xref: /openbmc/linux/fs/namei.c (revision 8b036556)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result, *err;
128 	int len;
129 	long max;
130 	char *kname;
131 
132 	result = audit_reusename(filename);
133 	if (result)
134 		return result;
135 
136 	result = __getname();
137 	if (unlikely(!result))
138 		return ERR_PTR(-ENOMEM);
139 	result->refcnt = 1;
140 
141 	/*
142 	 * First, try to embed the struct filename inside the names_cache
143 	 * allocation
144 	 */
145 	kname = (char *)result + sizeof(*result);
146 	result->name = kname;
147 	result->separate = false;
148 	max = EMBEDDED_NAME_MAX;
149 
150 recopy:
151 	len = strncpy_from_user(kname, filename, max);
152 	if (unlikely(len < 0)) {
153 		err = ERR_PTR(len);
154 		goto error;
155 	}
156 
157 	/*
158 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 	 * separate struct filename so we can dedicate the entire
160 	 * names_cache allocation for the pathname, and re-do the copy from
161 	 * userland.
162 	 */
163 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
164 		kname = (char *)result;
165 
166 		result = kzalloc(sizeof(*result), GFP_KERNEL);
167 		if (!result) {
168 			err = ERR_PTR(-ENOMEM);
169 			result = (struct filename *)kname;
170 			goto error;
171 		}
172 		result->name = kname;
173 		result->separate = true;
174 		result->refcnt = 1;
175 		max = PATH_MAX;
176 		goto recopy;
177 	}
178 
179 	/* The empty path is special. */
180 	if (unlikely(!len)) {
181 		if (empty)
182 			*empty = 1;
183 		err = ERR_PTR(-ENOENT);
184 		if (!(flags & LOOKUP_EMPTY))
185 			goto error;
186 	}
187 
188 	err = ERR_PTR(-ENAMETOOLONG);
189 	if (unlikely(len >= PATH_MAX))
190 		goto error;
191 
192 	result->uptr = filename;
193 	result->aname = NULL;
194 	audit_getname(result);
195 	return result;
196 
197 error:
198 	putname(result);
199 	return err;
200 }
201 
202 struct filename *
203 getname(const char __user * filename)
204 {
205 	return getname_flags(filename, 0, NULL);
206 }
207 
208 struct filename *
209 getname_kernel(const char * filename)
210 {
211 	struct filename *result;
212 	int len = strlen(filename) + 1;
213 
214 	result = __getname();
215 	if (unlikely(!result))
216 		return ERR_PTR(-ENOMEM);
217 
218 	if (len <= EMBEDDED_NAME_MAX) {
219 		result->name = (char *)(result) + sizeof(*result);
220 		result->separate = false;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		tmp->separate = true;
231 		result = tmp;
232 	} else {
233 		__putname(result);
234 		return ERR_PTR(-ENAMETOOLONG);
235 	}
236 	memcpy((char *)result->name, filename, len);
237 	result->uptr = NULL;
238 	result->aname = NULL;
239 	result->refcnt = 1;
240 	audit_getname(result);
241 
242 	return result;
243 }
244 
245 void putname(struct filename *name)
246 {
247 	BUG_ON(name->refcnt <= 0);
248 
249 	if (--name->refcnt > 0)
250 		return;
251 
252 	if (name->separate) {
253 		__putname(name->name);
254 		kfree(name);
255 	} else
256 		__putname(name);
257 }
258 
259 static int check_acl(struct inode *inode, int mask)
260 {
261 #ifdef CONFIG_FS_POSIX_ACL
262 	struct posix_acl *acl;
263 
264 	if (mask & MAY_NOT_BLOCK) {
265 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 	        if (!acl)
267 	                return -EAGAIN;
268 		/* no ->get_acl() calls in RCU mode... */
269 		if (acl == ACL_NOT_CACHED)
270 			return -ECHILD;
271 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 	}
273 
274 	acl = get_acl(inode, ACL_TYPE_ACCESS);
275 	if (IS_ERR(acl))
276 		return PTR_ERR(acl);
277 	if (acl) {
278 	        int error = posix_acl_permission(inode, acl, mask);
279 	        posix_acl_release(acl);
280 	        return error;
281 	}
282 #endif
283 
284 	return -EAGAIN;
285 }
286 
287 /*
288  * This does the basic permission checking
289  */
290 static int acl_permission_check(struct inode *inode, int mask)
291 {
292 	unsigned int mode = inode->i_mode;
293 
294 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 		mode >>= 6;
296 	else {
297 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 			int error = check_acl(inode, mask);
299 			if (error != -EAGAIN)
300 				return error;
301 		}
302 
303 		if (in_group_p(inode->i_gid))
304 			mode >>= 3;
305 	}
306 
307 	/*
308 	 * If the DACs are ok we don't need any capability check.
309 	 */
310 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 		return 0;
312 	return -EACCES;
313 }
314 
315 /**
316  * generic_permission -  check for access rights on a Posix-like filesystem
317  * @inode:	inode to check access rights for
318  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319  *
320  * Used to check for read/write/execute permissions on a file.
321  * We use "fsuid" for this, letting us set arbitrary permissions
322  * for filesystem access without changing the "normal" uids which
323  * are used for other things.
324  *
325  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326  * request cannot be satisfied (eg. requires blocking or too much complexity).
327  * It would then be called again in ref-walk mode.
328  */
329 int generic_permission(struct inode *inode, int mask)
330 {
331 	int ret;
332 
333 	/*
334 	 * Do the basic permission checks.
335 	 */
336 	ret = acl_permission_check(inode, mask);
337 	if (ret != -EACCES)
338 		return ret;
339 
340 	if (S_ISDIR(inode->i_mode)) {
341 		/* DACs are overridable for directories */
342 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 			return 0;
344 		if (!(mask & MAY_WRITE))
345 			if (capable_wrt_inode_uidgid(inode,
346 						     CAP_DAC_READ_SEARCH))
347 				return 0;
348 		return -EACCES;
349 	}
350 	/*
351 	 * Read/write DACs are always overridable.
352 	 * Executable DACs are overridable when there is
353 	 * at least one exec bit set.
354 	 */
355 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 			return 0;
358 
359 	/*
360 	 * Searching includes executable on directories, else just read.
361 	 */
362 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 	if (mask == MAY_READ)
364 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 			return 0;
366 
367 	return -EACCES;
368 }
369 EXPORT_SYMBOL(generic_permission);
370 
371 /*
372  * We _really_ want to just do "generic_permission()" without
373  * even looking at the inode->i_op values. So we keep a cache
374  * flag in inode->i_opflags, that says "this has not special
375  * permission function, use the fast case".
376  */
377 static inline int do_inode_permission(struct inode *inode, int mask)
378 {
379 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 		if (likely(inode->i_op->permission))
381 			return inode->i_op->permission(inode, mask);
382 
383 		/* This gets set once for the inode lifetime */
384 		spin_lock(&inode->i_lock);
385 		inode->i_opflags |= IOP_FASTPERM;
386 		spin_unlock(&inode->i_lock);
387 	}
388 	return generic_permission(inode, mask);
389 }
390 
391 /**
392  * __inode_permission - Check for access rights to a given inode
393  * @inode: Inode to check permission on
394  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395  *
396  * Check for read/write/execute permissions on an inode.
397  *
398  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399  *
400  * This does not check for a read-only file system.  You probably want
401  * inode_permission().
402  */
403 int __inode_permission(struct inode *inode, int mask)
404 {
405 	int retval;
406 
407 	if (unlikely(mask & MAY_WRITE)) {
408 		/*
409 		 * Nobody gets write access to an immutable file.
410 		 */
411 		if (IS_IMMUTABLE(inode))
412 			return -EACCES;
413 	}
414 
415 	retval = do_inode_permission(inode, mask);
416 	if (retval)
417 		return retval;
418 
419 	retval = devcgroup_inode_permission(inode, mask);
420 	if (retval)
421 		return retval;
422 
423 	return security_inode_permission(inode, mask);
424 }
425 EXPORT_SYMBOL(__inode_permission);
426 
427 /**
428  * sb_permission - Check superblock-level permissions
429  * @sb: Superblock of inode to check permission on
430  * @inode: Inode to check permission on
431  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432  *
433  * Separate out file-system wide checks from inode-specific permission checks.
434  */
435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436 {
437 	if (unlikely(mask & MAY_WRITE)) {
438 		umode_t mode = inode->i_mode;
439 
440 		/* Nobody gets write access to a read-only fs. */
441 		if ((sb->s_flags & MS_RDONLY) &&
442 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
443 			return -EROFS;
444 	}
445 	return 0;
446 }
447 
448 /**
449  * inode_permission - Check for access rights to a given inode
450  * @inode: Inode to check permission on
451  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452  *
453  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
454  * this, letting us set arbitrary permissions for filesystem access without
455  * changing the "normal" UIDs which are used for other things.
456  *
457  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458  */
459 int inode_permission(struct inode *inode, int mask)
460 {
461 	int retval;
462 
463 	retval = sb_permission(inode->i_sb, inode, mask);
464 	if (retval)
465 		return retval;
466 	return __inode_permission(inode, mask);
467 }
468 EXPORT_SYMBOL(inode_permission);
469 
470 /**
471  * path_get - get a reference to a path
472  * @path: path to get the reference to
473  *
474  * Given a path increment the reference count to the dentry and the vfsmount.
475  */
476 void path_get(const struct path *path)
477 {
478 	mntget(path->mnt);
479 	dget(path->dentry);
480 }
481 EXPORT_SYMBOL(path_get);
482 
483 /**
484  * path_put - put a reference to a path
485  * @path: path to put the reference to
486  *
487  * Given a path decrement the reference count to the dentry and the vfsmount.
488  */
489 void path_put(const struct path *path)
490 {
491 	dput(path->dentry);
492 	mntput(path->mnt);
493 }
494 EXPORT_SYMBOL(path_put);
495 
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	struct file	*base;
506 	char *saved_names[MAX_NESTED_LINKS + 1];
507 };
508 
509 /*
510  * Path walking has 2 modes, rcu-walk and ref-walk (see
511  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
512  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
513  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
514  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
515  * got stuck, so ref-walk may continue from there. If this is not successful
516  * (eg. a seqcount has changed), then failure is returned and it's up to caller
517  * to restart the path walk from the beginning in ref-walk mode.
518  */
519 
520 /**
521  * unlazy_walk - try to switch to ref-walk mode.
522  * @nd: nameidata pathwalk data
523  * @dentry: child of nd->path.dentry or NULL
524  * Returns: 0 on success, -ECHILD on failure
525  *
526  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
527  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
528  * @nd or NULL.  Must be called from rcu-walk context.
529  */
530 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
531 {
532 	struct fs_struct *fs = current->fs;
533 	struct dentry *parent = nd->path.dentry;
534 
535 	BUG_ON(!(nd->flags & LOOKUP_RCU));
536 
537 	/*
538 	 * After legitimizing the bastards, terminate_walk()
539 	 * will do the right thing for non-RCU mode, and all our
540 	 * subsequent exit cases should rcu_read_unlock()
541 	 * before returning.  Do vfsmount first; if dentry
542 	 * can't be legitimized, just set nd->path.dentry to NULL
543 	 * and rely on dput(NULL) being a no-op.
544 	 */
545 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
546 		return -ECHILD;
547 	nd->flags &= ~LOOKUP_RCU;
548 
549 	if (!lockref_get_not_dead(&parent->d_lockref)) {
550 		nd->path.dentry = NULL;
551 		goto out;
552 	}
553 
554 	/*
555 	 * For a negative lookup, the lookup sequence point is the parents
556 	 * sequence point, and it only needs to revalidate the parent dentry.
557 	 *
558 	 * For a positive lookup, we need to move both the parent and the
559 	 * dentry from the RCU domain to be properly refcounted. And the
560 	 * sequence number in the dentry validates *both* dentry counters,
561 	 * since we checked the sequence number of the parent after we got
562 	 * the child sequence number. So we know the parent must still
563 	 * be valid if the child sequence number is still valid.
564 	 */
565 	if (!dentry) {
566 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
567 			goto out;
568 		BUG_ON(nd->inode != parent->d_inode);
569 	} else {
570 		if (!lockref_get_not_dead(&dentry->d_lockref))
571 			goto out;
572 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
573 			goto drop_dentry;
574 	}
575 
576 	/*
577 	 * Sequence counts matched. Now make sure that the root is
578 	 * still valid and get it if required.
579 	 */
580 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
581 		spin_lock(&fs->lock);
582 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
583 			goto unlock_and_drop_dentry;
584 		path_get(&nd->root);
585 		spin_unlock(&fs->lock);
586 	}
587 
588 	rcu_read_unlock();
589 	return 0;
590 
591 unlock_and_drop_dentry:
592 	spin_unlock(&fs->lock);
593 drop_dentry:
594 	rcu_read_unlock();
595 	dput(dentry);
596 	goto drop_root_mnt;
597 out:
598 	rcu_read_unlock();
599 drop_root_mnt:
600 	if (!(nd->flags & LOOKUP_ROOT))
601 		nd->root.mnt = NULL;
602 	return -ECHILD;
603 }
604 
605 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
606 {
607 	return dentry->d_op->d_revalidate(dentry, flags);
608 }
609 
610 /**
611  * complete_walk - successful completion of path walk
612  * @nd:  pointer nameidata
613  *
614  * If we had been in RCU mode, drop out of it and legitimize nd->path.
615  * Revalidate the final result, unless we'd already done that during
616  * the path walk or the filesystem doesn't ask for it.  Return 0 on
617  * success, -error on failure.  In case of failure caller does not
618  * need to drop nd->path.
619  */
620 static int complete_walk(struct nameidata *nd)
621 {
622 	struct dentry *dentry = nd->path.dentry;
623 	int status;
624 
625 	if (nd->flags & LOOKUP_RCU) {
626 		nd->flags &= ~LOOKUP_RCU;
627 		if (!(nd->flags & LOOKUP_ROOT))
628 			nd->root.mnt = NULL;
629 
630 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
631 			rcu_read_unlock();
632 			return -ECHILD;
633 		}
634 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
635 			rcu_read_unlock();
636 			mntput(nd->path.mnt);
637 			return -ECHILD;
638 		}
639 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
640 			rcu_read_unlock();
641 			dput(dentry);
642 			mntput(nd->path.mnt);
643 			return -ECHILD;
644 		}
645 		rcu_read_unlock();
646 	}
647 
648 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
649 		return 0;
650 
651 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
652 		return 0;
653 
654 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
655 	if (status > 0)
656 		return 0;
657 
658 	if (!status)
659 		status = -ESTALE;
660 
661 	path_put(&nd->path);
662 	return status;
663 }
664 
665 static __always_inline void set_root(struct nameidata *nd)
666 {
667 	get_fs_root(current->fs, &nd->root);
668 }
669 
670 static int link_path_walk(const char *, struct nameidata *);
671 
672 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
673 {
674 	struct fs_struct *fs = current->fs;
675 	unsigned seq, res;
676 
677 	do {
678 		seq = read_seqcount_begin(&fs->seq);
679 		nd->root = fs->root;
680 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
681 	} while (read_seqcount_retry(&fs->seq, seq));
682 	return res;
683 }
684 
685 static void path_put_conditional(struct path *path, struct nameidata *nd)
686 {
687 	dput(path->dentry);
688 	if (path->mnt != nd->path.mnt)
689 		mntput(path->mnt);
690 }
691 
692 static inline void path_to_nameidata(const struct path *path,
693 					struct nameidata *nd)
694 {
695 	if (!(nd->flags & LOOKUP_RCU)) {
696 		dput(nd->path.dentry);
697 		if (nd->path.mnt != path->mnt)
698 			mntput(nd->path.mnt);
699 	}
700 	nd->path.mnt = path->mnt;
701 	nd->path.dentry = path->dentry;
702 }
703 
704 /*
705  * Helper to directly jump to a known parsed path from ->follow_link,
706  * caller must have taken a reference to path beforehand.
707  */
708 void nd_jump_link(struct nameidata *nd, struct path *path)
709 {
710 	path_put(&nd->path);
711 
712 	nd->path = *path;
713 	nd->inode = nd->path.dentry->d_inode;
714 	nd->flags |= LOOKUP_JUMPED;
715 }
716 
717 void nd_set_link(struct nameidata *nd, char *path)
718 {
719 	nd->saved_names[nd->depth] = path;
720 }
721 EXPORT_SYMBOL(nd_set_link);
722 
723 char *nd_get_link(struct nameidata *nd)
724 {
725 	return nd->saved_names[nd->depth];
726 }
727 EXPORT_SYMBOL(nd_get_link);
728 
729 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
730 {
731 	struct inode *inode = link->dentry->d_inode;
732 	if (inode->i_op->put_link)
733 		inode->i_op->put_link(link->dentry, nd, cookie);
734 	path_put(link);
735 }
736 
737 int sysctl_protected_symlinks __read_mostly = 0;
738 int sysctl_protected_hardlinks __read_mostly = 0;
739 
740 /**
741  * may_follow_link - Check symlink following for unsafe situations
742  * @link: The path of the symlink
743  * @nd: nameidata pathwalk data
744  *
745  * In the case of the sysctl_protected_symlinks sysctl being enabled,
746  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
747  * in a sticky world-writable directory. This is to protect privileged
748  * processes from failing races against path names that may change out
749  * from under them by way of other users creating malicious symlinks.
750  * It will permit symlinks to be followed only when outside a sticky
751  * world-writable directory, or when the uid of the symlink and follower
752  * match, or when the directory owner matches the symlink's owner.
753  *
754  * Returns 0 if following the symlink is allowed, -ve on error.
755  */
756 static inline int may_follow_link(struct path *link, struct nameidata *nd)
757 {
758 	const struct inode *inode;
759 	const struct inode *parent;
760 
761 	if (!sysctl_protected_symlinks)
762 		return 0;
763 
764 	/* Allowed if owner and follower match. */
765 	inode = link->dentry->d_inode;
766 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
767 		return 0;
768 
769 	/* Allowed if parent directory not sticky and world-writable. */
770 	parent = nd->path.dentry->d_inode;
771 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
772 		return 0;
773 
774 	/* Allowed if parent directory and link owner match. */
775 	if (uid_eq(parent->i_uid, inode->i_uid))
776 		return 0;
777 
778 	audit_log_link_denied("follow_link", link);
779 	path_put_conditional(link, nd);
780 	path_put(&nd->path);
781 	return -EACCES;
782 }
783 
784 /**
785  * safe_hardlink_source - Check for safe hardlink conditions
786  * @inode: the source inode to hardlink from
787  *
788  * Return false if at least one of the following conditions:
789  *    - inode is not a regular file
790  *    - inode is setuid
791  *    - inode is setgid and group-exec
792  *    - access failure for read and write
793  *
794  * Otherwise returns true.
795  */
796 static bool safe_hardlink_source(struct inode *inode)
797 {
798 	umode_t mode = inode->i_mode;
799 
800 	/* Special files should not get pinned to the filesystem. */
801 	if (!S_ISREG(mode))
802 		return false;
803 
804 	/* Setuid files should not get pinned to the filesystem. */
805 	if (mode & S_ISUID)
806 		return false;
807 
808 	/* Executable setgid files should not get pinned to the filesystem. */
809 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
810 		return false;
811 
812 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
813 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
814 		return false;
815 
816 	return true;
817 }
818 
819 /**
820  * may_linkat - Check permissions for creating a hardlink
821  * @link: the source to hardlink from
822  *
823  * Block hardlink when all of:
824  *  - sysctl_protected_hardlinks enabled
825  *  - fsuid does not match inode
826  *  - hardlink source is unsafe (see safe_hardlink_source() above)
827  *  - not CAP_FOWNER
828  *
829  * Returns 0 if successful, -ve on error.
830  */
831 static int may_linkat(struct path *link)
832 {
833 	const struct cred *cred;
834 	struct inode *inode;
835 
836 	if (!sysctl_protected_hardlinks)
837 		return 0;
838 
839 	cred = current_cred();
840 	inode = link->dentry->d_inode;
841 
842 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
843 	 * otherwise, it must be a safe source.
844 	 */
845 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
846 	    capable(CAP_FOWNER))
847 		return 0;
848 
849 	audit_log_link_denied("linkat", link);
850 	return -EPERM;
851 }
852 
853 static __always_inline int
854 follow_link(struct path *link, struct nameidata *nd, void **p)
855 {
856 	struct dentry *dentry = link->dentry;
857 	int error;
858 	char *s;
859 
860 	BUG_ON(nd->flags & LOOKUP_RCU);
861 
862 	if (link->mnt == nd->path.mnt)
863 		mntget(link->mnt);
864 
865 	error = -ELOOP;
866 	if (unlikely(current->total_link_count >= 40))
867 		goto out_put_nd_path;
868 
869 	cond_resched();
870 	current->total_link_count++;
871 
872 	touch_atime(link);
873 	nd_set_link(nd, NULL);
874 
875 	error = security_inode_follow_link(link->dentry, nd);
876 	if (error)
877 		goto out_put_nd_path;
878 
879 	nd->last_type = LAST_BIND;
880 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
881 	error = PTR_ERR(*p);
882 	if (IS_ERR(*p))
883 		goto out_put_nd_path;
884 
885 	error = 0;
886 	s = nd_get_link(nd);
887 	if (s) {
888 		if (unlikely(IS_ERR(s))) {
889 			path_put(&nd->path);
890 			put_link(nd, link, *p);
891 			return PTR_ERR(s);
892 		}
893 		if (*s == '/') {
894 			if (!nd->root.mnt)
895 				set_root(nd);
896 			path_put(&nd->path);
897 			nd->path = nd->root;
898 			path_get(&nd->root);
899 			nd->flags |= LOOKUP_JUMPED;
900 		}
901 		nd->inode = nd->path.dentry->d_inode;
902 		error = link_path_walk(s, nd);
903 		if (unlikely(error))
904 			put_link(nd, link, *p);
905 	}
906 
907 	return error;
908 
909 out_put_nd_path:
910 	*p = NULL;
911 	path_put(&nd->path);
912 	path_put(link);
913 	return error;
914 }
915 
916 static int follow_up_rcu(struct path *path)
917 {
918 	struct mount *mnt = real_mount(path->mnt);
919 	struct mount *parent;
920 	struct dentry *mountpoint;
921 
922 	parent = mnt->mnt_parent;
923 	if (&parent->mnt == path->mnt)
924 		return 0;
925 	mountpoint = mnt->mnt_mountpoint;
926 	path->dentry = mountpoint;
927 	path->mnt = &parent->mnt;
928 	return 1;
929 }
930 
931 /*
932  * follow_up - Find the mountpoint of path's vfsmount
933  *
934  * Given a path, find the mountpoint of its source file system.
935  * Replace @path with the path of the mountpoint in the parent mount.
936  * Up is towards /.
937  *
938  * Return 1 if we went up a level and 0 if we were already at the
939  * root.
940  */
941 int follow_up(struct path *path)
942 {
943 	struct mount *mnt = real_mount(path->mnt);
944 	struct mount *parent;
945 	struct dentry *mountpoint;
946 
947 	read_seqlock_excl(&mount_lock);
948 	parent = mnt->mnt_parent;
949 	if (parent == mnt) {
950 		read_sequnlock_excl(&mount_lock);
951 		return 0;
952 	}
953 	mntget(&parent->mnt);
954 	mountpoint = dget(mnt->mnt_mountpoint);
955 	read_sequnlock_excl(&mount_lock);
956 	dput(path->dentry);
957 	path->dentry = mountpoint;
958 	mntput(path->mnt);
959 	path->mnt = &parent->mnt;
960 	return 1;
961 }
962 EXPORT_SYMBOL(follow_up);
963 
964 /*
965  * Perform an automount
966  * - return -EISDIR to tell follow_managed() to stop and return the path we
967  *   were called with.
968  */
969 static int follow_automount(struct path *path, unsigned flags,
970 			    bool *need_mntput)
971 {
972 	struct vfsmount *mnt;
973 	int err;
974 
975 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
976 		return -EREMOTE;
977 
978 	/* We don't want to mount if someone's just doing a stat -
979 	 * unless they're stat'ing a directory and appended a '/' to
980 	 * the name.
981 	 *
982 	 * We do, however, want to mount if someone wants to open or
983 	 * create a file of any type under the mountpoint, wants to
984 	 * traverse through the mountpoint or wants to open the
985 	 * mounted directory.  Also, autofs may mark negative dentries
986 	 * as being automount points.  These will need the attentions
987 	 * of the daemon to instantiate them before they can be used.
988 	 */
989 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
990 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
991 	    path->dentry->d_inode)
992 		return -EISDIR;
993 
994 	current->total_link_count++;
995 	if (current->total_link_count >= 40)
996 		return -ELOOP;
997 
998 	mnt = path->dentry->d_op->d_automount(path);
999 	if (IS_ERR(mnt)) {
1000 		/*
1001 		 * The filesystem is allowed to return -EISDIR here to indicate
1002 		 * it doesn't want to automount.  For instance, autofs would do
1003 		 * this so that its userspace daemon can mount on this dentry.
1004 		 *
1005 		 * However, we can only permit this if it's a terminal point in
1006 		 * the path being looked up; if it wasn't then the remainder of
1007 		 * the path is inaccessible and we should say so.
1008 		 */
1009 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1010 			return -EREMOTE;
1011 		return PTR_ERR(mnt);
1012 	}
1013 
1014 	if (!mnt) /* mount collision */
1015 		return 0;
1016 
1017 	if (!*need_mntput) {
1018 		/* lock_mount() may release path->mnt on error */
1019 		mntget(path->mnt);
1020 		*need_mntput = true;
1021 	}
1022 	err = finish_automount(mnt, path);
1023 
1024 	switch (err) {
1025 	case -EBUSY:
1026 		/* Someone else made a mount here whilst we were busy */
1027 		return 0;
1028 	case 0:
1029 		path_put(path);
1030 		path->mnt = mnt;
1031 		path->dentry = dget(mnt->mnt_root);
1032 		return 0;
1033 	default:
1034 		return err;
1035 	}
1036 
1037 }
1038 
1039 /*
1040  * Handle a dentry that is managed in some way.
1041  * - Flagged for transit management (autofs)
1042  * - Flagged as mountpoint
1043  * - Flagged as automount point
1044  *
1045  * This may only be called in refwalk mode.
1046  *
1047  * Serialization is taken care of in namespace.c
1048  */
1049 static int follow_managed(struct path *path, unsigned flags)
1050 {
1051 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1052 	unsigned managed;
1053 	bool need_mntput = false;
1054 	int ret = 0;
1055 
1056 	/* Given that we're not holding a lock here, we retain the value in a
1057 	 * local variable for each dentry as we look at it so that we don't see
1058 	 * the components of that value change under us */
1059 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1060 	       managed &= DCACHE_MANAGED_DENTRY,
1061 	       unlikely(managed != 0)) {
1062 		/* Allow the filesystem to manage the transit without i_mutex
1063 		 * being held. */
1064 		if (managed & DCACHE_MANAGE_TRANSIT) {
1065 			BUG_ON(!path->dentry->d_op);
1066 			BUG_ON(!path->dentry->d_op->d_manage);
1067 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1068 			if (ret < 0)
1069 				break;
1070 		}
1071 
1072 		/* Transit to a mounted filesystem. */
1073 		if (managed & DCACHE_MOUNTED) {
1074 			struct vfsmount *mounted = lookup_mnt(path);
1075 			if (mounted) {
1076 				dput(path->dentry);
1077 				if (need_mntput)
1078 					mntput(path->mnt);
1079 				path->mnt = mounted;
1080 				path->dentry = dget(mounted->mnt_root);
1081 				need_mntput = true;
1082 				continue;
1083 			}
1084 
1085 			/* Something is mounted on this dentry in another
1086 			 * namespace and/or whatever was mounted there in this
1087 			 * namespace got unmounted before lookup_mnt() could
1088 			 * get it */
1089 		}
1090 
1091 		/* Handle an automount point */
1092 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1093 			ret = follow_automount(path, flags, &need_mntput);
1094 			if (ret < 0)
1095 				break;
1096 			continue;
1097 		}
1098 
1099 		/* We didn't change the current path point */
1100 		break;
1101 	}
1102 
1103 	if (need_mntput && path->mnt == mnt)
1104 		mntput(path->mnt);
1105 	if (ret == -EISDIR)
1106 		ret = 0;
1107 	return ret < 0 ? ret : need_mntput;
1108 }
1109 
1110 int follow_down_one(struct path *path)
1111 {
1112 	struct vfsmount *mounted;
1113 
1114 	mounted = lookup_mnt(path);
1115 	if (mounted) {
1116 		dput(path->dentry);
1117 		mntput(path->mnt);
1118 		path->mnt = mounted;
1119 		path->dentry = dget(mounted->mnt_root);
1120 		return 1;
1121 	}
1122 	return 0;
1123 }
1124 EXPORT_SYMBOL(follow_down_one);
1125 
1126 static inline int managed_dentry_rcu(struct dentry *dentry)
1127 {
1128 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1129 		dentry->d_op->d_manage(dentry, true) : 0;
1130 }
1131 
1132 /*
1133  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1134  * we meet a managed dentry that would need blocking.
1135  */
1136 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1137 			       struct inode **inode)
1138 {
1139 	for (;;) {
1140 		struct mount *mounted;
1141 		/*
1142 		 * Don't forget we might have a non-mountpoint managed dentry
1143 		 * that wants to block transit.
1144 		 */
1145 		switch (managed_dentry_rcu(path->dentry)) {
1146 		case -ECHILD:
1147 		default:
1148 			return false;
1149 		case -EISDIR:
1150 			return true;
1151 		case 0:
1152 			break;
1153 		}
1154 
1155 		if (!d_mountpoint(path->dentry))
1156 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1157 
1158 		mounted = __lookup_mnt(path->mnt, path->dentry);
1159 		if (!mounted)
1160 			break;
1161 		path->mnt = &mounted->mnt;
1162 		path->dentry = mounted->mnt.mnt_root;
1163 		nd->flags |= LOOKUP_JUMPED;
1164 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1165 		/*
1166 		 * Update the inode too. We don't need to re-check the
1167 		 * dentry sequence number here after this d_inode read,
1168 		 * because a mount-point is always pinned.
1169 		 */
1170 		*inode = path->dentry->d_inode;
1171 	}
1172 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1173 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1174 }
1175 
1176 static int follow_dotdot_rcu(struct nameidata *nd)
1177 {
1178 	struct inode *inode = nd->inode;
1179 	if (!nd->root.mnt)
1180 		set_root_rcu(nd);
1181 
1182 	while (1) {
1183 		if (nd->path.dentry == nd->root.dentry &&
1184 		    nd->path.mnt == nd->root.mnt) {
1185 			break;
1186 		}
1187 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1188 			struct dentry *old = nd->path.dentry;
1189 			struct dentry *parent = old->d_parent;
1190 			unsigned seq;
1191 
1192 			inode = parent->d_inode;
1193 			seq = read_seqcount_begin(&parent->d_seq);
1194 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1195 				goto failed;
1196 			nd->path.dentry = parent;
1197 			nd->seq = seq;
1198 			break;
1199 		}
1200 		if (!follow_up_rcu(&nd->path))
1201 			break;
1202 		inode = nd->path.dentry->d_inode;
1203 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1204 	}
1205 	while (d_mountpoint(nd->path.dentry)) {
1206 		struct mount *mounted;
1207 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1208 		if (!mounted)
1209 			break;
1210 		nd->path.mnt = &mounted->mnt;
1211 		nd->path.dentry = mounted->mnt.mnt_root;
1212 		inode = nd->path.dentry->d_inode;
1213 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1214 		if (read_seqretry(&mount_lock, nd->m_seq))
1215 			goto failed;
1216 	}
1217 	nd->inode = inode;
1218 	return 0;
1219 
1220 failed:
1221 	nd->flags &= ~LOOKUP_RCU;
1222 	if (!(nd->flags & LOOKUP_ROOT))
1223 		nd->root.mnt = NULL;
1224 	rcu_read_unlock();
1225 	return -ECHILD;
1226 }
1227 
1228 /*
1229  * Follow down to the covering mount currently visible to userspace.  At each
1230  * point, the filesystem owning that dentry may be queried as to whether the
1231  * caller is permitted to proceed or not.
1232  */
1233 int follow_down(struct path *path)
1234 {
1235 	unsigned managed;
1236 	int ret;
1237 
1238 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1239 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1240 		/* Allow the filesystem to manage the transit without i_mutex
1241 		 * being held.
1242 		 *
1243 		 * We indicate to the filesystem if someone is trying to mount
1244 		 * something here.  This gives autofs the chance to deny anyone
1245 		 * other than its daemon the right to mount on its
1246 		 * superstructure.
1247 		 *
1248 		 * The filesystem may sleep at this point.
1249 		 */
1250 		if (managed & DCACHE_MANAGE_TRANSIT) {
1251 			BUG_ON(!path->dentry->d_op);
1252 			BUG_ON(!path->dentry->d_op->d_manage);
1253 			ret = path->dentry->d_op->d_manage(
1254 				path->dentry, false);
1255 			if (ret < 0)
1256 				return ret == -EISDIR ? 0 : ret;
1257 		}
1258 
1259 		/* Transit to a mounted filesystem. */
1260 		if (managed & DCACHE_MOUNTED) {
1261 			struct vfsmount *mounted = lookup_mnt(path);
1262 			if (!mounted)
1263 				break;
1264 			dput(path->dentry);
1265 			mntput(path->mnt);
1266 			path->mnt = mounted;
1267 			path->dentry = dget(mounted->mnt_root);
1268 			continue;
1269 		}
1270 
1271 		/* Don't handle automount points here */
1272 		break;
1273 	}
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL(follow_down);
1277 
1278 /*
1279  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1280  */
1281 static void follow_mount(struct path *path)
1282 {
1283 	while (d_mountpoint(path->dentry)) {
1284 		struct vfsmount *mounted = lookup_mnt(path);
1285 		if (!mounted)
1286 			break;
1287 		dput(path->dentry);
1288 		mntput(path->mnt);
1289 		path->mnt = mounted;
1290 		path->dentry = dget(mounted->mnt_root);
1291 	}
1292 }
1293 
1294 static void follow_dotdot(struct nameidata *nd)
1295 {
1296 	if (!nd->root.mnt)
1297 		set_root(nd);
1298 
1299 	while(1) {
1300 		struct dentry *old = nd->path.dentry;
1301 
1302 		if (nd->path.dentry == nd->root.dentry &&
1303 		    nd->path.mnt == nd->root.mnt) {
1304 			break;
1305 		}
1306 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 			/* rare case of legitimate dget_parent()... */
1308 			nd->path.dentry = dget_parent(nd->path.dentry);
1309 			dput(old);
1310 			break;
1311 		}
1312 		if (!follow_up(&nd->path))
1313 			break;
1314 	}
1315 	follow_mount(&nd->path);
1316 	nd->inode = nd->path.dentry->d_inode;
1317 }
1318 
1319 /*
1320  * This looks up the name in dcache, possibly revalidates the old dentry and
1321  * allocates a new one if not found or not valid.  In the need_lookup argument
1322  * returns whether i_op->lookup is necessary.
1323  *
1324  * dir->d_inode->i_mutex must be held
1325  */
1326 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1327 				    unsigned int flags, bool *need_lookup)
1328 {
1329 	struct dentry *dentry;
1330 	int error;
1331 
1332 	*need_lookup = false;
1333 	dentry = d_lookup(dir, name);
1334 	if (dentry) {
1335 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1336 			error = d_revalidate(dentry, flags);
1337 			if (unlikely(error <= 0)) {
1338 				if (error < 0) {
1339 					dput(dentry);
1340 					return ERR_PTR(error);
1341 				} else {
1342 					d_invalidate(dentry);
1343 					dput(dentry);
1344 					dentry = NULL;
1345 				}
1346 			}
1347 		}
1348 	}
1349 
1350 	if (!dentry) {
1351 		dentry = d_alloc(dir, name);
1352 		if (unlikely(!dentry))
1353 			return ERR_PTR(-ENOMEM);
1354 
1355 		*need_lookup = true;
1356 	}
1357 	return dentry;
1358 }
1359 
1360 /*
1361  * Call i_op->lookup on the dentry.  The dentry must be negative and
1362  * unhashed.
1363  *
1364  * dir->d_inode->i_mutex must be held
1365  */
1366 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1367 				  unsigned int flags)
1368 {
1369 	struct dentry *old;
1370 
1371 	/* Don't create child dentry for a dead directory. */
1372 	if (unlikely(IS_DEADDIR(dir))) {
1373 		dput(dentry);
1374 		return ERR_PTR(-ENOENT);
1375 	}
1376 
1377 	old = dir->i_op->lookup(dir, dentry, flags);
1378 	if (unlikely(old)) {
1379 		dput(dentry);
1380 		dentry = old;
1381 	}
1382 	return dentry;
1383 }
1384 
1385 static struct dentry *__lookup_hash(struct qstr *name,
1386 		struct dentry *base, unsigned int flags)
1387 {
1388 	bool need_lookup;
1389 	struct dentry *dentry;
1390 
1391 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1392 	if (!need_lookup)
1393 		return dentry;
1394 
1395 	return lookup_real(base->d_inode, dentry, flags);
1396 }
1397 
1398 /*
1399  *  It's more convoluted than I'd like it to be, but... it's still fairly
1400  *  small and for now I'd prefer to have fast path as straight as possible.
1401  *  It _is_ time-critical.
1402  */
1403 static int lookup_fast(struct nameidata *nd,
1404 		       struct path *path, struct inode **inode)
1405 {
1406 	struct vfsmount *mnt = nd->path.mnt;
1407 	struct dentry *dentry, *parent = nd->path.dentry;
1408 	int need_reval = 1;
1409 	int status = 1;
1410 	int err;
1411 
1412 	/*
1413 	 * Rename seqlock is not required here because in the off chance
1414 	 * of a false negative due to a concurrent rename, we're going to
1415 	 * do the non-racy lookup, below.
1416 	 */
1417 	if (nd->flags & LOOKUP_RCU) {
1418 		unsigned seq;
1419 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1420 		if (!dentry)
1421 			goto unlazy;
1422 
1423 		/*
1424 		 * This sequence count validates that the inode matches
1425 		 * the dentry name information from lookup.
1426 		 */
1427 		*inode = dentry->d_inode;
1428 		if (read_seqcount_retry(&dentry->d_seq, seq))
1429 			return -ECHILD;
1430 
1431 		/*
1432 		 * This sequence count validates that the parent had no
1433 		 * changes while we did the lookup of the dentry above.
1434 		 *
1435 		 * The memory barrier in read_seqcount_begin of child is
1436 		 *  enough, we can use __read_seqcount_retry here.
1437 		 */
1438 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1439 			return -ECHILD;
1440 		nd->seq = seq;
1441 
1442 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1443 			status = d_revalidate(dentry, nd->flags);
1444 			if (unlikely(status <= 0)) {
1445 				if (status != -ECHILD)
1446 					need_reval = 0;
1447 				goto unlazy;
1448 			}
1449 		}
1450 		path->mnt = mnt;
1451 		path->dentry = dentry;
1452 		if (likely(__follow_mount_rcu(nd, path, inode)))
1453 			return 0;
1454 unlazy:
1455 		if (unlazy_walk(nd, dentry))
1456 			return -ECHILD;
1457 	} else {
1458 		dentry = __d_lookup(parent, &nd->last);
1459 	}
1460 
1461 	if (unlikely(!dentry))
1462 		goto need_lookup;
1463 
1464 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1465 		status = d_revalidate(dentry, nd->flags);
1466 	if (unlikely(status <= 0)) {
1467 		if (status < 0) {
1468 			dput(dentry);
1469 			return status;
1470 		}
1471 		d_invalidate(dentry);
1472 		dput(dentry);
1473 		goto need_lookup;
1474 	}
1475 
1476 	path->mnt = mnt;
1477 	path->dentry = dentry;
1478 	err = follow_managed(path, nd->flags);
1479 	if (unlikely(err < 0)) {
1480 		path_put_conditional(path, nd);
1481 		return err;
1482 	}
1483 	if (err)
1484 		nd->flags |= LOOKUP_JUMPED;
1485 	*inode = path->dentry->d_inode;
1486 	return 0;
1487 
1488 need_lookup:
1489 	return 1;
1490 }
1491 
1492 /* Fast lookup failed, do it the slow way */
1493 static int lookup_slow(struct nameidata *nd, struct path *path)
1494 {
1495 	struct dentry *dentry, *parent;
1496 	int err;
1497 
1498 	parent = nd->path.dentry;
1499 	BUG_ON(nd->inode != parent->d_inode);
1500 
1501 	mutex_lock(&parent->d_inode->i_mutex);
1502 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1503 	mutex_unlock(&parent->d_inode->i_mutex);
1504 	if (IS_ERR(dentry))
1505 		return PTR_ERR(dentry);
1506 	path->mnt = nd->path.mnt;
1507 	path->dentry = dentry;
1508 	err = follow_managed(path, nd->flags);
1509 	if (unlikely(err < 0)) {
1510 		path_put_conditional(path, nd);
1511 		return err;
1512 	}
1513 	if (err)
1514 		nd->flags |= LOOKUP_JUMPED;
1515 	return 0;
1516 }
1517 
1518 static inline int may_lookup(struct nameidata *nd)
1519 {
1520 	if (nd->flags & LOOKUP_RCU) {
1521 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1522 		if (err != -ECHILD)
1523 			return err;
1524 		if (unlazy_walk(nd, NULL))
1525 			return -ECHILD;
1526 	}
1527 	return inode_permission(nd->inode, MAY_EXEC);
1528 }
1529 
1530 static inline int handle_dots(struct nameidata *nd, int type)
1531 {
1532 	if (type == LAST_DOTDOT) {
1533 		if (nd->flags & LOOKUP_RCU) {
1534 			if (follow_dotdot_rcu(nd))
1535 				return -ECHILD;
1536 		} else
1537 			follow_dotdot(nd);
1538 	}
1539 	return 0;
1540 }
1541 
1542 static void terminate_walk(struct nameidata *nd)
1543 {
1544 	if (!(nd->flags & LOOKUP_RCU)) {
1545 		path_put(&nd->path);
1546 	} else {
1547 		nd->flags &= ~LOOKUP_RCU;
1548 		if (!(nd->flags & LOOKUP_ROOT))
1549 			nd->root.mnt = NULL;
1550 		rcu_read_unlock();
1551 	}
1552 }
1553 
1554 /*
1555  * Do we need to follow links? We _really_ want to be able
1556  * to do this check without having to look at inode->i_op,
1557  * so we keep a cache of "no, this doesn't need follow_link"
1558  * for the common case.
1559  */
1560 static inline int should_follow_link(struct dentry *dentry, int follow)
1561 {
1562 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1563 }
1564 
1565 static inline int walk_component(struct nameidata *nd, struct path *path,
1566 		int follow)
1567 {
1568 	struct inode *inode;
1569 	int err;
1570 	/*
1571 	 * "." and ".." are special - ".." especially so because it has
1572 	 * to be able to know about the current root directory and
1573 	 * parent relationships.
1574 	 */
1575 	if (unlikely(nd->last_type != LAST_NORM))
1576 		return handle_dots(nd, nd->last_type);
1577 	err = lookup_fast(nd, path, &inode);
1578 	if (unlikely(err)) {
1579 		if (err < 0)
1580 			goto out_err;
1581 
1582 		err = lookup_slow(nd, path);
1583 		if (err < 0)
1584 			goto out_err;
1585 
1586 		inode = path->dentry->d_inode;
1587 	}
1588 	err = -ENOENT;
1589 	if (!inode || d_is_negative(path->dentry))
1590 		goto out_path_put;
1591 
1592 	if (should_follow_link(path->dentry, follow)) {
1593 		if (nd->flags & LOOKUP_RCU) {
1594 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1595 				err = -ECHILD;
1596 				goto out_err;
1597 			}
1598 		}
1599 		BUG_ON(inode != path->dentry->d_inode);
1600 		return 1;
1601 	}
1602 	path_to_nameidata(path, nd);
1603 	nd->inode = inode;
1604 	return 0;
1605 
1606 out_path_put:
1607 	path_to_nameidata(path, nd);
1608 out_err:
1609 	terminate_walk(nd);
1610 	return err;
1611 }
1612 
1613 /*
1614  * This limits recursive symlink follows to 8, while
1615  * limiting consecutive symlinks to 40.
1616  *
1617  * Without that kind of total limit, nasty chains of consecutive
1618  * symlinks can cause almost arbitrarily long lookups.
1619  */
1620 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1621 {
1622 	int res;
1623 
1624 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1625 		path_put_conditional(path, nd);
1626 		path_put(&nd->path);
1627 		return -ELOOP;
1628 	}
1629 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1630 
1631 	nd->depth++;
1632 	current->link_count++;
1633 
1634 	do {
1635 		struct path link = *path;
1636 		void *cookie;
1637 
1638 		res = follow_link(&link, nd, &cookie);
1639 		if (res)
1640 			break;
1641 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1642 		put_link(nd, &link, cookie);
1643 	} while (res > 0);
1644 
1645 	current->link_count--;
1646 	nd->depth--;
1647 	return res;
1648 }
1649 
1650 /*
1651  * We can do the critical dentry name comparison and hashing
1652  * operations one word at a time, but we are limited to:
1653  *
1654  * - Architectures with fast unaligned word accesses. We could
1655  *   do a "get_unaligned()" if this helps and is sufficiently
1656  *   fast.
1657  *
1658  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1659  *   do not trap on the (extremely unlikely) case of a page
1660  *   crossing operation.
1661  *
1662  * - Furthermore, we need an efficient 64-bit compile for the
1663  *   64-bit case in order to generate the "number of bytes in
1664  *   the final mask". Again, that could be replaced with a
1665  *   efficient population count instruction or similar.
1666  */
1667 #ifdef CONFIG_DCACHE_WORD_ACCESS
1668 
1669 #include <asm/word-at-a-time.h>
1670 
1671 #ifdef CONFIG_64BIT
1672 
1673 static inline unsigned int fold_hash(unsigned long hash)
1674 {
1675 	return hash_64(hash, 32);
1676 }
1677 
1678 #else	/* 32-bit case */
1679 
1680 #define fold_hash(x) (x)
1681 
1682 #endif
1683 
1684 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1685 {
1686 	unsigned long a, mask;
1687 	unsigned long hash = 0;
1688 
1689 	for (;;) {
1690 		a = load_unaligned_zeropad(name);
1691 		if (len < sizeof(unsigned long))
1692 			break;
1693 		hash += a;
1694 		hash *= 9;
1695 		name += sizeof(unsigned long);
1696 		len -= sizeof(unsigned long);
1697 		if (!len)
1698 			goto done;
1699 	}
1700 	mask = bytemask_from_count(len);
1701 	hash += mask & a;
1702 done:
1703 	return fold_hash(hash);
1704 }
1705 EXPORT_SYMBOL(full_name_hash);
1706 
1707 /*
1708  * Calculate the length and hash of the path component, and
1709  * return the "hash_len" as the result.
1710  */
1711 static inline u64 hash_name(const char *name)
1712 {
1713 	unsigned long a, b, adata, bdata, mask, hash, len;
1714 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1715 
1716 	hash = a = 0;
1717 	len = -sizeof(unsigned long);
1718 	do {
1719 		hash = (hash + a) * 9;
1720 		len += sizeof(unsigned long);
1721 		a = load_unaligned_zeropad(name+len);
1722 		b = a ^ REPEAT_BYTE('/');
1723 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1724 
1725 	adata = prep_zero_mask(a, adata, &constants);
1726 	bdata = prep_zero_mask(b, bdata, &constants);
1727 
1728 	mask = create_zero_mask(adata | bdata);
1729 
1730 	hash += a & zero_bytemask(mask);
1731 	len += find_zero(mask);
1732 	return hashlen_create(fold_hash(hash), len);
1733 }
1734 
1735 #else
1736 
1737 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1738 {
1739 	unsigned long hash = init_name_hash();
1740 	while (len--)
1741 		hash = partial_name_hash(*name++, hash);
1742 	return end_name_hash(hash);
1743 }
1744 EXPORT_SYMBOL(full_name_hash);
1745 
1746 /*
1747  * We know there's a real path component here of at least
1748  * one character.
1749  */
1750 static inline u64 hash_name(const char *name)
1751 {
1752 	unsigned long hash = init_name_hash();
1753 	unsigned long len = 0, c;
1754 
1755 	c = (unsigned char)*name;
1756 	do {
1757 		len++;
1758 		hash = partial_name_hash(c, hash);
1759 		c = (unsigned char)name[len];
1760 	} while (c && c != '/');
1761 	return hashlen_create(end_name_hash(hash), len);
1762 }
1763 
1764 #endif
1765 
1766 /*
1767  * Name resolution.
1768  * This is the basic name resolution function, turning a pathname into
1769  * the final dentry. We expect 'base' to be positive and a directory.
1770  *
1771  * Returns 0 and nd will have valid dentry and mnt on success.
1772  * Returns error and drops reference to input namei data on failure.
1773  */
1774 static int link_path_walk(const char *name, struct nameidata *nd)
1775 {
1776 	struct path next;
1777 	int err;
1778 
1779 	while (*name=='/')
1780 		name++;
1781 	if (!*name)
1782 		return 0;
1783 
1784 	/* At this point we know we have a real path component. */
1785 	for(;;) {
1786 		u64 hash_len;
1787 		int type;
1788 
1789 		err = may_lookup(nd);
1790  		if (err)
1791 			break;
1792 
1793 		hash_len = hash_name(name);
1794 
1795 		type = LAST_NORM;
1796 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1797 			case 2:
1798 				if (name[1] == '.') {
1799 					type = LAST_DOTDOT;
1800 					nd->flags |= LOOKUP_JUMPED;
1801 				}
1802 				break;
1803 			case 1:
1804 				type = LAST_DOT;
1805 		}
1806 		if (likely(type == LAST_NORM)) {
1807 			struct dentry *parent = nd->path.dentry;
1808 			nd->flags &= ~LOOKUP_JUMPED;
1809 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1810 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1811 				err = parent->d_op->d_hash(parent, &this);
1812 				if (err < 0)
1813 					break;
1814 				hash_len = this.hash_len;
1815 				name = this.name;
1816 			}
1817 		}
1818 
1819 		nd->last.hash_len = hash_len;
1820 		nd->last.name = name;
1821 		nd->last_type = type;
1822 
1823 		name += hashlen_len(hash_len);
1824 		if (!*name)
1825 			return 0;
1826 		/*
1827 		 * If it wasn't NUL, we know it was '/'. Skip that
1828 		 * slash, and continue until no more slashes.
1829 		 */
1830 		do {
1831 			name++;
1832 		} while (unlikely(*name == '/'));
1833 		if (!*name)
1834 			return 0;
1835 
1836 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1837 		if (err < 0)
1838 			return err;
1839 
1840 		if (err) {
1841 			err = nested_symlink(&next, nd);
1842 			if (err)
1843 				return err;
1844 		}
1845 		if (!d_can_lookup(nd->path.dentry)) {
1846 			err = -ENOTDIR;
1847 			break;
1848 		}
1849 	}
1850 	terminate_walk(nd);
1851 	return err;
1852 }
1853 
1854 static int path_init(int dfd, const char *name, unsigned int flags,
1855 		     struct nameidata *nd)
1856 {
1857 	int retval = 0;
1858 
1859 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1860 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1861 	nd->depth = 0;
1862 	nd->base = NULL;
1863 	if (flags & LOOKUP_ROOT) {
1864 		struct dentry *root = nd->root.dentry;
1865 		struct inode *inode = root->d_inode;
1866 		if (*name) {
1867 			if (!d_can_lookup(root))
1868 				return -ENOTDIR;
1869 			retval = inode_permission(inode, MAY_EXEC);
1870 			if (retval)
1871 				return retval;
1872 		}
1873 		nd->path = nd->root;
1874 		nd->inode = inode;
1875 		if (flags & LOOKUP_RCU) {
1876 			rcu_read_lock();
1877 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1878 			nd->m_seq = read_seqbegin(&mount_lock);
1879 		} else {
1880 			path_get(&nd->path);
1881 		}
1882 		goto done;
1883 	}
1884 
1885 	nd->root.mnt = NULL;
1886 
1887 	nd->m_seq = read_seqbegin(&mount_lock);
1888 	if (*name=='/') {
1889 		if (flags & LOOKUP_RCU) {
1890 			rcu_read_lock();
1891 			nd->seq = set_root_rcu(nd);
1892 		} else {
1893 			set_root(nd);
1894 			path_get(&nd->root);
1895 		}
1896 		nd->path = nd->root;
1897 	} else if (dfd == AT_FDCWD) {
1898 		if (flags & LOOKUP_RCU) {
1899 			struct fs_struct *fs = current->fs;
1900 			unsigned seq;
1901 
1902 			rcu_read_lock();
1903 
1904 			do {
1905 				seq = read_seqcount_begin(&fs->seq);
1906 				nd->path = fs->pwd;
1907 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1908 			} while (read_seqcount_retry(&fs->seq, seq));
1909 		} else {
1910 			get_fs_pwd(current->fs, &nd->path);
1911 		}
1912 	} else {
1913 		/* Caller must check execute permissions on the starting path component */
1914 		struct fd f = fdget_raw(dfd);
1915 		struct dentry *dentry;
1916 
1917 		if (!f.file)
1918 			return -EBADF;
1919 
1920 		dentry = f.file->f_path.dentry;
1921 
1922 		if (*name) {
1923 			if (!d_can_lookup(dentry)) {
1924 				fdput(f);
1925 				return -ENOTDIR;
1926 			}
1927 		}
1928 
1929 		nd->path = f.file->f_path;
1930 		if (flags & LOOKUP_RCU) {
1931 			if (f.flags & FDPUT_FPUT)
1932 				nd->base = f.file;
1933 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1934 			rcu_read_lock();
1935 		} else {
1936 			path_get(&nd->path);
1937 			fdput(f);
1938 		}
1939 	}
1940 
1941 	nd->inode = nd->path.dentry->d_inode;
1942 	if (!(flags & LOOKUP_RCU))
1943 		goto done;
1944 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1945 		goto done;
1946 	if (!(nd->flags & LOOKUP_ROOT))
1947 		nd->root.mnt = NULL;
1948 	rcu_read_unlock();
1949 	return -ECHILD;
1950 done:
1951 	current->total_link_count = 0;
1952 	return link_path_walk(name, nd);
1953 }
1954 
1955 static void path_cleanup(struct nameidata *nd)
1956 {
1957 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1958 		path_put(&nd->root);
1959 		nd->root.mnt = NULL;
1960 	}
1961 	if (unlikely(nd->base))
1962 		fput(nd->base);
1963 }
1964 
1965 static inline int lookup_last(struct nameidata *nd, struct path *path)
1966 {
1967 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1968 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1969 
1970 	nd->flags &= ~LOOKUP_PARENT;
1971 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1972 }
1973 
1974 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1975 static int path_lookupat(int dfd, const char *name,
1976 				unsigned int flags, struct nameidata *nd)
1977 {
1978 	struct path path;
1979 	int err;
1980 
1981 	/*
1982 	 * Path walking is largely split up into 2 different synchronisation
1983 	 * schemes, rcu-walk and ref-walk (explained in
1984 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1985 	 * path walk code, but some things particularly setup, cleanup, and
1986 	 * following mounts are sufficiently divergent that functions are
1987 	 * duplicated. Typically there is a function foo(), and its RCU
1988 	 * analogue, foo_rcu().
1989 	 *
1990 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1991 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1992 	 * be handled by restarting a traditional ref-walk (which will always
1993 	 * be able to complete).
1994 	 */
1995 	err = path_init(dfd, name, flags, nd);
1996 	if (!err && !(flags & LOOKUP_PARENT)) {
1997 		err = lookup_last(nd, &path);
1998 		while (err > 0) {
1999 			void *cookie;
2000 			struct path link = path;
2001 			err = may_follow_link(&link, nd);
2002 			if (unlikely(err))
2003 				break;
2004 			nd->flags |= LOOKUP_PARENT;
2005 			err = follow_link(&link, nd, &cookie);
2006 			if (err)
2007 				break;
2008 			err = lookup_last(nd, &path);
2009 			put_link(nd, &link, cookie);
2010 		}
2011 	}
2012 
2013 	if (!err)
2014 		err = complete_walk(nd);
2015 
2016 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
2017 		if (!d_can_lookup(nd->path.dentry)) {
2018 			path_put(&nd->path);
2019 			err = -ENOTDIR;
2020 		}
2021 	}
2022 
2023 	path_cleanup(nd);
2024 	return err;
2025 }
2026 
2027 static int filename_lookup(int dfd, struct filename *name,
2028 				unsigned int flags, struct nameidata *nd)
2029 {
2030 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2031 	if (unlikely(retval == -ECHILD))
2032 		retval = path_lookupat(dfd, name->name, flags, nd);
2033 	if (unlikely(retval == -ESTALE))
2034 		retval = path_lookupat(dfd, name->name,
2035 						flags | LOOKUP_REVAL, nd);
2036 
2037 	if (likely(!retval))
2038 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2039 	return retval;
2040 }
2041 
2042 static int do_path_lookup(int dfd, const char *name,
2043 				unsigned int flags, struct nameidata *nd)
2044 {
2045 	struct filename *filename = getname_kernel(name);
2046 	int retval = PTR_ERR(filename);
2047 
2048 	if (!IS_ERR(filename)) {
2049 		retval = filename_lookup(dfd, filename, flags, nd);
2050 		putname(filename);
2051 	}
2052 	return retval;
2053 }
2054 
2055 /* does lookup, returns the object with parent locked */
2056 struct dentry *kern_path_locked(const char *name, struct path *path)
2057 {
2058 	struct filename *filename = getname_kernel(name);
2059 	struct nameidata nd;
2060 	struct dentry *d;
2061 	int err;
2062 
2063 	if (IS_ERR(filename))
2064 		return ERR_CAST(filename);
2065 
2066 	err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2067 	if (err) {
2068 		d = ERR_PTR(err);
2069 		goto out;
2070 	}
2071 	if (nd.last_type != LAST_NORM) {
2072 		path_put(&nd.path);
2073 		d = ERR_PTR(-EINVAL);
2074 		goto out;
2075 	}
2076 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2077 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2078 	if (IS_ERR(d)) {
2079 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2080 		path_put(&nd.path);
2081 		goto out;
2082 	}
2083 	*path = nd.path;
2084 out:
2085 	putname(filename);
2086 	return d;
2087 }
2088 
2089 int kern_path(const char *name, unsigned int flags, struct path *path)
2090 {
2091 	struct nameidata nd;
2092 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2093 	if (!res)
2094 		*path = nd.path;
2095 	return res;
2096 }
2097 EXPORT_SYMBOL(kern_path);
2098 
2099 /**
2100  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2101  * @dentry:  pointer to dentry of the base directory
2102  * @mnt: pointer to vfs mount of the base directory
2103  * @name: pointer to file name
2104  * @flags: lookup flags
2105  * @path: pointer to struct path to fill
2106  */
2107 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2108 		    const char *name, unsigned int flags,
2109 		    struct path *path)
2110 {
2111 	struct nameidata nd;
2112 	int err;
2113 	nd.root.dentry = dentry;
2114 	nd.root.mnt = mnt;
2115 	BUG_ON(flags & LOOKUP_PARENT);
2116 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2117 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2118 	if (!err)
2119 		*path = nd.path;
2120 	return err;
2121 }
2122 EXPORT_SYMBOL(vfs_path_lookup);
2123 
2124 /*
2125  * Restricted form of lookup. Doesn't follow links, single-component only,
2126  * needs parent already locked. Doesn't follow mounts.
2127  * SMP-safe.
2128  */
2129 static struct dentry *lookup_hash(struct nameidata *nd)
2130 {
2131 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2132 }
2133 
2134 /**
2135  * lookup_one_len - filesystem helper to lookup single pathname component
2136  * @name:	pathname component to lookup
2137  * @base:	base directory to lookup from
2138  * @len:	maximum length @len should be interpreted to
2139  *
2140  * Note that this routine is purely a helper for filesystem usage and should
2141  * not be called by generic code.  Also note that by using this function the
2142  * nameidata argument is passed to the filesystem methods and a filesystem
2143  * using this helper needs to be prepared for that.
2144  */
2145 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2146 {
2147 	struct qstr this;
2148 	unsigned int c;
2149 	int err;
2150 
2151 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2152 
2153 	this.name = name;
2154 	this.len = len;
2155 	this.hash = full_name_hash(name, len);
2156 	if (!len)
2157 		return ERR_PTR(-EACCES);
2158 
2159 	if (unlikely(name[0] == '.')) {
2160 		if (len < 2 || (len == 2 && name[1] == '.'))
2161 			return ERR_PTR(-EACCES);
2162 	}
2163 
2164 	while (len--) {
2165 		c = *(const unsigned char *)name++;
2166 		if (c == '/' || c == '\0')
2167 			return ERR_PTR(-EACCES);
2168 	}
2169 	/*
2170 	 * See if the low-level filesystem might want
2171 	 * to use its own hash..
2172 	 */
2173 	if (base->d_flags & DCACHE_OP_HASH) {
2174 		int err = base->d_op->d_hash(base, &this);
2175 		if (err < 0)
2176 			return ERR_PTR(err);
2177 	}
2178 
2179 	err = inode_permission(base->d_inode, MAY_EXEC);
2180 	if (err)
2181 		return ERR_PTR(err);
2182 
2183 	return __lookup_hash(&this, base, 0);
2184 }
2185 EXPORT_SYMBOL(lookup_one_len);
2186 
2187 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2188 		 struct path *path, int *empty)
2189 {
2190 	struct nameidata nd;
2191 	struct filename *tmp = getname_flags(name, flags, empty);
2192 	int err = PTR_ERR(tmp);
2193 	if (!IS_ERR(tmp)) {
2194 
2195 		BUG_ON(flags & LOOKUP_PARENT);
2196 
2197 		err = filename_lookup(dfd, tmp, flags, &nd);
2198 		putname(tmp);
2199 		if (!err)
2200 			*path = nd.path;
2201 	}
2202 	return err;
2203 }
2204 
2205 int user_path_at(int dfd, const char __user *name, unsigned flags,
2206 		 struct path *path)
2207 {
2208 	return user_path_at_empty(dfd, name, flags, path, NULL);
2209 }
2210 EXPORT_SYMBOL(user_path_at);
2211 
2212 /*
2213  * NB: most callers don't do anything directly with the reference to the
2214  *     to struct filename, but the nd->last pointer points into the name string
2215  *     allocated by getname. So we must hold the reference to it until all
2216  *     path-walking is complete.
2217  */
2218 static struct filename *
2219 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2220 		 unsigned int flags)
2221 {
2222 	struct filename *s = getname(path);
2223 	int error;
2224 
2225 	/* only LOOKUP_REVAL is allowed in extra flags */
2226 	flags &= LOOKUP_REVAL;
2227 
2228 	if (IS_ERR(s))
2229 		return s;
2230 
2231 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2232 	if (error) {
2233 		putname(s);
2234 		return ERR_PTR(error);
2235 	}
2236 
2237 	return s;
2238 }
2239 
2240 /**
2241  * mountpoint_last - look up last component for umount
2242  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2243  * @path: pointer to container for result
2244  *
2245  * This is a special lookup_last function just for umount. In this case, we
2246  * need to resolve the path without doing any revalidation.
2247  *
2248  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2249  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2250  * in almost all cases, this lookup will be served out of the dcache. The only
2251  * cases where it won't are if nd->last refers to a symlink or the path is
2252  * bogus and it doesn't exist.
2253  *
2254  * Returns:
2255  * -error: if there was an error during lookup. This includes -ENOENT if the
2256  *         lookup found a negative dentry. The nd->path reference will also be
2257  *         put in this case.
2258  *
2259  * 0:      if we successfully resolved nd->path and found it to not to be a
2260  *         symlink that needs to be followed. "path" will also be populated.
2261  *         The nd->path reference will also be put.
2262  *
2263  * 1:      if we successfully resolved nd->last and found it to be a symlink
2264  *         that needs to be followed. "path" will be populated with the path
2265  *         to the link, and nd->path will *not* be put.
2266  */
2267 static int
2268 mountpoint_last(struct nameidata *nd, struct path *path)
2269 {
2270 	int error = 0;
2271 	struct dentry *dentry;
2272 	struct dentry *dir = nd->path.dentry;
2273 
2274 	/* If we're in rcuwalk, drop out of it to handle last component */
2275 	if (nd->flags & LOOKUP_RCU) {
2276 		if (unlazy_walk(nd, NULL)) {
2277 			error = -ECHILD;
2278 			goto out;
2279 		}
2280 	}
2281 
2282 	nd->flags &= ~LOOKUP_PARENT;
2283 
2284 	if (unlikely(nd->last_type != LAST_NORM)) {
2285 		error = handle_dots(nd, nd->last_type);
2286 		if (error)
2287 			goto out;
2288 		dentry = dget(nd->path.dentry);
2289 		goto done;
2290 	}
2291 
2292 	mutex_lock(&dir->d_inode->i_mutex);
2293 	dentry = d_lookup(dir, &nd->last);
2294 	if (!dentry) {
2295 		/*
2296 		 * No cached dentry. Mounted dentries are pinned in the cache,
2297 		 * so that means that this dentry is probably a symlink or the
2298 		 * path doesn't actually point to a mounted dentry.
2299 		 */
2300 		dentry = d_alloc(dir, &nd->last);
2301 		if (!dentry) {
2302 			error = -ENOMEM;
2303 			mutex_unlock(&dir->d_inode->i_mutex);
2304 			goto out;
2305 		}
2306 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2307 		error = PTR_ERR(dentry);
2308 		if (IS_ERR(dentry)) {
2309 			mutex_unlock(&dir->d_inode->i_mutex);
2310 			goto out;
2311 		}
2312 	}
2313 	mutex_unlock(&dir->d_inode->i_mutex);
2314 
2315 done:
2316 	if (!dentry->d_inode || d_is_negative(dentry)) {
2317 		error = -ENOENT;
2318 		dput(dentry);
2319 		goto out;
2320 	}
2321 	path->dentry = dentry;
2322 	path->mnt = nd->path.mnt;
2323 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2324 		return 1;
2325 	mntget(path->mnt);
2326 	follow_mount(path);
2327 	error = 0;
2328 out:
2329 	terminate_walk(nd);
2330 	return error;
2331 }
2332 
2333 /**
2334  * path_mountpoint - look up a path to be umounted
2335  * @dfd:	directory file descriptor to start walk from
2336  * @name:	full pathname to walk
2337  * @path:	pointer to container for result
2338  * @flags:	lookup flags
2339  *
2340  * Look up the given name, but don't attempt to revalidate the last component.
2341  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2342  */
2343 static int
2344 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2345 {
2346 	struct nameidata nd;
2347 	int err;
2348 
2349 	err = path_init(dfd, name, flags, &nd);
2350 	if (unlikely(err))
2351 		goto out;
2352 
2353 	err = mountpoint_last(&nd, path);
2354 	while (err > 0) {
2355 		void *cookie;
2356 		struct path link = *path;
2357 		err = may_follow_link(&link, &nd);
2358 		if (unlikely(err))
2359 			break;
2360 		nd.flags |= LOOKUP_PARENT;
2361 		err = follow_link(&link, &nd, &cookie);
2362 		if (err)
2363 			break;
2364 		err = mountpoint_last(&nd, path);
2365 		put_link(&nd, &link, cookie);
2366 	}
2367 out:
2368 	path_cleanup(&nd);
2369 	return err;
2370 }
2371 
2372 static int
2373 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2374 			unsigned int flags)
2375 {
2376 	int error;
2377 	if (IS_ERR(s))
2378 		return PTR_ERR(s);
2379 	error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2380 	if (unlikely(error == -ECHILD))
2381 		error = path_mountpoint(dfd, s->name, path, flags);
2382 	if (unlikely(error == -ESTALE))
2383 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2384 	if (likely(!error))
2385 		audit_inode(s, path->dentry, 0);
2386 	putname(s);
2387 	return error;
2388 }
2389 
2390 /**
2391  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2392  * @dfd:	directory file descriptor
2393  * @name:	pathname from userland
2394  * @flags:	lookup flags
2395  * @path:	pointer to container to hold result
2396  *
2397  * A umount is a special case for path walking. We're not actually interested
2398  * in the inode in this situation, and ESTALE errors can be a problem. We
2399  * simply want track down the dentry and vfsmount attached at the mountpoint
2400  * and avoid revalidating the last component.
2401  *
2402  * Returns 0 and populates "path" on success.
2403  */
2404 int
2405 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2406 			struct path *path)
2407 {
2408 	return filename_mountpoint(dfd, getname(name), path, flags);
2409 }
2410 
2411 int
2412 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2413 			unsigned int flags)
2414 {
2415 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2416 }
2417 EXPORT_SYMBOL(kern_path_mountpoint);
2418 
2419 int __check_sticky(struct inode *dir, struct inode *inode)
2420 {
2421 	kuid_t fsuid = current_fsuid();
2422 
2423 	if (uid_eq(inode->i_uid, fsuid))
2424 		return 0;
2425 	if (uid_eq(dir->i_uid, fsuid))
2426 		return 0;
2427 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2428 }
2429 EXPORT_SYMBOL(__check_sticky);
2430 
2431 /*
2432  *	Check whether we can remove a link victim from directory dir, check
2433  *  whether the type of victim is right.
2434  *  1. We can't do it if dir is read-only (done in permission())
2435  *  2. We should have write and exec permissions on dir
2436  *  3. We can't remove anything from append-only dir
2437  *  4. We can't do anything with immutable dir (done in permission())
2438  *  5. If the sticky bit on dir is set we should either
2439  *	a. be owner of dir, or
2440  *	b. be owner of victim, or
2441  *	c. have CAP_FOWNER capability
2442  *  6. If the victim is append-only or immutable we can't do antyhing with
2443  *     links pointing to it.
2444  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2445  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2446  *  9. We can't remove a root or mountpoint.
2447  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2448  *     nfs_async_unlink().
2449  */
2450 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2451 {
2452 	struct inode *inode = victim->d_inode;
2453 	int error;
2454 
2455 	if (d_is_negative(victim))
2456 		return -ENOENT;
2457 	BUG_ON(!inode);
2458 
2459 	BUG_ON(victim->d_parent->d_inode != dir);
2460 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2461 
2462 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2463 	if (error)
2464 		return error;
2465 	if (IS_APPEND(dir))
2466 		return -EPERM;
2467 
2468 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2469 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2470 		return -EPERM;
2471 	if (isdir) {
2472 		if (!d_is_dir(victim))
2473 			return -ENOTDIR;
2474 		if (IS_ROOT(victim))
2475 			return -EBUSY;
2476 	} else if (d_is_dir(victim))
2477 		return -EISDIR;
2478 	if (IS_DEADDIR(dir))
2479 		return -ENOENT;
2480 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2481 		return -EBUSY;
2482 	return 0;
2483 }
2484 
2485 /*	Check whether we can create an object with dentry child in directory
2486  *  dir.
2487  *  1. We can't do it if child already exists (open has special treatment for
2488  *     this case, but since we are inlined it's OK)
2489  *  2. We can't do it if dir is read-only (done in permission())
2490  *  3. We should have write and exec permissions on dir
2491  *  4. We can't do it if dir is immutable (done in permission())
2492  */
2493 static inline int may_create(struct inode *dir, struct dentry *child)
2494 {
2495 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2496 	if (child->d_inode)
2497 		return -EEXIST;
2498 	if (IS_DEADDIR(dir))
2499 		return -ENOENT;
2500 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2501 }
2502 
2503 /*
2504  * p1 and p2 should be directories on the same fs.
2505  */
2506 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2507 {
2508 	struct dentry *p;
2509 
2510 	if (p1 == p2) {
2511 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2512 		return NULL;
2513 	}
2514 
2515 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2516 
2517 	p = d_ancestor(p2, p1);
2518 	if (p) {
2519 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2520 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2521 		return p;
2522 	}
2523 
2524 	p = d_ancestor(p1, p2);
2525 	if (p) {
2526 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2527 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2528 		return p;
2529 	}
2530 
2531 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2532 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2533 	return NULL;
2534 }
2535 EXPORT_SYMBOL(lock_rename);
2536 
2537 void unlock_rename(struct dentry *p1, struct dentry *p2)
2538 {
2539 	mutex_unlock(&p1->d_inode->i_mutex);
2540 	if (p1 != p2) {
2541 		mutex_unlock(&p2->d_inode->i_mutex);
2542 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2543 	}
2544 }
2545 EXPORT_SYMBOL(unlock_rename);
2546 
2547 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2548 		bool want_excl)
2549 {
2550 	int error = may_create(dir, dentry);
2551 	if (error)
2552 		return error;
2553 
2554 	if (!dir->i_op->create)
2555 		return -EACCES;	/* shouldn't it be ENOSYS? */
2556 	mode &= S_IALLUGO;
2557 	mode |= S_IFREG;
2558 	error = security_inode_create(dir, dentry, mode);
2559 	if (error)
2560 		return error;
2561 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2562 	if (!error)
2563 		fsnotify_create(dir, dentry);
2564 	return error;
2565 }
2566 EXPORT_SYMBOL(vfs_create);
2567 
2568 static int may_open(struct path *path, int acc_mode, int flag)
2569 {
2570 	struct dentry *dentry = path->dentry;
2571 	struct inode *inode = dentry->d_inode;
2572 	int error;
2573 
2574 	/* O_PATH? */
2575 	if (!acc_mode)
2576 		return 0;
2577 
2578 	if (!inode)
2579 		return -ENOENT;
2580 
2581 	switch (inode->i_mode & S_IFMT) {
2582 	case S_IFLNK:
2583 		return -ELOOP;
2584 	case S_IFDIR:
2585 		if (acc_mode & MAY_WRITE)
2586 			return -EISDIR;
2587 		break;
2588 	case S_IFBLK:
2589 	case S_IFCHR:
2590 		if (path->mnt->mnt_flags & MNT_NODEV)
2591 			return -EACCES;
2592 		/*FALLTHRU*/
2593 	case S_IFIFO:
2594 	case S_IFSOCK:
2595 		flag &= ~O_TRUNC;
2596 		break;
2597 	}
2598 
2599 	error = inode_permission(inode, acc_mode);
2600 	if (error)
2601 		return error;
2602 
2603 	/*
2604 	 * An append-only file must be opened in append mode for writing.
2605 	 */
2606 	if (IS_APPEND(inode)) {
2607 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2608 			return -EPERM;
2609 		if (flag & O_TRUNC)
2610 			return -EPERM;
2611 	}
2612 
2613 	/* O_NOATIME can only be set by the owner or superuser */
2614 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2615 		return -EPERM;
2616 
2617 	return 0;
2618 }
2619 
2620 static int handle_truncate(struct file *filp)
2621 {
2622 	struct path *path = &filp->f_path;
2623 	struct inode *inode = path->dentry->d_inode;
2624 	int error = get_write_access(inode);
2625 	if (error)
2626 		return error;
2627 	/*
2628 	 * Refuse to truncate files with mandatory locks held on them.
2629 	 */
2630 	error = locks_verify_locked(filp);
2631 	if (!error)
2632 		error = security_path_truncate(path);
2633 	if (!error) {
2634 		error = do_truncate(path->dentry, 0,
2635 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2636 				    filp);
2637 	}
2638 	put_write_access(inode);
2639 	return error;
2640 }
2641 
2642 static inline int open_to_namei_flags(int flag)
2643 {
2644 	if ((flag & O_ACCMODE) == 3)
2645 		flag--;
2646 	return flag;
2647 }
2648 
2649 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2650 {
2651 	int error = security_path_mknod(dir, dentry, mode, 0);
2652 	if (error)
2653 		return error;
2654 
2655 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2656 	if (error)
2657 		return error;
2658 
2659 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2660 }
2661 
2662 /*
2663  * Attempt to atomically look up, create and open a file from a negative
2664  * dentry.
2665  *
2666  * Returns 0 if successful.  The file will have been created and attached to
2667  * @file by the filesystem calling finish_open().
2668  *
2669  * Returns 1 if the file was looked up only or didn't need creating.  The
2670  * caller will need to perform the open themselves.  @path will have been
2671  * updated to point to the new dentry.  This may be negative.
2672  *
2673  * Returns an error code otherwise.
2674  */
2675 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2676 			struct path *path, struct file *file,
2677 			const struct open_flags *op,
2678 			bool got_write, bool need_lookup,
2679 			int *opened)
2680 {
2681 	struct inode *dir =  nd->path.dentry->d_inode;
2682 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2683 	umode_t mode;
2684 	int error;
2685 	int acc_mode;
2686 	int create_error = 0;
2687 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2688 	bool excl;
2689 
2690 	BUG_ON(dentry->d_inode);
2691 
2692 	/* Don't create child dentry for a dead directory. */
2693 	if (unlikely(IS_DEADDIR(dir))) {
2694 		error = -ENOENT;
2695 		goto out;
2696 	}
2697 
2698 	mode = op->mode;
2699 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2700 		mode &= ~current_umask();
2701 
2702 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2703 	if (excl)
2704 		open_flag &= ~O_TRUNC;
2705 
2706 	/*
2707 	 * Checking write permission is tricky, bacuse we don't know if we are
2708 	 * going to actually need it: O_CREAT opens should work as long as the
2709 	 * file exists.  But checking existence breaks atomicity.  The trick is
2710 	 * to check access and if not granted clear O_CREAT from the flags.
2711 	 *
2712 	 * Another problem is returing the "right" error value (e.g. for an
2713 	 * O_EXCL open we want to return EEXIST not EROFS).
2714 	 */
2715 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2716 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2717 		if (!(open_flag & O_CREAT)) {
2718 			/*
2719 			 * No O_CREATE -> atomicity not a requirement -> fall
2720 			 * back to lookup + open
2721 			 */
2722 			goto no_open;
2723 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2724 			/* Fall back and fail with the right error */
2725 			create_error = -EROFS;
2726 			goto no_open;
2727 		} else {
2728 			/* No side effects, safe to clear O_CREAT */
2729 			create_error = -EROFS;
2730 			open_flag &= ~O_CREAT;
2731 		}
2732 	}
2733 
2734 	if (open_flag & O_CREAT) {
2735 		error = may_o_create(&nd->path, dentry, mode);
2736 		if (error) {
2737 			create_error = error;
2738 			if (open_flag & O_EXCL)
2739 				goto no_open;
2740 			open_flag &= ~O_CREAT;
2741 		}
2742 	}
2743 
2744 	if (nd->flags & LOOKUP_DIRECTORY)
2745 		open_flag |= O_DIRECTORY;
2746 
2747 	file->f_path.dentry = DENTRY_NOT_SET;
2748 	file->f_path.mnt = nd->path.mnt;
2749 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2750 				      opened);
2751 	if (error < 0) {
2752 		if (create_error && error == -ENOENT)
2753 			error = create_error;
2754 		goto out;
2755 	}
2756 
2757 	if (error) {	/* returned 1, that is */
2758 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2759 			error = -EIO;
2760 			goto out;
2761 		}
2762 		if (file->f_path.dentry) {
2763 			dput(dentry);
2764 			dentry = file->f_path.dentry;
2765 		}
2766 		if (*opened & FILE_CREATED)
2767 			fsnotify_create(dir, dentry);
2768 		if (!dentry->d_inode) {
2769 			WARN_ON(*opened & FILE_CREATED);
2770 			if (create_error) {
2771 				error = create_error;
2772 				goto out;
2773 			}
2774 		} else {
2775 			if (excl && !(*opened & FILE_CREATED)) {
2776 				error = -EEXIST;
2777 				goto out;
2778 			}
2779 		}
2780 		goto looked_up;
2781 	}
2782 
2783 	/*
2784 	 * We didn't have the inode before the open, so check open permission
2785 	 * here.
2786 	 */
2787 	acc_mode = op->acc_mode;
2788 	if (*opened & FILE_CREATED) {
2789 		WARN_ON(!(open_flag & O_CREAT));
2790 		fsnotify_create(dir, dentry);
2791 		acc_mode = MAY_OPEN;
2792 	}
2793 	error = may_open(&file->f_path, acc_mode, open_flag);
2794 	if (error)
2795 		fput(file);
2796 
2797 out:
2798 	dput(dentry);
2799 	return error;
2800 
2801 no_open:
2802 	if (need_lookup) {
2803 		dentry = lookup_real(dir, dentry, nd->flags);
2804 		if (IS_ERR(dentry))
2805 			return PTR_ERR(dentry);
2806 
2807 		if (create_error) {
2808 			int open_flag = op->open_flag;
2809 
2810 			error = create_error;
2811 			if ((open_flag & O_EXCL)) {
2812 				if (!dentry->d_inode)
2813 					goto out;
2814 			} else if (!dentry->d_inode) {
2815 				goto out;
2816 			} else if ((open_flag & O_TRUNC) &&
2817 				   d_is_reg(dentry)) {
2818 				goto out;
2819 			}
2820 			/* will fail later, go on to get the right error */
2821 		}
2822 	}
2823 looked_up:
2824 	path->dentry = dentry;
2825 	path->mnt = nd->path.mnt;
2826 	return 1;
2827 }
2828 
2829 /*
2830  * Look up and maybe create and open the last component.
2831  *
2832  * Must be called with i_mutex held on parent.
2833  *
2834  * Returns 0 if the file was successfully atomically created (if necessary) and
2835  * opened.  In this case the file will be returned attached to @file.
2836  *
2837  * Returns 1 if the file was not completely opened at this time, though lookups
2838  * and creations will have been performed and the dentry returned in @path will
2839  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2840  * specified then a negative dentry may be returned.
2841  *
2842  * An error code is returned otherwise.
2843  *
2844  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2845  * cleared otherwise prior to returning.
2846  */
2847 static int lookup_open(struct nameidata *nd, struct path *path,
2848 			struct file *file,
2849 			const struct open_flags *op,
2850 			bool got_write, int *opened)
2851 {
2852 	struct dentry *dir = nd->path.dentry;
2853 	struct inode *dir_inode = dir->d_inode;
2854 	struct dentry *dentry;
2855 	int error;
2856 	bool need_lookup;
2857 
2858 	*opened &= ~FILE_CREATED;
2859 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2860 	if (IS_ERR(dentry))
2861 		return PTR_ERR(dentry);
2862 
2863 	/* Cached positive dentry: will open in f_op->open */
2864 	if (!need_lookup && dentry->d_inode)
2865 		goto out_no_open;
2866 
2867 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2868 		return atomic_open(nd, dentry, path, file, op, got_write,
2869 				   need_lookup, opened);
2870 	}
2871 
2872 	if (need_lookup) {
2873 		BUG_ON(dentry->d_inode);
2874 
2875 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2876 		if (IS_ERR(dentry))
2877 			return PTR_ERR(dentry);
2878 	}
2879 
2880 	/* Negative dentry, just create the file */
2881 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2882 		umode_t mode = op->mode;
2883 		if (!IS_POSIXACL(dir->d_inode))
2884 			mode &= ~current_umask();
2885 		/*
2886 		 * This write is needed to ensure that a
2887 		 * rw->ro transition does not occur between
2888 		 * the time when the file is created and when
2889 		 * a permanent write count is taken through
2890 		 * the 'struct file' in finish_open().
2891 		 */
2892 		if (!got_write) {
2893 			error = -EROFS;
2894 			goto out_dput;
2895 		}
2896 		*opened |= FILE_CREATED;
2897 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2898 		if (error)
2899 			goto out_dput;
2900 		error = vfs_create(dir->d_inode, dentry, mode,
2901 				   nd->flags & LOOKUP_EXCL);
2902 		if (error)
2903 			goto out_dput;
2904 	}
2905 out_no_open:
2906 	path->dentry = dentry;
2907 	path->mnt = nd->path.mnt;
2908 	return 1;
2909 
2910 out_dput:
2911 	dput(dentry);
2912 	return error;
2913 }
2914 
2915 /*
2916  * Handle the last step of open()
2917  */
2918 static int do_last(struct nameidata *nd, struct path *path,
2919 		   struct file *file, const struct open_flags *op,
2920 		   int *opened, struct filename *name)
2921 {
2922 	struct dentry *dir = nd->path.dentry;
2923 	int open_flag = op->open_flag;
2924 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2925 	bool got_write = false;
2926 	int acc_mode = op->acc_mode;
2927 	struct inode *inode;
2928 	bool symlink_ok = false;
2929 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2930 	bool retried = false;
2931 	int error;
2932 
2933 	nd->flags &= ~LOOKUP_PARENT;
2934 	nd->flags |= op->intent;
2935 
2936 	if (nd->last_type != LAST_NORM) {
2937 		error = handle_dots(nd, nd->last_type);
2938 		if (error)
2939 			return error;
2940 		goto finish_open;
2941 	}
2942 
2943 	if (!(open_flag & O_CREAT)) {
2944 		if (nd->last.name[nd->last.len])
2945 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2946 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2947 			symlink_ok = true;
2948 		/* we _can_ be in RCU mode here */
2949 		error = lookup_fast(nd, path, &inode);
2950 		if (likely(!error))
2951 			goto finish_lookup;
2952 
2953 		if (error < 0)
2954 			goto out;
2955 
2956 		BUG_ON(nd->inode != dir->d_inode);
2957 	} else {
2958 		/* create side of things */
2959 		/*
2960 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2961 		 * has been cleared when we got to the last component we are
2962 		 * about to look up
2963 		 */
2964 		error = complete_walk(nd);
2965 		if (error)
2966 			return error;
2967 
2968 		audit_inode(name, dir, LOOKUP_PARENT);
2969 		error = -EISDIR;
2970 		/* trailing slashes? */
2971 		if (nd->last.name[nd->last.len])
2972 			goto out;
2973 	}
2974 
2975 retry_lookup:
2976 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2977 		error = mnt_want_write(nd->path.mnt);
2978 		if (!error)
2979 			got_write = true;
2980 		/*
2981 		 * do _not_ fail yet - we might not need that or fail with
2982 		 * a different error; let lookup_open() decide; we'll be
2983 		 * dropping this one anyway.
2984 		 */
2985 	}
2986 	mutex_lock(&dir->d_inode->i_mutex);
2987 	error = lookup_open(nd, path, file, op, got_write, opened);
2988 	mutex_unlock(&dir->d_inode->i_mutex);
2989 
2990 	if (error <= 0) {
2991 		if (error)
2992 			goto out;
2993 
2994 		if ((*opened & FILE_CREATED) ||
2995 		    !S_ISREG(file_inode(file)->i_mode))
2996 			will_truncate = false;
2997 
2998 		audit_inode(name, file->f_path.dentry, 0);
2999 		goto opened;
3000 	}
3001 
3002 	if (*opened & FILE_CREATED) {
3003 		/* Don't check for write permission, don't truncate */
3004 		open_flag &= ~O_TRUNC;
3005 		will_truncate = false;
3006 		acc_mode = MAY_OPEN;
3007 		path_to_nameidata(path, nd);
3008 		goto finish_open_created;
3009 	}
3010 
3011 	/*
3012 	 * create/update audit record if it already exists.
3013 	 */
3014 	if (d_is_positive(path->dentry))
3015 		audit_inode(name, path->dentry, 0);
3016 
3017 	/*
3018 	 * If atomic_open() acquired write access it is dropped now due to
3019 	 * possible mount and symlink following (this might be optimized away if
3020 	 * necessary...)
3021 	 */
3022 	if (got_write) {
3023 		mnt_drop_write(nd->path.mnt);
3024 		got_write = false;
3025 	}
3026 
3027 	error = -EEXIST;
3028 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3029 		goto exit_dput;
3030 
3031 	error = follow_managed(path, nd->flags);
3032 	if (error < 0)
3033 		goto exit_dput;
3034 
3035 	if (error)
3036 		nd->flags |= LOOKUP_JUMPED;
3037 
3038 	BUG_ON(nd->flags & LOOKUP_RCU);
3039 	inode = path->dentry->d_inode;
3040 finish_lookup:
3041 	/* we _can_ be in RCU mode here */
3042 	error = -ENOENT;
3043 	if (!inode || d_is_negative(path->dentry)) {
3044 		path_to_nameidata(path, nd);
3045 		goto out;
3046 	}
3047 
3048 	if (should_follow_link(path->dentry, !symlink_ok)) {
3049 		if (nd->flags & LOOKUP_RCU) {
3050 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3051 				error = -ECHILD;
3052 				goto out;
3053 			}
3054 		}
3055 		BUG_ON(inode != path->dentry->d_inode);
3056 		return 1;
3057 	}
3058 
3059 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3060 		path_to_nameidata(path, nd);
3061 	} else {
3062 		save_parent.dentry = nd->path.dentry;
3063 		save_parent.mnt = mntget(path->mnt);
3064 		nd->path.dentry = path->dentry;
3065 
3066 	}
3067 	nd->inode = inode;
3068 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3069 finish_open:
3070 	error = complete_walk(nd);
3071 	if (error) {
3072 		path_put(&save_parent);
3073 		return error;
3074 	}
3075 	audit_inode(name, nd->path.dentry, 0);
3076 	error = -EISDIR;
3077 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3078 		goto out;
3079 	error = -ENOTDIR;
3080 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3081 		goto out;
3082 	if (!S_ISREG(nd->inode->i_mode))
3083 		will_truncate = false;
3084 
3085 	if (will_truncate) {
3086 		error = mnt_want_write(nd->path.mnt);
3087 		if (error)
3088 			goto out;
3089 		got_write = true;
3090 	}
3091 finish_open_created:
3092 	error = may_open(&nd->path, acc_mode, open_flag);
3093 	if (error)
3094 		goto out;
3095 
3096 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3097 	error = vfs_open(&nd->path, file, current_cred());
3098 	if (!error) {
3099 		*opened |= FILE_OPENED;
3100 	} else {
3101 		if (error == -EOPENSTALE)
3102 			goto stale_open;
3103 		goto out;
3104 	}
3105 opened:
3106 	error = open_check_o_direct(file);
3107 	if (error)
3108 		goto exit_fput;
3109 	error = ima_file_check(file, op->acc_mode, *opened);
3110 	if (error)
3111 		goto exit_fput;
3112 
3113 	if (will_truncate) {
3114 		error = handle_truncate(file);
3115 		if (error)
3116 			goto exit_fput;
3117 	}
3118 out:
3119 	if (got_write)
3120 		mnt_drop_write(nd->path.mnt);
3121 	path_put(&save_parent);
3122 	terminate_walk(nd);
3123 	return error;
3124 
3125 exit_dput:
3126 	path_put_conditional(path, nd);
3127 	goto out;
3128 exit_fput:
3129 	fput(file);
3130 	goto out;
3131 
3132 stale_open:
3133 	/* If no saved parent or already retried then can't retry */
3134 	if (!save_parent.dentry || retried)
3135 		goto out;
3136 
3137 	BUG_ON(save_parent.dentry != dir);
3138 	path_put(&nd->path);
3139 	nd->path = save_parent;
3140 	nd->inode = dir->d_inode;
3141 	save_parent.mnt = NULL;
3142 	save_parent.dentry = NULL;
3143 	if (got_write) {
3144 		mnt_drop_write(nd->path.mnt);
3145 		got_write = false;
3146 	}
3147 	retried = true;
3148 	goto retry_lookup;
3149 }
3150 
3151 static int do_tmpfile(int dfd, struct filename *pathname,
3152 		struct nameidata *nd, int flags,
3153 		const struct open_flags *op,
3154 		struct file *file, int *opened)
3155 {
3156 	static const struct qstr name = QSTR_INIT("/", 1);
3157 	struct dentry *dentry, *child;
3158 	struct inode *dir;
3159 	int error = path_lookupat(dfd, pathname->name,
3160 				  flags | LOOKUP_DIRECTORY, nd);
3161 	if (unlikely(error))
3162 		return error;
3163 	error = mnt_want_write(nd->path.mnt);
3164 	if (unlikely(error))
3165 		goto out;
3166 	/* we want directory to be writable */
3167 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3168 	if (error)
3169 		goto out2;
3170 	dentry = nd->path.dentry;
3171 	dir = dentry->d_inode;
3172 	if (!dir->i_op->tmpfile) {
3173 		error = -EOPNOTSUPP;
3174 		goto out2;
3175 	}
3176 	child = d_alloc(dentry, &name);
3177 	if (unlikely(!child)) {
3178 		error = -ENOMEM;
3179 		goto out2;
3180 	}
3181 	nd->flags &= ~LOOKUP_DIRECTORY;
3182 	nd->flags |= op->intent;
3183 	dput(nd->path.dentry);
3184 	nd->path.dentry = child;
3185 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3186 	if (error)
3187 		goto out2;
3188 	audit_inode(pathname, nd->path.dentry, 0);
3189 	/* Don't check for other permissions, the inode was just created */
3190 	error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3191 	if (error)
3192 		goto out2;
3193 	file->f_path.mnt = nd->path.mnt;
3194 	error = finish_open(file, nd->path.dentry, NULL, opened);
3195 	if (error)
3196 		goto out2;
3197 	error = open_check_o_direct(file);
3198 	if (error) {
3199 		fput(file);
3200 	} else if (!(op->open_flag & O_EXCL)) {
3201 		struct inode *inode = file_inode(file);
3202 		spin_lock(&inode->i_lock);
3203 		inode->i_state |= I_LINKABLE;
3204 		spin_unlock(&inode->i_lock);
3205 	}
3206 out2:
3207 	mnt_drop_write(nd->path.mnt);
3208 out:
3209 	path_put(&nd->path);
3210 	return error;
3211 }
3212 
3213 static struct file *path_openat(int dfd, struct filename *pathname,
3214 		struct nameidata *nd, const struct open_flags *op, int flags)
3215 {
3216 	struct file *file;
3217 	struct path path;
3218 	int opened = 0;
3219 	int error;
3220 
3221 	file = get_empty_filp();
3222 	if (IS_ERR(file))
3223 		return file;
3224 
3225 	file->f_flags = op->open_flag;
3226 
3227 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3228 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3229 		goto out;
3230 	}
3231 
3232 	error = path_init(dfd, pathname->name, flags, nd);
3233 	if (unlikely(error))
3234 		goto out;
3235 
3236 	error = do_last(nd, &path, file, op, &opened, pathname);
3237 	while (unlikely(error > 0)) { /* trailing symlink */
3238 		struct path link = path;
3239 		void *cookie;
3240 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3241 			path_put_conditional(&path, nd);
3242 			path_put(&nd->path);
3243 			error = -ELOOP;
3244 			break;
3245 		}
3246 		error = may_follow_link(&link, nd);
3247 		if (unlikely(error))
3248 			break;
3249 		nd->flags |= LOOKUP_PARENT;
3250 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3251 		error = follow_link(&link, nd, &cookie);
3252 		if (unlikely(error))
3253 			break;
3254 		error = do_last(nd, &path, file, op, &opened, pathname);
3255 		put_link(nd, &link, cookie);
3256 	}
3257 out:
3258 	path_cleanup(nd);
3259 	if (!(opened & FILE_OPENED)) {
3260 		BUG_ON(!error);
3261 		put_filp(file);
3262 	}
3263 	if (unlikely(error)) {
3264 		if (error == -EOPENSTALE) {
3265 			if (flags & LOOKUP_RCU)
3266 				error = -ECHILD;
3267 			else
3268 				error = -ESTALE;
3269 		}
3270 		file = ERR_PTR(error);
3271 	}
3272 	return file;
3273 }
3274 
3275 struct file *do_filp_open(int dfd, struct filename *pathname,
3276 		const struct open_flags *op)
3277 {
3278 	struct nameidata nd;
3279 	int flags = op->lookup_flags;
3280 	struct file *filp;
3281 
3282 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3283 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3284 		filp = path_openat(dfd, pathname, &nd, op, flags);
3285 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3286 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3287 	return filp;
3288 }
3289 
3290 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3291 		const char *name, const struct open_flags *op)
3292 {
3293 	struct nameidata nd;
3294 	struct file *file;
3295 	struct filename *filename;
3296 	int flags = op->lookup_flags | LOOKUP_ROOT;
3297 
3298 	nd.root.mnt = mnt;
3299 	nd.root.dentry = dentry;
3300 
3301 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3302 		return ERR_PTR(-ELOOP);
3303 
3304 	filename = getname_kernel(name);
3305 	if (unlikely(IS_ERR(filename)))
3306 		return ERR_CAST(filename);
3307 
3308 	file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3309 	if (unlikely(file == ERR_PTR(-ECHILD)))
3310 		file = path_openat(-1, filename, &nd, op, flags);
3311 	if (unlikely(file == ERR_PTR(-ESTALE)))
3312 		file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3313 	putname(filename);
3314 	return file;
3315 }
3316 
3317 static struct dentry *filename_create(int dfd, struct filename *name,
3318 				struct path *path, unsigned int lookup_flags)
3319 {
3320 	struct dentry *dentry = ERR_PTR(-EEXIST);
3321 	struct nameidata nd;
3322 	int err2;
3323 	int error;
3324 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3325 
3326 	/*
3327 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3328 	 * other flags passed in are ignored!
3329 	 */
3330 	lookup_flags &= LOOKUP_REVAL;
3331 
3332 	error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3333 	if (error)
3334 		return ERR_PTR(error);
3335 
3336 	/*
3337 	 * Yucky last component or no last component at all?
3338 	 * (foo/., foo/.., /////)
3339 	 */
3340 	if (nd.last_type != LAST_NORM)
3341 		goto out;
3342 	nd.flags &= ~LOOKUP_PARENT;
3343 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3344 
3345 	/* don't fail immediately if it's r/o, at least try to report other errors */
3346 	err2 = mnt_want_write(nd.path.mnt);
3347 	/*
3348 	 * Do the final lookup.
3349 	 */
3350 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3351 	dentry = lookup_hash(&nd);
3352 	if (IS_ERR(dentry))
3353 		goto unlock;
3354 
3355 	error = -EEXIST;
3356 	if (d_is_positive(dentry))
3357 		goto fail;
3358 
3359 	/*
3360 	 * Special case - lookup gave negative, but... we had foo/bar/
3361 	 * From the vfs_mknod() POV we just have a negative dentry -
3362 	 * all is fine. Let's be bastards - you had / on the end, you've
3363 	 * been asking for (non-existent) directory. -ENOENT for you.
3364 	 */
3365 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3366 		error = -ENOENT;
3367 		goto fail;
3368 	}
3369 	if (unlikely(err2)) {
3370 		error = err2;
3371 		goto fail;
3372 	}
3373 	*path = nd.path;
3374 	return dentry;
3375 fail:
3376 	dput(dentry);
3377 	dentry = ERR_PTR(error);
3378 unlock:
3379 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3380 	if (!err2)
3381 		mnt_drop_write(nd.path.mnt);
3382 out:
3383 	path_put(&nd.path);
3384 	return dentry;
3385 }
3386 
3387 struct dentry *kern_path_create(int dfd, const char *pathname,
3388 				struct path *path, unsigned int lookup_flags)
3389 {
3390 	struct filename *filename = getname_kernel(pathname);
3391 	struct dentry *res;
3392 
3393 	if (IS_ERR(filename))
3394 		return ERR_CAST(filename);
3395 	res = filename_create(dfd, filename, path, lookup_flags);
3396 	putname(filename);
3397 	return res;
3398 }
3399 EXPORT_SYMBOL(kern_path_create);
3400 
3401 void done_path_create(struct path *path, struct dentry *dentry)
3402 {
3403 	dput(dentry);
3404 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3405 	mnt_drop_write(path->mnt);
3406 	path_put(path);
3407 }
3408 EXPORT_SYMBOL(done_path_create);
3409 
3410 struct dentry *user_path_create(int dfd, const char __user *pathname,
3411 				struct path *path, unsigned int lookup_flags)
3412 {
3413 	struct filename *tmp = getname(pathname);
3414 	struct dentry *res;
3415 	if (IS_ERR(tmp))
3416 		return ERR_CAST(tmp);
3417 	res = filename_create(dfd, tmp, path, lookup_flags);
3418 	putname(tmp);
3419 	return res;
3420 }
3421 EXPORT_SYMBOL(user_path_create);
3422 
3423 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3424 {
3425 	int error = may_create(dir, dentry);
3426 
3427 	if (error)
3428 		return error;
3429 
3430 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3431 		return -EPERM;
3432 
3433 	if (!dir->i_op->mknod)
3434 		return -EPERM;
3435 
3436 	error = devcgroup_inode_mknod(mode, dev);
3437 	if (error)
3438 		return error;
3439 
3440 	error = security_inode_mknod(dir, dentry, mode, dev);
3441 	if (error)
3442 		return error;
3443 
3444 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3445 	if (!error)
3446 		fsnotify_create(dir, dentry);
3447 	return error;
3448 }
3449 EXPORT_SYMBOL(vfs_mknod);
3450 
3451 static int may_mknod(umode_t mode)
3452 {
3453 	switch (mode & S_IFMT) {
3454 	case S_IFREG:
3455 	case S_IFCHR:
3456 	case S_IFBLK:
3457 	case S_IFIFO:
3458 	case S_IFSOCK:
3459 	case 0: /* zero mode translates to S_IFREG */
3460 		return 0;
3461 	case S_IFDIR:
3462 		return -EPERM;
3463 	default:
3464 		return -EINVAL;
3465 	}
3466 }
3467 
3468 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3469 		unsigned, dev)
3470 {
3471 	struct dentry *dentry;
3472 	struct path path;
3473 	int error;
3474 	unsigned int lookup_flags = 0;
3475 
3476 	error = may_mknod(mode);
3477 	if (error)
3478 		return error;
3479 retry:
3480 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3481 	if (IS_ERR(dentry))
3482 		return PTR_ERR(dentry);
3483 
3484 	if (!IS_POSIXACL(path.dentry->d_inode))
3485 		mode &= ~current_umask();
3486 	error = security_path_mknod(&path, dentry, mode, dev);
3487 	if (error)
3488 		goto out;
3489 	switch (mode & S_IFMT) {
3490 		case 0: case S_IFREG:
3491 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3492 			break;
3493 		case S_IFCHR: case S_IFBLK:
3494 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3495 					new_decode_dev(dev));
3496 			break;
3497 		case S_IFIFO: case S_IFSOCK:
3498 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3499 			break;
3500 	}
3501 out:
3502 	done_path_create(&path, dentry);
3503 	if (retry_estale(error, lookup_flags)) {
3504 		lookup_flags |= LOOKUP_REVAL;
3505 		goto retry;
3506 	}
3507 	return error;
3508 }
3509 
3510 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3511 {
3512 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3513 }
3514 
3515 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3516 {
3517 	int error = may_create(dir, dentry);
3518 	unsigned max_links = dir->i_sb->s_max_links;
3519 
3520 	if (error)
3521 		return error;
3522 
3523 	if (!dir->i_op->mkdir)
3524 		return -EPERM;
3525 
3526 	mode &= (S_IRWXUGO|S_ISVTX);
3527 	error = security_inode_mkdir(dir, dentry, mode);
3528 	if (error)
3529 		return error;
3530 
3531 	if (max_links && dir->i_nlink >= max_links)
3532 		return -EMLINK;
3533 
3534 	error = dir->i_op->mkdir(dir, dentry, mode);
3535 	if (!error)
3536 		fsnotify_mkdir(dir, dentry);
3537 	return error;
3538 }
3539 EXPORT_SYMBOL(vfs_mkdir);
3540 
3541 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3542 {
3543 	struct dentry *dentry;
3544 	struct path path;
3545 	int error;
3546 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3547 
3548 retry:
3549 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3550 	if (IS_ERR(dentry))
3551 		return PTR_ERR(dentry);
3552 
3553 	if (!IS_POSIXACL(path.dentry->d_inode))
3554 		mode &= ~current_umask();
3555 	error = security_path_mkdir(&path, dentry, mode);
3556 	if (!error)
3557 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3558 	done_path_create(&path, dentry);
3559 	if (retry_estale(error, lookup_flags)) {
3560 		lookup_flags |= LOOKUP_REVAL;
3561 		goto retry;
3562 	}
3563 	return error;
3564 }
3565 
3566 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3567 {
3568 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3569 }
3570 
3571 /*
3572  * The dentry_unhash() helper will try to drop the dentry early: we
3573  * should have a usage count of 1 if we're the only user of this
3574  * dentry, and if that is true (possibly after pruning the dcache),
3575  * then we drop the dentry now.
3576  *
3577  * A low-level filesystem can, if it choses, legally
3578  * do a
3579  *
3580  *	if (!d_unhashed(dentry))
3581  *		return -EBUSY;
3582  *
3583  * if it cannot handle the case of removing a directory
3584  * that is still in use by something else..
3585  */
3586 void dentry_unhash(struct dentry *dentry)
3587 {
3588 	shrink_dcache_parent(dentry);
3589 	spin_lock(&dentry->d_lock);
3590 	if (dentry->d_lockref.count == 1)
3591 		__d_drop(dentry);
3592 	spin_unlock(&dentry->d_lock);
3593 }
3594 EXPORT_SYMBOL(dentry_unhash);
3595 
3596 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3597 {
3598 	int error = may_delete(dir, dentry, 1);
3599 
3600 	if (error)
3601 		return error;
3602 
3603 	if (!dir->i_op->rmdir)
3604 		return -EPERM;
3605 
3606 	dget(dentry);
3607 	mutex_lock(&dentry->d_inode->i_mutex);
3608 
3609 	error = -EBUSY;
3610 	if (is_local_mountpoint(dentry))
3611 		goto out;
3612 
3613 	error = security_inode_rmdir(dir, dentry);
3614 	if (error)
3615 		goto out;
3616 
3617 	shrink_dcache_parent(dentry);
3618 	error = dir->i_op->rmdir(dir, dentry);
3619 	if (error)
3620 		goto out;
3621 
3622 	dentry->d_inode->i_flags |= S_DEAD;
3623 	dont_mount(dentry);
3624 	detach_mounts(dentry);
3625 
3626 out:
3627 	mutex_unlock(&dentry->d_inode->i_mutex);
3628 	dput(dentry);
3629 	if (!error)
3630 		d_delete(dentry);
3631 	return error;
3632 }
3633 EXPORT_SYMBOL(vfs_rmdir);
3634 
3635 static long do_rmdir(int dfd, const char __user *pathname)
3636 {
3637 	int error = 0;
3638 	struct filename *name;
3639 	struct dentry *dentry;
3640 	struct nameidata nd;
3641 	unsigned int lookup_flags = 0;
3642 retry:
3643 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3644 	if (IS_ERR(name))
3645 		return PTR_ERR(name);
3646 
3647 	switch(nd.last_type) {
3648 	case LAST_DOTDOT:
3649 		error = -ENOTEMPTY;
3650 		goto exit1;
3651 	case LAST_DOT:
3652 		error = -EINVAL;
3653 		goto exit1;
3654 	case LAST_ROOT:
3655 		error = -EBUSY;
3656 		goto exit1;
3657 	}
3658 
3659 	nd.flags &= ~LOOKUP_PARENT;
3660 	error = mnt_want_write(nd.path.mnt);
3661 	if (error)
3662 		goto exit1;
3663 
3664 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3665 	dentry = lookup_hash(&nd);
3666 	error = PTR_ERR(dentry);
3667 	if (IS_ERR(dentry))
3668 		goto exit2;
3669 	if (!dentry->d_inode) {
3670 		error = -ENOENT;
3671 		goto exit3;
3672 	}
3673 	error = security_path_rmdir(&nd.path, dentry);
3674 	if (error)
3675 		goto exit3;
3676 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3677 exit3:
3678 	dput(dentry);
3679 exit2:
3680 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3681 	mnt_drop_write(nd.path.mnt);
3682 exit1:
3683 	path_put(&nd.path);
3684 	putname(name);
3685 	if (retry_estale(error, lookup_flags)) {
3686 		lookup_flags |= LOOKUP_REVAL;
3687 		goto retry;
3688 	}
3689 	return error;
3690 }
3691 
3692 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3693 {
3694 	return do_rmdir(AT_FDCWD, pathname);
3695 }
3696 
3697 /**
3698  * vfs_unlink - unlink a filesystem object
3699  * @dir:	parent directory
3700  * @dentry:	victim
3701  * @delegated_inode: returns victim inode, if the inode is delegated.
3702  *
3703  * The caller must hold dir->i_mutex.
3704  *
3705  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3706  * return a reference to the inode in delegated_inode.  The caller
3707  * should then break the delegation on that inode and retry.  Because
3708  * breaking a delegation may take a long time, the caller should drop
3709  * dir->i_mutex before doing so.
3710  *
3711  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3712  * be appropriate for callers that expect the underlying filesystem not
3713  * to be NFS exported.
3714  */
3715 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3716 {
3717 	struct inode *target = dentry->d_inode;
3718 	int error = may_delete(dir, dentry, 0);
3719 
3720 	if (error)
3721 		return error;
3722 
3723 	if (!dir->i_op->unlink)
3724 		return -EPERM;
3725 
3726 	mutex_lock(&target->i_mutex);
3727 	if (is_local_mountpoint(dentry))
3728 		error = -EBUSY;
3729 	else {
3730 		error = security_inode_unlink(dir, dentry);
3731 		if (!error) {
3732 			error = try_break_deleg(target, delegated_inode);
3733 			if (error)
3734 				goto out;
3735 			error = dir->i_op->unlink(dir, dentry);
3736 			if (!error) {
3737 				dont_mount(dentry);
3738 				detach_mounts(dentry);
3739 			}
3740 		}
3741 	}
3742 out:
3743 	mutex_unlock(&target->i_mutex);
3744 
3745 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3746 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3747 		fsnotify_link_count(target);
3748 		d_delete(dentry);
3749 	}
3750 
3751 	return error;
3752 }
3753 EXPORT_SYMBOL(vfs_unlink);
3754 
3755 /*
3756  * Make sure that the actual truncation of the file will occur outside its
3757  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3758  * writeout happening, and we don't want to prevent access to the directory
3759  * while waiting on the I/O.
3760  */
3761 static long do_unlinkat(int dfd, const char __user *pathname)
3762 {
3763 	int error;
3764 	struct filename *name;
3765 	struct dentry *dentry;
3766 	struct nameidata nd;
3767 	struct inode *inode = NULL;
3768 	struct inode *delegated_inode = NULL;
3769 	unsigned int lookup_flags = 0;
3770 retry:
3771 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3772 	if (IS_ERR(name))
3773 		return PTR_ERR(name);
3774 
3775 	error = -EISDIR;
3776 	if (nd.last_type != LAST_NORM)
3777 		goto exit1;
3778 
3779 	nd.flags &= ~LOOKUP_PARENT;
3780 	error = mnt_want_write(nd.path.mnt);
3781 	if (error)
3782 		goto exit1;
3783 retry_deleg:
3784 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3785 	dentry = lookup_hash(&nd);
3786 	error = PTR_ERR(dentry);
3787 	if (!IS_ERR(dentry)) {
3788 		/* Why not before? Because we want correct error value */
3789 		if (nd.last.name[nd.last.len])
3790 			goto slashes;
3791 		inode = dentry->d_inode;
3792 		if (d_is_negative(dentry))
3793 			goto slashes;
3794 		ihold(inode);
3795 		error = security_path_unlink(&nd.path, dentry);
3796 		if (error)
3797 			goto exit2;
3798 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3799 exit2:
3800 		dput(dentry);
3801 	}
3802 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3803 	if (inode)
3804 		iput(inode);	/* truncate the inode here */
3805 	inode = NULL;
3806 	if (delegated_inode) {
3807 		error = break_deleg_wait(&delegated_inode);
3808 		if (!error)
3809 			goto retry_deleg;
3810 	}
3811 	mnt_drop_write(nd.path.mnt);
3812 exit1:
3813 	path_put(&nd.path);
3814 	putname(name);
3815 	if (retry_estale(error, lookup_flags)) {
3816 		lookup_flags |= LOOKUP_REVAL;
3817 		inode = NULL;
3818 		goto retry;
3819 	}
3820 	return error;
3821 
3822 slashes:
3823 	if (d_is_negative(dentry))
3824 		error = -ENOENT;
3825 	else if (d_is_dir(dentry))
3826 		error = -EISDIR;
3827 	else
3828 		error = -ENOTDIR;
3829 	goto exit2;
3830 }
3831 
3832 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3833 {
3834 	if ((flag & ~AT_REMOVEDIR) != 0)
3835 		return -EINVAL;
3836 
3837 	if (flag & AT_REMOVEDIR)
3838 		return do_rmdir(dfd, pathname);
3839 
3840 	return do_unlinkat(dfd, pathname);
3841 }
3842 
3843 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3844 {
3845 	return do_unlinkat(AT_FDCWD, pathname);
3846 }
3847 
3848 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3849 {
3850 	int error = may_create(dir, dentry);
3851 
3852 	if (error)
3853 		return error;
3854 
3855 	if (!dir->i_op->symlink)
3856 		return -EPERM;
3857 
3858 	error = security_inode_symlink(dir, dentry, oldname);
3859 	if (error)
3860 		return error;
3861 
3862 	error = dir->i_op->symlink(dir, dentry, oldname);
3863 	if (!error)
3864 		fsnotify_create(dir, dentry);
3865 	return error;
3866 }
3867 EXPORT_SYMBOL(vfs_symlink);
3868 
3869 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3870 		int, newdfd, const char __user *, newname)
3871 {
3872 	int error;
3873 	struct filename *from;
3874 	struct dentry *dentry;
3875 	struct path path;
3876 	unsigned int lookup_flags = 0;
3877 
3878 	from = getname(oldname);
3879 	if (IS_ERR(from))
3880 		return PTR_ERR(from);
3881 retry:
3882 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3883 	error = PTR_ERR(dentry);
3884 	if (IS_ERR(dentry))
3885 		goto out_putname;
3886 
3887 	error = security_path_symlink(&path, dentry, from->name);
3888 	if (!error)
3889 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3890 	done_path_create(&path, dentry);
3891 	if (retry_estale(error, lookup_flags)) {
3892 		lookup_flags |= LOOKUP_REVAL;
3893 		goto retry;
3894 	}
3895 out_putname:
3896 	putname(from);
3897 	return error;
3898 }
3899 
3900 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3901 {
3902 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3903 }
3904 
3905 /**
3906  * vfs_link - create a new link
3907  * @old_dentry:	object to be linked
3908  * @dir:	new parent
3909  * @new_dentry:	where to create the new link
3910  * @delegated_inode: returns inode needing a delegation break
3911  *
3912  * The caller must hold dir->i_mutex
3913  *
3914  * If vfs_link discovers a delegation on the to-be-linked file in need
3915  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3916  * inode in delegated_inode.  The caller should then break the delegation
3917  * and retry.  Because breaking a delegation may take a long time, the
3918  * caller should drop the i_mutex before doing so.
3919  *
3920  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3921  * be appropriate for callers that expect the underlying filesystem not
3922  * to be NFS exported.
3923  */
3924 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3925 {
3926 	struct inode *inode = old_dentry->d_inode;
3927 	unsigned max_links = dir->i_sb->s_max_links;
3928 	int error;
3929 
3930 	if (!inode)
3931 		return -ENOENT;
3932 
3933 	error = may_create(dir, new_dentry);
3934 	if (error)
3935 		return error;
3936 
3937 	if (dir->i_sb != inode->i_sb)
3938 		return -EXDEV;
3939 
3940 	/*
3941 	 * A link to an append-only or immutable file cannot be created.
3942 	 */
3943 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3944 		return -EPERM;
3945 	if (!dir->i_op->link)
3946 		return -EPERM;
3947 	if (S_ISDIR(inode->i_mode))
3948 		return -EPERM;
3949 
3950 	error = security_inode_link(old_dentry, dir, new_dentry);
3951 	if (error)
3952 		return error;
3953 
3954 	mutex_lock(&inode->i_mutex);
3955 	/* Make sure we don't allow creating hardlink to an unlinked file */
3956 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3957 		error =  -ENOENT;
3958 	else if (max_links && inode->i_nlink >= max_links)
3959 		error = -EMLINK;
3960 	else {
3961 		error = try_break_deleg(inode, delegated_inode);
3962 		if (!error)
3963 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3964 	}
3965 
3966 	if (!error && (inode->i_state & I_LINKABLE)) {
3967 		spin_lock(&inode->i_lock);
3968 		inode->i_state &= ~I_LINKABLE;
3969 		spin_unlock(&inode->i_lock);
3970 	}
3971 	mutex_unlock(&inode->i_mutex);
3972 	if (!error)
3973 		fsnotify_link(dir, inode, new_dentry);
3974 	return error;
3975 }
3976 EXPORT_SYMBOL(vfs_link);
3977 
3978 /*
3979  * Hardlinks are often used in delicate situations.  We avoid
3980  * security-related surprises by not following symlinks on the
3981  * newname.  --KAB
3982  *
3983  * We don't follow them on the oldname either to be compatible
3984  * with linux 2.0, and to avoid hard-linking to directories
3985  * and other special files.  --ADM
3986  */
3987 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3988 		int, newdfd, const char __user *, newname, int, flags)
3989 {
3990 	struct dentry *new_dentry;
3991 	struct path old_path, new_path;
3992 	struct inode *delegated_inode = NULL;
3993 	int how = 0;
3994 	int error;
3995 
3996 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3997 		return -EINVAL;
3998 	/*
3999 	 * To use null names we require CAP_DAC_READ_SEARCH
4000 	 * This ensures that not everyone will be able to create
4001 	 * handlink using the passed filedescriptor.
4002 	 */
4003 	if (flags & AT_EMPTY_PATH) {
4004 		if (!capable(CAP_DAC_READ_SEARCH))
4005 			return -ENOENT;
4006 		how = LOOKUP_EMPTY;
4007 	}
4008 
4009 	if (flags & AT_SYMLINK_FOLLOW)
4010 		how |= LOOKUP_FOLLOW;
4011 retry:
4012 	error = user_path_at(olddfd, oldname, how, &old_path);
4013 	if (error)
4014 		return error;
4015 
4016 	new_dentry = user_path_create(newdfd, newname, &new_path,
4017 					(how & LOOKUP_REVAL));
4018 	error = PTR_ERR(new_dentry);
4019 	if (IS_ERR(new_dentry))
4020 		goto out;
4021 
4022 	error = -EXDEV;
4023 	if (old_path.mnt != new_path.mnt)
4024 		goto out_dput;
4025 	error = may_linkat(&old_path);
4026 	if (unlikely(error))
4027 		goto out_dput;
4028 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4029 	if (error)
4030 		goto out_dput;
4031 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4032 out_dput:
4033 	done_path_create(&new_path, new_dentry);
4034 	if (delegated_inode) {
4035 		error = break_deleg_wait(&delegated_inode);
4036 		if (!error) {
4037 			path_put(&old_path);
4038 			goto retry;
4039 		}
4040 	}
4041 	if (retry_estale(error, how)) {
4042 		path_put(&old_path);
4043 		how |= LOOKUP_REVAL;
4044 		goto retry;
4045 	}
4046 out:
4047 	path_put(&old_path);
4048 
4049 	return error;
4050 }
4051 
4052 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4053 {
4054 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4055 }
4056 
4057 /**
4058  * vfs_rename - rename a filesystem object
4059  * @old_dir:	parent of source
4060  * @old_dentry:	source
4061  * @new_dir:	parent of destination
4062  * @new_dentry:	destination
4063  * @delegated_inode: returns an inode needing a delegation break
4064  * @flags:	rename flags
4065  *
4066  * The caller must hold multiple mutexes--see lock_rename()).
4067  *
4068  * If vfs_rename discovers a delegation in need of breaking at either
4069  * the source or destination, it will return -EWOULDBLOCK and return a
4070  * reference to the inode in delegated_inode.  The caller should then
4071  * break the delegation and retry.  Because breaking a delegation may
4072  * take a long time, the caller should drop all locks before doing
4073  * so.
4074  *
4075  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4076  * be appropriate for callers that expect the underlying filesystem not
4077  * to be NFS exported.
4078  *
4079  * The worst of all namespace operations - renaming directory. "Perverted"
4080  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4081  * Problems:
4082  *	a) we can get into loop creation.
4083  *	b) race potential - two innocent renames can create a loop together.
4084  *	   That's where 4.4 screws up. Current fix: serialization on
4085  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4086  *	   story.
4087  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4088  *	   and source (if it is not a directory).
4089  *	   And that - after we got ->i_mutex on parents (until then we don't know
4090  *	   whether the target exists).  Solution: try to be smart with locking
4091  *	   order for inodes.  We rely on the fact that tree topology may change
4092  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4093  *	   move will be locked.  Thus we can rank directories by the tree
4094  *	   (ancestors first) and rank all non-directories after them.
4095  *	   That works since everybody except rename does "lock parent, lookup,
4096  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4097  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4098  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4099  *	   we'd better make sure that there's no link(2) for them.
4100  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4101  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4102  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4103  *	   ->i_mutex on parents, which works but leads to some truly excessive
4104  *	   locking].
4105  */
4106 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4107 	       struct inode *new_dir, struct dentry *new_dentry,
4108 	       struct inode **delegated_inode, unsigned int flags)
4109 {
4110 	int error;
4111 	bool is_dir = d_is_dir(old_dentry);
4112 	const unsigned char *old_name;
4113 	struct inode *source = old_dentry->d_inode;
4114 	struct inode *target = new_dentry->d_inode;
4115 	bool new_is_dir = false;
4116 	unsigned max_links = new_dir->i_sb->s_max_links;
4117 
4118 	if (source == target)
4119 		return 0;
4120 
4121 	error = may_delete(old_dir, old_dentry, is_dir);
4122 	if (error)
4123 		return error;
4124 
4125 	if (!target) {
4126 		error = may_create(new_dir, new_dentry);
4127 	} else {
4128 		new_is_dir = d_is_dir(new_dentry);
4129 
4130 		if (!(flags & RENAME_EXCHANGE))
4131 			error = may_delete(new_dir, new_dentry, is_dir);
4132 		else
4133 			error = may_delete(new_dir, new_dentry, new_is_dir);
4134 	}
4135 	if (error)
4136 		return error;
4137 
4138 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4139 		return -EPERM;
4140 
4141 	if (flags && !old_dir->i_op->rename2)
4142 		return -EINVAL;
4143 
4144 	/*
4145 	 * If we are going to change the parent - check write permissions,
4146 	 * we'll need to flip '..'.
4147 	 */
4148 	if (new_dir != old_dir) {
4149 		if (is_dir) {
4150 			error = inode_permission(source, MAY_WRITE);
4151 			if (error)
4152 				return error;
4153 		}
4154 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4155 			error = inode_permission(target, MAY_WRITE);
4156 			if (error)
4157 				return error;
4158 		}
4159 	}
4160 
4161 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4162 				      flags);
4163 	if (error)
4164 		return error;
4165 
4166 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4167 	dget(new_dentry);
4168 	if (!is_dir || (flags & RENAME_EXCHANGE))
4169 		lock_two_nondirectories(source, target);
4170 	else if (target)
4171 		mutex_lock(&target->i_mutex);
4172 
4173 	error = -EBUSY;
4174 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4175 		goto out;
4176 
4177 	if (max_links && new_dir != old_dir) {
4178 		error = -EMLINK;
4179 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4180 			goto out;
4181 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4182 		    old_dir->i_nlink >= max_links)
4183 			goto out;
4184 	}
4185 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4186 		shrink_dcache_parent(new_dentry);
4187 	if (!is_dir) {
4188 		error = try_break_deleg(source, delegated_inode);
4189 		if (error)
4190 			goto out;
4191 	}
4192 	if (target && !new_is_dir) {
4193 		error = try_break_deleg(target, delegated_inode);
4194 		if (error)
4195 			goto out;
4196 	}
4197 	if (!old_dir->i_op->rename2) {
4198 		error = old_dir->i_op->rename(old_dir, old_dentry,
4199 					      new_dir, new_dentry);
4200 	} else {
4201 		WARN_ON(old_dir->i_op->rename != NULL);
4202 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4203 					       new_dir, new_dentry, flags);
4204 	}
4205 	if (error)
4206 		goto out;
4207 
4208 	if (!(flags & RENAME_EXCHANGE) && target) {
4209 		if (is_dir)
4210 			target->i_flags |= S_DEAD;
4211 		dont_mount(new_dentry);
4212 		detach_mounts(new_dentry);
4213 	}
4214 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4215 		if (!(flags & RENAME_EXCHANGE))
4216 			d_move(old_dentry, new_dentry);
4217 		else
4218 			d_exchange(old_dentry, new_dentry);
4219 	}
4220 out:
4221 	if (!is_dir || (flags & RENAME_EXCHANGE))
4222 		unlock_two_nondirectories(source, target);
4223 	else if (target)
4224 		mutex_unlock(&target->i_mutex);
4225 	dput(new_dentry);
4226 	if (!error) {
4227 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4228 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4229 		if (flags & RENAME_EXCHANGE) {
4230 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4231 				      new_is_dir, NULL, new_dentry);
4232 		}
4233 	}
4234 	fsnotify_oldname_free(old_name);
4235 
4236 	return error;
4237 }
4238 EXPORT_SYMBOL(vfs_rename);
4239 
4240 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4241 		int, newdfd, const char __user *, newname, unsigned int, flags)
4242 {
4243 	struct dentry *old_dir, *new_dir;
4244 	struct dentry *old_dentry, *new_dentry;
4245 	struct dentry *trap;
4246 	struct nameidata oldnd, newnd;
4247 	struct inode *delegated_inode = NULL;
4248 	struct filename *from;
4249 	struct filename *to;
4250 	unsigned int lookup_flags = 0;
4251 	bool should_retry = false;
4252 	int error;
4253 
4254 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4255 		return -EINVAL;
4256 
4257 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4258 	    (flags & RENAME_EXCHANGE))
4259 		return -EINVAL;
4260 
4261 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4262 		return -EPERM;
4263 
4264 retry:
4265 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4266 	if (IS_ERR(from)) {
4267 		error = PTR_ERR(from);
4268 		goto exit;
4269 	}
4270 
4271 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4272 	if (IS_ERR(to)) {
4273 		error = PTR_ERR(to);
4274 		goto exit1;
4275 	}
4276 
4277 	error = -EXDEV;
4278 	if (oldnd.path.mnt != newnd.path.mnt)
4279 		goto exit2;
4280 
4281 	old_dir = oldnd.path.dentry;
4282 	error = -EBUSY;
4283 	if (oldnd.last_type != LAST_NORM)
4284 		goto exit2;
4285 
4286 	new_dir = newnd.path.dentry;
4287 	if (flags & RENAME_NOREPLACE)
4288 		error = -EEXIST;
4289 	if (newnd.last_type != LAST_NORM)
4290 		goto exit2;
4291 
4292 	error = mnt_want_write(oldnd.path.mnt);
4293 	if (error)
4294 		goto exit2;
4295 
4296 	oldnd.flags &= ~LOOKUP_PARENT;
4297 	newnd.flags &= ~LOOKUP_PARENT;
4298 	if (!(flags & RENAME_EXCHANGE))
4299 		newnd.flags |= LOOKUP_RENAME_TARGET;
4300 
4301 retry_deleg:
4302 	trap = lock_rename(new_dir, old_dir);
4303 
4304 	old_dentry = lookup_hash(&oldnd);
4305 	error = PTR_ERR(old_dentry);
4306 	if (IS_ERR(old_dentry))
4307 		goto exit3;
4308 	/* source must exist */
4309 	error = -ENOENT;
4310 	if (d_is_negative(old_dentry))
4311 		goto exit4;
4312 	new_dentry = lookup_hash(&newnd);
4313 	error = PTR_ERR(new_dentry);
4314 	if (IS_ERR(new_dentry))
4315 		goto exit4;
4316 	error = -EEXIST;
4317 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4318 		goto exit5;
4319 	if (flags & RENAME_EXCHANGE) {
4320 		error = -ENOENT;
4321 		if (d_is_negative(new_dentry))
4322 			goto exit5;
4323 
4324 		if (!d_is_dir(new_dentry)) {
4325 			error = -ENOTDIR;
4326 			if (newnd.last.name[newnd.last.len])
4327 				goto exit5;
4328 		}
4329 	}
4330 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4331 	if (!d_is_dir(old_dentry)) {
4332 		error = -ENOTDIR;
4333 		if (oldnd.last.name[oldnd.last.len])
4334 			goto exit5;
4335 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4336 			goto exit5;
4337 	}
4338 	/* source should not be ancestor of target */
4339 	error = -EINVAL;
4340 	if (old_dentry == trap)
4341 		goto exit5;
4342 	/* target should not be an ancestor of source */
4343 	if (!(flags & RENAME_EXCHANGE))
4344 		error = -ENOTEMPTY;
4345 	if (new_dentry == trap)
4346 		goto exit5;
4347 
4348 	error = security_path_rename(&oldnd.path, old_dentry,
4349 				     &newnd.path, new_dentry, flags);
4350 	if (error)
4351 		goto exit5;
4352 	error = vfs_rename(old_dir->d_inode, old_dentry,
4353 			   new_dir->d_inode, new_dentry,
4354 			   &delegated_inode, flags);
4355 exit5:
4356 	dput(new_dentry);
4357 exit4:
4358 	dput(old_dentry);
4359 exit3:
4360 	unlock_rename(new_dir, old_dir);
4361 	if (delegated_inode) {
4362 		error = break_deleg_wait(&delegated_inode);
4363 		if (!error)
4364 			goto retry_deleg;
4365 	}
4366 	mnt_drop_write(oldnd.path.mnt);
4367 exit2:
4368 	if (retry_estale(error, lookup_flags))
4369 		should_retry = true;
4370 	path_put(&newnd.path);
4371 	putname(to);
4372 exit1:
4373 	path_put(&oldnd.path);
4374 	putname(from);
4375 	if (should_retry) {
4376 		should_retry = false;
4377 		lookup_flags |= LOOKUP_REVAL;
4378 		goto retry;
4379 	}
4380 exit:
4381 	return error;
4382 }
4383 
4384 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4385 		int, newdfd, const char __user *, newname)
4386 {
4387 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4388 }
4389 
4390 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4391 {
4392 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4393 }
4394 
4395 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4396 {
4397 	int error = may_create(dir, dentry);
4398 	if (error)
4399 		return error;
4400 
4401 	if (!dir->i_op->mknod)
4402 		return -EPERM;
4403 
4404 	return dir->i_op->mknod(dir, dentry,
4405 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4406 }
4407 EXPORT_SYMBOL(vfs_whiteout);
4408 
4409 int readlink_copy(char __user *buffer, int buflen, const char *link)
4410 {
4411 	int len = PTR_ERR(link);
4412 	if (IS_ERR(link))
4413 		goto out;
4414 
4415 	len = strlen(link);
4416 	if (len > (unsigned) buflen)
4417 		len = buflen;
4418 	if (copy_to_user(buffer, link, len))
4419 		len = -EFAULT;
4420 out:
4421 	return len;
4422 }
4423 EXPORT_SYMBOL(readlink_copy);
4424 
4425 /*
4426  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4427  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4428  * using) it for any given inode is up to filesystem.
4429  */
4430 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4431 {
4432 	struct nameidata nd;
4433 	void *cookie;
4434 	int res;
4435 
4436 	nd.depth = 0;
4437 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4438 	if (IS_ERR(cookie))
4439 		return PTR_ERR(cookie);
4440 
4441 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4442 	if (dentry->d_inode->i_op->put_link)
4443 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4444 	return res;
4445 }
4446 EXPORT_SYMBOL(generic_readlink);
4447 
4448 /* get the link contents into pagecache */
4449 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4450 {
4451 	char *kaddr;
4452 	struct page *page;
4453 	struct address_space *mapping = dentry->d_inode->i_mapping;
4454 	page = read_mapping_page(mapping, 0, NULL);
4455 	if (IS_ERR(page))
4456 		return (char*)page;
4457 	*ppage = page;
4458 	kaddr = kmap(page);
4459 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4460 	return kaddr;
4461 }
4462 
4463 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4464 {
4465 	struct page *page = NULL;
4466 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4467 	if (page) {
4468 		kunmap(page);
4469 		page_cache_release(page);
4470 	}
4471 	return res;
4472 }
4473 EXPORT_SYMBOL(page_readlink);
4474 
4475 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4476 {
4477 	struct page *page = NULL;
4478 	nd_set_link(nd, page_getlink(dentry, &page));
4479 	return page;
4480 }
4481 EXPORT_SYMBOL(page_follow_link_light);
4482 
4483 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4484 {
4485 	struct page *page = cookie;
4486 
4487 	if (page) {
4488 		kunmap(page);
4489 		page_cache_release(page);
4490 	}
4491 }
4492 EXPORT_SYMBOL(page_put_link);
4493 
4494 /*
4495  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4496  */
4497 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4498 {
4499 	struct address_space *mapping = inode->i_mapping;
4500 	struct page *page;
4501 	void *fsdata;
4502 	int err;
4503 	char *kaddr;
4504 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4505 	if (nofs)
4506 		flags |= AOP_FLAG_NOFS;
4507 
4508 retry:
4509 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4510 				flags, &page, &fsdata);
4511 	if (err)
4512 		goto fail;
4513 
4514 	kaddr = kmap_atomic(page);
4515 	memcpy(kaddr, symname, len-1);
4516 	kunmap_atomic(kaddr);
4517 
4518 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4519 							page, fsdata);
4520 	if (err < 0)
4521 		goto fail;
4522 	if (err < len-1)
4523 		goto retry;
4524 
4525 	mark_inode_dirty(inode);
4526 	return 0;
4527 fail:
4528 	return err;
4529 }
4530 EXPORT_SYMBOL(__page_symlink);
4531 
4532 int page_symlink(struct inode *inode, const char *symname, int len)
4533 {
4534 	return __page_symlink(inode, symname, len,
4535 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4536 }
4537 EXPORT_SYMBOL(page_symlink);
4538 
4539 const struct inode_operations page_symlink_inode_operations = {
4540 	.readlink	= generic_readlink,
4541 	.follow_link	= page_follow_link_light,
4542 	.put_link	= page_put_link,
4543 };
4544 EXPORT_SYMBOL(page_symlink_inode_operations);
4545