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2476 		return p;
2477 	}
2478 
2479 	p = d_ancestor(p1, p2);
2480 	if (p) {
2481 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2482 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2483 		return p;
2484 	}
2485 
2486 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2487 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2488 	return NULL;
2489 }
2490 EXPORT_SYMBOL(lock_rename);
2491 
2492 void unlock_rename(struct dentry *p1, struct dentry *p2)
2493 {
2494 	mutex_unlock(&p1->d_inode->i_mutex);
2495 	if (p1 != p2) {
2496 		mutex_unlock(&p2->d_inode->i_mutex);
2497 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2498 	}
2499 }
2500 EXPORT_SYMBOL(unlock_rename);
2501 
2502 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2503 		bool want_excl)
2504 {
2505 	int error = may_create(dir, dentry);
2506 	if (error)
2507 		return error;
2508 
2509 	if (!dir->i_op->create)
2510 		return -EACCES;	/* shouldn't it be ENOSYS? */
2511 	mode &= S_IALLUGO;
2512 	mode |= S_IFREG;
2513 	error = security_inode_create(dir, dentry, mode);
2514 	if (error)
2515 		return error;
2516 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2517 	if (!error)
2518 		fsnotify_create(dir, dentry);
2519 	return error;
2520 }
2521 EXPORT_SYMBOL(vfs_create);
2522 
2523 static int may_open(struct path *path, int acc_mode, int flag)
2524 {
2525 	struct dentry *dentry = path->dentry;
2526 	struct inode *inode = dentry->d_inode;
2527 	int error;
2528 
2529 	/* O_PATH? */
2530 	if (!acc_mode)
2531 		return 0;
2532 
2533 	if (!inode)
2534 		return -ENOENT;
2535 
2536 	switch (inode->i_mode & S_IFMT) {
2537 	case S_IFLNK:
2538 		return -ELOOP;
2539 	case S_IFDIR:
2540 		if (acc_mode & MAY_WRITE)
2541 			return -EISDIR;
2542 		break;
2543 	case S_IFBLK:
2544 	case S_IFCHR:
2545 		if (path->mnt->mnt_flags & MNT_NODEV)
2546 			return -EACCES;
2547 		/*FALLTHRU*/
2548 	case S_IFIFO:
2549 	case S_IFSOCK:
2550 		flag &= ~O_TRUNC;
2551 		break;
2552 	}
2553 
2554 	error = inode_permission(inode, acc_mode);
2555 	if (error)
2556 		return error;
2557 
2558 	/*
2559 	 * An append-only file must be opened in append mode for writing.
2560 	 */
2561 	if (IS_APPEND(inode)) {
2562 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2563 			return -EPERM;
2564 		if (flag & O_TRUNC)
2565 			return -EPERM;
2566 	}
2567 
2568 	/* O_NOATIME can only be set by the owner or superuser */
2569 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2570 		return -EPERM;
2571 
2572 	return 0;
2573 }
2574 
2575 static int handle_truncate(struct file *filp)
2576 {
2577 	struct path *path = &filp->f_path;
2578 	struct inode *inode = path->dentry->d_inode;
2579 	int error = get_write_access(inode);
2580 	if (error)
2581 		return error;
2582 	/*
2583 	 * Refuse to truncate files with mandatory locks held on them.
2584 	 */
2585 	error = locks_verify_locked(filp);
2586 	if (!error)
2587 		error = security_path_truncate(path);
2588 	if (!error) {
2589 		error = do_truncate(path->dentry, 0,
2590 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2591 				    filp);
2592 	}
2593 	put_write_access(inode);
2594 	return error;
2595 }
2596 
2597 static inline int open_to_namei_flags(int flag)
2598 {
2599 	if ((flag & O_ACCMODE) == 3)
2600 		flag--;
2601 	return flag;
2602 }
2603 
2604 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2605 {
2606 	int error = security_path_mknod(dir, dentry, mode, 0);
2607 	if (error)
2608 		return error;
2609 
2610 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2611 	if (error)
2612 		return error;
2613 
2614 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2615 }
2616 
2617 /*
2618  * Attempt to atomically look up, create and open a file from a negative
2619  * dentry.
2620  *
2621  * Returns 0 if successful.  The file will have been created and attached to
2622  * @file by the filesystem calling finish_open().
2623  *
2624  * Returns 1 if the file was looked up only or didn't need creating.  The
2625  * caller will need to perform the open themselves.  @path will have been
2626  * updated to point to the new dentry.  This may be negative.
2627  *
2628  * Returns an error code otherwise.
2629  */
2630 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2631 			struct path *path, struct file *file,
2632 			const struct open_flags *op,
2633 			bool got_write, bool need_lookup,
2634 			int *opened)
2635 {
2636 	struct inode *dir =  nd->path.dentry->d_inode;
2637 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2638 	umode_t mode;
2639 	int error;
2640 	int acc_mode;
2641 	int create_error = 0;
2642 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2643 	bool excl;
2644 
2645 	BUG_ON(dentry->d_inode);
2646 
2647 	/* Don't create child dentry for a dead directory. */
2648 	if (unlikely(IS_DEADDIR(dir))) {
2649 		error = -ENOENT;
2650 		goto out;
2651 	}
2652 
2653 	mode = op->mode;
2654 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2655 		mode &= ~current_umask();
2656 
2657 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2658 	if (excl)
2659 		open_flag &= ~O_TRUNC;
2660 
2661 	/*
2662 	 * Checking write permission is tricky, bacuse we don't know if we are
2663 	 * going to actually need it: O_CREAT opens should work as long as the
2664 	 * file exists.  But checking existence breaks atomicity.  The trick is
2665 	 * to check access and if not granted clear O_CREAT from the flags.
2666 	 *
2667 	 * Another problem is returing the "right" error value (e.g. for an
2668 	 * O_EXCL open we want to return EEXIST not EROFS).
2669 	 */
2670 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2671 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2672 		if (!(open_flag & O_CREAT)) {
2673 			/*
2674 			 * No O_CREATE -> atomicity not a requirement -> fall
2675 			 * back to lookup + open
2676 			 */
2677 			goto no_open;
2678 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2679 			/* Fall back and fail with the right error */
2680 			create_error = -EROFS;
2681 			goto no_open;
2682 		} else {
2683 			/* No side effects, safe to clear O_CREAT */
2684 			create_error = -EROFS;
2685 			open_flag &= ~O_CREAT;
2686 		}
2687 	}
2688 
2689 	if (open_flag & O_CREAT) {
2690 		error = may_o_create(&nd->path, dentry, mode);
2691 		if (error) {
2692 			create_error = error;
2693 			if (open_flag & O_EXCL)
2694 				goto no_open;
2695 			open_flag &= ~O_CREAT;
2696 		}
2697 	}
2698 
2699 	if (nd->flags & LOOKUP_DIRECTORY)
2700 		open_flag |= O_DIRECTORY;
2701 
2702 	file->f_path.dentry = DENTRY_NOT_SET;
2703 	file->f_path.mnt = nd->path.mnt;
2704 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2705 				      opened);
2706 	if (error < 0) {
2707 		if (create_error && error == -ENOENT)
2708 			error = create_error;
2709 		goto out;
2710 	}
2711 
2712 	if (error) {	/* returned 1, that is */
2713 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2714 			error = -EIO;
2715 			goto out;
2716 		}
2717 		if (file->f_path.dentry) {
2718 			dput(dentry);
2719 			dentry = file->f_path.dentry;
2720 		}
2721 		if (*opened & FILE_CREATED)
2722 			fsnotify_create(dir, dentry);
2723 		if (!dentry->d_inode) {
2724 			WARN_ON(*opened & FILE_CREATED);
2725 			if (create_error) {
2726 				error = create_error;
2727 				goto out;
2728 			}
2729 		} else {
2730 			if (excl && !(*opened & FILE_CREATED)) {
2731 				error = -EEXIST;
2732 				goto out;
2733 			}
2734 		}
2735 		goto looked_up;
2736 	}
2737 
2738 	/*
2739 	 * We didn't have the inode before the open, so check open permission
2740 	 * here.
2741 	 */
2742 	acc_mode = op->acc_mode;
2743 	if (*opened & FILE_CREATED) {
2744 		WARN_ON(!(open_flag & O_CREAT));
2745 		fsnotify_create(dir, dentry);
2746 		acc_mode = MAY_OPEN;
2747 	}
2748 	error = may_open(&file->f_path, acc_mode, open_flag);
2749 	if (error)
2750 		fput(file);
2751 
2752 out:
2753 	dput(dentry);
2754 	return error;
2755 
2756 no_open:
2757 	if (need_lookup) {
2758 		dentry = lookup_real(dir, dentry, nd->flags);
2759 		if (IS_ERR(dentry))
2760 			return PTR_ERR(dentry);
2761 
2762 		if (create_error) {
2763 			int open_flag = op->open_flag;
2764 
2765 			error = create_error;
2766 			if ((open_flag & O_EXCL)) {
2767 				if (!dentry->d_inode)
2768 					goto out;
2769 			} else if (!dentry->d_inode) {
2770 				goto out;
2771 			} else if ((open_flag & O_TRUNC) &&
2772 				   S_ISREG(dentry->d_inode->i_mode)) {
2773 				goto out;
2774 			}
2775 			/* will fail later, go on to get the right error */
2776 		}
2777 	}
2778 looked_up:
2779 	path->dentry = dentry;
2780 	path->mnt = nd->path.mnt;
2781 	return 1;
2782 }
2783 
2784 /*
2785  * Look up and maybe create and open the last component.
2786  *
2787  * Must be called with i_mutex held on parent.
2788  *
2789  * Returns 0 if the file was successfully atomically created (if necessary) and
2790  * opened.  In this case the file will be returned attached to @file.
2791  *
2792  * Returns 1 if the file was not completely opened at this time, though lookups
2793  * and creations will have been performed and the dentry returned in @path will
2794  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2795  * specified then a negative dentry may be returned.
2796  *
2797  * An error code is returned otherwise.
2798  *
2799  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2800  * cleared otherwise prior to returning.
2801  */
2802 static int lookup_open(struct nameidata *nd, struct path *path,
2803 			struct file *file,
2804 			const struct open_flags *op,
2805 			bool got_write, int *opened)
2806 {
2807 	struct dentry *dir = nd->path.dentry;
2808 	struct inode *dir_inode = dir->d_inode;
2809 	struct dentry *dentry;
2810 	int error;
2811 	bool need_lookup;
2812 
2813 	*opened &= ~FILE_CREATED;
2814 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2815 	if (IS_ERR(dentry))
2816 		return PTR_ERR(dentry);
2817 
2818 	/* Cached positive dentry: will open in f_op->open */
2819 	if (!need_lookup && dentry->d_inode)
2820 		goto out_no_open;
2821 
2822 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2823 		return atomic_open(nd, dentry, path, file, op, got_write,
2824 				   need_lookup, opened);
2825 	}
2826 
2827 	if (need_lookup) {
2828 		BUG_ON(dentry->d_inode);
2829 
2830 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2831 		if (IS_ERR(dentry))
2832 			return PTR_ERR(dentry);
2833 	}
2834 
2835 	/* Negative dentry, just create the file */
2836 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2837 		umode_t mode = op->mode;
2838 		if (!IS_POSIXACL(dir->d_inode))
2839 			mode &= ~current_umask();
2840 		/*
2841 		 * This write is needed to ensure that a
2842 		 * rw->ro transition does not occur between
2843 		 * the time when the file is created and when
2844 		 * a permanent write count is taken through
2845 		 * the 'struct file' in finish_open().
2846 		 */
2847 		if (!got_write) {
2848 			error = -EROFS;
2849 			goto out_dput;
2850 		}
2851 		*opened |= FILE_CREATED;
2852 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2853 		if (error)
2854 			goto out_dput;
2855 		error = vfs_create(dir->d_inode, dentry, mode,
2856 				   nd->flags & LOOKUP_EXCL);
2857 		if (error)
2858 			goto out_dput;
2859 	}
2860 out_no_open:
2861 	path->dentry = dentry;
2862 	path->mnt = nd->path.mnt;
2863 	return 1;
2864 
2865 out_dput:
2866 	dput(dentry);
2867 	return error;
2868 }
2869 
2870 /*
2871  * Handle the last step of open()
2872  */
2873 static int do_last(struct nameidata *nd, struct path *path,
2874 		   struct file *file, const struct open_flags *op,
2875 		   int *opened, struct filename *name)
2876 {
2877 	struct dentry *dir = nd->path.dentry;
2878 	int open_flag = op->open_flag;
2879 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2880 	bool got_write = false;
2881 	int acc_mode = op->acc_mode;
2882 	struct inode *inode;
2883 	bool symlink_ok = false;
2884 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2885 	bool retried = false;
2886 	int error;
2887 
2888 	nd->flags &= ~LOOKUP_PARENT;
2889 	nd->flags |= op->intent;
2890 
2891 	if (nd->last_type != LAST_NORM) {
2892 		error = handle_dots(nd, nd->last_type);
2893 		if (error)
2894 			return error;
2895 		goto finish_open;
2896 	}
2897 
2898 	if (!(open_flag & O_CREAT)) {
2899 		if (nd->last.name[nd->last.len])
2900 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2901 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2902 			symlink_ok = true;
2903 		/* we _can_ be in RCU mode here */
2904 		error = lookup_fast(nd, path, &inode);
2905 		if (likely(!error))
2906 			goto finish_lookup;
2907 
2908 		if (error < 0)
2909 			goto out;
2910 
2911 		BUG_ON(nd->inode != dir->d_inode);
2912 	} else {
2913 		/* create side of things */
2914 		/*
2915 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2916 		 * has been cleared when we got to the last component we are
2917 		 * about to look up
2918 		 */
2919 		error = complete_walk(nd);
2920 		if (error)
2921 			return error;
2922 
2923 		audit_inode(name, dir, LOOKUP_PARENT);
2924 		error = -EISDIR;
2925 		/* trailing slashes? */
2926 		if (nd->last.name[nd->last.len])
2927 			goto out;
2928 	}
2929 
2930 retry_lookup:
2931 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2932 		error = mnt_want_write(nd->path.mnt);
2933 		if (!error)
2934 			got_write = true;
2935 		/*
2936 		 * do _not_ fail yet - we might not need that or fail with
2937 		 * a different error; let lookup_open() decide; we'll be
2938 		 * dropping this one anyway.
2939 		 */
2940 	}
2941 	mutex_lock(&dir->d_inode->i_mutex);
2942 	error = lookup_open(nd, path, file, op, got_write, opened);
2943 	mutex_unlock(&dir->d_inode->i_mutex);
2944 
2945 	if (error <= 0) {
2946 		if (error)
2947 			goto out;
2948 
2949 		if ((*opened & FILE_CREATED) ||
2950 		    !S_ISREG(file_inode(file)->i_mode))
2951 			will_truncate = false;
2952 
2953 		audit_inode(name, file->f_path.dentry, 0);
2954 		goto opened;
2955 	}
2956 
2957 	if (*opened & FILE_CREATED) {
2958 		/* Don't check for write permission, don't truncate */
2959 		open_flag &= ~O_TRUNC;
2960 		will_truncate = false;
2961 		acc_mode = MAY_OPEN;
2962 		path_to_nameidata(path, nd);
2963 		goto finish_open_created;
2964 	}
2965 
2966 	/*
2967 	 * create/update audit record if it already exists.
2968 	 */
2969 	if (d_is_positive(path->dentry))
2970 		audit_inode(name, path->dentry, 0);
2971 
2972 	/*
2973 	 * If atomic_open() acquired write access it is dropped now due to
2974 	 * possible mount and symlink following (this might be optimized away if
2975 	 * necessary...)
2976 	 */
2977 	if (got_write) {
2978 		mnt_drop_write(nd->path.mnt);
2979 		got_write = false;
2980 	}
2981 
2982 	error = -EEXIST;
2983 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2984 		goto exit_dput;
2985 
2986 	error = follow_managed(path, nd->flags);
2987 	if (error < 0)
2988 		goto exit_dput;
2989 
2990 	if (error)
2991 		nd->flags |= LOOKUP_JUMPED;
2992 
2993 	BUG_ON(nd->flags & LOOKUP_RCU);
2994 	inode = path->dentry->d_inode;
2995 finish_lookup:
2996 	/* we _can_ be in RCU mode here */
2997 	error = -ENOENT;
2998 	if (!inode || d_is_negative(path->dentry)) {
2999 		path_to_nameidata(path, nd);
3000 		goto out;
3001 	}
3002 
3003 	if (should_follow_link(path->dentry, !symlink_ok)) {
3004 		if (nd->flags & LOOKUP_RCU) {
3005 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3006 				error = -ECHILD;
3007 				goto out;
3008 			}
3009 		}
3010 		BUG_ON(inode != path->dentry->d_inode);
3011 		return 1;
3012 	}
3013 
3014 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3015 		path_to_nameidata(path, nd);
3016 	} else {
3017 		save_parent.dentry = nd->path.dentry;
3018 		save_parent.mnt = mntget(path->mnt);
3019 		nd->path.dentry = path->dentry;
3020 
3021 	}
3022 	nd->inode = inode;
3023 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3024 finish_open:
3025 	error = complete_walk(nd);
3026 	if (error) {
3027 		path_put(&save_parent);
3028 		return error;
3029 	}
3030 	audit_inode(name, nd->path.dentry, 0);
3031 	error = -EISDIR;
3032 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3033 		goto out;
3034 	error = -ENOTDIR;
3035 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3036 		goto out;
3037 	if (!S_ISREG(nd->inode->i_mode))
3038 		will_truncate = false;
3039 
3040 	if (will_truncate) {
3041 		error = mnt_want_write(nd->path.mnt);
3042 		if (error)
3043 			goto out;
3044 		got_write = true;
3045 	}
3046 finish_open_created:
3047 	error = may_open(&nd->path, acc_mode, open_flag);
3048 	if (error)
3049 		goto out;
3050 	file->f_path.mnt = nd->path.mnt;
3051 	error = finish_open(file, nd->path.dentry, NULL, opened);
3052 	if (error) {
3053 		if (error == -EOPENSTALE)
3054 			goto stale_open;
3055 		goto out;
3056 	}
3057 opened:
3058 	error = open_check_o_direct(file);
3059 	if (error)
3060 		goto exit_fput;
3061 	error = ima_file_check(file, op->acc_mode);
3062 	if (error)
3063 		goto exit_fput;
3064 
3065 	if (will_truncate) {
3066 		error = handle_truncate(file);
3067 		if (error)
3068 			goto exit_fput;
3069 	}
3070 out:
3071 	if (got_write)
3072 		mnt_drop_write(nd->path.mnt);
3073 	path_put(&save_parent);
3074 	terminate_walk(nd);
3075 	return error;
3076 
3077 exit_dput:
3078 	path_put_conditional(path, nd);
3079 	goto out;
3080 exit_fput:
3081 	fput(file);
3082 	goto out;
3083 
3084 stale_open:
3085 	/* If no saved parent or already retried then can't retry */
3086 	if (!save_parent.dentry || retried)
3087 		goto out;
3088 
3089 	BUG_ON(save_parent.dentry != dir);
3090 	path_put(&nd->path);
3091 	nd->path = save_parent;
3092 	nd->inode = dir->d_inode;
3093 	save_parent.mnt = NULL;
3094 	save_parent.dentry = NULL;
3095 	if (got_write) {
3096 		mnt_drop_write(nd->path.mnt);
3097 		got_write = false;
3098 	}
3099 	retried = true;
3100 	goto retry_lookup;
3101 }
3102 
3103 static int do_tmpfile(int dfd, struct filename *pathname,
3104 		struct nameidata *nd, int flags,
3105 		const struct open_flags *op,
3106 		struct file *file, int *opened)
3107 {
3108 	static const struct qstr name = QSTR_INIT("/", 1);
3109 	struct dentry *dentry, *child;
3110 	struct inode *dir;
3111 	int error = path_lookupat(dfd, pathname->name,
3112 				  flags | LOOKUP_DIRECTORY, nd);
3113 	if (unlikely(error))
3114 		return error;
3115 	error = mnt_want_write(nd->path.mnt);
3116 	if (unlikely(error))
3117 		goto out;
3118 	/* we want directory to be writable */
3119 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3120 	if (error)
3121 		goto out2;
3122 	dentry = nd->path.dentry;
3123 	dir = dentry->d_inode;
3124 	if (!dir->i_op->tmpfile) {
3125 		error = -EOPNOTSUPP;
3126 		goto out2;
3127 	}
3128 	child = d_alloc(dentry, &name);
3129 	if (unlikely(!child)) {
3130 		error = -ENOMEM;
3131 		goto out2;
3132 	}
3133 	nd->flags &= ~LOOKUP_DIRECTORY;
3134 	nd->flags |= op->intent;
3135 	dput(nd->path.dentry);
3136 	nd->path.dentry = child;
3137 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3138 	if (error)
3139 		goto out2;
3140 	audit_inode(pathname, nd->path.dentry, 0);
3141 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
3142 	if (error)
3143 		goto out2;
3144 	file->f_path.mnt = nd->path.mnt;
3145 	error = finish_open(file, nd->path.dentry, NULL, opened);
3146 	if (error)
3147 		goto out2;
3148 	error = open_check_o_direct(file);
3149 	if (error) {
3150 		fput(file);
3151 	} else if (!(op->open_flag & O_EXCL)) {
3152 		struct inode *inode = file_inode(file);
3153 		spin_lock(&inode->i_lock);
3154 		inode->i_state |= I_LINKABLE;
3155 		spin_unlock(&inode->i_lock);
3156 	}
3157 out2:
3158 	mnt_drop_write(nd->path.mnt);
3159 out:
3160 	path_put(&nd->path);
3161 	return error;
3162 }
3163 
3164 static struct file *path_openat(int dfd, struct filename *pathname,
3165 		struct nameidata *nd, const struct open_flags *op, int flags)
3166 {
3167 	struct file *base = NULL;
3168 	struct file *file;
3169 	struct path path;
3170 	int opened = 0;
3171 	int error;
3172 
3173 	file = get_empty_filp();
3174 	if (IS_ERR(file))
3175 		return file;
3176 
3177 	file->f_flags = op->open_flag;
3178 
3179 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3180 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3181 		goto out;
3182 	}
3183 
3184 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3185 	if (unlikely(error))
3186 		goto out;
3187 
3188 	current->total_link_count = 0;
3189 	error = link_path_walk(pathname->name, nd);
3190 	if (unlikely(error))
3191 		goto out;
3192 
3193 	error = do_last(nd, &path, file, op, &opened, pathname);
3194 	while (unlikely(error > 0)) { /* trailing symlink */
3195 		struct path link = path;
3196 		void *cookie;
3197 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3198 			path_put_conditional(&path, nd);
3199 			path_put(&nd->path);
3200 			error = -ELOOP;
3201 			break;
3202 		}
3203 		error = may_follow_link(&link, nd);
3204 		if (unlikely(error))
3205 			break;
3206 		nd->flags |= LOOKUP_PARENT;
3207 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3208 		error = follow_link(&link, nd, &cookie);
3209 		if (unlikely(error))
3210 			break;
3211 		error = do_last(nd, &path, file, op, &opened, pathname);
3212 		put_link(nd, &link, cookie);
3213 	}
3214 out:
3215 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3216 		path_put(&nd->root);
3217 	if (base)
3218 		fput(base);
3219 	if (!(opened & FILE_OPENED)) {
3220 		BUG_ON(!error);
3221 		put_filp(file);
3222 	}
3223 	if (unlikely(error)) {
3224 		if (error == -EOPENSTALE) {
3225 			if (flags & LOOKUP_RCU)
3226 				error = -ECHILD;
3227 			else
3228 				error = -ESTALE;
3229 		}
3230 		file = ERR_PTR(error);
3231 	}
3232 	return file;
3233 }
3234 
3235 struct file *do_filp_open(int dfd, struct filename *pathname,
3236 		const struct open_flags *op)
3237 {
3238 	struct nameidata nd;
3239 	int flags = op->lookup_flags;
3240 	struct file *filp;
3241 
3242 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3243 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3244 		filp = path_openat(dfd, pathname, &nd, op, flags);
3245 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3246 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3247 	return filp;
3248 }
3249 
3250 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3251 		const char *name, const struct open_flags *op)
3252 {
3253 	struct nameidata nd;
3254 	struct file *file;
3255 	struct filename filename = { .name = name };
3256 	int flags = op->lookup_flags | LOOKUP_ROOT;
3257 
3258 	nd.root.mnt = mnt;
3259 	nd.root.dentry = dentry;
3260 
3261 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3262 		return ERR_PTR(-ELOOP);
3263 
3264 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3265 	if (unlikely(file == ERR_PTR(-ECHILD)))
3266 		file = path_openat(-1, &filename, &nd, op, flags);
3267 	if (unlikely(file == ERR_PTR(-ESTALE)))
3268 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3269 	return file;
3270 }
3271 
3272 struct dentry *kern_path_create(int dfd, const char *pathname,
3273 				struct path *path, unsigned int lookup_flags)
3274 {
3275 	struct dentry *dentry = ERR_PTR(-EEXIST);
3276 	struct nameidata nd;
3277 	int err2;
3278 	int error;
3279 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3280 
3281 	/*
3282 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3283 	 * other flags passed in are ignored!
3284 	 */
3285 	lookup_flags &= LOOKUP_REVAL;
3286 
3287 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3288 	if (error)
3289 		return ERR_PTR(error);
3290 
3291 	/*
3292 	 * Yucky last component or no last component at all?
3293 	 * (foo/., foo/.., /////)
3294 	 */
3295 	if (nd.last_type != LAST_NORM)
3296 		goto out;
3297 	nd.flags &= ~LOOKUP_PARENT;
3298 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3299 
3300 	/* don't fail immediately if it's r/o, at least try to report other errors */
3301 	err2 = mnt_want_write(nd.path.mnt);
3302 	/*
3303 	 * Do the final lookup.
3304 	 */
3305 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3306 	dentry = lookup_hash(&nd);
3307 	if (IS_ERR(dentry))
3308 		goto unlock;
3309 
3310 	error = -EEXIST;
3311 	if (d_is_positive(dentry))
3312 		goto fail;
3313 
3314 	/*
3315 	 * Special case - lookup gave negative, but... we had foo/bar/
3316 	 * From the vfs_mknod() POV we just have a negative dentry -
3317 	 * all is fine. Let's be bastards - you had / on the end, you've
3318 	 * been asking for (non-existent) directory. -ENOENT for you.
3319 	 */
3320 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3321 		error = -ENOENT;
3322 		goto fail;
3323 	}
3324 	if (unlikely(err2)) {
3325 		error = err2;
3326 		goto fail;
3327 	}
3328 	*path = nd.path;
3329 	return dentry;
3330 fail:
3331 	dput(dentry);
3332 	dentry = ERR_PTR(error);
3333 unlock:
3334 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3335 	if (!err2)
3336 		mnt_drop_write(nd.path.mnt);
3337 out:
3338 	path_put(&nd.path);
3339 	return dentry;
3340 }
3341 EXPORT_SYMBOL(kern_path_create);
3342 
3343 void done_path_create(struct path *path, struct dentry *dentry)
3344 {
3345 	dput(dentry);
3346 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3347 	mnt_drop_write(path->mnt);
3348 	path_put(path);
3349 }
3350 EXPORT_SYMBOL(done_path_create);
3351 
3352 struct dentry *user_path_create(int dfd, const char __user *pathname,
3353 				struct path *path, unsigned int lookup_flags)
3354 {
3355 	struct filename *tmp = getname(pathname);
3356 	struct dentry *res;
3357 	if (IS_ERR(tmp))
3358 		return ERR_CAST(tmp);
3359 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3360 	putname(tmp);
3361 	return res;
3362 }
3363 EXPORT_SYMBOL(user_path_create);
3364 
3365 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3366 {
3367 	int error = may_create(dir, dentry);
3368 
3369 	if (error)
3370 		return error;
3371 
3372 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3373 		return -EPERM;
3374 
3375 	if (!dir->i_op->mknod)
3376 		return -EPERM;
3377 
3378 	error = devcgroup_inode_mknod(mode, dev);
3379 	if (error)
3380 		return error;
3381 
3382 	error = security_inode_mknod(dir, dentry, mode, dev);
3383 	if (error)
3384 		return error;
3385 
3386 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3387 	if (!error)
3388 		fsnotify_create(dir, dentry);
3389 	return error;
3390 }
3391 EXPORT_SYMBOL(vfs_mknod);
3392 
3393 static int may_mknod(umode_t mode)
3394 {
3395 	switch (mode & S_IFMT) {
3396 	case S_IFREG:
3397 	case S_IFCHR:
3398 	case S_IFBLK:
3399 	case S_IFIFO:
3400 	case S_IFSOCK:
3401 	case 0: /* zero mode translates to S_IFREG */
3402 		return 0;
3403 	case S_IFDIR:
3404 		return -EPERM;
3405 	default:
3406 		return -EINVAL;
3407 	}
3408 }
3409 
3410 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3411 		unsigned, dev)
3412 {
3413 	struct dentry *dentry;
3414 	struct path path;
3415 	int error;
3416 	unsigned int lookup_flags = 0;
3417 
3418 	error = may_mknod(mode);
3419 	if (error)
3420 		return error;
3421 retry:
3422 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3423 	if (IS_ERR(dentry))
3424 		return PTR_ERR(dentry);
3425 
3426 	if (!IS_POSIXACL(path.dentry->d_inode))
3427 		mode &= ~current_umask();
3428 	error = security_path_mknod(&path, dentry, mode, dev);
3429 	if (error)
3430 		goto out;
3431 	switch (mode & S_IFMT) {
3432 		case 0: case S_IFREG:
3433 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3434 			break;
3435 		case S_IFCHR: case S_IFBLK:
3436 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3437 					new_decode_dev(dev));
3438 			break;
3439 		case S_IFIFO: case S_IFSOCK:
3440 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3441 			break;
3442 	}
3443 out:
3444 	done_path_create(&path, dentry);
3445 	if (retry_estale(error, lookup_flags)) {
3446 		lookup_flags |= LOOKUP_REVAL;
3447 		goto retry;
3448 	}
3449 	return error;
3450 }
3451 
3452 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3453 {
3454 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3455 }
3456 
3457 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3458 {
3459 	int error = may_create(dir, dentry);
3460 	unsigned max_links = dir->i_sb->s_max_links;
3461 
3462 	if (error)
3463 		return error;
3464 
3465 	if (!dir->i_op->mkdir)
3466 		return -EPERM;
3467 
3468 	mode &= (S_IRWXUGO|S_ISVTX);
3469 	error = security_inode_mkdir(dir, dentry, mode);
3470 	if (error)
3471 		return error;
3472 
3473 	if (max_links && dir->i_nlink >= max_links)
3474 		return -EMLINK;
3475 
3476 	error = dir->i_op->mkdir(dir, dentry, mode);
3477 	if (!error)
3478 		fsnotify_mkdir(dir, dentry);
3479 	return error;
3480 }
3481 EXPORT_SYMBOL(vfs_mkdir);
3482 
3483 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3484 {
3485 	struct dentry *dentry;
3486 	struct path path;
3487 	int error;
3488 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3489 
3490 retry:
3491 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3492 	if (IS_ERR(dentry))
3493 		return PTR_ERR(dentry);
3494 
3495 	if (!IS_POSIXACL(path.dentry->d_inode))
3496 		mode &= ~current_umask();
3497 	error = security_path_mkdir(&path, dentry, mode);
3498 	if (!error)
3499 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3500 	done_path_create(&path, dentry);
3501 	if (retry_estale(error, lookup_flags)) {
3502 		lookup_flags |= LOOKUP_REVAL;
3503 		goto retry;
3504 	}
3505 	return error;
3506 }
3507 
3508 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3509 {
3510 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3511 }
3512 
3513 /*
3514  * The dentry_unhash() helper will try to drop the dentry early: we
3515  * should have a usage count of 1 if we're the only user of this
3516  * dentry, and if that is true (possibly after pruning the dcache),
3517  * then we drop the dentry now.
3518  *
3519  * A low-level filesystem can, if it choses, legally
3520  * do a
3521  *
3522  *	if (!d_unhashed(dentry))
3523  *		return -EBUSY;
3524  *
3525  * if it cannot handle the case of removing a directory
3526  * that is still in use by something else..
3527  */
3528 void dentry_unhash(struct dentry *dentry)
3529 {
3530 	shrink_dcache_parent(dentry);
3531 	spin_lock(&dentry->d_lock);
3532 	if (dentry->d_lockref.count == 1)
3533 		__d_drop(dentry);
3534 	spin_unlock(&dentry->d_lock);
3535 }
3536 EXPORT_SYMBOL(dentry_unhash);
3537 
3538 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3539 {
3540 	int error = may_delete(dir, dentry, 1);
3541 
3542 	if (error)
3543 		return error;
3544 
3545 	if (!dir->i_op->rmdir)
3546 		return -EPERM;
3547 
3548 	dget(dentry);
3549 	mutex_lock(&dentry->d_inode->i_mutex);
3550 
3551 	error = -EBUSY;
3552 	if (d_mountpoint(dentry))
3553 		goto out;
3554 
3555 	error = security_inode_rmdir(dir, dentry);
3556 	if (error)
3557 		goto out;
3558 
3559 	shrink_dcache_parent(dentry);
3560 	error = dir->i_op->rmdir(dir, dentry);
3561 	if (error)
3562 		goto out;
3563 
3564 	dentry->d_inode->i_flags |= S_DEAD;
3565 	dont_mount(dentry);
3566 
3567 out:
3568 	mutex_unlock(&dentry->d_inode->i_mutex);
3569 	dput(dentry);
3570 	if (!error)
3571 		d_delete(dentry);
3572 	return error;
3573 }
3574 EXPORT_SYMBOL(vfs_rmdir);
3575 
3576 static long do_rmdir(int dfd, const char __user *pathname)
3577 {
3578 	int error = 0;
3579 	struct filename *name;
3580 	struct dentry *dentry;
3581 	struct nameidata nd;
3582 	unsigned int lookup_flags = 0;
3583 retry:
3584 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3585 	if (IS_ERR(name))
3586 		return PTR_ERR(name);
3587 
3588 	switch(nd.last_type) {
3589 	case LAST_DOTDOT:
3590 		error = -ENOTEMPTY;
3591 		goto exit1;
3592 	case LAST_DOT:
3593 		error = -EINVAL;
3594 		goto exit1;
3595 	case LAST_ROOT:
3596 		error = -EBUSY;
3597 		goto exit1;
3598 	}
3599 
3600 	nd.flags &= ~LOOKUP_PARENT;
3601 	error = mnt_want_write(nd.path.mnt);
3602 	if (error)
3603 		goto exit1;
3604 
3605 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3606 	dentry = lookup_hash(&nd);
3607 	error = PTR_ERR(dentry);
3608 	if (IS_ERR(dentry))
3609 		goto exit2;
3610 	if (!dentry->d_inode) {
3611 		error = -ENOENT;
3612 		goto exit3;
3613 	}
3614 	error = security_path_rmdir(&nd.path, dentry);
3615 	if (error)
3616 		goto exit3;
3617 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3618 exit3:
3619 	dput(dentry);
3620 exit2:
3621 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3622 	mnt_drop_write(nd.path.mnt);
3623 exit1:
3624 	path_put(&nd.path);
3625 	putname(name);
3626 	if (retry_estale(error, lookup_flags)) {
3627 		lookup_flags |= LOOKUP_REVAL;
3628 		goto retry;
3629 	}
3630 	return error;
3631 }
3632 
3633 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3634 {
3635 	return do_rmdir(AT_FDCWD, pathname);
3636 }
3637 
3638 /**
3639  * vfs_unlink - unlink a filesystem object
3640  * @dir:	parent directory
3641  * @dentry:	victim
3642  * @delegated_inode: returns victim inode, if the inode is delegated.
3643  *
3644  * The caller must hold dir->i_mutex.
3645  *
3646  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3647  * return a reference to the inode in delegated_inode.  The caller
3648  * should then break the delegation on that inode and retry.  Because
3649  * breaking a delegation may take a long time, the caller should drop
3650  * dir->i_mutex before doing so.
3651  *
3652  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3653  * be appropriate for callers that expect the underlying filesystem not
3654  * to be NFS exported.
3655  */
3656 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3657 {
3658 	struct inode *target = dentry->d_inode;
3659 	int error = may_delete(dir, dentry, 0);
3660 
3661 	if (error)
3662 		return error;
3663 
3664 	if (!dir->i_op->unlink)
3665 		return -EPERM;
3666 
3667 	mutex_lock(&target->i_mutex);
3668 	if (d_mountpoint(dentry))
3669 		error = -EBUSY;
3670 	else {
3671 		error = security_inode_unlink(dir, dentry);
3672 		if (!error) {
3673 			error = try_break_deleg(target, delegated_inode);
3674 			if (error)
3675 				goto out;
3676 			error = dir->i_op->unlink(dir, dentry);
3677 			if (!error)
3678 				dont_mount(dentry);
3679 		}
3680 	}
3681 out:
3682 	mutex_unlock(&target->i_mutex);
3683 
3684 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3685 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3686 		fsnotify_link_count(target);
3687 		d_delete(dentry);
3688 	}
3689 
3690 	return error;
3691 }
3692 EXPORT_SYMBOL(vfs_unlink);
3693 
3694 /*
3695  * Make sure that the actual truncation of the file will occur outside its
3696  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3697  * writeout happening, and we don't want to prevent access to the directory
3698  * while waiting on the I/O.
3699  */
3700 static long do_unlinkat(int dfd, const char __user *pathname)
3701 {
3702 	int error;
3703 	struct filename *name;
3704 	struct dentry *dentry;
3705 	struct nameidata nd;
3706 	struct inode *inode = NULL;
3707 	struct inode *delegated_inode = NULL;
3708 	unsigned int lookup_flags = 0;
3709 retry:
3710 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3711 	if (IS_ERR(name))
3712 		return PTR_ERR(name);
3713 
3714 	error = -EISDIR;
3715 	if (nd.last_type != LAST_NORM)
3716 		goto exit1;
3717 
3718 	nd.flags &= ~LOOKUP_PARENT;
3719 	error = mnt_want_write(nd.path.mnt);
3720 	if (error)
3721 		goto exit1;
3722 retry_deleg:
3723 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3724 	dentry = lookup_hash(&nd);
3725 	error = PTR_ERR(dentry);
3726 	if (!IS_ERR(dentry)) {
3727 		/* Why not before? Because we want correct error value */
3728 		if (nd.last.name[nd.last.len])
3729 			goto slashes;
3730 		inode = dentry->d_inode;
3731 		if (d_is_negative(dentry))
3732 			goto slashes;
3733 		ihold(inode);
3734 		error = security_path_unlink(&nd.path, dentry);
3735 		if (error)
3736 			goto exit2;
3737 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3738 exit2:
3739 		dput(dentry);
3740 	}
3741 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3742 	if (inode)
3743 		iput(inode);	/* truncate the inode here */
3744 	inode = NULL;
3745 	if (delegated_inode) {
3746 		error = break_deleg_wait(&delegated_inode);
3747 		if (!error)
3748 			goto retry_deleg;
3749 	}
3750 	mnt_drop_write(nd.path.mnt);
3751 exit1:
3752 	path_put(&nd.path);
3753 	putname(name);
3754 	if (retry_estale(error, lookup_flags)) {
3755 		lookup_flags |= LOOKUP_REVAL;
3756 		inode = NULL;
3757 		goto retry;
3758 	}
3759 	return error;
3760 
3761 slashes:
3762 	if (d_is_negative(dentry))
3763 		error = -ENOENT;
3764 	else if (d_is_dir(dentry))
3765 		error = -EISDIR;
3766 	else
3767 		error = -ENOTDIR;
3768 	goto exit2;
3769 }
3770 
3771 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3772 {
3773 	if ((flag & ~AT_REMOVEDIR) != 0)
3774 		return -EINVAL;
3775 
3776 	if (flag & AT_REMOVEDIR)
3777 		return do_rmdir(dfd, pathname);
3778 
3779 	return do_unlinkat(dfd, pathname);
3780 }
3781 
3782 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3783 {
3784 	return do_unlinkat(AT_FDCWD, pathname);
3785 }
3786 
3787 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3788 {
3789 	int error = may_create(dir, dentry);
3790 
3791 	if (error)
3792 		return error;
3793 
3794 	if (!dir->i_op->symlink)
3795 		return -EPERM;
3796 
3797 	error = security_inode_symlink(dir, dentry, oldname);
3798 	if (error)
3799 		return error;
3800 
3801 	error = dir->i_op->symlink(dir, dentry, oldname);
3802 	if (!error)
3803 		fsnotify_create(dir, dentry);
3804 	return error;
3805 }
3806 EXPORT_SYMBOL(vfs_symlink);
3807 
3808 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3809 		int, newdfd, const char __user *, newname)
3810 {
3811 	int error;
3812 	struct filename *from;
3813 	struct dentry *dentry;
3814 	struct path path;
3815 	unsigned int lookup_flags = 0;
3816 
3817 	from = getname(oldname);
3818 	if (IS_ERR(from))
3819 		return PTR_ERR(from);
3820 retry:
3821 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3822 	error = PTR_ERR(dentry);
3823 	if (IS_ERR(dentry))
3824 		goto out_putname;
3825 
3826 	error = security_path_symlink(&path, dentry, from->name);
3827 	if (!error)
3828 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3829 	done_path_create(&path, dentry);
3830 	if (retry_estale(error, lookup_flags)) {
3831 		lookup_flags |= LOOKUP_REVAL;
3832 		goto retry;
3833 	}
3834 out_putname:
3835 	putname(from);
3836 	return error;
3837 }
3838 
3839 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3840 {
3841 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3842 }
3843 
3844 /**
3845  * vfs_link - create a new link
3846  * @old_dentry:	object to be linked
3847  * @dir:	new parent
3848  * @new_dentry:	where to create the new link
3849  * @delegated_inode: returns inode needing a delegation break
3850  *
3851  * The caller must hold dir->i_mutex
3852  *
3853  * If vfs_link discovers a delegation on the to-be-linked file in need
3854  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3855  * inode in delegated_inode.  The caller should then break the delegation
3856  * and retry.  Because breaking a delegation may take a long time, the
3857  * caller should drop the i_mutex before doing so.
3858  *
3859  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3860  * be appropriate for callers that expect the underlying filesystem not
3861  * to be NFS exported.
3862  */
3863 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3864 {
3865 	struct inode *inode = old_dentry->d_inode;
3866 	unsigned max_links = dir->i_sb->s_max_links;
3867 	int error;
3868 
3869 	if (!inode)
3870 		return -ENOENT;
3871 
3872 	error = may_create(dir, new_dentry);
3873 	if (error)
3874 		return error;
3875 
3876 	if (dir->i_sb != inode->i_sb)
3877 		return -EXDEV;
3878 
3879 	/*
3880 	 * A link to an append-only or immutable file cannot be created.
3881 	 */
3882 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3883 		return -EPERM;
3884 	if (!dir->i_op->link)
3885 		return -EPERM;
3886 	if (S_ISDIR(inode->i_mode))
3887 		return -EPERM;
3888 
3889 	error = security_inode_link(old_dentry, dir, new_dentry);
3890 	if (error)
3891 		return error;
3892 
3893 	mutex_lock(&inode->i_mutex);
3894 	/* Make sure we don't allow creating hardlink to an unlinked file */
3895 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3896 		error =  -ENOENT;
3897 	else if (max_links && inode->i_nlink >= max_links)
3898 		error = -EMLINK;
3899 	else {
3900 		error = try_break_deleg(inode, delegated_inode);
3901 		if (!error)
3902 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3903 	}
3904 
3905 	if (!error && (inode->i_state & I_LINKABLE)) {
3906 		spin_lock(&inode->i_lock);
3907 		inode->i_state &= ~I_LINKABLE;
3908 		spin_unlock(&inode->i_lock);
3909 	}
3910 	mutex_unlock(&inode->i_mutex);
3911 	if (!error)
3912 		fsnotify_link(dir, inode, new_dentry);
3913 	return error;
3914 }
3915 EXPORT_SYMBOL(vfs_link);
3916 
3917 /*
3918  * Hardlinks are often used in delicate situations.  We avoid
3919  * security-related surprises by not following symlinks on the
3920  * newname.  --KAB
3921  *
3922  * We don't follow them on the oldname either to be compatible
3923  * with linux 2.0, and to avoid hard-linking to directories
3924  * and other special files.  --ADM
3925  */
3926 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3927 		int, newdfd, const char __user *, newname, int, flags)
3928 {
3929 	struct dentry *new_dentry;
3930 	struct path old_path, new_path;
3931 	struct inode *delegated_inode = NULL;
3932 	int how = 0;
3933 	int error;
3934 
3935 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3936 		return -EINVAL;
3937 	/*
3938 	 * To use null names we require CAP_DAC_READ_SEARCH
3939 	 * This ensures that not everyone will be able to create
3940 	 * handlink using the passed filedescriptor.
3941 	 */
3942 	if (flags & AT_EMPTY_PATH) {
3943 		if (!capable(CAP_DAC_READ_SEARCH))
3944 			return -ENOENT;
3945 		how = LOOKUP_EMPTY;
3946 	}
3947 
3948 	if (flags & AT_SYMLINK_FOLLOW)
3949 		how |= LOOKUP_FOLLOW;
3950 retry:
3951 	error = user_path_at(olddfd, oldname, how, &old_path);
3952 	if (error)
3953 		return error;
3954 
3955 	new_dentry = user_path_create(newdfd, newname, &new_path,
3956 					(how & LOOKUP_REVAL));
3957 	error = PTR_ERR(new_dentry);
3958 	if (IS_ERR(new_dentry))
3959 		goto out;
3960 
3961 	error = -EXDEV;
3962 	if (old_path.mnt != new_path.mnt)
3963 		goto out_dput;
3964 	error = may_linkat(&old_path);
3965 	if (unlikely(error))
3966 		goto out_dput;
3967 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3968 	if (error)
3969 		goto out_dput;
3970 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3971 out_dput:
3972 	done_path_create(&new_path, new_dentry);
3973 	if (delegated_inode) {
3974 		error = break_deleg_wait(&delegated_inode);
3975 		if (!error) {
3976 			path_put(&old_path);
3977 			goto retry;
3978 		}
3979 	}
3980 	if (retry_estale(error, how)) {
3981 		path_put(&old_path);
3982 		how |= LOOKUP_REVAL;
3983 		goto retry;
3984 	}
3985 out:
3986 	path_put(&old_path);
3987 
3988 	return error;
3989 }
3990 
3991 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3992 {
3993 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3994 }
3995 
3996 /**
3997  * vfs_rename - rename a filesystem object
3998  * @old_dir:	parent of source
3999  * @old_dentry:	source
4000  * @new_dir:	parent of destination
4001  * @new_dentry:	destination
4002  * @delegated_inode: returns an inode needing a delegation break
4003  * @flags:	rename flags
4004  *
4005  * The caller must hold multiple mutexes--see lock_rename()).
4006  *
4007  * If vfs_rename discovers a delegation in need of breaking at either
4008  * the source or destination, it will return -EWOULDBLOCK and return a
4009  * reference to the inode in delegated_inode.  The caller should then
4010  * break the delegation and retry.  Because breaking a delegation may
4011  * take a long time, the caller should drop all locks before doing
4012  * so.
4013  *
4014  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4015  * be appropriate for callers that expect the underlying filesystem not
4016  * to be NFS exported.
4017  *
4018  * The worst of all namespace operations - renaming directory. "Perverted"
4019  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4020  * Problems:
4021  *	a) we can get into loop creation. Check is done in is_subdir().
4022  *	b) race potential - two innocent renames can create a loop together.
4023  *	   That's where 4.4 screws up. Current fix: serialization on
4024  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4025  *	   story.
4026  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4027  *	   and source (if it is not a directory).
4028  *	   And that - after we got ->i_mutex on parents (until then we don't know
4029  *	   whether the target exists).  Solution: try to be smart with locking
4030  *	   order for inodes.  We rely on the fact that tree topology may change
4031  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4032  *	   move will be locked.  Thus we can rank directories by the tree
4033  *	   (ancestors first) and rank all non-directories after them.
4034  *	   That works since everybody except rename does "lock parent, lookup,
4035  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4036  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4037  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4038  *	   we'd better make sure that there's no link(2) for them.
4039  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4040  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4041  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4042  *	   ->i_mutex on parents, which works but leads to some truly excessive
4043  *	   locking].
4044  */
4045 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4046 	       struct inode *new_dir, struct dentry *new_dentry,
4047 	       struct inode **delegated_inode, unsigned int flags)
4048 {
4049 	int error;
4050 	bool is_dir = d_is_dir(old_dentry);
4051 	const unsigned char *old_name;
4052 	struct inode *source = old_dentry->d_inode;
4053 	struct inode *target = new_dentry->d_inode;
4054 	bool new_is_dir = false;
4055 	unsigned max_links = new_dir->i_sb->s_max_links;
4056 
4057 	if (source == target)
4058 		return 0;
4059 
4060 	error = may_delete(old_dir, old_dentry, is_dir);
4061 	if (error)
4062 		return error;
4063 
4064 	if (!target) {
4065 		error = may_create(new_dir, new_dentry);
4066 	} else {
4067 		new_is_dir = d_is_dir(new_dentry);
4068 
4069 		if (!(flags & RENAME_EXCHANGE))
4070 			error = may_delete(new_dir, new_dentry, is_dir);
4071 		else
4072 			error = may_delete(new_dir, new_dentry, new_is_dir);
4073 	}
4074 	if (error)
4075 		return error;
4076 
4077 	if (!old_dir->i_op->rename)
4078 		return -EPERM;
4079 
4080 	if (flags && !old_dir->i_op->rename2)
4081 		return -EINVAL;
4082 
4083 	/*
4084 	 * If we are going to change the parent - check write permissions,
4085 	 * we'll need to flip '..'.
4086 	 */
4087 	if (new_dir != old_dir) {
4088 		if (is_dir) {
4089 			error = inode_permission(source, MAY_WRITE);
4090 			if (error)
4091 				return error;
4092 		}
4093 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4094 			error = inode_permission(target, MAY_WRITE);
4095 			if (error)
4096 				return error;
4097 		}
4098 	}
4099 
4100 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4101 				      flags);
4102 	if (error)
4103 		return error;
4104 
4105 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4106 	dget(new_dentry);
4107 	if (!is_dir || (flags & RENAME_EXCHANGE))
4108 		lock_two_nondirectories(source, target);
4109 	else if (target)
4110 		mutex_lock(&target->i_mutex);
4111 
4112 	error = -EBUSY;
4113 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4114 		goto out;
4115 
4116 	if (max_links && new_dir != old_dir) {
4117 		error = -EMLINK;
4118 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4119 			goto out;
4120 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4121 		    old_dir->i_nlink >= max_links)
4122 			goto out;
4123 	}
4124 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4125 		shrink_dcache_parent(new_dentry);
4126 	if (!is_dir) {
4127 		error = try_break_deleg(source, delegated_inode);
4128 		if (error)
4129 			goto out;
4130 	}
4131 	if (target && !new_is_dir) {
4132 		error = try_break_deleg(target, delegated_inode);
4133 		if (error)
4134 			goto out;
4135 	}
4136 	if (!flags) {
4137 		error = old_dir->i_op->rename(old_dir, old_dentry,
4138 					      new_dir, new_dentry);
4139 	} else {
4140 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4141 					       new_dir, new_dentry, flags);
4142 	}
4143 	if (error)
4144 		goto out;
4145 
4146 	if (!(flags & RENAME_EXCHANGE) && target) {
4147 		if (is_dir)
4148 			target->i_flags |= S_DEAD;
4149 		dont_mount(new_dentry);
4150 	}
4151 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4152 		if (!(flags & RENAME_EXCHANGE))
4153 			d_move(old_dentry, new_dentry);
4154 		else
4155 			d_exchange(old_dentry, new_dentry);
4156 	}
4157 out:
4158 	if (!is_dir || (flags & RENAME_EXCHANGE))
4159 		unlock_two_nondirectories(source, target);
4160 	else if (target)
4161 		mutex_unlock(&target->i_mutex);
4162 	dput(new_dentry);
4163 	if (!error) {
4164 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4165 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4166 		if (flags & RENAME_EXCHANGE) {
4167 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4168 				      new_is_dir, NULL, new_dentry);
4169 		}
4170 	}
4171 	fsnotify_oldname_free(old_name);
4172 
4173 	return error;
4174 }
4175 EXPORT_SYMBOL(vfs_rename);
4176 
4177 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4178 		int, newdfd, const char __user *, newname, unsigned int, flags)
4179 {
4180 	struct dentry *old_dir, *new_dir;
4181 	struct dentry *old_dentry, *new_dentry;
4182 	struct dentry *trap;
4183 	struct nameidata oldnd, newnd;
4184 	struct inode *delegated_inode = NULL;
4185 	struct filename *from;
4186 	struct filename *to;
4187 	unsigned int lookup_flags = 0;
4188 	bool should_retry = false;
4189 	int error;
4190 
4191 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4192 		return -EINVAL;
4193 
4194 	if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4195 		return -EINVAL;
4196 
4197 retry:
4198 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4199 	if (IS_ERR(from)) {
4200 		error = PTR_ERR(from);
4201 		goto exit;
4202 	}
4203 
4204 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4205 	if (IS_ERR(to)) {
4206 		error = PTR_ERR(to);
4207 		goto exit1;
4208 	}
4209 
4210 	error = -EXDEV;
4211 	if (oldnd.path.mnt != newnd.path.mnt)
4212 		goto exit2;
4213 
4214 	old_dir = oldnd.path.dentry;
4215 	error = -EBUSY;
4216 	if (oldnd.last_type != LAST_NORM)
4217 		goto exit2;
4218 
4219 	new_dir = newnd.path.dentry;
4220 	if (flags & RENAME_NOREPLACE)
4221 		error = -EEXIST;
4222 	if (newnd.last_type != LAST_NORM)
4223 		goto exit2;
4224 
4225 	error = mnt_want_write(oldnd.path.mnt);
4226 	if (error)
4227 		goto exit2;
4228 
4229 	oldnd.flags &= ~LOOKUP_PARENT;
4230 	newnd.flags &= ~LOOKUP_PARENT;
4231 	if (!(flags & RENAME_EXCHANGE))
4232 		newnd.flags |= LOOKUP_RENAME_TARGET;
4233 
4234 retry_deleg:
4235 	trap = lock_rename(new_dir, old_dir);
4236 
4237 	old_dentry = lookup_hash(&oldnd);
4238 	error = PTR_ERR(old_dentry);
4239 	if (IS_ERR(old_dentry))
4240 		goto exit3;
4241 	/* source must exist */
4242 	error = -ENOENT;
4243 	if (d_is_negative(old_dentry))
4244 		goto exit4;
4245 	new_dentry = lookup_hash(&newnd);
4246 	error = PTR_ERR(new_dentry);
4247 	if (IS_ERR(new_dentry))
4248 		goto exit4;
4249 	error = -EEXIST;
4250 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4251 		goto exit5;
4252 	if (flags & RENAME_EXCHANGE) {
4253 		error = -ENOENT;
4254 		if (d_is_negative(new_dentry))
4255 			goto exit5;
4256 
4257 		if (!d_is_dir(new_dentry)) {
4258 			error = -ENOTDIR;
4259 			if (newnd.last.name[newnd.last.len])
4260 				goto exit5;
4261 		}
4262 	}
4263 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4264 	if (!d_is_dir(old_dentry)) {
4265 		error = -ENOTDIR;
4266 		if (oldnd.last.name[oldnd.last.len])
4267 			goto exit5;
4268 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4269 			goto exit5;
4270 	}
4271 	/* source should not be ancestor of target */
4272 	error = -EINVAL;
4273 	if (old_dentry == trap)
4274 		goto exit5;
4275 	/* target should not be an ancestor of source */
4276 	if (!(flags & RENAME_EXCHANGE))
4277 		error = -ENOTEMPTY;
4278 	if (new_dentry == trap)
4279 		goto exit5;
4280 
4281 	error = security_path_rename(&oldnd.path, old_dentry,
4282 				     &newnd.path, new_dentry, flags);
4283 	if (error)
4284 		goto exit5;
4285 	error = vfs_rename(old_dir->d_inode, old_dentry,
4286 			   new_dir->d_inode, new_dentry,
4287 			   &delegated_inode, flags);
4288 exit5:
4289 	dput(new_dentry);
4290 exit4:
4291 	dput(old_dentry);
4292 exit3:
4293 	unlock_rename(new_dir, old_dir);
4294 	if (delegated_inode) {
4295 		error = break_deleg_wait(&delegated_inode);
4296 		if (!error)
4297 			goto retry_deleg;
4298 	}
4299 	mnt_drop_write(oldnd.path.mnt);
4300 exit2:
4301 	if (retry_estale(error, lookup_flags))
4302 		should_retry = true;
4303 	path_put(&newnd.path);
4304 	putname(to);
4305 exit1:
4306 	path_put(&oldnd.path);
4307 	putname(from);
4308 	if (should_retry) {
4309 		should_retry = false;
4310 		lookup_flags |= LOOKUP_REVAL;
4311 		goto retry;
4312 	}
4313 exit:
4314 	return error;
4315 }
4316 
4317 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4318 		int, newdfd, const char __user *, newname)
4319 {
4320 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4321 }
4322 
4323 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4324 {
4325 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4326 }
4327 
4328 int readlink_copy(char __user *buffer, int buflen, const char *link)
4329 {
4330 	int len = PTR_ERR(link);
4331 	if (IS_ERR(link))
4332 		goto out;
4333 
4334 	len = strlen(link);
4335 	if (len > (unsigned) buflen)
4336 		len = buflen;
4337 	if (copy_to_user(buffer, link, len))
4338 		len = -EFAULT;
4339 out:
4340 	return len;
4341 }
4342 EXPORT_SYMBOL(readlink_copy);
4343 
4344 /*
4345  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4346  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4347  * using) it for any given inode is up to filesystem.
4348  */
4349 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4350 {
4351 	struct nameidata nd;
4352 	void *cookie;
4353 	int res;
4354 
4355 	nd.depth = 0;
4356 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4357 	if (IS_ERR(cookie))
4358 		return PTR_ERR(cookie);
4359 
4360 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4361 	if (dentry->d_inode->i_op->put_link)
4362 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4363 	return res;
4364 }
4365 EXPORT_SYMBOL(generic_readlink);
4366 
4367 /* get the link contents into pagecache */
4368 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4369 {
4370 	char *kaddr;
4371 	struct page *page;
4372 	struct address_space *mapping = dentry->d_inode->i_mapping;
4373 	page = read_mapping_page(mapping, 0, NULL);
4374 	if (IS_ERR(page))
4375 		return (char*)page;
4376 	*ppage = page;
4377 	kaddr = kmap(page);
4378 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4379 	return kaddr;
4380 }
4381 
4382 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4383 {
4384 	struct page *page = NULL;
4385 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4386 	if (page) {
4387 		kunmap(page);
4388 		page_cache_release(page);
4389 	}
4390 	return res;
4391 }
4392 EXPORT_SYMBOL(page_readlink);
4393 
4394 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4395 {
4396 	struct page *page = NULL;
4397 	nd_set_link(nd, page_getlink(dentry, &page));
4398 	return page;
4399 }
4400 EXPORT_SYMBOL(page_follow_link_light);
4401 
4402 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4403 {
4404 	struct page *page = cookie;
4405 
4406 	if (page) {
4407 		kunmap(page);
4408 		page_cache_release(page);
4409 	}
4410 }
4411 EXPORT_SYMBOL(page_put_link);
4412 
4413 /*
4414  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4415  */
4416 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4417 {
4418 	struct address_space *mapping = inode->i_mapping;
4419 	struct page *page;
4420 	void *fsdata;
4421 	int err;
4422 	char *kaddr;
4423 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4424 	if (nofs)
4425 		flags |= AOP_FLAG_NOFS;
4426 
4427 retry:
4428 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4429 				flags, &page, &fsdata);
4430 	if (err)
4431 		goto fail;
4432 
4433 	kaddr = kmap_atomic(page);
4434 	memcpy(kaddr, symname, len-1);
4435 	kunmap_atomic(kaddr);
4436 
4437 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4438 							page, fsdata);
4439 	if (err < 0)
4440 		goto fail;
4441 	if (err < len-1)
4442 		goto retry;
4443 
4444 	mark_inode_dirty(inode);
4445 	return 0;
4446 fail:
4447 	return err;
4448 }
4449 EXPORT_SYMBOL(__page_symlink);
4450 
4451 int page_symlink(struct inode *inode, const char *symname, int len)
4452 {
4453 	return __page_symlink(inode, symname, len,
4454 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4455 }
4456 EXPORT_SYMBOL(page_symlink);
4457 
4458 const struct inode_operations page_symlink_inode_operations = {
4459 	.readlink	= generic_readlink,
4460 	.follow_link	= page_follow_link_light,
4461 	.put_link	= page_put_link,
4462 };
4463 EXPORT_SYMBOL(page_symlink_inode_operations);
4464