1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 #define EMBEDDED_LEVELS 2 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 int total_link_count; 506 struct saved { 507 struct path link; 508 void *cookie; 509 const char *name; 510 struct inode *inode; 511 unsigned seq; 512 } *stack, internal[EMBEDDED_LEVELS]; 513 struct filename *name; 514 struct nameidata *saved; 515 unsigned root_seq; 516 int dfd; 517 }; 518 519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 520 { 521 struct nameidata *old = current->nameidata; 522 p->stack = p->internal; 523 p->dfd = dfd; 524 p->name = name; 525 p->total_link_count = old ? old->total_link_count : 0; 526 p->saved = old; 527 current->nameidata = p; 528 } 529 530 static void restore_nameidata(void) 531 { 532 struct nameidata *now = current->nameidata, *old = now->saved; 533 534 current->nameidata = old; 535 if (old) 536 old->total_link_count = now->total_link_count; 537 if (now->stack != now->internal) { 538 kfree(now->stack); 539 now->stack = now->internal; 540 } 541 } 542 543 static int __nd_alloc_stack(struct nameidata *nd) 544 { 545 struct saved *p; 546 547 if (nd->flags & LOOKUP_RCU) { 548 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 549 GFP_ATOMIC); 550 if (unlikely(!p)) 551 return -ECHILD; 552 } else { 553 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 554 GFP_KERNEL); 555 if (unlikely(!p)) 556 return -ENOMEM; 557 } 558 memcpy(p, nd->internal, sizeof(nd->internal)); 559 nd->stack = p; 560 return 0; 561 } 562 563 static inline int nd_alloc_stack(struct nameidata *nd) 564 { 565 if (likely(nd->depth != EMBEDDED_LEVELS)) 566 return 0; 567 if (likely(nd->stack != nd->internal)) 568 return 0; 569 return __nd_alloc_stack(nd); 570 } 571 572 static void drop_links(struct nameidata *nd) 573 { 574 int i = nd->depth; 575 while (i--) { 576 struct saved *last = nd->stack + i; 577 struct inode *inode = last->inode; 578 if (last->cookie && inode->i_op->put_link) { 579 inode->i_op->put_link(inode, last->cookie); 580 last->cookie = NULL; 581 } 582 } 583 } 584 585 static void terminate_walk(struct nameidata *nd) 586 { 587 drop_links(nd); 588 if (!(nd->flags & LOOKUP_RCU)) { 589 int i; 590 path_put(&nd->path); 591 for (i = 0; i < nd->depth; i++) 592 path_put(&nd->stack[i].link); 593 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 594 path_put(&nd->root); 595 nd->root.mnt = NULL; 596 } 597 } else { 598 nd->flags &= ~LOOKUP_RCU; 599 if (!(nd->flags & LOOKUP_ROOT)) 600 nd->root.mnt = NULL; 601 rcu_read_unlock(); 602 } 603 nd->depth = 0; 604 } 605 606 /* path_put is needed afterwards regardless of success or failure */ 607 static bool legitimize_path(struct nameidata *nd, 608 struct path *path, unsigned seq) 609 { 610 int res = __legitimize_mnt(path->mnt, nd->m_seq); 611 if (unlikely(res)) { 612 if (res > 0) 613 path->mnt = NULL; 614 path->dentry = NULL; 615 return false; 616 } 617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 618 path->dentry = NULL; 619 return false; 620 } 621 return !read_seqcount_retry(&path->dentry->d_seq, seq); 622 } 623 624 static bool legitimize_links(struct nameidata *nd) 625 { 626 int i; 627 for (i = 0; i < nd->depth; i++) { 628 struct saved *last = nd->stack + i; 629 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 630 drop_links(nd); 631 nd->depth = i + 1; 632 return false; 633 } 634 } 635 return true; 636 } 637 638 /* 639 * Path walking has 2 modes, rcu-walk and ref-walk (see 640 * Documentation/filesystems/path-lookup.txt). In situations when we can't 641 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 642 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 643 * mode. Refcounts are grabbed at the last known good point before rcu-walk 644 * got stuck, so ref-walk may continue from there. If this is not successful 645 * (eg. a seqcount has changed), then failure is returned and it's up to caller 646 * to restart the path walk from the beginning in ref-walk mode. 647 */ 648 649 /** 650 * unlazy_walk - try to switch to ref-walk mode. 651 * @nd: nameidata pathwalk data 652 * @dentry: child of nd->path.dentry or NULL 653 * @seq: seq number to check dentry against 654 * Returns: 0 on success, -ECHILD on failure 655 * 656 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 657 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 658 * @nd or NULL. Must be called from rcu-walk context. 659 * Nothing should touch nameidata between unlazy_walk() failure and 660 * terminate_walk(). 661 */ 662 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 663 { 664 struct dentry *parent = nd->path.dentry; 665 666 BUG_ON(!(nd->flags & LOOKUP_RCU)); 667 668 nd->flags &= ~LOOKUP_RCU; 669 if (unlikely(!legitimize_links(nd))) 670 goto out2; 671 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 672 goto out2; 673 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 674 goto out1; 675 676 /* 677 * For a negative lookup, the lookup sequence point is the parents 678 * sequence point, and it only needs to revalidate the parent dentry. 679 * 680 * For a positive lookup, we need to move both the parent and the 681 * dentry from the RCU domain to be properly refcounted. And the 682 * sequence number in the dentry validates *both* dentry counters, 683 * since we checked the sequence number of the parent after we got 684 * the child sequence number. So we know the parent must still 685 * be valid if the child sequence number is still valid. 686 */ 687 if (!dentry) { 688 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 689 goto out; 690 BUG_ON(nd->inode != parent->d_inode); 691 } else { 692 if (!lockref_get_not_dead(&dentry->d_lockref)) 693 goto out; 694 if (read_seqcount_retry(&dentry->d_seq, seq)) 695 goto drop_dentry; 696 } 697 698 /* 699 * Sequence counts matched. Now make sure that the root is 700 * still valid and get it if required. 701 */ 702 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 703 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 704 rcu_read_unlock(); 705 dput(dentry); 706 return -ECHILD; 707 } 708 } 709 710 rcu_read_unlock(); 711 return 0; 712 713 drop_dentry: 714 rcu_read_unlock(); 715 dput(dentry); 716 goto drop_root_mnt; 717 out2: 718 nd->path.mnt = NULL; 719 out1: 720 nd->path.dentry = NULL; 721 out: 722 rcu_read_unlock(); 723 drop_root_mnt: 724 if (!(nd->flags & LOOKUP_ROOT)) 725 nd->root.mnt = NULL; 726 return -ECHILD; 727 } 728 729 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 730 { 731 if (unlikely(!legitimize_path(nd, link, seq))) { 732 drop_links(nd); 733 nd->depth = 0; 734 nd->flags &= ~LOOKUP_RCU; 735 nd->path.mnt = NULL; 736 nd->path.dentry = NULL; 737 if (!(nd->flags & LOOKUP_ROOT)) 738 nd->root.mnt = NULL; 739 rcu_read_unlock(); 740 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 741 return 0; 742 } 743 path_put(link); 744 return -ECHILD; 745 } 746 747 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 748 { 749 return dentry->d_op->d_revalidate(dentry, flags); 750 } 751 752 /** 753 * complete_walk - successful completion of path walk 754 * @nd: pointer nameidata 755 * 756 * If we had been in RCU mode, drop out of it and legitimize nd->path. 757 * Revalidate the final result, unless we'd already done that during 758 * the path walk or the filesystem doesn't ask for it. Return 0 on 759 * success, -error on failure. In case of failure caller does not 760 * need to drop nd->path. 761 */ 762 static int complete_walk(struct nameidata *nd) 763 { 764 struct dentry *dentry = nd->path.dentry; 765 int status; 766 767 if (nd->flags & LOOKUP_RCU) { 768 if (!(nd->flags & LOOKUP_ROOT)) 769 nd->root.mnt = NULL; 770 if (unlikely(unlazy_walk(nd, NULL, 0))) 771 return -ECHILD; 772 } 773 774 if (likely(!(nd->flags & LOOKUP_JUMPED))) 775 return 0; 776 777 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 778 return 0; 779 780 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 781 if (status > 0) 782 return 0; 783 784 if (!status) 785 status = -ESTALE; 786 787 return status; 788 } 789 790 static void set_root(struct nameidata *nd) 791 { 792 get_fs_root(current->fs, &nd->root); 793 } 794 795 static void set_root_rcu(struct nameidata *nd) 796 { 797 struct fs_struct *fs = current->fs; 798 unsigned seq; 799 800 do { 801 seq = read_seqcount_begin(&fs->seq); 802 nd->root = fs->root; 803 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 804 } while (read_seqcount_retry(&fs->seq, seq)); 805 } 806 807 static void path_put_conditional(struct path *path, struct nameidata *nd) 808 { 809 dput(path->dentry); 810 if (path->mnt != nd->path.mnt) 811 mntput(path->mnt); 812 } 813 814 static inline void path_to_nameidata(const struct path *path, 815 struct nameidata *nd) 816 { 817 if (!(nd->flags & LOOKUP_RCU)) { 818 dput(nd->path.dentry); 819 if (nd->path.mnt != path->mnt) 820 mntput(nd->path.mnt); 821 } 822 nd->path.mnt = path->mnt; 823 nd->path.dentry = path->dentry; 824 } 825 826 /* 827 * Helper to directly jump to a known parsed path from ->follow_link, 828 * caller must have taken a reference to path beforehand. 829 */ 830 void nd_jump_link(struct path *path) 831 { 832 struct nameidata *nd = current->nameidata; 833 path_put(&nd->path); 834 835 nd->path = *path; 836 nd->inode = nd->path.dentry->d_inode; 837 nd->flags |= LOOKUP_JUMPED; 838 } 839 840 static inline void put_link(struct nameidata *nd) 841 { 842 struct saved *last = nd->stack + --nd->depth; 843 struct inode *inode = last->inode; 844 if (last->cookie && inode->i_op->put_link) 845 inode->i_op->put_link(inode, last->cookie); 846 if (!(nd->flags & LOOKUP_RCU)) 847 path_put(&last->link); 848 } 849 850 int sysctl_protected_symlinks __read_mostly = 0; 851 int sysctl_protected_hardlinks __read_mostly = 0; 852 853 /** 854 * may_follow_link - Check symlink following for unsafe situations 855 * @nd: nameidata pathwalk data 856 * 857 * In the case of the sysctl_protected_symlinks sysctl being enabled, 858 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 859 * in a sticky world-writable directory. This is to protect privileged 860 * processes from failing races against path names that may change out 861 * from under them by way of other users creating malicious symlinks. 862 * It will permit symlinks to be followed only when outside a sticky 863 * world-writable directory, or when the uid of the symlink and follower 864 * match, or when the directory owner matches the symlink's owner. 865 * 866 * Returns 0 if following the symlink is allowed, -ve on error. 867 */ 868 static inline int may_follow_link(struct nameidata *nd) 869 { 870 const struct inode *inode; 871 const struct inode *parent; 872 873 if (!sysctl_protected_symlinks) 874 return 0; 875 876 /* Allowed if owner and follower match. */ 877 inode = nd->stack[0].inode; 878 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 879 return 0; 880 881 /* Allowed if parent directory not sticky and world-writable. */ 882 parent = nd->path.dentry->d_inode; 883 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 884 return 0; 885 886 /* Allowed if parent directory and link owner match. */ 887 if (uid_eq(parent->i_uid, inode->i_uid)) 888 return 0; 889 890 if (nd->flags & LOOKUP_RCU) 891 return -ECHILD; 892 893 audit_log_link_denied("follow_link", &nd->stack[0].link); 894 return -EACCES; 895 } 896 897 /** 898 * safe_hardlink_source - Check for safe hardlink conditions 899 * @inode: the source inode to hardlink from 900 * 901 * Return false if at least one of the following conditions: 902 * - inode is not a regular file 903 * - inode is setuid 904 * - inode is setgid and group-exec 905 * - access failure for read and write 906 * 907 * Otherwise returns true. 908 */ 909 static bool safe_hardlink_source(struct inode *inode) 910 { 911 umode_t mode = inode->i_mode; 912 913 /* Special files should not get pinned to the filesystem. */ 914 if (!S_ISREG(mode)) 915 return false; 916 917 /* Setuid files should not get pinned to the filesystem. */ 918 if (mode & S_ISUID) 919 return false; 920 921 /* Executable setgid files should not get pinned to the filesystem. */ 922 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 923 return false; 924 925 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 926 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 927 return false; 928 929 return true; 930 } 931 932 /** 933 * may_linkat - Check permissions for creating a hardlink 934 * @link: the source to hardlink from 935 * 936 * Block hardlink when all of: 937 * - sysctl_protected_hardlinks enabled 938 * - fsuid does not match inode 939 * - hardlink source is unsafe (see safe_hardlink_source() above) 940 * - not CAP_FOWNER 941 * 942 * Returns 0 if successful, -ve on error. 943 */ 944 static int may_linkat(struct path *link) 945 { 946 const struct cred *cred; 947 struct inode *inode; 948 949 if (!sysctl_protected_hardlinks) 950 return 0; 951 952 cred = current_cred(); 953 inode = link->dentry->d_inode; 954 955 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 956 * otherwise, it must be a safe source. 957 */ 958 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 959 capable(CAP_FOWNER)) 960 return 0; 961 962 audit_log_link_denied("linkat", link); 963 return -EPERM; 964 } 965 966 static __always_inline 967 const char *get_link(struct nameidata *nd) 968 { 969 struct saved *last = nd->stack + nd->depth - 1; 970 struct dentry *dentry = last->link.dentry; 971 struct inode *inode = last->inode; 972 int error; 973 const char *res; 974 975 if (!(nd->flags & LOOKUP_RCU)) { 976 touch_atime(&last->link); 977 cond_resched(); 978 } else if (atime_needs_update(&last->link, inode)) { 979 if (unlikely(unlazy_walk(nd, NULL, 0))) 980 return ERR_PTR(-ECHILD); 981 touch_atime(&last->link); 982 } 983 984 error = security_inode_follow_link(dentry, inode, 985 nd->flags & LOOKUP_RCU); 986 if (unlikely(error)) 987 return ERR_PTR(error); 988 989 nd->last_type = LAST_BIND; 990 res = inode->i_link; 991 if (!res) { 992 if (nd->flags & LOOKUP_RCU) { 993 if (unlikely(unlazy_walk(nd, NULL, 0))) 994 return ERR_PTR(-ECHILD); 995 } 996 res = inode->i_op->follow_link(dentry, &last->cookie); 997 if (IS_ERR_OR_NULL(res)) { 998 last->cookie = NULL; 999 return res; 1000 } 1001 } 1002 if (*res == '/') { 1003 if (nd->flags & LOOKUP_RCU) { 1004 struct dentry *d; 1005 if (!nd->root.mnt) 1006 set_root_rcu(nd); 1007 nd->path = nd->root; 1008 d = nd->path.dentry; 1009 nd->inode = d->d_inode; 1010 nd->seq = nd->root_seq; 1011 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 1012 return ERR_PTR(-ECHILD); 1013 } else { 1014 if (!nd->root.mnt) 1015 set_root(nd); 1016 path_put(&nd->path); 1017 nd->path = nd->root; 1018 path_get(&nd->root); 1019 nd->inode = nd->path.dentry->d_inode; 1020 } 1021 nd->flags |= LOOKUP_JUMPED; 1022 while (unlikely(*++res == '/')) 1023 ; 1024 } 1025 if (!*res) 1026 res = NULL; 1027 return res; 1028 } 1029 1030 /* 1031 * follow_up - Find the mountpoint of path's vfsmount 1032 * 1033 * Given a path, find the mountpoint of its source file system. 1034 * Replace @path with the path of the mountpoint in the parent mount. 1035 * Up is towards /. 1036 * 1037 * Return 1 if we went up a level and 0 if we were already at the 1038 * root. 1039 */ 1040 int follow_up(struct path *path) 1041 { 1042 struct mount *mnt = real_mount(path->mnt); 1043 struct mount *parent; 1044 struct dentry *mountpoint; 1045 1046 read_seqlock_excl(&mount_lock); 1047 parent = mnt->mnt_parent; 1048 if (parent == mnt) { 1049 read_sequnlock_excl(&mount_lock); 1050 return 0; 1051 } 1052 mntget(&parent->mnt); 1053 mountpoint = dget(mnt->mnt_mountpoint); 1054 read_sequnlock_excl(&mount_lock); 1055 dput(path->dentry); 1056 path->dentry = mountpoint; 1057 mntput(path->mnt); 1058 path->mnt = &parent->mnt; 1059 return 1; 1060 } 1061 EXPORT_SYMBOL(follow_up); 1062 1063 /* 1064 * Perform an automount 1065 * - return -EISDIR to tell follow_managed() to stop and return the path we 1066 * were called with. 1067 */ 1068 static int follow_automount(struct path *path, struct nameidata *nd, 1069 bool *need_mntput) 1070 { 1071 struct vfsmount *mnt; 1072 int err; 1073 1074 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1075 return -EREMOTE; 1076 1077 /* We don't want to mount if someone's just doing a stat - 1078 * unless they're stat'ing a directory and appended a '/' to 1079 * the name. 1080 * 1081 * We do, however, want to mount if someone wants to open or 1082 * create a file of any type under the mountpoint, wants to 1083 * traverse through the mountpoint or wants to open the 1084 * mounted directory. Also, autofs may mark negative dentries 1085 * as being automount points. These will need the attentions 1086 * of the daemon to instantiate them before they can be used. 1087 */ 1088 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1089 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1090 path->dentry->d_inode) 1091 return -EISDIR; 1092 1093 nd->total_link_count++; 1094 if (nd->total_link_count >= 40) 1095 return -ELOOP; 1096 1097 mnt = path->dentry->d_op->d_automount(path); 1098 if (IS_ERR(mnt)) { 1099 /* 1100 * The filesystem is allowed to return -EISDIR here to indicate 1101 * it doesn't want to automount. For instance, autofs would do 1102 * this so that its userspace daemon can mount on this dentry. 1103 * 1104 * However, we can only permit this if it's a terminal point in 1105 * the path being looked up; if it wasn't then the remainder of 1106 * the path is inaccessible and we should say so. 1107 */ 1108 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1109 return -EREMOTE; 1110 return PTR_ERR(mnt); 1111 } 1112 1113 if (!mnt) /* mount collision */ 1114 return 0; 1115 1116 if (!*need_mntput) { 1117 /* lock_mount() may release path->mnt on error */ 1118 mntget(path->mnt); 1119 *need_mntput = true; 1120 } 1121 err = finish_automount(mnt, path); 1122 1123 switch (err) { 1124 case -EBUSY: 1125 /* Someone else made a mount here whilst we were busy */ 1126 return 0; 1127 case 0: 1128 path_put(path); 1129 path->mnt = mnt; 1130 path->dentry = dget(mnt->mnt_root); 1131 return 0; 1132 default: 1133 return err; 1134 } 1135 1136 } 1137 1138 /* 1139 * Handle a dentry that is managed in some way. 1140 * - Flagged for transit management (autofs) 1141 * - Flagged as mountpoint 1142 * - Flagged as automount point 1143 * 1144 * This may only be called in refwalk mode. 1145 * 1146 * Serialization is taken care of in namespace.c 1147 */ 1148 static int follow_managed(struct path *path, struct nameidata *nd) 1149 { 1150 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1151 unsigned managed; 1152 bool need_mntput = false; 1153 int ret = 0; 1154 1155 /* Given that we're not holding a lock here, we retain the value in a 1156 * local variable for each dentry as we look at it so that we don't see 1157 * the components of that value change under us */ 1158 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1159 managed &= DCACHE_MANAGED_DENTRY, 1160 unlikely(managed != 0)) { 1161 /* Allow the filesystem to manage the transit without i_mutex 1162 * being held. */ 1163 if (managed & DCACHE_MANAGE_TRANSIT) { 1164 BUG_ON(!path->dentry->d_op); 1165 BUG_ON(!path->dentry->d_op->d_manage); 1166 ret = path->dentry->d_op->d_manage(path->dentry, false); 1167 if (ret < 0) 1168 break; 1169 } 1170 1171 /* Transit to a mounted filesystem. */ 1172 if (managed & DCACHE_MOUNTED) { 1173 struct vfsmount *mounted = lookup_mnt(path); 1174 if (mounted) { 1175 dput(path->dentry); 1176 if (need_mntput) 1177 mntput(path->mnt); 1178 path->mnt = mounted; 1179 path->dentry = dget(mounted->mnt_root); 1180 need_mntput = true; 1181 continue; 1182 } 1183 1184 /* Something is mounted on this dentry in another 1185 * namespace and/or whatever was mounted there in this 1186 * namespace got unmounted before lookup_mnt() could 1187 * get it */ 1188 } 1189 1190 /* Handle an automount point */ 1191 if (managed & DCACHE_NEED_AUTOMOUNT) { 1192 ret = follow_automount(path, nd, &need_mntput); 1193 if (ret < 0) 1194 break; 1195 continue; 1196 } 1197 1198 /* We didn't change the current path point */ 1199 break; 1200 } 1201 1202 if (need_mntput && path->mnt == mnt) 1203 mntput(path->mnt); 1204 if (ret == -EISDIR) 1205 ret = 0; 1206 if (need_mntput) 1207 nd->flags |= LOOKUP_JUMPED; 1208 if (unlikely(ret < 0)) 1209 path_put_conditional(path, nd); 1210 return ret; 1211 } 1212 1213 int follow_down_one(struct path *path) 1214 { 1215 struct vfsmount *mounted; 1216 1217 mounted = lookup_mnt(path); 1218 if (mounted) { 1219 dput(path->dentry); 1220 mntput(path->mnt); 1221 path->mnt = mounted; 1222 path->dentry = dget(mounted->mnt_root); 1223 return 1; 1224 } 1225 return 0; 1226 } 1227 EXPORT_SYMBOL(follow_down_one); 1228 1229 static inline int managed_dentry_rcu(struct dentry *dentry) 1230 { 1231 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1232 dentry->d_op->d_manage(dentry, true) : 0; 1233 } 1234 1235 /* 1236 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1237 * we meet a managed dentry that would need blocking. 1238 */ 1239 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1240 struct inode **inode, unsigned *seqp) 1241 { 1242 for (;;) { 1243 struct mount *mounted; 1244 /* 1245 * Don't forget we might have a non-mountpoint managed dentry 1246 * that wants to block transit. 1247 */ 1248 switch (managed_dentry_rcu(path->dentry)) { 1249 case -ECHILD: 1250 default: 1251 return false; 1252 case -EISDIR: 1253 return true; 1254 case 0: 1255 break; 1256 } 1257 1258 if (!d_mountpoint(path->dentry)) 1259 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1260 1261 mounted = __lookup_mnt(path->mnt, path->dentry); 1262 if (!mounted) 1263 break; 1264 path->mnt = &mounted->mnt; 1265 path->dentry = mounted->mnt.mnt_root; 1266 nd->flags |= LOOKUP_JUMPED; 1267 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1268 /* 1269 * Update the inode too. We don't need to re-check the 1270 * dentry sequence number here after this d_inode read, 1271 * because a mount-point is always pinned. 1272 */ 1273 *inode = path->dentry->d_inode; 1274 } 1275 return !read_seqretry(&mount_lock, nd->m_seq) && 1276 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1277 } 1278 1279 static int follow_dotdot_rcu(struct nameidata *nd) 1280 { 1281 struct inode *inode = nd->inode; 1282 if (!nd->root.mnt) 1283 set_root_rcu(nd); 1284 1285 while (1) { 1286 if (path_equal(&nd->path, &nd->root)) 1287 break; 1288 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1289 struct dentry *old = nd->path.dentry; 1290 struct dentry *parent = old->d_parent; 1291 unsigned seq; 1292 1293 inode = parent->d_inode; 1294 seq = read_seqcount_begin(&parent->d_seq); 1295 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1296 return -ECHILD; 1297 nd->path.dentry = parent; 1298 nd->seq = seq; 1299 break; 1300 } else { 1301 struct mount *mnt = real_mount(nd->path.mnt); 1302 struct mount *mparent = mnt->mnt_parent; 1303 struct dentry *mountpoint = mnt->mnt_mountpoint; 1304 struct inode *inode2 = mountpoint->d_inode; 1305 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1306 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1307 return -ECHILD; 1308 if (&mparent->mnt == nd->path.mnt) 1309 break; 1310 /* we know that mountpoint was pinned */ 1311 nd->path.dentry = mountpoint; 1312 nd->path.mnt = &mparent->mnt; 1313 inode = inode2; 1314 nd->seq = seq; 1315 } 1316 } 1317 while (unlikely(d_mountpoint(nd->path.dentry))) { 1318 struct mount *mounted; 1319 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1320 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1321 return -ECHILD; 1322 if (!mounted) 1323 break; 1324 nd->path.mnt = &mounted->mnt; 1325 nd->path.dentry = mounted->mnt.mnt_root; 1326 inode = nd->path.dentry->d_inode; 1327 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1328 } 1329 nd->inode = inode; 1330 return 0; 1331 } 1332 1333 /* 1334 * Follow down to the covering mount currently visible to userspace. At each 1335 * point, the filesystem owning that dentry may be queried as to whether the 1336 * caller is permitted to proceed or not. 1337 */ 1338 int follow_down(struct path *path) 1339 { 1340 unsigned managed; 1341 int ret; 1342 1343 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1344 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1345 /* Allow the filesystem to manage the transit without i_mutex 1346 * being held. 1347 * 1348 * We indicate to the filesystem if someone is trying to mount 1349 * something here. This gives autofs the chance to deny anyone 1350 * other than its daemon the right to mount on its 1351 * superstructure. 1352 * 1353 * The filesystem may sleep at this point. 1354 */ 1355 if (managed & DCACHE_MANAGE_TRANSIT) { 1356 BUG_ON(!path->dentry->d_op); 1357 BUG_ON(!path->dentry->d_op->d_manage); 1358 ret = path->dentry->d_op->d_manage( 1359 path->dentry, false); 1360 if (ret < 0) 1361 return ret == -EISDIR ? 0 : ret; 1362 } 1363 1364 /* Transit to a mounted filesystem. */ 1365 if (managed & DCACHE_MOUNTED) { 1366 struct vfsmount *mounted = lookup_mnt(path); 1367 if (!mounted) 1368 break; 1369 dput(path->dentry); 1370 mntput(path->mnt); 1371 path->mnt = mounted; 1372 path->dentry = dget(mounted->mnt_root); 1373 continue; 1374 } 1375 1376 /* Don't handle automount points here */ 1377 break; 1378 } 1379 return 0; 1380 } 1381 EXPORT_SYMBOL(follow_down); 1382 1383 /* 1384 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1385 */ 1386 static void follow_mount(struct path *path) 1387 { 1388 while (d_mountpoint(path->dentry)) { 1389 struct vfsmount *mounted = lookup_mnt(path); 1390 if (!mounted) 1391 break; 1392 dput(path->dentry); 1393 mntput(path->mnt); 1394 path->mnt = mounted; 1395 path->dentry = dget(mounted->mnt_root); 1396 } 1397 } 1398 1399 static void follow_dotdot(struct nameidata *nd) 1400 { 1401 if (!nd->root.mnt) 1402 set_root(nd); 1403 1404 while(1) { 1405 struct dentry *old = nd->path.dentry; 1406 1407 if (nd->path.dentry == nd->root.dentry && 1408 nd->path.mnt == nd->root.mnt) { 1409 break; 1410 } 1411 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1412 /* rare case of legitimate dget_parent()... */ 1413 nd->path.dentry = dget_parent(nd->path.dentry); 1414 dput(old); 1415 break; 1416 } 1417 if (!follow_up(&nd->path)) 1418 break; 1419 } 1420 follow_mount(&nd->path); 1421 nd->inode = nd->path.dentry->d_inode; 1422 } 1423 1424 /* 1425 * This looks up the name in dcache, possibly revalidates the old dentry and 1426 * allocates a new one if not found or not valid. In the need_lookup argument 1427 * returns whether i_op->lookup is necessary. 1428 * 1429 * dir->d_inode->i_mutex must be held 1430 */ 1431 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1432 unsigned int flags, bool *need_lookup) 1433 { 1434 struct dentry *dentry; 1435 int error; 1436 1437 *need_lookup = false; 1438 dentry = d_lookup(dir, name); 1439 if (dentry) { 1440 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1441 error = d_revalidate(dentry, flags); 1442 if (unlikely(error <= 0)) { 1443 if (error < 0) { 1444 dput(dentry); 1445 return ERR_PTR(error); 1446 } else { 1447 d_invalidate(dentry); 1448 dput(dentry); 1449 dentry = NULL; 1450 } 1451 } 1452 } 1453 } 1454 1455 if (!dentry) { 1456 dentry = d_alloc(dir, name); 1457 if (unlikely(!dentry)) 1458 return ERR_PTR(-ENOMEM); 1459 1460 *need_lookup = true; 1461 } 1462 return dentry; 1463 } 1464 1465 /* 1466 * Call i_op->lookup on the dentry. The dentry must be negative and 1467 * unhashed. 1468 * 1469 * dir->d_inode->i_mutex must be held 1470 */ 1471 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1472 unsigned int flags) 1473 { 1474 struct dentry *old; 1475 1476 /* Don't create child dentry for a dead directory. */ 1477 if (unlikely(IS_DEADDIR(dir))) { 1478 dput(dentry); 1479 return ERR_PTR(-ENOENT); 1480 } 1481 1482 old = dir->i_op->lookup(dir, dentry, flags); 1483 if (unlikely(old)) { 1484 dput(dentry); 1485 dentry = old; 1486 } 1487 return dentry; 1488 } 1489 1490 static struct dentry *__lookup_hash(struct qstr *name, 1491 struct dentry *base, unsigned int flags) 1492 { 1493 bool need_lookup; 1494 struct dentry *dentry; 1495 1496 dentry = lookup_dcache(name, base, flags, &need_lookup); 1497 if (!need_lookup) 1498 return dentry; 1499 1500 return lookup_real(base->d_inode, dentry, flags); 1501 } 1502 1503 /* 1504 * It's more convoluted than I'd like it to be, but... it's still fairly 1505 * small and for now I'd prefer to have fast path as straight as possible. 1506 * It _is_ time-critical. 1507 */ 1508 static int lookup_fast(struct nameidata *nd, 1509 struct path *path, struct inode **inode, 1510 unsigned *seqp) 1511 { 1512 struct vfsmount *mnt = nd->path.mnt; 1513 struct dentry *dentry, *parent = nd->path.dentry; 1514 int need_reval = 1; 1515 int status = 1; 1516 int err; 1517 1518 /* 1519 * Rename seqlock is not required here because in the off chance 1520 * of a false negative due to a concurrent rename, we're going to 1521 * do the non-racy lookup, below. 1522 */ 1523 if (nd->flags & LOOKUP_RCU) { 1524 unsigned seq; 1525 bool negative; 1526 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1527 if (!dentry) 1528 goto unlazy; 1529 1530 /* 1531 * This sequence count validates that the inode matches 1532 * the dentry name information from lookup. 1533 */ 1534 *inode = d_backing_inode(dentry); 1535 negative = d_is_negative(dentry); 1536 if (read_seqcount_retry(&dentry->d_seq, seq)) 1537 return -ECHILD; 1538 if (negative) 1539 return -ENOENT; 1540 1541 /* 1542 * This sequence count validates that the parent had no 1543 * changes while we did the lookup of the dentry above. 1544 * 1545 * The memory barrier in read_seqcount_begin of child is 1546 * enough, we can use __read_seqcount_retry here. 1547 */ 1548 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1549 return -ECHILD; 1550 1551 *seqp = seq; 1552 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1553 status = d_revalidate(dentry, nd->flags); 1554 if (unlikely(status <= 0)) { 1555 if (status != -ECHILD) 1556 need_reval = 0; 1557 goto unlazy; 1558 } 1559 } 1560 path->mnt = mnt; 1561 path->dentry = dentry; 1562 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1563 return 0; 1564 unlazy: 1565 if (unlazy_walk(nd, dentry, seq)) 1566 return -ECHILD; 1567 } else { 1568 dentry = __d_lookup(parent, &nd->last); 1569 } 1570 1571 if (unlikely(!dentry)) 1572 goto need_lookup; 1573 1574 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1575 status = d_revalidate(dentry, nd->flags); 1576 if (unlikely(status <= 0)) { 1577 if (status < 0) { 1578 dput(dentry); 1579 return status; 1580 } 1581 d_invalidate(dentry); 1582 dput(dentry); 1583 goto need_lookup; 1584 } 1585 1586 if (unlikely(d_is_negative(dentry))) { 1587 dput(dentry); 1588 return -ENOENT; 1589 } 1590 path->mnt = mnt; 1591 path->dentry = dentry; 1592 err = follow_managed(path, nd); 1593 if (likely(!err)) 1594 *inode = d_backing_inode(path->dentry); 1595 return err; 1596 1597 need_lookup: 1598 return 1; 1599 } 1600 1601 /* Fast lookup failed, do it the slow way */ 1602 static int lookup_slow(struct nameidata *nd, struct path *path) 1603 { 1604 struct dentry *dentry, *parent; 1605 1606 parent = nd->path.dentry; 1607 BUG_ON(nd->inode != parent->d_inode); 1608 1609 mutex_lock(&parent->d_inode->i_mutex); 1610 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1611 mutex_unlock(&parent->d_inode->i_mutex); 1612 if (IS_ERR(dentry)) 1613 return PTR_ERR(dentry); 1614 path->mnt = nd->path.mnt; 1615 path->dentry = dentry; 1616 return follow_managed(path, nd); 1617 } 1618 1619 static inline int may_lookup(struct nameidata *nd) 1620 { 1621 if (nd->flags & LOOKUP_RCU) { 1622 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1623 if (err != -ECHILD) 1624 return err; 1625 if (unlazy_walk(nd, NULL, 0)) 1626 return -ECHILD; 1627 } 1628 return inode_permission(nd->inode, MAY_EXEC); 1629 } 1630 1631 static inline int handle_dots(struct nameidata *nd, int type) 1632 { 1633 if (type == LAST_DOTDOT) { 1634 if (nd->flags & LOOKUP_RCU) { 1635 return follow_dotdot_rcu(nd); 1636 } else 1637 follow_dotdot(nd); 1638 } 1639 return 0; 1640 } 1641 1642 static int pick_link(struct nameidata *nd, struct path *link, 1643 struct inode *inode, unsigned seq) 1644 { 1645 int error; 1646 struct saved *last; 1647 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1648 path_to_nameidata(link, nd); 1649 return -ELOOP; 1650 } 1651 if (!(nd->flags & LOOKUP_RCU)) { 1652 if (link->mnt == nd->path.mnt) 1653 mntget(link->mnt); 1654 } 1655 error = nd_alloc_stack(nd); 1656 if (unlikely(error)) { 1657 if (error == -ECHILD) { 1658 if (unlikely(unlazy_link(nd, link, seq))) 1659 return -ECHILD; 1660 error = nd_alloc_stack(nd); 1661 } 1662 if (error) { 1663 path_put(link); 1664 return error; 1665 } 1666 } 1667 1668 last = nd->stack + nd->depth++; 1669 last->link = *link; 1670 last->cookie = NULL; 1671 last->inode = inode; 1672 last->seq = seq; 1673 return 1; 1674 } 1675 1676 /* 1677 * Do we need to follow links? We _really_ want to be able 1678 * to do this check without having to look at inode->i_op, 1679 * so we keep a cache of "no, this doesn't need follow_link" 1680 * for the common case. 1681 */ 1682 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1683 int follow, 1684 struct inode *inode, unsigned seq) 1685 { 1686 if (likely(!d_is_symlink(link->dentry))) 1687 return 0; 1688 if (!follow) 1689 return 0; 1690 return pick_link(nd, link, inode, seq); 1691 } 1692 1693 enum {WALK_GET = 1, WALK_PUT = 2}; 1694 1695 static int walk_component(struct nameidata *nd, int flags) 1696 { 1697 struct path path; 1698 struct inode *inode; 1699 unsigned seq; 1700 int err; 1701 /* 1702 * "." and ".." are special - ".." especially so because it has 1703 * to be able to know about the current root directory and 1704 * parent relationships. 1705 */ 1706 if (unlikely(nd->last_type != LAST_NORM)) { 1707 err = handle_dots(nd, nd->last_type); 1708 if (flags & WALK_PUT) 1709 put_link(nd); 1710 return err; 1711 } 1712 err = lookup_fast(nd, &path, &inode, &seq); 1713 if (unlikely(err)) { 1714 if (err < 0) 1715 return err; 1716 1717 err = lookup_slow(nd, &path); 1718 if (err < 0) 1719 return err; 1720 1721 inode = d_backing_inode(path.dentry); 1722 seq = 0; /* we are already out of RCU mode */ 1723 err = -ENOENT; 1724 if (d_is_negative(path.dentry)) 1725 goto out_path_put; 1726 } 1727 1728 if (flags & WALK_PUT) 1729 put_link(nd); 1730 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1731 if (unlikely(err)) 1732 return err; 1733 path_to_nameidata(&path, nd); 1734 nd->inode = inode; 1735 nd->seq = seq; 1736 return 0; 1737 1738 out_path_put: 1739 path_to_nameidata(&path, nd); 1740 return err; 1741 } 1742 1743 /* 1744 * We can do the critical dentry name comparison and hashing 1745 * operations one word at a time, but we are limited to: 1746 * 1747 * - Architectures with fast unaligned word accesses. We could 1748 * do a "get_unaligned()" if this helps and is sufficiently 1749 * fast. 1750 * 1751 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1752 * do not trap on the (extremely unlikely) case of a page 1753 * crossing operation. 1754 * 1755 * - Furthermore, we need an efficient 64-bit compile for the 1756 * 64-bit case in order to generate the "number of bytes in 1757 * the final mask". Again, that could be replaced with a 1758 * efficient population count instruction or similar. 1759 */ 1760 #ifdef CONFIG_DCACHE_WORD_ACCESS 1761 1762 #include <asm/word-at-a-time.h> 1763 1764 #ifdef CONFIG_64BIT 1765 1766 static inline unsigned int fold_hash(unsigned long hash) 1767 { 1768 return hash_64(hash, 32); 1769 } 1770 1771 #else /* 32-bit case */ 1772 1773 #define fold_hash(x) (x) 1774 1775 #endif 1776 1777 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1778 { 1779 unsigned long a, mask; 1780 unsigned long hash = 0; 1781 1782 for (;;) { 1783 a = load_unaligned_zeropad(name); 1784 if (len < sizeof(unsigned long)) 1785 break; 1786 hash += a; 1787 hash *= 9; 1788 name += sizeof(unsigned long); 1789 len -= sizeof(unsigned long); 1790 if (!len) 1791 goto done; 1792 } 1793 mask = bytemask_from_count(len); 1794 hash += mask & a; 1795 done: 1796 return fold_hash(hash); 1797 } 1798 EXPORT_SYMBOL(full_name_hash); 1799 1800 /* 1801 * Calculate the length and hash of the path component, and 1802 * return the "hash_len" as the result. 1803 */ 1804 static inline u64 hash_name(const char *name) 1805 { 1806 unsigned long a, b, adata, bdata, mask, hash, len; 1807 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1808 1809 hash = a = 0; 1810 len = -sizeof(unsigned long); 1811 do { 1812 hash = (hash + a) * 9; 1813 len += sizeof(unsigned long); 1814 a = load_unaligned_zeropad(name+len); 1815 b = a ^ REPEAT_BYTE('/'); 1816 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1817 1818 adata = prep_zero_mask(a, adata, &constants); 1819 bdata = prep_zero_mask(b, bdata, &constants); 1820 1821 mask = create_zero_mask(adata | bdata); 1822 1823 hash += a & zero_bytemask(mask); 1824 len += find_zero(mask); 1825 return hashlen_create(fold_hash(hash), len); 1826 } 1827 1828 #else 1829 1830 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1831 { 1832 unsigned long hash = init_name_hash(); 1833 while (len--) 1834 hash = partial_name_hash(*name++, hash); 1835 return end_name_hash(hash); 1836 } 1837 EXPORT_SYMBOL(full_name_hash); 1838 1839 /* 1840 * We know there's a real path component here of at least 1841 * one character. 1842 */ 1843 static inline u64 hash_name(const char *name) 1844 { 1845 unsigned long hash = init_name_hash(); 1846 unsigned long len = 0, c; 1847 1848 c = (unsigned char)*name; 1849 do { 1850 len++; 1851 hash = partial_name_hash(c, hash); 1852 c = (unsigned char)name[len]; 1853 } while (c && c != '/'); 1854 return hashlen_create(end_name_hash(hash), len); 1855 } 1856 1857 #endif 1858 1859 /* 1860 * Name resolution. 1861 * This is the basic name resolution function, turning a pathname into 1862 * the final dentry. We expect 'base' to be positive and a directory. 1863 * 1864 * Returns 0 and nd will have valid dentry and mnt on success. 1865 * Returns error and drops reference to input namei data on failure. 1866 */ 1867 static int link_path_walk(const char *name, struct nameidata *nd) 1868 { 1869 int err; 1870 1871 while (*name=='/') 1872 name++; 1873 if (!*name) 1874 return 0; 1875 1876 /* At this point we know we have a real path component. */ 1877 for(;;) { 1878 u64 hash_len; 1879 int type; 1880 1881 err = may_lookup(nd); 1882 if (err) 1883 return err; 1884 1885 hash_len = hash_name(name); 1886 1887 type = LAST_NORM; 1888 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1889 case 2: 1890 if (name[1] == '.') { 1891 type = LAST_DOTDOT; 1892 nd->flags |= LOOKUP_JUMPED; 1893 } 1894 break; 1895 case 1: 1896 type = LAST_DOT; 1897 } 1898 if (likely(type == LAST_NORM)) { 1899 struct dentry *parent = nd->path.dentry; 1900 nd->flags &= ~LOOKUP_JUMPED; 1901 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1902 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1903 err = parent->d_op->d_hash(parent, &this); 1904 if (err < 0) 1905 return err; 1906 hash_len = this.hash_len; 1907 name = this.name; 1908 } 1909 } 1910 1911 nd->last.hash_len = hash_len; 1912 nd->last.name = name; 1913 nd->last_type = type; 1914 1915 name += hashlen_len(hash_len); 1916 if (!*name) 1917 goto OK; 1918 /* 1919 * If it wasn't NUL, we know it was '/'. Skip that 1920 * slash, and continue until no more slashes. 1921 */ 1922 do { 1923 name++; 1924 } while (unlikely(*name == '/')); 1925 if (unlikely(!*name)) { 1926 OK: 1927 /* pathname body, done */ 1928 if (!nd->depth) 1929 return 0; 1930 name = nd->stack[nd->depth - 1].name; 1931 /* trailing symlink, done */ 1932 if (!name) 1933 return 0; 1934 /* last component of nested symlink */ 1935 err = walk_component(nd, WALK_GET | WALK_PUT); 1936 } else { 1937 err = walk_component(nd, WALK_GET); 1938 } 1939 if (err < 0) 1940 return err; 1941 1942 if (err) { 1943 const char *s = get_link(nd); 1944 1945 if (unlikely(IS_ERR(s))) 1946 return PTR_ERR(s); 1947 err = 0; 1948 if (unlikely(!s)) { 1949 /* jumped */ 1950 put_link(nd); 1951 } else { 1952 nd->stack[nd->depth - 1].name = name; 1953 name = s; 1954 continue; 1955 } 1956 } 1957 if (unlikely(!d_can_lookup(nd->path.dentry))) 1958 return -ENOTDIR; 1959 } 1960 } 1961 1962 static const char *path_init(struct nameidata *nd, unsigned flags) 1963 { 1964 int retval = 0; 1965 const char *s = nd->name->name; 1966 1967 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1968 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 1969 nd->depth = 0; 1970 nd->total_link_count = 0; 1971 if (flags & LOOKUP_ROOT) { 1972 struct dentry *root = nd->root.dentry; 1973 struct inode *inode = root->d_inode; 1974 if (*s) { 1975 if (!d_can_lookup(root)) 1976 return ERR_PTR(-ENOTDIR); 1977 retval = inode_permission(inode, MAY_EXEC); 1978 if (retval) 1979 return ERR_PTR(retval); 1980 } 1981 nd->path = nd->root; 1982 nd->inode = inode; 1983 if (flags & LOOKUP_RCU) { 1984 rcu_read_lock(); 1985 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1986 nd->root_seq = nd->seq; 1987 nd->m_seq = read_seqbegin(&mount_lock); 1988 } else { 1989 path_get(&nd->path); 1990 } 1991 return s; 1992 } 1993 1994 nd->root.mnt = NULL; 1995 1996 nd->m_seq = read_seqbegin(&mount_lock); 1997 if (*s == '/') { 1998 if (flags & LOOKUP_RCU) { 1999 rcu_read_lock(); 2000 set_root_rcu(nd); 2001 nd->seq = nd->root_seq; 2002 } else { 2003 set_root(nd); 2004 path_get(&nd->root); 2005 } 2006 nd->path = nd->root; 2007 } else if (nd->dfd == AT_FDCWD) { 2008 if (flags & LOOKUP_RCU) { 2009 struct fs_struct *fs = current->fs; 2010 unsigned seq; 2011 2012 rcu_read_lock(); 2013 2014 do { 2015 seq = read_seqcount_begin(&fs->seq); 2016 nd->path = fs->pwd; 2017 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2018 } while (read_seqcount_retry(&fs->seq, seq)); 2019 } else { 2020 get_fs_pwd(current->fs, &nd->path); 2021 } 2022 } else { 2023 /* Caller must check execute permissions on the starting path component */ 2024 struct fd f = fdget_raw(nd->dfd); 2025 struct dentry *dentry; 2026 2027 if (!f.file) 2028 return ERR_PTR(-EBADF); 2029 2030 dentry = f.file->f_path.dentry; 2031 2032 if (*s) { 2033 if (!d_can_lookup(dentry)) { 2034 fdput(f); 2035 return ERR_PTR(-ENOTDIR); 2036 } 2037 } 2038 2039 nd->path = f.file->f_path; 2040 if (flags & LOOKUP_RCU) { 2041 rcu_read_lock(); 2042 nd->inode = nd->path.dentry->d_inode; 2043 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2044 } else { 2045 path_get(&nd->path); 2046 nd->inode = nd->path.dentry->d_inode; 2047 } 2048 fdput(f); 2049 return s; 2050 } 2051 2052 nd->inode = nd->path.dentry->d_inode; 2053 if (!(flags & LOOKUP_RCU)) 2054 return s; 2055 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 2056 return s; 2057 if (!(nd->flags & LOOKUP_ROOT)) 2058 nd->root.mnt = NULL; 2059 rcu_read_unlock(); 2060 return ERR_PTR(-ECHILD); 2061 } 2062 2063 static const char *trailing_symlink(struct nameidata *nd) 2064 { 2065 const char *s; 2066 int error = may_follow_link(nd); 2067 if (unlikely(error)) 2068 return ERR_PTR(error); 2069 nd->flags |= LOOKUP_PARENT; 2070 nd->stack[0].name = NULL; 2071 s = get_link(nd); 2072 return s ? s : ""; 2073 } 2074 2075 static inline int lookup_last(struct nameidata *nd) 2076 { 2077 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2078 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2079 2080 nd->flags &= ~LOOKUP_PARENT; 2081 return walk_component(nd, 2082 nd->flags & LOOKUP_FOLLOW 2083 ? nd->depth 2084 ? WALK_PUT | WALK_GET 2085 : WALK_GET 2086 : 0); 2087 } 2088 2089 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2090 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2091 { 2092 const char *s = path_init(nd, flags); 2093 int err; 2094 2095 if (IS_ERR(s)) 2096 return PTR_ERR(s); 2097 while (!(err = link_path_walk(s, nd)) 2098 && ((err = lookup_last(nd)) > 0)) { 2099 s = trailing_symlink(nd); 2100 if (IS_ERR(s)) { 2101 err = PTR_ERR(s); 2102 break; 2103 } 2104 } 2105 if (!err) 2106 err = complete_walk(nd); 2107 2108 if (!err && nd->flags & LOOKUP_DIRECTORY) 2109 if (!d_can_lookup(nd->path.dentry)) 2110 err = -ENOTDIR; 2111 if (!err) { 2112 *path = nd->path; 2113 nd->path.mnt = NULL; 2114 nd->path.dentry = NULL; 2115 } 2116 terminate_walk(nd); 2117 return err; 2118 } 2119 2120 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2121 struct path *path, struct path *root) 2122 { 2123 int retval; 2124 struct nameidata nd; 2125 if (IS_ERR(name)) 2126 return PTR_ERR(name); 2127 if (unlikely(root)) { 2128 nd.root = *root; 2129 flags |= LOOKUP_ROOT; 2130 } 2131 set_nameidata(&nd, dfd, name); 2132 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2133 if (unlikely(retval == -ECHILD)) 2134 retval = path_lookupat(&nd, flags, path); 2135 if (unlikely(retval == -ESTALE)) 2136 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2137 2138 if (likely(!retval)) 2139 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2140 restore_nameidata(); 2141 putname(name); 2142 return retval; 2143 } 2144 2145 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2146 static int path_parentat(struct nameidata *nd, unsigned flags, 2147 struct path *parent) 2148 { 2149 const char *s = path_init(nd, flags); 2150 int err; 2151 if (IS_ERR(s)) 2152 return PTR_ERR(s); 2153 err = link_path_walk(s, nd); 2154 if (!err) 2155 err = complete_walk(nd); 2156 if (!err) { 2157 *parent = nd->path; 2158 nd->path.mnt = NULL; 2159 nd->path.dentry = NULL; 2160 } 2161 terminate_walk(nd); 2162 return err; 2163 } 2164 2165 static struct filename *filename_parentat(int dfd, struct filename *name, 2166 unsigned int flags, struct path *parent, 2167 struct qstr *last, int *type) 2168 { 2169 int retval; 2170 struct nameidata nd; 2171 2172 if (IS_ERR(name)) 2173 return name; 2174 set_nameidata(&nd, dfd, name); 2175 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2176 if (unlikely(retval == -ECHILD)) 2177 retval = path_parentat(&nd, flags, parent); 2178 if (unlikely(retval == -ESTALE)) 2179 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2180 if (likely(!retval)) { 2181 *last = nd.last; 2182 *type = nd.last_type; 2183 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2184 } else { 2185 putname(name); 2186 name = ERR_PTR(retval); 2187 } 2188 restore_nameidata(); 2189 return name; 2190 } 2191 2192 /* does lookup, returns the object with parent locked */ 2193 struct dentry *kern_path_locked(const char *name, struct path *path) 2194 { 2195 struct filename *filename; 2196 struct dentry *d; 2197 struct qstr last; 2198 int type; 2199 2200 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2201 &last, &type); 2202 if (IS_ERR(filename)) 2203 return ERR_CAST(filename); 2204 if (unlikely(type != LAST_NORM)) { 2205 path_put(path); 2206 putname(filename); 2207 return ERR_PTR(-EINVAL); 2208 } 2209 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2210 d = __lookup_hash(&last, path->dentry, 0); 2211 if (IS_ERR(d)) { 2212 mutex_unlock(&path->dentry->d_inode->i_mutex); 2213 path_put(path); 2214 } 2215 putname(filename); 2216 return d; 2217 } 2218 2219 int kern_path(const char *name, unsigned int flags, struct path *path) 2220 { 2221 return filename_lookup(AT_FDCWD, getname_kernel(name), 2222 flags, path, NULL); 2223 } 2224 EXPORT_SYMBOL(kern_path); 2225 2226 /** 2227 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2228 * @dentry: pointer to dentry of the base directory 2229 * @mnt: pointer to vfs mount of the base directory 2230 * @name: pointer to file name 2231 * @flags: lookup flags 2232 * @path: pointer to struct path to fill 2233 */ 2234 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2235 const char *name, unsigned int flags, 2236 struct path *path) 2237 { 2238 struct path root = {.mnt = mnt, .dentry = dentry}; 2239 /* the first argument of filename_lookup() is ignored with root */ 2240 return filename_lookup(AT_FDCWD, getname_kernel(name), 2241 flags , path, &root); 2242 } 2243 EXPORT_SYMBOL(vfs_path_lookup); 2244 2245 /** 2246 * lookup_one_len - filesystem helper to lookup single pathname component 2247 * @name: pathname component to lookup 2248 * @base: base directory to lookup from 2249 * @len: maximum length @len should be interpreted to 2250 * 2251 * Note that this routine is purely a helper for filesystem usage and should 2252 * not be called by generic code. 2253 */ 2254 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2255 { 2256 struct qstr this; 2257 unsigned int c; 2258 int err; 2259 2260 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2261 2262 this.name = name; 2263 this.len = len; 2264 this.hash = full_name_hash(name, len); 2265 if (!len) 2266 return ERR_PTR(-EACCES); 2267 2268 if (unlikely(name[0] == '.')) { 2269 if (len < 2 || (len == 2 && name[1] == '.')) 2270 return ERR_PTR(-EACCES); 2271 } 2272 2273 while (len--) { 2274 c = *(const unsigned char *)name++; 2275 if (c == '/' || c == '\0') 2276 return ERR_PTR(-EACCES); 2277 } 2278 /* 2279 * See if the low-level filesystem might want 2280 * to use its own hash.. 2281 */ 2282 if (base->d_flags & DCACHE_OP_HASH) { 2283 int err = base->d_op->d_hash(base, &this); 2284 if (err < 0) 2285 return ERR_PTR(err); 2286 } 2287 2288 err = inode_permission(base->d_inode, MAY_EXEC); 2289 if (err) 2290 return ERR_PTR(err); 2291 2292 return __lookup_hash(&this, base, 0); 2293 } 2294 EXPORT_SYMBOL(lookup_one_len); 2295 2296 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2297 struct path *path, int *empty) 2298 { 2299 return filename_lookup(dfd, getname_flags(name, flags, empty), 2300 flags, path, NULL); 2301 } 2302 EXPORT_SYMBOL(user_path_at_empty); 2303 2304 /* 2305 * NB: most callers don't do anything directly with the reference to the 2306 * to struct filename, but the nd->last pointer points into the name string 2307 * allocated by getname. So we must hold the reference to it until all 2308 * path-walking is complete. 2309 */ 2310 static inline struct filename * 2311 user_path_parent(int dfd, const char __user *path, 2312 struct path *parent, 2313 struct qstr *last, 2314 int *type, 2315 unsigned int flags) 2316 { 2317 /* only LOOKUP_REVAL is allowed in extra flags */ 2318 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2319 parent, last, type); 2320 } 2321 2322 /** 2323 * mountpoint_last - look up last component for umount 2324 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2325 * @path: pointer to container for result 2326 * 2327 * This is a special lookup_last function just for umount. In this case, we 2328 * need to resolve the path without doing any revalidation. 2329 * 2330 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2331 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2332 * in almost all cases, this lookup will be served out of the dcache. The only 2333 * cases where it won't are if nd->last refers to a symlink or the path is 2334 * bogus and it doesn't exist. 2335 * 2336 * Returns: 2337 * -error: if there was an error during lookup. This includes -ENOENT if the 2338 * lookup found a negative dentry. The nd->path reference will also be 2339 * put in this case. 2340 * 2341 * 0: if we successfully resolved nd->path and found it to not to be a 2342 * symlink that needs to be followed. "path" will also be populated. 2343 * The nd->path reference will also be put. 2344 * 2345 * 1: if we successfully resolved nd->last and found it to be a symlink 2346 * that needs to be followed. "path" will be populated with the path 2347 * to the link, and nd->path will *not* be put. 2348 */ 2349 static int 2350 mountpoint_last(struct nameidata *nd, struct path *path) 2351 { 2352 int error = 0; 2353 struct dentry *dentry; 2354 struct dentry *dir = nd->path.dentry; 2355 2356 /* If we're in rcuwalk, drop out of it to handle last component */ 2357 if (nd->flags & LOOKUP_RCU) { 2358 if (unlazy_walk(nd, NULL, 0)) 2359 return -ECHILD; 2360 } 2361 2362 nd->flags &= ~LOOKUP_PARENT; 2363 2364 if (unlikely(nd->last_type != LAST_NORM)) { 2365 error = handle_dots(nd, nd->last_type); 2366 if (error) 2367 return error; 2368 dentry = dget(nd->path.dentry); 2369 goto done; 2370 } 2371 2372 mutex_lock(&dir->d_inode->i_mutex); 2373 dentry = d_lookup(dir, &nd->last); 2374 if (!dentry) { 2375 /* 2376 * No cached dentry. Mounted dentries are pinned in the cache, 2377 * so that means that this dentry is probably a symlink or the 2378 * path doesn't actually point to a mounted dentry. 2379 */ 2380 dentry = d_alloc(dir, &nd->last); 2381 if (!dentry) { 2382 mutex_unlock(&dir->d_inode->i_mutex); 2383 return -ENOMEM; 2384 } 2385 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2386 if (IS_ERR(dentry)) { 2387 mutex_unlock(&dir->d_inode->i_mutex); 2388 return PTR_ERR(dentry); 2389 } 2390 } 2391 mutex_unlock(&dir->d_inode->i_mutex); 2392 2393 done: 2394 if (d_is_negative(dentry)) { 2395 dput(dentry); 2396 return -ENOENT; 2397 } 2398 if (nd->depth) 2399 put_link(nd); 2400 path->dentry = dentry; 2401 path->mnt = nd->path.mnt; 2402 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2403 d_backing_inode(dentry), 0); 2404 if (unlikely(error)) 2405 return error; 2406 mntget(path->mnt); 2407 follow_mount(path); 2408 return 0; 2409 } 2410 2411 /** 2412 * path_mountpoint - look up a path to be umounted 2413 * @nameidata: lookup context 2414 * @flags: lookup flags 2415 * @path: pointer to container for result 2416 * 2417 * Look up the given name, but don't attempt to revalidate the last component. 2418 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2419 */ 2420 static int 2421 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2422 { 2423 const char *s = path_init(nd, flags); 2424 int err; 2425 if (IS_ERR(s)) 2426 return PTR_ERR(s); 2427 while (!(err = link_path_walk(s, nd)) && 2428 (err = mountpoint_last(nd, path)) > 0) { 2429 s = trailing_symlink(nd); 2430 if (IS_ERR(s)) { 2431 err = PTR_ERR(s); 2432 break; 2433 } 2434 } 2435 terminate_walk(nd); 2436 return err; 2437 } 2438 2439 static int 2440 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2441 unsigned int flags) 2442 { 2443 struct nameidata nd; 2444 int error; 2445 if (IS_ERR(name)) 2446 return PTR_ERR(name); 2447 set_nameidata(&nd, dfd, name); 2448 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2449 if (unlikely(error == -ECHILD)) 2450 error = path_mountpoint(&nd, flags, path); 2451 if (unlikely(error == -ESTALE)) 2452 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2453 if (likely(!error)) 2454 audit_inode(name, path->dentry, 0); 2455 restore_nameidata(); 2456 putname(name); 2457 return error; 2458 } 2459 2460 /** 2461 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2462 * @dfd: directory file descriptor 2463 * @name: pathname from userland 2464 * @flags: lookup flags 2465 * @path: pointer to container to hold result 2466 * 2467 * A umount is a special case for path walking. We're not actually interested 2468 * in the inode in this situation, and ESTALE errors can be a problem. We 2469 * simply want track down the dentry and vfsmount attached at the mountpoint 2470 * and avoid revalidating the last component. 2471 * 2472 * Returns 0 and populates "path" on success. 2473 */ 2474 int 2475 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2476 struct path *path) 2477 { 2478 return filename_mountpoint(dfd, getname(name), path, flags); 2479 } 2480 2481 int 2482 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2483 unsigned int flags) 2484 { 2485 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2486 } 2487 EXPORT_SYMBOL(kern_path_mountpoint); 2488 2489 int __check_sticky(struct inode *dir, struct inode *inode) 2490 { 2491 kuid_t fsuid = current_fsuid(); 2492 2493 if (uid_eq(inode->i_uid, fsuid)) 2494 return 0; 2495 if (uid_eq(dir->i_uid, fsuid)) 2496 return 0; 2497 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2498 } 2499 EXPORT_SYMBOL(__check_sticky); 2500 2501 /* 2502 * Check whether we can remove a link victim from directory dir, check 2503 * whether the type of victim is right. 2504 * 1. We can't do it if dir is read-only (done in permission()) 2505 * 2. We should have write and exec permissions on dir 2506 * 3. We can't remove anything from append-only dir 2507 * 4. We can't do anything with immutable dir (done in permission()) 2508 * 5. If the sticky bit on dir is set we should either 2509 * a. be owner of dir, or 2510 * b. be owner of victim, or 2511 * c. have CAP_FOWNER capability 2512 * 6. If the victim is append-only or immutable we can't do antyhing with 2513 * links pointing to it. 2514 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2515 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2516 * 9. We can't remove a root or mountpoint. 2517 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2518 * nfs_async_unlink(). 2519 */ 2520 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2521 { 2522 struct inode *inode = d_backing_inode(victim); 2523 int error; 2524 2525 if (d_is_negative(victim)) 2526 return -ENOENT; 2527 BUG_ON(!inode); 2528 2529 BUG_ON(victim->d_parent->d_inode != dir); 2530 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2531 2532 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2533 if (error) 2534 return error; 2535 if (IS_APPEND(dir)) 2536 return -EPERM; 2537 2538 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2539 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2540 return -EPERM; 2541 if (isdir) { 2542 if (!d_is_dir(victim)) 2543 return -ENOTDIR; 2544 if (IS_ROOT(victim)) 2545 return -EBUSY; 2546 } else if (d_is_dir(victim)) 2547 return -EISDIR; 2548 if (IS_DEADDIR(dir)) 2549 return -ENOENT; 2550 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2551 return -EBUSY; 2552 return 0; 2553 } 2554 2555 /* Check whether we can create an object with dentry child in directory 2556 * dir. 2557 * 1. We can't do it if child already exists (open has special treatment for 2558 * this case, but since we are inlined it's OK) 2559 * 2. We can't do it if dir is read-only (done in permission()) 2560 * 3. We should have write and exec permissions on dir 2561 * 4. We can't do it if dir is immutable (done in permission()) 2562 */ 2563 static inline int may_create(struct inode *dir, struct dentry *child) 2564 { 2565 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2566 if (child->d_inode) 2567 return -EEXIST; 2568 if (IS_DEADDIR(dir)) 2569 return -ENOENT; 2570 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2571 } 2572 2573 /* 2574 * p1 and p2 should be directories on the same fs. 2575 */ 2576 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2577 { 2578 struct dentry *p; 2579 2580 if (p1 == p2) { 2581 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2582 return NULL; 2583 } 2584 2585 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2586 2587 p = d_ancestor(p2, p1); 2588 if (p) { 2589 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2590 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2591 return p; 2592 } 2593 2594 p = d_ancestor(p1, p2); 2595 if (p) { 2596 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2597 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2598 return p; 2599 } 2600 2601 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2602 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2); 2603 return NULL; 2604 } 2605 EXPORT_SYMBOL(lock_rename); 2606 2607 void unlock_rename(struct dentry *p1, struct dentry *p2) 2608 { 2609 mutex_unlock(&p1->d_inode->i_mutex); 2610 if (p1 != p2) { 2611 mutex_unlock(&p2->d_inode->i_mutex); 2612 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2613 } 2614 } 2615 EXPORT_SYMBOL(unlock_rename); 2616 2617 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2618 bool want_excl) 2619 { 2620 int error = may_create(dir, dentry); 2621 if (error) 2622 return error; 2623 2624 if (!dir->i_op->create) 2625 return -EACCES; /* shouldn't it be ENOSYS? */ 2626 mode &= S_IALLUGO; 2627 mode |= S_IFREG; 2628 error = security_inode_create(dir, dentry, mode); 2629 if (error) 2630 return error; 2631 error = dir->i_op->create(dir, dentry, mode, want_excl); 2632 if (!error) 2633 fsnotify_create(dir, dentry); 2634 return error; 2635 } 2636 EXPORT_SYMBOL(vfs_create); 2637 2638 static int may_open(struct path *path, int acc_mode, int flag) 2639 { 2640 struct dentry *dentry = path->dentry; 2641 struct inode *inode = dentry->d_inode; 2642 int error; 2643 2644 /* O_PATH? */ 2645 if (!acc_mode) 2646 return 0; 2647 2648 if (!inode) 2649 return -ENOENT; 2650 2651 switch (inode->i_mode & S_IFMT) { 2652 case S_IFLNK: 2653 return -ELOOP; 2654 case S_IFDIR: 2655 if (acc_mode & MAY_WRITE) 2656 return -EISDIR; 2657 break; 2658 case S_IFBLK: 2659 case S_IFCHR: 2660 if (path->mnt->mnt_flags & MNT_NODEV) 2661 return -EACCES; 2662 /*FALLTHRU*/ 2663 case S_IFIFO: 2664 case S_IFSOCK: 2665 flag &= ~O_TRUNC; 2666 break; 2667 } 2668 2669 error = inode_permission(inode, acc_mode); 2670 if (error) 2671 return error; 2672 2673 /* 2674 * An append-only file must be opened in append mode for writing. 2675 */ 2676 if (IS_APPEND(inode)) { 2677 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2678 return -EPERM; 2679 if (flag & O_TRUNC) 2680 return -EPERM; 2681 } 2682 2683 /* O_NOATIME can only be set by the owner or superuser */ 2684 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2685 return -EPERM; 2686 2687 return 0; 2688 } 2689 2690 static int handle_truncate(struct file *filp) 2691 { 2692 struct path *path = &filp->f_path; 2693 struct inode *inode = path->dentry->d_inode; 2694 int error = get_write_access(inode); 2695 if (error) 2696 return error; 2697 /* 2698 * Refuse to truncate files with mandatory locks held on them. 2699 */ 2700 error = locks_verify_locked(filp); 2701 if (!error) 2702 error = security_path_truncate(path); 2703 if (!error) { 2704 error = do_truncate(path->dentry, 0, 2705 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2706 filp); 2707 } 2708 put_write_access(inode); 2709 return error; 2710 } 2711 2712 static inline int open_to_namei_flags(int flag) 2713 { 2714 if ((flag & O_ACCMODE) == 3) 2715 flag--; 2716 return flag; 2717 } 2718 2719 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2720 { 2721 int error = security_path_mknod(dir, dentry, mode, 0); 2722 if (error) 2723 return error; 2724 2725 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2726 if (error) 2727 return error; 2728 2729 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2730 } 2731 2732 /* 2733 * Attempt to atomically look up, create and open a file from a negative 2734 * dentry. 2735 * 2736 * Returns 0 if successful. The file will have been created and attached to 2737 * @file by the filesystem calling finish_open(). 2738 * 2739 * Returns 1 if the file was looked up only or didn't need creating. The 2740 * caller will need to perform the open themselves. @path will have been 2741 * updated to point to the new dentry. This may be negative. 2742 * 2743 * Returns an error code otherwise. 2744 */ 2745 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2746 struct path *path, struct file *file, 2747 const struct open_flags *op, 2748 bool got_write, bool need_lookup, 2749 int *opened) 2750 { 2751 struct inode *dir = nd->path.dentry->d_inode; 2752 unsigned open_flag = open_to_namei_flags(op->open_flag); 2753 umode_t mode; 2754 int error; 2755 int acc_mode; 2756 int create_error = 0; 2757 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2758 bool excl; 2759 2760 BUG_ON(dentry->d_inode); 2761 2762 /* Don't create child dentry for a dead directory. */ 2763 if (unlikely(IS_DEADDIR(dir))) { 2764 error = -ENOENT; 2765 goto out; 2766 } 2767 2768 mode = op->mode; 2769 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2770 mode &= ~current_umask(); 2771 2772 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2773 if (excl) 2774 open_flag &= ~O_TRUNC; 2775 2776 /* 2777 * Checking write permission is tricky, bacuse we don't know if we are 2778 * going to actually need it: O_CREAT opens should work as long as the 2779 * file exists. But checking existence breaks atomicity. The trick is 2780 * to check access and if not granted clear O_CREAT from the flags. 2781 * 2782 * Another problem is returing the "right" error value (e.g. for an 2783 * O_EXCL open we want to return EEXIST not EROFS). 2784 */ 2785 if (((open_flag & (O_CREAT | O_TRUNC)) || 2786 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2787 if (!(open_flag & O_CREAT)) { 2788 /* 2789 * No O_CREATE -> atomicity not a requirement -> fall 2790 * back to lookup + open 2791 */ 2792 goto no_open; 2793 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2794 /* Fall back and fail with the right error */ 2795 create_error = -EROFS; 2796 goto no_open; 2797 } else { 2798 /* No side effects, safe to clear O_CREAT */ 2799 create_error = -EROFS; 2800 open_flag &= ~O_CREAT; 2801 } 2802 } 2803 2804 if (open_flag & O_CREAT) { 2805 error = may_o_create(&nd->path, dentry, mode); 2806 if (error) { 2807 create_error = error; 2808 if (open_flag & O_EXCL) 2809 goto no_open; 2810 open_flag &= ~O_CREAT; 2811 } 2812 } 2813 2814 if (nd->flags & LOOKUP_DIRECTORY) 2815 open_flag |= O_DIRECTORY; 2816 2817 file->f_path.dentry = DENTRY_NOT_SET; 2818 file->f_path.mnt = nd->path.mnt; 2819 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2820 opened); 2821 if (error < 0) { 2822 if (create_error && error == -ENOENT) 2823 error = create_error; 2824 goto out; 2825 } 2826 2827 if (error) { /* returned 1, that is */ 2828 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2829 error = -EIO; 2830 goto out; 2831 } 2832 if (file->f_path.dentry) { 2833 dput(dentry); 2834 dentry = file->f_path.dentry; 2835 } 2836 if (*opened & FILE_CREATED) 2837 fsnotify_create(dir, dentry); 2838 if (!dentry->d_inode) { 2839 WARN_ON(*opened & FILE_CREATED); 2840 if (create_error) { 2841 error = create_error; 2842 goto out; 2843 } 2844 } else { 2845 if (excl && !(*opened & FILE_CREATED)) { 2846 error = -EEXIST; 2847 goto out; 2848 } 2849 } 2850 goto looked_up; 2851 } 2852 2853 /* 2854 * We didn't have the inode before the open, so check open permission 2855 * here. 2856 */ 2857 acc_mode = op->acc_mode; 2858 if (*opened & FILE_CREATED) { 2859 WARN_ON(!(open_flag & O_CREAT)); 2860 fsnotify_create(dir, dentry); 2861 acc_mode = MAY_OPEN; 2862 } 2863 error = may_open(&file->f_path, acc_mode, open_flag); 2864 if (error) 2865 fput(file); 2866 2867 out: 2868 dput(dentry); 2869 return error; 2870 2871 no_open: 2872 if (need_lookup) { 2873 dentry = lookup_real(dir, dentry, nd->flags); 2874 if (IS_ERR(dentry)) 2875 return PTR_ERR(dentry); 2876 2877 if (create_error) { 2878 int open_flag = op->open_flag; 2879 2880 error = create_error; 2881 if ((open_flag & O_EXCL)) { 2882 if (!dentry->d_inode) 2883 goto out; 2884 } else if (!dentry->d_inode) { 2885 goto out; 2886 } else if ((open_flag & O_TRUNC) && 2887 d_is_reg(dentry)) { 2888 goto out; 2889 } 2890 /* will fail later, go on to get the right error */ 2891 } 2892 } 2893 looked_up: 2894 path->dentry = dentry; 2895 path->mnt = nd->path.mnt; 2896 return 1; 2897 } 2898 2899 /* 2900 * Look up and maybe create and open the last component. 2901 * 2902 * Must be called with i_mutex held on parent. 2903 * 2904 * Returns 0 if the file was successfully atomically created (if necessary) and 2905 * opened. In this case the file will be returned attached to @file. 2906 * 2907 * Returns 1 if the file was not completely opened at this time, though lookups 2908 * and creations will have been performed and the dentry returned in @path will 2909 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2910 * specified then a negative dentry may be returned. 2911 * 2912 * An error code is returned otherwise. 2913 * 2914 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2915 * cleared otherwise prior to returning. 2916 */ 2917 static int lookup_open(struct nameidata *nd, struct path *path, 2918 struct file *file, 2919 const struct open_flags *op, 2920 bool got_write, int *opened) 2921 { 2922 struct dentry *dir = nd->path.dentry; 2923 struct inode *dir_inode = dir->d_inode; 2924 struct dentry *dentry; 2925 int error; 2926 bool need_lookup; 2927 2928 *opened &= ~FILE_CREATED; 2929 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2930 if (IS_ERR(dentry)) 2931 return PTR_ERR(dentry); 2932 2933 /* Cached positive dentry: will open in f_op->open */ 2934 if (!need_lookup && dentry->d_inode) 2935 goto out_no_open; 2936 2937 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2938 return atomic_open(nd, dentry, path, file, op, got_write, 2939 need_lookup, opened); 2940 } 2941 2942 if (need_lookup) { 2943 BUG_ON(dentry->d_inode); 2944 2945 dentry = lookup_real(dir_inode, dentry, nd->flags); 2946 if (IS_ERR(dentry)) 2947 return PTR_ERR(dentry); 2948 } 2949 2950 /* Negative dentry, just create the file */ 2951 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2952 umode_t mode = op->mode; 2953 if (!IS_POSIXACL(dir->d_inode)) 2954 mode &= ~current_umask(); 2955 /* 2956 * This write is needed to ensure that a 2957 * rw->ro transition does not occur between 2958 * the time when the file is created and when 2959 * a permanent write count is taken through 2960 * the 'struct file' in finish_open(). 2961 */ 2962 if (!got_write) { 2963 error = -EROFS; 2964 goto out_dput; 2965 } 2966 *opened |= FILE_CREATED; 2967 error = security_path_mknod(&nd->path, dentry, mode, 0); 2968 if (error) 2969 goto out_dput; 2970 error = vfs_create(dir->d_inode, dentry, mode, 2971 nd->flags & LOOKUP_EXCL); 2972 if (error) 2973 goto out_dput; 2974 } 2975 out_no_open: 2976 path->dentry = dentry; 2977 path->mnt = nd->path.mnt; 2978 return 1; 2979 2980 out_dput: 2981 dput(dentry); 2982 return error; 2983 } 2984 2985 /* 2986 * Handle the last step of open() 2987 */ 2988 static int do_last(struct nameidata *nd, 2989 struct file *file, const struct open_flags *op, 2990 int *opened) 2991 { 2992 struct dentry *dir = nd->path.dentry; 2993 int open_flag = op->open_flag; 2994 bool will_truncate = (open_flag & O_TRUNC) != 0; 2995 bool got_write = false; 2996 int acc_mode = op->acc_mode; 2997 unsigned seq; 2998 struct inode *inode; 2999 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3000 struct path path; 3001 bool retried = false; 3002 int error; 3003 3004 nd->flags &= ~LOOKUP_PARENT; 3005 nd->flags |= op->intent; 3006 3007 if (nd->last_type != LAST_NORM) { 3008 error = handle_dots(nd, nd->last_type); 3009 if (unlikely(error)) 3010 return error; 3011 goto finish_open; 3012 } 3013 3014 if (!(open_flag & O_CREAT)) { 3015 if (nd->last.name[nd->last.len]) 3016 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3017 /* we _can_ be in RCU mode here */ 3018 error = lookup_fast(nd, &path, &inode, &seq); 3019 if (likely(!error)) 3020 goto finish_lookup; 3021 3022 if (error < 0) 3023 return error; 3024 3025 BUG_ON(nd->inode != dir->d_inode); 3026 } else { 3027 /* create side of things */ 3028 /* 3029 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3030 * has been cleared when we got to the last component we are 3031 * about to look up 3032 */ 3033 error = complete_walk(nd); 3034 if (error) 3035 return error; 3036 3037 audit_inode(nd->name, dir, LOOKUP_PARENT); 3038 /* trailing slashes? */ 3039 if (unlikely(nd->last.name[nd->last.len])) 3040 return -EISDIR; 3041 } 3042 3043 retry_lookup: 3044 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3045 error = mnt_want_write(nd->path.mnt); 3046 if (!error) 3047 got_write = true; 3048 /* 3049 * do _not_ fail yet - we might not need that or fail with 3050 * a different error; let lookup_open() decide; we'll be 3051 * dropping this one anyway. 3052 */ 3053 } 3054 mutex_lock(&dir->d_inode->i_mutex); 3055 error = lookup_open(nd, &path, file, op, got_write, opened); 3056 mutex_unlock(&dir->d_inode->i_mutex); 3057 3058 if (error <= 0) { 3059 if (error) 3060 goto out; 3061 3062 if ((*opened & FILE_CREATED) || 3063 !S_ISREG(file_inode(file)->i_mode)) 3064 will_truncate = false; 3065 3066 audit_inode(nd->name, file->f_path.dentry, 0); 3067 goto opened; 3068 } 3069 3070 if (*opened & FILE_CREATED) { 3071 /* Don't check for write permission, don't truncate */ 3072 open_flag &= ~O_TRUNC; 3073 will_truncate = false; 3074 acc_mode = MAY_OPEN; 3075 path_to_nameidata(&path, nd); 3076 goto finish_open_created; 3077 } 3078 3079 /* 3080 * create/update audit record if it already exists. 3081 */ 3082 if (d_is_positive(path.dentry)) 3083 audit_inode(nd->name, path.dentry, 0); 3084 3085 /* 3086 * If atomic_open() acquired write access it is dropped now due to 3087 * possible mount and symlink following (this might be optimized away if 3088 * necessary...) 3089 */ 3090 if (got_write) { 3091 mnt_drop_write(nd->path.mnt); 3092 got_write = false; 3093 } 3094 3095 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3096 path_to_nameidata(&path, nd); 3097 return -EEXIST; 3098 } 3099 3100 error = follow_managed(&path, nd); 3101 if (unlikely(error < 0)) 3102 return error; 3103 3104 BUG_ON(nd->flags & LOOKUP_RCU); 3105 inode = d_backing_inode(path.dentry); 3106 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3107 if (unlikely(d_is_negative(path.dentry))) { 3108 path_to_nameidata(&path, nd); 3109 return -ENOENT; 3110 } 3111 finish_lookup: 3112 if (nd->depth) 3113 put_link(nd); 3114 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3115 inode, seq); 3116 if (unlikely(error)) 3117 return error; 3118 3119 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) { 3120 path_to_nameidata(&path, nd); 3121 return -ELOOP; 3122 } 3123 3124 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3125 path_to_nameidata(&path, nd); 3126 } else { 3127 save_parent.dentry = nd->path.dentry; 3128 save_parent.mnt = mntget(path.mnt); 3129 nd->path.dentry = path.dentry; 3130 3131 } 3132 nd->inode = inode; 3133 nd->seq = seq; 3134 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3135 finish_open: 3136 error = complete_walk(nd); 3137 if (error) { 3138 path_put(&save_parent); 3139 return error; 3140 } 3141 audit_inode(nd->name, nd->path.dentry, 0); 3142 error = -EISDIR; 3143 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3144 goto out; 3145 error = -ENOTDIR; 3146 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3147 goto out; 3148 if (!d_is_reg(nd->path.dentry)) 3149 will_truncate = false; 3150 3151 if (will_truncate) { 3152 error = mnt_want_write(nd->path.mnt); 3153 if (error) 3154 goto out; 3155 got_write = true; 3156 } 3157 finish_open_created: 3158 error = may_open(&nd->path, acc_mode, open_flag); 3159 if (error) 3160 goto out; 3161 3162 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3163 error = vfs_open(&nd->path, file, current_cred()); 3164 if (!error) { 3165 *opened |= FILE_OPENED; 3166 } else { 3167 if (error == -EOPENSTALE) 3168 goto stale_open; 3169 goto out; 3170 } 3171 opened: 3172 error = open_check_o_direct(file); 3173 if (error) 3174 goto exit_fput; 3175 error = ima_file_check(file, op->acc_mode, *opened); 3176 if (error) 3177 goto exit_fput; 3178 3179 if (will_truncate) { 3180 error = handle_truncate(file); 3181 if (error) 3182 goto exit_fput; 3183 } 3184 out: 3185 if (got_write) 3186 mnt_drop_write(nd->path.mnt); 3187 path_put(&save_parent); 3188 return error; 3189 3190 exit_fput: 3191 fput(file); 3192 goto out; 3193 3194 stale_open: 3195 /* If no saved parent or already retried then can't retry */ 3196 if (!save_parent.dentry || retried) 3197 goto out; 3198 3199 BUG_ON(save_parent.dentry != dir); 3200 path_put(&nd->path); 3201 nd->path = save_parent; 3202 nd->inode = dir->d_inode; 3203 save_parent.mnt = NULL; 3204 save_parent.dentry = NULL; 3205 if (got_write) { 3206 mnt_drop_write(nd->path.mnt); 3207 got_write = false; 3208 } 3209 retried = true; 3210 goto retry_lookup; 3211 } 3212 3213 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3214 const struct open_flags *op, 3215 struct file *file, int *opened) 3216 { 3217 static const struct qstr name = QSTR_INIT("/", 1); 3218 struct dentry *child; 3219 struct inode *dir; 3220 struct path path; 3221 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3222 if (unlikely(error)) 3223 return error; 3224 error = mnt_want_write(path.mnt); 3225 if (unlikely(error)) 3226 goto out; 3227 dir = path.dentry->d_inode; 3228 /* we want directory to be writable */ 3229 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3230 if (error) 3231 goto out2; 3232 if (!dir->i_op->tmpfile) { 3233 error = -EOPNOTSUPP; 3234 goto out2; 3235 } 3236 child = d_alloc(path.dentry, &name); 3237 if (unlikely(!child)) { 3238 error = -ENOMEM; 3239 goto out2; 3240 } 3241 dput(path.dentry); 3242 path.dentry = child; 3243 error = dir->i_op->tmpfile(dir, child, op->mode); 3244 if (error) 3245 goto out2; 3246 audit_inode(nd->name, child, 0); 3247 /* Don't check for other permissions, the inode was just created */ 3248 error = may_open(&path, MAY_OPEN, op->open_flag); 3249 if (error) 3250 goto out2; 3251 file->f_path.mnt = path.mnt; 3252 error = finish_open(file, child, NULL, opened); 3253 if (error) 3254 goto out2; 3255 error = open_check_o_direct(file); 3256 if (error) { 3257 fput(file); 3258 } else if (!(op->open_flag & O_EXCL)) { 3259 struct inode *inode = file_inode(file); 3260 spin_lock(&inode->i_lock); 3261 inode->i_state |= I_LINKABLE; 3262 spin_unlock(&inode->i_lock); 3263 } 3264 out2: 3265 mnt_drop_write(path.mnt); 3266 out: 3267 path_put(&path); 3268 return error; 3269 } 3270 3271 static struct file *path_openat(struct nameidata *nd, 3272 const struct open_flags *op, unsigned flags) 3273 { 3274 const char *s; 3275 struct file *file; 3276 int opened = 0; 3277 int error; 3278 3279 file = get_empty_filp(); 3280 if (IS_ERR(file)) 3281 return file; 3282 3283 file->f_flags = op->open_flag; 3284 3285 if (unlikely(file->f_flags & __O_TMPFILE)) { 3286 error = do_tmpfile(nd, flags, op, file, &opened); 3287 goto out2; 3288 } 3289 3290 s = path_init(nd, flags); 3291 if (IS_ERR(s)) { 3292 put_filp(file); 3293 return ERR_CAST(s); 3294 } 3295 while (!(error = link_path_walk(s, nd)) && 3296 (error = do_last(nd, file, op, &opened)) > 0) { 3297 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3298 s = trailing_symlink(nd); 3299 if (IS_ERR(s)) { 3300 error = PTR_ERR(s); 3301 break; 3302 } 3303 } 3304 terminate_walk(nd); 3305 out2: 3306 if (!(opened & FILE_OPENED)) { 3307 BUG_ON(!error); 3308 put_filp(file); 3309 } 3310 if (unlikely(error)) { 3311 if (error == -EOPENSTALE) { 3312 if (flags & LOOKUP_RCU) 3313 error = -ECHILD; 3314 else 3315 error = -ESTALE; 3316 } 3317 file = ERR_PTR(error); 3318 } 3319 return file; 3320 } 3321 3322 struct file *do_filp_open(int dfd, struct filename *pathname, 3323 const struct open_flags *op) 3324 { 3325 struct nameidata nd; 3326 int flags = op->lookup_flags; 3327 struct file *filp; 3328 3329 set_nameidata(&nd, dfd, pathname); 3330 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3331 if (unlikely(filp == ERR_PTR(-ECHILD))) 3332 filp = path_openat(&nd, op, flags); 3333 if (unlikely(filp == ERR_PTR(-ESTALE))) 3334 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3335 restore_nameidata(); 3336 return filp; 3337 } 3338 3339 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3340 const char *name, const struct open_flags *op) 3341 { 3342 struct nameidata nd; 3343 struct file *file; 3344 struct filename *filename; 3345 int flags = op->lookup_flags | LOOKUP_ROOT; 3346 3347 nd.root.mnt = mnt; 3348 nd.root.dentry = dentry; 3349 3350 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3351 return ERR_PTR(-ELOOP); 3352 3353 filename = getname_kernel(name); 3354 if (unlikely(IS_ERR(filename))) 3355 return ERR_CAST(filename); 3356 3357 set_nameidata(&nd, -1, filename); 3358 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3359 if (unlikely(file == ERR_PTR(-ECHILD))) 3360 file = path_openat(&nd, op, flags); 3361 if (unlikely(file == ERR_PTR(-ESTALE))) 3362 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3363 restore_nameidata(); 3364 putname(filename); 3365 return file; 3366 } 3367 3368 static struct dentry *filename_create(int dfd, struct filename *name, 3369 struct path *path, unsigned int lookup_flags) 3370 { 3371 struct dentry *dentry = ERR_PTR(-EEXIST); 3372 struct qstr last; 3373 int type; 3374 int err2; 3375 int error; 3376 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3377 3378 /* 3379 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3380 * other flags passed in are ignored! 3381 */ 3382 lookup_flags &= LOOKUP_REVAL; 3383 3384 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3385 if (IS_ERR(name)) 3386 return ERR_CAST(name); 3387 3388 /* 3389 * Yucky last component or no last component at all? 3390 * (foo/., foo/.., /////) 3391 */ 3392 if (unlikely(type != LAST_NORM)) 3393 goto out; 3394 3395 /* don't fail immediately if it's r/o, at least try to report other errors */ 3396 err2 = mnt_want_write(path->mnt); 3397 /* 3398 * Do the final lookup. 3399 */ 3400 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3401 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3402 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3403 if (IS_ERR(dentry)) 3404 goto unlock; 3405 3406 error = -EEXIST; 3407 if (d_is_positive(dentry)) 3408 goto fail; 3409 3410 /* 3411 * Special case - lookup gave negative, but... we had foo/bar/ 3412 * From the vfs_mknod() POV we just have a negative dentry - 3413 * all is fine. Let's be bastards - you had / on the end, you've 3414 * been asking for (non-existent) directory. -ENOENT for you. 3415 */ 3416 if (unlikely(!is_dir && last.name[last.len])) { 3417 error = -ENOENT; 3418 goto fail; 3419 } 3420 if (unlikely(err2)) { 3421 error = err2; 3422 goto fail; 3423 } 3424 putname(name); 3425 return dentry; 3426 fail: 3427 dput(dentry); 3428 dentry = ERR_PTR(error); 3429 unlock: 3430 mutex_unlock(&path->dentry->d_inode->i_mutex); 3431 if (!err2) 3432 mnt_drop_write(path->mnt); 3433 out: 3434 path_put(path); 3435 putname(name); 3436 return dentry; 3437 } 3438 3439 struct dentry *kern_path_create(int dfd, const char *pathname, 3440 struct path *path, unsigned int lookup_flags) 3441 { 3442 return filename_create(dfd, getname_kernel(pathname), 3443 path, lookup_flags); 3444 } 3445 EXPORT_SYMBOL(kern_path_create); 3446 3447 void done_path_create(struct path *path, struct dentry *dentry) 3448 { 3449 dput(dentry); 3450 mutex_unlock(&path->dentry->d_inode->i_mutex); 3451 mnt_drop_write(path->mnt); 3452 path_put(path); 3453 } 3454 EXPORT_SYMBOL(done_path_create); 3455 3456 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3457 struct path *path, unsigned int lookup_flags) 3458 { 3459 return filename_create(dfd, getname(pathname), path, lookup_flags); 3460 } 3461 EXPORT_SYMBOL(user_path_create); 3462 3463 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3464 { 3465 int error = may_create(dir, dentry); 3466 3467 if (error) 3468 return error; 3469 3470 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3471 return -EPERM; 3472 3473 if (!dir->i_op->mknod) 3474 return -EPERM; 3475 3476 error = devcgroup_inode_mknod(mode, dev); 3477 if (error) 3478 return error; 3479 3480 error = security_inode_mknod(dir, dentry, mode, dev); 3481 if (error) 3482 return error; 3483 3484 error = dir->i_op->mknod(dir, dentry, mode, dev); 3485 if (!error) 3486 fsnotify_create(dir, dentry); 3487 return error; 3488 } 3489 EXPORT_SYMBOL(vfs_mknod); 3490 3491 static int may_mknod(umode_t mode) 3492 { 3493 switch (mode & S_IFMT) { 3494 case S_IFREG: 3495 case S_IFCHR: 3496 case S_IFBLK: 3497 case S_IFIFO: 3498 case S_IFSOCK: 3499 case 0: /* zero mode translates to S_IFREG */ 3500 return 0; 3501 case S_IFDIR: 3502 return -EPERM; 3503 default: 3504 return -EINVAL; 3505 } 3506 } 3507 3508 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3509 unsigned, dev) 3510 { 3511 struct dentry *dentry; 3512 struct path path; 3513 int error; 3514 unsigned int lookup_flags = 0; 3515 3516 error = may_mknod(mode); 3517 if (error) 3518 return error; 3519 retry: 3520 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3521 if (IS_ERR(dentry)) 3522 return PTR_ERR(dentry); 3523 3524 if (!IS_POSIXACL(path.dentry->d_inode)) 3525 mode &= ~current_umask(); 3526 error = security_path_mknod(&path, dentry, mode, dev); 3527 if (error) 3528 goto out; 3529 switch (mode & S_IFMT) { 3530 case 0: case S_IFREG: 3531 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3532 break; 3533 case S_IFCHR: case S_IFBLK: 3534 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3535 new_decode_dev(dev)); 3536 break; 3537 case S_IFIFO: case S_IFSOCK: 3538 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3539 break; 3540 } 3541 out: 3542 done_path_create(&path, dentry); 3543 if (retry_estale(error, lookup_flags)) { 3544 lookup_flags |= LOOKUP_REVAL; 3545 goto retry; 3546 } 3547 return error; 3548 } 3549 3550 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3551 { 3552 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3553 } 3554 3555 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3556 { 3557 int error = may_create(dir, dentry); 3558 unsigned max_links = dir->i_sb->s_max_links; 3559 3560 if (error) 3561 return error; 3562 3563 if (!dir->i_op->mkdir) 3564 return -EPERM; 3565 3566 mode &= (S_IRWXUGO|S_ISVTX); 3567 error = security_inode_mkdir(dir, dentry, mode); 3568 if (error) 3569 return error; 3570 3571 if (max_links && dir->i_nlink >= max_links) 3572 return -EMLINK; 3573 3574 error = dir->i_op->mkdir(dir, dentry, mode); 3575 if (!error) 3576 fsnotify_mkdir(dir, dentry); 3577 return error; 3578 } 3579 EXPORT_SYMBOL(vfs_mkdir); 3580 3581 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3582 { 3583 struct dentry *dentry; 3584 struct path path; 3585 int error; 3586 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3587 3588 retry: 3589 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3590 if (IS_ERR(dentry)) 3591 return PTR_ERR(dentry); 3592 3593 if (!IS_POSIXACL(path.dentry->d_inode)) 3594 mode &= ~current_umask(); 3595 error = security_path_mkdir(&path, dentry, mode); 3596 if (!error) 3597 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3598 done_path_create(&path, dentry); 3599 if (retry_estale(error, lookup_flags)) { 3600 lookup_flags |= LOOKUP_REVAL; 3601 goto retry; 3602 } 3603 return error; 3604 } 3605 3606 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3607 { 3608 return sys_mkdirat(AT_FDCWD, pathname, mode); 3609 } 3610 3611 /* 3612 * The dentry_unhash() helper will try to drop the dentry early: we 3613 * should have a usage count of 1 if we're the only user of this 3614 * dentry, and if that is true (possibly after pruning the dcache), 3615 * then we drop the dentry now. 3616 * 3617 * A low-level filesystem can, if it choses, legally 3618 * do a 3619 * 3620 * if (!d_unhashed(dentry)) 3621 * return -EBUSY; 3622 * 3623 * if it cannot handle the case of removing a directory 3624 * that is still in use by something else.. 3625 */ 3626 void dentry_unhash(struct dentry *dentry) 3627 { 3628 shrink_dcache_parent(dentry); 3629 spin_lock(&dentry->d_lock); 3630 if (dentry->d_lockref.count == 1) 3631 __d_drop(dentry); 3632 spin_unlock(&dentry->d_lock); 3633 } 3634 EXPORT_SYMBOL(dentry_unhash); 3635 3636 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3637 { 3638 int error = may_delete(dir, dentry, 1); 3639 3640 if (error) 3641 return error; 3642 3643 if (!dir->i_op->rmdir) 3644 return -EPERM; 3645 3646 dget(dentry); 3647 mutex_lock(&dentry->d_inode->i_mutex); 3648 3649 error = -EBUSY; 3650 if (is_local_mountpoint(dentry)) 3651 goto out; 3652 3653 error = security_inode_rmdir(dir, dentry); 3654 if (error) 3655 goto out; 3656 3657 shrink_dcache_parent(dentry); 3658 error = dir->i_op->rmdir(dir, dentry); 3659 if (error) 3660 goto out; 3661 3662 dentry->d_inode->i_flags |= S_DEAD; 3663 dont_mount(dentry); 3664 detach_mounts(dentry); 3665 3666 out: 3667 mutex_unlock(&dentry->d_inode->i_mutex); 3668 dput(dentry); 3669 if (!error) 3670 d_delete(dentry); 3671 return error; 3672 } 3673 EXPORT_SYMBOL(vfs_rmdir); 3674 3675 static long do_rmdir(int dfd, const char __user *pathname) 3676 { 3677 int error = 0; 3678 struct filename *name; 3679 struct dentry *dentry; 3680 struct path path; 3681 struct qstr last; 3682 int type; 3683 unsigned int lookup_flags = 0; 3684 retry: 3685 name = user_path_parent(dfd, pathname, 3686 &path, &last, &type, lookup_flags); 3687 if (IS_ERR(name)) 3688 return PTR_ERR(name); 3689 3690 switch (type) { 3691 case LAST_DOTDOT: 3692 error = -ENOTEMPTY; 3693 goto exit1; 3694 case LAST_DOT: 3695 error = -EINVAL; 3696 goto exit1; 3697 case LAST_ROOT: 3698 error = -EBUSY; 3699 goto exit1; 3700 } 3701 3702 error = mnt_want_write(path.mnt); 3703 if (error) 3704 goto exit1; 3705 3706 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3707 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3708 error = PTR_ERR(dentry); 3709 if (IS_ERR(dentry)) 3710 goto exit2; 3711 if (!dentry->d_inode) { 3712 error = -ENOENT; 3713 goto exit3; 3714 } 3715 error = security_path_rmdir(&path, dentry); 3716 if (error) 3717 goto exit3; 3718 error = vfs_rmdir(path.dentry->d_inode, dentry); 3719 exit3: 3720 dput(dentry); 3721 exit2: 3722 mutex_unlock(&path.dentry->d_inode->i_mutex); 3723 mnt_drop_write(path.mnt); 3724 exit1: 3725 path_put(&path); 3726 putname(name); 3727 if (retry_estale(error, lookup_flags)) { 3728 lookup_flags |= LOOKUP_REVAL; 3729 goto retry; 3730 } 3731 return error; 3732 } 3733 3734 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3735 { 3736 return do_rmdir(AT_FDCWD, pathname); 3737 } 3738 3739 /** 3740 * vfs_unlink - unlink a filesystem object 3741 * @dir: parent directory 3742 * @dentry: victim 3743 * @delegated_inode: returns victim inode, if the inode is delegated. 3744 * 3745 * The caller must hold dir->i_mutex. 3746 * 3747 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3748 * return a reference to the inode in delegated_inode. The caller 3749 * should then break the delegation on that inode and retry. Because 3750 * breaking a delegation may take a long time, the caller should drop 3751 * dir->i_mutex before doing so. 3752 * 3753 * Alternatively, a caller may pass NULL for delegated_inode. This may 3754 * be appropriate for callers that expect the underlying filesystem not 3755 * to be NFS exported. 3756 */ 3757 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3758 { 3759 struct inode *target = dentry->d_inode; 3760 int error = may_delete(dir, dentry, 0); 3761 3762 if (error) 3763 return error; 3764 3765 if (!dir->i_op->unlink) 3766 return -EPERM; 3767 3768 mutex_lock(&target->i_mutex); 3769 if (is_local_mountpoint(dentry)) 3770 error = -EBUSY; 3771 else { 3772 error = security_inode_unlink(dir, dentry); 3773 if (!error) { 3774 error = try_break_deleg(target, delegated_inode); 3775 if (error) 3776 goto out; 3777 error = dir->i_op->unlink(dir, dentry); 3778 if (!error) { 3779 dont_mount(dentry); 3780 detach_mounts(dentry); 3781 } 3782 } 3783 } 3784 out: 3785 mutex_unlock(&target->i_mutex); 3786 3787 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3788 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3789 fsnotify_link_count(target); 3790 d_delete(dentry); 3791 } 3792 3793 return error; 3794 } 3795 EXPORT_SYMBOL(vfs_unlink); 3796 3797 /* 3798 * Make sure that the actual truncation of the file will occur outside its 3799 * directory's i_mutex. Truncate can take a long time if there is a lot of 3800 * writeout happening, and we don't want to prevent access to the directory 3801 * while waiting on the I/O. 3802 */ 3803 static long do_unlinkat(int dfd, const char __user *pathname) 3804 { 3805 int error; 3806 struct filename *name; 3807 struct dentry *dentry; 3808 struct path path; 3809 struct qstr last; 3810 int type; 3811 struct inode *inode = NULL; 3812 struct inode *delegated_inode = NULL; 3813 unsigned int lookup_flags = 0; 3814 retry: 3815 name = user_path_parent(dfd, pathname, 3816 &path, &last, &type, lookup_flags); 3817 if (IS_ERR(name)) 3818 return PTR_ERR(name); 3819 3820 error = -EISDIR; 3821 if (type != LAST_NORM) 3822 goto exit1; 3823 3824 error = mnt_want_write(path.mnt); 3825 if (error) 3826 goto exit1; 3827 retry_deleg: 3828 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3829 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3830 error = PTR_ERR(dentry); 3831 if (!IS_ERR(dentry)) { 3832 /* Why not before? Because we want correct error value */ 3833 if (last.name[last.len]) 3834 goto slashes; 3835 inode = dentry->d_inode; 3836 if (d_is_negative(dentry)) 3837 goto slashes; 3838 ihold(inode); 3839 error = security_path_unlink(&path, dentry); 3840 if (error) 3841 goto exit2; 3842 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3843 exit2: 3844 dput(dentry); 3845 } 3846 mutex_unlock(&path.dentry->d_inode->i_mutex); 3847 if (inode) 3848 iput(inode); /* truncate the inode here */ 3849 inode = NULL; 3850 if (delegated_inode) { 3851 error = break_deleg_wait(&delegated_inode); 3852 if (!error) 3853 goto retry_deleg; 3854 } 3855 mnt_drop_write(path.mnt); 3856 exit1: 3857 path_put(&path); 3858 putname(name); 3859 if (retry_estale(error, lookup_flags)) { 3860 lookup_flags |= LOOKUP_REVAL; 3861 inode = NULL; 3862 goto retry; 3863 } 3864 return error; 3865 3866 slashes: 3867 if (d_is_negative(dentry)) 3868 error = -ENOENT; 3869 else if (d_is_dir(dentry)) 3870 error = -EISDIR; 3871 else 3872 error = -ENOTDIR; 3873 goto exit2; 3874 } 3875 3876 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3877 { 3878 if ((flag & ~AT_REMOVEDIR) != 0) 3879 return -EINVAL; 3880 3881 if (flag & AT_REMOVEDIR) 3882 return do_rmdir(dfd, pathname); 3883 3884 return do_unlinkat(dfd, pathname); 3885 } 3886 3887 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3888 { 3889 return do_unlinkat(AT_FDCWD, pathname); 3890 } 3891 3892 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3893 { 3894 int error = may_create(dir, dentry); 3895 3896 if (error) 3897 return error; 3898 3899 if (!dir->i_op->symlink) 3900 return -EPERM; 3901 3902 error = security_inode_symlink(dir, dentry, oldname); 3903 if (error) 3904 return error; 3905 3906 error = dir->i_op->symlink(dir, dentry, oldname); 3907 if (!error) 3908 fsnotify_create(dir, dentry); 3909 return error; 3910 } 3911 EXPORT_SYMBOL(vfs_symlink); 3912 3913 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3914 int, newdfd, const char __user *, newname) 3915 { 3916 int error; 3917 struct filename *from; 3918 struct dentry *dentry; 3919 struct path path; 3920 unsigned int lookup_flags = 0; 3921 3922 from = getname(oldname); 3923 if (IS_ERR(from)) 3924 return PTR_ERR(from); 3925 retry: 3926 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3927 error = PTR_ERR(dentry); 3928 if (IS_ERR(dentry)) 3929 goto out_putname; 3930 3931 error = security_path_symlink(&path, dentry, from->name); 3932 if (!error) 3933 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3934 done_path_create(&path, dentry); 3935 if (retry_estale(error, lookup_flags)) { 3936 lookup_flags |= LOOKUP_REVAL; 3937 goto retry; 3938 } 3939 out_putname: 3940 putname(from); 3941 return error; 3942 } 3943 3944 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3945 { 3946 return sys_symlinkat(oldname, AT_FDCWD, newname); 3947 } 3948 3949 /** 3950 * vfs_link - create a new link 3951 * @old_dentry: object to be linked 3952 * @dir: new parent 3953 * @new_dentry: where to create the new link 3954 * @delegated_inode: returns inode needing a delegation break 3955 * 3956 * The caller must hold dir->i_mutex 3957 * 3958 * If vfs_link discovers a delegation on the to-be-linked file in need 3959 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3960 * inode in delegated_inode. The caller should then break the delegation 3961 * and retry. Because breaking a delegation may take a long time, the 3962 * caller should drop the i_mutex before doing so. 3963 * 3964 * Alternatively, a caller may pass NULL for delegated_inode. This may 3965 * be appropriate for callers that expect the underlying filesystem not 3966 * to be NFS exported. 3967 */ 3968 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3969 { 3970 struct inode *inode = old_dentry->d_inode; 3971 unsigned max_links = dir->i_sb->s_max_links; 3972 int error; 3973 3974 if (!inode) 3975 return -ENOENT; 3976 3977 error = may_create(dir, new_dentry); 3978 if (error) 3979 return error; 3980 3981 if (dir->i_sb != inode->i_sb) 3982 return -EXDEV; 3983 3984 /* 3985 * A link to an append-only or immutable file cannot be created. 3986 */ 3987 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3988 return -EPERM; 3989 if (!dir->i_op->link) 3990 return -EPERM; 3991 if (S_ISDIR(inode->i_mode)) 3992 return -EPERM; 3993 3994 error = security_inode_link(old_dentry, dir, new_dentry); 3995 if (error) 3996 return error; 3997 3998 mutex_lock(&inode->i_mutex); 3999 /* Make sure we don't allow creating hardlink to an unlinked file */ 4000 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4001 error = -ENOENT; 4002 else if (max_links && inode->i_nlink >= max_links) 4003 error = -EMLINK; 4004 else { 4005 error = try_break_deleg(inode, delegated_inode); 4006 if (!error) 4007 error = dir->i_op->link(old_dentry, dir, new_dentry); 4008 } 4009 4010 if (!error && (inode->i_state & I_LINKABLE)) { 4011 spin_lock(&inode->i_lock); 4012 inode->i_state &= ~I_LINKABLE; 4013 spin_unlock(&inode->i_lock); 4014 } 4015 mutex_unlock(&inode->i_mutex); 4016 if (!error) 4017 fsnotify_link(dir, inode, new_dentry); 4018 return error; 4019 } 4020 EXPORT_SYMBOL(vfs_link); 4021 4022 /* 4023 * Hardlinks are often used in delicate situations. We avoid 4024 * security-related surprises by not following symlinks on the 4025 * newname. --KAB 4026 * 4027 * We don't follow them on the oldname either to be compatible 4028 * with linux 2.0, and to avoid hard-linking to directories 4029 * and other special files. --ADM 4030 */ 4031 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4032 int, newdfd, const char __user *, newname, int, flags) 4033 { 4034 struct dentry *new_dentry; 4035 struct path old_path, new_path; 4036 struct inode *delegated_inode = NULL; 4037 int how = 0; 4038 int error; 4039 4040 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4041 return -EINVAL; 4042 /* 4043 * To use null names we require CAP_DAC_READ_SEARCH 4044 * This ensures that not everyone will be able to create 4045 * handlink using the passed filedescriptor. 4046 */ 4047 if (flags & AT_EMPTY_PATH) { 4048 if (!capable(CAP_DAC_READ_SEARCH)) 4049 return -ENOENT; 4050 how = LOOKUP_EMPTY; 4051 } 4052 4053 if (flags & AT_SYMLINK_FOLLOW) 4054 how |= LOOKUP_FOLLOW; 4055 retry: 4056 error = user_path_at(olddfd, oldname, how, &old_path); 4057 if (error) 4058 return error; 4059 4060 new_dentry = user_path_create(newdfd, newname, &new_path, 4061 (how & LOOKUP_REVAL)); 4062 error = PTR_ERR(new_dentry); 4063 if (IS_ERR(new_dentry)) 4064 goto out; 4065 4066 error = -EXDEV; 4067 if (old_path.mnt != new_path.mnt) 4068 goto out_dput; 4069 error = may_linkat(&old_path); 4070 if (unlikely(error)) 4071 goto out_dput; 4072 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4073 if (error) 4074 goto out_dput; 4075 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4076 out_dput: 4077 done_path_create(&new_path, new_dentry); 4078 if (delegated_inode) { 4079 error = break_deleg_wait(&delegated_inode); 4080 if (!error) { 4081 path_put(&old_path); 4082 goto retry; 4083 } 4084 } 4085 if (retry_estale(error, how)) { 4086 path_put(&old_path); 4087 how |= LOOKUP_REVAL; 4088 goto retry; 4089 } 4090 out: 4091 path_put(&old_path); 4092 4093 return error; 4094 } 4095 4096 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4097 { 4098 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4099 } 4100 4101 /** 4102 * vfs_rename - rename a filesystem object 4103 * @old_dir: parent of source 4104 * @old_dentry: source 4105 * @new_dir: parent of destination 4106 * @new_dentry: destination 4107 * @delegated_inode: returns an inode needing a delegation break 4108 * @flags: rename flags 4109 * 4110 * The caller must hold multiple mutexes--see lock_rename()). 4111 * 4112 * If vfs_rename discovers a delegation in need of breaking at either 4113 * the source or destination, it will return -EWOULDBLOCK and return a 4114 * reference to the inode in delegated_inode. The caller should then 4115 * break the delegation and retry. Because breaking a delegation may 4116 * take a long time, the caller should drop all locks before doing 4117 * so. 4118 * 4119 * Alternatively, a caller may pass NULL for delegated_inode. This may 4120 * be appropriate for callers that expect the underlying filesystem not 4121 * to be NFS exported. 4122 * 4123 * The worst of all namespace operations - renaming directory. "Perverted" 4124 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4125 * Problems: 4126 * a) we can get into loop creation. 4127 * b) race potential - two innocent renames can create a loop together. 4128 * That's where 4.4 screws up. Current fix: serialization on 4129 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4130 * story. 4131 * c) we have to lock _four_ objects - parents and victim (if it exists), 4132 * and source (if it is not a directory). 4133 * And that - after we got ->i_mutex on parents (until then we don't know 4134 * whether the target exists). Solution: try to be smart with locking 4135 * order for inodes. We rely on the fact that tree topology may change 4136 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4137 * move will be locked. Thus we can rank directories by the tree 4138 * (ancestors first) and rank all non-directories after them. 4139 * That works since everybody except rename does "lock parent, lookup, 4140 * lock child" and rename is under ->s_vfs_rename_mutex. 4141 * HOWEVER, it relies on the assumption that any object with ->lookup() 4142 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4143 * we'd better make sure that there's no link(2) for them. 4144 * d) conversion from fhandle to dentry may come in the wrong moment - when 4145 * we are removing the target. Solution: we will have to grab ->i_mutex 4146 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4147 * ->i_mutex on parents, which works but leads to some truly excessive 4148 * locking]. 4149 */ 4150 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4151 struct inode *new_dir, struct dentry *new_dentry, 4152 struct inode **delegated_inode, unsigned int flags) 4153 { 4154 int error; 4155 bool is_dir = d_is_dir(old_dentry); 4156 const unsigned char *old_name; 4157 struct inode *source = old_dentry->d_inode; 4158 struct inode *target = new_dentry->d_inode; 4159 bool new_is_dir = false; 4160 unsigned max_links = new_dir->i_sb->s_max_links; 4161 4162 if (source == target) 4163 return 0; 4164 4165 error = may_delete(old_dir, old_dentry, is_dir); 4166 if (error) 4167 return error; 4168 4169 if (!target) { 4170 error = may_create(new_dir, new_dentry); 4171 } else { 4172 new_is_dir = d_is_dir(new_dentry); 4173 4174 if (!(flags & RENAME_EXCHANGE)) 4175 error = may_delete(new_dir, new_dentry, is_dir); 4176 else 4177 error = may_delete(new_dir, new_dentry, new_is_dir); 4178 } 4179 if (error) 4180 return error; 4181 4182 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4183 return -EPERM; 4184 4185 if (flags && !old_dir->i_op->rename2) 4186 return -EINVAL; 4187 4188 /* 4189 * If we are going to change the parent - check write permissions, 4190 * we'll need to flip '..'. 4191 */ 4192 if (new_dir != old_dir) { 4193 if (is_dir) { 4194 error = inode_permission(source, MAY_WRITE); 4195 if (error) 4196 return error; 4197 } 4198 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4199 error = inode_permission(target, MAY_WRITE); 4200 if (error) 4201 return error; 4202 } 4203 } 4204 4205 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4206 flags); 4207 if (error) 4208 return error; 4209 4210 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4211 dget(new_dentry); 4212 if (!is_dir || (flags & RENAME_EXCHANGE)) 4213 lock_two_nondirectories(source, target); 4214 else if (target) 4215 mutex_lock(&target->i_mutex); 4216 4217 error = -EBUSY; 4218 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4219 goto out; 4220 4221 if (max_links && new_dir != old_dir) { 4222 error = -EMLINK; 4223 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4224 goto out; 4225 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4226 old_dir->i_nlink >= max_links) 4227 goto out; 4228 } 4229 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4230 shrink_dcache_parent(new_dentry); 4231 if (!is_dir) { 4232 error = try_break_deleg(source, delegated_inode); 4233 if (error) 4234 goto out; 4235 } 4236 if (target && !new_is_dir) { 4237 error = try_break_deleg(target, delegated_inode); 4238 if (error) 4239 goto out; 4240 } 4241 if (!old_dir->i_op->rename2) { 4242 error = old_dir->i_op->rename(old_dir, old_dentry, 4243 new_dir, new_dentry); 4244 } else { 4245 WARN_ON(old_dir->i_op->rename != NULL); 4246 error = old_dir->i_op->rename2(old_dir, old_dentry, 4247 new_dir, new_dentry, flags); 4248 } 4249 if (error) 4250 goto out; 4251 4252 if (!(flags & RENAME_EXCHANGE) && target) { 4253 if (is_dir) 4254 target->i_flags |= S_DEAD; 4255 dont_mount(new_dentry); 4256 detach_mounts(new_dentry); 4257 } 4258 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4259 if (!(flags & RENAME_EXCHANGE)) 4260 d_move(old_dentry, new_dentry); 4261 else 4262 d_exchange(old_dentry, new_dentry); 4263 } 4264 out: 4265 if (!is_dir || (flags & RENAME_EXCHANGE)) 4266 unlock_two_nondirectories(source, target); 4267 else if (target) 4268 mutex_unlock(&target->i_mutex); 4269 dput(new_dentry); 4270 if (!error) { 4271 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4272 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4273 if (flags & RENAME_EXCHANGE) { 4274 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4275 new_is_dir, NULL, new_dentry); 4276 } 4277 } 4278 fsnotify_oldname_free(old_name); 4279 4280 return error; 4281 } 4282 EXPORT_SYMBOL(vfs_rename); 4283 4284 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4285 int, newdfd, const char __user *, newname, unsigned int, flags) 4286 { 4287 struct dentry *old_dentry, *new_dentry; 4288 struct dentry *trap; 4289 struct path old_path, new_path; 4290 struct qstr old_last, new_last; 4291 int old_type, new_type; 4292 struct inode *delegated_inode = NULL; 4293 struct filename *from; 4294 struct filename *to; 4295 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4296 bool should_retry = false; 4297 int error; 4298 4299 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4300 return -EINVAL; 4301 4302 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4303 (flags & RENAME_EXCHANGE)) 4304 return -EINVAL; 4305 4306 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4307 return -EPERM; 4308 4309 if (flags & RENAME_EXCHANGE) 4310 target_flags = 0; 4311 4312 retry: 4313 from = user_path_parent(olddfd, oldname, 4314 &old_path, &old_last, &old_type, lookup_flags); 4315 if (IS_ERR(from)) { 4316 error = PTR_ERR(from); 4317 goto exit; 4318 } 4319 4320 to = user_path_parent(newdfd, newname, 4321 &new_path, &new_last, &new_type, lookup_flags); 4322 if (IS_ERR(to)) { 4323 error = PTR_ERR(to); 4324 goto exit1; 4325 } 4326 4327 error = -EXDEV; 4328 if (old_path.mnt != new_path.mnt) 4329 goto exit2; 4330 4331 error = -EBUSY; 4332 if (old_type != LAST_NORM) 4333 goto exit2; 4334 4335 if (flags & RENAME_NOREPLACE) 4336 error = -EEXIST; 4337 if (new_type != LAST_NORM) 4338 goto exit2; 4339 4340 error = mnt_want_write(old_path.mnt); 4341 if (error) 4342 goto exit2; 4343 4344 retry_deleg: 4345 trap = lock_rename(new_path.dentry, old_path.dentry); 4346 4347 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4348 error = PTR_ERR(old_dentry); 4349 if (IS_ERR(old_dentry)) 4350 goto exit3; 4351 /* source must exist */ 4352 error = -ENOENT; 4353 if (d_is_negative(old_dentry)) 4354 goto exit4; 4355 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4356 error = PTR_ERR(new_dentry); 4357 if (IS_ERR(new_dentry)) 4358 goto exit4; 4359 error = -EEXIST; 4360 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4361 goto exit5; 4362 if (flags & RENAME_EXCHANGE) { 4363 error = -ENOENT; 4364 if (d_is_negative(new_dentry)) 4365 goto exit5; 4366 4367 if (!d_is_dir(new_dentry)) { 4368 error = -ENOTDIR; 4369 if (new_last.name[new_last.len]) 4370 goto exit5; 4371 } 4372 } 4373 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4374 if (!d_is_dir(old_dentry)) { 4375 error = -ENOTDIR; 4376 if (old_last.name[old_last.len]) 4377 goto exit5; 4378 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4379 goto exit5; 4380 } 4381 /* source should not be ancestor of target */ 4382 error = -EINVAL; 4383 if (old_dentry == trap) 4384 goto exit5; 4385 /* target should not be an ancestor of source */ 4386 if (!(flags & RENAME_EXCHANGE)) 4387 error = -ENOTEMPTY; 4388 if (new_dentry == trap) 4389 goto exit5; 4390 4391 error = security_path_rename(&old_path, old_dentry, 4392 &new_path, new_dentry, flags); 4393 if (error) 4394 goto exit5; 4395 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4396 new_path.dentry->d_inode, new_dentry, 4397 &delegated_inode, flags); 4398 exit5: 4399 dput(new_dentry); 4400 exit4: 4401 dput(old_dentry); 4402 exit3: 4403 unlock_rename(new_path.dentry, old_path.dentry); 4404 if (delegated_inode) { 4405 error = break_deleg_wait(&delegated_inode); 4406 if (!error) 4407 goto retry_deleg; 4408 } 4409 mnt_drop_write(old_path.mnt); 4410 exit2: 4411 if (retry_estale(error, lookup_flags)) 4412 should_retry = true; 4413 path_put(&new_path); 4414 putname(to); 4415 exit1: 4416 path_put(&old_path); 4417 putname(from); 4418 if (should_retry) { 4419 should_retry = false; 4420 lookup_flags |= LOOKUP_REVAL; 4421 goto retry; 4422 } 4423 exit: 4424 return error; 4425 } 4426 4427 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4428 int, newdfd, const char __user *, newname) 4429 { 4430 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4431 } 4432 4433 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4434 { 4435 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4436 } 4437 4438 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4439 { 4440 int error = may_create(dir, dentry); 4441 if (error) 4442 return error; 4443 4444 if (!dir->i_op->mknod) 4445 return -EPERM; 4446 4447 return dir->i_op->mknod(dir, dentry, 4448 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4449 } 4450 EXPORT_SYMBOL(vfs_whiteout); 4451 4452 int readlink_copy(char __user *buffer, int buflen, const char *link) 4453 { 4454 int len = PTR_ERR(link); 4455 if (IS_ERR(link)) 4456 goto out; 4457 4458 len = strlen(link); 4459 if (len > (unsigned) buflen) 4460 len = buflen; 4461 if (copy_to_user(buffer, link, len)) 4462 len = -EFAULT; 4463 out: 4464 return len; 4465 } 4466 EXPORT_SYMBOL(readlink_copy); 4467 4468 /* 4469 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4470 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4471 * using) it for any given inode is up to filesystem. 4472 */ 4473 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4474 { 4475 void *cookie; 4476 struct inode *inode = d_inode(dentry); 4477 const char *link = inode->i_link; 4478 int res; 4479 4480 if (!link) { 4481 link = inode->i_op->follow_link(dentry, &cookie); 4482 if (IS_ERR(link)) 4483 return PTR_ERR(link); 4484 } 4485 res = readlink_copy(buffer, buflen, link); 4486 if (inode->i_op->put_link) 4487 inode->i_op->put_link(inode, cookie); 4488 return res; 4489 } 4490 EXPORT_SYMBOL(generic_readlink); 4491 4492 /* get the link contents into pagecache */ 4493 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4494 { 4495 char *kaddr; 4496 struct page *page; 4497 struct address_space *mapping = dentry->d_inode->i_mapping; 4498 page = read_mapping_page(mapping, 0, NULL); 4499 if (IS_ERR(page)) 4500 return (char*)page; 4501 *ppage = page; 4502 kaddr = kmap(page); 4503 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4504 return kaddr; 4505 } 4506 4507 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4508 { 4509 struct page *page = NULL; 4510 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4511 if (page) { 4512 kunmap(page); 4513 page_cache_release(page); 4514 } 4515 return res; 4516 } 4517 EXPORT_SYMBOL(page_readlink); 4518 4519 const char *page_follow_link_light(struct dentry *dentry, void **cookie) 4520 { 4521 struct page *page = NULL; 4522 char *res = page_getlink(dentry, &page); 4523 if (!IS_ERR(res)) 4524 *cookie = page; 4525 return res; 4526 } 4527 EXPORT_SYMBOL(page_follow_link_light); 4528 4529 void page_put_link(struct inode *unused, void *cookie) 4530 { 4531 struct page *page = cookie; 4532 kunmap(page); 4533 page_cache_release(page); 4534 } 4535 EXPORT_SYMBOL(page_put_link); 4536 4537 /* 4538 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4539 */ 4540 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4541 { 4542 struct address_space *mapping = inode->i_mapping; 4543 struct page *page; 4544 void *fsdata; 4545 int err; 4546 char *kaddr; 4547 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4548 if (nofs) 4549 flags |= AOP_FLAG_NOFS; 4550 4551 retry: 4552 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4553 flags, &page, &fsdata); 4554 if (err) 4555 goto fail; 4556 4557 kaddr = kmap_atomic(page); 4558 memcpy(kaddr, symname, len-1); 4559 kunmap_atomic(kaddr); 4560 4561 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4562 page, fsdata); 4563 if (err < 0) 4564 goto fail; 4565 if (err < len-1) 4566 goto retry; 4567 4568 mark_inode_dirty(inode); 4569 return 0; 4570 fail: 4571 return err; 4572 } 4573 EXPORT_SYMBOL(__page_symlink); 4574 4575 int page_symlink(struct inode *inode, const char *symname, int len) 4576 { 4577 return __page_symlink(inode, symname, len, 4578 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4579 } 4580 EXPORT_SYMBOL(page_symlink); 4581 4582 const struct inode_operations page_symlink_inode_operations = { 4583 .readlink = generic_readlink, 4584 .follow_link = page_follow_link_light, 4585 .put_link = page_put_link, 4586 }; 4587 EXPORT_SYMBOL(page_symlink_inode_operations); 4588