xref: /openbmc/linux/fs/namei.c (revision 8b8f095b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic UNIX permission checking.
292  *
293  * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294  * for RCU walking.
295  */
296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 	unsigned int mode = inode->i_mode;
299 
300 	/* Are we the owner? If so, ACL's don't matter */
301 	if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302 		mask &= 7;
303 		mode >>= 6;
304 		return (mask & ~mode) ? -EACCES : 0;
305 	}
306 
307 	/* Do we have ACL's? */
308 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309 		int error = check_acl(inode, mask);
310 		if (error != -EAGAIN)
311 			return error;
312 	}
313 
314 	/* Only RWX matters for group/other mode bits */
315 	mask &= 7;
316 
317 	/*
318 	 * Are the group permissions different from
319 	 * the other permissions in the bits we care
320 	 * about? Need to check group ownership if so.
321 	 */
322 	if (mask & (mode ^ (mode >> 3))) {
323 		if (in_group_p(inode->i_gid))
324 			mode >>= 3;
325 	}
326 
327 	/* Bits in 'mode' clear that we require? */
328 	return (mask & ~mode) ? -EACCES : 0;
329 }
330 
331 /**
332  * generic_permission -  check for access rights on a Posix-like filesystem
333  * @inode:	inode to check access rights for
334  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335  *		%MAY_NOT_BLOCK ...)
336  *
337  * Used to check for read/write/execute permissions on a file.
338  * We use "fsuid" for this, letting us set arbitrary permissions
339  * for filesystem access without changing the "normal" uids which
340  * are used for other things.
341  *
342  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343  * request cannot be satisfied (eg. requires blocking or too much complexity).
344  * It would then be called again in ref-walk mode.
345  */
346 int generic_permission(struct inode *inode, int mask)
347 {
348 	int ret;
349 
350 	/*
351 	 * Do the basic permission checks.
352 	 */
353 	ret = acl_permission_check(inode, mask);
354 	if (ret != -EACCES)
355 		return ret;
356 
357 	if (S_ISDIR(inode->i_mode)) {
358 		/* DACs are overridable for directories */
359 		if (!(mask & MAY_WRITE))
360 			if (capable_wrt_inode_uidgid(inode,
361 						     CAP_DAC_READ_SEARCH))
362 				return 0;
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364 			return 0;
365 		return -EACCES;
366 	}
367 
368 	/*
369 	 * Searching includes executable on directories, else just read.
370 	 */
371 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372 	if (mask == MAY_READ)
373 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374 			return 0;
375 	/*
376 	 * Read/write DACs are always overridable.
377 	 * Executable DACs are overridable when there is
378 	 * at least one exec bit set.
379 	 */
380 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382 			return 0;
383 
384 	return -EACCES;
385 }
386 EXPORT_SYMBOL(generic_permission);
387 
388 /*
389  * We _really_ want to just do "generic_permission()" without
390  * even looking at the inode->i_op values. So we keep a cache
391  * flag in inode->i_opflags, that says "this has not special
392  * permission function, use the fast case".
393  */
394 static inline int do_inode_permission(struct inode *inode, int mask)
395 {
396 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397 		if (likely(inode->i_op->permission))
398 			return inode->i_op->permission(inode, mask);
399 
400 		/* This gets set once for the inode lifetime */
401 		spin_lock(&inode->i_lock);
402 		inode->i_opflags |= IOP_FASTPERM;
403 		spin_unlock(&inode->i_lock);
404 	}
405 	return generic_permission(inode, mask);
406 }
407 
408 /**
409  * sb_permission - Check superblock-level permissions
410  * @sb: Superblock of inode to check permission on
411  * @inode: Inode to check permission on
412  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413  *
414  * Separate out file-system wide checks from inode-specific permission checks.
415  */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 	if (unlikely(mask & MAY_WRITE)) {
419 		umode_t mode = inode->i_mode;
420 
421 		/* Nobody gets write access to a read-only fs. */
422 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423 			return -EROFS;
424 	}
425 	return 0;
426 }
427 
428 /**
429  * inode_permission - Check for access rights to a given inode
430  * @inode: Inode to check permission on
431  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432  *
433  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
434  * this, letting us set arbitrary permissions for filesystem access without
435  * changing the "normal" UIDs which are used for other things.
436  *
437  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438  */
439 int inode_permission(struct inode *inode, int mask)
440 {
441 	int retval;
442 
443 	retval = sb_permission(inode->i_sb, inode, mask);
444 	if (retval)
445 		return retval;
446 
447 	if (unlikely(mask & MAY_WRITE)) {
448 		/*
449 		 * Nobody gets write access to an immutable file.
450 		 */
451 		if (IS_IMMUTABLE(inode))
452 			return -EPERM;
453 
454 		/*
455 		 * Updating mtime will likely cause i_uid and i_gid to be
456 		 * written back improperly if their true value is unknown
457 		 * to the vfs.
458 		 */
459 		if (HAS_UNMAPPED_ID(inode))
460 			return -EACCES;
461 	}
462 
463 	retval = do_inode_permission(inode, mask);
464 	if (retval)
465 		return retval;
466 
467 	retval = devcgroup_inode_permission(inode, mask);
468 	if (retval)
469 		return retval;
470 
471 	return security_inode_permission(inode, mask);
472 }
473 EXPORT_SYMBOL(inode_permission);
474 
475 /**
476  * path_get - get a reference to a path
477  * @path: path to get the reference to
478  *
479  * Given a path increment the reference count to the dentry and the vfsmount.
480  */
481 void path_get(const struct path *path)
482 {
483 	mntget(path->mnt);
484 	dget(path->dentry);
485 }
486 EXPORT_SYMBOL(path_get);
487 
488 /**
489  * path_put - put a reference to a path
490  * @path: path to put the reference to
491  *
492  * Given a path decrement the reference count to the dentry and the vfsmount.
493  */
494 void path_put(const struct path *path)
495 {
496 	dput(path->dentry);
497 	mntput(path->mnt);
498 }
499 EXPORT_SYMBOL(path_put);
500 
501 #define EMBEDDED_LEVELS 2
502 struct nameidata {
503 	struct path	path;
504 	struct qstr	last;
505 	struct path	root;
506 	struct inode	*inode; /* path.dentry.d_inode */
507 	unsigned int	flags;
508 	unsigned	seq, m_seq, r_seq;
509 	int		last_type;
510 	unsigned	depth;
511 	int		total_link_count;
512 	struct saved {
513 		struct path link;
514 		struct delayed_call done;
515 		const char *name;
516 		unsigned seq;
517 	} *stack, internal[EMBEDDED_LEVELS];
518 	struct filename	*name;
519 	struct nameidata *saved;
520 	unsigned	root_seq;
521 	int		dfd;
522 	kuid_t		dir_uid;
523 	umode_t		dir_mode;
524 } __randomize_layout;
525 
526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
527 {
528 	struct nameidata *old = current->nameidata;
529 	p->stack = p->internal;
530 	p->dfd = dfd;
531 	p->name = name;
532 	p->total_link_count = old ? old->total_link_count : 0;
533 	p->saved = old;
534 	current->nameidata = p;
535 }
536 
537 static void restore_nameidata(void)
538 {
539 	struct nameidata *now = current->nameidata, *old = now->saved;
540 
541 	current->nameidata = old;
542 	if (old)
543 		old->total_link_count = now->total_link_count;
544 	if (now->stack != now->internal)
545 		kfree(now->stack);
546 }
547 
548 static bool nd_alloc_stack(struct nameidata *nd)
549 {
550 	struct saved *p;
551 
552 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
553 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
554 	if (unlikely(!p))
555 		return false;
556 	memcpy(p, nd->internal, sizeof(nd->internal));
557 	nd->stack = p;
558 	return true;
559 }
560 
561 /**
562  * path_connected - Verify that a dentry is below mnt.mnt_root
563  *
564  * Rename can sometimes move a file or directory outside of a bind
565  * mount, path_connected allows those cases to be detected.
566  */
567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
568 {
569 	struct super_block *sb = mnt->mnt_sb;
570 
571 	/* Bind mounts can have disconnected paths */
572 	if (mnt->mnt_root == sb->s_root)
573 		return true;
574 
575 	return is_subdir(dentry, mnt->mnt_root);
576 }
577 
578 static void drop_links(struct nameidata *nd)
579 {
580 	int i = nd->depth;
581 	while (i--) {
582 		struct saved *last = nd->stack + i;
583 		do_delayed_call(&last->done);
584 		clear_delayed_call(&last->done);
585 	}
586 }
587 
588 static void terminate_walk(struct nameidata *nd)
589 {
590 	drop_links(nd);
591 	if (!(nd->flags & LOOKUP_RCU)) {
592 		int i;
593 		path_put(&nd->path);
594 		for (i = 0; i < nd->depth; i++)
595 			path_put(&nd->stack[i].link);
596 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
597 			path_put(&nd->root);
598 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
599 		}
600 	} else {
601 		nd->flags &= ~LOOKUP_RCU;
602 		rcu_read_unlock();
603 	}
604 	nd->depth = 0;
605 }
606 
607 /* path_put is needed afterwards regardless of success or failure */
608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
609 {
610 	int res = __legitimize_mnt(path->mnt, mseq);
611 	if (unlikely(res)) {
612 		if (res > 0)
613 			path->mnt = NULL;
614 		path->dentry = NULL;
615 		return false;
616 	}
617 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623 
624 static inline bool legitimize_path(struct nameidata *nd,
625 			    struct path *path, unsigned seq)
626 {
627 	return __legitimize_path(path, seq, nd->m_seq);
628 }
629 
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 	int i;
633 	for (i = 0; i < nd->depth; i++) {
634 		struct saved *last = nd->stack + i;
635 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
636 			drop_links(nd);
637 			nd->depth = i + 1;
638 			return false;
639 		}
640 	}
641 	return true;
642 }
643 
644 static bool legitimize_root(struct nameidata *nd)
645 {
646 	/*
647 	 * For scoped-lookups (where nd->root has been zeroed), we need to
648 	 * restart the whole lookup from scratch -- because set_root() is wrong
649 	 * for these lookups (nd->dfd is the root, not the filesystem root).
650 	 */
651 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
652 		return false;
653 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
654 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
655 		return true;
656 	nd->flags |= LOOKUP_ROOT_GRABBED;
657 	return legitimize_path(nd, &nd->root, nd->root_seq);
658 }
659 
660 /*
661  * Path walking has 2 modes, rcu-walk and ref-walk (see
662  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
663  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664  * normal reference counts on dentries and vfsmounts to transition to ref-walk
665  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
666  * got stuck, so ref-walk may continue from there. If this is not successful
667  * (eg. a seqcount has changed), then failure is returned and it's up to caller
668  * to restart the path walk from the beginning in ref-walk mode.
669  */
670 
671 /**
672  * unlazy_walk - try to switch to ref-walk mode.
673  * @nd: nameidata pathwalk data
674  * Returns: 0 on success, -ECHILD on failure
675  *
676  * unlazy_walk attempts to legitimize the current nd->path and nd->root
677  * for ref-walk mode.
678  * Must be called from rcu-walk context.
679  * Nothing should touch nameidata between unlazy_walk() failure and
680  * terminate_walk().
681  */
682 static int unlazy_walk(struct nameidata *nd)
683 {
684 	struct dentry *parent = nd->path.dentry;
685 
686 	BUG_ON(!(nd->flags & LOOKUP_RCU));
687 
688 	nd->flags &= ~LOOKUP_RCU;
689 	if (unlikely(!legitimize_links(nd)))
690 		goto out1;
691 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
692 		goto out;
693 	if (unlikely(!legitimize_root(nd)))
694 		goto out;
695 	rcu_read_unlock();
696 	BUG_ON(nd->inode != parent->d_inode);
697 	return 0;
698 
699 out1:
700 	nd->path.mnt = NULL;
701 	nd->path.dentry = NULL;
702 out:
703 	rcu_read_unlock();
704 	return -ECHILD;
705 }
706 
707 /**
708  * unlazy_child - try to switch to ref-walk mode.
709  * @nd: nameidata pathwalk data
710  * @dentry: child of nd->path.dentry
711  * @seq: seq number to check dentry against
712  * Returns: 0 on success, -ECHILD on failure
713  *
714  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
715  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
716  * @nd.  Must be called from rcu-walk context.
717  * Nothing should touch nameidata between unlazy_child() failure and
718  * terminate_walk().
719  */
720 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
721 {
722 	BUG_ON(!(nd->flags & LOOKUP_RCU));
723 
724 	nd->flags &= ~LOOKUP_RCU;
725 	if (unlikely(!legitimize_links(nd)))
726 		goto out2;
727 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
728 		goto out2;
729 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
730 		goto out1;
731 
732 	/*
733 	 * We need to move both the parent and the dentry from the RCU domain
734 	 * to be properly refcounted. And the sequence number in the dentry
735 	 * validates *both* dentry counters, since we checked the sequence
736 	 * number of the parent after we got the child sequence number. So we
737 	 * know the parent must still be valid if the child sequence number is
738 	 */
739 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
740 		goto out;
741 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
742 		goto out_dput;
743 	/*
744 	 * Sequence counts matched. Now make sure that the root is
745 	 * still valid and get it if required.
746 	 */
747 	if (unlikely(!legitimize_root(nd)))
748 		goto out_dput;
749 	rcu_read_unlock();
750 	return 0;
751 
752 out2:
753 	nd->path.mnt = NULL;
754 out1:
755 	nd->path.dentry = NULL;
756 out:
757 	rcu_read_unlock();
758 	return -ECHILD;
759 out_dput:
760 	rcu_read_unlock();
761 	dput(dentry);
762 	return -ECHILD;
763 }
764 
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
768 		return dentry->d_op->d_revalidate(dentry, flags);
769 	else
770 		return 1;
771 }
772 
773 /**
774  * complete_walk - successful completion of path walk
775  * @nd:  pointer nameidata
776  *
777  * If we had been in RCU mode, drop out of it and legitimize nd->path.
778  * Revalidate the final result, unless we'd already done that during
779  * the path walk or the filesystem doesn't ask for it.  Return 0 on
780  * success, -error on failure.  In case of failure caller does not
781  * need to drop nd->path.
782  */
783 static int complete_walk(struct nameidata *nd)
784 {
785 	struct dentry *dentry = nd->path.dentry;
786 	int status;
787 
788 	if (nd->flags & LOOKUP_RCU) {
789 		/*
790 		 * We don't want to zero nd->root for scoped-lookups or
791 		 * externally-managed nd->root.
792 		 */
793 		if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
794 			nd->root.mnt = NULL;
795 		if (unlikely(unlazy_walk(nd)))
796 			return -ECHILD;
797 	}
798 
799 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
800 		/*
801 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
802 		 * ever step outside the root during lookup" and should already
803 		 * be guaranteed by the rest of namei, we want to avoid a namei
804 		 * BUG resulting in userspace being given a path that was not
805 		 * scoped within the root at some point during the lookup.
806 		 *
807 		 * So, do a final sanity-check to make sure that in the
808 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
809 		 * we won't silently return an fd completely outside of the
810 		 * requested root to userspace.
811 		 *
812 		 * Userspace could move the path outside the root after this
813 		 * check, but as discussed elsewhere this is not a concern (the
814 		 * resolved file was inside the root at some point).
815 		 */
816 		if (!path_is_under(&nd->path, &nd->root))
817 			return -EXDEV;
818 	}
819 
820 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
821 		return 0;
822 
823 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
824 		return 0;
825 
826 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
827 	if (status > 0)
828 		return 0;
829 
830 	if (!status)
831 		status = -ESTALE;
832 
833 	return status;
834 }
835 
836 static int set_root(struct nameidata *nd)
837 {
838 	struct fs_struct *fs = current->fs;
839 
840 	/*
841 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
842 	 * still have to ensure it doesn't happen because it will cause a breakout
843 	 * from the dirfd.
844 	 */
845 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
846 		return -ENOTRECOVERABLE;
847 
848 	if (nd->flags & LOOKUP_RCU) {
849 		unsigned seq;
850 
851 		do {
852 			seq = read_seqcount_begin(&fs->seq);
853 			nd->root = fs->root;
854 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
855 		} while (read_seqcount_retry(&fs->seq, seq));
856 	} else {
857 		get_fs_root(fs, &nd->root);
858 		nd->flags |= LOOKUP_ROOT_GRABBED;
859 	}
860 	return 0;
861 }
862 
863 static int nd_jump_root(struct nameidata *nd)
864 {
865 	if (unlikely(nd->flags & LOOKUP_BENEATH))
866 		return -EXDEV;
867 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
868 		/* Absolute path arguments to path_init() are allowed. */
869 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
870 			return -EXDEV;
871 	}
872 	if (!nd->root.mnt) {
873 		int error = set_root(nd);
874 		if (error)
875 			return error;
876 	}
877 	if (nd->flags & LOOKUP_RCU) {
878 		struct dentry *d;
879 		nd->path = nd->root;
880 		d = nd->path.dentry;
881 		nd->inode = d->d_inode;
882 		nd->seq = nd->root_seq;
883 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
884 			return -ECHILD;
885 	} else {
886 		path_put(&nd->path);
887 		nd->path = nd->root;
888 		path_get(&nd->path);
889 		nd->inode = nd->path.dentry->d_inode;
890 	}
891 	nd->flags |= LOOKUP_JUMPED;
892 	return 0;
893 }
894 
895 /*
896  * Helper to directly jump to a known parsed path from ->get_link,
897  * caller must have taken a reference to path beforehand.
898  */
899 int nd_jump_link(struct path *path)
900 {
901 	int error = -ELOOP;
902 	struct nameidata *nd = current->nameidata;
903 
904 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
905 		goto err;
906 
907 	error = -EXDEV;
908 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
909 		if (nd->path.mnt != path->mnt)
910 			goto err;
911 	}
912 	/* Not currently safe for scoped-lookups. */
913 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
914 		goto err;
915 
916 	path_put(&nd->path);
917 	nd->path = *path;
918 	nd->inode = nd->path.dentry->d_inode;
919 	nd->flags |= LOOKUP_JUMPED;
920 	return 0;
921 
922 err:
923 	path_put(path);
924 	return error;
925 }
926 
927 static inline void put_link(struct nameidata *nd)
928 {
929 	struct saved *last = nd->stack + --nd->depth;
930 	do_delayed_call(&last->done);
931 	if (!(nd->flags & LOOKUP_RCU))
932 		path_put(&last->link);
933 }
934 
935 int sysctl_protected_symlinks __read_mostly = 0;
936 int sysctl_protected_hardlinks __read_mostly = 0;
937 int sysctl_protected_fifos __read_mostly;
938 int sysctl_protected_regular __read_mostly;
939 
940 /**
941  * may_follow_link - Check symlink following for unsafe situations
942  * @nd: nameidata pathwalk data
943  *
944  * In the case of the sysctl_protected_symlinks sysctl being enabled,
945  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
946  * in a sticky world-writable directory. This is to protect privileged
947  * processes from failing races against path names that may change out
948  * from under them by way of other users creating malicious symlinks.
949  * It will permit symlinks to be followed only when outside a sticky
950  * world-writable directory, or when the uid of the symlink and follower
951  * match, or when the directory owner matches the symlink's owner.
952  *
953  * Returns 0 if following the symlink is allowed, -ve on error.
954  */
955 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
956 {
957 	if (!sysctl_protected_symlinks)
958 		return 0;
959 
960 	/* Allowed if owner and follower match. */
961 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
962 		return 0;
963 
964 	/* Allowed if parent directory not sticky and world-writable. */
965 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
966 		return 0;
967 
968 	/* Allowed if parent directory and link owner match. */
969 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
970 		return 0;
971 
972 	if (nd->flags & LOOKUP_RCU)
973 		return -ECHILD;
974 
975 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
976 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
977 	return -EACCES;
978 }
979 
980 /**
981  * safe_hardlink_source - Check for safe hardlink conditions
982  * @inode: the source inode to hardlink from
983  *
984  * Return false if at least one of the following conditions:
985  *    - inode is not a regular file
986  *    - inode is setuid
987  *    - inode is setgid and group-exec
988  *    - access failure for read and write
989  *
990  * Otherwise returns true.
991  */
992 static bool safe_hardlink_source(struct inode *inode)
993 {
994 	umode_t mode = inode->i_mode;
995 
996 	/* Special files should not get pinned to the filesystem. */
997 	if (!S_ISREG(mode))
998 		return false;
999 
1000 	/* Setuid files should not get pinned to the filesystem. */
1001 	if (mode & S_ISUID)
1002 		return false;
1003 
1004 	/* Executable setgid files should not get pinned to the filesystem. */
1005 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1006 		return false;
1007 
1008 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1009 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
1010 		return false;
1011 
1012 	return true;
1013 }
1014 
1015 /**
1016  * may_linkat - Check permissions for creating a hardlink
1017  * @link: the source to hardlink from
1018  *
1019  * Block hardlink when all of:
1020  *  - sysctl_protected_hardlinks enabled
1021  *  - fsuid does not match inode
1022  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1023  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1024  *
1025  * Returns 0 if successful, -ve on error.
1026  */
1027 int may_linkat(struct path *link)
1028 {
1029 	struct inode *inode = link->dentry->d_inode;
1030 
1031 	/* Inode writeback is not safe when the uid or gid are invalid. */
1032 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1033 		return -EOVERFLOW;
1034 
1035 	if (!sysctl_protected_hardlinks)
1036 		return 0;
1037 
1038 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1039 	 * otherwise, it must be a safe source.
1040 	 */
1041 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1042 		return 0;
1043 
1044 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1045 	return -EPERM;
1046 }
1047 
1048 /**
1049  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1050  *			  should be allowed, or not, on files that already
1051  *			  exist.
1052  * @dir_mode: mode bits of directory
1053  * @dir_uid: owner of directory
1054  * @inode: the inode of the file to open
1055  *
1056  * Block an O_CREAT open of a FIFO (or a regular file) when:
1057  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1058  *   - the file already exists
1059  *   - we are in a sticky directory
1060  *   - we don't own the file
1061  *   - the owner of the directory doesn't own the file
1062  *   - the directory is world writable
1063  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1064  * the directory doesn't have to be world writable: being group writable will
1065  * be enough.
1066  *
1067  * Returns 0 if the open is allowed, -ve on error.
1068  */
1069 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1070 				struct inode * const inode)
1071 {
1072 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1073 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1074 	    likely(!(dir_mode & S_ISVTX)) ||
1075 	    uid_eq(inode->i_uid, dir_uid) ||
1076 	    uid_eq(current_fsuid(), inode->i_uid))
1077 		return 0;
1078 
1079 	if (likely(dir_mode & 0002) ||
1080 	    (dir_mode & 0020 &&
1081 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1082 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1083 		const char *operation = S_ISFIFO(inode->i_mode) ?
1084 					"sticky_create_fifo" :
1085 					"sticky_create_regular";
1086 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1087 		return -EACCES;
1088 	}
1089 	return 0;
1090 }
1091 
1092 /*
1093  * follow_up - Find the mountpoint of path's vfsmount
1094  *
1095  * Given a path, find the mountpoint of its source file system.
1096  * Replace @path with the path of the mountpoint in the parent mount.
1097  * Up is towards /.
1098  *
1099  * Return 1 if we went up a level and 0 if we were already at the
1100  * root.
1101  */
1102 int follow_up(struct path *path)
1103 {
1104 	struct mount *mnt = real_mount(path->mnt);
1105 	struct mount *parent;
1106 	struct dentry *mountpoint;
1107 
1108 	read_seqlock_excl(&mount_lock);
1109 	parent = mnt->mnt_parent;
1110 	if (parent == mnt) {
1111 		read_sequnlock_excl(&mount_lock);
1112 		return 0;
1113 	}
1114 	mntget(&parent->mnt);
1115 	mountpoint = dget(mnt->mnt_mountpoint);
1116 	read_sequnlock_excl(&mount_lock);
1117 	dput(path->dentry);
1118 	path->dentry = mountpoint;
1119 	mntput(path->mnt);
1120 	path->mnt = &parent->mnt;
1121 	return 1;
1122 }
1123 EXPORT_SYMBOL(follow_up);
1124 
1125 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1126 				  struct path *path, unsigned *seqp)
1127 {
1128 	while (mnt_has_parent(m)) {
1129 		struct dentry *mountpoint = m->mnt_mountpoint;
1130 
1131 		m = m->mnt_parent;
1132 		if (unlikely(root->dentry == mountpoint &&
1133 			     root->mnt == &m->mnt))
1134 			break;
1135 		if (mountpoint != m->mnt.mnt_root) {
1136 			path->mnt = &m->mnt;
1137 			path->dentry = mountpoint;
1138 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1139 			return true;
1140 		}
1141 	}
1142 	return false;
1143 }
1144 
1145 static bool choose_mountpoint(struct mount *m, const struct path *root,
1146 			      struct path *path)
1147 {
1148 	bool found;
1149 
1150 	rcu_read_lock();
1151 	while (1) {
1152 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1153 
1154 		found = choose_mountpoint_rcu(m, root, path, &seq);
1155 		if (unlikely(!found)) {
1156 			if (!read_seqretry(&mount_lock, mseq))
1157 				break;
1158 		} else {
1159 			if (likely(__legitimize_path(path, seq, mseq)))
1160 				break;
1161 			rcu_read_unlock();
1162 			path_put(path);
1163 			rcu_read_lock();
1164 		}
1165 	}
1166 	rcu_read_unlock();
1167 	return found;
1168 }
1169 
1170 /*
1171  * Perform an automount
1172  * - return -EISDIR to tell follow_managed() to stop and return the path we
1173  *   were called with.
1174  */
1175 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1176 {
1177 	struct dentry *dentry = path->dentry;
1178 
1179 	/* We don't want to mount if someone's just doing a stat -
1180 	 * unless they're stat'ing a directory and appended a '/' to
1181 	 * the name.
1182 	 *
1183 	 * We do, however, want to mount if someone wants to open or
1184 	 * create a file of any type under the mountpoint, wants to
1185 	 * traverse through the mountpoint or wants to open the
1186 	 * mounted directory.  Also, autofs may mark negative dentries
1187 	 * as being automount points.  These will need the attentions
1188 	 * of the daemon to instantiate them before they can be used.
1189 	 */
1190 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1191 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1192 	    dentry->d_inode)
1193 		return -EISDIR;
1194 
1195 	if (count && (*count)++ >= MAXSYMLINKS)
1196 		return -ELOOP;
1197 
1198 	return finish_automount(dentry->d_op->d_automount(path), path);
1199 }
1200 
1201 /*
1202  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1203  * dentries are pinned but not locked here, so negative dentry can go
1204  * positive right under us.  Use of smp_load_acquire() provides a barrier
1205  * sufficient for ->d_inode and ->d_flags consistency.
1206  */
1207 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1208 			     int *count, unsigned lookup_flags)
1209 {
1210 	struct vfsmount *mnt = path->mnt;
1211 	bool need_mntput = false;
1212 	int ret = 0;
1213 
1214 	while (flags & DCACHE_MANAGED_DENTRY) {
1215 		/* Allow the filesystem to manage the transit without i_mutex
1216 		 * being held. */
1217 		if (flags & DCACHE_MANAGE_TRANSIT) {
1218 			ret = path->dentry->d_op->d_manage(path, false);
1219 			flags = smp_load_acquire(&path->dentry->d_flags);
1220 			if (ret < 0)
1221 				break;
1222 		}
1223 
1224 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1225 			struct vfsmount *mounted = lookup_mnt(path);
1226 			if (mounted) {		// ... in our namespace
1227 				dput(path->dentry);
1228 				if (need_mntput)
1229 					mntput(path->mnt);
1230 				path->mnt = mounted;
1231 				path->dentry = dget(mounted->mnt_root);
1232 				// here we know it's positive
1233 				flags = path->dentry->d_flags;
1234 				need_mntput = true;
1235 				continue;
1236 			}
1237 		}
1238 
1239 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1240 			break;
1241 
1242 		// uncovered automount point
1243 		ret = follow_automount(path, count, lookup_flags);
1244 		flags = smp_load_acquire(&path->dentry->d_flags);
1245 		if (ret < 0)
1246 			break;
1247 	}
1248 
1249 	if (ret == -EISDIR)
1250 		ret = 0;
1251 	// possible if you race with several mount --move
1252 	if (need_mntput && path->mnt == mnt)
1253 		mntput(path->mnt);
1254 	if (!ret && unlikely(d_flags_negative(flags)))
1255 		ret = -ENOENT;
1256 	*jumped = need_mntput;
1257 	return ret;
1258 }
1259 
1260 static inline int traverse_mounts(struct path *path, bool *jumped,
1261 				  int *count, unsigned lookup_flags)
1262 {
1263 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1264 
1265 	/* fastpath */
1266 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1267 		*jumped = false;
1268 		if (unlikely(d_flags_negative(flags)))
1269 			return -ENOENT;
1270 		return 0;
1271 	}
1272 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1273 }
1274 
1275 int follow_down_one(struct path *path)
1276 {
1277 	struct vfsmount *mounted;
1278 
1279 	mounted = lookup_mnt(path);
1280 	if (mounted) {
1281 		dput(path->dentry);
1282 		mntput(path->mnt);
1283 		path->mnt = mounted;
1284 		path->dentry = dget(mounted->mnt_root);
1285 		return 1;
1286 	}
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL(follow_down_one);
1290 
1291 /*
1292  * Follow down to the covering mount currently visible to userspace.  At each
1293  * point, the filesystem owning that dentry may be queried as to whether the
1294  * caller is permitted to proceed or not.
1295  */
1296 int follow_down(struct path *path)
1297 {
1298 	struct vfsmount *mnt = path->mnt;
1299 	bool jumped;
1300 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1301 
1302 	if (path->mnt != mnt)
1303 		mntput(mnt);
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(follow_down);
1307 
1308 /*
1309  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1310  * we meet a managed dentry that would need blocking.
1311  */
1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 			       struct inode **inode, unsigned *seqp)
1314 {
1315 	struct dentry *dentry = path->dentry;
1316 	unsigned int flags = dentry->d_flags;
1317 
1318 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1319 		return true;
1320 
1321 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1322 		return false;
1323 
1324 	for (;;) {
1325 		/*
1326 		 * Don't forget we might have a non-mountpoint managed dentry
1327 		 * that wants to block transit.
1328 		 */
1329 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1330 			int res = dentry->d_op->d_manage(path, true);
1331 			if (res)
1332 				return res == -EISDIR;
1333 			flags = dentry->d_flags;
1334 		}
1335 
1336 		if (flags & DCACHE_MOUNTED) {
1337 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1338 			if (mounted) {
1339 				path->mnt = &mounted->mnt;
1340 				dentry = path->dentry = mounted->mnt.mnt_root;
1341 				nd->flags |= LOOKUP_JUMPED;
1342 				*seqp = read_seqcount_begin(&dentry->d_seq);
1343 				*inode = dentry->d_inode;
1344 				/*
1345 				 * We don't need to re-check ->d_seq after this
1346 				 * ->d_inode read - there will be an RCU delay
1347 				 * between mount hash removal and ->mnt_root
1348 				 * becoming unpinned.
1349 				 */
1350 				flags = dentry->d_flags;
1351 				continue;
1352 			}
1353 			if (read_seqretry(&mount_lock, nd->m_seq))
1354 				return false;
1355 		}
1356 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1357 	}
1358 }
1359 
1360 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1361 			  struct path *path, struct inode **inode,
1362 			  unsigned int *seqp)
1363 {
1364 	bool jumped;
1365 	int ret;
1366 
1367 	path->mnt = nd->path.mnt;
1368 	path->dentry = dentry;
1369 	if (nd->flags & LOOKUP_RCU) {
1370 		unsigned int seq = *seqp;
1371 		if (unlikely(!*inode))
1372 			return -ENOENT;
1373 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1374 			return 0;
1375 		if (unlazy_child(nd, dentry, seq))
1376 			return -ECHILD;
1377 		// *path might've been clobbered by __follow_mount_rcu()
1378 		path->mnt = nd->path.mnt;
1379 		path->dentry = dentry;
1380 	}
1381 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1382 	if (jumped) {
1383 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1384 			ret = -EXDEV;
1385 		else
1386 			nd->flags |= LOOKUP_JUMPED;
1387 	}
1388 	if (unlikely(ret)) {
1389 		dput(path->dentry);
1390 		if (path->mnt != nd->path.mnt)
1391 			mntput(path->mnt);
1392 	} else {
1393 		*inode = d_backing_inode(path->dentry);
1394 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1395 	}
1396 	return ret;
1397 }
1398 
1399 /*
1400  * This looks up the name in dcache and possibly revalidates the found dentry.
1401  * NULL is returned if the dentry does not exist in the cache.
1402  */
1403 static struct dentry *lookup_dcache(const struct qstr *name,
1404 				    struct dentry *dir,
1405 				    unsigned int flags)
1406 {
1407 	struct dentry *dentry = d_lookup(dir, name);
1408 	if (dentry) {
1409 		int error = d_revalidate(dentry, flags);
1410 		if (unlikely(error <= 0)) {
1411 			if (!error)
1412 				d_invalidate(dentry);
1413 			dput(dentry);
1414 			return ERR_PTR(error);
1415 		}
1416 	}
1417 	return dentry;
1418 }
1419 
1420 /*
1421  * Parent directory has inode locked exclusive.  This is one
1422  * and only case when ->lookup() gets called on non in-lookup
1423  * dentries - as the matter of fact, this only gets called
1424  * when directory is guaranteed to have no in-lookup children
1425  * at all.
1426  */
1427 static struct dentry *__lookup_hash(const struct qstr *name,
1428 		struct dentry *base, unsigned int flags)
1429 {
1430 	struct dentry *dentry = lookup_dcache(name, base, flags);
1431 	struct dentry *old;
1432 	struct inode *dir = base->d_inode;
1433 
1434 	if (dentry)
1435 		return dentry;
1436 
1437 	/* Don't create child dentry for a dead directory. */
1438 	if (unlikely(IS_DEADDIR(dir)))
1439 		return ERR_PTR(-ENOENT);
1440 
1441 	dentry = d_alloc(base, name);
1442 	if (unlikely(!dentry))
1443 		return ERR_PTR(-ENOMEM);
1444 
1445 	old = dir->i_op->lookup(dir, dentry, flags);
1446 	if (unlikely(old)) {
1447 		dput(dentry);
1448 		dentry = old;
1449 	}
1450 	return dentry;
1451 }
1452 
1453 static struct dentry *lookup_fast(struct nameidata *nd,
1454 				  struct inode **inode,
1455 			          unsigned *seqp)
1456 {
1457 	struct dentry *dentry, *parent = nd->path.dentry;
1458 	int status = 1;
1459 
1460 	/*
1461 	 * Rename seqlock is not required here because in the off chance
1462 	 * of a false negative due to a concurrent rename, the caller is
1463 	 * going to fall back to non-racy lookup.
1464 	 */
1465 	if (nd->flags & LOOKUP_RCU) {
1466 		unsigned seq;
1467 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1468 		if (unlikely(!dentry)) {
1469 			if (unlazy_walk(nd))
1470 				return ERR_PTR(-ECHILD);
1471 			return NULL;
1472 		}
1473 
1474 		/*
1475 		 * This sequence count validates that the inode matches
1476 		 * the dentry name information from lookup.
1477 		 */
1478 		*inode = d_backing_inode(dentry);
1479 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1480 			return ERR_PTR(-ECHILD);
1481 
1482 		/*
1483 		 * This sequence count validates that the parent had no
1484 		 * changes while we did the lookup of the dentry above.
1485 		 *
1486 		 * The memory barrier in read_seqcount_begin of child is
1487 		 *  enough, we can use __read_seqcount_retry here.
1488 		 */
1489 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1490 			return ERR_PTR(-ECHILD);
1491 
1492 		*seqp = seq;
1493 		status = d_revalidate(dentry, nd->flags);
1494 		if (likely(status > 0))
1495 			return dentry;
1496 		if (unlazy_child(nd, dentry, seq))
1497 			return ERR_PTR(-ECHILD);
1498 		if (unlikely(status == -ECHILD))
1499 			/* we'd been told to redo it in non-rcu mode */
1500 			status = d_revalidate(dentry, nd->flags);
1501 	} else {
1502 		dentry = __d_lookup(parent, &nd->last);
1503 		if (unlikely(!dentry))
1504 			return NULL;
1505 		status = d_revalidate(dentry, nd->flags);
1506 	}
1507 	if (unlikely(status <= 0)) {
1508 		if (!status)
1509 			d_invalidate(dentry);
1510 		dput(dentry);
1511 		return ERR_PTR(status);
1512 	}
1513 	return dentry;
1514 }
1515 
1516 /* Fast lookup failed, do it the slow way */
1517 static struct dentry *__lookup_slow(const struct qstr *name,
1518 				    struct dentry *dir,
1519 				    unsigned int flags)
1520 {
1521 	struct dentry *dentry, *old;
1522 	struct inode *inode = dir->d_inode;
1523 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1524 
1525 	/* Don't go there if it's already dead */
1526 	if (unlikely(IS_DEADDIR(inode)))
1527 		return ERR_PTR(-ENOENT);
1528 again:
1529 	dentry = d_alloc_parallel(dir, name, &wq);
1530 	if (IS_ERR(dentry))
1531 		return dentry;
1532 	if (unlikely(!d_in_lookup(dentry))) {
1533 		int error = d_revalidate(dentry, flags);
1534 		if (unlikely(error <= 0)) {
1535 			if (!error) {
1536 				d_invalidate(dentry);
1537 				dput(dentry);
1538 				goto again;
1539 			}
1540 			dput(dentry);
1541 			dentry = ERR_PTR(error);
1542 		}
1543 	} else {
1544 		old = inode->i_op->lookup(inode, dentry, flags);
1545 		d_lookup_done(dentry);
1546 		if (unlikely(old)) {
1547 			dput(dentry);
1548 			dentry = old;
1549 		}
1550 	}
1551 	return dentry;
1552 }
1553 
1554 static struct dentry *lookup_slow(const struct qstr *name,
1555 				  struct dentry *dir,
1556 				  unsigned int flags)
1557 {
1558 	struct inode *inode = dir->d_inode;
1559 	struct dentry *res;
1560 	inode_lock_shared(inode);
1561 	res = __lookup_slow(name, dir, flags);
1562 	inode_unlock_shared(inode);
1563 	return res;
1564 }
1565 
1566 static inline int may_lookup(struct nameidata *nd)
1567 {
1568 	if (nd->flags & LOOKUP_RCU) {
1569 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1570 		if (err != -ECHILD)
1571 			return err;
1572 		if (unlazy_walk(nd))
1573 			return -ECHILD;
1574 	}
1575 	return inode_permission(nd->inode, MAY_EXEC);
1576 }
1577 
1578 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1579 {
1580 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1581 		return -ELOOP;
1582 
1583 	if (likely(nd->depth != EMBEDDED_LEVELS))
1584 		return 0;
1585 	if (likely(nd->stack != nd->internal))
1586 		return 0;
1587 	if (likely(nd_alloc_stack(nd)))
1588 		return 0;
1589 
1590 	if (nd->flags & LOOKUP_RCU) {
1591 		// we need to grab link before we do unlazy.  And we can't skip
1592 		// unlazy even if we fail to grab the link - cleanup needs it
1593 		bool grabbed_link = legitimize_path(nd, link, seq);
1594 
1595 		if (unlazy_walk(nd) != 0 || !grabbed_link)
1596 			return -ECHILD;
1597 
1598 		if (nd_alloc_stack(nd))
1599 			return 0;
1600 	}
1601 	return -ENOMEM;
1602 }
1603 
1604 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1605 
1606 static const char *pick_link(struct nameidata *nd, struct path *link,
1607 		     struct inode *inode, unsigned seq, int flags)
1608 {
1609 	struct saved *last;
1610 	const char *res;
1611 	int error = reserve_stack(nd, link, seq);
1612 
1613 	if (unlikely(error)) {
1614 		if (!(nd->flags & LOOKUP_RCU))
1615 			path_put(link);
1616 		return ERR_PTR(error);
1617 	}
1618 	last = nd->stack + nd->depth++;
1619 	last->link = *link;
1620 	clear_delayed_call(&last->done);
1621 	last->seq = seq;
1622 
1623 	if (flags & WALK_TRAILING) {
1624 		error = may_follow_link(nd, inode);
1625 		if (unlikely(error))
1626 			return ERR_PTR(error);
1627 	}
1628 
1629 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1630 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1631 		return ERR_PTR(-ELOOP);
1632 
1633 	if (!(nd->flags & LOOKUP_RCU)) {
1634 		touch_atime(&last->link);
1635 		cond_resched();
1636 	} else if (atime_needs_update(&last->link, inode)) {
1637 		if (unlikely(unlazy_walk(nd)))
1638 			return ERR_PTR(-ECHILD);
1639 		touch_atime(&last->link);
1640 	}
1641 
1642 	error = security_inode_follow_link(link->dentry, inode,
1643 					   nd->flags & LOOKUP_RCU);
1644 	if (unlikely(error))
1645 		return ERR_PTR(error);
1646 
1647 	res = READ_ONCE(inode->i_link);
1648 	if (!res) {
1649 		const char * (*get)(struct dentry *, struct inode *,
1650 				struct delayed_call *);
1651 		get = inode->i_op->get_link;
1652 		if (nd->flags & LOOKUP_RCU) {
1653 			res = get(NULL, inode, &last->done);
1654 			if (res == ERR_PTR(-ECHILD)) {
1655 				if (unlikely(unlazy_walk(nd)))
1656 					return ERR_PTR(-ECHILD);
1657 				res = get(link->dentry, inode, &last->done);
1658 			}
1659 		} else {
1660 			res = get(link->dentry, inode, &last->done);
1661 		}
1662 		if (!res)
1663 			goto all_done;
1664 		if (IS_ERR(res))
1665 			return res;
1666 	}
1667 	if (*res == '/') {
1668 		error = nd_jump_root(nd);
1669 		if (unlikely(error))
1670 			return ERR_PTR(error);
1671 		while (unlikely(*++res == '/'))
1672 			;
1673 	}
1674 	if (*res)
1675 		return res;
1676 all_done: // pure jump
1677 	put_link(nd);
1678 	return NULL;
1679 }
1680 
1681 /*
1682  * Do we need to follow links? We _really_ want to be able
1683  * to do this check without having to look at inode->i_op,
1684  * so we keep a cache of "no, this doesn't need follow_link"
1685  * for the common case.
1686  */
1687 static const char *step_into(struct nameidata *nd, int flags,
1688 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1689 {
1690 	struct path path;
1691 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1692 
1693 	if (err < 0)
1694 		return ERR_PTR(err);
1695 	if (likely(!d_is_symlink(path.dentry)) ||
1696 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1697 	   (flags & WALK_NOFOLLOW)) {
1698 		/* not a symlink or should not follow */
1699 		if (!(nd->flags & LOOKUP_RCU)) {
1700 			dput(nd->path.dentry);
1701 			if (nd->path.mnt != path.mnt)
1702 				mntput(nd->path.mnt);
1703 		}
1704 		nd->path = path;
1705 		nd->inode = inode;
1706 		nd->seq = seq;
1707 		return NULL;
1708 	}
1709 	if (nd->flags & LOOKUP_RCU) {
1710 		/* make sure that d_is_symlink above matches inode */
1711 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1712 			return ERR_PTR(-ECHILD);
1713 	} else {
1714 		if (path.mnt == nd->path.mnt)
1715 			mntget(path.mnt);
1716 	}
1717 	return pick_link(nd, &path, inode, seq, flags);
1718 }
1719 
1720 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1721 					struct inode **inodep,
1722 					unsigned *seqp)
1723 {
1724 	struct dentry *parent, *old;
1725 
1726 	if (path_equal(&nd->path, &nd->root))
1727 		goto in_root;
1728 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1729 		struct path path;
1730 		unsigned seq;
1731 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1732 					   &nd->root, &path, &seq))
1733 			goto in_root;
1734 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1735 			return ERR_PTR(-ECHILD);
1736 		nd->path = path;
1737 		nd->inode = path.dentry->d_inode;
1738 		nd->seq = seq;
1739 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1740 			return ERR_PTR(-ECHILD);
1741 		/* we know that mountpoint was pinned */
1742 	}
1743 	old = nd->path.dentry;
1744 	parent = old->d_parent;
1745 	*inodep = parent->d_inode;
1746 	*seqp = read_seqcount_begin(&parent->d_seq);
1747 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1748 		return ERR_PTR(-ECHILD);
1749 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1750 		return ERR_PTR(-ECHILD);
1751 	return parent;
1752 in_root:
1753 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1754 		return ERR_PTR(-ECHILD);
1755 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1756 		return ERR_PTR(-ECHILD);
1757 	return NULL;
1758 }
1759 
1760 static struct dentry *follow_dotdot(struct nameidata *nd,
1761 				 struct inode **inodep,
1762 				 unsigned *seqp)
1763 {
1764 	struct dentry *parent;
1765 
1766 	if (path_equal(&nd->path, &nd->root))
1767 		goto in_root;
1768 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1769 		struct path path;
1770 
1771 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1772 				       &nd->root, &path))
1773 			goto in_root;
1774 		path_put(&nd->path);
1775 		nd->path = path;
1776 		nd->inode = path.dentry->d_inode;
1777 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1778 			return ERR_PTR(-EXDEV);
1779 	}
1780 	/* rare case of legitimate dget_parent()... */
1781 	parent = dget_parent(nd->path.dentry);
1782 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1783 		dput(parent);
1784 		return ERR_PTR(-ENOENT);
1785 	}
1786 	*seqp = 0;
1787 	*inodep = parent->d_inode;
1788 	return parent;
1789 
1790 in_root:
1791 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1792 		return ERR_PTR(-EXDEV);
1793 	dget(nd->path.dentry);
1794 	return NULL;
1795 }
1796 
1797 static const char *handle_dots(struct nameidata *nd, int type)
1798 {
1799 	if (type == LAST_DOTDOT) {
1800 		const char *error = NULL;
1801 		struct dentry *parent;
1802 		struct inode *inode;
1803 		unsigned seq;
1804 
1805 		if (!nd->root.mnt) {
1806 			error = ERR_PTR(set_root(nd));
1807 			if (error)
1808 				return error;
1809 		}
1810 		if (nd->flags & LOOKUP_RCU)
1811 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1812 		else
1813 			parent = follow_dotdot(nd, &inode, &seq);
1814 		if (IS_ERR(parent))
1815 			return ERR_CAST(parent);
1816 		if (unlikely(!parent))
1817 			error = step_into(nd, WALK_NOFOLLOW,
1818 					 nd->path.dentry, nd->inode, nd->seq);
1819 		else
1820 			error = step_into(nd, WALK_NOFOLLOW,
1821 					 parent, inode, seq);
1822 		if (unlikely(error))
1823 			return error;
1824 
1825 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1826 			/*
1827 			 * If there was a racing rename or mount along our
1828 			 * path, then we can't be sure that ".." hasn't jumped
1829 			 * above nd->root (and so userspace should retry or use
1830 			 * some fallback).
1831 			 */
1832 			smp_rmb();
1833 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1834 				return ERR_PTR(-EAGAIN);
1835 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1836 				return ERR_PTR(-EAGAIN);
1837 		}
1838 	}
1839 	return NULL;
1840 }
1841 
1842 static const char *walk_component(struct nameidata *nd, int flags)
1843 {
1844 	struct dentry *dentry;
1845 	struct inode *inode;
1846 	unsigned seq;
1847 	/*
1848 	 * "." and ".." are special - ".." especially so because it has
1849 	 * to be able to know about the current root directory and
1850 	 * parent relationships.
1851 	 */
1852 	if (unlikely(nd->last_type != LAST_NORM)) {
1853 		if (!(flags & WALK_MORE) && nd->depth)
1854 			put_link(nd);
1855 		return handle_dots(nd, nd->last_type);
1856 	}
1857 	dentry = lookup_fast(nd, &inode, &seq);
1858 	if (IS_ERR(dentry))
1859 		return ERR_CAST(dentry);
1860 	if (unlikely(!dentry)) {
1861 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1862 		if (IS_ERR(dentry))
1863 			return ERR_CAST(dentry);
1864 	}
1865 	if (!(flags & WALK_MORE) && nd->depth)
1866 		put_link(nd);
1867 	return step_into(nd, flags, dentry, inode, seq);
1868 }
1869 
1870 /*
1871  * We can do the critical dentry name comparison and hashing
1872  * operations one word at a time, but we are limited to:
1873  *
1874  * - Architectures with fast unaligned word accesses. We could
1875  *   do a "get_unaligned()" if this helps and is sufficiently
1876  *   fast.
1877  *
1878  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1879  *   do not trap on the (extremely unlikely) case of a page
1880  *   crossing operation.
1881  *
1882  * - Furthermore, we need an efficient 64-bit compile for the
1883  *   64-bit case in order to generate the "number of bytes in
1884  *   the final mask". Again, that could be replaced with a
1885  *   efficient population count instruction or similar.
1886  */
1887 #ifdef CONFIG_DCACHE_WORD_ACCESS
1888 
1889 #include <asm/word-at-a-time.h>
1890 
1891 #ifdef HASH_MIX
1892 
1893 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1894 
1895 #elif defined(CONFIG_64BIT)
1896 /*
1897  * Register pressure in the mixing function is an issue, particularly
1898  * on 32-bit x86, but almost any function requires one state value and
1899  * one temporary.  Instead, use a function designed for two state values
1900  * and no temporaries.
1901  *
1902  * This function cannot create a collision in only two iterations, so
1903  * we have two iterations to achieve avalanche.  In those two iterations,
1904  * we have six layers of mixing, which is enough to spread one bit's
1905  * influence out to 2^6 = 64 state bits.
1906  *
1907  * Rotate constants are scored by considering either 64 one-bit input
1908  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1909  * probability of that delta causing a change to each of the 128 output
1910  * bits, using a sample of random initial states.
1911  *
1912  * The Shannon entropy of the computed probabilities is then summed
1913  * to produce a score.  Ideally, any input change has a 50% chance of
1914  * toggling any given output bit.
1915  *
1916  * Mixing scores (in bits) for (12,45):
1917  * Input delta: 1-bit      2-bit
1918  * 1 round:     713.3    42542.6
1919  * 2 rounds:   2753.7   140389.8
1920  * 3 rounds:   5954.1   233458.2
1921  * 4 rounds:   7862.6   256672.2
1922  * Perfect:    8192     258048
1923  *            (64*128) (64*63/2 * 128)
1924  */
1925 #define HASH_MIX(x, y, a)	\
1926 	(	x ^= (a),	\
1927 	y ^= x,	x = rol64(x,12),\
1928 	x += y,	y = rol64(y,45),\
1929 	y *= 9			)
1930 
1931 /*
1932  * Fold two longs into one 32-bit hash value.  This must be fast, but
1933  * latency isn't quite as critical, as there is a fair bit of additional
1934  * work done before the hash value is used.
1935  */
1936 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1937 {
1938 	y ^= x * GOLDEN_RATIO_64;
1939 	y *= GOLDEN_RATIO_64;
1940 	return y >> 32;
1941 }
1942 
1943 #else	/* 32-bit case */
1944 
1945 /*
1946  * Mixing scores (in bits) for (7,20):
1947  * Input delta: 1-bit      2-bit
1948  * 1 round:     330.3     9201.6
1949  * 2 rounds:   1246.4    25475.4
1950  * 3 rounds:   1907.1    31295.1
1951  * 4 rounds:   2042.3    31718.6
1952  * Perfect:    2048      31744
1953  *            (32*64)   (32*31/2 * 64)
1954  */
1955 #define HASH_MIX(x, y, a)	\
1956 	(	x ^= (a),	\
1957 	y ^= x,	x = rol32(x, 7),\
1958 	x += y,	y = rol32(y,20),\
1959 	y *= 9			)
1960 
1961 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1962 {
1963 	/* Use arch-optimized multiply if one exists */
1964 	return __hash_32(y ^ __hash_32(x));
1965 }
1966 
1967 #endif
1968 
1969 /*
1970  * Return the hash of a string of known length.  This is carfully
1971  * designed to match hash_name(), which is the more critical function.
1972  * In particular, we must end by hashing a final word containing 0..7
1973  * payload bytes, to match the way that hash_name() iterates until it
1974  * finds the delimiter after the name.
1975  */
1976 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1977 {
1978 	unsigned long a, x = 0, y = (unsigned long)salt;
1979 
1980 	for (;;) {
1981 		if (!len)
1982 			goto done;
1983 		a = load_unaligned_zeropad(name);
1984 		if (len < sizeof(unsigned long))
1985 			break;
1986 		HASH_MIX(x, y, a);
1987 		name += sizeof(unsigned long);
1988 		len -= sizeof(unsigned long);
1989 	}
1990 	x ^= a & bytemask_from_count(len);
1991 done:
1992 	return fold_hash(x, y);
1993 }
1994 EXPORT_SYMBOL(full_name_hash);
1995 
1996 /* Return the "hash_len" (hash and length) of a null-terminated string */
1997 u64 hashlen_string(const void *salt, const char *name)
1998 {
1999 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2000 	unsigned long adata, mask, len;
2001 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2002 
2003 	len = 0;
2004 	goto inside;
2005 
2006 	do {
2007 		HASH_MIX(x, y, a);
2008 		len += sizeof(unsigned long);
2009 inside:
2010 		a = load_unaligned_zeropad(name+len);
2011 	} while (!has_zero(a, &adata, &constants));
2012 
2013 	adata = prep_zero_mask(a, adata, &constants);
2014 	mask = create_zero_mask(adata);
2015 	x ^= a & zero_bytemask(mask);
2016 
2017 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2018 }
2019 EXPORT_SYMBOL(hashlen_string);
2020 
2021 /*
2022  * Calculate the length and hash of the path component, and
2023  * return the "hash_len" as the result.
2024  */
2025 static inline u64 hash_name(const void *salt, const char *name)
2026 {
2027 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2028 	unsigned long adata, bdata, mask, len;
2029 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2030 
2031 	len = 0;
2032 	goto inside;
2033 
2034 	do {
2035 		HASH_MIX(x, y, a);
2036 		len += sizeof(unsigned long);
2037 inside:
2038 		a = load_unaligned_zeropad(name+len);
2039 		b = a ^ REPEAT_BYTE('/');
2040 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2041 
2042 	adata = prep_zero_mask(a, adata, &constants);
2043 	bdata = prep_zero_mask(b, bdata, &constants);
2044 	mask = create_zero_mask(adata | bdata);
2045 	x ^= a & zero_bytemask(mask);
2046 
2047 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2048 }
2049 
2050 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2051 
2052 /* Return the hash of a string of known length */
2053 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2054 {
2055 	unsigned long hash = init_name_hash(salt);
2056 	while (len--)
2057 		hash = partial_name_hash((unsigned char)*name++, hash);
2058 	return end_name_hash(hash);
2059 }
2060 EXPORT_SYMBOL(full_name_hash);
2061 
2062 /* Return the "hash_len" (hash and length) of a null-terminated string */
2063 u64 hashlen_string(const void *salt, const char *name)
2064 {
2065 	unsigned long hash = init_name_hash(salt);
2066 	unsigned long len = 0, c;
2067 
2068 	c = (unsigned char)*name;
2069 	while (c) {
2070 		len++;
2071 		hash = partial_name_hash(c, hash);
2072 		c = (unsigned char)name[len];
2073 	}
2074 	return hashlen_create(end_name_hash(hash), len);
2075 }
2076 EXPORT_SYMBOL(hashlen_string);
2077 
2078 /*
2079  * We know there's a real path component here of at least
2080  * one character.
2081  */
2082 static inline u64 hash_name(const void *salt, const char *name)
2083 {
2084 	unsigned long hash = init_name_hash(salt);
2085 	unsigned long len = 0, c;
2086 
2087 	c = (unsigned char)*name;
2088 	do {
2089 		len++;
2090 		hash = partial_name_hash(c, hash);
2091 		c = (unsigned char)name[len];
2092 	} while (c && c != '/');
2093 	return hashlen_create(end_name_hash(hash), len);
2094 }
2095 
2096 #endif
2097 
2098 /*
2099  * Name resolution.
2100  * This is the basic name resolution function, turning a pathname into
2101  * the final dentry. We expect 'base' to be positive and a directory.
2102  *
2103  * Returns 0 and nd will have valid dentry and mnt on success.
2104  * Returns error and drops reference to input namei data on failure.
2105  */
2106 static int link_path_walk(const char *name, struct nameidata *nd)
2107 {
2108 	int depth = 0; // depth <= nd->depth
2109 	int err;
2110 
2111 	nd->last_type = LAST_ROOT;
2112 	nd->flags |= LOOKUP_PARENT;
2113 	if (IS_ERR(name))
2114 		return PTR_ERR(name);
2115 	while (*name=='/')
2116 		name++;
2117 	if (!*name) {
2118 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2119 		return 0;
2120 	}
2121 
2122 	/* At this point we know we have a real path component. */
2123 	for(;;) {
2124 		const char *link;
2125 		u64 hash_len;
2126 		int type;
2127 
2128 		err = may_lookup(nd);
2129 		if (err)
2130 			return err;
2131 
2132 		hash_len = hash_name(nd->path.dentry, name);
2133 
2134 		type = LAST_NORM;
2135 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2136 			case 2:
2137 				if (name[1] == '.') {
2138 					type = LAST_DOTDOT;
2139 					nd->flags |= LOOKUP_JUMPED;
2140 				}
2141 				break;
2142 			case 1:
2143 				type = LAST_DOT;
2144 		}
2145 		if (likely(type == LAST_NORM)) {
2146 			struct dentry *parent = nd->path.dentry;
2147 			nd->flags &= ~LOOKUP_JUMPED;
2148 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2149 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2150 				err = parent->d_op->d_hash(parent, &this);
2151 				if (err < 0)
2152 					return err;
2153 				hash_len = this.hash_len;
2154 				name = this.name;
2155 			}
2156 		}
2157 
2158 		nd->last.hash_len = hash_len;
2159 		nd->last.name = name;
2160 		nd->last_type = type;
2161 
2162 		name += hashlen_len(hash_len);
2163 		if (!*name)
2164 			goto OK;
2165 		/*
2166 		 * If it wasn't NUL, we know it was '/'. Skip that
2167 		 * slash, and continue until no more slashes.
2168 		 */
2169 		do {
2170 			name++;
2171 		} while (unlikely(*name == '/'));
2172 		if (unlikely(!*name)) {
2173 OK:
2174 			/* pathname or trailing symlink, done */
2175 			if (!depth) {
2176 				nd->dir_uid = nd->inode->i_uid;
2177 				nd->dir_mode = nd->inode->i_mode;
2178 				nd->flags &= ~LOOKUP_PARENT;
2179 				return 0;
2180 			}
2181 			/* last component of nested symlink */
2182 			name = nd->stack[--depth].name;
2183 			link = walk_component(nd, 0);
2184 		} else {
2185 			/* not the last component */
2186 			link = walk_component(nd, WALK_MORE);
2187 		}
2188 		if (unlikely(link)) {
2189 			if (IS_ERR(link))
2190 				return PTR_ERR(link);
2191 			/* a symlink to follow */
2192 			nd->stack[depth++].name = name;
2193 			name = link;
2194 			continue;
2195 		}
2196 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2197 			if (nd->flags & LOOKUP_RCU) {
2198 				if (unlazy_walk(nd))
2199 					return -ECHILD;
2200 			}
2201 			return -ENOTDIR;
2202 		}
2203 	}
2204 }
2205 
2206 /* must be paired with terminate_walk() */
2207 static const char *path_init(struct nameidata *nd, unsigned flags)
2208 {
2209 	int error;
2210 	const char *s = nd->name->name;
2211 
2212 	if (!*s)
2213 		flags &= ~LOOKUP_RCU;
2214 	if (flags & LOOKUP_RCU)
2215 		rcu_read_lock();
2216 
2217 	nd->flags = flags | LOOKUP_JUMPED;
2218 	nd->depth = 0;
2219 
2220 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2221 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2222 	smp_rmb();
2223 
2224 	if (flags & LOOKUP_ROOT) {
2225 		struct dentry *root = nd->root.dentry;
2226 		struct inode *inode = root->d_inode;
2227 		if (*s && unlikely(!d_can_lookup(root)))
2228 			return ERR_PTR(-ENOTDIR);
2229 		nd->path = nd->root;
2230 		nd->inode = inode;
2231 		if (flags & LOOKUP_RCU) {
2232 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2233 			nd->root_seq = nd->seq;
2234 		} else {
2235 			path_get(&nd->path);
2236 		}
2237 		return s;
2238 	}
2239 
2240 	nd->root.mnt = NULL;
2241 	nd->path.mnt = NULL;
2242 	nd->path.dentry = NULL;
2243 
2244 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2245 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2246 		error = nd_jump_root(nd);
2247 		if (unlikely(error))
2248 			return ERR_PTR(error);
2249 		return s;
2250 	}
2251 
2252 	/* Relative pathname -- get the starting-point it is relative to. */
2253 	if (nd->dfd == AT_FDCWD) {
2254 		if (flags & LOOKUP_RCU) {
2255 			struct fs_struct *fs = current->fs;
2256 			unsigned seq;
2257 
2258 			do {
2259 				seq = read_seqcount_begin(&fs->seq);
2260 				nd->path = fs->pwd;
2261 				nd->inode = nd->path.dentry->d_inode;
2262 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2263 			} while (read_seqcount_retry(&fs->seq, seq));
2264 		} else {
2265 			get_fs_pwd(current->fs, &nd->path);
2266 			nd->inode = nd->path.dentry->d_inode;
2267 		}
2268 	} else {
2269 		/* Caller must check execute permissions on the starting path component */
2270 		struct fd f = fdget_raw(nd->dfd);
2271 		struct dentry *dentry;
2272 
2273 		if (!f.file)
2274 			return ERR_PTR(-EBADF);
2275 
2276 		dentry = f.file->f_path.dentry;
2277 
2278 		if (*s && unlikely(!d_can_lookup(dentry))) {
2279 			fdput(f);
2280 			return ERR_PTR(-ENOTDIR);
2281 		}
2282 
2283 		nd->path = f.file->f_path;
2284 		if (flags & LOOKUP_RCU) {
2285 			nd->inode = nd->path.dentry->d_inode;
2286 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2287 		} else {
2288 			path_get(&nd->path);
2289 			nd->inode = nd->path.dentry->d_inode;
2290 		}
2291 		fdput(f);
2292 	}
2293 
2294 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2295 	if (flags & LOOKUP_IS_SCOPED) {
2296 		nd->root = nd->path;
2297 		if (flags & LOOKUP_RCU) {
2298 			nd->root_seq = nd->seq;
2299 		} else {
2300 			path_get(&nd->root);
2301 			nd->flags |= LOOKUP_ROOT_GRABBED;
2302 		}
2303 	}
2304 	return s;
2305 }
2306 
2307 static inline const char *lookup_last(struct nameidata *nd)
2308 {
2309 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2310 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2311 
2312 	return walk_component(nd, WALK_TRAILING);
2313 }
2314 
2315 static int handle_lookup_down(struct nameidata *nd)
2316 {
2317 	if (!(nd->flags & LOOKUP_RCU))
2318 		dget(nd->path.dentry);
2319 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2320 			nd->path.dentry, nd->inode, nd->seq));
2321 }
2322 
2323 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2324 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2325 {
2326 	const char *s = path_init(nd, flags);
2327 	int err;
2328 
2329 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2330 		err = handle_lookup_down(nd);
2331 		if (unlikely(err < 0))
2332 			s = ERR_PTR(err);
2333 	}
2334 
2335 	while (!(err = link_path_walk(s, nd)) &&
2336 	       (s = lookup_last(nd)) != NULL)
2337 		;
2338 	if (!err)
2339 		err = complete_walk(nd);
2340 
2341 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2342 		if (!d_can_lookup(nd->path.dentry))
2343 			err = -ENOTDIR;
2344 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2345 		err = handle_lookup_down(nd);
2346 		nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2347 	}
2348 	if (!err) {
2349 		*path = nd->path;
2350 		nd->path.mnt = NULL;
2351 		nd->path.dentry = NULL;
2352 	}
2353 	terminate_walk(nd);
2354 	return err;
2355 }
2356 
2357 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2358 		    struct path *path, struct path *root)
2359 {
2360 	int retval;
2361 	struct nameidata nd;
2362 	if (IS_ERR(name))
2363 		return PTR_ERR(name);
2364 	if (unlikely(root)) {
2365 		nd.root = *root;
2366 		flags |= LOOKUP_ROOT;
2367 	}
2368 	set_nameidata(&nd, dfd, name);
2369 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2370 	if (unlikely(retval == -ECHILD))
2371 		retval = path_lookupat(&nd, flags, path);
2372 	if (unlikely(retval == -ESTALE))
2373 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2374 
2375 	if (likely(!retval))
2376 		audit_inode(name, path->dentry,
2377 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2378 	restore_nameidata();
2379 	putname(name);
2380 	return retval;
2381 }
2382 
2383 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2384 static int path_parentat(struct nameidata *nd, unsigned flags,
2385 				struct path *parent)
2386 {
2387 	const char *s = path_init(nd, flags);
2388 	int err = link_path_walk(s, nd);
2389 	if (!err)
2390 		err = complete_walk(nd);
2391 	if (!err) {
2392 		*parent = nd->path;
2393 		nd->path.mnt = NULL;
2394 		nd->path.dentry = NULL;
2395 	}
2396 	terminate_walk(nd);
2397 	return err;
2398 }
2399 
2400 static struct filename *filename_parentat(int dfd, struct filename *name,
2401 				unsigned int flags, struct path *parent,
2402 				struct qstr *last, int *type)
2403 {
2404 	int retval;
2405 	struct nameidata nd;
2406 
2407 	if (IS_ERR(name))
2408 		return name;
2409 	set_nameidata(&nd, dfd, name);
2410 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2411 	if (unlikely(retval == -ECHILD))
2412 		retval = path_parentat(&nd, flags, parent);
2413 	if (unlikely(retval == -ESTALE))
2414 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2415 	if (likely(!retval)) {
2416 		*last = nd.last;
2417 		*type = nd.last_type;
2418 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2419 	} else {
2420 		putname(name);
2421 		name = ERR_PTR(retval);
2422 	}
2423 	restore_nameidata();
2424 	return name;
2425 }
2426 
2427 /* does lookup, returns the object with parent locked */
2428 struct dentry *kern_path_locked(const char *name, struct path *path)
2429 {
2430 	struct filename *filename;
2431 	struct dentry *d;
2432 	struct qstr last;
2433 	int type;
2434 
2435 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2436 				    &last, &type);
2437 	if (IS_ERR(filename))
2438 		return ERR_CAST(filename);
2439 	if (unlikely(type != LAST_NORM)) {
2440 		path_put(path);
2441 		putname(filename);
2442 		return ERR_PTR(-EINVAL);
2443 	}
2444 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2445 	d = __lookup_hash(&last, path->dentry, 0);
2446 	if (IS_ERR(d)) {
2447 		inode_unlock(path->dentry->d_inode);
2448 		path_put(path);
2449 	}
2450 	putname(filename);
2451 	return d;
2452 }
2453 
2454 int kern_path(const char *name, unsigned int flags, struct path *path)
2455 {
2456 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2457 			       flags, path, NULL);
2458 }
2459 EXPORT_SYMBOL(kern_path);
2460 
2461 /**
2462  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2463  * @dentry:  pointer to dentry of the base directory
2464  * @mnt: pointer to vfs mount of the base directory
2465  * @name: pointer to file name
2466  * @flags: lookup flags
2467  * @path: pointer to struct path to fill
2468  */
2469 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2470 		    const char *name, unsigned int flags,
2471 		    struct path *path)
2472 {
2473 	struct path root = {.mnt = mnt, .dentry = dentry};
2474 	/* the first argument of filename_lookup() is ignored with root */
2475 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2476 			       flags , path, &root);
2477 }
2478 EXPORT_SYMBOL(vfs_path_lookup);
2479 
2480 static int lookup_one_len_common(const char *name, struct dentry *base,
2481 				 int len, struct qstr *this)
2482 {
2483 	this->name = name;
2484 	this->len = len;
2485 	this->hash = full_name_hash(base, name, len);
2486 	if (!len)
2487 		return -EACCES;
2488 
2489 	if (unlikely(name[0] == '.')) {
2490 		if (len < 2 || (len == 2 && name[1] == '.'))
2491 			return -EACCES;
2492 	}
2493 
2494 	while (len--) {
2495 		unsigned int c = *(const unsigned char *)name++;
2496 		if (c == '/' || c == '\0')
2497 			return -EACCES;
2498 	}
2499 	/*
2500 	 * See if the low-level filesystem might want
2501 	 * to use its own hash..
2502 	 */
2503 	if (base->d_flags & DCACHE_OP_HASH) {
2504 		int err = base->d_op->d_hash(base, this);
2505 		if (err < 0)
2506 			return err;
2507 	}
2508 
2509 	return inode_permission(base->d_inode, MAY_EXEC);
2510 }
2511 
2512 /**
2513  * try_lookup_one_len - filesystem helper to lookup single pathname component
2514  * @name:	pathname component to lookup
2515  * @base:	base directory to lookup from
2516  * @len:	maximum length @len should be interpreted to
2517  *
2518  * Look up a dentry by name in the dcache, returning NULL if it does not
2519  * currently exist.  The function does not try to create a dentry.
2520  *
2521  * Note that this routine is purely a helper for filesystem usage and should
2522  * not be called by generic code.
2523  *
2524  * The caller must hold base->i_mutex.
2525  */
2526 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2527 {
2528 	struct qstr this;
2529 	int err;
2530 
2531 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2532 
2533 	err = lookup_one_len_common(name, base, len, &this);
2534 	if (err)
2535 		return ERR_PTR(err);
2536 
2537 	return lookup_dcache(&this, base, 0);
2538 }
2539 EXPORT_SYMBOL(try_lookup_one_len);
2540 
2541 /**
2542  * lookup_one_len - filesystem helper to lookup single pathname component
2543  * @name:	pathname component to lookup
2544  * @base:	base directory to lookup from
2545  * @len:	maximum length @len should be interpreted to
2546  *
2547  * Note that this routine is purely a helper for filesystem usage and should
2548  * not be called by generic code.
2549  *
2550  * The caller must hold base->i_mutex.
2551  */
2552 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2553 {
2554 	struct dentry *dentry;
2555 	struct qstr this;
2556 	int err;
2557 
2558 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2559 
2560 	err = lookup_one_len_common(name, base, len, &this);
2561 	if (err)
2562 		return ERR_PTR(err);
2563 
2564 	dentry = lookup_dcache(&this, base, 0);
2565 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2566 }
2567 EXPORT_SYMBOL(lookup_one_len);
2568 
2569 /**
2570  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2571  * @name:	pathname component to lookup
2572  * @base:	base directory to lookup from
2573  * @len:	maximum length @len should be interpreted to
2574  *
2575  * Note that this routine is purely a helper for filesystem usage and should
2576  * not be called by generic code.
2577  *
2578  * Unlike lookup_one_len, it should be called without the parent
2579  * i_mutex held, and will take the i_mutex itself if necessary.
2580  */
2581 struct dentry *lookup_one_len_unlocked(const char *name,
2582 				       struct dentry *base, int len)
2583 {
2584 	struct qstr this;
2585 	int err;
2586 	struct dentry *ret;
2587 
2588 	err = lookup_one_len_common(name, base, len, &this);
2589 	if (err)
2590 		return ERR_PTR(err);
2591 
2592 	ret = lookup_dcache(&this, base, 0);
2593 	if (!ret)
2594 		ret = lookup_slow(&this, base, 0);
2595 	return ret;
2596 }
2597 EXPORT_SYMBOL(lookup_one_len_unlocked);
2598 
2599 /*
2600  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2601  * on negatives.  Returns known positive or ERR_PTR(); that's what
2602  * most of the users want.  Note that pinned negative with unlocked parent
2603  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2604  * need to be very careful; pinned positives have ->d_inode stable, so
2605  * this one avoids such problems.
2606  */
2607 struct dentry *lookup_positive_unlocked(const char *name,
2608 				       struct dentry *base, int len)
2609 {
2610 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2611 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2612 		dput(ret);
2613 		ret = ERR_PTR(-ENOENT);
2614 	}
2615 	return ret;
2616 }
2617 EXPORT_SYMBOL(lookup_positive_unlocked);
2618 
2619 #ifdef CONFIG_UNIX98_PTYS
2620 int path_pts(struct path *path)
2621 {
2622 	/* Find something mounted on "pts" in the same directory as
2623 	 * the input path.
2624 	 */
2625 	struct dentry *parent = dget_parent(path->dentry);
2626 	struct dentry *child;
2627 	struct qstr this = QSTR_INIT("pts", 3);
2628 
2629 	if (unlikely(!path_connected(path->mnt, parent))) {
2630 		dput(parent);
2631 		return -ENOENT;
2632 	}
2633 	dput(path->dentry);
2634 	path->dentry = parent;
2635 	child = d_hash_and_lookup(parent, &this);
2636 	if (!child)
2637 		return -ENOENT;
2638 
2639 	path->dentry = child;
2640 	dput(parent);
2641 	follow_down(path);
2642 	return 0;
2643 }
2644 #endif
2645 
2646 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2647 		 struct path *path, int *empty)
2648 {
2649 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2650 			       flags, path, NULL);
2651 }
2652 EXPORT_SYMBOL(user_path_at_empty);
2653 
2654 int __check_sticky(struct inode *dir, struct inode *inode)
2655 {
2656 	kuid_t fsuid = current_fsuid();
2657 
2658 	if (uid_eq(inode->i_uid, fsuid))
2659 		return 0;
2660 	if (uid_eq(dir->i_uid, fsuid))
2661 		return 0;
2662 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2663 }
2664 EXPORT_SYMBOL(__check_sticky);
2665 
2666 /*
2667  *	Check whether we can remove a link victim from directory dir, check
2668  *  whether the type of victim is right.
2669  *  1. We can't do it if dir is read-only (done in permission())
2670  *  2. We should have write and exec permissions on dir
2671  *  3. We can't remove anything from append-only dir
2672  *  4. We can't do anything with immutable dir (done in permission())
2673  *  5. If the sticky bit on dir is set we should either
2674  *	a. be owner of dir, or
2675  *	b. be owner of victim, or
2676  *	c. have CAP_FOWNER capability
2677  *  6. If the victim is append-only or immutable we can't do antyhing with
2678  *     links pointing to it.
2679  *  7. If the victim has an unknown uid or gid we can't change the inode.
2680  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2681  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2682  * 10. We can't remove a root or mountpoint.
2683  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2684  *     nfs_async_unlink().
2685  */
2686 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2687 {
2688 	struct inode *inode = d_backing_inode(victim);
2689 	int error;
2690 
2691 	if (d_is_negative(victim))
2692 		return -ENOENT;
2693 	BUG_ON(!inode);
2694 
2695 	BUG_ON(victim->d_parent->d_inode != dir);
2696 
2697 	/* Inode writeback is not safe when the uid or gid are invalid. */
2698 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2699 		return -EOVERFLOW;
2700 
2701 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2702 
2703 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2704 	if (error)
2705 		return error;
2706 	if (IS_APPEND(dir))
2707 		return -EPERM;
2708 
2709 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2710 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2711 		return -EPERM;
2712 	if (isdir) {
2713 		if (!d_is_dir(victim))
2714 			return -ENOTDIR;
2715 		if (IS_ROOT(victim))
2716 			return -EBUSY;
2717 	} else if (d_is_dir(victim))
2718 		return -EISDIR;
2719 	if (IS_DEADDIR(dir))
2720 		return -ENOENT;
2721 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2722 		return -EBUSY;
2723 	return 0;
2724 }
2725 
2726 /*	Check whether we can create an object with dentry child in directory
2727  *  dir.
2728  *  1. We can't do it if child already exists (open has special treatment for
2729  *     this case, but since we are inlined it's OK)
2730  *  2. We can't do it if dir is read-only (done in permission())
2731  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2732  *  4. We should have write and exec permissions on dir
2733  *  5. We can't do it if dir is immutable (done in permission())
2734  */
2735 static inline int may_create(struct inode *dir, struct dentry *child)
2736 {
2737 	struct user_namespace *s_user_ns;
2738 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2739 	if (child->d_inode)
2740 		return -EEXIST;
2741 	if (IS_DEADDIR(dir))
2742 		return -ENOENT;
2743 	s_user_ns = dir->i_sb->s_user_ns;
2744 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2745 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2746 		return -EOVERFLOW;
2747 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2748 }
2749 
2750 /*
2751  * p1 and p2 should be directories on the same fs.
2752  */
2753 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2754 {
2755 	struct dentry *p;
2756 
2757 	if (p1 == p2) {
2758 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2759 		return NULL;
2760 	}
2761 
2762 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2763 
2764 	p = d_ancestor(p2, p1);
2765 	if (p) {
2766 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2767 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2768 		return p;
2769 	}
2770 
2771 	p = d_ancestor(p1, p2);
2772 	if (p) {
2773 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2774 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2775 		return p;
2776 	}
2777 
2778 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2779 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2780 	return NULL;
2781 }
2782 EXPORT_SYMBOL(lock_rename);
2783 
2784 void unlock_rename(struct dentry *p1, struct dentry *p2)
2785 {
2786 	inode_unlock(p1->d_inode);
2787 	if (p1 != p2) {
2788 		inode_unlock(p2->d_inode);
2789 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2790 	}
2791 }
2792 EXPORT_SYMBOL(unlock_rename);
2793 
2794 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2795 		bool want_excl)
2796 {
2797 	int error = may_create(dir, dentry);
2798 	if (error)
2799 		return error;
2800 
2801 	if (!dir->i_op->create)
2802 		return -EACCES;	/* shouldn't it be ENOSYS? */
2803 	mode &= S_IALLUGO;
2804 	mode |= S_IFREG;
2805 	error = security_inode_create(dir, dentry, mode);
2806 	if (error)
2807 		return error;
2808 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2809 	if (!error)
2810 		fsnotify_create(dir, dentry);
2811 	return error;
2812 }
2813 EXPORT_SYMBOL(vfs_create);
2814 
2815 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2816 		int (*f)(struct dentry *, umode_t, void *),
2817 		void *arg)
2818 {
2819 	struct inode *dir = dentry->d_parent->d_inode;
2820 	int error = may_create(dir, dentry);
2821 	if (error)
2822 		return error;
2823 
2824 	mode &= S_IALLUGO;
2825 	mode |= S_IFREG;
2826 	error = security_inode_create(dir, dentry, mode);
2827 	if (error)
2828 		return error;
2829 	error = f(dentry, mode, arg);
2830 	if (!error)
2831 		fsnotify_create(dir, dentry);
2832 	return error;
2833 }
2834 EXPORT_SYMBOL(vfs_mkobj);
2835 
2836 bool may_open_dev(const struct path *path)
2837 {
2838 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2839 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2840 }
2841 
2842 static int may_open(const struct path *path, int acc_mode, int flag)
2843 {
2844 	struct dentry *dentry = path->dentry;
2845 	struct inode *inode = dentry->d_inode;
2846 	int error;
2847 
2848 	if (!inode)
2849 		return -ENOENT;
2850 
2851 	switch (inode->i_mode & S_IFMT) {
2852 	case S_IFLNK:
2853 		return -ELOOP;
2854 	case S_IFDIR:
2855 		if (acc_mode & MAY_WRITE)
2856 			return -EISDIR;
2857 		if (acc_mode & MAY_EXEC)
2858 			return -EACCES;
2859 		break;
2860 	case S_IFBLK:
2861 	case S_IFCHR:
2862 		if (!may_open_dev(path))
2863 			return -EACCES;
2864 		fallthrough;
2865 	case S_IFIFO:
2866 	case S_IFSOCK:
2867 		if (acc_mode & MAY_EXEC)
2868 			return -EACCES;
2869 		flag &= ~O_TRUNC;
2870 		break;
2871 	case S_IFREG:
2872 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
2873 			return -EACCES;
2874 		break;
2875 	}
2876 
2877 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2878 	if (error)
2879 		return error;
2880 
2881 	/*
2882 	 * An append-only file must be opened in append mode for writing.
2883 	 */
2884 	if (IS_APPEND(inode)) {
2885 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2886 			return -EPERM;
2887 		if (flag & O_TRUNC)
2888 			return -EPERM;
2889 	}
2890 
2891 	/* O_NOATIME can only be set by the owner or superuser */
2892 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2893 		return -EPERM;
2894 
2895 	return 0;
2896 }
2897 
2898 static int handle_truncate(struct file *filp)
2899 {
2900 	const struct path *path = &filp->f_path;
2901 	struct inode *inode = path->dentry->d_inode;
2902 	int error = get_write_access(inode);
2903 	if (error)
2904 		return error;
2905 	/*
2906 	 * Refuse to truncate files with mandatory locks held on them.
2907 	 */
2908 	error = locks_verify_locked(filp);
2909 	if (!error)
2910 		error = security_path_truncate(path);
2911 	if (!error) {
2912 		error = do_truncate(path->dentry, 0,
2913 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2914 				    filp);
2915 	}
2916 	put_write_access(inode);
2917 	return error;
2918 }
2919 
2920 static inline int open_to_namei_flags(int flag)
2921 {
2922 	if ((flag & O_ACCMODE) == 3)
2923 		flag--;
2924 	return flag;
2925 }
2926 
2927 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2928 {
2929 	struct user_namespace *s_user_ns;
2930 	int error = security_path_mknod(dir, dentry, mode, 0);
2931 	if (error)
2932 		return error;
2933 
2934 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2935 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2936 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2937 		return -EOVERFLOW;
2938 
2939 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2940 	if (error)
2941 		return error;
2942 
2943 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2944 }
2945 
2946 /*
2947  * Attempt to atomically look up, create and open a file from a negative
2948  * dentry.
2949  *
2950  * Returns 0 if successful.  The file will have been created and attached to
2951  * @file by the filesystem calling finish_open().
2952  *
2953  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2954  * be set.  The caller will need to perform the open themselves.  @path will
2955  * have been updated to point to the new dentry.  This may be negative.
2956  *
2957  * Returns an error code otherwise.
2958  */
2959 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2960 				  struct file *file,
2961 				  int open_flag, umode_t mode)
2962 {
2963 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2964 	struct inode *dir =  nd->path.dentry->d_inode;
2965 	int error;
2966 
2967 	if (nd->flags & LOOKUP_DIRECTORY)
2968 		open_flag |= O_DIRECTORY;
2969 
2970 	file->f_path.dentry = DENTRY_NOT_SET;
2971 	file->f_path.mnt = nd->path.mnt;
2972 	error = dir->i_op->atomic_open(dir, dentry, file,
2973 				       open_to_namei_flags(open_flag), mode);
2974 	d_lookup_done(dentry);
2975 	if (!error) {
2976 		if (file->f_mode & FMODE_OPENED) {
2977 			if (unlikely(dentry != file->f_path.dentry)) {
2978 				dput(dentry);
2979 				dentry = dget(file->f_path.dentry);
2980 			}
2981 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2982 			error = -EIO;
2983 		} else {
2984 			if (file->f_path.dentry) {
2985 				dput(dentry);
2986 				dentry = file->f_path.dentry;
2987 			}
2988 			if (unlikely(d_is_negative(dentry)))
2989 				error = -ENOENT;
2990 		}
2991 	}
2992 	if (error) {
2993 		dput(dentry);
2994 		dentry = ERR_PTR(error);
2995 	}
2996 	return dentry;
2997 }
2998 
2999 /*
3000  * Look up and maybe create and open the last component.
3001  *
3002  * Must be called with parent locked (exclusive in O_CREAT case).
3003  *
3004  * Returns 0 on success, that is, if
3005  *  the file was successfully atomically created (if necessary) and opened, or
3006  *  the file was not completely opened at this time, though lookups and
3007  *  creations were performed.
3008  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3009  * In the latter case dentry returned in @path might be negative if O_CREAT
3010  * hadn't been specified.
3011  *
3012  * An error code is returned on failure.
3013  */
3014 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3015 				  const struct open_flags *op,
3016 				  bool got_write)
3017 {
3018 	struct dentry *dir = nd->path.dentry;
3019 	struct inode *dir_inode = dir->d_inode;
3020 	int open_flag = op->open_flag;
3021 	struct dentry *dentry;
3022 	int error, create_error = 0;
3023 	umode_t mode = op->mode;
3024 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3025 
3026 	if (unlikely(IS_DEADDIR(dir_inode)))
3027 		return ERR_PTR(-ENOENT);
3028 
3029 	file->f_mode &= ~FMODE_CREATED;
3030 	dentry = d_lookup(dir, &nd->last);
3031 	for (;;) {
3032 		if (!dentry) {
3033 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3034 			if (IS_ERR(dentry))
3035 				return dentry;
3036 		}
3037 		if (d_in_lookup(dentry))
3038 			break;
3039 
3040 		error = d_revalidate(dentry, nd->flags);
3041 		if (likely(error > 0))
3042 			break;
3043 		if (error)
3044 			goto out_dput;
3045 		d_invalidate(dentry);
3046 		dput(dentry);
3047 		dentry = NULL;
3048 	}
3049 	if (dentry->d_inode) {
3050 		/* Cached positive dentry: will open in f_op->open */
3051 		return dentry;
3052 	}
3053 
3054 	/*
3055 	 * Checking write permission is tricky, bacuse we don't know if we are
3056 	 * going to actually need it: O_CREAT opens should work as long as the
3057 	 * file exists.  But checking existence breaks atomicity.  The trick is
3058 	 * to check access and if not granted clear O_CREAT from the flags.
3059 	 *
3060 	 * Another problem is returing the "right" error value (e.g. for an
3061 	 * O_EXCL open we want to return EEXIST not EROFS).
3062 	 */
3063 	if (unlikely(!got_write))
3064 		open_flag &= ~O_TRUNC;
3065 	if (open_flag & O_CREAT) {
3066 		if (open_flag & O_EXCL)
3067 			open_flag &= ~O_TRUNC;
3068 		if (!IS_POSIXACL(dir->d_inode))
3069 			mode &= ~current_umask();
3070 		if (likely(got_write))
3071 			create_error = may_o_create(&nd->path, dentry, mode);
3072 		else
3073 			create_error = -EROFS;
3074 	}
3075 	if (create_error)
3076 		open_flag &= ~O_CREAT;
3077 	if (dir_inode->i_op->atomic_open) {
3078 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3079 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3080 			dentry = ERR_PTR(create_error);
3081 		return dentry;
3082 	}
3083 
3084 	if (d_in_lookup(dentry)) {
3085 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3086 							     nd->flags);
3087 		d_lookup_done(dentry);
3088 		if (unlikely(res)) {
3089 			if (IS_ERR(res)) {
3090 				error = PTR_ERR(res);
3091 				goto out_dput;
3092 			}
3093 			dput(dentry);
3094 			dentry = res;
3095 		}
3096 	}
3097 
3098 	/* Negative dentry, just create the file */
3099 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3100 		file->f_mode |= FMODE_CREATED;
3101 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3102 		if (!dir_inode->i_op->create) {
3103 			error = -EACCES;
3104 			goto out_dput;
3105 		}
3106 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3107 						open_flag & O_EXCL);
3108 		if (error)
3109 			goto out_dput;
3110 	}
3111 	if (unlikely(create_error) && !dentry->d_inode) {
3112 		error = create_error;
3113 		goto out_dput;
3114 	}
3115 	return dentry;
3116 
3117 out_dput:
3118 	dput(dentry);
3119 	return ERR_PTR(error);
3120 }
3121 
3122 static const char *open_last_lookups(struct nameidata *nd,
3123 		   struct file *file, const struct open_flags *op)
3124 {
3125 	struct dentry *dir = nd->path.dentry;
3126 	int open_flag = op->open_flag;
3127 	bool got_write = false;
3128 	unsigned seq;
3129 	struct inode *inode;
3130 	struct dentry *dentry;
3131 	const char *res;
3132 	int error;
3133 
3134 	nd->flags |= op->intent;
3135 
3136 	if (nd->last_type != LAST_NORM) {
3137 		if (nd->depth)
3138 			put_link(nd);
3139 		return handle_dots(nd, nd->last_type);
3140 	}
3141 
3142 	if (!(open_flag & O_CREAT)) {
3143 		if (nd->last.name[nd->last.len])
3144 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3145 		/* we _can_ be in RCU mode here */
3146 		dentry = lookup_fast(nd, &inode, &seq);
3147 		if (IS_ERR(dentry))
3148 			return ERR_CAST(dentry);
3149 		if (likely(dentry))
3150 			goto finish_lookup;
3151 
3152 		BUG_ON(nd->flags & LOOKUP_RCU);
3153 	} else {
3154 		/* create side of things */
3155 		if (nd->flags & LOOKUP_RCU) {
3156 			error = unlazy_walk(nd);
3157 			if (unlikely(error))
3158 				return ERR_PTR(error);
3159 		}
3160 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3161 		/* trailing slashes? */
3162 		if (unlikely(nd->last.name[nd->last.len]))
3163 			return ERR_PTR(-EISDIR);
3164 	}
3165 
3166 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3167 		error = mnt_want_write(nd->path.mnt);
3168 		if (!error)
3169 			got_write = true;
3170 		/*
3171 		 * do _not_ fail yet - we might not need that or fail with
3172 		 * a different error; let lookup_open() decide; we'll be
3173 		 * dropping this one anyway.
3174 		 */
3175 	}
3176 	if (open_flag & O_CREAT)
3177 		inode_lock(dir->d_inode);
3178 	else
3179 		inode_lock_shared(dir->d_inode);
3180 	dentry = lookup_open(nd, file, op, got_write);
3181 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3182 		fsnotify_create(dir->d_inode, dentry);
3183 	if (open_flag & O_CREAT)
3184 		inode_unlock(dir->d_inode);
3185 	else
3186 		inode_unlock_shared(dir->d_inode);
3187 
3188 	if (got_write)
3189 		mnt_drop_write(nd->path.mnt);
3190 
3191 	if (IS_ERR(dentry))
3192 		return ERR_CAST(dentry);
3193 
3194 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3195 		dput(nd->path.dentry);
3196 		nd->path.dentry = dentry;
3197 		return NULL;
3198 	}
3199 
3200 finish_lookup:
3201 	if (nd->depth)
3202 		put_link(nd);
3203 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3204 	if (unlikely(res))
3205 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3206 	return res;
3207 }
3208 
3209 /*
3210  * Handle the last step of open()
3211  */
3212 static int do_open(struct nameidata *nd,
3213 		   struct file *file, const struct open_flags *op)
3214 {
3215 	int open_flag = op->open_flag;
3216 	bool do_truncate;
3217 	int acc_mode;
3218 	int error;
3219 
3220 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3221 		error = complete_walk(nd);
3222 		if (error)
3223 			return error;
3224 	}
3225 	if (!(file->f_mode & FMODE_CREATED))
3226 		audit_inode(nd->name, nd->path.dentry, 0);
3227 	if (open_flag & O_CREAT) {
3228 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3229 			return -EEXIST;
3230 		if (d_is_dir(nd->path.dentry))
3231 			return -EISDIR;
3232 		error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3233 					     d_backing_inode(nd->path.dentry));
3234 		if (unlikely(error))
3235 			return error;
3236 	}
3237 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3238 		return -ENOTDIR;
3239 
3240 	do_truncate = false;
3241 	acc_mode = op->acc_mode;
3242 	if (file->f_mode & FMODE_CREATED) {
3243 		/* Don't check for write permission, don't truncate */
3244 		open_flag &= ~O_TRUNC;
3245 		acc_mode = 0;
3246 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3247 		error = mnt_want_write(nd->path.mnt);
3248 		if (error)
3249 			return error;
3250 		do_truncate = true;
3251 	}
3252 	error = may_open(&nd->path, acc_mode, open_flag);
3253 	if (!error && !(file->f_mode & FMODE_OPENED))
3254 		error = vfs_open(&nd->path, file);
3255 	if (!error)
3256 		error = ima_file_check(file, op->acc_mode);
3257 	if (!error && do_truncate)
3258 		error = handle_truncate(file);
3259 	if (unlikely(error > 0)) {
3260 		WARN_ON(1);
3261 		error = -EINVAL;
3262 	}
3263 	if (do_truncate)
3264 		mnt_drop_write(nd->path.mnt);
3265 	return error;
3266 }
3267 
3268 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3269 {
3270 	struct dentry *child = NULL;
3271 	struct inode *dir = dentry->d_inode;
3272 	struct inode *inode;
3273 	int error;
3274 
3275 	/* we want directory to be writable */
3276 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3277 	if (error)
3278 		goto out_err;
3279 	error = -EOPNOTSUPP;
3280 	if (!dir->i_op->tmpfile)
3281 		goto out_err;
3282 	error = -ENOMEM;
3283 	child = d_alloc(dentry, &slash_name);
3284 	if (unlikely(!child))
3285 		goto out_err;
3286 	error = dir->i_op->tmpfile(dir, child, mode);
3287 	if (error)
3288 		goto out_err;
3289 	error = -ENOENT;
3290 	inode = child->d_inode;
3291 	if (unlikely(!inode))
3292 		goto out_err;
3293 	if (!(open_flag & O_EXCL)) {
3294 		spin_lock(&inode->i_lock);
3295 		inode->i_state |= I_LINKABLE;
3296 		spin_unlock(&inode->i_lock);
3297 	}
3298 	ima_post_create_tmpfile(inode);
3299 	return child;
3300 
3301 out_err:
3302 	dput(child);
3303 	return ERR_PTR(error);
3304 }
3305 EXPORT_SYMBOL(vfs_tmpfile);
3306 
3307 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3308 		const struct open_flags *op,
3309 		struct file *file)
3310 {
3311 	struct dentry *child;
3312 	struct path path;
3313 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3314 	if (unlikely(error))
3315 		return error;
3316 	error = mnt_want_write(path.mnt);
3317 	if (unlikely(error))
3318 		goto out;
3319 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3320 	error = PTR_ERR(child);
3321 	if (IS_ERR(child))
3322 		goto out2;
3323 	dput(path.dentry);
3324 	path.dentry = child;
3325 	audit_inode(nd->name, child, 0);
3326 	/* Don't check for other permissions, the inode was just created */
3327 	error = may_open(&path, 0, op->open_flag);
3328 	if (error)
3329 		goto out2;
3330 	file->f_path.mnt = path.mnt;
3331 	error = finish_open(file, child, NULL);
3332 out2:
3333 	mnt_drop_write(path.mnt);
3334 out:
3335 	path_put(&path);
3336 	return error;
3337 }
3338 
3339 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3340 {
3341 	struct path path;
3342 	int error = path_lookupat(nd, flags, &path);
3343 	if (!error) {
3344 		audit_inode(nd->name, path.dentry, 0);
3345 		error = vfs_open(&path, file);
3346 		path_put(&path);
3347 	}
3348 	return error;
3349 }
3350 
3351 static struct file *path_openat(struct nameidata *nd,
3352 			const struct open_flags *op, unsigned flags)
3353 {
3354 	struct file *file;
3355 	int error;
3356 
3357 	file = alloc_empty_file(op->open_flag, current_cred());
3358 	if (IS_ERR(file))
3359 		return file;
3360 
3361 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3362 		error = do_tmpfile(nd, flags, op, file);
3363 	} else if (unlikely(file->f_flags & O_PATH)) {
3364 		error = do_o_path(nd, flags, file);
3365 	} else {
3366 		const char *s = path_init(nd, flags);
3367 		while (!(error = link_path_walk(s, nd)) &&
3368 		       (s = open_last_lookups(nd, file, op)) != NULL)
3369 			;
3370 		if (!error)
3371 			error = do_open(nd, file, op);
3372 		terminate_walk(nd);
3373 	}
3374 	if (likely(!error)) {
3375 		if (likely(file->f_mode & FMODE_OPENED))
3376 			return file;
3377 		WARN_ON(1);
3378 		error = -EINVAL;
3379 	}
3380 	fput(file);
3381 	if (error == -EOPENSTALE) {
3382 		if (flags & LOOKUP_RCU)
3383 			error = -ECHILD;
3384 		else
3385 			error = -ESTALE;
3386 	}
3387 	return ERR_PTR(error);
3388 }
3389 
3390 struct file *do_filp_open(int dfd, struct filename *pathname,
3391 		const struct open_flags *op)
3392 {
3393 	struct nameidata nd;
3394 	int flags = op->lookup_flags;
3395 	struct file *filp;
3396 
3397 	set_nameidata(&nd, dfd, pathname);
3398 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3399 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3400 		filp = path_openat(&nd, op, flags);
3401 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3402 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3403 	restore_nameidata();
3404 	return filp;
3405 }
3406 
3407 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3408 		const char *name, const struct open_flags *op)
3409 {
3410 	struct nameidata nd;
3411 	struct file *file;
3412 	struct filename *filename;
3413 	int flags = op->lookup_flags | LOOKUP_ROOT;
3414 
3415 	nd.root.mnt = mnt;
3416 	nd.root.dentry = dentry;
3417 
3418 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3419 		return ERR_PTR(-ELOOP);
3420 
3421 	filename = getname_kernel(name);
3422 	if (IS_ERR(filename))
3423 		return ERR_CAST(filename);
3424 
3425 	set_nameidata(&nd, -1, filename);
3426 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3427 	if (unlikely(file == ERR_PTR(-ECHILD)))
3428 		file = path_openat(&nd, op, flags);
3429 	if (unlikely(file == ERR_PTR(-ESTALE)))
3430 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3431 	restore_nameidata();
3432 	putname(filename);
3433 	return file;
3434 }
3435 
3436 static struct dentry *filename_create(int dfd, struct filename *name,
3437 				struct path *path, unsigned int lookup_flags)
3438 {
3439 	struct dentry *dentry = ERR_PTR(-EEXIST);
3440 	struct qstr last;
3441 	int type;
3442 	int err2;
3443 	int error;
3444 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3445 
3446 	/*
3447 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3448 	 * other flags passed in are ignored!
3449 	 */
3450 	lookup_flags &= LOOKUP_REVAL;
3451 
3452 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3453 	if (IS_ERR(name))
3454 		return ERR_CAST(name);
3455 
3456 	/*
3457 	 * Yucky last component or no last component at all?
3458 	 * (foo/., foo/.., /////)
3459 	 */
3460 	if (unlikely(type != LAST_NORM))
3461 		goto out;
3462 
3463 	/* don't fail immediately if it's r/o, at least try to report other errors */
3464 	err2 = mnt_want_write(path->mnt);
3465 	/*
3466 	 * Do the final lookup.
3467 	 */
3468 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3469 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3470 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3471 	if (IS_ERR(dentry))
3472 		goto unlock;
3473 
3474 	error = -EEXIST;
3475 	if (d_is_positive(dentry))
3476 		goto fail;
3477 
3478 	/*
3479 	 * Special case - lookup gave negative, but... we had foo/bar/
3480 	 * From the vfs_mknod() POV we just have a negative dentry -
3481 	 * all is fine. Let's be bastards - you had / on the end, you've
3482 	 * been asking for (non-existent) directory. -ENOENT for you.
3483 	 */
3484 	if (unlikely(!is_dir && last.name[last.len])) {
3485 		error = -ENOENT;
3486 		goto fail;
3487 	}
3488 	if (unlikely(err2)) {
3489 		error = err2;
3490 		goto fail;
3491 	}
3492 	putname(name);
3493 	return dentry;
3494 fail:
3495 	dput(dentry);
3496 	dentry = ERR_PTR(error);
3497 unlock:
3498 	inode_unlock(path->dentry->d_inode);
3499 	if (!err2)
3500 		mnt_drop_write(path->mnt);
3501 out:
3502 	path_put(path);
3503 	putname(name);
3504 	return dentry;
3505 }
3506 
3507 struct dentry *kern_path_create(int dfd, const char *pathname,
3508 				struct path *path, unsigned int lookup_flags)
3509 {
3510 	return filename_create(dfd, getname_kernel(pathname),
3511 				path, lookup_flags);
3512 }
3513 EXPORT_SYMBOL(kern_path_create);
3514 
3515 void done_path_create(struct path *path, struct dentry *dentry)
3516 {
3517 	dput(dentry);
3518 	inode_unlock(path->dentry->d_inode);
3519 	mnt_drop_write(path->mnt);
3520 	path_put(path);
3521 }
3522 EXPORT_SYMBOL(done_path_create);
3523 
3524 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3525 				struct path *path, unsigned int lookup_flags)
3526 {
3527 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3528 }
3529 EXPORT_SYMBOL(user_path_create);
3530 
3531 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3532 {
3533 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3534 	int error = may_create(dir, dentry);
3535 
3536 	if (error)
3537 		return error;
3538 
3539 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3540 	    !capable(CAP_MKNOD))
3541 		return -EPERM;
3542 
3543 	if (!dir->i_op->mknod)
3544 		return -EPERM;
3545 
3546 	error = devcgroup_inode_mknod(mode, dev);
3547 	if (error)
3548 		return error;
3549 
3550 	error = security_inode_mknod(dir, dentry, mode, dev);
3551 	if (error)
3552 		return error;
3553 
3554 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3555 	if (!error)
3556 		fsnotify_create(dir, dentry);
3557 	return error;
3558 }
3559 EXPORT_SYMBOL(vfs_mknod);
3560 
3561 static int may_mknod(umode_t mode)
3562 {
3563 	switch (mode & S_IFMT) {
3564 	case S_IFREG:
3565 	case S_IFCHR:
3566 	case S_IFBLK:
3567 	case S_IFIFO:
3568 	case S_IFSOCK:
3569 	case 0: /* zero mode translates to S_IFREG */
3570 		return 0;
3571 	case S_IFDIR:
3572 		return -EPERM;
3573 	default:
3574 		return -EINVAL;
3575 	}
3576 }
3577 
3578 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3579 		unsigned int dev)
3580 {
3581 	struct dentry *dentry;
3582 	struct path path;
3583 	int error;
3584 	unsigned int lookup_flags = 0;
3585 
3586 	error = may_mknod(mode);
3587 	if (error)
3588 		return error;
3589 retry:
3590 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3591 	if (IS_ERR(dentry))
3592 		return PTR_ERR(dentry);
3593 
3594 	if (!IS_POSIXACL(path.dentry->d_inode))
3595 		mode &= ~current_umask();
3596 	error = security_path_mknod(&path, dentry, mode, dev);
3597 	if (error)
3598 		goto out;
3599 	switch (mode & S_IFMT) {
3600 		case 0: case S_IFREG:
3601 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3602 			if (!error)
3603 				ima_post_path_mknod(dentry);
3604 			break;
3605 		case S_IFCHR: case S_IFBLK:
3606 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3607 					new_decode_dev(dev));
3608 			break;
3609 		case S_IFIFO: case S_IFSOCK:
3610 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3611 			break;
3612 	}
3613 out:
3614 	done_path_create(&path, dentry);
3615 	if (retry_estale(error, lookup_flags)) {
3616 		lookup_flags |= LOOKUP_REVAL;
3617 		goto retry;
3618 	}
3619 	return error;
3620 }
3621 
3622 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3623 		unsigned int, dev)
3624 {
3625 	return do_mknodat(dfd, filename, mode, dev);
3626 }
3627 
3628 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3629 {
3630 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3631 }
3632 
3633 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3634 {
3635 	int error = may_create(dir, dentry);
3636 	unsigned max_links = dir->i_sb->s_max_links;
3637 
3638 	if (error)
3639 		return error;
3640 
3641 	if (!dir->i_op->mkdir)
3642 		return -EPERM;
3643 
3644 	mode &= (S_IRWXUGO|S_ISVTX);
3645 	error = security_inode_mkdir(dir, dentry, mode);
3646 	if (error)
3647 		return error;
3648 
3649 	if (max_links && dir->i_nlink >= max_links)
3650 		return -EMLINK;
3651 
3652 	error = dir->i_op->mkdir(dir, dentry, mode);
3653 	if (!error)
3654 		fsnotify_mkdir(dir, dentry);
3655 	return error;
3656 }
3657 EXPORT_SYMBOL(vfs_mkdir);
3658 
3659 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3660 {
3661 	struct dentry *dentry;
3662 	struct path path;
3663 	int error;
3664 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3665 
3666 retry:
3667 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3668 	if (IS_ERR(dentry))
3669 		return PTR_ERR(dentry);
3670 
3671 	if (!IS_POSIXACL(path.dentry->d_inode))
3672 		mode &= ~current_umask();
3673 	error = security_path_mkdir(&path, dentry, mode);
3674 	if (!error)
3675 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3676 	done_path_create(&path, dentry);
3677 	if (retry_estale(error, lookup_flags)) {
3678 		lookup_flags |= LOOKUP_REVAL;
3679 		goto retry;
3680 	}
3681 	return error;
3682 }
3683 
3684 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3685 {
3686 	return do_mkdirat(dfd, pathname, mode);
3687 }
3688 
3689 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3690 {
3691 	return do_mkdirat(AT_FDCWD, pathname, mode);
3692 }
3693 
3694 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3695 {
3696 	int error = may_delete(dir, dentry, 1);
3697 
3698 	if (error)
3699 		return error;
3700 
3701 	if (!dir->i_op->rmdir)
3702 		return -EPERM;
3703 
3704 	dget(dentry);
3705 	inode_lock(dentry->d_inode);
3706 
3707 	error = -EBUSY;
3708 	if (is_local_mountpoint(dentry))
3709 		goto out;
3710 
3711 	error = security_inode_rmdir(dir, dentry);
3712 	if (error)
3713 		goto out;
3714 
3715 	error = dir->i_op->rmdir(dir, dentry);
3716 	if (error)
3717 		goto out;
3718 
3719 	shrink_dcache_parent(dentry);
3720 	dentry->d_inode->i_flags |= S_DEAD;
3721 	dont_mount(dentry);
3722 	detach_mounts(dentry);
3723 	fsnotify_rmdir(dir, dentry);
3724 
3725 out:
3726 	inode_unlock(dentry->d_inode);
3727 	dput(dentry);
3728 	if (!error)
3729 		d_delete(dentry);
3730 	return error;
3731 }
3732 EXPORT_SYMBOL(vfs_rmdir);
3733 
3734 long do_rmdir(int dfd, struct filename *name)
3735 {
3736 	int error = 0;
3737 	struct dentry *dentry;
3738 	struct path path;
3739 	struct qstr last;
3740 	int type;
3741 	unsigned int lookup_flags = 0;
3742 retry:
3743 	name = filename_parentat(dfd, name, lookup_flags,
3744 				&path, &last, &type);
3745 	if (IS_ERR(name))
3746 		return PTR_ERR(name);
3747 
3748 	switch (type) {
3749 	case LAST_DOTDOT:
3750 		error = -ENOTEMPTY;
3751 		goto exit1;
3752 	case LAST_DOT:
3753 		error = -EINVAL;
3754 		goto exit1;
3755 	case LAST_ROOT:
3756 		error = -EBUSY;
3757 		goto exit1;
3758 	}
3759 
3760 	error = mnt_want_write(path.mnt);
3761 	if (error)
3762 		goto exit1;
3763 
3764 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3765 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3766 	error = PTR_ERR(dentry);
3767 	if (IS_ERR(dentry))
3768 		goto exit2;
3769 	if (!dentry->d_inode) {
3770 		error = -ENOENT;
3771 		goto exit3;
3772 	}
3773 	error = security_path_rmdir(&path, dentry);
3774 	if (error)
3775 		goto exit3;
3776 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3777 exit3:
3778 	dput(dentry);
3779 exit2:
3780 	inode_unlock(path.dentry->d_inode);
3781 	mnt_drop_write(path.mnt);
3782 exit1:
3783 	path_put(&path);
3784 	if (retry_estale(error, lookup_flags)) {
3785 		lookup_flags |= LOOKUP_REVAL;
3786 		goto retry;
3787 	}
3788 	putname(name);
3789 	return error;
3790 }
3791 
3792 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3793 {
3794 	return do_rmdir(AT_FDCWD, getname(pathname));
3795 }
3796 
3797 /**
3798  * vfs_unlink - unlink a filesystem object
3799  * @dir:	parent directory
3800  * @dentry:	victim
3801  * @delegated_inode: returns victim inode, if the inode is delegated.
3802  *
3803  * The caller must hold dir->i_mutex.
3804  *
3805  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3806  * return a reference to the inode in delegated_inode.  The caller
3807  * should then break the delegation on that inode and retry.  Because
3808  * breaking a delegation may take a long time, the caller should drop
3809  * dir->i_mutex before doing so.
3810  *
3811  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3812  * be appropriate for callers that expect the underlying filesystem not
3813  * to be NFS exported.
3814  */
3815 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3816 {
3817 	struct inode *target = dentry->d_inode;
3818 	int error = may_delete(dir, dentry, 0);
3819 
3820 	if (error)
3821 		return error;
3822 
3823 	if (!dir->i_op->unlink)
3824 		return -EPERM;
3825 
3826 	inode_lock(target);
3827 	if (is_local_mountpoint(dentry))
3828 		error = -EBUSY;
3829 	else {
3830 		error = security_inode_unlink(dir, dentry);
3831 		if (!error) {
3832 			error = try_break_deleg(target, delegated_inode);
3833 			if (error)
3834 				goto out;
3835 			error = dir->i_op->unlink(dir, dentry);
3836 			if (!error) {
3837 				dont_mount(dentry);
3838 				detach_mounts(dentry);
3839 				fsnotify_unlink(dir, dentry);
3840 			}
3841 		}
3842 	}
3843 out:
3844 	inode_unlock(target);
3845 
3846 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3847 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3848 		fsnotify_link_count(target);
3849 		d_delete(dentry);
3850 	}
3851 
3852 	return error;
3853 }
3854 EXPORT_SYMBOL(vfs_unlink);
3855 
3856 /*
3857  * Make sure that the actual truncation of the file will occur outside its
3858  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3859  * writeout happening, and we don't want to prevent access to the directory
3860  * while waiting on the I/O.
3861  */
3862 long do_unlinkat(int dfd, struct filename *name)
3863 {
3864 	int error;
3865 	struct dentry *dentry;
3866 	struct path path;
3867 	struct qstr last;
3868 	int type;
3869 	struct inode *inode = NULL;
3870 	struct inode *delegated_inode = NULL;
3871 	unsigned int lookup_flags = 0;
3872 retry:
3873 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3874 	if (IS_ERR(name))
3875 		return PTR_ERR(name);
3876 
3877 	error = -EISDIR;
3878 	if (type != LAST_NORM)
3879 		goto exit1;
3880 
3881 	error = mnt_want_write(path.mnt);
3882 	if (error)
3883 		goto exit1;
3884 retry_deleg:
3885 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3886 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3887 	error = PTR_ERR(dentry);
3888 	if (!IS_ERR(dentry)) {
3889 		/* Why not before? Because we want correct error value */
3890 		if (last.name[last.len])
3891 			goto slashes;
3892 		inode = dentry->d_inode;
3893 		if (d_is_negative(dentry))
3894 			goto slashes;
3895 		ihold(inode);
3896 		error = security_path_unlink(&path, dentry);
3897 		if (error)
3898 			goto exit2;
3899 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3900 exit2:
3901 		dput(dentry);
3902 	}
3903 	inode_unlock(path.dentry->d_inode);
3904 	if (inode)
3905 		iput(inode);	/* truncate the inode here */
3906 	inode = NULL;
3907 	if (delegated_inode) {
3908 		error = break_deleg_wait(&delegated_inode);
3909 		if (!error)
3910 			goto retry_deleg;
3911 	}
3912 	mnt_drop_write(path.mnt);
3913 exit1:
3914 	path_put(&path);
3915 	if (retry_estale(error, lookup_flags)) {
3916 		lookup_flags |= LOOKUP_REVAL;
3917 		inode = NULL;
3918 		goto retry;
3919 	}
3920 	putname(name);
3921 	return error;
3922 
3923 slashes:
3924 	if (d_is_negative(dentry))
3925 		error = -ENOENT;
3926 	else if (d_is_dir(dentry))
3927 		error = -EISDIR;
3928 	else
3929 		error = -ENOTDIR;
3930 	goto exit2;
3931 }
3932 
3933 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3934 {
3935 	if ((flag & ~AT_REMOVEDIR) != 0)
3936 		return -EINVAL;
3937 
3938 	if (flag & AT_REMOVEDIR)
3939 		return do_rmdir(dfd, getname(pathname));
3940 	return do_unlinkat(dfd, getname(pathname));
3941 }
3942 
3943 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3944 {
3945 	return do_unlinkat(AT_FDCWD, getname(pathname));
3946 }
3947 
3948 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3949 {
3950 	int error = may_create(dir, dentry);
3951 
3952 	if (error)
3953 		return error;
3954 
3955 	if (!dir->i_op->symlink)
3956 		return -EPERM;
3957 
3958 	error = security_inode_symlink(dir, dentry, oldname);
3959 	if (error)
3960 		return error;
3961 
3962 	error = dir->i_op->symlink(dir, dentry, oldname);
3963 	if (!error)
3964 		fsnotify_create(dir, dentry);
3965 	return error;
3966 }
3967 EXPORT_SYMBOL(vfs_symlink);
3968 
3969 static long do_symlinkat(const char __user *oldname, int newdfd,
3970 		  const char __user *newname)
3971 {
3972 	int error;
3973 	struct filename *from;
3974 	struct dentry *dentry;
3975 	struct path path;
3976 	unsigned int lookup_flags = 0;
3977 
3978 	from = getname(oldname);
3979 	if (IS_ERR(from))
3980 		return PTR_ERR(from);
3981 retry:
3982 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3983 	error = PTR_ERR(dentry);
3984 	if (IS_ERR(dentry))
3985 		goto out_putname;
3986 
3987 	error = security_path_symlink(&path, dentry, from->name);
3988 	if (!error)
3989 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3990 	done_path_create(&path, dentry);
3991 	if (retry_estale(error, lookup_flags)) {
3992 		lookup_flags |= LOOKUP_REVAL;
3993 		goto retry;
3994 	}
3995 out_putname:
3996 	putname(from);
3997 	return error;
3998 }
3999 
4000 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4001 		int, newdfd, const char __user *, newname)
4002 {
4003 	return do_symlinkat(oldname, newdfd, newname);
4004 }
4005 
4006 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4007 {
4008 	return do_symlinkat(oldname, AT_FDCWD, newname);
4009 }
4010 
4011 /**
4012  * vfs_link - create a new link
4013  * @old_dentry:	object to be linked
4014  * @dir:	new parent
4015  * @new_dentry:	where to create the new link
4016  * @delegated_inode: returns inode needing a delegation break
4017  *
4018  * The caller must hold dir->i_mutex
4019  *
4020  * If vfs_link discovers a delegation on the to-be-linked file in need
4021  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4022  * inode in delegated_inode.  The caller should then break the delegation
4023  * and retry.  Because breaking a delegation may take a long time, the
4024  * caller should drop the i_mutex before doing so.
4025  *
4026  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4027  * be appropriate for callers that expect the underlying filesystem not
4028  * to be NFS exported.
4029  */
4030 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4031 {
4032 	struct inode *inode = old_dentry->d_inode;
4033 	unsigned max_links = dir->i_sb->s_max_links;
4034 	int error;
4035 
4036 	if (!inode)
4037 		return -ENOENT;
4038 
4039 	error = may_create(dir, new_dentry);
4040 	if (error)
4041 		return error;
4042 
4043 	if (dir->i_sb != inode->i_sb)
4044 		return -EXDEV;
4045 
4046 	/*
4047 	 * A link to an append-only or immutable file cannot be created.
4048 	 */
4049 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4050 		return -EPERM;
4051 	/*
4052 	 * Updating the link count will likely cause i_uid and i_gid to
4053 	 * be writen back improperly if their true value is unknown to
4054 	 * the vfs.
4055 	 */
4056 	if (HAS_UNMAPPED_ID(inode))
4057 		return -EPERM;
4058 	if (!dir->i_op->link)
4059 		return -EPERM;
4060 	if (S_ISDIR(inode->i_mode))
4061 		return -EPERM;
4062 
4063 	error = security_inode_link(old_dentry, dir, new_dentry);
4064 	if (error)
4065 		return error;
4066 
4067 	inode_lock(inode);
4068 	/* Make sure we don't allow creating hardlink to an unlinked file */
4069 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4070 		error =  -ENOENT;
4071 	else if (max_links && inode->i_nlink >= max_links)
4072 		error = -EMLINK;
4073 	else {
4074 		error = try_break_deleg(inode, delegated_inode);
4075 		if (!error)
4076 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4077 	}
4078 
4079 	if (!error && (inode->i_state & I_LINKABLE)) {
4080 		spin_lock(&inode->i_lock);
4081 		inode->i_state &= ~I_LINKABLE;
4082 		spin_unlock(&inode->i_lock);
4083 	}
4084 	inode_unlock(inode);
4085 	if (!error)
4086 		fsnotify_link(dir, inode, new_dentry);
4087 	return error;
4088 }
4089 EXPORT_SYMBOL(vfs_link);
4090 
4091 /*
4092  * Hardlinks are often used in delicate situations.  We avoid
4093  * security-related surprises by not following symlinks on the
4094  * newname.  --KAB
4095  *
4096  * We don't follow them on the oldname either to be compatible
4097  * with linux 2.0, and to avoid hard-linking to directories
4098  * and other special files.  --ADM
4099  */
4100 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4101 	      const char __user *newname, int flags)
4102 {
4103 	struct dentry *new_dentry;
4104 	struct path old_path, new_path;
4105 	struct inode *delegated_inode = NULL;
4106 	int how = 0;
4107 	int error;
4108 
4109 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4110 		return -EINVAL;
4111 	/*
4112 	 * To use null names we require CAP_DAC_READ_SEARCH
4113 	 * This ensures that not everyone will be able to create
4114 	 * handlink using the passed filedescriptor.
4115 	 */
4116 	if (flags & AT_EMPTY_PATH) {
4117 		if (!capable(CAP_DAC_READ_SEARCH))
4118 			return -ENOENT;
4119 		how = LOOKUP_EMPTY;
4120 	}
4121 
4122 	if (flags & AT_SYMLINK_FOLLOW)
4123 		how |= LOOKUP_FOLLOW;
4124 retry:
4125 	error = user_path_at(olddfd, oldname, how, &old_path);
4126 	if (error)
4127 		return error;
4128 
4129 	new_dentry = user_path_create(newdfd, newname, &new_path,
4130 					(how & LOOKUP_REVAL));
4131 	error = PTR_ERR(new_dentry);
4132 	if (IS_ERR(new_dentry))
4133 		goto out;
4134 
4135 	error = -EXDEV;
4136 	if (old_path.mnt != new_path.mnt)
4137 		goto out_dput;
4138 	error = may_linkat(&old_path);
4139 	if (unlikely(error))
4140 		goto out_dput;
4141 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4142 	if (error)
4143 		goto out_dput;
4144 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4145 out_dput:
4146 	done_path_create(&new_path, new_dentry);
4147 	if (delegated_inode) {
4148 		error = break_deleg_wait(&delegated_inode);
4149 		if (!error) {
4150 			path_put(&old_path);
4151 			goto retry;
4152 		}
4153 	}
4154 	if (retry_estale(error, how)) {
4155 		path_put(&old_path);
4156 		how |= LOOKUP_REVAL;
4157 		goto retry;
4158 	}
4159 out:
4160 	path_put(&old_path);
4161 
4162 	return error;
4163 }
4164 
4165 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4166 		int, newdfd, const char __user *, newname, int, flags)
4167 {
4168 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4169 }
4170 
4171 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4172 {
4173 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4174 }
4175 
4176 /**
4177  * vfs_rename - rename a filesystem object
4178  * @old_dir:	parent of source
4179  * @old_dentry:	source
4180  * @new_dir:	parent of destination
4181  * @new_dentry:	destination
4182  * @delegated_inode: returns an inode needing a delegation break
4183  * @flags:	rename flags
4184  *
4185  * The caller must hold multiple mutexes--see lock_rename()).
4186  *
4187  * If vfs_rename discovers a delegation in need of breaking at either
4188  * the source or destination, it will return -EWOULDBLOCK and return a
4189  * reference to the inode in delegated_inode.  The caller should then
4190  * break the delegation and retry.  Because breaking a delegation may
4191  * take a long time, the caller should drop all locks before doing
4192  * so.
4193  *
4194  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4195  * be appropriate for callers that expect the underlying filesystem not
4196  * to be NFS exported.
4197  *
4198  * The worst of all namespace operations - renaming directory. "Perverted"
4199  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4200  * Problems:
4201  *
4202  *	a) we can get into loop creation.
4203  *	b) race potential - two innocent renames can create a loop together.
4204  *	   That's where 4.4 screws up. Current fix: serialization on
4205  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4206  *	   story.
4207  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4208  *	   and source (if it is not a directory).
4209  *	   And that - after we got ->i_mutex on parents (until then we don't know
4210  *	   whether the target exists).  Solution: try to be smart with locking
4211  *	   order for inodes.  We rely on the fact that tree topology may change
4212  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4213  *	   move will be locked.  Thus we can rank directories by the tree
4214  *	   (ancestors first) and rank all non-directories after them.
4215  *	   That works since everybody except rename does "lock parent, lookup,
4216  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4217  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4218  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4219  *	   we'd better make sure that there's no link(2) for them.
4220  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4221  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4222  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4223  *	   ->i_mutex on parents, which works but leads to some truly excessive
4224  *	   locking].
4225  */
4226 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4227 	       struct inode *new_dir, struct dentry *new_dentry,
4228 	       struct inode **delegated_inode, unsigned int flags)
4229 {
4230 	int error;
4231 	bool is_dir = d_is_dir(old_dentry);
4232 	struct inode *source = old_dentry->d_inode;
4233 	struct inode *target = new_dentry->d_inode;
4234 	bool new_is_dir = false;
4235 	unsigned max_links = new_dir->i_sb->s_max_links;
4236 	struct name_snapshot old_name;
4237 
4238 	if (source == target)
4239 		return 0;
4240 
4241 	error = may_delete(old_dir, old_dentry, is_dir);
4242 	if (error)
4243 		return error;
4244 
4245 	if (!target) {
4246 		error = may_create(new_dir, new_dentry);
4247 	} else {
4248 		new_is_dir = d_is_dir(new_dentry);
4249 
4250 		if (!(flags & RENAME_EXCHANGE))
4251 			error = may_delete(new_dir, new_dentry, is_dir);
4252 		else
4253 			error = may_delete(new_dir, new_dentry, new_is_dir);
4254 	}
4255 	if (error)
4256 		return error;
4257 
4258 	if (!old_dir->i_op->rename)
4259 		return -EPERM;
4260 
4261 	/*
4262 	 * If we are going to change the parent - check write permissions,
4263 	 * we'll need to flip '..'.
4264 	 */
4265 	if (new_dir != old_dir) {
4266 		if (is_dir) {
4267 			error = inode_permission(source, MAY_WRITE);
4268 			if (error)
4269 				return error;
4270 		}
4271 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4272 			error = inode_permission(target, MAY_WRITE);
4273 			if (error)
4274 				return error;
4275 		}
4276 	}
4277 
4278 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4279 				      flags);
4280 	if (error)
4281 		return error;
4282 
4283 	take_dentry_name_snapshot(&old_name, old_dentry);
4284 	dget(new_dentry);
4285 	if (!is_dir || (flags & RENAME_EXCHANGE))
4286 		lock_two_nondirectories(source, target);
4287 	else if (target)
4288 		inode_lock(target);
4289 
4290 	error = -EBUSY;
4291 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4292 		goto out;
4293 
4294 	if (max_links && new_dir != old_dir) {
4295 		error = -EMLINK;
4296 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4297 			goto out;
4298 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4299 		    old_dir->i_nlink >= max_links)
4300 			goto out;
4301 	}
4302 	if (!is_dir) {
4303 		error = try_break_deleg(source, delegated_inode);
4304 		if (error)
4305 			goto out;
4306 	}
4307 	if (target && !new_is_dir) {
4308 		error = try_break_deleg(target, delegated_inode);
4309 		if (error)
4310 			goto out;
4311 	}
4312 	error = old_dir->i_op->rename(old_dir, old_dentry,
4313 				       new_dir, new_dentry, flags);
4314 	if (error)
4315 		goto out;
4316 
4317 	if (!(flags & RENAME_EXCHANGE) && target) {
4318 		if (is_dir) {
4319 			shrink_dcache_parent(new_dentry);
4320 			target->i_flags |= S_DEAD;
4321 		}
4322 		dont_mount(new_dentry);
4323 		detach_mounts(new_dentry);
4324 	}
4325 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4326 		if (!(flags & RENAME_EXCHANGE))
4327 			d_move(old_dentry, new_dentry);
4328 		else
4329 			d_exchange(old_dentry, new_dentry);
4330 	}
4331 out:
4332 	if (!is_dir || (flags & RENAME_EXCHANGE))
4333 		unlock_two_nondirectories(source, target);
4334 	else if (target)
4335 		inode_unlock(target);
4336 	dput(new_dentry);
4337 	if (!error) {
4338 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4339 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4340 		if (flags & RENAME_EXCHANGE) {
4341 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4342 				      new_is_dir, NULL, new_dentry);
4343 		}
4344 	}
4345 	release_dentry_name_snapshot(&old_name);
4346 
4347 	return error;
4348 }
4349 EXPORT_SYMBOL(vfs_rename);
4350 
4351 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4352 		 struct filename *to, unsigned int flags)
4353 {
4354 	struct dentry *old_dentry, *new_dentry;
4355 	struct dentry *trap;
4356 	struct path old_path, new_path;
4357 	struct qstr old_last, new_last;
4358 	int old_type, new_type;
4359 	struct inode *delegated_inode = NULL;
4360 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4361 	bool should_retry = false;
4362 	int error = -EINVAL;
4363 
4364 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4365 		goto put_both;
4366 
4367 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4368 	    (flags & RENAME_EXCHANGE))
4369 		goto put_both;
4370 
4371 	if (flags & RENAME_EXCHANGE)
4372 		target_flags = 0;
4373 
4374 retry:
4375 	from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4376 					&old_last, &old_type);
4377 	if (IS_ERR(from)) {
4378 		error = PTR_ERR(from);
4379 		goto put_new;
4380 	}
4381 
4382 	to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4383 				&new_type);
4384 	if (IS_ERR(to)) {
4385 		error = PTR_ERR(to);
4386 		goto exit1;
4387 	}
4388 
4389 	error = -EXDEV;
4390 	if (old_path.mnt != new_path.mnt)
4391 		goto exit2;
4392 
4393 	error = -EBUSY;
4394 	if (old_type != LAST_NORM)
4395 		goto exit2;
4396 
4397 	if (flags & RENAME_NOREPLACE)
4398 		error = -EEXIST;
4399 	if (new_type != LAST_NORM)
4400 		goto exit2;
4401 
4402 	error = mnt_want_write(old_path.mnt);
4403 	if (error)
4404 		goto exit2;
4405 
4406 retry_deleg:
4407 	trap = lock_rename(new_path.dentry, old_path.dentry);
4408 
4409 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4410 	error = PTR_ERR(old_dentry);
4411 	if (IS_ERR(old_dentry))
4412 		goto exit3;
4413 	/* source must exist */
4414 	error = -ENOENT;
4415 	if (d_is_negative(old_dentry))
4416 		goto exit4;
4417 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4418 	error = PTR_ERR(new_dentry);
4419 	if (IS_ERR(new_dentry))
4420 		goto exit4;
4421 	error = -EEXIST;
4422 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4423 		goto exit5;
4424 	if (flags & RENAME_EXCHANGE) {
4425 		error = -ENOENT;
4426 		if (d_is_negative(new_dentry))
4427 			goto exit5;
4428 
4429 		if (!d_is_dir(new_dentry)) {
4430 			error = -ENOTDIR;
4431 			if (new_last.name[new_last.len])
4432 				goto exit5;
4433 		}
4434 	}
4435 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4436 	if (!d_is_dir(old_dentry)) {
4437 		error = -ENOTDIR;
4438 		if (old_last.name[old_last.len])
4439 			goto exit5;
4440 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4441 			goto exit5;
4442 	}
4443 	/* source should not be ancestor of target */
4444 	error = -EINVAL;
4445 	if (old_dentry == trap)
4446 		goto exit5;
4447 	/* target should not be an ancestor of source */
4448 	if (!(flags & RENAME_EXCHANGE))
4449 		error = -ENOTEMPTY;
4450 	if (new_dentry == trap)
4451 		goto exit5;
4452 
4453 	error = security_path_rename(&old_path, old_dentry,
4454 				     &new_path, new_dentry, flags);
4455 	if (error)
4456 		goto exit5;
4457 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4458 			   new_path.dentry->d_inode, new_dentry,
4459 			   &delegated_inode, flags);
4460 exit5:
4461 	dput(new_dentry);
4462 exit4:
4463 	dput(old_dentry);
4464 exit3:
4465 	unlock_rename(new_path.dentry, old_path.dentry);
4466 	if (delegated_inode) {
4467 		error = break_deleg_wait(&delegated_inode);
4468 		if (!error)
4469 			goto retry_deleg;
4470 	}
4471 	mnt_drop_write(old_path.mnt);
4472 exit2:
4473 	if (retry_estale(error, lookup_flags))
4474 		should_retry = true;
4475 	path_put(&new_path);
4476 exit1:
4477 	path_put(&old_path);
4478 	if (should_retry) {
4479 		should_retry = false;
4480 		lookup_flags |= LOOKUP_REVAL;
4481 		goto retry;
4482 	}
4483 put_both:
4484 	if (!IS_ERR(from))
4485 		putname(from);
4486 put_new:
4487 	if (!IS_ERR(to))
4488 		putname(to);
4489 	return error;
4490 }
4491 
4492 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4493 		int, newdfd, const char __user *, newname, unsigned int, flags)
4494 {
4495 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4496 				flags);
4497 }
4498 
4499 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4500 		int, newdfd, const char __user *, newname)
4501 {
4502 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4503 				0);
4504 }
4505 
4506 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4507 {
4508 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4509 				getname(newname), 0);
4510 }
4511 
4512 int readlink_copy(char __user *buffer, int buflen, const char *link)
4513 {
4514 	int len = PTR_ERR(link);
4515 	if (IS_ERR(link))
4516 		goto out;
4517 
4518 	len = strlen(link);
4519 	if (len > (unsigned) buflen)
4520 		len = buflen;
4521 	if (copy_to_user(buffer, link, len))
4522 		len = -EFAULT;
4523 out:
4524 	return len;
4525 }
4526 
4527 /**
4528  * vfs_readlink - copy symlink body into userspace buffer
4529  * @dentry: dentry on which to get symbolic link
4530  * @buffer: user memory pointer
4531  * @buflen: size of buffer
4532  *
4533  * Does not touch atime.  That's up to the caller if necessary
4534  *
4535  * Does not call security hook.
4536  */
4537 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4538 {
4539 	struct inode *inode = d_inode(dentry);
4540 	DEFINE_DELAYED_CALL(done);
4541 	const char *link;
4542 	int res;
4543 
4544 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4545 		if (unlikely(inode->i_op->readlink))
4546 			return inode->i_op->readlink(dentry, buffer, buflen);
4547 
4548 		if (!d_is_symlink(dentry))
4549 			return -EINVAL;
4550 
4551 		spin_lock(&inode->i_lock);
4552 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4553 		spin_unlock(&inode->i_lock);
4554 	}
4555 
4556 	link = READ_ONCE(inode->i_link);
4557 	if (!link) {
4558 		link = inode->i_op->get_link(dentry, inode, &done);
4559 		if (IS_ERR(link))
4560 			return PTR_ERR(link);
4561 	}
4562 	res = readlink_copy(buffer, buflen, link);
4563 	do_delayed_call(&done);
4564 	return res;
4565 }
4566 EXPORT_SYMBOL(vfs_readlink);
4567 
4568 /**
4569  * vfs_get_link - get symlink body
4570  * @dentry: dentry on which to get symbolic link
4571  * @done: caller needs to free returned data with this
4572  *
4573  * Calls security hook and i_op->get_link() on the supplied inode.
4574  *
4575  * It does not touch atime.  That's up to the caller if necessary.
4576  *
4577  * Does not work on "special" symlinks like /proc/$$/fd/N
4578  */
4579 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4580 {
4581 	const char *res = ERR_PTR(-EINVAL);
4582 	struct inode *inode = d_inode(dentry);
4583 
4584 	if (d_is_symlink(dentry)) {
4585 		res = ERR_PTR(security_inode_readlink(dentry));
4586 		if (!res)
4587 			res = inode->i_op->get_link(dentry, inode, done);
4588 	}
4589 	return res;
4590 }
4591 EXPORT_SYMBOL(vfs_get_link);
4592 
4593 /* get the link contents into pagecache */
4594 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4595 			  struct delayed_call *callback)
4596 {
4597 	char *kaddr;
4598 	struct page *page;
4599 	struct address_space *mapping = inode->i_mapping;
4600 
4601 	if (!dentry) {
4602 		page = find_get_page(mapping, 0);
4603 		if (!page)
4604 			return ERR_PTR(-ECHILD);
4605 		if (!PageUptodate(page)) {
4606 			put_page(page);
4607 			return ERR_PTR(-ECHILD);
4608 		}
4609 	} else {
4610 		page = read_mapping_page(mapping, 0, NULL);
4611 		if (IS_ERR(page))
4612 			return (char*)page;
4613 	}
4614 	set_delayed_call(callback, page_put_link, page);
4615 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4616 	kaddr = page_address(page);
4617 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4618 	return kaddr;
4619 }
4620 
4621 EXPORT_SYMBOL(page_get_link);
4622 
4623 void page_put_link(void *arg)
4624 {
4625 	put_page(arg);
4626 }
4627 EXPORT_SYMBOL(page_put_link);
4628 
4629 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4630 {
4631 	DEFINE_DELAYED_CALL(done);
4632 	int res = readlink_copy(buffer, buflen,
4633 				page_get_link(dentry, d_inode(dentry),
4634 					      &done));
4635 	do_delayed_call(&done);
4636 	return res;
4637 }
4638 EXPORT_SYMBOL(page_readlink);
4639 
4640 /*
4641  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4642  */
4643 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4644 {
4645 	struct address_space *mapping = inode->i_mapping;
4646 	struct page *page;
4647 	void *fsdata;
4648 	int err;
4649 	unsigned int flags = 0;
4650 	if (nofs)
4651 		flags |= AOP_FLAG_NOFS;
4652 
4653 retry:
4654 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4655 				flags, &page, &fsdata);
4656 	if (err)
4657 		goto fail;
4658 
4659 	memcpy(page_address(page), symname, len-1);
4660 
4661 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4662 							page, fsdata);
4663 	if (err < 0)
4664 		goto fail;
4665 	if (err < len-1)
4666 		goto retry;
4667 
4668 	mark_inode_dirty(inode);
4669 	return 0;
4670 fail:
4671 	return err;
4672 }
4673 EXPORT_SYMBOL(__page_symlink);
4674 
4675 int page_symlink(struct inode *inode, const char *symname, int len)
4676 {
4677 	return __page_symlink(inode, symname, len,
4678 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4679 }
4680 EXPORT_SYMBOL(page_symlink);
4681 
4682 const struct inode_operations page_symlink_inode_operations = {
4683 	.get_link	= page_get_link,
4684 };
4685 EXPORT_SYMBOL(page_symlink_inode_operations);
4686