xref: /openbmc/linux/fs/namei.c (revision 88baa78d)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
41 
42 #include "internal.h"
43 #include "mount.h"
44 
45 /* [Feb-1997 T. Schoebel-Theuer]
46  * Fundamental changes in the pathname lookup mechanisms (namei)
47  * were necessary because of omirr.  The reason is that omirr needs
48  * to know the _real_ pathname, not the user-supplied one, in case
49  * of symlinks (and also when transname replacements occur).
50  *
51  * The new code replaces the old recursive symlink resolution with
52  * an iterative one (in case of non-nested symlink chains).  It does
53  * this with calls to <fs>_follow_link().
54  * As a side effect, dir_namei(), _namei() and follow_link() are now
55  * replaced with a single function lookup_dentry() that can handle all
56  * the special cases of the former code.
57  *
58  * With the new dcache, the pathname is stored at each inode, at least as
59  * long as the refcount of the inode is positive.  As a side effect, the
60  * size of the dcache depends on the inode cache and thus is dynamic.
61  *
62  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63  * resolution to correspond with current state of the code.
64  *
65  * Note that the symlink resolution is not *completely* iterative.
66  * There is still a significant amount of tail- and mid- recursion in
67  * the algorithm.  Also, note that <fs>_readlink() is not used in
68  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69  * may return different results than <fs>_follow_link().  Many virtual
70  * filesystems (including /proc) exhibit this behavior.
71  */
72 
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75  * and the name already exists in form of a symlink, try to create the new
76  * name indicated by the symlink. The old code always complained that the
77  * name already exists, due to not following the symlink even if its target
78  * is nonexistent.  The new semantics affects also mknod() and link() when
79  * the name is a symlink pointing to a non-existent name.
80  *
81  * I don't know which semantics is the right one, since I have no access
82  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84  * "old" one. Personally, I think the new semantics is much more logical.
85  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86  * file does succeed in both HP-UX and SunOs, but not in Solaris
87  * and in the old Linux semantics.
88  */
89 
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91  * semantics.  See the comments in "open_namei" and "do_link" below.
92  *
93  * [10-Sep-98 Alan Modra] Another symlink change.
94  */
95 
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97  *	inside the path - always follow.
98  *	in the last component in creation/removal/renaming - never follow.
99  *	if LOOKUP_FOLLOW passed - follow.
100  *	if the pathname has trailing slashes - follow.
101  *	otherwise - don't follow.
102  * (applied in that order).
103  *
104  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106  * During the 2.4 we need to fix the userland stuff depending on it -
107  * hopefully we will be able to get rid of that wart in 2.5. So far only
108  * XEmacs seems to be relying on it...
109  */
110 /*
111  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
113  * any extra contention...
114  */
115 
116 /* In order to reduce some races, while at the same time doing additional
117  * checking and hopefully speeding things up, we copy filenames to the
118  * kernel data space before using them..
119  *
120  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121  * PATH_MAX includes the nul terminator --RR.
122  */
123 
124 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
125 
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129 	struct filename *result;
130 	char *kname;
131 	int len;
132 
133 	result = audit_reusename(filename);
134 	if (result)
135 		return result;
136 
137 	result = __getname();
138 	if (unlikely(!result))
139 		return ERR_PTR(-ENOMEM);
140 
141 	/*
142 	 * First, try to embed the struct filename inside the names_cache
143 	 * allocation
144 	 */
145 	kname = (char *)result->iname;
146 	result->name = kname;
147 
148 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 	if (unlikely(len < 0)) {
150 		__putname(result);
151 		return ERR_PTR(len);
152 	}
153 
154 	/*
155 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 	 * separate struct filename so we can dedicate the entire
157 	 * names_cache allocation for the pathname, and re-do the copy from
158 	 * userland.
159 	 */
160 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 		const size_t size = offsetof(struct filename, iname[1]);
162 		kname = (char *)result;
163 
164 		/*
165 		 * size is chosen that way we to guarantee that
166 		 * result->iname[0] is within the same object and that
167 		 * kname can't be equal to result->iname, no matter what.
168 		 */
169 		result = kzalloc(size, GFP_KERNEL);
170 		if (unlikely(!result)) {
171 			__putname(kname);
172 			return ERR_PTR(-ENOMEM);
173 		}
174 		result->name = kname;
175 		len = strncpy_from_user(kname, filename, PATH_MAX);
176 		if (unlikely(len < 0)) {
177 			__putname(kname);
178 			kfree(result);
179 			return ERR_PTR(len);
180 		}
181 		if (unlikely(len == PATH_MAX)) {
182 			__putname(kname);
183 			kfree(result);
184 			return ERR_PTR(-ENAMETOOLONG);
185 		}
186 	}
187 
188 	result->refcnt = 1;
189 	/* The empty path is special. */
190 	if (unlikely(!len)) {
191 		if (empty)
192 			*empty = 1;
193 		if (!(flags & LOOKUP_EMPTY)) {
194 			putname(result);
195 			return ERR_PTR(-ENOENT);
196 		}
197 	}
198 
199 	result->uptr = filename;
200 	result->aname = NULL;
201 	audit_getname(result);
202 	return result;
203 }
204 
205 struct filename *
206 getname(const char __user * filename)
207 {
208 	return getname_flags(filename, 0, NULL);
209 }
210 
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214 	struct filename *result;
215 	int len = strlen(filename) + 1;
216 
217 	result = __getname();
218 	if (unlikely(!result))
219 		return ERR_PTR(-ENOMEM);
220 
221 	if (len <= EMBEDDED_NAME_MAX) {
222 		result->name = (char *)result->iname;
223 	} else if (len <= PATH_MAX) {
224 		struct filename *tmp;
225 
226 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 		if (unlikely(!tmp)) {
228 			__putname(result);
229 			return ERR_PTR(-ENOMEM);
230 		}
231 		tmp->name = (char *)result;
232 		result = tmp;
233 	} else {
234 		__putname(result);
235 		return ERR_PTR(-ENAMETOOLONG);
236 	}
237 	memcpy((char *)result->name, filename, len);
238 	result->uptr = NULL;
239 	result->aname = NULL;
240 	result->refcnt = 1;
241 	audit_getname(result);
242 
243 	return result;
244 }
245 
246 void putname(struct filename *name)
247 {
248 	BUG_ON(name->refcnt <= 0);
249 
250 	if (--name->refcnt > 0)
251 		return;
252 
253 	if (name->name != name->iname) {
254 		__putname(name->name);
255 		kfree(name);
256 	} else
257 		__putname(name);
258 }
259 
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263 	struct posix_acl *acl;
264 
265 	if (mask & MAY_NOT_BLOCK) {
266 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 	        if (!acl)
268 	                return -EAGAIN;
269 		/* no ->get_acl() calls in RCU mode... */
270 		if (is_uncached_acl(acl))
271 			return -ECHILD;
272 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 	}
274 
275 	acl = get_acl(inode, ACL_TYPE_ACCESS);
276 	if (IS_ERR(acl))
277 		return PTR_ERR(acl);
278 	if (acl) {
279 	        int error = posix_acl_permission(inode, acl, mask);
280 	        posix_acl_release(acl);
281 	        return error;
282 	}
283 #endif
284 
285 	return -EAGAIN;
286 }
287 
288 /*
289  * This does the basic permission checking
290  */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293 	unsigned int mode = inode->i_mode;
294 
295 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 		mode >>= 6;
297 	else {
298 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 			int error = check_acl(inode, mask);
300 			if (error != -EAGAIN)
301 				return error;
302 		}
303 
304 		if (in_group_p(inode->i_gid))
305 			mode >>= 3;
306 	}
307 
308 	/*
309 	 * If the DACs are ok we don't need any capability check.
310 	 */
311 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 		return 0;
313 	return -EACCES;
314 }
315 
316 /**
317  * generic_permission -  check for access rights on a Posix-like filesystem
318  * @inode:	inode to check access rights for
319  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320  *
321  * Used to check for read/write/execute permissions on a file.
322  * We use "fsuid" for this, letting us set arbitrary permissions
323  * for filesystem access without changing the "normal" uids which
324  * are used for other things.
325  *
326  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327  * request cannot be satisfied (eg. requires blocking or too much complexity).
328  * It would then be called again in ref-walk mode.
329  */
330 int generic_permission(struct inode *inode, int mask)
331 {
332 	int ret;
333 
334 	/*
335 	 * Do the basic permission checks.
336 	 */
337 	ret = acl_permission_check(inode, mask);
338 	if (ret != -EACCES)
339 		return ret;
340 
341 	if (S_ISDIR(inode->i_mode)) {
342 		/* DACs are overridable for directories */
343 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344 			return 0;
345 		if (!(mask & MAY_WRITE))
346 			if (capable_wrt_inode_uidgid(inode,
347 						     CAP_DAC_READ_SEARCH))
348 				return 0;
349 		return -EACCES;
350 	}
351 	/*
352 	 * Read/write DACs are always overridable.
353 	 * Executable DACs are overridable when there is
354 	 * at least one exec bit set.
355 	 */
356 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358 			return 0;
359 
360 	/*
361 	 * Searching includes executable on directories, else just read.
362 	 */
363 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364 	if (mask == MAY_READ)
365 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366 			return 0;
367 
368 	return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371 
372 /*
373  * We _really_ want to just do "generic_permission()" without
374  * even looking at the inode->i_op values. So we keep a cache
375  * flag in inode->i_opflags, that says "this has not special
376  * permission function, use the fast case".
377  */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 		if (likely(inode->i_op->permission))
382 			return inode->i_op->permission(inode, mask);
383 
384 		/* This gets set once for the inode lifetime */
385 		spin_lock(&inode->i_lock);
386 		inode->i_opflags |= IOP_FASTPERM;
387 		spin_unlock(&inode->i_lock);
388 	}
389 	return generic_permission(inode, mask);
390 }
391 
392 /**
393  * __inode_permission - Check for access rights to a given inode
394  * @inode: Inode to check permission on
395  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396  *
397  * Check for read/write/execute permissions on an inode.
398  *
399  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400  *
401  * This does not check for a read-only file system.  You probably want
402  * inode_permission().
403  */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406 	int retval;
407 
408 	if (unlikely(mask & MAY_WRITE)) {
409 		/*
410 		 * Nobody gets write access to an immutable file.
411 		 */
412 		if (IS_IMMUTABLE(inode))
413 			return -EPERM;
414 
415 		/*
416 		 * Updating mtime will likely cause i_uid and i_gid to be
417 		 * written back improperly if their true value is unknown
418 		 * to the vfs.
419 		 */
420 		if (HAS_UNMAPPED_ID(inode))
421 			return -EACCES;
422 	}
423 
424 	retval = do_inode_permission(inode, mask);
425 	if (retval)
426 		return retval;
427 
428 	retval = devcgroup_inode_permission(inode, mask);
429 	if (retval)
430 		return retval;
431 
432 	return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435 
436 /**
437  * sb_permission - Check superblock-level permissions
438  * @sb: Superblock of inode to check permission on
439  * @inode: Inode to check permission on
440  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441  *
442  * Separate out file-system wide checks from inode-specific permission checks.
443  */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446 	if (unlikely(mask & MAY_WRITE)) {
447 		umode_t mode = inode->i_mode;
448 
449 		/* Nobody gets write access to a read-only fs. */
450 		if ((sb->s_flags & MS_RDONLY) &&
451 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 			return -EROFS;
453 	}
454 	return 0;
455 }
456 
457 /**
458  * inode_permission - Check for access rights to a given inode
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463  * this, letting us set arbitrary permissions for filesystem access without
464  * changing the "normal" UIDs which are used for other things.
465  *
466  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467  */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 	int retval;
471 
472 	retval = sb_permission(inode->i_sb, inode, mask);
473 	if (retval)
474 		return retval;
475 	return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478 
479 /**
480  * path_get - get a reference to a path
481  * @path: path to get the reference to
482  *
483  * Given a path increment the reference count to the dentry and the vfsmount.
484  */
485 void path_get(const struct path *path)
486 {
487 	mntget(path->mnt);
488 	dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491 
492 /**
493  * path_put - put a reference to a path
494  * @path: path to put the reference to
495  *
496  * Given a path decrement the reference count to the dentry and the vfsmount.
497  */
498 void path_put(const struct path *path)
499 {
500 	dput(path->dentry);
501 	mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504 
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 	struct path	path;
508 	struct qstr	last;
509 	struct path	root;
510 	struct inode	*inode; /* path.dentry.d_inode */
511 	unsigned int	flags;
512 	unsigned	seq, m_seq;
513 	int		last_type;
514 	unsigned	depth;
515 	int		total_link_count;
516 	struct saved {
517 		struct path link;
518 		struct delayed_call done;
519 		const char *name;
520 		unsigned seq;
521 	} *stack, internal[EMBEDDED_LEVELS];
522 	struct filename	*name;
523 	struct nameidata *saved;
524 	struct inode	*link_inode;
525 	unsigned	root_seq;
526 	int		dfd;
527 };
528 
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 	struct nameidata *old = current->nameidata;
532 	p->stack = p->internal;
533 	p->dfd = dfd;
534 	p->name = name;
535 	p->total_link_count = old ? old->total_link_count : 0;
536 	p->saved = old;
537 	current->nameidata = p;
538 }
539 
540 static void restore_nameidata(void)
541 {
542 	struct nameidata *now = current->nameidata, *old = now->saved;
543 
544 	current->nameidata = old;
545 	if (old)
546 		old->total_link_count = now->total_link_count;
547 	if (now->stack != now->internal)
548 		kfree(now->stack);
549 }
550 
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 	struct saved *p;
554 
555 	if (nd->flags & LOOKUP_RCU) {
556 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 				  GFP_ATOMIC);
558 		if (unlikely(!p))
559 			return -ECHILD;
560 	} else {
561 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 				  GFP_KERNEL);
563 		if (unlikely(!p))
564 			return -ENOMEM;
565 	}
566 	memcpy(p, nd->internal, sizeof(nd->internal));
567 	nd->stack = p;
568 	return 0;
569 }
570 
571 /**
572  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573  * @path: nameidate to verify
574  *
575  * Rename can sometimes move a file or directory outside of a bind
576  * mount, path_connected allows those cases to be detected.
577  */
578 static bool path_connected(const struct path *path)
579 {
580 	struct vfsmount *mnt = path->mnt;
581 
582 	/* Only bind mounts can have disconnected paths */
583 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 		return true;
585 
586 	return is_subdir(path->dentry, mnt->mnt_root);
587 }
588 
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591 	if (likely(nd->depth != EMBEDDED_LEVELS))
592 		return 0;
593 	if (likely(nd->stack != nd->internal))
594 		return 0;
595 	return __nd_alloc_stack(nd);
596 }
597 
598 static void drop_links(struct nameidata *nd)
599 {
600 	int i = nd->depth;
601 	while (i--) {
602 		struct saved *last = nd->stack + i;
603 		do_delayed_call(&last->done);
604 		clear_delayed_call(&last->done);
605 	}
606 }
607 
608 static void terminate_walk(struct nameidata *nd)
609 {
610 	drop_links(nd);
611 	if (!(nd->flags & LOOKUP_RCU)) {
612 		int i;
613 		path_put(&nd->path);
614 		for (i = 0; i < nd->depth; i++)
615 			path_put(&nd->stack[i].link);
616 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 			path_put(&nd->root);
618 			nd->root.mnt = NULL;
619 		}
620 	} else {
621 		nd->flags &= ~LOOKUP_RCU;
622 		if (!(nd->flags & LOOKUP_ROOT))
623 			nd->root.mnt = NULL;
624 		rcu_read_unlock();
625 	}
626 	nd->depth = 0;
627 }
628 
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 			    struct path *path, unsigned seq)
632 {
633 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 	if (unlikely(res)) {
635 		if (res > 0)
636 			path->mnt = NULL;
637 		path->dentry = NULL;
638 		return false;
639 	}
640 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 		path->dentry = NULL;
642 		return false;
643 	}
644 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646 
647 static bool legitimize_links(struct nameidata *nd)
648 {
649 	int i;
650 	for (i = 0; i < nd->depth; i++) {
651 		struct saved *last = nd->stack + i;
652 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 			drop_links(nd);
654 			nd->depth = i + 1;
655 			return false;
656 		}
657 	}
658 	return true;
659 }
660 
661 /*
662  * Path walking has 2 modes, rcu-walk and ref-walk (see
663  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
664  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665  * normal reference counts on dentries and vfsmounts to transition to ref-walk
666  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
667  * got stuck, so ref-walk may continue from there. If this is not successful
668  * (eg. a seqcount has changed), then failure is returned and it's up to caller
669  * to restart the path walk from the beginning in ref-walk mode.
670  */
671 
672 /**
673  * unlazy_walk - try to switch to ref-walk mode.
674  * @nd: nameidata pathwalk data
675  * @dentry: child of nd->path.dentry or NULL
676  * @seq: seq number to check dentry against
677  * Returns: 0 on success, -ECHILD on failure
678  *
679  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
680  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
681  * @nd or NULL.  Must be called from rcu-walk context.
682  * Nothing should touch nameidata between unlazy_walk() failure and
683  * terminate_walk().
684  */
685 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
686 {
687 	struct dentry *parent = nd->path.dentry;
688 
689 	BUG_ON(!(nd->flags & LOOKUP_RCU));
690 
691 	nd->flags &= ~LOOKUP_RCU;
692 	if (unlikely(!legitimize_links(nd)))
693 		goto out2;
694 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
695 		goto out2;
696 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
697 		goto out1;
698 
699 	/*
700 	 * For a negative lookup, the lookup sequence point is the parents
701 	 * sequence point, and it only needs to revalidate the parent dentry.
702 	 *
703 	 * For a positive lookup, we need to move both the parent and the
704 	 * dentry from the RCU domain to be properly refcounted. And the
705 	 * sequence number in the dentry validates *both* dentry counters,
706 	 * since we checked the sequence number of the parent after we got
707 	 * the child sequence number. So we know the parent must still
708 	 * be valid if the child sequence number is still valid.
709 	 */
710 	if (!dentry) {
711 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
712 			goto out;
713 		BUG_ON(nd->inode != parent->d_inode);
714 	} else {
715 		if (!lockref_get_not_dead(&dentry->d_lockref))
716 			goto out;
717 		if (read_seqcount_retry(&dentry->d_seq, seq))
718 			goto drop_dentry;
719 	}
720 
721 	/*
722 	 * Sequence counts matched. Now make sure that the root is
723 	 * still valid and get it if required.
724 	 */
725 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
726 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
727 			rcu_read_unlock();
728 			dput(dentry);
729 			return -ECHILD;
730 		}
731 	}
732 
733 	rcu_read_unlock();
734 	return 0;
735 
736 drop_dentry:
737 	rcu_read_unlock();
738 	dput(dentry);
739 	goto drop_root_mnt;
740 out2:
741 	nd->path.mnt = NULL;
742 out1:
743 	nd->path.dentry = NULL;
744 out:
745 	rcu_read_unlock();
746 drop_root_mnt:
747 	if (!(nd->flags & LOOKUP_ROOT))
748 		nd->root.mnt = NULL;
749 	return -ECHILD;
750 }
751 
752 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
753 {
754 	if (unlikely(!legitimize_path(nd, link, seq))) {
755 		drop_links(nd);
756 		nd->depth = 0;
757 		nd->flags &= ~LOOKUP_RCU;
758 		nd->path.mnt = NULL;
759 		nd->path.dentry = NULL;
760 		if (!(nd->flags & LOOKUP_ROOT))
761 			nd->root.mnt = NULL;
762 		rcu_read_unlock();
763 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
764 		return 0;
765 	}
766 	path_put(link);
767 	return -ECHILD;
768 }
769 
770 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771 {
772 	return dentry->d_op->d_revalidate(dentry, flags);
773 }
774 
775 /**
776  * complete_walk - successful completion of path walk
777  * @nd:  pointer nameidata
778  *
779  * If we had been in RCU mode, drop out of it and legitimize nd->path.
780  * Revalidate the final result, unless we'd already done that during
781  * the path walk or the filesystem doesn't ask for it.  Return 0 on
782  * success, -error on failure.  In case of failure caller does not
783  * need to drop nd->path.
784  */
785 static int complete_walk(struct nameidata *nd)
786 {
787 	struct dentry *dentry = nd->path.dentry;
788 	int status;
789 
790 	if (nd->flags & LOOKUP_RCU) {
791 		if (!(nd->flags & LOOKUP_ROOT))
792 			nd->root.mnt = NULL;
793 		if (unlikely(unlazy_walk(nd, NULL, 0)))
794 			return -ECHILD;
795 	}
796 
797 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
798 		return 0;
799 
800 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
801 		return 0;
802 
803 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
804 	if (status > 0)
805 		return 0;
806 
807 	if (!status)
808 		status = -ESTALE;
809 
810 	return status;
811 }
812 
813 static void set_root(struct nameidata *nd)
814 {
815 	struct fs_struct *fs = current->fs;
816 
817 	if (nd->flags & LOOKUP_RCU) {
818 		unsigned seq;
819 
820 		do {
821 			seq = read_seqcount_begin(&fs->seq);
822 			nd->root = fs->root;
823 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
824 		} while (read_seqcount_retry(&fs->seq, seq));
825 	} else {
826 		get_fs_root(fs, &nd->root);
827 	}
828 }
829 
830 static void path_put_conditional(struct path *path, struct nameidata *nd)
831 {
832 	dput(path->dentry);
833 	if (path->mnt != nd->path.mnt)
834 		mntput(path->mnt);
835 }
836 
837 static inline void path_to_nameidata(const struct path *path,
838 					struct nameidata *nd)
839 {
840 	if (!(nd->flags & LOOKUP_RCU)) {
841 		dput(nd->path.dentry);
842 		if (nd->path.mnt != path->mnt)
843 			mntput(nd->path.mnt);
844 	}
845 	nd->path.mnt = path->mnt;
846 	nd->path.dentry = path->dentry;
847 }
848 
849 static int nd_jump_root(struct nameidata *nd)
850 {
851 	if (nd->flags & LOOKUP_RCU) {
852 		struct dentry *d;
853 		nd->path = nd->root;
854 		d = nd->path.dentry;
855 		nd->inode = d->d_inode;
856 		nd->seq = nd->root_seq;
857 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
858 			return -ECHILD;
859 	} else {
860 		path_put(&nd->path);
861 		nd->path = nd->root;
862 		path_get(&nd->path);
863 		nd->inode = nd->path.dentry->d_inode;
864 	}
865 	nd->flags |= LOOKUP_JUMPED;
866 	return 0;
867 }
868 
869 /*
870  * Helper to directly jump to a known parsed path from ->get_link,
871  * caller must have taken a reference to path beforehand.
872  */
873 void nd_jump_link(struct path *path)
874 {
875 	struct nameidata *nd = current->nameidata;
876 	path_put(&nd->path);
877 
878 	nd->path = *path;
879 	nd->inode = nd->path.dentry->d_inode;
880 	nd->flags |= LOOKUP_JUMPED;
881 }
882 
883 static inline void put_link(struct nameidata *nd)
884 {
885 	struct saved *last = nd->stack + --nd->depth;
886 	do_delayed_call(&last->done);
887 	if (!(nd->flags & LOOKUP_RCU))
888 		path_put(&last->link);
889 }
890 
891 int sysctl_protected_symlinks __read_mostly = 0;
892 int sysctl_protected_hardlinks __read_mostly = 0;
893 
894 /**
895  * may_follow_link - Check symlink following for unsafe situations
896  * @nd: nameidata pathwalk data
897  *
898  * In the case of the sysctl_protected_symlinks sysctl being enabled,
899  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
900  * in a sticky world-writable directory. This is to protect privileged
901  * processes from failing races against path names that may change out
902  * from under them by way of other users creating malicious symlinks.
903  * It will permit symlinks to be followed only when outside a sticky
904  * world-writable directory, or when the uid of the symlink and follower
905  * match, or when the directory owner matches the symlink's owner.
906  *
907  * Returns 0 if following the symlink is allowed, -ve on error.
908  */
909 static inline int may_follow_link(struct nameidata *nd)
910 {
911 	const struct inode *inode;
912 	const struct inode *parent;
913 	kuid_t puid;
914 
915 	if (!sysctl_protected_symlinks)
916 		return 0;
917 
918 	/* Allowed if owner and follower match. */
919 	inode = nd->link_inode;
920 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
921 		return 0;
922 
923 	/* Allowed if parent directory not sticky and world-writable. */
924 	parent = nd->inode;
925 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
926 		return 0;
927 
928 	/* Allowed if parent directory and link owner match. */
929 	puid = parent->i_uid;
930 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
931 		return 0;
932 
933 	if (nd->flags & LOOKUP_RCU)
934 		return -ECHILD;
935 
936 	audit_log_link_denied("follow_link", &nd->stack[0].link);
937 	return -EACCES;
938 }
939 
940 /**
941  * safe_hardlink_source - Check for safe hardlink conditions
942  * @inode: the source inode to hardlink from
943  *
944  * Return false if at least one of the following conditions:
945  *    - inode is not a regular file
946  *    - inode is setuid
947  *    - inode is setgid and group-exec
948  *    - access failure for read and write
949  *
950  * Otherwise returns true.
951  */
952 static bool safe_hardlink_source(struct inode *inode)
953 {
954 	umode_t mode = inode->i_mode;
955 
956 	/* Special files should not get pinned to the filesystem. */
957 	if (!S_ISREG(mode))
958 		return false;
959 
960 	/* Setuid files should not get pinned to the filesystem. */
961 	if (mode & S_ISUID)
962 		return false;
963 
964 	/* Executable setgid files should not get pinned to the filesystem. */
965 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966 		return false;
967 
968 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
969 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
970 		return false;
971 
972 	return true;
973 }
974 
975 /**
976  * may_linkat - Check permissions for creating a hardlink
977  * @link: the source to hardlink from
978  *
979  * Block hardlink when all of:
980  *  - sysctl_protected_hardlinks enabled
981  *  - fsuid does not match inode
982  *  - hardlink source is unsafe (see safe_hardlink_source() above)
983  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
984  *
985  * Returns 0 if successful, -ve on error.
986  */
987 static int may_linkat(struct path *link)
988 {
989 	struct inode *inode;
990 
991 	if (!sysctl_protected_hardlinks)
992 		return 0;
993 
994 	inode = link->dentry->d_inode;
995 
996 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 	 * otherwise, it must be a safe source.
998 	 */
999 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1000 		return 0;
1001 
1002 	audit_log_link_denied("linkat", link);
1003 	return -EPERM;
1004 }
1005 
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009 	struct saved *last = nd->stack + nd->depth - 1;
1010 	struct dentry *dentry = last->link.dentry;
1011 	struct inode *inode = nd->link_inode;
1012 	int error;
1013 	const char *res;
1014 
1015 	if (!(nd->flags & LOOKUP_RCU)) {
1016 		touch_atime(&last->link);
1017 		cond_resched();
1018 	} else if (atime_needs_update_rcu(&last->link, inode)) {
1019 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1020 			return ERR_PTR(-ECHILD);
1021 		touch_atime(&last->link);
1022 	}
1023 
1024 	error = security_inode_follow_link(dentry, inode,
1025 					   nd->flags & LOOKUP_RCU);
1026 	if (unlikely(error))
1027 		return ERR_PTR(error);
1028 
1029 	nd->last_type = LAST_BIND;
1030 	res = inode->i_link;
1031 	if (!res) {
1032 		const char * (*get)(struct dentry *, struct inode *,
1033 				struct delayed_call *);
1034 		get = inode->i_op->get_link;
1035 		if (nd->flags & LOOKUP_RCU) {
1036 			res = get(NULL, inode, &last->done);
1037 			if (res == ERR_PTR(-ECHILD)) {
1038 				if (unlikely(unlazy_walk(nd, NULL, 0)))
1039 					return ERR_PTR(-ECHILD);
1040 				res = get(dentry, inode, &last->done);
1041 			}
1042 		} else {
1043 			res = get(dentry, inode, &last->done);
1044 		}
1045 		if (IS_ERR_OR_NULL(res))
1046 			return res;
1047 	}
1048 	if (*res == '/') {
1049 		if (!nd->root.mnt)
1050 			set_root(nd);
1051 		if (unlikely(nd_jump_root(nd)))
1052 			return ERR_PTR(-ECHILD);
1053 		while (unlikely(*++res == '/'))
1054 			;
1055 	}
1056 	if (!*res)
1057 		res = NULL;
1058 	return res;
1059 }
1060 
1061 /*
1062  * follow_up - Find the mountpoint of path's vfsmount
1063  *
1064  * Given a path, find the mountpoint of its source file system.
1065  * Replace @path with the path of the mountpoint in the parent mount.
1066  * Up is towards /.
1067  *
1068  * Return 1 if we went up a level and 0 if we were already at the
1069  * root.
1070  */
1071 int follow_up(struct path *path)
1072 {
1073 	struct mount *mnt = real_mount(path->mnt);
1074 	struct mount *parent;
1075 	struct dentry *mountpoint;
1076 
1077 	read_seqlock_excl(&mount_lock);
1078 	parent = mnt->mnt_parent;
1079 	if (parent == mnt) {
1080 		read_sequnlock_excl(&mount_lock);
1081 		return 0;
1082 	}
1083 	mntget(&parent->mnt);
1084 	mountpoint = dget(mnt->mnt_mountpoint);
1085 	read_sequnlock_excl(&mount_lock);
1086 	dput(path->dentry);
1087 	path->dentry = mountpoint;
1088 	mntput(path->mnt);
1089 	path->mnt = &parent->mnt;
1090 	return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093 
1094 /*
1095  * Perform an automount
1096  * - return -EISDIR to tell follow_managed() to stop and return the path we
1097  *   were called with.
1098  */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 			    bool *need_mntput)
1101 {
1102 	struct vfsmount *mnt;
1103 	const struct cred *old_cred;
1104 	int err;
1105 
1106 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1107 		return -EREMOTE;
1108 
1109 	/* We don't want to mount if someone's just doing a stat -
1110 	 * unless they're stat'ing a directory and appended a '/' to
1111 	 * the name.
1112 	 *
1113 	 * We do, however, want to mount if someone wants to open or
1114 	 * create a file of any type under the mountpoint, wants to
1115 	 * traverse through the mountpoint or wants to open the
1116 	 * mounted directory.  Also, autofs may mark negative dentries
1117 	 * as being automount points.  These will need the attentions
1118 	 * of the daemon to instantiate them before they can be used.
1119 	 */
1120 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1121 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1122 	    path->dentry->d_inode)
1123 		return -EISDIR;
1124 
1125 	if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1126 		return -EACCES;
1127 
1128 	nd->total_link_count++;
1129 	if (nd->total_link_count >= 40)
1130 		return -ELOOP;
1131 
1132 	old_cred = override_creds(&init_cred);
1133 	mnt = path->dentry->d_op->d_automount(path);
1134 	revert_creds(old_cred);
1135 	if (IS_ERR(mnt)) {
1136 		/*
1137 		 * The filesystem is allowed to return -EISDIR here to indicate
1138 		 * it doesn't want to automount.  For instance, autofs would do
1139 		 * this so that its userspace daemon can mount on this dentry.
1140 		 *
1141 		 * However, we can only permit this if it's a terminal point in
1142 		 * the path being looked up; if it wasn't then the remainder of
1143 		 * the path is inaccessible and we should say so.
1144 		 */
1145 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1146 			return -EREMOTE;
1147 		return PTR_ERR(mnt);
1148 	}
1149 
1150 	if (!mnt) /* mount collision */
1151 		return 0;
1152 
1153 	if (!*need_mntput) {
1154 		/* lock_mount() may release path->mnt on error */
1155 		mntget(path->mnt);
1156 		*need_mntput = true;
1157 	}
1158 	err = finish_automount(mnt, path);
1159 
1160 	switch (err) {
1161 	case -EBUSY:
1162 		/* Someone else made a mount here whilst we were busy */
1163 		return 0;
1164 	case 0:
1165 		path_put(path);
1166 		path->mnt = mnt;
1167 		path->dentry = dget(mnt->mnt_root);
1168 		return 0;
1169 	default:
1170 		return err;
1171 	}
1172 
1173 }
1174 
1175 /*
1176  * Handle a dentry that is managed in some way.
1177  * - Flagged for transit management (autofs)
1178  * - Flagged as mountpoint
1179  * - Flagged as automount point
1180  *
1181  * This may only be called in refwalk mode.
1182  *
1183  * Serialization is taken care of in namespace.c
1184  */
1185 static int follow_managed(struct path *path, struct nameidata *nd)
1186 {
1187 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1188 	unsigned managed;
1189 	bool need_mntput = false;
1190 	int ret = 0;
1191 
1192 	/* Given that we're not holding a lock here, we retain the value in a
1193 	 * local variable for each dentry as we look at it so that we don't see
1194 	 * the components of that value change under us */
1195 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1196 	       managed &= DCACHE_MANAGED_DENTRY,
1197 	       unlikely(managed != 0)) {
1198 		/* Allow the filesystem to manage the transit without i_mutex
1199 		 * being held. */
1200 		if (managed & DCACHE_MANAGE_TRANSIT) {
1201 			BUG_ON(!path->dentry->d_op);
1202 			BUG_ON(!path->dentry->d_op->d_manage);
1203 			ret = path->dentry->d_op->d_manage(path, false);
1204 			if (ret < 0)
1205 				break;
1206 		}
1207 
1208 		/* Transit to a mounted filesystem. */
1209 		if (managed & DCACHE_MOUNTED) {
1210 			struct vfsmount *mounted = lookup_mnt(path);
1211 			if (mounted) {
1212 				dput(path->dentry);
1213 				if (need_mntput)
1214 					mntput(path->mnt);
1215 				path->mnt = mounted;
1216 				path->dentry = dget(mounted->mnt_root);
1217 				need_mntput = true;
1218 				continue;
1219 			}
1220 
1221 			/* Something is mounted on this dentry in another
1222 			 * namespace and/or whatever was mounted there in this
1223 			 * namespace got unmounted before lookup_mnt() could
1224 			 * get it */
1225 		}
1226 
1227 		/* Handle an automount point */
1228 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1229 			ret = follow_automount(path, nd, &need_mntput);
1230 			if (ret < 0)
1231 				break;
1232 			continue;
1233 		}
1234 
1235 		/* We didn't change the current path point */
1236 		break;
1237 	}
1238 
1239 	if (need_mntput && path->mnt == mnt)
1240 		mntput(path->mnt);
1241 	if (ret == -EISDIR || !ret)
1242 		ret = 1;
1243 	if (need_mntput)
1244 		nd->flags |= LOOKUP_JUMPED;
1245 	if (unlikely(ret < 0))
1246 		path_put_conditional(path, nd);
1247 	return ret;
1248 }
1249 
1250 int follow_down_one(struct path *path)
1251 {
1252 	struct vfsmount *mounted;
1253 
1254 	mounted = lookup_mnt(path);
1255 	if (mounted) {
1256 		dput(path->dentry);
1257 		mntput(path->mnt);
1258 		path->mnt = mounted;
1259 		path->dentry = dget(mounted->mnt_root);
1260 		return 1;
1261 	}
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL(follow_down_one);
1265 
1266 static inline int managed_dentry_rcu(const struct path *path)
1267 {
1268 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1269 		path->dentry->d_op->d_manage(path, true) : 0;
1270 }
1271 
1272 /*
1273  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1274  * we meet a managed dentry that would need blocking.
1275  */
1276 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1277 			       struct inode **inode, unsigned *seqp)
1278 {
1279 	for (;;) {
1280 		struct mount *mounted;
1281 		/*
1282 		 * Don't forget we might have a non-mountpoint managed dentry
1283 		 * that wants to block transit.
1284 		 */
1285 		switch (managed_dentry_rcu(path)) {
1286 		case -ECHILD:
1287 		default:
1288 			return false;
1289 		case -EISDIR:
1290 			return true;
1291 		case 0:
1292 			break;
1293 		}
1294 
1295 		if (!d_mountpoint(path->dentry))
1296 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297 
1298 		mounted = __lookup_mnt(path->mnt, path->dentry);
1299 		if (!mounted)
1300 			break;
1301 		path->mnt = &mounted->mnt;
1302 		path->dentry = mounted->mnt.mnt_root;
1303 		nd->flags |= LOOKUP_JUMPED;
1304 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1305 		/*
1306 		 * Update the inode too. We don't need to re-check the
1307 		 * dentry sequence number here after this d_inode read,
1308 		 * because a mount-point is always pinned.
1309 		 */
1310 		*inode = path->dentry->d_inode;
1311 	}
1312 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1313 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1314 }
1315 
1316 static int follow_dotdot_rcu(struct nameidata *nd)
1317 {
1318 	struct inode *inode = nd->inode;
1319 
1320 	while (1) {
1321 		if (path_equal(&nd->path, &nd->root))
1322 			break;
1323 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1324 			struct dentry *old = nd->path.dentry;
1325 			struct dentry *parent = old->d_parent;
1326 			unsigned seq;
1327 
1328 			inode = parent->d_inode;
1329 			seq = read_seqcount_begin(&parent->d_seq);
1330 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1331 				return -ECHILD;
1332 			nd->path.dentry = parent;
1333 			nd->seq = seq;
1334 			if (unlikely(!path_connected(&nd->path)))
1335 				return -ENOENT;
1336 			break;
1337 		} else {
1338 			struct mount *mnt = real_mount(nd->path.mnt);
1339 			struct mount *mparent = mnt->mnt_parent;
1340 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1341 			struct inode *inode2 = mountpoint->d_inode;
1342 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1343 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1344 				return -ECHILD;
1345 			if (&mparent->mnt == nd->path.mnt)
1346 				break;
1347 			/* we know that mountpoint was pinned */
1348 			nd->path.dentry = mountpoint;
1349 			nd->path.mnt = &mparent->mnt;
1350 			inode = inode2;
1351 			nd->seq = seq;
1352 		}
1353 	}
1354 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1355 		struct mount *mounted;
1356 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1357 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1358 			return -ECHILD;
1359 		if (!mounted)
1360 			break;
1361 		nd->path.mnt = &mounted->mnt;
1362 		nd->path.dentry = mounted->mnt.mnt_root;
1363 		inode = nd->path.dentry->d_inode;
1364 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1365 	}
1366 	nd->inode = inode;
1367 	return 0;
1368 }
1369 
1370 /*
1371  * Follow down to the covering mount currently visible to userspace.  At each
1372  * point, the filesystem owning that dentry may be queried as to whether the
1373  * caller is permitted to proceed or not.
1374  */
1375 int follow_down(struct path *path)
1376 {
1377 	unsigned managed;
1378 	int ret;
1379 
1380 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1381 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1382 		/* Allow the filesystem to manage the transit without i_mutex
1383 		 * being held.
1384 		 *
1385 		 * We indicate to the filesystem if someone is trying to mount
1386 		 * something here.  This gives autofs the chance to deny anyone
1387 		 * other than its daemon the right to mount on its
1388 		 * superstructure.
1389 		 *
1390 		 * The filesystem may sleep at this point.
1391 		 */
1392 		if (managed & DCACHE_MANAGE_TRANSIT) {
1393 			BUG_ON(!path->dentry->d_op);
1394 			BUG_ON(!path->dentry->d_op->d_manage);
1395 			ret = path->dentry->d_op->d_manage(path, false);
1396 			if (ret < 0)
1397 				return ret == -EISDIR ? 0 : ret;
1398 		}
1399 
1400 		/* Transit to a mounted filesystem. */
1401 		if (managed & DCACHE_MOUNTED) {
1402 			struct vfsmount *mounted = lookup_mnt(path);
1403 			if (!mounted)
1404 				break;
1405 			dput(path->dentry);
1406 			mntput(path->mnt);
1407 			path->mnt = mounted;
1408 			path->dentry = dget(mounted->mnt_root);
1409 			continue;
1410 		}
1411 
1412 		/* Don't handle automount points here */
1413 		break;
1414 	}
1415 	return 0;
1416 }
1417 EXPORT_SYMBOL(follow_down);
1418 
1419 /*
1420  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1421  */
1422 static void follow_mount(struct path *path)
1423 {
1424 	while (d_mountpoint(path->dentry)) {
1425 		struct vfsmount *mounted = lookup_mnt(path);
1426 		if (!mounted)
1427 			break;
1428 		dput(path->dentry);
1429 		mntput(path->mnt);
1430 		path->mnt = mounted;
1431 		path->dentry = dget(mounted->mnt_root);
1432 	}
1433 }
1434 
1435 static int path_parent_directory(struct path *path)
1436 {
1437 	struct dentry *old = path->dentry;
1438 	/* rare case of legitimate dget_parent()... */
1439 	path->dentry = dget_parent(path->dentry);
1440 	dput(old);
1441 	if (unlikely(!path_connected(path)))
1442 		return -ENOENT;
1443 	return 0;
1444 }
1445 
1446 static int follow_dotdot(struct nameidata *nd)
1447 {
1448 	while(1) {
1449 		if (nd->path.dentry == nd->root.dentry &&
1450 		    nd->path.mnt == nd->root.mnt) {
1451 			break;
1452 		}
1453 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1454 			int ret = path_parent_directory(&nd->path);
1455 			if (ret)
1456 				return ret;
1457 			break;
1458 		}
1459 		if (!follow_up(&nd->path))
1460 			break;
1461 	}
1462 	follow_mount(&nd->path);
1463 	nd->inode = nd->path.dentry->d_inode;
1464 	return 0;
1465 }
1466 
1467 /*
1468  * This looks up the name in dcache and possibly revalidates the found dentry.
1469  * NULL is returned if the dentry does not exist in the cache.
1470  */
1471 static struct dentry *lookup_dcache(const struct qstr *name,
1472 				    struct dentry *dir,
1473 				    unsigned int flags)
1474 {
1475 	struct dentry *dentry;
1476 	int error;
1477 
1478 	dentry = d_lookup(dir, name);
1479 	if (dentry) {
1480 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1481 			error = d_revalidate(dentry, flags);
1482 			if (unlikely(error <= 0)) {
1483 				if (!error)
1484 					d_invalidate(dentry);
1485 				dput(dentry);
1486 				return ERR_PTR(error);
1487 			}
1488 		}
1489 	}
1490 	return dentry;
1491 }
1492 
1493 /*
1494  * Call i_op->lookup on the dentry.  The dentry must be negative and
1495  * unhashed.
1496  *
1497  * dir->d_inode->i_mutex must be held
1498  */
1499 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1500 				  unsigned int flags)
1501 {
1502 	struct dentry *old;
1503 
1504 	/* Don't create child dentry for a dead directory. */
1505 	if (unlikely(IS_DEADDIR(dir))) {
1506 		dput(dentry);
1507 		return ERR_PTR(-ENOENT);
1508 	}
1509 
1510 	old = dir->i_op->lookup(dir, dentry, flags);
1511 	if (unlikely(old)) {
1512 		dput(dentry);
1513 		dentry = old;
1514 	}
1515 	return dentry;
1516 }
1517 
1518 static struct dentry *__lookup_hash(const struct qstr *name,
1519 		struct dentry *base, unsigned int flags)
1520 {
1521 	struct dentry *dentry = lookup_dcache(name, base, flags);
1522 
1523 	if (dentry)
1524 		return dentry;
1525 
1526 	dentry = d_alloc(base, name);
1527 	if (unlikely(!dentry))
1528 		return ERR_PTR(-ENOMEM);
1529 
1530 	return lookup_real(base->d_inode, dentry, flags);
1531 }
1532 
1533 static int lookup_fast(struct nameidata *nd,
1534 		       struct path *path, struct inode **inode,
1535 		       unsigned *seqp)
1536 {
1537 	struct vfsmount *mnt = nd->path.mnt;
1538 	struct dentry *dentry, *parent = nd->path.dentry;
1539 	int status = 1;
1540 	int err;
1541 
1542 	/*
1543 	 * Rename seqlock is not required here because in the off chance
1544 	 * of a false negative due to a concurrent rename, the caller is
1545 	 * going to fall back to non-racy lookup.
1546 	 */
1547 	if (nd->flags & LOOKUP_RCU) {
1548 		unsigned seq;
1549 		bool negative;
1550 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1551 		if (unlikely(!dentry)) {
1552 			if (unlazy_walk(nd, NULL, 0))
1553 				return -ECHILD;
1554 			return 0;
1555 		}
1556 
1557 		/*
1558 		 * This sequence count validates that the inode matches
1559 		 * the dentry name information from lookup.
1560 		 */
1561 		*inode = d_backing_inode(dentry);
1562 		negative = d_is_negative(dentry);
1563 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1564 			return -ECHILD;
1565 
1566 		/*
1567 		 * This sequence count validates that the parent had no
1568 		 * changes while we did the lookup of the dentry above.
1569 		 *
1570 		 * The memory barrier in read_seqcount_begin of child is
1571 		 *  enough, we can use __read_seqcount_retry here.
1572 		 */
1573 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1574 			return -ECHILD;
1575 
1576 		*seqp = seq;
1577 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1578 			status = d_revalidate(dentry, nd->flags);
1579 		if (unlikely(status <= 0)) {
1580 			if (unlazy_walk(nd, dentry, seq))
1581 				return -ECHILD;
1582 			if (status == -ECHILD)
1583 				status = d_revalidate(dentry, nd->flags);
1584 		} else {
1585 			/*
1586 			 * Note: do negative dentry check after revalidation in
1587 			 * case that drops it.
1588 			 */
1589 			if (unlikely(negative))
1590 				return -ENOENT;
1591 			path->mnt = mnt;
1592 			path->dentry = dentry;
1593 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1594 				return 1;
1595 			if (unlazy_walk(nd, dentry, seq))
1596 				return -ECHILD;
1597 		}
1598 	} else {
1599 		dentry = __d_lookup(parent, &nd->last);
1600 		if (unlikely(!dentry))
1601 			return 0;
1602 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1603 			status = d_revalidate(dentry, nd->flags);
1604 	}
1605 	if (unlikely(status <= 0)) {
1606 		if (!status)
1607 			d_invalidate(dentry);
1608 		dput(dentry);
1609 		return status;
1610 	}
1611 	if (unlikely(d_is_negative(dentry))) {
1612 		dput(dentry);
1613 		return -ENOENT;
1614 	}
1615 
1616 	path->mnt = mnt;
1617 	path->dentry = dentry;
1618 	err = follow_managed(path, nd);
1619 	if (likely(err > 0))
1620 		*inode = d_backing_inode(path->dentry);
1621 	return err;
1622 }
1623 
1624 /* Fast lookup failed, do it the slow way */
1625 static struct dentry *lookup_slow(const struct qstr *name,
1626 				  struct dentry *dir,
1627 				  unsigned int flags)
1628 {
1629 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1630 	struct inode *inode = dir->d_inode;
1631 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1632 
1633 	inode_lock_shared(inode);
1634 	/* Don't go there if it's already dead */
1635 	if (unlikely(IS_DEADDIR(inode)))
1636 		goto out;
1637 again:
1638 	dentry = d_alloc_parallel(dir, name, &wq);
1639 	if (IS_ERR(dentry))
1640 		goto out;
1641 	if (unlikely(!d_in_lookup(dentry))) {
1642 		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1643 		    !(flags & LOOKUP_NO_REVAL)) {
1644 			int error = d_revalidate(dentry, flags);
1645 			if (unlikely(error <= 0)) {
1646 				if (!error) {
1647 					d_invalidate(dentry);
1648 					dput(dentry);
1649 					goto again;
1650 				}
1651 				dput(dentry);
1652 				dentry = ERR_PTR(error);
1653 			}
1654 		}
1655 	} else {
1656 		old = inode->i_op->lookup(inode, dentry, flags);
1657 		d_lookup_done(dentry);
1658 		if (unlikely(old)) {
1659 			dput(dentry);
1660 			dentry = old;
1661 		}
1662 	}
1663 out:
1664 	inode_unlock_shared(inode);
1665 	return dentry;
1666 }
1667 
1668 static inline int may_lookup(struct nameidata *nd)
1669 {
1670 	if (nd->flags & LOOKUP_RCU) {
1671 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1672 		if (err != -ECHILD)
1673 			return err;
1674 		if (unlazy_walk(nd, NULL, 0))
1675 			return -ECHILD;
1676 	}
1677 	return inode_permission(nd->inode, MAY_EXEC);
1678 }
1679 
1680 static inline int handle_dots(struct nameidata *nd, int type)
1681 {
1682 	if (type == LAST_DOTDOT) {
1683 		if (!nd->root.mnt)
1684 			set_root(nd);
1685 		if (nd->flags & LOOKUP_RCU) {
1686 			return follow_dotdot_rcu(nd);
1687 		} else
1688 			return follow_dotdot(nd);
1689 	}
1690 	return 0;
1691 }
1692 
1693 static int pick_link(struct nameidata *nd, struct path *link,
1694 		     struct inode *inode, unsigned seq)
1695 {
1696 	int error;
1697 	struct saved *last;
1698 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1699 		path_to_nameidata(link, nd);
1700 		return -ELOOP;
1701 	}
1702 	if (!(nd->flags & LOOKUP_RCU)) {
1703 		if (link->mnt == nd->path.mnt)
1704 			mntget(link->mnt);
1705 	}
1706 	error = nd_alloc_stack(nd);
1707 	if (unlikely(error)) {
1708 		if (error == -ECHILD) {
1709 			if (unlikely(unlazy_link(nd, link, seq)))
1710 				return -ECHILD;
1711 			error = nd_alloc_stack(nd);
1712 		}
1713 		if (error) {
1714 			path_put(link);
1715 			return error;
1716 		}
1717 	}
1718 
1719 	last = nd->stack + nd->depth++;
1720 	last->link = *link;
1721 	clear_delayed_call(&last->done);
1722 	nd->link_inode = inode;
1723 	last->seq = seq;
1724 	return 1;
1725 }
1726 
1727 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1728 
1729 /*
1730  * Do we need to follow links? We _really_ want to be able
1731  * to do this check without having to look at inode->i_op,
1732  * so we keep a cache of "no, this doesn't need follow_link"
1733  * for the common case.
1734  */
1735 static inline int step_into(struct nameidata *nd, struct path *path,
1736 			    int flags, struct inode *inode, unsigned seq)
1737 {
1738 	if (!(flags & WALK_MORE) && nd->depth)
1739 		put_link(nd);
1740 	if (likely(!d_is_symlink(path->dentry)) ||
1741 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1742 		/* not a symlink or should not follow */
1743 		path_to_nameidata(path, nd);
1744 		nd->inode = inode;
1745 		nd->seq = seq;
1746 		return 0;
1747 	}
1748 	/* make sure that d_is_symlink above matches inode */
1749 	if (nd->flags & LOOKUP_RCU) {
1750 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1751 			return -ECHILD;
1752 	}
1753 	return pick_link(nd, path, inode, seq);
1754 }
1755 
1756 static int walk_component(struct nameidata *nd, int flags)
1757 {
1758 	struct path path;
1759 	struct inode *inode;
1760 	unsigned seq;
1761 	int err;
1762 	/*
1763 	 * "." and ".." are special - ".." especially so because it has
1764 	 * to be able to know about the current root directory and
1765 	 * parent relationships.
1766 	 */
1767 	if (unlikely(nd->last_type != LAST_NORM)) {
1768 		err = handle_dots(nd, nd->last_type);
1769 		if (!(flags & WALK_MORE) && nd->depth)
1770 			put_link(nd);
1771 		return err;
1772 	}
1773 	err = lookup_fast(nd, &path, &inode, &seq);
1774 	if (unlikely(err <= 0)) {
1775 		if (err < 0)
1776 			return err;
1777 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1778 					  nd->flags);
1779 		if (IS_ERR(path.dentry))
1780 			return PTR_ERR(path.dentry);
1781 
1782 		path.mnt = nd->path.mnt;
1783 		err = follow_managed(&path, nd);
1784 		if (unlikely(err < 0))
1785 			return err;
1786 
1787 		if (unlikely(d_is_negative(path.dentry))) {
1788 			path_to_nameidata(&path, nd);
1789 			return -ENOENT;
1790 		}
1791 
1792 		seq = 0;	/* we are already out of RCU mode */
1793 		inode = d_backing_inode(path.dentry);
1794 	}
1795 
1796 	return step_into(nd, &path, flags, inode, seq);
1797 }
1798 
1799 /*
1800  * We can do the critical dentry name comparison and hashing
1801  * operations one word at a time, but we are limited to:
1802  *
1803  * - Architectures with fast unaligned word accesses. We could
1804  *   do a "get_unaligned()" if this helps and is sufficiently
1805  *   fast.
1806  *
1807  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1808  *   do not trap on the (extremely unlikely) case of a page
1809  *   crossing operation.
1810  *
1811  * - Furthermore, we need an efficient 64-bit compile for the
1812  *   64-bit case in order to generate the "number of bytes in
1813  *   the final mask". Again, that could be replaced with a
1814  *   efficient population count instruction or similar.
1815  */
1816 #ifdef CONFIG_DCACHE_WORD_ACCESS
1817 
1818 #include <asm/word-at-a-time.h>
1819 
1820 #ifdef HASH_MIX
1821 
1822 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1823 
1824 #elif defined(CONFIG_64BIT)
1825 /*
1826  * Register pressure in the mixing function is an issue, particularly
1827  * on 32-bit x86, but almost any function requires one state value and
1828  * one temporary.  Instead, use a function designed for two state values
1829  * and no temporaries.
1830  *
1831  * This function cannot create a collision in only two iterations, so
1832  * we have two iterations to achieve avalanche.  In those two iterations,
1833  * we have six layers of mixing, which is enough to spread one bit's
1834  * influence out to 2^6 = 64 state bits.
1835  *
1836  * Rotate constants are scored by considering either 64 one-bit input
1837  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1838  * probability of that delta causing a change to each of the 128 output
1839  * bits, using a sample of random initial states.
1840  *
1841  * The Shannon entropy of the computed probabilities is then summed
1842  * to produce a score.  Ideally, any input change has a 50% chance of
1843  * toggling any given output bit.
1844  *
1845  * Mixing scores (in bits) for (12,45):
1846  * Input delta: 1-bit      2-bit
1847  * 1 round:     713.3    42542.6
1848  * 2 rounds:   2753.7   140389.8
1849  * 3 rounds:   5954.1   233458.2
1850  * 4 rounds:   7862.6   256672.2
1851  * Perfect:    8192     258048
1852  *            (64*128) (64*63/2 * 128)
1853  */
1854 #define HASH_MIX(x, y, a)	\
1855 	(	x ^= (a),	\
1856 	y ^= x,	x = rol64(x,12),\
1857 	x += y,	y = rol64(y,45),\
1858 	y *= 9			)
1859 
1860 /*
1861  * Fold two longs into one 32-bit hash value.  This must be fast, but
1862  * latency isn't quite as critical, as there is a fair bit of additional
1863  * work done before the hash value is used.
1864  */
1865 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1866 {
1867 	y ^= x * GOLDEN_RATIO_64;
1868 	y *= GOLDEN_RATIO_64;
1869 	return y >> 32;
1870 }
1871 
1872 #else	/* 32-bit case */
1873 
1874 /*
1875  * Mixing scores (in bits) for (7,20):
1876  * Input delta: 1-bit      2-bit
1877  * 1 round:     330.3     9201.6
1878  * 2 rounds:   1246.4    25475.4
1879  * 3 rounds:   1907.1    31295.1
1880  * 4 rounds:   2042.3    31718.6
1881  * Perfect:    2048      31744
1882  *            (32*64)   (32*31/2 * 64)
1883  */
1884 #define HASH_MIX(x, y, a)	\
1885 	(	x ^= (a),	\
1886 	y ^= x,	x = rol32(x, 7),\
1887 	x += y,	y = rol32(y,20),\
1888 	y *= 9			)
1889 
1890 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1891 {
1892 	/* Use arch-optimized multiply if one exists */
1893 	return __hash_32(y ^ __hash_32(x));
1894 }
1895 
1896 #endif
1897 
1898 /*
1899  * Return the hash of a string of known length.  This is carfully
1900  * designed to match hash_name(), which is the more critical function.
1901  * In particular, we must end by hashing a final word containing 0..7
1902  * payload bytes, to match the way that hash_name() iterates until it
1903  * finds the delimiter after the name.
1904  */
1905 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1906 {
1907 	unsigned long a, x = 0, y = (unsigned long)salt;
1908 
1909 	for (;;) {
1910 		if (!len)
1911 			goto done;
1912 		a = load_unaligned_zeropad(name);
1913 		if (len < sizeof(unsigned long))
1914 			break;
1915 		HASH_MIX(x, y, a);
1916 		name += sizeof(unsigned long);
1917 		len -= sizeof(unsigned long);
1918 	}
1919 	x ^= a & bytemask_from_count(len);
1920 done:
1921 	return fold_hash(x, y);
1922 }
1923 EXPORT_SYMBOL(full_name_hash);
1924 
1925 /* Return the "hash_len" (hash and length) of a null-terminated string */
1926 u64 hashlen_string(const void *salt, const char *name)
1927 {
1928 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1929 	unsigned long adata, mask, len;
1930 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1931 
1932 	len = 0;
1933 	goto inside;
1934 
1935 	do {
1936 		HASH_MIX(x, y, a);
1937 		len += sizeof(unsigned long);
1938 inside:
1939 		a = load_unaligned_zeropad(name+len);
1940 	} while (!has_zero(a, &adata, &constants));
1941 
1942 	adata = prep_zero_mask(a, adata, &constants);
1943 	mask = create_zero_mask(adata);
1944 	x ^= a & zero_bytemask(mask);
1945 
1946 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1947 }
1948 EXPORT_SYMBOL(hashlen_string);
1949 
1950 /*
1951  * Calculate the length and hash of the path component, and
1952  * return the "hash_len" as the result.
1953  */
1954 static inline u64 hash_name(const void *salt, const char *name)
1955 {
1956 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1957 	unsigned long adata, bdata, mask, len;
1958 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1959 
1960 	len = 0;
1961 	goto inside;
1962 
1963 	do {
1964 		HASH_MIX(x, y, a);
1965 		len += sizeof(unsigned long);
1966 inside:
1967 		a = load_unaligned_zeropad(name+len);
1968 		b = a ^ REPEAT_BYTE('/');
1969 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1970 
1971 	adata = prep_zero_mask(a, adata, &constants);
1972 	bdata = prep_zero_mask(b, bdata, &constants);
1973 	mask = create_zero_mask(adata | bdata);
1974 	x ^= a & zero_bytemask(mask);
1975 
1976 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1977 }
1978 
1979 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1980 
1981 /* Return the hash of a string of known length */
1982 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1983 {
1984 	unsigned long hash = init_name_hash(salt);
1985 	while (len--)
1986 		hash = partial_name_hash((unsigned char)*name++, hash);
1987 	return end_name_hash(hash);
1988 }
1989 EXPORT_SYMBOL(full_name_hash);
1990 
1991 /* Return the "hash_len" (hash and length) of a null-terminated string */
1992 u64 hashlen_string(const void *salt, const char *name)
1993 {
1994 	unsigned long hash = init_name_hash(salt);
1995 	unsigned long len = 0, c;
1996 
1997 	c = (unsigned char)*name;
1998 	while (c) {
1999 		len++;
2000 		hash = partial_name_hash(c, hash);
2001 		c = (unsigned char)name[len];
2002 	}
2003 	return hashlen_create(end_name_hash(hash), len);
2004 }
2005 EXPORT_SYMBOL(hashlen_string);
2006 
2007 /*
2008  * We know there's a real path component here of at least
2009  * one character.
2010  */
2011 static inline u64 hash_name(const void *salt, const char *name)
2012 {
2013 	unsigned long hash = init_name_hash(salt);
2014 	unsigned long len = 0, c;
2015 
2016 	c = (unsigned char)*name;
2017 	do {
2018 		len++;
2019 		hash = partial_name_hash(c, hash);
2020 		c = (unsigned char)name[len];
2021 	} while (c && c != '/');
2022 	return hashlen_create(end_name_hash(hash), len);
2023 }
2024 
2025 #endif
2026 
2027 /*
2028  * Name resolution.
2029  * This is the basic name resolution function, turning a pathname into
2030  * the final dentry. We expect 'base' to be positive and a directory.
2031  *
2032  * Returns 0 and nd will have valid dentry and mnt on success.
2033  * Returns error and drops reference to input namei data on failure.
2034  */
2035 static int link_path_walk(const char *name, struct nameidata *nd)
2036 {
2037 	int err;
2038 
2039 	while (*name=='/')
2040 		name++;
2041 	if (!*name)
2042 		return 0;
2043 
2044 	/* At this point we know we have a real path component. */
2045 	for(;;) {
2046 		u64 hash_len;
2047 		int type;
2048 
2049 		err = may_lookup(nd);
2050 		if (err)
2051 			return err;
2052 
2053 		hash_len = hash_name(nd->path.dentry, name);
2054 
2055 		type = LAST_NORM;
2056 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2057 			case 2:
2058 				if (name[1] == '.') {
2059 					type = LAST_DOTDOT;
2060 					nd->flags |= LOOKUP_JUMPED;
2061 				}
2062 				break;
2063 			case 1:
2064 				type = LAST_DOT;
2065 		}
2066 		if (likely(type == LAST_NORM)) {
2067 			struct dentry *parent = nd->path.dentry;
2068 			nd->flags &= ~LOOKUP_JUMPED;
2069 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2070 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2071 				err = parent->d_op->d_hash(parent, &this);
2072 				if (err < 0)
2073 					return err;
2074 				hash_len = this.hash_len;
2075 				name = this.name;
2076 			}
2077 		}
2078 
2079 		nd->last.hash_len = hash_len;
2080 		nd->last.name = name;
2081 		nd->last_type = type;
2082 
2083 		name += hashlen_len(hash_len);
2084 		if (!*name)
2085 			goto OK;
2086 		/*
2087 		 * If it wasn't NUL, we know it was '/'. Skip that
2088 		 * slash, and continue until no more slashes.
2089 		 */
2090 		do {
2091 			name++;
2092 		} while (unlikely(*name == '/'));
2093 		if (unlikely(!*name)) {
2094 OK:
2095 			/* pathname body, done */
2096 			if (!nd->depth)
2097 				return 0;
2098 			name = nd->stack[nd->depth - 1].name;
2099 			/* trailing symlink, done */
2100 			if (!name)
2101 				return 0;
2102 			/* last component of nested symlink */
2103 			err = walk_component(nd, WALK_FOLLOW);
2104 		} else {
2105 			/* not the last component */
2106 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2107 		}
2108 		if (err < 0)
2109 			return err;
2110 
2111 		if (err) {
2112 			const char *s = get_link(nd);
2113 
2114 			if (IS_ERR(s))
2115 				return PTR_ERR(s);
2116 			err = 0;
2117 			if (unlikely(!s)) {
2118 				/* jumped */
2119 				put_link(nd);
2120 			} else {
2121 				nd->stack[nd->depth - 1].name = name;
2122 				name = s;
2123 				continue;
2124 			}
2125 		}
2126 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2127 			if (nd->flags & LOOKUP_RCU) {
2128 				if (unlazy_walk(nd, NULL, 0))
2129 					return -ECHILD;
2130 			}
2131 			return -ENOTDIR;
2132 		}
2133 	}
2134 }
2135 
2136 static const char *path_init(struct nameidata *nd, unsigned flags)
2137 {
2138 	int retval = 0;
2139 	const char *s = nd->name->name;
2140 
2141 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2142 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2143 	nd->depth = 0;
2144 	if (flags & LOOKUP_ROOT) {
2145 		struct dentry *root = nd->root.dentry;
2146 		struct inode *inode = root->d_inode;
2147 		if (*s) {
2148 			if (!d_can_lookup(root))
2149 				return ERR_PTR(-ENOTDIR);
2150 			retval = inode_permission(inode, MAY_EXEC);
2151 			if (retval)
2152 				return ERR_PTR(retval);
2153 		}
2154 		nd->path = nd->root;
2155 		nd->inode = inode;
2156 		if (flags & LOOKUP_RCU) {
2157 			rcu_read_lock();
2158 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2159 			nd->root_seq = nd->seq;
2160 			nd->m_seq = read_seqbegin(&mount_lock);
2161 		} else {
2162 			path_get(&nd->path);
2163 		}
2164 		return s;
2165 	}
2166 
2167 	nd->root.mnt = NULL;
2168 	nd->path.mnt = NULL;
2169 	nd->path.dentry = NULL;
2170 
2171 	nd->m_seq = read_seqbegin(&mount_lock);
2172 	if (*s == '/') {
2173 		if (flags & LOOKUP_RCU)
2174 			rcu_read_lock();
2175 		set_root(nd);
2176 		if (likely(!nd_jump_root(nd)))
2177 			return s;
2178 		nd->root.mnt = NULL;
2179 		rcu_read_unlock();
2180 		return ERR_PTR(-ECHILD);
2181 	} else if (nd->dfd == AT_FDCWD) {
2182 		if (flags & LOOKUP_RCU) {
2183 			struct fs_struct *fs = current->fs;
2184 			unsigned seq;
2185 
2186 			rcu_read_lock();
2187 
2188 			do {
2189 				seq = read_seqcount_begin(&fs->seq);
2190 				nd->path = fs->pwd;
2191 				nd->inode = nd->path.dentry->d_inode;
2192 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2193 			} while (read_seqcount_retry(&fs->seq, seq));
2194 		} else {
2195 			get_fs_pwd(current->fs, &nd->path);
2196 			nd->inode = nd->path.dentry->d_inode;
2197 		}
2198 		return s;
2199 	} else {
2200 		/* Caller must check execute permissions on the starting path component */
2201 		struct fd f = fdget_raw(nd->dfd);
2202 		struct dentry *dentry;
2203 
2204 		if (!f.file)
2205 			return ERR_PTR(-EBADF);
2206 
2207 		dentry = f.file->f_path.dentry;
2208 
2209 		if (*s) {
2210 			if (!d_can_lookup(dentry)) {
2211 				fdput(f);
2212 				return ERR_PTR(-ENOTDIR);
2213 			}
2214 		}
2215 
2216 		nd->path = f.file->f_path;
2217 		if (flags & LOOKUP_RCU) {
2218 			rcu_read_lock();
2219 			nd->inode = nd->path.dentry->d_inode;
2220 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2221 		} else {
2222 			path_get(&nd->path);
2223 			nd->inode = nd->path.dentry->d_inode;
2224 		}
2225 		fdput(f);
2226 		return s;
2227 	}
2228 }
2229 
2230 static const char *trailing_symlink(struct nameidata *nd)
2231 {
2232 	const char *s;
2233 	int error = may_follow_link(nd);
2234 	if (unlikely(error))
2235 		return ERR_PTR(error);
2236 	nd->flags |= LOOKUP_PARENT;
2237 	nd->stack[0].name = NULL;
2238 	s = get_link(nd);
2239 	return s ? s : "";
2240 }
2241 
2242 static inline int lookup_last(struct nameidata *nd)
2243 {
2244 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2245 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2246 
2247 	nd->flags &= ~LOOKUP_PARENT;
2248 	return walk_component(nd, 0);
2249 }
2250 
2251 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2252 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2253 {
2254 	const char *s = path_init(nd, flags);
2255 	int err;
2256 
2257 	if (IS_ERR(s))
2258 		return PTR_ERR(s);
2259 	while (!(err = link_path_walk(s, nd))
2260 		&& ((err = lookup_last(nd)) > 0)) {
2261 		s = trailing_symlink(nd);
2262 		if (IS_ERR(s)) {
2263 			err = PTR_ERR(s);
2264 			break;
2265 		}
2266 	}
2267 	if (!err)
2268 		err = complete_walk(nd);
2269 
2270 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2271 		if (!d_can_lookup(nd->path.dentry))
2272 			err = -ENOTDIR;
2273 	if (!err) {
2274 		*path = nd->path;
2275 		nd->path.mnt = NULL;
2276 		nd->path.dentry = NULL;
2277 	}
2278 	terminate_walk(nd);
2279 	return err;
2280 }
2281 
2282 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2283 			   struct path *path, struct path *root)
2284 {
2285 	int retval;
2286 	struct nameidata nd;
2287 	if (IS_ERR(name))
2288 		return PTR_ERR(name);
2289 	if (unlikely(root)) {
2290 		nd.root = *root;
2291 		flags |= LOOKUP_ROOT;
2292 	}
2293 	set_nameidata(&nd, dfd, name);
2294 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2295 	if (unlikely(retval == -ECHILD))
2296 		retval = path_lookupat(&nd, flags, path);
2297 	if (unlikely(retval == -ESTALE))
2298 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2299 
2300 	if (likely(!retval))
2301 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2302 	restore_nameidata();
2303 	putname(name);
2304 	return retval;
2305 }
2306 
2307 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2308 static int path_parentat(struct nameidata *nd, unsigned flags,
2309 				struct path *parent)
2310 {
2311 	const char *s = path_init(nd, flags);
2312 	int err;
2313 	if (IS_ERR(s))
2314 		return PTR_ERR(s);
2315 	err = link_path_walk(s, nd);
2316 	if (!err)
2317 		err = complete_walk(nd);
2318 	if (!err) {
2319 		*parent = nd->path;
2320 		nd->path.mnt = NULL;
2321 		nd->path.dentry = NULL;
2322 	}
2323 	terminate_walk(nd);
2324 	return err;
2325 }
2326 
2327 static struct filename *filename_parentat(int dfd, struct filename *name,
2328 				unsigned int flags, struct path *parent,
2329 				struct qstr *last, int *type)
2330 {
2331 	int retval;
2332 	struct nameidata nd;
2333 
2334 	if (IS_ERR(name))
2335 		return name;
2336 	set_nameidata(&nd, dfd, name);
2337 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2338 	if (unlikely(retval == -ECHILD))
2339 		retval = path_parentat(&nd, flags, parent);
2340 	if (unlikely(retval == -ESTALE))
2341 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2342 	if (likely(!retval)) {
2343 		*last = nd.last;
2344 		*type = nd.last_type;
2345 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2346 	} else {
2347 		putname(name);
2348 		name = ERR_PTR(retval);
2349 	}
2350 	restore_nameidata();
2351 	return name;
2352 }
2353 
2354 /* does lookup, returns the object with parent locked */
2355 struct dentry *kern_path_locked(const char *name, struct path *path)
2356 {
2357 	struct filename *filename;
2358 	struct dentry *d;
2359 	struct qstr last;
2360 	int type;
2361 
2362 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2363 				    &last, &type);
2364 	if (IS_ERR(filename))
2365 		return ERR_CAST(filename);
2366 	if (unlikely(type != LAST_NORM)) {
2367 		path_put(path);
2368 		putname(filename);
2369 		return ERR_PTR(-EINVAL);
2370 	}
2371 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2372 	d = __lookup_hash(&last, path->dentry, 0);
2373 	if (IS_ERR(d)) {
2374 		inode_unlock(path->dentry->d_inode);
2375 		path_put(path);
2376 	}
2377 	putname(filename);
2378 	return d;
2379 }
2380 
2381 int kern_path(const char *name, unsigned int flags, struct path *path)
2382 {
2383 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2384 			       flags, path, NULL);
2385 }
2386 EXPORT_SYMBOL(kern_path);
2387 
2388 /**
2389  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2390  * @dentry:  pointer to dentry of the base directory
2391  * @mnt: pointer to vfs mount of the base directory
2392  * @name: pointer to file name
2393  * @flags: lookup flags
2394  * @path: pointer to struct path to fill
2395  */
2396 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2397 		    const char *name, unsigned int flags,
2398 		    struct path *path)
2399 {
2400 	struct path root = {.mnt = mnt, .dentry = dentry};
2401 	/* the first argument of filename_lookup() is ignored with root */
2402 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2403 			       flags , path, &root);
2404 }
2405 EXPORT_SYMBOL(vfs_path_lookup);
2406 
2407 /**
2408  * lookup_one_len - filesystem helper to lookup single pathname component
2409  * @name:	pathname component to lookup
2410  * @base:	base directory to lookup from
2411  * @len:	maximum length @len should be interpreted to
2412  *
2413  * Note that this routine is purely a helper for filesystem usage and should
2414  * not be called by generic code.
2415  *
2416  * The caller must hold base->i_mutex.
2417  */
2418 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2419 {
2420 	struct qstr this;
2421 	unsigned int c;
2422 	int err;
2423 
2424 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2425 
2426 	this.name = name;
2427 	this.len = len;
2428 	this.hash = full_name_hash(base, name, len);
2429 	if (!len)
2430 		return ERR_PTR(-EACCES);
2431 
2432 	if (unlikely(name[0] == '.')) {
2433 		if (len < 2 || (len == 2 && name[1] == '.'))
2434 			return ERR_PTR(-EACCES);
2435 	}
2436 
2437 	while (len--) {
2438 		c = *(const unsigned char *)name++;
2439 		if (c == '/' || c == '\0')
2440 			return ERR_PTR(-EACCES);
2441 	}
2442 	/*
2443 	 * See if the low-level filesystem might want
2444 	 * to use its own hash..
2445 	 */
2446 	if (base->d_flags & DCACHE_OP_HASH) {
2447 		int err = base->d_op->d_hash(base, &this);
2448 		if (err < 0)
2449 			return ERR_PTR(err);
2450 	}
2451 
2452 	err = inode_permission(base->d_inode, MAY_EXEC);
2453 	if (err)
2454 		return ERR_PTR(err);
2455 
2456 	return __lookup_hash(&this, base, 0);
2457 }
2458 EXPORT_SYMBOL(lookup_one_len);
2459 
2460 /**
2461  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2462  * @name:	pathname component to lookup
2463  * @base:	base directory to lookup from
2464  * @len:	maximum length @len should be interpreted to
2465  *
2466  * Note that this routine is purely a helper for filesystem usage and should
2467  * not be called by generic code.
2468  *
2469  * Unlike lookup_one_len, it should be called without the parent
2470  * i_mutex held, and will take the i_mutex itself if necessary.
2471  */
2472 struct dentry *lookup_one_len_unlocked(const char *name,
2473 				       struct dentry *base, int len)
2474 {
2475 	struct qstr this;
2476 	unsigned int c;
2477 	int err;
2478 	struct dentry *ret;
2479 
2480 	this.name = name;
2481 	this.len = len;
2482 	this.hash = full_name_hash(base, name, len);
2483 	if (!len)
2484 		return ERR_PTR(-EACCES);
2485 
2486 	if (unlikely(name[0] == '.')) {
2487 		if (len < 2 || (len == 2 && name[1] == '.'))
2488 			return ERR_PTR(-EACCES);
2489 	}
2490 
2491 	while (len--) {
2492 		c = *(const unsigned char *)name++;
2493 		if (c == '/' || c == '\0')
2494 			return ERR_PTR(-EACCES);
2495 	}
2496 	/*
2497 	 * See if the low-level filesystem might want
2498 	 * to use its own hash..
2499 	 */
2500 	if (base->d_flags & DCACHE_OP_HASH) {
2501 		int err = base->d_op->d_hash(base, &this);
2502 		if (err < 0)
2503 			return ERR_PTR(err);
2504 	}
2505 
2506 	err = inode_permission(base->d_inode, MAY_EXEC);
2507 	if (err)
2508 		return ERR_PTR(err);
2509 
2510 	ret = lookup_dcache(&this, base, 0);
2511 	if (!ret)
2512 		ret = lookup_slow(&this, base, 0);
2513 	return ret;
2514 }
2515 EXPORT_SYMBOL(lookup_one_len_unlocked);
2516 
2517 #ifdef CONFIG_UNIX98_PTYS
2518 int path_pts(struct path *path)
2519 {
2520 	/* Find something mounted on "pts" in the same directory as
2521 	 * the input path.
2522 	 */
2523 	struct dentry *child, *parent;
2524 	struct qstr this;
2525 	int ret;
2526 
2527 	ret = path_parent_directory(path);
2528 	if (ret)
2529 		return ret;
2530 
2531 	parent = path->dentry;
2532 	this.name = "pts";
2533 	this.len = 3;
2534 	child = d_hash_and_lookup(parent, &this);
2535 	if (!child)
2536 		return -ENOENT;
2537 
2538 	path->dentry = child;
2539 	dput(parent);
2540 	follow_mount(path);
2541 	return 0;
2542 }
2543 #endif
2544 
2545 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2546 		 struct path *path, int *empty)
2547 {
2548 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2549 			       flags, path, NULL);
2550 }
2551 EXPORT_SYMBOL(user_path_at_empty);
2552 
2553 /**
2554  * mountpoint_last - look up last component for umount
2555  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2556  *
2557  * This is a special lookup_last function just for umount. In this case, we
2558  * need to resolve the path without doing any revalidation.
2559  *
2560  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2561  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2562  * in almost all cases, this lookup will be served out of the dcache. The only
2563  * cases where it won't are if nd->last refers to a symlink or the path is
2564  * bogus and it doesn't exist.
2565  *
2566  * Returns:
2567  * -error: if there was an error during lookup. This includes -ENOENT if the
2568  *         lookup found a negative dentry.
2569  *
2570  * 0:      if we successfully resolved nd->last and found it to not to be a
2571  *         symlink that needs to be followed.
2572  *
2573  * 1:      if we successfully resolved nd->last and found it to be a symlink
2574  *         that needs to be followed.
2575  */
2576 static int
2577 mountpoint_last(struct nameidata *nd)
2578 {
2579 	int error = 0;
2580 	struct dentry *dir = nd->path.dentry;
2581 	struct path path;
2582 
2583 	/* If we're in rcuwalk, drop out of it to handle last component */
2584 	if (nd->flags & LOOKUP_RCU) {
2585 		if (unlazy_walk(nd, NULL, 0))
2586 			return -ECHILD;
2587 	}
2588 
2589 	nd->flags &= ~LOOKUP_PARENT;
2590 
2591 	if (unlikely(nd->last_type != LAST_NORM)) {
2592 		error = handle_dots(nd, nd->last_type);
2593 		if (error)
2594 			return error;
2595 		path.dentry = dget(nd->path.dentry);
2596 	} else {
2597 		path.dentry = d_lookup(dir, &nd->last);
2598 		if (!path.dentry) {
2599 			/*
2600 			 * No cached dentry. Mounted dentries are pinned in the
2601 			 * cache, so that means that this dentry is probably
2602 			 * a symlink or the path doesn't actually point
2603 			 * to a mounted dentry.
2604 			 */
2605 			path.dentry = lookup_slow(&nd->last, dir,
2606 					     nd->flags | LOOKUP_NO_REVAL);
2607 			if (IS_ERR(path.dentry))
2608 				return PTR_ERR(path.dentry);
2609 		}
2610 	}
2611 	if (d_is_negative(path.dentry)) {
2612 		dput(path.dentry);
2613 		return -ENOENT;
2614 	}
2615 	path.mnt = nd->path.mnt;
2616 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2617 }
2618 
2619 /**
2620  * path_mountpoint - look up a path to be umounted
2621  * @nd:		lookup context
2622  * @flags:	lookup flags
2623  * @path:	pointer to container for result
2624  *
2625  * Look up the given name, but don't attempt to revalidate the last component.
2626  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2627  */
2628 static int
2629 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2630 {
2631 	const char *s = path_init(nd, flags);
2632 	int err;
2633 	if (IS_ERR(s))
2634 		return PTR_ERR(s);
2635 	while (!(err = link_path_walk(s, nd)) &&
2636 		(err = mountpoint_last(nd)) > 0) {
2637 		s = trailing_symlink(nd);
2638 		if (IS_ERR(s)) {
2639 			err = PTR_ERR(s);
2640 			break;
2641 		}
2642 	}
2643 	if (!err) {
2644 		*path = nd->path;
2645 		nd->path.mnt = NULL;
2646 		nd->path.dentry = NULL;
2647 		follow_mount(path);
2648 	}
2649 	terminate_walk(nd);
2650 	return err;
2651 }
2652 
2653 static int
2654 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2655 			unsigned int flags)
2656 {
2657 	struct nameidata nd;
2658 	int error;
2659 	if (IS_ERR(name))
2660 		return PTR_ERR(name);
2661 	set_nameidata(&nd, dfd, name);
2662 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2663 	if (unlikely(error == -ECHILD))
2664 		error = path_mountpoint(&nd, flags, path);
2665 	if (unlikely(error == -ESTALE))
2666 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2667 	if (likely(!error))
2668 		audit_inode(name, path->dentry, 0);
2669 	restore_nameidata();
2670 	putname(name);
2671 	return error;
2672 }
2673 
2674 /**
2675  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2676  * @dfd:	directory file descriptor
2677  * @name:	pathname from userland
2678  * @flags:	lookup flags
2679  * @path:	pointer to container to hold result
2680  *
2681  * A umount is a special case for path walking. We're not actually interested
2682  * in the inode in this situation, and ESTALE errors can be a problem. We
2683  * simply want track down the dentry and vfsmount attached at the mountpoint
2684  * and avoid revalidating the last component.
2685  *
2686  * Returns 0 and populates "path" on success.
2687  */
2688 int
2689 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2690 			struct path *path)
2691 {
2692 	return filename_mountpoint(dfd, getname(name), path, flags);
2693 }
2694 
2695 int
2696 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2697 			unsigned int flags)
2698 {
2699 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2700 }
2701 EXPORT_SYMBOL(kern_path_mountpoint);
2702 
2703 int __check_sticky(struct inode *dir, struct inode *inode)
2704 {
2705 	kuid_t fsuid = current_fsuid();
2706 
2707 	if (uid_eq(inode->i_uid, fsuid))
2708 		return 0;
2709 	if (uid_eq(dir->i_uid, fsuid))
2710 		return 0;
2711 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2712 }
2713 EXPORT_SYMBOL(__check_sticky);
2714 
2715 /*
2716  *	Check whether we can remove a link victim from directory dir, check
2717  *  whether the type of victim is right.
2718  *  1. We can't do it if dir is read-only (done in permission())
2719  *  2. We should have write and exec permissions on dir
2720  *  3. We can't remove anything from append-only dir
2721  *  4. We can't do anything with immutable dir (done in permission())
2722  *  5. If the sticky bit on dir is set we should either
2723  *	a. be owner of dir, or
2724  *	b. be owner of victim, or
2725  *	c. have CAP_FOWNER capability
2726  *  6. If the victim is append-only or immutable we can't do antyhing with
2727  *     links pointing to it.
2728  *  7. If the victim has an unknown uid or gid we can't change the inode.
2729  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2730  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2731  * 10. We can't remove a root or mountpoint.
2732  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2733  *     nfs_async_unlink().
2734  */
2735 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2736 {
2737 	struct inode *inode = d_backing_inode(victim);
2738 	int error;
2739 
2740 	if (d_is_negative(victim))
2741 		return -ENOENT;
2742 	BUG_ON(!inode);
2743 
2744 	BUG_ON(victim->d_parent->d_inode != dir);
2745 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2746 
2747 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2748 	if (error)
2749 		return error;
2750 	if (IS_APPEND(dir))
2751 		return -EPERM;
2752 
2753 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2754 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2755 		return -EPERM;
2756 	if (isdir) {
2757 		if (!d_is_dir(victim))
2758 			return -ENOTDIR;
2759 		if (IS_ROOT(victim))
2760 			return -EBUSY;
2761 	} else if (d_is_dir(victim))
2762 		return -EISDIR;
2763 	if (IS_DEADDIR(dir))
2764 		return -ENOENT;
2765 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2766 		return -EBUSY;
2767 	return 0;
2768 }
2769 
2770 /*	Check whether we can create an object with dentry child in directory
2771  *  dir.
2772  *  1. We can't do it if child already exists (open has special treatment for
2773  *     this case, but since we are inlined it's OK)
2774  *  2. We can't do it if dir is read-only (done in permission())
2775  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2776  *  4. We should have write and exec permissions on dir
2777  *  5. We can't do it if dir is immutable (done in permission())
2778  */
2779 static inline int may_create(struct inode *dir, struct dentry *child)
2780 {
2781 	struct user_namespace *s_user_ns;
2782 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2783 	if (child->d_inode)
2784 		return -EEXIST;
2785 	if (IS_DEADDIR(dir))
2786 		return -ENOENT;
2787 	s_user_ns = dir->i_sb->s_user_ns;
2788 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2789 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2790 		return -EOVERFLOW;
2791 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2792 }
2793 
2794 /*
2795  * p1 and p2 should be directories on the same fs.
2796  */
2797 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2798 {
2799 	struct dentry *p;
2800 
2801 	if (p1 == p2) {
2802 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2803 		return NULL;
2804 	}
2805 
2806 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2807 
2808 	p = d_ancestor(p2, p1);
2809 	if (p) {
2810 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2811 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2812 		return p;
2813 	}
2814 
2815 	p = d_ancestor(p1, p2);
2816 	if (p) {
2817 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2818 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2819 		return p;
2820 	}
2821 
2822 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2823 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2824 	return NULL;
2825 }
2826 EXPORT_SYMBOL(lock_rename);
2827 
2828 void unlock_rename(struct dentry *p1, struct dentry *p2)
2829 {
2830 	inode_unlock(p1->d_inode);
2831 	if (p1 != p2) {
2832 		inode_unlock(p2->d_inode);
2833 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2834 	}
2835 }
2836 EXPORT_SYMBOL(unlock_rename);
2837 
2838 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2839 		bool want_excl)
2840 {
2841 	int error = may_create(dir, dentry);
2842 	if (error)
2843 		return error;
2844 
2845 	if (!dir->i_op->create)
2846 		return -EACCES;	/* shouldn't it be ENOSYS? */
2847 	mode &= S_IALLUGO;
2848 	mode |= S_IFREG;
2849 	error = security_inode_create(dir, dentry, mode);
2850 	if (error)
2851 		return error;
2852 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2853 	if (!error)
2854 		fsnotify_create(dir, dentry);
2855 	return error;
2856 }
2857 EXPORT_SYMBOL(vfs_create);
2858 
2859 bool may_open_dev(const struct path *path)
2860 {
2861 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2862 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2863 }
2864 
2865 static int may_open(const struct path *path, int acc_mode, int flag)
2866 {
2867 	struct dentry *dentry = path->dentry;
2868 	struct inode *inode = dentry->d_inode;
2869 	int error;
2870 
2871 	if (!inode)
2872 		return -ENOENT;
2873 
2874 	switch (inode->i_mode & S_IFMT) {
2875 	case S_IFLNK:
2876 		return -ELOOP;
2877 	case S_IFDIR:
2878 		if (acc_mode & MAY_WRITE)
2879 			return -EISDIR;
2880 		break;
2881 	case S_IFBLK:
2882 	case S_IFCHR:
2883 		if (!may_open_dev(path))
2884 			return -EACCES;
2885 		/*FALLTHRU*/
2886 	case S_IFIFO:
2887 	case S_IFSOCK:
2888 		flag &= ~O_TRUNC;
2889 		break;
2890 	}
2891 
2892 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2893 	if (error)
2894 		return error;
2895 
2896 	/*
2897 	 * An append-only file must be opened in append mode for writing.
2898 	 */
2899 	if (IS_APPEND(inode)) {
2900 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2901 			return -EPERM;
2902 		if (flag & O_TRUNC)
2903 			return -EPERM;
2904 	}
2905 
2906 	/* O_NOATIME can only be set by the owner or superuser */
2907 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2908 		return -EPERM;
2909 
2910 	return 0;
2911 }
2912 
2913 static int handle_truncate(struct file *filp)
2914 {
2915 	const struct path *path = &filp->f_path;
2916 	struct inode *inode = path->dentry->d_inode;
2917 	int error = get_write_access(inode);
2918 	if (error)
2919 		return error;
2920 	/*
2921 	 * Refuse to truncate files with mandatory locks held on them.
2922 	 */
2923 	error = locks_verify_locked(filp);
2924 	if (!error)
2925 		error = security_path_truncate(path);
2926 	if (!error) {
2927 		error = do_truncate(path->dentry, 0,
2928 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2929 				    filp);
2930 	}
2931 	put_write_access(inode);
2932 	return error;
2933 }
2934 
2935 static inline int open_to_namei_flags(int flag)
2936 {
2937 	if ((flag & O_ACCMODE) == 3)
2938 		flag--;
2939 	return flag;
2940 }
2941 
2942 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2943 {
2944 	int error = security_path_mknod(dir, dentry, mode, 0);
2945 	if (error)
2946 		return error;
2947 
2948 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2949 	if (error)
2950 		return error;
2951 
2952 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2953 }
2954 
2955 /*
2956  * Attempt to atomically look up, create and open a file from a negative
2957  * dentry.
2958  *
2959  * Returns 0 if successful.  The file will have been created and attached to
2960  * @file by the filesystem calling finish_open().
2961  *
2962  * Returns 1 if the file was looked up only or didn't need creating.  The
2963  * caller will need to perform the open themselves.  @path will have been
2964  * updated to point to the new dentry.  This may be negative.
2965  *
2966  * Returns an error code otherwise.
2967  */
2968 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2969 			struct path *path, struct file *file,
2970 			const struct open_flags *op,
2971 			int open_flag, umode_t mode,
2972 			int *opened)
2973 {
2974 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2975 	struct inode *dir =  nd->path.dentry->d_inode;
2976 	int error;
2977 
2978 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
2979 		open_flag &= ~O_TRUNC;
2980 
2981 	if (nd->flags & LOOKUP_DIRECTORY)
2982 		open_flag |= O_DIRECTORY;
2983 
2984 	file->f_path.dentry = DENTRY_NOT_SET;
2985 	file->f_path.mnt = nd->path.mnt;
2986 	error = dir->i_op->atomic_open(dir, dentry, file,
2987 				       open_to_namei_flags(open_flag),
2988 				       mode, opened);
2989 	d_lookup_done(dentry);
2990 	if (!error) {
2991 		/*
2992 		 * We didn't have the inode before the open, so check open
2993 		 * permission here.
2994 		 */
2995 		int acc_mode = op->acc_mode;
2996 		if (*opened & FILE_CREATED) {
2997 			WARN_ON(!(open_flag & O_CREAT));
2998 			fsnotify_create(dir, dentry);
2999 			acc_mode = 0;
3000 		}
3001 		error = may_open(&file->f_path, acc_mode, open_flag);
3002 		if (WARN_ON(error > 0))
3003 			error = -EINVAL;
3004 	} else if (error > 0) {
3005 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3006 			error = -EIO;
3007 		} else {
3008 			if (file->f_path.dentry) {
3009 				dput(dentry);
3010 				dentry = file->f_path.dentry;
3011 			}
3012 			if (*opened & FILE_CREATED)
3013 				fsnotify_create(dir, dentry);
3014 			if (unlikely(d_is_negative(dentry))) {
3015 				error = -ENOENT;
3016 			} else {
3017 				path->dentry = dentry;
3018 				path->mnt = nd->path.mnt;
3019 				return 1;
3020 			}
3021 		}
3022 	}
3023 	dput(dentry);
3024 	return error;
3025 }
3026 
3027 /*
3028  * Look up and maybe create and open the last component.
3029  *
3030  * Must be called with i_mutex held on parent.
3031  *
3032  * Returns 0 if the file was successfully atomically created (if necessary) and
3033  * opened.  In this case the file will be returned attached to @file.
3034  *
3035  * Returns 1 if the file was not completely opened at this time, though lookups
3036  * and creations will have been performed and the dentry returned in @path will
3037  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3038  * specified then a negative dentry may be returned.
3039  *
3040  * An error code is returned otherwise.
3041  *
3042  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3043  * cleared otherwise prior to returning.
3044  */
3045 static int lookup_open(struct nameidata *nd, struct path *path,
3046 			struct file *file,
3047 			const struct open_flags *op,
3048 			bool got_write, int *opened)
3049 {
3050 	struct dentry *dir = nd->path.dentry;
3051 	struct inode *dir_inode = dir->d_inode;
3052 	int open_flag = op->open_flag;
3053 	struct dentry *dentry;
3054 	int error, create_error = 0;
3055 	umode_t mode = op->mode;
3056 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3057 
3058 	if (unlikely(IS_DEADDIR(dir_inode)))
3059 		return -ENOENT;
3060 
3061 	*opened &= ~FILE_CREATED;
3062 	dentry = d_lookup(dir, &nd->last);
3063 	for (;;) {
3064 		if (!dentry) {
3065 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3066 			if (IS_ERR(dentry))
3067 				return PTR_ERR(dentry);
3068 		}
3069 		if (d_in_lookup(dentry))
3070 			break;
3071 
3072 		if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3073 			break;
3074 
3075 		error = d_revalidate(dentry, nd->flags);
3076 		if (likely(error > 0))
3077 			break;
3078 		if (error)
3079 			goto out_dput;
3080 		d_invalidate(dentry);
3081 		dput(dentry);
3082 		dentry = NULL;
3083 	}
3084 	if (dentry->d_inode) {
3085 		/* Cached positive dentry: will open in f_op->open */
3086 		goto out_no_open;
3087 	}
3088 
3089 	/*
3090 	 * Checking write permission is tricky, bacuse we don't know if we are
3091 	 * going to actually need it: O_CREAT opens should work as long as the
3092 	 * file exists.  But checking existence breaks atomicity.  The trick is
3093 	 * to check access and if not granted clear O_CREAT from the flags.
3094 	 *
3095 	 * Another problem is returing the "right" error value (e.g. for an
3096 	 * O_EXCL open we want to return EEXIST not EROFS).
3097 	 */
3098 	if (open_flag & O_CREAT) {
3099 		if (!IS_POSIXACL(dir->d_inode))
3100 			mode &= ~current_umask();
3101 		if (unlikely(!got_write)) {
3102 			create_error = -EROFS;
3103 			open_flag &= ~O_CREAT;
3104 			if (open_flag & (O_EXCL | O_TRUNC))
3105 				goto no_open;
3106 			/* No side effects, safe to clear O_CREAT */
3107 		} else {
3108 			create_error = may_o_create(&nd->path, dentry, mode);
3109 			if (create_error) {
3110 				open_flag &= ~O_CREAT;
3111 				if (open_flag & O_EXCL)
3112 					goto no_open;
3113 			}
3114 		}
3115 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3116 		   unlikely(!got_write)) {
3117 		/*
3118 		 * No O_CREATE -> atomicity not a requirement -> fall
3119 		 * back to lookup + open
3120 		 */
3121 		goto no_open;
3122 	}
3123 
3124 	if (dir_inode->i_op->atomic_open) {
3125 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3126 				    mode, opened);
3127 		if (unlikely(error == -ENOENT) && create_error)
3128 			error = create_error;
3129 		return error;
3130 	}
3131 
3132 no_open:
3133 	if (d_in_lookup(dentry)) {
3134 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3135 							     nd->flags);
3136 		d_lookup_done(dentry);
3137 		if (unlikely(res)) {
3138 			if (IS_ERR(res)) {
3139 				error = PTR_ERR(res);
3140 				goto out_dput;
3141 			}
3142 			dput(dentry);
3143 			dentry = res;
3144 		}
3145 	}
3146 
3147 	/* Negative dentry, just create the file */
3148 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3149 		*opened |= FILE_CREATED;
3150 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3151 		if (!dir_inode->i_op->create) {
3152 			error = -EACCES;
3153 			goto out_dput;
3154 		}
3155 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3156 						open_flag & O_EXCL);
3157 		if (error)
3158 			goto out_dput;
3159 		fsnotify_create(dir_inode, dentry);
3160 	}
3161 	if (unlikely(create_error) && !dentry->d_inode) {
3162 		error = create_error;
3163 		goto out_dput;
3164 	}
3165 out_no_open:
3166 	path->dentry = dentry;
3167 	path->mnt = nd->path.mnt;
3168 	return 1;
3169 
3170 out_dput:
3171 	dput(dentry);
3172 	return error;
3173 }
3174 
3175 /*
3176  * Handle the last step of open()
3177  */
3178 static int do_last(struct nameidata *nd,
3179 		   struct file *file, const struct open_flags *op,
3180 		   int *opened)
3181 {
3182 	struct dentry *dir = nd->path.dentry;
3183 	int open_flag = op->open_flag;
3184 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3185 	bool got_write = false;
3186 	int acc_mode = op->acc_mode;
3187 	unsigned seq;
3188 	struct inode *inode;
3189 	struct path path;
3190 	int error;
3191 
3192 	nd->flags &= ~LOOKUP_PARENT;
3193 	nd->flags |= op->intent;
3194 
3195 	if (nd->last_type != LAST_NORM) {
3196 		error = handle_dots(nd, nd->last_type);
3197 		if (unlikely(error))
3198 			return error;
3199 		goto finish_open;
3200 	}
3201 
3202 	if (!(open_flag & O_CREAT)) {
3203 		if (nd->last.name[nd->last.len])
3204 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3205 		/* we _can_ be in RCU mode here */
3206 		error = lookup_fast(nd, &path, &inode, &seq);
3207 		if (likely(error > 0))
3208 			goto finish_lookup;
3209 
3210 		if (error < 0)
3211 			return error;
3212 
3213 		BUG_ON(nd->inode != dir->d_inode);
3214 		BUG_ON(nd->flags & LOOKUP_RCU);
3215 	} else {
3216 		/* create side of things */
3217 		/*
3218 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3219 		 * has been cleared when we got to the last component we are
3220 		 * about to look up
3221 		 */
3222 		error = complete_walk(nd);
3223 		if (error)
3224 			return error;
3225 
3226 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3227 		/* trailing slashes? */
3228 		if (unlikely(nd->last.name[nd->last.len]))
3229 			return -EISDIR;
3230 	}
3231 
3232 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3233 		error = mnt_want_write(nd->path.mnt);
3234 		if (!error)
3235 			got_write = true;
3236 		/*
3237 		 * do _not_ fail yet - we might not need that or fail with
3238 		 * a different error; let lookup_open() decide; we'll be
3239 		 * dropping this one anyway.
3240 		 */
3241 	}
3242 	if (open_flag & O_CREAT)
3243 		inode_lock(dir->d_inode);
3244 	else
3245 		inode_lock_shared(dir->d_inode);
3246 	error = lookup_open(nd, &path, file, op, got_write, opened);
3247 	if (open_flag & O_CREAT)
3248 		inode_unlock(dir->d_inode);
3249 	else
3250 		inode_unlock_shared(dir->d_inode);
3251 
3252 	if (error <= 0) {
3253 		if (error)
3254 			goto out;
3255 
3256 		if ((*opened & FILE_CREATED) ||
3257 		    !S_ISREG(file_inode(file)->i_mode))
3258 			will_truncate = false;
3259 
3260 		audit_inode(nd->name, file->f_path.dentry, 0);
3261 		goto opened;
3262 	}
3263 
3264 	if (*opened & FILE_CREATED) {
3265 		/* Don't check for write permission, don't truncate */
3266 		open_flag &= ~O_TRUNC;
3267 		will_truncate = false;
3268 		acc_mode = 0;
3269 		path_to_nameidata(&path, nd);
3270 		goto finish_open_created;
3271 	}
3272 
3273 	/*
3274 	 * If atomic_open() acquired write access it is dropped now due to
3275 	 * possible mount and symlink following (this might be optimized away if
3276 	 * necessary...)
3277 	 */
3278 	if (got_write) {
3279 		mnt_drop_write(nd->path.mnt);
3280 		got_write = false;
3281 	}
3282 
3283 	error = follow_managed(&path, nd);
3284 	if (unlikely(error < 0))
3285 		return error;
3286 
3287 	if (unlikely(d_is_negative(path.dentry))) {
3288 		path_to_nameidata(&path, nd);
3289 		return -ENOENT;
3290 	}
3291 
3292 	/*
3293 	 * create/update audit record if it already exists.
3294 	 */
3295 	audit_inode(nd->name, path.dentry, 0);
3296 
3297 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3298 		path_to_nameidata(&path, nd);
3299 		return -EEXIST;
3300 	}
3301 
3302 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3303 	inode = d_backing_inode(path.dentry);
3304 finish_lookup:
3305 	error = step_into(nd, &path, 0, inode, seq);
3306 	if (unlikely(error))
3307 		return error;
3308 finish_open:
3309 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3310 	error = complete_walk(nd);
3311 	if (error)
3312 		return error;
3313 	audit_inode(nd->name, nd->path.dentry, 0);
3314 	error = -EISDIR;
3315 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3316 		goto out;
3317 	error = -ENOTDIR;
3318 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3319 		goto out;
3320 	if (!d_is_reg(nd->path.dentry))
3321 		will_truncate = false;
3322 
3323 	if (will_truncate) {
3324 		error = mnt_want_write(nd->path.mnt);
3325 		if (error)
3326 			goto out;
3327 		got_write = true;
3328 	}
3329 finish_open_created:
3330 	error = may_open(&nd->path, acc_mode, open_flag);
3331 	if (error)
3332 		goto out;
3333 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3334 	error = vfs_open(&nd->path, file, current_cred());
3335 	if (error)
3336 		goto out;
3337 	*opened |= FILE_OPENED;
3338 opened:
3339 	error = open_check_o_direct(file);
3340 	if (!error)
3341 		error = ima_file_check(file, op->acc_mode, *opened);
3342 	if (!error && will_truncate)
3343 		error = handle_truncate(file);
3344 out:
3345 	if (unlikely(error) && (*opened & FILE_OPENED))
3346 		fput(file);
3347 	if (unlikely(error > 0)) {
3348 		WARN_ON(1);
3349 		error = -EINVAL;
3350 	}
3351 	if (got_write)
3352 		mnt_drop_write(nd->path.mnt);
3353 	return error;
3354 }
3355 
3356 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3357 		const struct open_flags *op,
3358 		struct file *file, int *opened)
3359 {
3360 	static const struct qstr name = QSTR_INIT("/", 1);
3361 	struct dentry *child;
3362 	struct inode *dir;
3363 	struct path path;
3364 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3365 	if (unlikely(error))
3366 		return error;
3367 	error = mnt_want_write(path.mnt);
3368 	if (unlikely(error))
3369 		goto out;
3370 	dir = path.dentry->d_inode;
3371 	/* we want directory to be writable */
3372 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3373 	if (error)
3374 		goto out2;
3375 	if (!dir->i_op->tmpfile) {
3376 		error = -EOPNOTSUPP;
3377 		goto out2;
3378 	}
3379 	child = d_alloc(path.dentry, &name);
3380 	if (unlikely(!child)) {
3381 		error = -ENOMEM;
3382 		goto out2;
3383 	}
3384 	dput(path.dentry);
3385 	path.dentry = child;
3386 	error = dir->i_op->tmpfile(dir, child, op->mode);
3387 	if (error)
3388 		goto out2;
3389 	audit_inode(nd->name, child, 0);
3390 	/* Don't check for other permissions, the inode was just created */
3391 	error = may_open(&path, 0, op->open_flag);
3392 	if (error)
3393 		goto out2;
3394 	file->f_path.mnt = path.mnt;
3395 	error = finish_open(file, child, NULL, opened);
3396 	if (error)
3397 		goto out2;
3398 	error = open_check_o_direct(file);
3399 	if (error) {
3400 		fput(file);
3401 	} else if (!(op->open_flag & O_EXCL)) {
3402 		struct inode *inode = file_inode(file);
3403 		spin_lock(&inode->i_lock);
3404 		inode->i_state |= I_LINKABLE;
3405 		spin_unlock(&inode->i_lock);
3406 	}
3407 out2:
3408 	mnt_drop_write(path.mnt);
3409 out:
3410 	path_put(&path);
3411 	return error;
3412 }
3413 
3414 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3415 {
3416 	struct path path;
3417 	int error = path_lookupat(nd, flags, &path);
3418 	if (!error) {
3419 		audit_inode(nd->name, path.dentry, 0);
3420 		error = vfs_open(&path, file, current_cred());
3421 		path_put(&path);
3422 	}
3423 	return error;
3424 }
3425 
3426 static struct file *path_openat(struct nameidata *nd,
3427 			const struct open_flags *op, unsigned flags)
3428 {
3429 	const char *s;
3430 	struct file *file;
3431 	int opened = 0;
3432 	int error;
3433 
3434 	file = get_empty_filp();
3435 	if (IS_ERR(file))
3436 		return file;
3437 
3438 	file->f_flags = op->open_flag;
3439 
3440 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3441 		error = do_tmpfile(nd, flags, op, file, &opened);
3442 		goto out2;
3443 	}
3444 
3445 	if (unlikely(file->f_flags & O_PATH)) {
3446 		error = do_o_path(nd, flags, file);
3447 		if (!error)
3448 			opened |= FILE_OPENED;
3449 		goto out2;
3450 	}
3451 
3452 	s = path_init(nd, flags);
3453 	if (IS_ERR(s)) {
3454 		put_filp(file);
3455 		return ERR_CAST(s);
3456 	}
3457 	while (!(error = link_path_walk(s, nd)) &&
3458 		(error = do_last(nd, file, op, &opened)) > 0) {
3459 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3460 		s = trailing_symlink(nd);
3461 		if (IS_ERR(s)) {
3462 			error = PTR_ERR(s);
3463 			break;
3464 		}
3465 	}
3466 	terminate_walk(nd);
3467 out2:
3468 	if (!(opened & FILE_OPENED)) {
3469 		BUG_ON(!error);
3470 		put_filp(file);
3471 	}
3472 	if (unlikely(error)) {
3473 		if (error == -EOPENSTALE) {
3474 			if (flags & LOOKUP_RCU)
3475 				error = -ECHILD;
3476 			else
3477 				error = -ESTALE;
3478 		}
3479 		file = ERR_PTR(error);
3480 	}
3481 	return file;
3482 }
3483 
3484 struct file *do_filp_open(int dfd, struct filename *pathname,
3485 		const struct open_flags *op)
3486 {
3487 	struct nameidata nd;
3488 	int flags = op->lookup_flags;
3489 	struct file *filp;
3490 
3491 	set_nameidata(&nd, dfd, pathname);
3492 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3493 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3494 		filp = path_openat(&nd, op, flags);
3495 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3496 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3497 	restore_nameidata();
3498 	return filp;
3499 }
3500 
3501 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3502 		const char *name, const struct open_flags *op)
3503 {
3504 	struct nameidata nd;
3505 	struct file *file;
3506 	struct filename *filename;
3507 	int flags = op->lookup_flags | LOOKUP_ROOT;
3508 
3509 	nd.root.mnt = mnt;
3510 	nd.root.dentry = dentry;
3511 
3512 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3513 		return ERR_PTR(-ELOOP);
3514 
3515 	filename = getname_kernel(name);
3516 	if (IS_ERR(filename))
3517 		return ERR_CAST(filename);
3518 
3519 	set_nameidata(&nd, -1, filename);
3520 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3521 	if (unlikely(file == ERR_PTR(-ECHILD)))
3522 		file = path_openat(&nd, op, flags);
3523 	if (unlikely(file == ERR_PTR(-ESTALE)))
3524 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3525 	restore_nameidata();
3526 	putname(filename);
3527 	return file;
3528 }
3529 
3530 static struct dentry *filename_create(int dfd, struct filename *name,
3531 				struct path *path, unsigned int lookup_flags)
3532 {
3533 	struct dentry *dentry = ERR_PTR(-EEXIST);
3534 	struct qstr last;
3535 	int type;
3536 	int err2;
3537 	int error;
3538 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3539 
3540 	/*
3541 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3542 	 * other flags passed in are ignored!
3543 	 */
3544 	lookup_flags &= LOOKUP_REVAL;
3545 
3546 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3547 	if (IS_ERR(name))
3548 		return ERR_CAST(name);
3549 
3550 	/*
3551 	 * Yucky last component or no last component at all?
3552 	 * (foo/., foo/.., /////)
3553 	 */
3554 	if (unlikely(type != LAST_NORM))
3555 		goto out;
3556 
3557 	/* don't fail immediately if it's r/o, at least try to report other errors */
3558 	err2 = mnt_want_write(path->mnt);
3559 	/*
3560 	 * Do the final lookup.
3561 	 */
3562 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3563 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3564 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3565 	if (IS_ERR(dentry))
3566 		goto unlock;
3567 
3568 	error = -EEXIST;
3569 	if (d_is_positive(dentry))
3570 		goto fail;
3571 
3572 	/*
3573 	 * Special case - lookup gave negative, but... we had foo/bar/
3574 	 * From the vfs_mknod() POV we just have a negative dentry -
3575 	 * all is fine. Let's be bastards - you had / on the end, you've
3576 	 * been asking for (non-existent) directory. -ENOENT for you.
3577 	 */
3578 	if (unlikely(!is_dir && last.name[last.len])) {
3579 		error = -ENOENT;
3580 		goto fail;
3581 	}
3582 	if (unlikely(err2)) {
3583 		error = err2;
3584 		goto fail;
3585 	}
3586 	putname(name);
3587 	return dentry;
3588 fail:
3589 	dput(dentry);
3590 	dentry = ERR_PTR(error);
3591 unlock:
3592 	inode_unlock(path->dentry->d_inode);
3593 	if (!err2)
3594 		mnt_drop_write(path->mnt);
3595 out:
3596 	path_put(path);
3597 	putname(name);
3598 	return dentry;
3599 }
3600 
3601 struct dentry *kern_path_create(int dfd, const char *pathname,
3602 				struct path *path, unsigned int lookup_flags)
3603 {
3604 	return filename_create(dfd, getname_kernel(pathname),
3605 				path, lookup_flags);
3606 }
3607 EXPORT_SYMBOL(kern_path_create);
3608 
3609 void done_path_create(struct path *path, struct dentry *dentry)
3610 {
3611 	dput(dentry);
3612 	inode_unlock(path->dentry->d_inode);
3613 	mnt_drop_write(path->mnt);
3614 	path_put(path);
3615 }
3616 EXPORT_SYMBOL(done_path_create);
3617 
3618 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3619 				struct path *path, unsigned int lookup_flags)
3620 {
3621 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3622 }
3623 EXPORT_SYMBOL(user_path_create);
3624 
3625 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3626 {
3627 	int error = may_create(dir, dentry);
3628 
3629 	if (error)
3630 		return error;
3631 
3632 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3633 		return -EPERM;
3634 
3635 	if (!dir->i_op->mknod)
3636 		return -EPERM;
3637 
3638 	error = devcgroup_inode_mknod(mode, dev);
3639 	if (error)
3640 		return error;
3641 
3642 	error = security_inode_mknod(dir, dentry, mode, dev);
3643 	if (error)
3644 		return error;
3645 
3646 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3647 	if (!error)
3648 		fsnotify_create(dir, dentry);
3649 	return error;
3650 }
3651 EXPORT_SYMBOL(vfs_mknod);
3652 
3653 static int may_mknod(umode_t mode)
3654 {
3655 	switch (mode & S_IFMT) {
3656 	case S_IFREG:
3657 	case S_IFCHR:
3658 	case S_IFBLK:
3659 	case S_IFIFO:
3660 	case S_IFSOCK:
3661 	case 0: /* zero mode translates to S_IFREG */
3662 		return 0;
3663 	case S_IFDIR:
3664 		return -EPERM;
3665 	default:
3666 		return -EINVAL;
3667 	}
3668 }
3669 
3670 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3671 		unsigned, dev)
3672 {
3673 	struct dentry *dentry;
3674 	struct path path;
3675 	int error;
3676 	unsigned int lookup_flags = 0;
3677 
3678 	error = may_mknod(mode);
3679 	if (error)
3680 		return error;
3681 retry:
3682 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3683 	if (IS_ERR(dentry))
3684 		return PTR_ERR(dentry);
3685 
3686 	if (!IS_POSIXACL(path.dentry->d_inode))
3687 		mode &= ~current_umask();
3688 	error = security_path_mknod(&path, dentry, mode, dev);
3689 	if (error)
3690 		goto out;
3691 	switch (mode & S_IFMT) {
3692 		case 0: case S_IFREG:
3693 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3694 			if (!error)
3695 				ima_post_path_mknod(dentry);
3696 			break;
3697 		case S_IFCHR: case S_IFBLK:
3698 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3699 					new_decode_dev(dev));
3700 			break;
3701 		case S_IFIFO: case S_IFSOCK:
3702 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3703 			break;
3704 	}
3705 out:
3706 	done_path_create(&path, dentry);
3707 	if (retry_estale(error, lookup_flags)) {
3708 		lookup_flags |= LOOKUP_REVAL;
3709 		goto retry;
3710 	}
3711 	return error;
3712 }
3713 
3714 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3715 {
3716 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3717 }
3718 
3719 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3720 {
3721 	int error = may_create(dir, dentry);
3722 	unsigned max_links = dir->i_sb->s_max_links;
3723 
3724 	if (error)
3725 		return error;
3726 
3727 	if (!dir->i_op->mkdir)
3728 		return -EPERM;
3729 
3730 	mode &= (S_IRWXUGO|S_ISVTX);
3731 	error = security_inode_mkdir(dir, dentry, mode);
3732 	if (error)
3733 		return error;
3734 
3735 	if (max_links && dir->i_nlink >= max_links)
3736 		return -EMLINK;
3737 
3738 	error = dir->i_op->mkdir(dir, dentry, mode);
3739 	if (!error)
3740 		fsnotify_mkdir(dir, dentry);
3741 	return error;
3742 }
3743 EXPORT_SYMBOL(vfs_mkdir);
3744 
3745 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3746 {
3747 	struct dentry *dentry;
3748 	struct path path;
3749 	int error;
3750 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3751 
3752 retry:
3753 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3754 	if (IS_ERR(dentry))
3755 		return PTR_ERR(dentry);
3756 
3757 	if (!IS_POSIXACL(path.dentry->d_inode))
3758 		mode &= ~current_umask();
3759 	error = security_path_mkdir(&path, dentry, mode);
3760 	if (!error)
3761 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3762 	done_path_create(&path, dentry);
3763 	if (retry_estale(error, lookup_flags)) {
3764 		lookup_flags |= LOOKUP_REVAL;
3765 		goto retry;
3766 	}
3767 	return error;
3768 }
3769 
3770 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3771 {
3772 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3773 }
3774 
3775 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3776 {
3777 	int error = may_delete(dir, dentry, 1);
3778 
3779 	if (error)
3780 		return error;
3781 
3782 	if (!dir->i_op->rmdir)
3783 		return -EPERM;
3784 
3785 	dget(dentry);
3786 	inode_lock(dentry->d_inode);
3787 
3788 	error = -EBUSY;
3789 	if (is_local_mountpoint(dentry))
3790 		goto out;
3791 
3792 	error = security_inode_rmdir(dir, dentry);
3793 	if (error)
3794 		goto out;
3795 
3796 	shrink_dcache_parent(dentry);
3797 	error = dir->i_op->rmdir(dir, dentry);
3798 	if (error)
3799 		goto out;
3800 
3801 	dentry->d_inode->i_flags |= S_DEAD;
3802 	dont_mount(dentry);
3803 	detach_mounts(dentry);
3804 
3805 out:
3806 	inode_unlock(dentry->d_inode);
3807 	dput(dentry);
3808 	if (!error)
3809 		d_delete(dentry);
3810 	return error;
3811 }
3812 EXPORT_SYMBOL(vfs_rmdir);
3813 
3814 static long do_rmdir(int dfd, const char __user *pathname)
3815 {
3816 	int error = 0;
3817 	struct filename *name;
3818 	struct dentry *dentry;
3819 	struct path path;
3820 	struct qstr last;
3821 	int type;
3822 	unsigned int lookup_flags = 0;
3823 retry:
3824 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3825 				&path, &last, &type);
3826 	if (IS_ERR(name))
3827 		return PTR_ERR(name);
3828 
3829 	switch (type) {
3830 	case LAST_DOTDOT:
3831 		error = -ENOTEMPTY;
3832 		goto exit1;
3833 	case LAST_DOT:
3834 		error = -EINVAL;
3835 		goto exit1;
3836 	case LAST_ROOT:
3837 		error = -EBUSY;
3838 		goto exit1;
3839 	}
3840 
3841 	error = mnt_want_write(path.mnt);
3842 	if (error)
3843 		goto exit1;
3844 
3845 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3846 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3847 	error = PTR_ERR(dentry);
3848 	if (IS_ERR(dentry))
3849 		goto exit2;
3850 	if (!dentry->d_inode) {
3851 		error = -ENOENT;
3852 		goto exit3;
3853 	}
3854 	error = security_path_rmdir(&path, dentry);
3855 	if (error)
3856 		goto exit3;
3857 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3858 exit3:
3859 	dput(dentry);
3860 exit2:
3861 	inode_unlock(path.dentry->d_inode);
3862 	mnt_drop_write(path.mnt);
3863 exit1:
3864 	path_put(&path);
3865 	putname(name);
3866 	if (retry_estale(error, lookup_flags)) {
3867 		lookup_flags |= LOOKUP_REVAL;
3868 		goto retry;
3869 	}
3870 	return error;
3871 }
3872 
3873 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3874 {
3875 	return do_rmdir(AT_FDCWD, pathname);
3876 }
3877 
3878 /**
3879  * vfs_unlink - unlink a filesystem object
3880  * @dir:	parent directory
3881  * @dentry:	victim
3882  * @delegated_inode: returns victim inode, if the inode is delegated.
3883  *
3884  * The caller must hold dir->i_mutex.
3885  *
3886  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3887  * return a reference to the inode in delegated_inode.  The caller
3888  * should then break the delegation on that inode and retry.  Because
3889  * breaking a delegation may take a long time, the caller should drop
3890  * dir->i_mutex before doing so.
3891  *
3892  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3893  * be appropriate for callers that expect the underlying filesystem not
3894  * to be NFS exported.
3895  */
3896 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3897 {
3898 	struct inode *target = dentry->d_inode;
3899 	int error = may_delete(dir, dentry, 0);
3900 
3901 	if (error)
3902 		return error;
3903 
3904 	if (!dir->i_op->unlink)
3905 		return -EPERM;
3906 
3907 	inode_lock(target);
3908 	if (is_local_mountpoint(dentry))
3909 		error = -EBUSY;
3910 	else {
3911 		error = security_inode_unlink(dir, dentry);
3912 		if (!error) {
3913 			error = try_break_deleg(target, delegated_inode);
3914 			if (error)
3915 				goto out;
3916 			error = dir->i_op->unlink(dir, dentry);
3917 			if (!error) {
3918 				dont_mount(dentry);
3919 				detach_mounts(dentry);
3920 			}
3921 		}
3922 	}
3923 out:
3924 	inode_unlock(target);
3925 
3926 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3927 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3928 		fsnotify_link_count(target);
3929 		d_delete(dentry);
3930 	}
3931 
3932 	return error;
3933 }
3934 EXPORT_SYMBOL(vfs_unlink);
3935 
3936 /*
3937  * Make sure that the actual truncation of the file will occur outside its
3938  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3939  * writeout happening, and we don't want to prevent access to the directory
3940  * while waiting on the I/O.
3941  */
3942 static long do_unlinkat(int dfd, const char __user *pathname)
3943 {
3944 	int error;
3945 	struct filename *name;
3946 	struct dentry *dentry;
3947 	struct path path;
3948 	struct qstr last;
3949 	int type;
3950 	struct inode *inode = NULL;
3951 	struct inode *delegated_inode = NULL;
3952 	unsigned int lookup_flags = 0;
3953 retry:
3954 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3955 				&path, &last, &type);
3956 	if (IS_ERR(name))
3957 		return PTR_ERR(name);
3958 
3959 	error = -EISDIR;
3960 	if (type != LAST_NORM)
3961 		goto exit1;
3962 
3963 	error = mnt_want_write(path.mnt);
3964 	if (error)
3965 		goto exit1;
3966 retry_deleg:
3967 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3968 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3969 	error = PTR_ERR(dentry);
3970 	if (!IS_ERR(dentry)) {
3971 		/* Why not before? Because we want correct error value */
3972 		if (last.name[last.len])
3973 			goto slashes;
3974 		inode = dentry->d_inode;
3975 		if (d_is_negative(dentry))
3976 			goto slashes;
3977 		ihold(inode);
3978 		error = security_path_unlink(&path, dentry);
3979 		if (error)
3980 			goto exit2;
3981 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3982 exit2:
3983 		dput(dentry);
3984 	}
3985 	inode_unlock(path.dentry->d_inode);
3986 	if (inode)
3987 		iput(inode);	/* truncate the inode here */
3988 	inode = NULL;
3989 	if (delegated_inode) {
3990 		error = break_deleg_wait(&delegated_inode);
3991 		if (!error)
3992 			goto retry_deleg;
3993 	}
3994 	mnt_drop_write(path.mnt);
3995 exit1:
3996 	path_put(&path);
3997 	putname(name);
3998 	if (retry_estale(error, lookup_flags)) {
3999 		lookup_flags |= LOOKUP_REVAL;
4000 		inode = NULL;
4001 		goto retry;
4002 	}
4003 	return error;
4004 
4005 slashes:
4006 	if (d_is_negative(dentry))
4007 		error = -ENOENT;
4008 	else if (d_is_dir(dentry))
4009 		error = -EISDIR;
4010 	else
4011 		error = -ENOTDIR;
4012 	goto exit2;
4013 }
4014 
4015 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4016 {
4017 	if ((flag & ~AT_REMOVEDIR) != 0)
4018 		return -EINVAL;
4019 
4020 	if (flag & AT_REMOVEDIR)
4021 		return do_rmdir(dfd, pathname);
4022 
4023 	return do_unlinkat(dfd, pathname);
4024 }
4025 
4026 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4027 {
4028 	return do_unlinkat(AT_FDCWD, pathname);
4029 }
4030 
4031 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4032 {
4033 	int error = may_create(dir, dentry);
4034 
4035 	if (error)
4036 		return error;
4037 
4038 	if (!dir->i_op->symlink)
4039 		return -EPERM;
4040 
4041 	error = security_inode_symlink(dir, dentry, oldname);
4042 	if (error)
4043 		return error;
4044 
4045 	error = dir->i_op->symlink(dir, dentry, oldname);
4046 	if (!error)
4047 		fsnotify_create(dir, dentry);
4048 	return error;
4049 }
4050 EXPORT_SYMBOL(vfs_symlink);
4051 
4052 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4053 		int, newdfd, const char __user *, newname)
4054 {
4055 	int error;
4056 	struct filename *from;
4057 	struct dentry *dentry;
4058 	struct path path;
4059 	unsigned int lookup_flags = 0;
4060 
4061 	from = getname(oldname);
4062 	if (IS_ERR(from))
4063 		return PTR_ERR(from);
4064 retry:
4065 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4066 	error = PTR_ERR(dentry);
4067 	if (IS_ERR(dentry))
4068 		goto out_putname;
4069 
4070 	error = security_path_symlink(&path, dentry, from->name);
4071 	if (!error)
4072 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4073 	done_path_create(&path, dentry);
4074 	if (retry_estale(error, lookup_flags)) {
4075 		lookup_flags |= LOOKUP_REVAL;
4076 		goto retry;
4077 	}
4078 out_putname:
4079 	putname(from);
4080 	return error;
4081 }
4082 
4083 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4084 {
4085 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4086 }
4087 
4088 /**
4089  * vfs_link - create a new link
4090  * @old_dentry:	object to be linked
4091  * @dir:	new parent
4092  * @new_dentry:	where to create the new link
4093  * @delegated_inode: returns inode needing a delegation break
4094  *
4095  * The caller must hold dir->i_mutex
4096  *
4097  * If vfs_link discovers a delegation on the to-be-linked file in need
4098  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4099  * inode in delegated_inode.  The caller should then break the delegation
4100  * and retry.  Because breaking a delegation may take a long time, the
4101  * caller should drop the i_mutex before doing so.
4102  *
4103  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4104  * be appropriate for callers that expect the underlying filesystem not
4105  * to be NFS exported.
4106  */
4107 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4108 {
4109 	struct inode *inode = old_dentry->d_inode;
4110 	unsigned max_links = dir->i_sb->s_max_links;
4111 	int error;
4112 
4113 	if (!inode)
4114 		return -ENOENT;
4115 
4116 	error = may_create(dir, new_dentry);
4117 	if (error)
4118 		return error;
4119 
4120 	if (dir->i_sb != inode->i_sb)
4121 		return -EXDEV;
4122 
4123 	/*
4124 	 * A link to an append-only or immutable file cannot be created.
4125 	 */
4126 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4127 		return -EPERM;
4128 	/*
4129 	 * Updating the link count will likely cause i_uid and i_gid to
4130 	 * be writen back improperly if their true value is unknown to
4131 	 * the vfs.
4132 	 */
4133 	if (HAS_UNMAPPED_ID(inode))
4134 		return -EPERM;
4135 	if (!dir->i_op->link)
4136 		return -EPERM;
4137 	if (S_ISDIR(inode->i_mode))
4138 		return -EPERM;
4139 
4140 	error = security_inode_link(old_dentry, dir, new_dentry);
4141 	if (error)
4142 		return error;
4143 
4144 	inode_lock(inode);
4145 	/* Make sure we don't allow creating hardlink to an unlinked file */
4146 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4147 		error =  -ENOENT;
4148 	else if (max_links && inode->i_nlink >= max_links)
4149 		error = -EMLINK;
4150 	else {
4151 		error = try_break_deleg(inode, delegated_inode);
4152 		if (!error)
4153 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4154 	}
4155 
4156 	if (!error && (inode->i_state & I_LINKABLE)) {
4157 		spin_lock(&inode->i_lock);
4158 		inode->i_state &= ~I_LINKABLE;
4159 		spin_unlock(&inode->i_lock);
4160 	}
4161 	inode_unlock(inode);
4162 	if (!error)
4163 		fsnotify_link(dir, inode, new_dentry);
4164 	return error;
4165 }
4166 EXPORT_SYMBOL(vfs_link);
4167 
4168 /*
4169  * Hardlinks are often used in delicate situations.  We avoid
4170  * security-related surprises by not following symlinks on the
4171  * newname.  --KAB
4172  *
4173  * We don't follow them on the oldname either to be compatible
4174  * with linux 2.0, and to avoid hard-linking to directories
4175  * and other special files.  --ADM
4176  */
4177 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4178 		int, newdfd, const char __user *, newname, int, flags)
4179 {
4180 	struct dentry *new_dentry;
4181 	struct path old_path, new_path;
4182 	struct inode *delegated_inode = NULL;
4183 	int how = 0;
4184 	int error;
4185 
4186 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4187 		return -EINVAL;
4188 	/*
4189 	 * To use null names we require CAP_DAC_READ_SEARCH
4190 	 * This ensures that not everyone will be able to create
4191 	 * handlink using the passed filedescriptor.
4192 	 */
4193 	if (flags & AT_EMPTY_PATH) {
4194 		if (!capable(CAP_DAC_READ_SEARCH))
4195 			return -ENOENT;
4196 		how = LOOKUP_EMPTY;
4197 	}
4198 
4199 	if (flags & AT_SYMLINK_FOLLOW)
4200 		how |= LOOKUP_FOLLOW;
4201 retry:
4202 	error = user_path_at(olddfd, oldname, how, &old_path);
4203 	if (error)
4204 		return error;
4205 
4206 	new_dentry = user_path_create(newdfd, newname, &new_path,
4207 					(how & LOOKUP_REVAL));
4208 	error = PTR_ERR(new_dentry);
4209 	if (IS_ERR(new_dentry))
4210 		goto out;
4211 
4212 	error = -EXDEV;
4213 	if (old_path.mnt != new_path.mnt)
4214 		goto out_dput;
4215 	error = may_linkat(&old_path);
4216 	if (unlikely(error))
4217 		goto out_dput;
4218 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4219 	if (error)
4220 		goto out_dput;
4221 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4222 out_dput:
4223 	done_path_create(&new_path, new_dentry);
4224 	if (delegated_inode) {
4225 		error = break_deleg_wait(&delegated_inode);
4226 		if (!error) {
4227 			path_put(&old_path);
4228 			goto retry;
4229 		}
4230 	}
4231 	if (retry_estale(error, how)) {
4232 		path_put(&old_path);
4233 		how |= LOOKUP_REVAL;
4234 		goto retry;
4235 	}
4236 out:
4237 	path_put(&old_path);
4238 
4239 	return error;
4240 }
4241 
4242 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4243 {
4244 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4245 }
4246 
4247 /**
4248  * vfs_rename - rename a filesystem object
4249  * @old_dir:	parent of source
4250  * @old_dentry:	source
4251  * @new_dir:	parent of destination
4252  * @new_dentry:	destination
4253  * @delegated_inode: returns an inode needing a delegation break
4254  * @flags:	rename flags
4255  *
4256  * The caller must hold multiple mutexes--see lock_rename()).
4257  *
4258  * If vfs_rename discovers a delegation in need of breaking at either
4259  * the source or destination, it will return -EWOULDBLOCK and return a
4260  * reference to the inode in delegated_inode.  The caller should then
4261  * break the delegation and retry.  Because breaking a delegation may
4262  * take a long time, the caller should drop all locks before doing
4263  * so.
4264  *
4265  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4266  * be appropriate for callers that expect the underlying filesystem not
4267  * to be NFS exported.
4268  *
4269  * The worst of all namespace operations - renaming directory. "Perverted"
4270  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4271  * Problems:
4272  *	a) we can get into loop creation.
4273  *	b) race potential - two innocent renames can create a loop together.
4274  *	   That's where 4.4 screws up. Current fix: serialization on
4275  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4276  *	   story.
4277  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4278  *	   and source (if it is not a directory).
4279  *	   And that - after we got ->i_mutex on parents (until then we don't know
4280  *	   whether the target exists).  Solution: try to be smart with locking
4281  *	   order for inodes.  We rely on the fact that tree topology may change
4282  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4283  *	   move will be locked.  Thus we can rank directories by the tree
4284  *	   (ancestors first) and rank all non-directories after them.
4285  *	   That works since everybody except rename does "lock parent, lookup,
4286  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4287  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4288  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4289  *	   we'd better make sure that there's no link(2) for them.
4290  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4291  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4292  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4293  *	   ->i_mutex on parents, which works but leads to some truly excessive
4294  *	   locking].
4295  */
4296 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4297 	       struct inode *new_dir, struct dentry *new_dentry,
4298 	       struct inode **delegated_inode, unsigned int flags)
4299 {
4300 	int error;
4301 	bool is_dir = d_is_dir(old_dentry);
4302 	const unsigned char *old_name;
4303 	struct inode *source = old_dentry->d_inode;
4304 	struct inode *target = new_dentry->d_inode;
4305 	bool new_is_dir = false;
4306 	unsigned max_links = new_dir->i_sb->s_max_links;
4307 
4308 	if (source == target)
4309 		return 0;
4310 
4311 	error = may_delete(old_dir, old_dentry, is_dir);
4312 	if (error)
4313 		return error;
4314 
4315 	if (!target) {
4316 		error = may_create(new_dir, new_dentry);
4317 	} else {
4318 		new_is_dir = d_is_dir(new_dentry);
4319 
4320 		if (!(flags & RENAME_EXCHANGE))
4321 			error = may_delete(new_dir, new_dentry, is_dir);
4322 		else
4323 			error = may_delete(new_dir, new_dentry, new_is_dir);
4324 	}
4325 	if (error)
4326 		return error;
4327 
4328 	if (!old_dir->i_op->rename)
4329 		return -EPERM;
4330 
4331 	/*
4332 	 * If we are going to change the parent - check write permissions,
4333 	 * we'll need to flip '..'.
4334 	 */
4335 	if (new_dir != old_dir) {
4336 		if (is_dir) {
4337 			error = inode_permission(source, MAY_WRITE);
4338 			if (error)
4339 				return error;
4340 		}
4341 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4342 			error = inode_permission(target, MAY_WRITE);
4343 			if (error)
4344 				return error;
4345 		}
4346 	}
4347 
4348 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4349 				      flags);
4350 	if (error)
4351 		return error;
4352 
4353 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4354 	dget(new_dentry);
4355 	if (!is_dir || (flags & RENAME_EXCHANGE))
4356 		lock_two_nondirectories(source, target);
4357 	else if (target)
4358 		inode_lock(target);
4359 
4360 	error = -EBUSY;
4361 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4362 		goto out;
4363 
4364 	if (max_links && new_dir != old_dir) {
4365 		error = -EMLINK;
4366 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4367 			goto out;
4368 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4369 		    old_dir->i_nlink >= max_links)
4370 			goto out;
4371 	}
4372 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4373 		shrink_dcache_parent(new_dentry);
4374 	if (!is_dir) {
4375 		error = try_break_deleg(source, delegated_inode);
4376 		if (error)
4377 			goto out;
4378 	}
4379 	if (target && !new_is_dir) {
4380 		error = try_break_deleg(target, delegated_inode);
4381 		if (error)
4382 			goto out;
4383 	}
4384 	error = old_dir->i_op->rename(old_dir, old_dentry,
4385 				       new_dir, new_dentry, flags);
4386 	if (error)
4387 		goto out;
4388 
4389 	if (!(flags & RENAME_EXCHANGE) && target) {
4390 		if (is_dir)
4391 			target->i_flags |= S_DEAD;
4392 		dont_mount(new_dentry);
4393 		detach_mounts(new_dentry);
4394 	}
4395 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4396 		if (!(flags & RENAME_EXCHANGE))
4397 			d_move(old_dentry, new_dentry);
4398 		else
4399 			d_exchange(old_dentry, new_dentry);
4400 	}
4401 out:
4402 	if (!is_dir || (flags & RENAME_EXCHANGE))
4403 		unlock_two_nondirectories(source, target);
4404 	else if (target)
4405 		inode_unlock(target);
4406 	dput(new_dentry);
4407 	if (!error) {
4408 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4409 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4410 		if (flags & RENAME_EXCHANGE) {
4411 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4412 				      new_is_dir, NULL, new_dentry);
4413 		}
4414 	}
4415 	fsnotify_oldname_free(old_name);
4416 
4417 	return error;
4418 }
4419 EXPORT_SYMBOL(vfs_rename);
4420 
4421 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4422 		int, newdfd, const char __user *, newname, unsigned int, flags)
4423 {
4424 	struct dentry *old_dentry, *new_dentry;
4425 	struct dentry *trap;
4426 	struct path old_path, new_path;
4427 	struct qstr old_last, new_last;
4428 	int old_type, new_type;
4429 	struct inode *delegated_inode = NULL;
4430 	struct filename *from;
4431 	struct filename *to;
4432 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4433 	bool should_retry = false;
4434 	int error;
4435 
4436 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4437 		return -EINVAL;
4438 
4439 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4440 	    (flags & RENAME_EXCHANGE))
4441 		return -EINVAL;
4442 
4443 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4444 		return -EPERM;
4445 
4446 	if (flags & RENAME_EXCHANGE)
4447 		target_flags = 0;
4448 
4449 retry:
4450 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4451 				&old_path, &old_last, &old_type);
4452 	if (IS_ERR(from)) {
4453 		error = PTR_ERR(from);
4454 		goto exit;
4455 	}
4456 
4457 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4458 				&new_path, &new_last, &new_type);
4459 	if (IS_ERR(to)) {
4460 		error = PTR_ERR(to);
4461 		goto exit1;
4462 	}
4463 
4464 	error = -EXDEV;
4465 	if (old_path.mnt != new_path.mnt)
4466 		goto exit2;
4467 
4468 	error = -EBUSY;
4469 	if (old_type != LAST_NORM)
4470 		goto exit2;
4471 
4472 	if (flags & RENAME_NOREPLACE)
4473 		error = -EEXIST;
4474 	if (new_type != LAST_NORM)
4475 		goto exit2;
4476 
4477 	error = mnt_want_write(old_path.mnt);
4478 	if (error)
4479 		goto exit2;
4480 
4481 retry_deleg:
4482 	trap = lock_rename(new_path.dentry, old_path.dentry);
4483 
4484 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4485 	error = PTR_ERR(old_dentry);
4486 	if (IS_ERR(old_dentry))
4487 		goto exit3;
4488 	/* source must exist */
4489 	error = -ENOENT;
4490 	if (d_is_negative(old_dentry))
4491 		goto exit4;
4492 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4493 	error = PTR_ERR(new_dentry);
4494 	if (IS_ERR(new_dentry))
4495 		goto exit4;
4496 	error = -EEXIST;
4497 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4498 		goto exit5;
4499 	if (flags & RENAME_EXCHANGE) {
4500 		error = -ENOENT;
4501 		if (d_is_negative(new_dentry))
4502 			goto exit5;
4503 
4504 		if (!d_is_dir(new_dentry)) {
4505 			error = -ENOTDIR;
4506 			if (new_last.name[new_last.len])
4507 				goto exit5;
4508 		}
4509 	}
4510 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4511 	if (!d_is_dir(old_dentry)) {
4512 		error = -ENOTDIR;
4513 		if (old_last.name[old_last.len])
4514 			goto exit5;
4515 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4516 			goto exit5;
4517 	}
4518 	/* source should not be ancestor of target */
4519 	error = -EINVAL;
4520 	if (old_dentry == trap)
4521 		goto exit5;
4522 	/* target should not be an ancestor of source */
4523 	if (!(flags & RENAME_EXCHANGE))
4524 		error = -ENOTEMPTY;
4525 	if (new_dentry == trap)
4526 		goto exit5;
4527 
4528 	error = security_path_rename(&old_path, old_dentry,
4529 				     &new_path, new_dentry, flags);
4530 	if (error)
4531 		goto exit5;
4532 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4533 			   new_path.dentry->d_inode, new_dentry,
4534 			   &delegated_inode, flags);
4535 exit5:
4536 	dput(new_dentry);
4537 exit4:
4538 	dput(old_dentry);
4539 exit3:
4540 	unlock_rename(new_path.dentry, old_path.dentry);
4541 	if (delegated_inode) {
4542 		error = break_deleg_wait(&delegated_inode);
4543 		if (!error)
4544 			goto retry_deleg;
4545 	}
4546 	mnt_drop_write(old_path.mnt);
4547 exit2:
4548 	if (retry_estale(error, lookup_flags))
4549 		should_retry = true;
4550 	path_put(&new_path);
4551 	putname(to);
4552 exit1:
4553 	path_put(&old_path);
4554 	putname(from);
4555 	if (should_retry) {
4556 		should_retry = false;
4557 		lookup_flags |= LOOKUP_REVAL;
4558 		goto retry;
4559 	}
4560 exit:
4561 	return error;
4562 }
4563 
4564 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4565 		int, newdfd, const char __user *, newname)
4566 {
4567 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4568 }
4569 
4570 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4571 {
4572 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4573 }
4574 
4575 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4576 {
4577 	int error = may_create(dir, dentry);
4578 	if (error)
4579 		return error;
4580 
4581 	if (!dir->i_op->mknod)
4582 		return -EPERM;
4583 
4584 	return dir->i_op->mknod(dir, dentry,
4585 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4586 }
4587 EXPORT_SYMBOL(vfs_whiteout);
4588 
4589 int readlink_copy(char __user *buffer, int buflen, const char *link)
4590 {
4591 	int len = PTR_ERR(link);
4592 	if (IS_ERR(link))
4593 		goto out;
4594 
4595 	len = strlen(link);
4596 	if (len > (unsigned) buflen)
4597 		len = buflen;
4598 	if (copy_to_user(buffer, link, len))
4599 		len = -EFAULT;
4600 out:
4601 	return len;
4602 }
4603 
4604 /*
4605  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4606  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4607  * for any given inode is up to filesystem.
4608  */
4609 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4610 			    int buflen)
4611 {
4612 	DEFINE_DELAYED_CALL(done);
4613 	struct inode *inode = d_inode(dentry);
4614 	const char *link = inode->i_link;
4615 	int res;
4616 
4617 	if (!link) {
4618 		link = inode->i_op->get_link(dentry, inode, &done);
4619 		if (IS_ERR(link))
4620 			return PTR_ERR(link);
4621 	}
4622 	res = readlink_copy(buffer, buflen, link);
4623 	do_delayed_call(&done);
4624 	return res;
4625 }
4626 
4627 /**
4628  * vfs_readlink - copy symlink body into userspace buffer
4629  * @dentry: dentry on which to get symbolic link
4630  * @buffer: user memory pointer
4631  * @buflen: size of buffer
4632  *
4633  * Does not touch atime.  That's up to the caller if necessary
4634  *
4635  * Does not call security hook.
4636  */
4637 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4638 {
4639 	struct inode *inode = d_inode(dentry);
4640 
4641 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4642 		if (unlikely(inode->i_op->readlink))
4643 			return inode->i_op->readlink(dentry, buffer, buflen);
4644 
4645 		if (!d_is_symlink(dentry))
4646 			return -EINVAL;
4647 
4648 		spin_lock(&inode->i_lock);
4649 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4650 		spin_unlock(&inode->i_lock);
4651 	}
4652 
4653 	return generic_readlink(dentry, buffer, buflen);
4654 }
4655 EXPORT_SYMBOL(vfs_readlink);
4656 
4657 /**
4658  * vfs_get_link - get symlink body
4659  * @dentry: dentry on which to get symbolic link
4660  * @done: caller needs to free returned data with this
4661  *
4662  * Calls security hook and i_op->get_link() on the supplied inode.
4663  *
4664  * It does not touch atime.  That's up to the caller if necessary.
4665  *
4666  * Does not work on "special" symlinks like /proc/$$/fd/N
4667  */
4668 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4669 {
4670 	const char *res = ERR_PTR(-EINVAL);
4671 	struct inode *inode = d_inode(dentry);
4672 
4673 	if (d_is_symlink(dentry)) {
4674 		res = ERR_PTR(security_inode_readlink(dentry));
4675 		if (!res)
4676 			res = inode->i_op->get_link(dentry, inode, done);
4677 	}
4678 	return res;
4679 }
4680 EXPORT_SYMBOL(vfs_get_link);
4681 
4682 /* get the link contents into pagecache */
4683 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4684 			  struct delayed_call *callback)
4685 {
4686 	char *kaddr;
4687 	struct page *page;
4688 	struct address_space *mapping = inode->i_mapping;
4689 
4690 	if (!dentry) {
4691 		page = find_get_page(mapping, 0);
4692 		if (!page)
4693 			return ERR_PTR(-ECHILD);
4694 		if (!PageUptodate(page)) {
4695 			put_page(page);
4696 			return ERR_PTR(-ECHILD);
4697 		}
4698 	} else {
4699 		page = read_mapping_page(mapping, 0, NULL);
4700 		if (IS_ERR(page))
4701 			return (char*)page;
4702 	}
4703 	set_delayed_call(callback, page_put_link, page);
4704 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4705 	kaddr = page_address(page);
4706 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4707 	return kaddr;
4708 }
4709 
4710 EXPORT_SYMBOL(page_get_link);
4711 
4712 void page_put_link(void *arg)
4713 {
4714 	put_page(arg);
4715 }
4716 EXPORT_SYMBOL(page_put_link);
4717 
4718 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4719 {
4720 	DEFINE_DELAYED_CALL(done);
4721 	int res = readlink_copy(buffer, buflen,
4722 				page_get_link(dentry, d_inode(dentry),
4723 					      &done));
4724 	do_delayed_call(&done);
4725 	return res;
4726 }
4727 EXPORT_SYMBOL(page_readlink);
4728 
4729 /*
4730  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4731  */
4732 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4733 {
4734 	struct address_space *mapping = inode->i_mapping;
4735 	struct page *page;
4736 	void *fsdata;
4737 	int err;
4738 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4739 	if (nofs)
4740 		flags |= AOP_FLAG_NOFS;
4741 
4742 retry:
4743 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4744 				flags, &page, &fsdata);
4745 	if (err)
4746 		goto fail;
4747 
4748 	memcpy(page_address(page), symname, len-1);
4749 
4750 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4751 							page, fsdata);
4752 	if (err < 0)
4753 		goto fail;
4754 	if (err < len-1)
4755 		goto retry;
4756 
4757 	mark_inode_dirty(inode);
4758 	return 0;
4759 fail:
4760 	return err;
4761 }
4762 EXPORT_SYMBOL(__page_symlink);
4763 
4764 int page_symlink(struct inode *inode, const char *symname, int len)
4765 {
4766 	return __page_symlink(inode, symname, len,
4767 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4768 }
4769 EXPORT_SYMBOL(page_symlink);
4770 
4771 const struct inode_operations page_symlink_inode_operations = {
4772 	.get_link	= page_get_link,
4773 };
4774 EXPORT_SYMBOL(page_symlink_inode_operations);
4775