1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 void final_putname(struct filename *name) 122 { 123 if (name->separate) { 124 __putname(name->name); 125 kfree(name); 126 } else { 127 __putname(name); 128 } 129 } 130 131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 132 133 struct filename * 134 getname_flags(const char __user *filename, int flags, int *empty) 135 { 136 struct filename *result, *err; 137 int len; 138 long max; 139 char *kname; 140 141 result = audit_reusename(filename); 142 if (result) 143 return result; 144 145 result = __getname(); 146 if (unlikely(!result)) 147 return ERR_PTR(-ENOMEM); 148 149 /* 150 * First, try to embed the struct filename inside the names_cache 151 * allocation 152 */ 153 kname = (char *)result + sizeof(*result); 154 result->name = kname; 155 result->separate = false; 156 max = EMBEDDED_NAME_MAX; 157 158 recopy: 159 len = strncpy_from_user(kname, filename, max); 160 if (unlikely(len < 0)) { 161 err = ERR_PTR(len); 162 goto error; 163 } 164 165 /* 166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 167 * separate struct filename so we can dedicate the entire 168 * names_cache allocation for the pathname, and re-do the copy from 169 * userland. 170 */ 171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 172 kname = (char *)result; 173 174 result = kzalloc(sizeof(*result), GFP_KERNEL); 175 if (!result) { 176 err = ERR_PTR(-ENOMEM); 177 result = (struct filename *)kname; 178 goto error; 179 } 180 result->name = kname; 181 result->separate = true; 182 max = PATH_MAX; 183 goto recopy; 184 } 185 186 /* The empty path is special. */ 187 if (unlikely(!len)) { 188 if (empty) 189 *empty = 1; 190 err = ERR_PTR(-ENOENT); 191 if (!(flags & LOOKUP_EMPTY)) 192 goto error; 193 } 194 195 err = ERR_PTR(-ENAMETOOLONG); 196 if (unlikely(len >= PATH_MAX)) 197 goto error; 198 199 result->uptr = filename; 200 result->aname = NULL; 201 audit_getname(result); 202 return result; 203 204 error: 205 final_putname(result); 206 return err; 207 } 208 209 struct filename * 210 getname(const char __user * filename) 211 { 212 return getname_flags(filename, 0, NULL); 213 } 214 215 /* 216 * The "getname_kernel()" interface doesn't do pathnames longer 217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user. 218 */ 219 struct filename * 220 getname_kernel(const char * filename) 221 { 222 struct filename *result; 223 char *kname; 224 int len; 225 226 len = strlen(filename); 227 if (len >= EMBEDDED_NAME_MAX) 228 return ERR_PTR(-ENAMETOOLONG); 229 230 result = __getname(); 231 if (unlikely(!result)) 232 return ERR_PTR(-ENOMEM); 233 234 kname = (char *)result + sizeof(*result); 235 result->name = kname; 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->separate = false; 239 240 strlcpy(kname, filename, EMBEDDED_NAME_MAX); 241 return result; 242 } 243 244 #ifdef CONFIG_AUDITSYSCALL 245 void putname(struct filename *name) 246 { 247 if (unlikely(!audit_dummy_context())) 248 return audit_putname(name); 249 final_putname(name); 250 } 251 #endif 252 253 static int check_acl(struct inode *inode, int mask) 254 { 255 #ifdef CONFIG_FS_POSIX_ACL 256 struct posix_acl *acl; 257 258 if (mask & MAY_NOT_BLOCK) { 259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 260 if (!acl) 261 return -EAGAIN; 262 /* no ->get_acl() calls in RCU mode... */ 263 if (acl == ACL_NOT_CACHED) 264 return -ECHILD; 265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 266 } 267 268 acl = get_acl(inode, ACL_TYPE_ACCESS); 269 if (IS_ERR(acl)) 270 return PTR_ERR(acl); 271 if (acl) { 272 int error = posix_acl_permission(inode, acl, mask); 273 posix_acl_release(acl); 274 return error; 275 } 276 #endif 277 278 return -EAGAIN; 279 } 280 281 /* 282 * This does the basic permission checking 283 */ 284 static int acl_permission_check(struct inode *inode, int mask) 285 { 286 unsigned int mode = inode->i_mode; 287 288 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 289 mode >>= 6; 290 else { 291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 292 int error = check_acl(inode, mask); 293 if (error != -EAGAIN) 294 return error; 295 } 296 297 if (in_group_p(inode->i_gid)) 298 mode >>= 3; 299 } 300 301 /* 302 * If the DACs are ok we don't need any capability check. 303 */ 304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 305 return 0; 306 return -EACCES; 307 } 308 309 /** 310 * generic_permission - check for access rights on a Posix-like filesystem 311 * @inode: inode to check access rights for 312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 313 * 314 * Used to check for read/write/execute permissions on a file. 315 * We use "fsuid" for this, letting us set arbitrary permissions 316 * for filesystem access without changing the "normal" uids which 317 * are used for other things. 318 * 319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 320 * request cannot be satisfied (eg. requires blocking or too much complexity). 321 * It would then be called again in ref-walk mode. 322 */ 323 int generic_permission(struct inode *inode, int mask) 324 { 325 int ret; 326 327 /* 328 * Do the basic permission checks. 329 */ 330 ret = acl_permission_check(inode, mask); 331 if (ret != -EACCES) 332 return ret; 333 334 if (S_ISDIR(inode->i_mode)) { 335 /* DACs are overridable for directories */ 336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 337 return 0; 338 if (!(mask & MAY_WRITE)) 339 if (capable_wrt_inode_uidgid(inode, 340 CAP_DAC_READ_SEARCH)) 341 return 0; 342 return -EACCES; 343 } 344 /* 345 * Read/write DACs are always overridable. 346 * Executable DACs are overridable when there is 347 * at least one exec bit set. 348 */ 349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 351 return 0; 352 353 /* 354 * Searching includes executable on directories, else just read. 355 */ 356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 357 if (mask == MAY_READ) 358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 359 return 0; 360 361 return -EACCES; 362 } 363 EXPORT_SYMBOL(generic_permission); 364 365 /* 366 * We _really_ want to just do "generic_permission()" without 367 * even looking at the inode->i_op values. So we keep a cache 368 * flag in inode->i_opflags, that says "this has not special 369 * permission function, use the fast case". 370 */ 371 static inline int do_inode_permission(struct inode *inode, int mask) 372 { 373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 374 if (likely(inode->i_op->permission)) 375 return inode->i_op->permission(inode, mask); 376 377 /* This gets set once for the inode lifetime */ 378 spin_lock(&inode->i_lock); 379 inode->i_opflags |= IOP_FASTPERM; 380 spin_unlock(&inode->i_lock); 381 } 382 return generic_permission(inode, mask); 383 } 384 385 /** 386 * __inode_permission - Check for access rights to a given inode 387 * @inode: Inode to check permission on 388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 389 * 390 * Check for read/write/execute permissions on an inode. 391 * 392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 393 * 394 * This does not check for a read-only file system. You probably want 395 * inode_permission(). 396 */ 397 int __inode_permission(struct inode *inode, int mask) 398 { 399 int retval; 400 401 if (unlikely(mask & MAY_WRITE)) { 402 /* 403 * Nobody gets write access to an immutable file. 404 */ 405 if (IS_IMMUTABLE(inode)) 406 return -EACCES; 407 } 408 409 retval = do_inode_permission(inode, mask); 410 if (retval) 411 return retval; 412 413 retval = devcgroup_inode_permission(inode, mask); 414 if (retval) 415 return retval; 416 417 return security_inode_permission(inode, mask); 418 } 419 EXPORT_SYMBOL(__inode_permission); 420 421 /** 422 * sb_permission - Check superblock-level permissions 423 * @sb: Superblock of inode to check permission on 424 * @inode: Inode to check permission on 425 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 426 * 427 * Separate out file-system wide checks from inode-specific permission checks. 428 */ 429 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 430 { 431 if (unlikely(mask & MAY_WRITE)) { 432 umode_t mode = inode->i_mode; 433 434 /* Nobody gets write access to a read-only fs. */ 435 if ((sb->s_flags & MS_RDONLY) && 436 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 437 return -EROFS; 438 } 439 return 0; 440 } 441 442 /** 443 * inode_permission - Check for access rights to a given inode 444 * @inode: Inode to check permission on 445 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 446 * 447 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 448 * this, letting us set arbitrary permissions for filesystem access without 449 * changing the "normal" UIDs which are used for other things. 450 * 451 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 452 */ 453 int inode_permission(struct inode *inode, int mask) 454 { 455 int retval; 456 457 retval = sb_permission(inode->i_sb, inode, mask); 458 if (retval) 459 return retval; 460 return __inode_permission(inode, mask); 461 } 462 EXPORT_SYMBOL(inode_permission); 463 464 /** 465 * path_get - get a reference to a path 466 * @path: path to get the reference to 467 * 468 * Given a path increment the reference count to the dentry and the vfsmount. 469 */ 470 void path_get(const struct path *path) 471 { 472 mntget(path->mnt); 473 dget(path->dentry); 474 } 475 EXPORT_SYMBOL(path_get); 476 477 /** 478 * path_put - put a reference to a path 479 * @path: path to put the reference to 480 * 481 * Given a path decrement the reference count to the dentry and the vfsmount. 482 */ 483 void path_put(const struct path *path) 484 { 485 dput(path->dentry); 486 mntput(path->mnt); 487 } 488 EXPORT_SYMBOL(path_put); 489 490 struct nameidata { 491 struct path path; 492 struct qstr last; 493 struct path root; 494 struct inode *inode; /* path.dentry.d_inode */ 495 unsigned int flags; 496 unsigned seq, m_seq; 497 int last_type; 498 unsigned depth; 499 struct file *base; 500 char *saved_names[MAX_NESTED_LINKS + 1]; 501 }; 502 503 /* 504 * Path walking has 2 modes, rcu-walk and ref-walk (see 505 * Documentation/filesystems/path-lookup.txt). In situations when we can't 506 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 507 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 508 * mode. Refcounts are grabbed at the last known good point before rcu-walk 509 * got stuck, so ref-walk may continue from there. If this is not successful 510 * (eg. a seqcount has changed), then failure is returned and it's up to caller 511 * to restart the path walk from the beginning in ref-walk mode. 512 */ 513 514 /** 515 * unlazy_walk - try to switch to ref-walk mode. 516 * @nd: nameidata pathwalk data 517 * @dentry: child of nd->path.dentry or NULL 518 * Returns: 0 on success, -ECHILD on failure 519 * 520 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 521 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 522 * @nd or NULL. Must be called from rcu-walk context. 523 */ 524 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 525 { 526 struct fs_struct *fs = current->fs; 527 struct dentry *parent = nd->path.dentry; 528 529 BUG_ON(!(nd->flags & LOOKUP_RCU)); 530 531 /* 532 * After legitimizing the bastards, terminate_walk() 533 * will do the right thing for non-RCU mode, and all our 534 * subsequent exit cases should rcu_read_unlock() 535 * before returning. Do vfsmount first; if dentry 536 * can't be legitimized, just set nd->path.dentry to NULL 537 * and rely on dput(NULL) being a no-op. 538 */ 539 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 540 return -ECHILD; 541 nd->flags &= ~LOOKUP_RCU; 542 543 if (!lockref_get_not_dead(&parent->d_lockref)) { 544 nd->path.dentry = NULL; 545 goto out; 546 } 547 548 /* 549 * For a negative lookup, the lookup sequence point is the parents 550 * sequence point, and it only needs to revalidate the parent dentry. 551 * 552 * For a positive lookup, we need to move both the parent and the 553 * dentry from the RCU domain to be properly refcounted. And the 554 * sequence number in the dentry validates *both* dentry counters, 555 * since we checked the sequence number of the parent after we got 556 * the child sequence number. So we know the parent must still 557 * be valid if the child sequence number is still valid. 558 */ 559 if (!dentry) { 560 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 561 goto out; 562 BUG_ON(nd->inode != parent->d_inode); 563 } else { 564 if (!lockref_get_not_dead(&dentry->d_lockref)) 565 goto out; 566 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 567 goto drop_dentry; 568 } 569 570 /* 571 * Sequence counts matched. Now make sure that the root is 572 * still valid and get it if required. 573 */ 574 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 575 spin_lock(&fs->lock); 576 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 577 goto unlock_and_drop_dentry; 578 path_get(&nd->root); 579 spin_unlock(&fs->lock); 580 } 581 582 rcu_read_unlock(); 583 return 0; 584 585 unlock_and_drop_dentry: 586 spin_unlock(&fs->lock); 587 drop_dentry: 588 rcu_read_unlock(); 589 dput(dentry); 590 goto drop_root_mnt; 591 out: 592 rcu_read_unlock(); 593 drop_root_mnt: 594 if (!(nd->flags & LOOKUP_ROOT)) 595 nd->root.mnt = NULL; 596 return -ECHILD; 597 } 598 599 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 600 { 601 return dentry->d_op->d_revalidate(dentry, flags); 602 } 603 604 /** 605 * complete_walk - successful completion of path walk 606 * @nd: pointer nameidata 607 * 608 * If we had been in RCU mode, drop out of it and legitimize nd->path. 609 * Revalidate the final result, unless we'd already done that during 610 * the path walk or the filesystem doesn't ask for it. Return 0 on 611 * success, -error on failure. In case of failure caller does not 612 * need to drop nd->path. 613 */ 614 static int complete_walk(struct nameidata *nd) 615 { 616 struct dentry *dentry = nd->path.dentry; 617 int status; 618 619 if (nd->flags & LOOKUP_RCU) { 620 nd->flags &= ~LOOKUP_RCU; 621 if (!(nd->flags & LOOKUP_ROOT)) 622 nd->root.mnt = NULL; 623 624 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 625 rcu_read_unlock(); 626 return -ECHILD; 627 } 628 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 629 rcu_read_unlock(); 630 mntput(nd->path.mnt); 631 return -ECHILD; 632 } 633 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 634 rcu_read_unlock(); 635 dput(dentry); 636 mntput(nd->path.mnt); 637 return -ECHILD; 638 } 639 rcu_read_unlock(); 640 } 641 642 if (likely(!(nd->flags & LOOKUP_JUMPED))) 643 return 0; 644 645 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 646 return 0; 647 648 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 649 if (status > 0) 650 return 0; 651 652 if (!status) 653 status = -ESTALE; 654 655 path_put(&nd->path); 656 return status; 657 } 658 659 static __always_inline void set_root(struct nameidata *nd) 660 { 661 get_fs_root(current->fs, &nd->root); 662 } 663 664 static int link_path_walk(const char *, struct nameidata *); 665 666 static __always_inline unsigned set_root_rcu(struct nameidata *nd) 667 { 668 struct fs_struct *fs = current->fs; 669 unsigned seq, res; 670 671 do { 672 seq = read_seqcount_begin(&fs->seq); 673 nd->root = fs->root; 674 res = __read_seqcount_begin(&nd->root.dentry->d_seq); 675 } while (read_seqcount_retry(&fs->seq, seq)); 676 return res; 677 } 678 679 static void path_put_conditional(struct path *path, struct nameidata *nd) 680 { 681 dput(path->dentry); 682 if (path->mnt != nd->path.mnt) 683 mntput(path->mnt); 684 } 685 686 static inline void path_to_nameidata(const struct path *path, 687 struct nameidata *nd) 688 { 689 if (!(nd->flags & LOOKUP_RCU)) { 690 dput(nd->path.dentry); 691 if (nd->path.mnt != path->mnt) 692 mntput(nd->path.mnt); 693 } 694 nd->path.mnt = path->mnt; 695 nd->path.dentry = path->dentry; 696 } 697 698 /* 699 * Helper to directly jump to a known parsed path from ->follow_link, 700 * caller must have taken a reference to path beforehand. 701 */ 702 void nd_jump_link(struct nameidata *nd, struct path *path) 703 { 704 path_put(&nd->path); 705 706 nd->path = *path; 707 nd->inode = nd->path.dentry->d_inode; 708 nd->flags |= LOOKUP_JUMPED; 709 } 710 711 void nd_set_link(struct nameidata *nd, char *path) 712 { 713 nd->saved_names[nd->depth] = path; 714 } 715 EXPORT_SYMBOL(nd_set_link); 716 717 char *nd_get_link(struct nameidata *nd) 718 { 719 return nd->saved_names[nd->depth]; 720 } 721 EXPORT_SYMBOL(nd_get_link); 722 723 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 724 { 725 struct inode *inode = link->dentry->d_inode; 726 if (inode->i_op->put_link) 727 inode->i_op->put_link(link->dentry, nd, cookie); 728 path_put(link); 729 } 730 731 int sysctl_protected_symlinks __read_mostly = 0; 732 int sysctl_protected_hardlinks __read_mostly = 0; 733 734 /** 735 * may_follow_link - Check symlink following for unsafe situations 736 * @link: The path of the symlink 737 * @nd: nameidata pathwalk data 738 * 739 * In the case of the sysctl_protected_symlinks sysctl being enabled, 740 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 741 * in a sticky world-writable directory. This is to protect privileged 742 * processes from failing races against path names that may change out 743 * from under them by way of other users creating malicious symlinks. 744 * It will permit symlinks to be followed only when outside a sticky 745 * world-writable directory, or when the uid of the symlink and follower 746 * match, or when the directory owner matches the symlink's owner. 747 * 748 * Returns 0 if following the symlink is allowed, -ve on error. 749 */ 750 static inline int may_follow_link(struct path *link, struct nameidata *nd) 751 { 752 const struct inode *inode; 753 const struct inode *parent; 754 755 if (!sysctl_protected_symlinks) 756 return 0; 757 758 /* Allowed if owner and follower match. */ 759 inode = link->dentry->d_inode; 760 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 761 return 0; 762 763 /* Allowed if parent directory not sticky and world-writable. */ 764 parent = nd->path.dentry->d_inode; 765 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 766 return 0; 767 768 /* Allowed if parent directory and link owner match. */ 769 if (uid_eq(parent->i_uid, inode->i_uid)) 770 return 0; 771 772 audit_log_link_denied("follow_link", link); 773 path_put_conditional(link, nd); 774 path_put(&nd->path); 775 return -EACCES; 776 } 777 778 /** 779 * safe_hardlink_source - Check for safe hardlink conditions 780 * @inode: the source inode to hardlink from 781 * 782 * Return false if at least one of the following conditions: 783 * - inode is not a regular file 784 * - inode is setuid 785 * - inode is setgid and group-exec 786 * - access failure for read and write 787 * 788 * Otherwise returns true. 789 */ 790 static bool safe_hardlink_source(struct inode *inode) 791 { 792 umode_t mode = inode->i_mode; 793 794 /* Special files should not get pinned to the filesystem. */ 795 if (!S_ISREG(mode)) 796 return false; 797 798 /* Setuid files should not get pinned to the filesystem. */ 799 if (mode & S_ISUID) 800 return false; 801 802 /* Executable setgid files should not get pinned to the filesystem. */ 803 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 804 return false; 805 806 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 807 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 808 return false; 809 810 return true; 811 } 812 813 /** 814 * may_linkat - Check permissions for creating a hardlink 815 * @link: the source to hardlink from 816 * 817 * Block hardlink when all of: 818 * - sysctl_protected_hardlinks enabled 819 * - fsuid does not match inode 820 * - hardlink source is unsafe (see safe_hardlink_source() above) 821 * - not CAP_FOWNER 822 * 823 * Returns 0 if successful, -ve on error. 824 */ 825 static int may_linkat(struct path *link) 826 { 827 const struct cred *cred; 828 struct inode *inode; 829 830 if (!sysctl_protected_hardlinks) 831 return 0; 832 833 cred = current_cred(); 834 inode = link->dentry->d_inode; 835 836 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 837 * otherwise, it must be a safe source. 838 */ 839 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 840 capable(CAP_FOWNER)) 841 return 0; 842 843 audit_log_link_denied("linkat", link); 844 return -EPERM; 845 } 846 847 static __always_inline int 848 follow_link(struct path *link, struct nameidata *nd, void **p) 849 { 850 struct dentry *dentry = link->dentry; 851 int error; 852 char *s; 853 854 BUG_ON(nd->flags & LOOKUP_RCU); 855 856 if (link->mnt == nd->path.mnt) 857 mntget(link->mnt); 858 859 error = -ELOOP; 860 if (unlikely(current->total_link_count >= 40)) 861 goto out_put_nd_path; 862 863 cond_resched(); 864 current->total_link_count++; 865 866 touch_atime(link); 867 nd_set_link(nd, NULL); 868 869 error = security_inode_follow_link(link->dentry, nd); 870 if (error) 871 goto out_put_nd_path; 872 873 nd->last_type = LAST_BIND; 874 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 875 error = PTR_ERR(*p); 876 if (IS_ERR(*p)) 877 goto out_put_nd_path; 878 879 error = 0; 880 s = nd_get_link(nd); 881 if (s) { 882 if (unlikely(IS_ERR(s))) { 883 path_put(&nd->path); 884 put_link(nd, link, *p); 885 return PTR_ERR(s); 886 } 887 if (*s == '/') { 888 if (!nd->root.mnt) 889 set_root(nd); 890 path_put(&nd->path); 891 nd->path = nd->root; 892 path_get(&nd->root); 893 nd->flags |= LOOKUP_JUMPED; 894 } 895 nd->inode = nd->path.dentry->d_inode; 896 error = link_path_walk(s, nd); 897 if (unlikely(error)) 898 put_link(nd, link, *p); 899 } 900 901 return error; 902 903 out_put_nd_path: 904 *p = NULL; 905 path_put(&nd->path); 906 path_put(link); 907 return error; 908 } 909 910 static int follow_up_rcu(struct path *path) 911 { 912 struct mount *mnt = real_mount(path->mnt); 913 struct mount *parent; 914 struct dentry *mountpoint; 915 916 parent = mnt->mnt_parent; 917 if (&parent->mnt == path->mnt) 918 return 0; 919 mountpoint = mnt->mnt_mountpoint; 920 path->dentry = mountpoint; 921 path->mnt = &parent->mnt; 922 return 1; 923 } 924 925 /* 926 * follow_up - Find the mountpoint of path's vfsmount 927 * 928 * Given a path, find the mountpoint of its source file system. 929 * Replace @path with the path of the mountpoint in the parent mount. 930 * Up is towards /. 931 * 932 * Return 1 if we went up a level and 0 if we were already at the 933 * root. 934 */ 935 int follow_up(struct path *path) 936 { 937 struct mount *mnt = real_mount(path->mnt); 938 struct mount *parent; 939 struct dentry *mountpoint; 940 941 read_seqlock_excl(&mount_lock); 942 parent = mnt->mnt_parent; 943 if (parent == mnt) { 944 read_sequnlock_excl(&mount_lock); 945 return 0; 946 } 947 mntget(&parent->mnt); 948 mountpoint = dget(mnt->mnt_mountpoint); 949 read_sequnlock_excl(&mount_lock); 950 dput(path->dentry); 951 path->dentry = mountpoint; 952 mntput(path->mnt); 953 path->mnt = &parent->mnt; 954 return 1; 955 } 956 EXPORT_SYMBOL(follow_up); 957 958 /* 959 * Perform an automount 960 * - return -EISDIR to tell follow_managed() to stop and return the path we 961 * were called with. 962 */ 963 static int follow_automount(struct path *path, unsigned flags, 964 bool *need_mntput) 965 { 966 struct vfsmount *mnt; 967 int err; 968 969 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 970 return -EREMOTE; 971 972 /* We don't want to mount if someone's just doing a stat - 973 * unless they're stat'ing a directory and appended a '/' to 974 * the name. 975 * 976 * We do, however, want to mount if someone wants to open or 977 * create a file of any type under the mountpoint, wants to 978 * traverse through the mountpoint or wants to open the 979 * mounted directory. Also, autofs may mark negative dentries 980 * as being automount points. These will need the attentions 981 * of the daemon to instantiate them before they can be used. 982 */ 983 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 984 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 985 path->dentry->d_inode) 986 return -EISDIR; 987 988 current->total_link_count++; 989 if (current->total_link_count >= 40) 990 return -ELOOP; 991 992 mnt = path->dentry->d_op->d_automount(path); 993 if (IS_ERR(mnt)) { 994 /* 995 * The filesystem is allowed to return -EISDIR here to indicate 996 * it doesn't want to automount. For instance, autofs would do 997 * this so that its userspace daemon can mount on this dentry. 998 * 999 * However, we can only permit this if it's a terminal point in 1000 * the path being looked up; if it wasn't then the remainder of 1001 * the path is inaccessible and we should say so. 1002 */ 1003 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 1004 return -EREMOTE; 1005 return PTR_ERR(mnt); 1006 } 1007 1008 if (!mnt) /* mount collision */ 1009 return 0; 1010 1011 if (!*need_mntput) { 1012 /* lock_mount() may release path->mnt on error */ 1013 mntget(path->mnt); 1014 *need_mntput = true; 1015 } 1016 err = finish_automount(mnt, path); 1017 1018 switch (err) { 1019 case -EBUSY: 1020 /* Someone else made a mount here whilst we were busy */ 1021 return 0; 1022 case 0: 1023 path_put(path); 1024 path->mnt = mnt; 1025 path->dentry = dget(mnt->mnt_root); 1026 return 0; 1027 default: 1028 return err; 1029 } 1030 1031 } 1032 1033 /* 1034 * Handle a dentry that is managed in some way. 1035 * - Flagged for transit management (autofs) 1036 * - Flagged as mountpoint 1037 * - Flagged as automount point 1038 * 1039 * This may only be called in refwalk mode. 1040 * 1041 * Serialization is taken care of in namespace.c 1042 */ 1043 static int follow_managed(struct path *path, unsigned flags) 1044 { 1045 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1046 unsigned managed; 1047 bool need_mntput = false; 1048 int ret = 0; 1049 1050 /* Given that we're not holding a lock here, we retain the value in a 1051 * local variable for each dentry as we look at it so that we don't see 1052 * the components of that value change under us */ 1053 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1054 managed &= DCACHE_MANAGED_DENTRY, 1055 unlikely(managed != 0)) { 1056 /* Allow the filesystem to manage the transit without i_mutex 1057 * being held. */ 1058 if (managed & DCACHE_MANAGE_TRANSIT) { 1059 BUG_ON(!path->dentry->d_op); 1060 BUG_ON(!path->dentry->d_op->d_manage); 1061 ret = path->dentry->d_op->d_manage(path->dentry, false); 1062 if (ret < 0) 1063 break; 1064 } 1065 1066 /* Transit to a mounted filesystem. */ 1067 if (managed & DCACHE_MOUNTED) { 1068 struct vfsmount *mounted = lookup_mnt(path); 1069 if (mounted) { 1070 dput(path->dentry); 1071 if (need_mntput) 1072 mntput(path->mnt); 1073 path->mnt = mounted; 1074 path->dentry = dget(mounted->mnt_root); 1075 need_mntput = true; 1076 continue; 1077 } 1078 1079 /* Something is mounted on this dentry in another 1080 * namespace and/or whatever was mounted there in this 1081 * namespace got unmounted before lookup_mnt() could 1082 * get it */ 1083 } 1084 1085 /* Handle an automount point */ 1086 if (managed & DCACHE_NEED_AUTOMOUNT) { 1087 ret = follow_automount(path, flags, &need_mntput); 1088 if (ret < 0) 1089 break; 1090 continue; 1091 } 1092 1093 /* We didn't change the current path point */ 1094 break; 1095 } 1096 1097 if (need_mntput && path->mnt == mnt) 1098 mntput(path->mnt); 1099 if (ret == -EISDIR) 1100 ret = 0; 1101 return ret < 0 ? ret : need_mntput; 1102 } 1103 1104 int follow_down_one(struct path *path) 1105 { 1106 struct vfsmount *mounted; 1107 1108 mounted = lookup_mnt(path); 1109 if (mounted) { 1110 dput(path->dentry); 1111 mntput(path->mnt); 1112 path->mnt = mounted; 1113 path->dentry = dget(mounted->mnt_root); 1114 return 1; 1115 } 1116 return 0; 1117 } 1118 EXPORT_SYMBOL(follow_down_one); 1119 1120 static inline int managed_dentry_rcu(struct dentry *dentry) 1121 { 1122 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1123 dentry->d_op->d_manage(dentry, true) : 0; 1124 } 1125 1126 /* 1127 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1128 * we meet a managed dentry that would need blocking. 1129 */ 1130 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1131 struct inode **inode) 1132 { 1133 for (;;) { 1134 struct mount *mounted; 1135 /* 1136 * Don't forget we might have a non-mountpoint managed dentry 1137 * that wants to block transit. 1138 */ 1139 switch (managed_dentry_rcu(path->dentry)) { 1140 case -ECHILD: 1141 default: 1142 return false; 1143 case -EISDIR: 1144 return true; 1145 case 0: 1146 break; 1147 } 1148 1149 if (!d_mountpoint(path->dentry)) 1150 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1151 1152 mounted = __lookup_mnt(path->mnt, path->dentry); 1153 if (!mounted) 1154 break; 1155 path->mnt = &mounted->mnt; 1156 path->dentry = mounted->mnt.mnt_root; 1157 nd->flags |= LOOKUP_JUMPED; 1158 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1159 /* 1160 * Update the inode too. We don't need to re-check the 1161 * dentry sequence number here after this d_inode read, 1162 * because a mount-point is always pinned. 1163 */ 1164 *inode = path->dentry->d_inode; 1165 } 1166 return !read_seqretry(&mount_lock, nd->m_seq) && 1167 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1168 } 1169 1170 static int follow_dotdot_rcu(struct nameidata *nd) 1171 { 1172 struct inode *inode = nd->inode; 1173 if (!nd->root.mnt) 1174 set_root_rcu(nd); 1175 1176 while (1) { 1177 if (nd->path.dentry == nd->root.dentry && 1178 nd->path.mnt == nd->root.mnt) { 1179 break; 1180 } 1181 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1182 struct dentry *old = nd->path.dentry; 1183 struct dentry *parent = old->d_parent; 1184 unsigned seq; 1185 1186 inode = parent->d_inode; 1187 seq = read_seqcount_begin(&parent->d_seq); 1188 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1189 goto failed; 1190 nd->path.dentry = parent; 1191 nd->seq = seq; 1192 break; 1193 } 1194 if (!follow_up_rcu(&nd->path)) 1195 break; 1196 inode = nd->path.dentry->d_inode; 1197 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1198 } 1199 while (d_mountpoint(nd->path.dentry)) { 1200 struct mount *mounted; 1201 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1202 if (!mounted) 1203 break; 1204 nd->path.mnt = &mounted->mnt; 1205 nd->path.dentry = mounted->mnt.mnt_root; 1206 inode = nd->path.dentry->d_inode; 1207 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1208 if (read_seqretry(&mount_lock, nd->m_seq)) 1209 goto failed; 1210 } 1211 nd->inode = inode; 1212 return 0; 1213 1214 failed: 1215 nd->flags &= ~LOOKUP_RCU; 1216 if (!(nd->flags & LOOKUP_ROOT)) 1217 nd->root.mnt = NULL; 1218 rcu_read_unlock(); 1219 return -ECHILD; 1220 } 1221 1222 /* 1223 * Follow down to the covering mount currently visible to userspace. At each 1224 * point, the filesystem owning that dentry may be queried as to whether the 1225 * caller is permitted to proceed or not. 1226 */ 1227 int follow_down(struct path *path) 1228 { 1229 unsigned managed; 1230 int ret; 1231 1232 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1233 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1234 /* Allow the filesystem to manage the transit without i_mutex 1235 * being held. 1236 * 1237 * We indicate to the filesystem if someone is trying to mount 1238 * something here. This gives autofs the chance to deny anyone 1239 * other than its daemon the right to mount on its 1240 * superstructure. 1241 * 1242 * The filesystem may sleep at this point. 1243 */ 1244 if (managed & DCACHE_MANAGE_TRANSIT) { 1245 BUG_ON(!path->dentry->d_op); 1246 BUG_ON(!path->dentry->d_op->d_manage); 1247 ret = path->dentry->d_op->d_manage( 1248 path->dentry, false); 1249 if (ret < 0) 1250 return ret == -EISDIR ? 0 : ret; 1251 } 1252 1253 /* Transit to a mounted filesystem. */ 1254 if (managed & DCACHE_MOUNTED) { 1255 struct vfsmount *mounted = lookup_mnt(path); 1256 if (!mounted) 1257 break; 1258 dput(path->dentry); 1259 mntput(path->mnt); 1260 path->mnt = mounted; 1261 path->dentry = dget(mounted->mnt_root); 1262 continue; 1263 } 1264 1265 /* Don't handle automount points here */ 1266 break; 1267 } 1268 return 0; 1269 } 1270 EXPORT_SYMBOL(follow_down); 1271 1272 /* 1273 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1274 */ 1275 static void follow_mount(struct path *path) 1276 { 1277 while (d_mountpoint(path->dentry)) { 1278 struct vfsmount *mounted = lookup_mnt(path); 1279 if (!mounted) 1280 break; 1281 dput(path->dentry); 1282 mntput(path->mnt); 1283 path->mnt = mounted; 1284 path->dentry = dget(mounted->mnt_root); 1285 } 1286 } 1287 1288 static void follow_dotdot(struct nameidata *nd) 1289 { 1290 if (!nd->root.mnt) 1291 set_root(nd); 1292 1293 while(1) { 1294 struct dentry *old = nd->path.dentry; 1295 1296 if (nd->path.dentry == nd->root.dentry && 1297 nd->path.mnt == nd->root.mnt) { 1298 break; 1299 } 1300 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1301 /* rare case of legitimate dget_parent()... */ 1302 nd->path.dentry = dget_parent(nd->path.dentry); 1303 dput(old); 1304 break; 1305 } 1306 if (!follow_up(&nd->path)) 1307 break; 1308 } 1309 follow_mount(&nd->path); 1310 nd->inode = nd->path.dentry->d_inode; 1311 } 1312 1313 /* 1314 * This looks up the name in dcache, possibly revalidates the old dentry and 1315 * allocates a new one if not found or not valid. In the need_lookup argument 1316 * returns whether i_op->lookup is necessary. 1317 * 1318 * dir->d_inode->i_mutex must be held 1319 */ 1320 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1321 unsigned int flags, bool *need_lookup) 1322 { 1323 struct dentry *dentry; 1324 int error; 1325 1326 *need_lookup = false; 1327 dentry = d_lookup(dir, name); 1328 if (dentry) { 1329 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1330 error = d_revalidate(dentry, flags); 1331 if (unlikely(error <= 0)) { 1332 if (error < 0) { 1333 dput(dentry); 1334 return ERR_PTR(error); 1335 } else { 1336 d_invalidate(dentry); 1337 dput(dentry); 1338 dentry = NULL; 1339 } 1340 } 1341 } 1342 } 1343 1344 if (!dentry) { 1345 dentry = d_alloc(dir, name); 1346 if (unlikely(!dentry)) 1347 return ERR_PTR(-ENOMEM); 1348 1349 *need_lookup = true; 1350 } 1351 return dentry; 1352 } 1353 1354 /* 1355 * Call i_op->lookup on the dentry. The dentry must be negative and 1356 * unhashed. 1357 * 1358 * dir->d_inode->i_mutex must be held 1359 */ 1360 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1361 unsigned int flags) 1362 { 1363 struct dentry *old; 1364 1365 /* Don't create child dentry for a dead directory. */ 1366 if (unlikely(IS_DEADDIR(dir))) { 1367 dput(dentry); 1368 return ERR_PTR(-ENOENT); 1369 } 1370 1371 old = dir->i_op->lookup(dir, dentry, flags); 1372 if (unlikely(old)) { 1373 dput(dentry); 1374 dentry = old; 1375 } 1376 return dentry; 1377 } 1378 1379 static struct dentry *__lookup_hash(struct qstr *name, 1380 struct dentry *base, unsigned int flags) 1381 { 1382 bool need_lookup; 1383 struct dentry *dentry; 1384 1385 dentry = lookup_dcache(name, base, flags, &need_lookup); 1386 if (!need_lookup) 1387 return dentry; 1388 1389 return lookup_real(base->d_inode, dentry, flags); 1390 } 1391 1392 /* 1393 * It's more convoluted than I'd like it to be, but... it's still fairly 1394 * small and for now I'd prefer to have fast path as straight as possible. 1395 * It _is_ time-critical. 1396 */ 1397 static int lookup_fast(struct nameidata *nd, 1398 struct path *path, struct inode **inode) 1399 { 1400 struct vfsmount *mnt = nd->path.mnt; 1401 struct dentry *dentry, *parent = nd->path.dentry; 1402 int need_reval = 1; 1403 int status = 1; 1404 int err; 1405 1406 /* 1407 * Rename seqlock is not required here because in the off chance 1408 * of a false negative due to a concurrent rename, we're going to 1409 * do the non-racy lookup, below. 1410 */ 1411 if (nd->flags & LOOKUP_RCU) { 1412 unsigned seq; 1413 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1414 if (!dentry) 1415 goto unlazy; 1416 1417 /* 1418 * This sequence count validates that the inode matches 1419 * the dentry name information from lookup. 1420 */ 1421 *inode = dentry->d_inode; 1422 if (read_seqcount_retry(&dentry->d_seq, seq)) 1423 return -ECHILD; 1424 1425 /* 1426 * This sequence count validates that the parent had no 1427 * changes while we did the lookup of the dentry above. 1428 * 1429 * The memory barrier in read_seqcount_begin of child is 1430 * enough, we can use __read_seqcount_retry here. 1431 */ 1432 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1433 return -ECHILD; 1434 nd->seq = seq; 1435 1436 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1437 status = d_revalidate(dentry, nd->flags); 1438 if (unlikely(status <= 0)) { 1439 if (status != -ECHILD) 1440 need_reval = 0; 1441 goto unlazy; 1442 } 1443 } 1444 path->mnt = mnt; 1445 path->dentry = dentry; 1446 if (likely(__follow_mount_rcu(nd, path, inode))) 1447 return 0; 1448 unlazy: 1449 if (unlazy_walk(nd, dentry)) 1450 return -ECHILD; 1451 } else { 1452 dentry = __d_lookup(parent, &nd->last); 1453 } 1454 1455 if (unlikely(!dentry)) 1456 goto need_lookup; 1457 1458 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1459 status = d_revalidate(dentry, nd->flags); 1460 if (unlikely(status <= 0)) { 1461 if (status < 0) { 1462 dput(dentry); 1463 return status; 1464 } 1465 d_invalidate(dentry); 1466 dput(dentry); 1467 goto need_lookup; 1468 } 1469 1470 path->mnt = mnt; 1471 path->dentry = dentry; 1472 err = follow_managed(path, nd->flags); 1473 if (unlikely(err < 0)) { 1474 path_put_conditional(path, nd); 1475 return err; 1476 } 1477 if (err) 1478 nd->flags |= LOOKUP_JUMPED; 1479 *inode = path->dentry->d_inode; 1480 return 0; 1481 1482 need_lookup: 1483 return 1; 1484 } 1485 1486 /* Fast lookup failed, do it the slow way */ 1487 static int lookup_slow(struct nameidata *nd, struct path *path) 1488 { 1489 struct dentry *dentry, *parent; 1490 int err; 1491 1492 parent = nd->path.dentry; 1493 BUG_ON(nd->inode != parent->d_inode); 1494 1495 mutex_lock(&parent->d_inode->i_mutex); 1496 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1497 mutex_unlock(&parent->d_inode->i_mutex); 1498 if (IS_ERR(dentry)) 1499 return PTR_ERR(dentry); 1500 path->mnt = nd->path.mnt; 1501 path->dentry = dentry; 1502 err = follow_managed(path, nd->flags); 1503 if (unlikely(err < 0)) { 1504 path_put_conditional(path, nd); 1505 return err; 1506 } 1507 if (err) 1508 nd->flags |= LOOKUP_JUMPED; 1509 return 0; 1510 } 1511 1512 static inline int may_lookup(struct nameidata *nd) 1513 { 1514 if (nd->flags & LOOKUP_RCU) { 1515 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1516 if (err != -ECHILD) 1517 return err; 1518 if (unlazy_walk(nd, NULL)) 1519 return -ECHILD; 1520 } 1521 return inode_permission(nd->inode, MAY_EXEC); 1522 } 1523 1524 static inline int handle_dots(struct nameidata *nd, int type) 1525 { 1526 if (type == LAST_DOTDOT) { 1527 if (nd->flags & LOOKUP_RCU) { 1528 if (follow_dotdot_rcu(nd)) 1529 return -ECHILD; 1530 } else 1531 follow_dotdot(nd); 1532 } 1533 return 0; 1534 } 1535 1536 static void terminate_walk(struct nameidata *nd) 1537 { 1538 if (!(nd->flags & LOOKUP_RCU)) { 1539 path_put(&nd->path); 1540 } else { 1541 nd->flags &= ~LOOKUP_RCU; 1542 if (!(nd->flags & LOOKUP_ROOT)) 1543 nd->root.mnt = NULL; 1544 rcu_read_unlock(); 1545 } 1546 } 1547 1548 /* 1549 * Do we need to follow links? We _really_ want to be able 1550 * to do this check without having to look at inode->i_op, 1551 * so we keep a cache of "no, this doesn't need follow_link" 1552 * for the common case. 1553 */ 1554 static inline int should_follow_link(struct dentry *dentry, int follow) 1555 { 1556 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1557 } 1558 1559 static inline int walk_component(struct nameidata *nd, struct path *path, 1560 int follow) 1561 { 1562 struct inode *inode; 1563 int err; 1564 /* 1565 * "." and ".." are special - ".." especially so because it has 1566 * to be able to know about the current root directory and 1567 * parent relationships. 1568 */ 1569 if (unlikely(nd->last_type != LAST_NORM)) 1570 return handle_dots(nd, nd->last_type); 1571 err = lookup_fast(nd, path, &inode); 1572 if (unlikely(err)) { 1573 if (err < 0) 1574 goto out_err; 1575 1576 err = lookup_slow(nd, path); 1577 if (err < 0) 1578 goto out_err; 1579 1580 inode = path->dentry->d_inode; 1581 } 1582 err = -ENOENT; 1583 if (!inode || d_is_negative(path->dentry)) 1584 goto out_path_put; 1585 1586 if (should_follow_link(path->dentry, follow)) { 1587 if (nd->flags & LOOKUP_RCU) { 1588 if (unlikely(unlazy_walk(nd, path->dentry))) { 1589 err = -ECHILD; 1590 goto out_err; 1591 } 1592 } 1593 BUG_ON(inode != path->dentry->d_inode); 1594 return 1; 1595 } 1596 path_to_nameidata(path, nd); 1597 nd->inode = inode; 1598 return 0; 1599 1600 out_path_put: 1601 path_to_nameidata(path, nd); 1602 out_err: 1603 terminate_walk(nd); 1604 return err; 1605 } 1606 1607 /* 1608 * This limits recursive symlink follows to 8, while 1609 * limiting consecutive symlinks to 40. 1610 * 1611 * Without that kind of total limit, nasty chains of consecutive 1612 * symlinks can cause almost arbitrarily long lookups. 1613 */ 1614 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1615 { 1616 int res; 1617 1618 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1619 path_put_conditional(path, nd); 1620 path_put(&nd->path); 1621 return -ELOOP; 1622 } 1623 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1624 1625 nd->depth++; 1626 current->link_count++; 1627 1628 do { 1629 struct path link = *path; 1630 void *cookie; 1631 1632 res = follow_link(&link, nd, &cookie); 1633 if (res) 1634 break; 1635 res = walk_component(nd, path, LOOKUP_FOLLOW); 1636 put_link(nd, &link, cookie); 1637 } while (res > 0); 1638 1639 current->link_count--; 1640 nd->depth--; 1641 return res; 1642 } 1643 1644 /* 1645 * We can do the critical dentry name comparison and hashing 1646 * operations one word at a time, but we are limited to: 1647 * 1648 * - Architectures with fast unaligned word accesses. We could 1649 * do a "get_unaligned()" if this helps and is sufficiently 1650 * fast. 1651 * 1652 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1653 * do not trap on the (extremely unlikely) case of a page 1654 * crossing operation. 1655 * 1656 * - Furthermore, we need an efficient 64-bit compile for the 1657 * 64-bit case in order to generate the "number of bytes in 1658 * the final mask". Again, that could be replaced with a 1659 * efficient population count instruction or similar. 1660 */ 1661 #ifdef CONFIG_DCACHE_WORD_ACCESS 1662 1663 #include <asm/word-at-a-time.h> 1664 1665 #ifdef CONFIG_64BIT 1666 1667 static inline unsigned int fold_hash(unsigned long hash) 1668 { 1669 return hash_64(hash, 32); 1670 } 1671 1672 #else /* 32-bit case */ 1673 1674 #define fold_hash(x) (x) 1675 1676 #endif 1677 1678 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1679 { 1680 unsigned long a, mask; 1681 unsigned long hash = 0; 1682 1683 for (;;) { 1684 a = load_unaligned_zeropad(name); 1685 if (len < sizeof(unsigned long)) 1686 break; 1687 hash += a; 1688 hash *= 9; 1689 name += sizeof(unsigned long); 1690 len -= sizeof(unsigned long); 1691 if (!len) 1692 goto done; 1693 } 1694 mask = bytemask_from_count(len); 1695 hash += mask & a; 1696 done: 1697 return fold_hash(hash); 1698 } 1699 EXPORT_SYMBOL(full_name_hash); 1700 1701 /* 1702 * Calculate the length and hash of the path component, and 1703 * return the "hash_len" as the result. 1704 */ 1705 static inline u64 hash_name(const char *name) 1706 { 1707 unsigned long a, b, adata, bdata, mask, hash, len; 1708 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1709 1710 hash = a = 0; 1711 len = -sizeof(unsigned long); 1712 do { 1713 hash = (hash + a) * 9; 1714 len += sizeof(unsigned long); 1715 a = load_unaligned_zeropad(name+len); 1716 b = a ^ REPEAT_BYTE('/'); 1717 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1718 1719 adata = prep_zero_mask(a, adata, &constants); 1720 bdata = prep_zero_mask(b, bdata, &constants); 1721 1722 mask = create_zero_mask(adata | bdata); 1723 1724 hash += a & zero_bytemask(mask); 1725 len += find_zero(mask); 1726 return hashlen_create(fold_hash(hash), len); 1727 } 1728 1729 #else 1730 1731 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1732 { 1733 unsigned long hash = init_name_hash(); 1734 while (len--) 1735 hash = partial_name_hash(*name++, hash); 1736 return end_name_hash(hash); 1737 } 1738 EXPORT_SYMBOL(full_name_hash); 1739 1740 /* 1741 * We know there's a real path component here of at least 1742 * one character. 1743 */ 1744 static inline u64 hash_name(const char *name) 1745 { 1746 unsigned long hash = init_name_hash(); 1747 unsigned long len = 0, c; 1748 1749 c = (unsigned char)*name; 1750 do { 1751 len++; 1752 hash = partial_name_hash(c, hash); 1753 c = (unsigned char)name[len]; 1754 } while (c && c != '/'); 1755 return hashlen_create(end_name_hash(hash), len); 1756 } 1757 1758 #endif 1759 1760 /* 1761 * Name resolution. 1762 * This is the basic name resolution function, turning a pathname into 1763 * the final dentry. We expect 'base' to be positive and a directory. 1764 * 1765 * Returns 0 and nd will have valid dentry and mnt on success. 1766 * Returns error and drops reference to input namei data on failure. 1767 */ 1768 static int link_path_walk(const char *name, struct nameidata *nd) 1769 { 1770 struct path next; 1771 int err; 1772 1773 while (*name=='/') 1774 name++; 1775 if (!*name) 1776 return 0; 1777 1778 /* At this point we know we have a real path component. */ 1779 for(;;) { 1780 u64 hash_len; 1781 int type; 1782 1783 err = may_lookup(nd); 1784 if (err) 1785 break; 1786 1787 hash_len = hash_name(name); 1788 1789 type = LAST_NORM; 1790 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1791 case 2: 1792 if (name[1] == '.') { 1793 type = LAST_DOTDOT; 1794 nd->flags |= LOOKUP_JUMPED; 1795 } 1796 break; 1797 case 1: 1798 type = LAST_DOT; 1799 } 1800 if (likely(type == LAST_NORM)) { 1801 struct dentry *parent = nd->path.dentry; 1802 nd->flags &= ~LOOKUP_JUMPED; 1803 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1804 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1805 err = parent->d_op->d_hash(parent, &this); 1806 if (err < 0) 1807 break; 1808 hash_len = this.hash_len; 1809 name = this.name; 1810 } 1811 } 1812 1813 nd->last.hash_len = hash_len; 1814 nd->last.name = name; 1815 nd->last_type = type; 1816 1817 name += hashlen_len(hash_len); 1818 if (!*name) 1819 return 0; 1820 /* 1821 * If it wasn't NUL, we know it was '/'. Skip that 1822 * slash, and continue until no more slashes. 1823 */ 1824 do { 1825 name++; 1826 } while (unlikely(*name == '/')); 1827 if (!*name) 1828 return 0; 1829 1830 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1831 if (err < 0) 1832 return err; 1833 1834 if (err) { 1835 err = nested_symlink(&next, nd); 1836 if (err) 1837 return err; 1838 } 1839 if (!d_can_lookup(nd->path.dentry)) { 1840 err = -ENOTDIR; 1841 break; 1842 } 1843 } 1844 terminate_walk(nd); 1845 return err; 1846 } 1847 1848 static int path_init(int dfd, const char *name, unsigned int flags, 1849 struct nameidata *nd) 1850 { 1851 int retval = 0; 1852 1853 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1854 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 1855 nd->depth = 0; 1856 nd->base = NULL; 1857 if (flags & LOOKUP_ROOT) { 1858 struct dentry *root = nd->root.dentry; 1859 struct inode *inode = root->d_inode; 1860 if (*name) { 1861 if (!d_can_lookup(root)) 1862 return -ENOTDIR; 1863 retval = inode_permission(inode, MAY_EXEC); 1864 if (retval) 1865 return retval; 1866 } 1867 nd->path = nd->root; 1868 nd->inode = inode; 1869 if (flags & LOOKUP_RCU) { 1870 rcu_read_lock(); 1871 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1872 nd->m_seq = read_seqbegin(&mount_lock); 1873 } else { 1874 path_get(&nd->path); 1875 } 1876 goto done; 1877 } 1878 1879 nd->root.mnt = NULL; 1880 1881 nd->m_seq = read_seqbegin(&mount_lock); 1882 if (*name=='/') { 1883 if (flags & LOOKUP_RCU) { 1884 rcu_read_lock(); 1885 nd->seq = set_root_rcu(nd); 1886 } else { 1887 set_root(nd); 1888 path_get(&nd->root); 1889 } 1890 nd->path = nd->root; 1891 } else if (dfd == AT_FDCWD) { 1892 if (flags & LOOKUP_RCU) { 1893 struct fs_struct *fs = current->fs; 1894 unsigned seq; 1895 1896 rcu_read_lock(); 1897 1898 do { 1899 seq = read_seqcount_begin(&fs->seq); 1900 nd->path = fs->pwd; 1901 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1902 } while (read_seqcount_retry(&fs->seq, seq)); 1903 } else { 1904 get_fs_pwd(current->fs, &nd->path); 1905 } 1906 } else { 1907 /* Caller must check execute permissions on the starting path component */ 1908 struct fd f = fdget_raw(dfd); 1909 struct dentry *dentry; 1910 1911 if (!f.file) 1912 return -EBADF; 1913 1914 dentry = f.file->f_path.dentry; 1915 1916 if (*name) { 1917 if (!d_can_lookup(dentry)) { 1918 fdput(f); 1919 return -ENOTDIR; 1920 } 1921 } 1922 1923 nd->path = f.file->f_path; 1924 if (flags & LOOKUP_RCU) { 1925 if (f.flags & FDPUT_FPUT) 1926 nd->base = f.file; 1927 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1928 rcu_read_lock(); 1929 } else { 1930 path_get(&nd->path); 1931 fdput(f); 1932 } 1933 } 1934 1935 nd->inode = nd->path.dentry->d_inode; 1936 if (!(flags & LOOKUP_RCU)) 1937 goto done; 1938 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 1939 goto done; 1940 if (!(nd->flags & LOOKUP_ROOT)) 1941 nd->root.mnt = NULL; 1942 rcu_read_unlock(); 1943 return -ECHILD; 1944 done: 1945 current->total_link_count = 0; 1946 return link_path_walk(name, nd); 1947 } 1948 1949 static void path_cleanup(struct nameidata *nd) 1950 { 1951 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1952 path_put(&nd->root); 1953 nd->root.mnt = NULL; 1954 } 1955 if (unlikely(nd->base)) 1956 fput(nd->base); 1957 } 1958 1959 static inline int lookup_last(struct nameidata *nd, struct path *path) 1960 { 1961 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1962 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1963 1964 nd->flags &= ~LOOKUP_PARENT; 1965 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1966 } 1967 1968 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1969 static int path_lookupat(int dfd, const char *name, 1970 unsigned int flags, struct nameidata *nd) 1971 { 1972 struct path path; 1973 int err; 1974 1975 /* 1976 * Path walking is largely split up into 2 different synchronisation 1977 * schemes, rcu-walk and ref-walk (explained in 1978 * Documentation/filesystems/path-lookup.txt). These share much of the 1979 * path walk code, but some things particularly setup, cleanup, and 1980 * following mounts are sufficiently divergent that functions are 1981 * duplicated. Typically there is a function foo(), and its RCU 1982 * analogue, foo_rcu(). 1983 * 1984 * -ECHILD is the error number of choice (just to avoid clashes) that 1985 * is returned if some aspect of an rcu-walk fails. Such an error must 1986 * be handled by restarting a traditional ref-walk (which will always 1987 * be able to complete). 1988 */ 1989 err = path_init(dfd, name, flags, nd); 1990 if (!err && !(flags & LOOKUP_PARENT)) { 1991 err = lookup_last(nd, &path); 1992 while (err > 0) { 1993 void *cookie; 1994 struct path link = path; 1995 err = may_follow_link(&link, nd); 1996 if (unlikely(err)) 1997 break; 1998 nd->flags |= LOOKUP_PARENT; 1999 err = follow_link(&link, nd, &cookie); 2000 if (err) 2001 break; 2002 err = lookup_last(nd, &path); 2003 put_link(nd, &link, cookie); 2004 } 2005 } 2006 2007 if (!err) 2008 err = complete_walk(nd); 2009 2010 if (!err && nd->flags & LOOKUP_DIRECTORY) { 2011 if (!d_can_lookup(nd->path.dentry)) { 2012 path_put(&nd->path); 2013 err = -ENOTDIR; 2014 } 2015 } 2016 2017 path_cleanup(nd); 2018 return err; 2019 } 2020 2021 static int filename_lookup(int dfd, struct filename *name, 2022 unsigned int flags, struct nameidata *nd) 2023 { 2024 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 2025 if (unlikely(retval == -ECHILD)) 2026 retval = path_lookupat(dfd, name->name, flags, nd); 2027 if (unlikely(retval == -ESTALE)) 2028 retval = path_lookupat(dfd, name->name, 2029 flags | LOOKUP_REVAL, nd); 2030 2031 if (likely(!retval)) 2032 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2033 return retval; 2034 } 2035 2036 static int do_path_lookup(int dfd, const char *name, 2037 unsigned int flags, struct nameidata *nd) 2038 { 2039 struct filename filename = { .name = name }; 2040 2041 return filename_lookup(dfd, &filename, flags, nd); 2042 } 2043 2044 /* does lookup, returns the object with parent locked */ 2045 struct dentry *kern_path_locked(const char *name, struct path *path) 2046 { 2047 struct nameidata nd; 2048 struct dentry *d; 2049 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 2050 if (err) 2051 return ERR_PTR(err); 2052 if (nd.last_type != LAST_NORM) { 2053 path_put(&nd.path); 2054 return ERR_PTR(-EINVAL); 2055 } 2056 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2057 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2058 if (IS_ERR(d)) { 2059 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2060 path_put(&nd.path); 2061 return d; 2062 } 2063 *path = nd.path; 2064 return d; 2065 } 2066 2067 int kern_path(const char *name, unsigned int flags, struct path *path) 2068 { 2069 struct nameidata nd; 2070 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2071 if (!res) 2072 *path = nd.path; 2073 return res; 2074 } 2075 EXPORT_SYMBOL(kern_path); 2076 2077 /** 2078 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2079 * @dentry: pointer to dentry of the base directory 2080 * @mnt: pointer to vfs mount of the base directory 2081 * @name: pointer to file name 2082 * @flags: lookup flags 2083 * @path: pointer to struct path to fill 2084 */ 2085 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2086 const char *name, unsigned int flags, 2087 struct path *path) 2088 { 2089 struct nameidata nd; 2090 int err; 2091 nd.root.dentry = dentry; 2092 nd.root.mnt = mnt; 2093 BUG_ON(flags & LOOKUP_PARENT); 2094 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2095 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2096 if (!err) 2097 *path = nd.path; 2098 return err; 2099 } 2100 EXPORT_SYMBOL(vfs_path_lookup); 2101 2102 /* 2103 * Restricted form of lookup. Doesn't follow links, single-component only, 2104 * needs parent already locked. Doesn't follow mounts. 2105 * SMP-safe. 2106 */ 2107 static struct dentry *lookup_hash(struct nameidata *nd) 2108 { 2109 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2110 } 2111 2112 /** 2113 * lookup_one_len - filesystem helper to lookup single pathname component 2114 * @name: pathname component to lookup 2115 * @base: base directory to lookup from 2116 * @len: maximum length @len should be interpreted to 2117 * 2118 * Note that this routine is purely a helper for filesystem usage and should 2119 * not be called by generic code. Also note that by using this function the 2120 * nameidata argument is passed to the filesystem methods and a filesystem 2121 * using this helper needs to be prepared for that. 2122 */ 2123 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2124 { 2125 struct qstr this; 2126 unsigned int c; 2127 int err; 2128 2129 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2130 2131 this.name = name; 2132 this.len = len; 2133 this.hash = full_name_hash(name, len); 2134 if (!len) 2135 return ERR_PTR(-EACCES); 2136 2137 if (unlikely(name[0] == '.')) { 2138 if (len < 2 || (len == 2 && name[1] == '.')) 2139 return ERR_PTR(-EACCES); 2140 } 2141 2142 while (len--) { 2143 c = *(const unsigned char *)name++; 2144 if (c == '/' || c == '\0') 2145 return ERR_PTR(-EACCES); 2146 } 2147 /* 2148 * See if the low-level filesystem might want 2149 * to use its own hash.. 2150 */ 2151 if (base->d_flags & DCACHE_OP_HASH) { 2152 int err = base->d_op->d_hash(base, &this); 2153 if (err < 0) 2154 return ERR_PTR(err); 2155 } 2156 2157 err = inode_permission(base->d_inode, MAY_EXEC); 2158 if (err) 2159 return ERR_PTR(err); 2160 2161 return __lookup_hash(&this, base, 0); 2162 } 2163 EXPORT_SYMBOL(lookup_one_len); 2164 2165 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2166 struct path *path, int *empty) 2167 { 2168 struct nameidata nd; 2169 struct filename *tmp = getname_flags(name, flags, empty); 2170 int err = PTR_ERR(tmp); 2171 if (!IS_ERR(tmp)) { 2172 2173 BUG_ON(flags & LOOKUP_PARENT); 2174 2175 err = filename_lookup(dfd, tmp, flags, &nd); 2176 putname(tmp); 2177 if (!err) 2178 *path = nd.path; 2179 } 2180 return err; 2181 } 2182 2183 int user_path_at(int dfd, const char __user *name, unsigned flags, 2184 struct path *path) 2185 { 2186 return user_path_at_empty(dfd, name, flags, path, NULL); 2187 } 2188 EXPORT_SYMBOL(user_path_at); 2189 2190 /* 2191 * NB: most callers don't do anything directly with the reference to the 2192 * to struct filename, but the nd->last pointer points into the name string 2193 * allocated by getname. So we must hold the reference to it until all 2194 * path-walking is complete. 2195 */ 2196 static struct filename * 2197 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2198 unsigned int flags) 2199 { 2200 struct filename *s = getname(path); 2201 int error; 2202 2203 /* only LOOKUP_REVAL is allowed in extra flags */ 2204 flags &= LOOKUP_REVAL; 2205 2206 if (IS_ERR(s)) 2207 return s; 2208 2209 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2210 if (error) { 2211 putname(s); 2212 return ERR_PTR(error); 2213 } 2214 2215 return s; 2216 } 2217 2218 /** 2219 * mountpoint_last - look up last component for umount 2220 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2221 * @path: pointer to container for result 2222 * 2223 * This is a special lookup_last function just for umount. In this case, we 2224 * need to resolve the path without doing any revalidation. 2225 * 2226 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2227 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2228 * in almost all cases, this lookup will be served out of the dcache. The only 2229 * cases where it won't are if nd->last refers to a symlink or the path is 2230 * bogus and it doesn't exist. 2231 * 2232 * Returns: 2233 * -error: if there was an error during lookup. This includes -ENOENT if the 2234 * lookup found a negative dentry. The nd->path reference will also be 2235 * put in this case. 2236 * 2237 * 0: if we successfully resolved nd->path and found it to not to be a 2238 * symlink that needs to be followed. "path" will also be populated. 2239 * The nd->path reference will also be put. 2240 * 2241 * 1: if we successfully resolved nd->last and found it to be a symlink 2242 * that needs to be followed. "path" will be populated with the path 2243 * to the link, and nd->path will *not* be put. 2244 */ 2245 static int 2246 mountpoint_last(struct nameidata *nd, struct path *path) 2247 { 2248 int error = 0; 2249 struct dentry *dentry; 2250 struct dentry *dir = nd->path.dentry; 2251 2252 /* If we're in rcuwalk, drop out of it to handle last component */ 2253 if (nd->flags & LOOKUP_RCU) { 2254 if (unlazy_walk(nd, NULL)) { 2255 error = -ECHILD; 2256 goto out; 2257 } 2258 } 2259 2260 nd->flags &= ~LOOKUP_PARENT; 2261 2262 if (unlikely(nd->last_type != LAST_NORM)) { 2263 error = handle_dots(nd, nd->last_type); 2264 if (error) 2265 goto out; 2266 dentry = dget(nd->path.dentry); 2267 goto done; 2268 } 2269 2270 mutex_lock(&dir->d_inode->i_mutex); 2271 dentry = d_lookup(dir, &nd->last); 2272 if (!dentry) { 2273 /* 2274 * No cached dentry. Mounted dentries are pinned in the cache, 2275 * so that means that this dentry is probably a symlink or the 2276 * path doesn't actually point to a mounted dentry. 2277 */ 2278 dentry = d_alloc(dir, &nd->last); 2279 if (!dentry) { 2280 error = -ENOMEM; 2281 mutex_unlock(&dir->d_inode->i_mutex); 2282 goto out; 2283 } 2284 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2285 error = PTR_ERR(dentry); 2286 if (IS_ERR(dentry)) { 2287 mutex_unlock(&dir->d_inode->i_mutex); 2288 goto out; 2289 } 2290 } 2291 mutex_unlock(&dir->d_inode->i_mutex); 2292 2293 done: 2294 if (!dentry->d_inode || d_is_negative(dentry)) { 2295 error = -ENOENT; 2296 dput(dentry); 2297 goto out; 2298 } 2299 path->dentry = dentry; 2300 path->mnt = nd->path.mnt; 2301 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2302 return 1; 2303 mntget(path->mnt); 2304 follow_mount(path); 2305 error = 0; 2306 out: 2307 terminate_walk(nd); 2308 return error; 2309 } 2310 2311 /** 2312 * path_mountpoint - look up a path to be umounted 2313 * @dfd: directory file descriptor to start walk from 2314 * @name: full pathname to walk 2315 * @path: pointer to container for result 2316 * @flags: lookup flags 2317 * 2318 * Look up the given name, but don't attempt to revalidate the last component. 2319 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2320 */ 2321 static int 2322 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2323 { 2324 struct nameidata nd; 2325 int err; 2326 2327 err = path_init(dfd, name, flags, &nd); 2328 if (unlikely(err)) 2329 goto out; 2330 2331 err = mountpoint_last(&nd, path); 2332 while (err > 0) { 2333 void *cookie; 2334 struct path link = *path; 2335 err = may_follow_link(&link, &nd); 2336 if (unlikely(err)) 2337 break; 2338 nd.flags |= LOOKUP_PARENT; 2339 err = follow_link(&link, &nd, &cookie); 2340 if (err) 2341 break; 2342 err = mountpoint_last(&nd, path); 2343 put_link(&nd, &link, cookie); 2344 } 2345 out: 2346 path_cleanup(&nd); 2347 return err; 2348 } 2349 2350 static int 2351 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2352 unsigned int flags) 2353 { 2354 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2355 if (unlikely(error == -ECHILD)) 2356 error = path_mountpoint(dfd, s->name, path, flags); 2357 if (unlikely(error == -ESTALE)) 2358 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2359 if (likely(!error)) 2360 audit_inode(s, path->dentry, 0); 2361 return error; 2362 } 2363 2364 /** 2365 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2366 * @dfd: directory file descriptor 2367 * @name: pathname from userland 2368 * @flags: lookup flags 2369 * @path: pointer to container to hold result 2370 * 2371 * A umount is a special case for path walking. We're not actually interested 2372 * in the inode in this situation, and ESTALE errors can be a problem. We 2373 * simply want track down the dentry and vfsmount attached at the mountpoint 2374 * and avoid revalidating the last component. 2375 * 2376 * Returns 0 and populates "path" on success. 2377 */ 2378 int 2379 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2380 struct path *path) 2381 { 2382 struct filename *s = getname(name); 2383 int error; 2384 if (IS_ERR(s)) 2385 return PTR_ERR(s); 2386 error = filename_mountpoint(dfd, s, path, flags); 2387 putname(s); 2388 return error; 2389 } 2390 2391 int 2392 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2393 unsigned int flags) 2394 { 2395 struct filename s = {.name = name}; 2396 return filename_mountpoint(dfd, &s, path, flags); 2397 } 2398 EXPORT_SYMBOL(kern_path_mountpoint); 2399 2400 int __check_sticky(struct inode *dir, struct inode *inode) 2401 { 2402 kuid_t fsuid = current_fsuid(); 2403 2404 if (uid_eq(inode->i_uid, fsuid)) 2405 return 0; 2406 if (uid_eq(dir->i_uid, fsuid)) 2407 return 0; 2408 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2409 } 2410 EXPORT_SYMBOL(__check_sticky); 2411 2412 /* 2413 * Check whether we can remove a link victim from directory dir, check 2414 * whether the type of victim is right. 2415 * 1. We can't do it if dir is read-only (done in permission()) 2416 * 2. We should have write and exec permissions on dir 2417 * 3. We can't remove anything from append-only dir 2418 * 4. We can't do anything with immutable dir (done in permission()) 2419 * 5. If the sticky bit on dir is set we should either 2420 * a. be owner of dir, or 2421 * b. be owner of victim, or 2422 * c. have CAP_FOWNER capability 2423 * 6. If the victim is append-only or immutable we can't do antyhing with 2424 * links pointing to it. 2425 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2426 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2427 * 9. We can't remove a root or mountpoint. 2428 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2429 * nfs_async_unlink(). 2430 */ 2431 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2432 { 2433 struct inode *inode = victim->d_inode; 2434 int error; 2435 2436 if (d_is_negative(victim)) 2437 return -ENOENT; 2438 BUG_ON(!inode); 2439 2440 BUG_ON(victim->d_parent->d_inode != dir); 2441 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2442 2443 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2444 if (error) 2445 return error; 2446 if (IS_APPEND(dir)) 2447 return -EPERM; 2448 2449 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2450 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2451 return -EPERM; 2452 if (isdir) { 2453 if (!d_is_dir(victim)) 2454 return -ENOTDIR; 2455 if (IS_ROOT(victim)) 2456 return -EBUSY; 2457 } else if (d_is_dir(victim)) 2458 return -EISDIR; 2459 if (IS_DEADDIR(dir)) 2460 return -ENOENT; 2461 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2462 return -EBUSY; 2463 return 0; 2464 } 2465 2466 /* Check whether we can create an object with dentry child in directory 2467 * dir. 2468 * 1. We can't do it if child already exists (open has special treatment for 2469 * this case, but since we are inlined it's OK) 2470 * 2. We can't do it if dir is read-only (done in permission()) 2471 * 3. We should have write and exec permissions on dir 2472 * 4. We can't do it if dir is immutable (done in permission()) 2473 */ 2474 static inline int may_create(struct inode *dir, struct dentry *child) 2475 { 2476 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2477 if (child->d_inode) 2478 return -EEXIST; 2479 if (IS_DEADDIR(dir)) 2480 return -ENOENT; 2481 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2482 } 2483 2484 /* 2485 * p1 and p2 should be directories on the same fs. 2486 */ 2487 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2488 { 2489 struct dentry *p; 2490 2491 if (p1 == p2) { 2492 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2493 return NULL; 2494 } 2495 2496 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2497 2498 p = d_ancestor(p2, p1); 2499 if (p) { 2500 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2501 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2502 return p; 2503 } 2504 2505 p = d_ancestor(p1, p2); 2506 if (p) { 2507 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2508 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2509 return p; 2510 } 2511 2512 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2513 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2); 2514 return NULL; 2515 } 2516 EXPORT_SYMBOL(lock_rename); 2517 2518 void unlock_rename(struct dentry *p1, struct dentry *p2) 2519 { 2520 mutex_unlock(&p1->d_inode->i_mutex); 2521 if (p1 != p2) { 2522 mutex_unlock(&p2->d_inode->i_mutex); 2523 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2524 } 2525 } 2526 EXPORT_SYMBOL(unlock_rename); 2527 2528 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2529 bool want_excl) 2530 { 2531 int error = may_create(dir, dentry); 2532 if (error) 2533 return error; 2534 2535 if (!dir->i_op->create) 2536 return -EACCES; /* shouldn't it be ENOSYS? */ 2537 mode &= S_IALLUGO; 2538 mode |= S_IFREG; 2539 error = security_inode_create(dir, dentry, mode); 2540 if (error) 2541 return error; 2542 error = dir->i_op->create(dir, dentry, mode, want_excl); 2543 if (!error) 2544 fsnotify_create(dir, dentry); 2545 return error; 2546 } 2547 EXPORT_SYMBOL(vfs_create); 2548 2549 static int may_open(struct path *path, int acc_mode, int flag) 2550 { 2551 struct dentry *dentry = path->dentry; 2552 struct inode *inode = dentry->d_inode; 2553 int error; 2554 2555 /* O_PATH? */ 2556 if (!acc_mode) 2557 return 0; 2558 2559 if (!inode) 2560 return -ENOENT; 2561 2562 switch (inode->i_mode & S_IFMT) { 2563 case S_IFLNK: 2564 return -ELOOP; 2565 case S_IFDIR: 2566 if (acc_mode & MAY_WRITE) 2567 return -EISDIR; 2568 break; 2569 case S_IFBLK: 2570 case S_IFCHR: 2571 if (path->mnt->mnt_flags & MNT_NODEV) 2572 return -EACCES; 2573 /*FALLTHRU*/ 2574 case S_IFIFO: 2575 case S_IFSOCK: 2576 flag &= ~O_TRUNC; 2577 break; 2578 } 2579 2580 error = inode_permission(inode, acc_mode); 2581 if (error) 2582 return error; 2583 2584 /* 2585 * An append-only file must be opened in append mode for writing. 2586 */ 2587 if (IS_APPEND(inode)) { 2588 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2589 return -EPERM; 2590 if (flag & O_TRUNC) 2591 return -EPERM; 2592 } 2593 2594 /* O_NOATIME can only be set by the owner or superuser */ 2595 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2596 return -EPERM; 2597 2598 return 0; 2599 } 2600 2601 static int handle_truncate(struct file *filp) 2602 { 2603 struct path *path = &filp->f_path; 2604 struct inode *inode = path->dentry->d_inode; 2605 int error = get_write_access(inode); 2606 if (error) 2607 return error; 2608 /* 2609 * Refuse to truncate files with mandatory locks held on them. 2610 */ 2611 error = locks_verify_locked(filp); 2612 if (!error) 2613 error = security_path_truncate(path); 2614 if (!error) { 2615 error = do_truncate(path->dentry, 0, 2616 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2617 filp); 2618 } 2619 put_write_access(inode); 2620 return error; 2621 } 2622 2623 static inline int open_to_namei_flags(int flag) 2624 { 2625 if ((flag & O_ACCMODE) == 3) 2626 flag--; 2627 return flag; 2628 } 2629 2630 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2631 { 2632 int error = security_path_mknod(dir, dentry, mode, 0); 2633 if (error) 2634 return error; 2635 2636 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2637 if (error) 2638 return error; 2639 2640 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2641 } 2642 2643 /* 2644 * Attempt to atomically look up, create and open a file from a negative 2645 * dentry. 2646 * 2647 * Returns 0 if successful. The file will have been created and attached to 2648 * @file by the filesystem calling finish_open(). 2649 * 2650 * Returns 1 if the file was looked up only or didn't need creating. The 2651 * caller will need to perform the open themselves. @path will have been 2652 * updated to point to the new dentry. This may be negative. 2653 * 2654 * Returns an error code otherwise. 2655 */ 2656 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2657 struct path *path, struct file *file, 2658 const struct open_flags *op, 2659 bool got_write, bool need_lookup, 2660 int *opened) 2661 { 2662 struct inode *dir = nd->path.dentry->d_inode; 2663 unsigned open_flag = open_to_namei_flags(op->open_flag); 2664 umode_t mode; 2665 int error; 2666 int acc_mode; 2667 int create_error = 0; 2668 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2669 bool excl; 2670 2671 BUG_ON(dentry->d_inode); 2672 2673 /* Don't create child dentry for a dead directory. */ 2674 if (unlikely(IS_DEADDIR(dir))) { 2675 error = -ENOENT; 2676 goto out; 2677 } 2678 2679 mode = op->mode; 2680 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2681 mode &= ~current_umask(); 2682 2683 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2684 if (excl) 2685 open_flag &= ~O_TRUNC; 2686 2687 /* 2688 * Checking write permission is tricky, bacuse we don't know if we are 2689 * going to actually need it: O_CREAT opens should work as long as the 2690 * file exists. But checking existence breaks atomicity. The trick is 2691 * to check access and if not granted clear O_CREAT from the flags. 2692 * 2693 * Another problem is returing the "right" error value (e.g. for an 2694 * O_EXCL open we want to return EEXIST not EROFS). 2695 */ 2696 if (((open_flag & (O_CREAT | O_TRUNC)) || 2697 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2698 if (!(open_flag & O_CREAT)) { 2699 /* 2700 * No O_CREATE -> atomicity not a requirement -> fall 2701 * back to lookup + open 2702 */ 2703 goto no_open; 2704 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2705 /* Fall back and fail with the right error */ 2706 create_error = -EROFS; 2707 goto no_open; 2708 } else { 2709 /* No side effects, safe to clear O_CREAT */ 2710 create_error = -EROFS; 2711 open_flag &= ~O_CREAT; 2712 } 2713 } 2714 2715 if (open_flag & O_CREAT) { 2716 error = may_o_create(&nd->path, dentry, mode); 2717 if (error) { 2718 create_error = error; 2719 if (open_flag & O_EXCL) 2720 goto no_open; 2721 open_flag &= ~O_CREAT; 2722 } 2723 } 2724 2725 if (nd->flags & LOOKUP_DIRECTORY) 2726 open_flag |= O_DIRECTORY; 2727 2728 file->f_path.dentry = DENTRY_NOT_SET; 2729 file->f_path.mnt = nd->path.mnt; 2730 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2731 opened); 2732 if (error < 0) { 2733 if (create_error && error == -ENOENT) 2734 error = create_error; 2735 goto out; 2736 } 2737 2738 if (error) { /* returned 1, that is */ 2739 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2740 error = -EIO; 2741 goto out; 2742 } 2743 if (file->f_path.dentry) { 2744 dput(dentry); 2745 dentry = file->f_path.dentry; 2746 } 2747 if (*opened & FILE_CREATED) 2748 fsnotify_create(dir, dentry); 2749 if (!dentry->d_inode) { 2750 WARN_ON(*opened & FILE_CREATED); 2751 if (create_error) { 2752 error = create_error; 2753 goto out; 2754 } 2755 } else { 2756 if (excl && !(*opened & FILE_CREATED)) { 2757 error = -EEXIST; 2758 goto out; 2759 } 2760 } 2761 goto looked_up; 2762 } 2763 2764 /* 2765 * We didn't have the inode before the open, so check open permission 2766 * here. 2767 */ 2768 acc_mode = op->acc_mode; 2769 if (*opened & FILE_CREATED) { 2770 WARN_ON(!(open_flag & O_CREAT)); 2771 fsnotify_create(dir, dentry); 2772 acc_mode = MAY_OPEN; 2773 } 2774 error = may_open(&file->f_path, acc_mode, open_flag); 2775 if (error) 2776 fput(file); 2777 2778 out: 2779 dput(dentry); 2780 return error; 2781 2782 no_open: 2783 if (need_lookup) { 2784 dentry = lookup_real(dir, dentry, nd->flags); 2785 if (IS_ERR(dentry)) 2786 return PTR_ERR(dentry); 2787 2788 if (create_error) { 2789 int open_flag = op->open_flag; 2790 2791 error = create_error; 2792 if ((open_flag & O_EXCL)) { 2793 if (!dentry->d_inode) 2794 goto out; 2795 } else if (!dentry->d_inode) { 2796 goto out; 2797 } else if ((open_flag & O_TRUNC) && 2798 S_ISREG(dentry->d_inode->i_mode)) { 2799 goto out; 2800 } 2801 /* will fail later, go on to get the right error */ 2802 } 2803 } 2804 looked_up: 2805 path->dentry = dentry; 2806 path->mnt = nd->path.mnt; 2807 return 1; 2808 } 2809 2810 /* 2811 * Look up and maybe create and open the last component. 2812 * 2813 * Must be called with i_mutex held on parent. 2814 * 2815 * Returns 0 if the file was successfully atomically created (if necessary) and 2816 * opened. In this case the file will be returned attached to @file. 2817 * 2818 * Returns 1 if the file was not completely opened at this time, though lookups 2819 * and creations will have been performed and the dentry returned in @path will 2820 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2821 * specified then a negative dentry may be returned. 2822 * 2823 * An error code is returned otherwise. 2824 * 2825 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2826 * cleared otherwise prior to returning. 2827 */ 2828 static int lookup_open(struct nameidata *nd, struct path *path, 2829 struct file *file, 2830 const struct open_flags *op, 2831 bool got_write, int *opened) 2832 { 2833 struct dentry *dir = nd->path.dentry; 2834 struct inode *dir_inode = dir->d_inode; 2835 struct dentry *dentry; 2836 int error; 2837 bool need_lookup; 2838 2839 *opened &= ~FILE_CREATED; 2840 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2841 if (IS_ERR(dentry)) 2842 return PTR_ERR(dentry); 2843 2844 /* Cached positive dentry: will open in f_op->open */ 2845 if (!need_lookup && dentry->d_inode) 2846 goto out_no_open; 2847 2848 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2849 return atomic_open(nd, dentry, path, file, op, got_write, 2850 need_lookup, opened); 2851 } 2852 2853 if (need_lookup) { 2854 BUG_ON(dentry->d_inode); 2855 2856 dentry = lookup_real(dir_inode, dentry, nd->flags); 2857 if (IS_ERR(dentry)) 2858 return PTR_ERR(dentry); 2859 } 2860 2861 /* Negative dentry, just create the file */ 2862 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2863 umode_t mode = op->mode; 2864 if (!IS_POSIXACL(dir->d_inode)) 2865 mode &= ~current_umask(); 2866 /* 2867 * This write is needed to ensure that a 2868 * rw->ro transition does not occur between 2869 * the time when the file is created and when 2870 * a permanent write count is taken through 2871 * the 'struct file' in finish_open(). 2872 */ 2873 if (!got_write) { 2874 error = -EROFS; 2875 goto out_dput; 2876 } 2877 *opened |= FILE_CREATED; 2878 error = security_path_mknod(&nd->path, dentry, mode, 0); 2879 if (error) 2880 goto out_dput; 2881 error = vfs_create(dir->d_inode, dentry, mode, 2882 nd->flags & LOOKUP_EXCL); 2883 if (error) 2884 goto out_dput; 2885 } 2886 out_no_open: 2887 path->dentry = dentry; 2888 path->mnt = nd->path.mnt; 2889 return 1; 2890 2891 out_dput: 2892 dput(dentry); 2893 return error; 2894 } 2895 2896 /* 2897 * Handle the last step of open() 2898 */ 2899 static int do_last(struct nameidata *nd, struct path *path, 2900 struct file *file, const struct open_flags *op, 2901 int *opened, struct filename *name) 2902 { 2903 struct dentry *dir = nd->path.dentry; 2904 int open_flag = op->open_flag; 2905 bool will_truncate = (open_flag & O_TRUNC) != 0; 2906 bool got_write = false; 2907 int acc_mode = op->acc_mode; 2908 struct inode *inode; 2909 bool symlink_ok = false; 2910 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2911 bool retried = false; 2912 int error; 2913 2914 nd->flags &= ~LOOKUP_PARENT; 2915 nd->flags |= op->intent; 2916 2917 if (nd->last_type != LAST_NORM) { 2918 error = handle_dots(nd, nd->last_type); 2919 if (error) 2920 return error; 2921 goto finish_open; 2922 } 2923 2924 if (!(open_flag & O_CREAT)) { 2925 if (nd->last.name[nd->last.len]) 2926 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2927 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2928 symlink_ok = true; 2929 /* we _can_ be in RCU mode here */ 2930 error = lookup_fast(nd, path, &inode); 2931 if (likely(!error)) 2932 goto finish_lookup; 2933 2934 if (error < 0) 2935 goto out; 2936 2937 BUG_ON(nd->inode != dir->d_inode); 2938 } else { 2939 /* create side of things */ 2940 /* 2941 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2942 * has been cleared when we got to the last component we are 2943 * about to look up 2944 */ 2945 error = complete_walk(nd); 2946 if (error) 2947 return error; 2948 2949 audit_inode(name, dir, LOOKUP_PARENT); 2950 error = -EISDIR; 2951 /* trailing slashes? */ 2952 if (nd->last.name[nd->last.len]) 2953 goto out; 2954 } 2955 2956 retry_lookup: 2957 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2958 error = mnt_want_write(nd->path.mnt); 2959 if (!error) 2960 got_write = true; 2961 /* 2962 * do _not_ fail yet - we might not need that or fail with 2963 * a different error; let lookup_open() decide; we'll be 2964 * dropping this one anyway. 2965 */ 2966 } 2967 mutex_lock(&dir->d_inode->i_mutex); 2968 error = lookup_open(nd, path, file, op, got_write, opened); 2969 mutex_unlock(&dir->d_inode->i_mutex); 2970 2971 if (error <= 0) { 2972 if (error) 2973 goto out; 2974 2975 if ((*opened & FILE_CREATED) || 2976 !S_ISREG(file_inode(file)->i_mode)) 2977 will_truncate = false; 2978 2979 audit_inode(name, file->f_path.dentry, 0); 2980 goto opened; 2981 } 2982 2983 if (*opened & FILE_CREATED) { 2984 /* Don't check for write permission, don't truncate */ 2985 open_flag &= ~O_TRUNC; 2986 will_truncate = false; 2987 acc_mode = MAY_OPEN; 2988 path_to_nameidata(path, nd); 2989 goto finish_open_created; 2990 } 2991 2992 /* 2993 * create/update audit record if it already exists. 2994 */ 2995 if (d_is_positive(path->dentry)) 2996 audit_inode(name, path->dentry, 0); 2997 2998 /* 2999 * If atomic_open() acquired write access it is dropped now due to 3000 * possible mount and symlink following (this might be optimized away if 3001 * necessary...) 3002 */ 3003 if (got_write) { 3004 mnt_drop_write(nd->path.mnt); 3005 got_write = false; 3006 } 3007 3008 error = -EEXIST; 3009 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 3010 goto exit_dput; 3011 3012 error = follow_managed(path, nd->flags); 3013 if (error < 0) 3014 goto exit_dput; 3015 3016 if (error) 3017 nd->flags |= LOOKUP_JUMPED; 3018 3019 BUG_ON(nd->flags & LOOKUP_RCU); 3020 inode = path->dentry->d_inode; 3021 finish_lookup: 3022 /* we _can_ be in RCU mode here */ 3023 error = -ENOENT; 3024 if (!inode || d_is_negative(path->dentry)) { 3025 path_to_nameidata(path, nd); 3026 goto out; 3027 } 3028 3029 if (should_follow_link(path->dentry, !symlink_ok)) { 3030 if (nd->flags & LOOKUP_RCU) { 3031 if (unlikely(unlazy_walk(nd, path->dentry))) { 3032 error = -ECHILD; 3033 goto out; 3034 } 3035 } 3036 BUG_ON(inode != path->dentry->d_inode); 3037 return 1; 3038 } 3039 3040 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3041 path_to_nameidata(path, nd); 3042 } else { 3043 save_parent.dentry = nd->path.dentry; 3044 save_parent.mnt = mntget(path->mnt); 3045 nd->path.dentry = path->dentry; 3046 3047 } 3048 nd->inode = inode; 3049 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3050 finish_open: 3051 error = complete_walk(nd); 3052 if (error) { 3053 path_put(&save_parent); 3054 return error; 3055 } 3056 audit_inode(name, nd->path.dentry, 0); 3057 error = -EISDIR; 3058 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3059 goto out; 3060 error = -ENOTDIR; 3061 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3062 goto out; 3063 if (!S_ISREG(nd->inode->i_mode)) 3064 will_truncate = false; 3065 3066 if (will_truncate) { 3067 error = mnt_want_write(nd->path.mnt); 3068 if (error) 3069 goto out; 3070 got_write = true; 3071 } 3072 finish_open_created: 3073 error = may_open(&nd->path, acc_mode, open_flag); 3074 if (error) 3075 goto out; 3076 3077 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3078 error = vfs_open(&nd->path, file, current_cred()); 3079 if (!error) { 3080 *opened |= FILE_OPENED; 3081 } else { 3082 if (error == -EOPENSTALE) 3083 goto stale_open; 3084 goto out; 3085 } 3086 opened: 3087 error = open_check_o_direct(file); 3088 if (error) 3089 goto exit_fput; 3090 error = ima_file_check(file, op->acc_mode, *opened); 3091 if (error) 3092 goto exit_fput; 3093 3094 if (will_truncate) { 3095 error = handle_truncate(file); 3096 if (error) 3097 goto exit_fput; 3098 } 3099 out: 3100 if (got_write) 3101 mnt_drop_write(nd->path.mnt); 3102 path_put(&save_parent); 3103 terminate_walk(nd); 3104 return error; 3105 3106 exit_dput: 3107 path_put_conditional(path, nd); 3108 goto out; 3109 exit_fput: 3110 fput(file); 3111 goto out; 3112 3113 stale_open: 3114 /* If no saved parent or already retried then can't retry */ 3115 if (!save_parent.dentry || retried) 3116 goto out; 3117 3118 BUG_ON(save_parent.dentry != dir); 3119 path_put(&nd->path); 3120 nd->path = save_parent; 3121 nd->inode = dir->d_inode; 3122 save_parent.mnt = NULL; 3123 save_parent.dentry = NULL; 3124 if (got_write) { 3125 mnt_drop_write(nd->path.mnt); 3126 got_write = false; 3127 } 3128 retried = true; 3129 goto retry_lookup; 3130 } 3131 3132 static int do_tmpfile(int dfd, struct filename *pathname, 3133 struct nameidata *nd, int flags, 3134 const struct open_flags *op, 3135 struct file *file, int *opened) 3136 { 3137 static const struct qstr name = QSTR_INIT("/", 1); 3138 struct dentry *dentry, *child; 3139 struct inode *dir; 3140 int error = path_lookupat(dfd, pathname->name, 3141 flags | LOOKUP_DIRECTORY, nd); 3142 if (unlikely(error)) 3143 return error; 3144 error = mnt_want_write(nd->path.mnt); 3145 if (unlikely(error)) 3146 goto out; 3147 /* we want directory to be writable */ 3148 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3149 if (error) 3150 goto out2; 3151 dentry = nd->path.dentry; 3152 dir = dentry->d_inode; 3153 if (!dir->i_op->tmpfile) { 3154 error = -EOPNOTSUPP; 3155 goto out2; 3156 } 3157 child = d_alloc(dentry, &name); 3158 if (unlikely(!child)) { 3159 error = -ENOMEM; 3160 goto out2; 3161 } 3162 nd->flags &= ~LOOKUP_DIRECTORY; 3163 nd->flags |= op->intent; 3164 dput(nd->path.dentry); 3165 nd->path.dentry = child; 3166 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3167 if (error) 3168 goto out2; 3169 audit_inode(pathname, nd->path.dentry, 0); 3170 /* Don't check for other permissions, the inode was just created */ 3171 error = may_open(&nd->path, MAY_OPEN, op->open_flag); 3172 if (error) 3173 goto out2; 3174 file->f_path.mnt = nd->path.mnt; 3175 error = finish_open(file, nd->path.dentry, NULL, opened); 3176 if (error) 3177 goto out2; 3178 error = open_check_o_direct(file); 3179 if (error) { 3180 fput(file); 3181 } else if (!(op->open_flag & O_EXCL)) { 3182 struct inode *inode = file_inode(file); 3183 spin_lock(&inode->i_lock); 3184 inode->i_state |= I_LINKABLE; 3185 spin_unlock(&inode->i_lock); 3186 } 3187 out2: 3188 mnt_drop_write(nd->path.mnt); 3189 out: 3190 path_put(&nd->path); 3191 return error; 3192 } 3193 3194 static struct file *path_openat(int dfd, struct filename *pathname, 3195 struct nameidata *nd, const struct open_flags *op, int flags) 3196 { 3197 struct file *file; 3198 struct path path; 3199 int opened = 0; 3200 int error; 3201 3202 file = get_empty_filp(); 3203 if (IS_ERR(file)) 3204 return file; 3205 3206 file->f_flags = op->open_flag; 3207 3208 if (unlikely(file->f_flags & __O_TMPFILE)) { 3209 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3210 goto out; 3211 } 3212 3213 error = path_init(dfd, pathname->name, flags, nd); 3214 if (unlikely(error)) 3215 goto out; 3216 3217 error = do_last(nd, &path, file, op, &opened, pathname); 3218 while (unlikely(error > 0)) { /* trailing symlink */ 3219 struct path link = path; 3220 void *cookie; 3221 if (!(nd->flags & LOOKUP_FOLLOW)) { 3222 path_put_conditional(&path, nd); 3223 path_put(&nd->path); 3224 error = -ELOOP; 3225 break; 3226 } 3227 error = may_follow_link(&link, nd); 3228 if (unlikely(error)) 3229 break; 3230 nd->flags |= LOOKUP_PARENT; 3231 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3232 error = follow_link(&link, nd, &cookie); 3233 if (unlikely(error)) 3234 break; 3235 error = do_last(nd, &path, file, op, &opened, pathname); 3236 put_link(nd, &link, cookie); 3237 } 3238 out: 3239 path_cleanup(nd); 3240 if (!(opened & FILE_OPENED)) { 3241 BUG_ON(!error); 3242 put_filp(file); 3243 } 3244 if (unlikely(error)) { 3245 if (error == -EOPENSTALE) { 3246 if (flags & LOOKUP_RCU) 3247 error = -ECHILD; 3248 else 3249 error = -ESTALE; 3250 } 3251 file = ERR_PTR(error); 3252 } 3253 return file; 3254 } 3255 3256 struct file *do_filp_open(int dfd, struct filename *pathname, 3257 const struct open_flags *op) 3258 { 3259 struct nameidata nd; 3260 int flags = op->lookup_flags; 3261 struct file *filp; 3262 3263 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3264 if (unlikely(filp == ERR_PTR(-ECHILD))) 3265 filp = path_openat(dfd, pathname, &nd, op, flags); 3266 if (unlikely(filp == ERR_PTR(-ESTALE))) 3267 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3268 return filp; 3269 } 3270 3271 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3272 const char *name, const struct open_flags *op) 3273 { 3274 struct nameidata nd; 3275 struct file *file; 3276 struct filename filename = { .name = name }; 3277 int flags = op->lookup_flags | LOOKUP_ROOT; 3278 3279 nd.root.mnt = mnt; 3280 nd.root.dentry = dentry; 3281 3282 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3283 return ERR_PTR(-ELOOP); 3284 3285 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3286 if (unlikely(file == ERR_PTR(-ECHILD))) 3287 file = path_openat(-1, &filename, &nd, op, flags); 3288 if (unlikely(file == ERR_PTR(-ESTALE))) 3289 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3290 return file; 3291 } 3292 3293 struct dentry *kern_path_create(int dfd, const char *pathname, 3294 struct path *path, unsigned int lookup_flags) 3295 { 3296 struct dentry *dentry = ERR_PTR(-EEXIST); 3297 struct nameidata nd; 3298 int err2; 3299 int error; 3300 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3301 3302 /* 3303 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3304 * other flags passed in are ignored! 3305 */ 3306 lookup_flags &= LOOKUP_REVAL; 3307 3308 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3309 if (error) 3310 return ERR_PTR(error); 3311 3312 /* 3313 * Yucky last component or no last component at all? 3314 * (foo/., foo/.., /////) 3315 */ 3316 if (nd.last_type != LAST_NORM) 3317 goto out; 3318 nd.flags &= ~LOOKUP_PARENT; 3319 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3320 3321 /* don't fail immediately if it's r/o, at least try to report other errors */ 3322 err2 = mnt_want_write(nd.path.mnt); 3323 /* 3324 * Do the final lookup. 3325 */ 3326 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3327 dentry = lookup_hash(&nd); 3328 if (IS_ERR(dentry)) 3329 goto unlock; 3330 3331 error = -EEXIST; 3332 if (d_is_positive(dentry)) 3333 goto fail; 3334 3335 /* 3336 * Special case - lookup gave negative, but... we had foo/bar/ 3337 * From the vfs_mknod() POV we just have a negative dentry - 3338 * all is fine. Let's be bastards - you had / on the end, you've 3339 * been asking for (non-existent) directory. -ENOENT for you. 3340 */ 3341 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3342 error = -ENOENT; 3343 goto fail; 3344 } 3345 if (unlikely(err2)) { 3346 error = err2; 3347 goto fail; 3348 } 3349 *path = nd.path; 3350 return dentry; 3351 fail: 3352 dput(dentry); 3353 dentry = ERR_PTR(error); 3354 unlock: 3355 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3356 if (!err2) 3357 mnt_drop_write(nd.path.mnt); 3358 out: 3359 path_put(&nd.path); 3360 return dentry; 3361 } 3362 EXPORT_SYMBOL(kern_path_create); 3363 3364 void done_path_create(struct path *path, struct dentry *dentry) 3365 { 3366 dput(dentry); 3367 mutex_unlock(&path->dentry->d_inode->i_mutex); 3368 mnt_drop_write(path->mnt); 3369 path_put(path); 3370 } 3371 EXPORT_SYMBOL(done_path_create); 3372 3373 struct dentry *user_path_create(int dfd, const char __user *pathname, 3374 struct path *path, unsigned int lookup_flags) 3375 { 3376 struct filename *tmp = getname(pathname); 3377 struct dentry *res; 3378 if (IS_ERR(tmp)) 3379 return ERR_CAST(tmp); 3380 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3381 putname(tmp); 3382 return res; 3383 } 3384 EXPORT_SYMBOL(user_path_create); 3385 3386 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3387 { 3388 int error = may_create(dir, dentry); 3389 3390 if (error) 3391 return error; 3392 3393 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3394 return -EPERM; 3395 3396 if (!dir->i_op->mknod) 3397 return -EPERM; 3398 3399 error = devcgroup_inode_mknod(mode, dev); 3400 if (error) 3401 return error; 3402 3403 error = security_inode_mknod(dir, dentry, mode, dev); 3404 if (error) 3405 return error; 3406 3407 error = dir->i_op->mknod(dir, dentry, mode, dev); 3408 if (!error) 3409 fsnotify_create(dir, dentry); 3410 return error; 3411 } 3412 EXPORT_SYMBOL(vfs_mknod); 3413 3414 static int may_mknod(umode_t mode) 3415 { 3416 switch (mode & S_IFMT) { 3417 case S_IFREG: 3418 case S_IFCHR: 3419 case S_IFBLK: 3420 case S_IFIFO: 3421 case S_IFSOCK: 3422 case 0: /* zero mode translates to S_IFREG */ 3423 return 0; 3424 case S_IFDIR: 3425 return -EPERM; 3426 default: 3427 return -EINVAL; 3428 } 3429 } 3430 3431 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3432 unsigned, dev) 3433 { 3434 struct dentry *dentry; 3435 struct path path; 3436 int error; 3437 unsigned int lookup_flags = 0; 3438 3439 error = may_mknod(mode); 3440 if (error) 3441 return error; 3442 retry: 3443 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3444 if (IS_ERR(dentry)) 3445 return PTR_ERR(dentry); 3446 3447 if (!IS_POSIXACL(path.dentry->d_inode)) 3448 mode &= ~current_umask(); 3449 error = security_path_mknod(&path, dentry, mode, dev); 3450 if (error) 3451 goto out; 3452 switch (mode & S_IFMT) { 3453 case 0: case S_IFREG: 3454 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3455 break; 3456 case S_IFCHR: case S_IFBLK: 3457 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3458 new_decode_dev(dev)); 3459 break; 3460 case S_IFIFO: case S_IFSOCK: 3461 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3462 break; 3463 } 3464 out: 3465 done_path_create(&path, dentry); 3466 if (retry_estale(error, lookup_flags)) { 3467 lookup_flags |= LOOKUP_REVAL; 3468 goto retry; 3469 } 3470 return error; 3471 } 3472 3473 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3474 { 3475 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3476 } 3477 3478 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3479 { 3480 int error = may_create(dir, dentry); 3481 unsigned max_links = dir->i_sb->s_max_links; 3482 3483 if (error) 3484 return error; 3485 3486 if (!dir->i_op->mkdir) 3487 return -EPERM; 3488 3489 mode &= (S_IRWXUGO|S_ISVTX); 3490 error = security_inode_mkdir(dir, dentry, mode); 3491 if (error) 3492 return error; 3493 3494 if (max_links && dir->i_nlink >= max_links) 3495 return -EMLINK; 3496 3497 error = dir->i_op->mkdir(dir, dentry, mode); 3498 if (!error) 3499 fsnotify_mkdir(dir, dentry); 3500 return error; 3501 } 3502 EXPORT_SYMBOL(vfs_mkdir); 3503 3504 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3505 { 3506 struct dentry *dentry; 3507 struct path path; 3508 int error; 3509 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3510 3511 retry: 3512 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3513 if (IS_ERR(dentry)) 3514 return PTR_ERR(dentry); 3515 3516 if (!IS_POSIXACL(path.dentry->d_inode)) 3517 mode &= ~current_umask(); 3518 error = security_path_mkdir(&path, dentry, mode); 3519 if (!error) 3520 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3521 done_path_create(&path, dentry); 3522 if (retry_estale(error, lookup_flags)) { 3523 lookup_flags |= LOOKUP_REVAL; 3524 goto retry; 3525 } 3526 return error; 3527 } 3528 3529 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3530 { 3531 return sys_mkdirat(AT_FDCWD, pathname, mode); 3532 } 3533 3534 /* 3535 * The dentry_unhash() helper will try to drop the dentry early: we 3536 * should have a usage count of 1 if we're the only user of this 3537 * dentry, and if that is true (possibly after pruning the dcache), 3538 * then we drop the dentry now. 3539 * 3540 * A low-level filesystem can, if it choses, legally 3541 * do a 3542 * 3543 * if (!d_unhashed(dentry)) 3544 * return -EBUSY; 3545 * 3546 * if it cannot handle the case of removing a directory 3547 * that is still in use by something else.. 3548 */ 3549 void dentry_unhash(struct dentry *dentry) 3550 { 3551 shrink_dcache_parent(dentry); 3552 spin_lock(&dentry->d_lock); 3553 if (dentry->d_lockref.count == 1) 3554 __d_drop(dentry); 3555 spin_unlock(&dentry->d_lock); 3556 } 3557 EXPORT_SYMBOL(dentry_unhash); 3558 3559 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3560 { 3561 int error = may_delete(dir, dentry, 1); 3562 3563 if (error) 3564 return error; 3565 3566 if (!dir->i_op->rmdir) 3567 return -EPERM; 3568 3569 dget(dentry); 3570 mutex_lock(&dentry->d_inode->i_mutex); 3571 3572 error = -EBUSY; 3573 if (is_local_mountpoint(dentry)) 3574 goto out; 3575 3576 error = security_inode_rmdir(dir, dentry); 3577 if (error) 3578 goto out; 3579 3580 shrink_dcache_parent(dentry); 3581 error = dir->i_op->rmdir(dir, dentry); 3582 if (error) 3583 goto out; 3584 3585 dentry->d_inode->i_flags |= S_DEAD; 3586 dont_mount(dentry); 3587 detach_mounts(dentry); 3588 3589 out: 3590 mutex_unlock(&dentry->d_inode->i_mutex); 3591 dput(dentry); 3592 if (!error) 3593 d_delete(dentry); 3594 return error; 3595 } 3596 EXPORT_SYMBOL(vfs_rmdir); 3597 3598 static long do_rmdir(int dfd, const char __user *pathname) 3599 { 3600 int error = 0; 3601 struct filename *name; 3602 struct dentry *dentry; 3603 struct nameidata nd; 3604 unsigned int lookup_flags = 0; 3605 retry: 3606 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3607 if (IS_ERR(name)) 3608 return PTR_ERR(name); 3609 3610 switch(nd.last_type) { 3611 case LAST_DOTDOT: 3612 error = -ENOTEMPTY; 3613 goto exit1; 3614 case LAST_DOT: 3615 error = -EINVAL; 3616 goto exit1; 3617 case LAST_ROOT: 3618 error = -EBUSY; 3619 goto exit1; 3620 } 3621 3622 nd.flags &= ~LOOKUP_PARENT; 3623 error = mnt_want_write(nd.path.mnt); 3624 if (error) 3625 goto exit1; 3626 3627 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3628 dentry = lookup_hash(&nd); 3629 error = PTR_ERR(dentry); 3630 if (IS_ERR(dentry)) 3631 goto exit2; 3632 if (!dentry->d_inode) { 3633 error = -ENOENT; 3634 goto exit3; 3635 } 3636 error = security_path_rmdir(&nd.path, dentry); 3637 if (error) 3638 goto exit3; 3639 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3640 exit3: 3641 dput(dentry); 3642 exit2: 3643 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3644 mnt_drop_write(nd.path.mnt); 3645 exit1: 3646 path_put(&nd.path); 3647 putname(name); 3648 if (retry_estale(error, lookup_flags)) { 3649 lookup_flags |= LOOKUP_REVAL; 3650 goto retry; 3651 } 3652 return error; 3653 } 3654 3655 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3656 { 3657 return do_rmdir(AT_FDCWD, pathname); 3658 } 3659 3660 /** 3661 * vfs_unlink - unlink a filesystem object 3662 * @dir: parent directory 3663 * @dentry: victim 3664 * @delegated_inode: returns victim inode, if the inode is delegated. 3665 * 3666 * The caller must hold dir->i_mutex. 3667 * 3668 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3669 * return a reference to the inode in delegated_inode. The caller 3670 * should then break the delegation on that inode and retry. Because 3671 * breaking a delegation may take a long time, the caller should drop 3672 * dir->i_mutex before doing so. 3673 * 3674 * Alternatively, a caller may pass NULL for delegated_inode. This may 3675 * be appropriate for callers that expect the underlying filesystem not 3676 * to be NFS exported. 3677 */ 3678 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3679 { 3680 struct inode *target = dentry->d_inode; 3681 int error = may_delete(dir, dentry, 0); 3682 3683 if (error) 3684 return error; 3685 3686 if (!dir->i_op->unlink) 3687 return -EPERM; 3688 3689 mutex_lock(&target->i_mutex); 3690 if (is_local_mountpoint(dentry)) 3691 error = -EBUSY; 3692 else { 3693 error = security_inode_unlink(dir, dentry); 3694 if (!error) { 3695 error = try_break_deleg(target, delegated_inode); 3696 if (error) 3697 goto out; 3698 error = dir->i_op->unlink(dir, dentry); 3699 if (!error) { 3700 dont_mount(dentry); 3701 detach_mounts(dentry); 3702 } 3703 } 3704 } 3705 out: 3706 mutex_unlock(&target->i_mutex); 3707 3708 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3709 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3710 fsnotify_link_count(target); 3711 d_delete(dentry); 3712 } 3713 3714 return error; 3715 } 3716 EXPORT_SYMBOL(vfs_unlink); 3717 3718 /* 3719 * Make sure that the actual truncation of the file will occur outside its 3720 * directory's i_mutex. Truncate can take a long time if there is a lot of 3721 * writeout happening, and we don't want to prevent access to the directory 3722 * while waiting on the I/O. 3723 */ 3724 static long do_unlinkat(int dfd, const char __user *pathname) 3725 { 3726 int error; 3727 struct filename *name; 3728 struct dentry *dentry; 3729 struct nameidata nd; 3730 struct inode *inode = NULL; 3731 struct inode *delegated_inode = NULL; 3732 unsigned int lookup_flags = 0; 3733 retry: 3734 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3735 if (IS_ERR(name)) 3736 return PTR_ERR(name); 3737 3738 error = -EISDIR; 3739 if (nd.last_type != LAST_NORM) 3740 goto exit1; 3741 3742 nd.flags &= ~LOOKUP_PARENT; 3743 error = mnt_want_write(nd.path.mnt); 3744 if (error) 3745 goto exit1; 3746 retry_deleg: 3747 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3748 dentry = lookup_hash(&nd); 3749 error = PTR_ERR(dentry); 3750 if (!IS_ERR(dentry)) { 3751 /* Why not before? Because we want correct error value */ 3752 if (nd.last.name[nd.last.len]) 3753 goto slashes; 3754 inode = dentry->d_inode; 3755 if (d_is_negative(dentry)) 3756 goto slashes; 3757 ihold(inode); 3758 error = security_path_unlink(&nd.path, dentry); 3759 if (error) 3760 goto exit2; 3761 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3762 exit2: 3763 dput(dentry); 3764 } 3765 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3766 if (inode) 3767 iput(inode); /* truncate the inode here */ 3768 inode = NULL; 3769 if (delegated_inode) { 3770 error = break_deleg_wait(&delegated_inode); 3771 if (!error) 3772 goto retry_deleg; 3773 } 3774 mnt_drop_write(nd.path.mnt); 3775 exit1: 3776 path_put(&nd.path); 3777 putname(name); 3778 if (retry_estale(error, lookup_flags)) { 3779 lookup_flags |= LOOKUP_REVAL; 3780 inode = NULL; 3781 goto retry; 3782 } 3783 return error; 3784 3785 slashes: 3786 if (d_is_negative(dentry)) 3787 error = -ENOENT; 3788 else if (d_is_dir(dentry)) 3789 error = -EISDIR; 3790 else 3791 error = -ENOTDIR; 3792 goto exit2; 3793 } 3794 3795 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3796 { 3797 if ((flag & ~AT_REMOVEDIR) != 0) 3798 return -EINVAL; 3799 3800 if (flag & AT_REMOVEDIR) 3801 return do_rmdir(dfd, pathname); 3802 3803 return do_unlinkat(dfd, pathname); 3804 } 3805 3806 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3807 { 3808 return do_unlinkat(AT_FDCWD, pathname); 3809 } 3810 3811 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3812 { 3813 int error = may_create(dir, dentry); 3814 3815 if (error) 3816 return error; 3817 3818 if (!dir->i_op->symlink) 3819 return -EPERM; 3820 3821 error = security_inode_symlink(dir, dentry, oldname); 3822 if (error) 3823 return error; 3824 3825 error = dir->i_op->symlink(dir, dentry, oldname); 3826 if (!error) 3827 fsnotify_create(dir, dentry); 3828 return error; 3829 } 3830 EXPORT_SYMBOL(vfs_symlink); 3831 3832 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3833 int, newdfd, const char __user *, newname) 3834 { 3835 int error; 3836 struct filename *from; 3837 struct dentry *dentry; 3838 struct path path; 3839 unsigned int lookup_flags = 0; 3840 3841 from = getname(oldname); 3842 if (IS_ERR(from)) 3843 return PTR_ERR(from); 3844 retry: 3845 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3846 error = PTR_ERR(dentry); 3847 if (IS_ERR(dentry)) 3848 goto out_putname; 3849 3850 error = security_path_symlink(&path, dentry, from->name); 3851 if (!error) 3852 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3853 done_path_create(&path, dentry); 3854 if (retry_estale(error, lookup_flags)) { 3855 lookup_flags |= LOOKUP_REVAL; 3856 goto retry; 3857 } 3858 out_putname: 3859 putname(from); 3860 return error; 3861 } 3862 3863 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3864 { 3865 return sys_symlinkat(oldname, AT_FDCWD, newname); 3866 } 3867 3868 /** 3869 * vfs_link - create a new link 3870 * @old_dentry: object to be linked 3871 * @dir: new parent 3872 * @new_dentry: where to create the new link 3873 * @delegated_inode: returns inode needing a delegation break 3874 * 3875 * The caller must hold dir->i_mutex 3876 * 3877 * If vfs_link discovers a delegation on the to-be-linked file in need 3878 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3879 * inode in delegated_inode. The caller should then break the delegation 3880 * and retry. Because breaking a delegation may take a long time, the 3881 * caller should drop the i_mutex before doing so. 3882 * 3883 * Alternatively, a caller may pass NULL for delegated_inode. This may 3884 * be appropriate for callers that expect the underlying filesystem not 3885 * to be NFS exported. 3886 */ 3887 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3888 { 3889 struct inode *inode = old_dentry->d_inode; 3890 unsigned max_links = dir->i_sb->s_max_links; 3891 int error; 3892 3893 if (!inode) 3894 return -ENOENT; 3895 3896 error = may_create(dir, new_dentry); 3897 if (error) 3898 return error; 3899 3900 if (dir->i_sb != inode->i_sb) 3901 return -EXDEV; 3902 3903 /* 3904 * A link to an append-only or immutable file cannot be created. 3905 */ 3906 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3907 return -EPERM; 3908 if (!dir->i_op->link) 3909 return -EPERM; 3910 if (S_ISDIR(inode->i_mode)) 3911 return -EPERM; 3912 3913 error = security_inode_link(old_dentry, dir, new_dentry); 3914 if (error) 3915 return error; 3916 3917 mutex_lock(&inode->i_mutex); 3918 /* Make sure we don't allow creating hardlink to an unlinked file */ 3919 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3920 error = -ENOENT; 3921 else if (max_links && inode->i_nlink >= max_links) 3922 error = -EMLINK; 3923 else { 3924 error = try_break_deleg(inode, delegated_inode); 3925 if (!error) 3926 error = dir->i_op->link(old_dentry, dir, new_dentry); 3927 } 3928 3929 if (!error && (inode->i_state & I_LINKABLE)) { 3930 spin_lock(&inode->i_lock); 3931 inode->i_state &= ~I_LINKABLE; 3932 spin_unlock(&inode->i_lock); 3933 } 3934 mutex_unlock(&inode->i_mutex); 3935 if (!error) 3936 fsnotify_link(dir, inode, new_dentry); 3937 return error; 3938 } 3939 EXPORT_SYMBOL(vfs_link); 3940 3941 /* 3942 * Hardlinks are often used in delicate situations. We avoid 3943 * security-related surprises by not following symlinks on the 3944 * newname. --KAB 3945 * 3946 * We don't follow them on the oldname either to be compatible 3947 * with linux 2.0, and to avoid hard-linking to directories 3948 * and other special files. --ADM 3949 */ 3950 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3951 int, newdfd, const char __user *, newname, int, flags) 3952 { 3953 struct dentry *new_dentry; 3954 struct path old_path, new_path; 3955 struct inode *delegated_inode = NULL; 3956 int how = 0; 3957 int error; 3958 3959 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3960 return -EINVAL; 3961 /* 3962 * To use null names we require CAP_DAC_READ_SEARCH 3963 * This ensures that not everyone will be able to create 3964 * handlink using the passed filedescriptor. 3965 */ 3966 if (flags & AT_EMPTY_PATH) { 3967 if (!capable(CAP_DAC_READ_SEARCH)) 3968 return -ENOENT; 3969 how = LOOKUP_EMPTY; 3970 } 3971 3972 if (flags & AT_SYMLINK_FOLLOW) 3973 how |= LOOKUP_FOLLOW; 3974 retry: 3975 error = user_path_at(olddfd, oldname, how, &old_path); 3976 if (error) 3977 return error; 3978 3979 new_dentry = user_path_create(newdfd, newname, &new_path, 3980 (how & LOOKUP_REVAL)); 3981 error = PTR_ERR(new_dentry); 3982 if (IS_ERR(new_dentry)) 3983 goto out; 3984 3985 error = -EXDEV; 3986 if (old_path.mnt != new_path.mnt) 3987 goto out_dput; 3988 error = may_linkat(&old_path); 3989 if (unlikely(error)) 3990 goto out_dput; 3991 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3992 if (error) 3993 goto out_dput; 3994 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 3995 out_dput: 3996 done_path_create(&new_path, new_dentry); 3997 if (delegated_inode) { 3998 error = break_deleg_wait(&delegated_inode); 3999 if (!error) { 4000 path_put(&old_path); 4001 goto retry; 4002 } 4003 } 4004 if (retry_estale(error, how)) { 4005 path_put(&old_path); 4006 how |= LOOKUP_REVAL; 4007 goto retry; 4008 } 4009 out: 4010 path_put(&old_path); 4011 4012 return error; 4013 } 4014 4015 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4016 { 4017 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4018 } 4019 4020 /** 4021 * vfs_rename - rename a filesystem object 4022 * @old_dir: parent of source 4023 * @old_dentry: source 4024 * @new_dir: parent of destination 4025 * @new_dentry: destination 4026 * @delegated_inode: returns an inode needing a delegation break 4027 * @flags: rename flags 4028 * 4029 * The caller must hold multiple mutexes--see lock_rename()). 4030 * 4031 * If vfs_rename discovers a delegation in need of breaking at either 4032 * the source or destination, it will return -EWOULDBLOCK and return a 4033 * reference to the inode in delegated_inode. The caller should then 4034 * break the delegation and retry. Because breaking a delegation may 4035 * take a long time, the caller should drop all locks before doing 4036 * so. 4037 * 4038 * Alternatively, a caller may pass NULL for delegated_inode. This may 4039 * be appropriate for callers that expect the underlying filesystem not 4040 * to be NFS exported. 4041 * 4042 * The worst of all namespace operations - renaming directory. "Perverted" 4043 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4044 * Problems: 4045 * a) we can get into loop creation. 4046 * b) race potential - two innocent renames can create a loop together. 4047 * That's where 4.4 screws up. Current fix: serialization on 4048 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4049 * story. 4050 * c) we have to lock _four_ objects - parents and victim (if it exists), 4051 * and source (if it is not a directory). 4052 * And that - after we got ->i_mutex on parents (until then we don't know 4053 * whether the target exists). Solution: try to be smart with locking 4054 * order for inodes. We rely on the fact that tree topology may change 4055 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4056 * move will be locked. Thus we can rank directories by the tree 4057 * (ancestors first) and rank all non-directories after them. 4058 * That works since everybody except rename does "lock parent, lookup, 4059 * lock child" and rename is under ->s_vfs_rename_mutex. 4060 * HOWEVER, it relies on the assumption that any object with ->lookup() 4061 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4062 * we'd better make sure that there's no link(2) for them. 4063 * d) conversion from fhandle to dentry may come in the wrong moment - when 4064 * we are removing the target. Solution: we will have to grab ->i_mutex 4065 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4066 * ->i_mutex on parents, which works but leads to some truly excessive 4067 * locking]. 4068 */ 4069 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4070 struct inode *new_dir, struct dentry *new_dentry, 4071 struct inode **delegated_inode, unsigned int flags) 4072 { 4073 int error; 4074 bool is_dir = d_is_dir(old_dentry); 4075 const unsigned char *old_name; 4076 struct inode *source = old_dentry->d_inode; 4077 struct inode *target = new_dentry->d_inode; 4078 bool new_is_dir = false; 4079 unsigned max_links = new_dir->i_sb->s_max_links; 4080 4081 if (source == target) 4082 return 0; 4083 4084 error = may_delete(old_dir, old_dentry, is_dir); 4085 if (error) 4086 return error; 4087 4088 if (!target) { 4089 error = may_create(new_dir, new_dentry); 4090 } else { 4091 new_is_dir = d_is_dir(new_dentry); 4092 4093 if (!(flags & RENAME_EXCHANGE)) 4094 error = may_delete(new_dir, new_dentry, is_dir); 4095 else 4096 error = may_delete(new_dir, new_dentry, new_is_dir); 4097 } 4098 if (error) 4099 return error; 4100 4101 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4102 return -EPERM; 4103 4104 if (flags && !old_dir->i_op->rename2) 4105 return -EINVAL; 4106 4107 /* 4108 * If we are going to change the parent - check write permissions, 4109 * we'll need to flip '..'. 4110 */ 4111 if (new_dir != old_dir) { 4112 if (is_dir) { 4113 error = inode_permission(source, MAY_WRITE); 4114 if (error) 4115 return error; 4116 } 4117 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4118 error = inode_permission(target, MAY_WRITE); 4119 if (error) 4120 return error; 4121 } 4122 } 4123 4124 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4125 flags); 4126 if (error) 4127 return error; 4128 4129 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4130 dget(new_dentry); 4131 if (!is_dir || (flags & RENAME_EXCHANGE)) 4132 lock_two_nondirectories(source, target); 4133 else if (target) 4134 mutex_lock(&target->i_mutex); 4135 4136 error = -EBUSY; 4137 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4138 goto out; 4139 4140 if (max_links && new_dir != old_dir) { 4141 error = -EMLINK; 4142 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4143 goto out; 4144 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4145 old_dir->i_nlink >= max_links) 4146 goto out; 4147 } 4148 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4149 shrink_dcache_parent(new_dentry); 4150 if (!is_dir) { 4151 error = try_break_deleg(source, delegated_inode); 4152 if (error) 4153 goto out; 4154 } 4155 if (target && !new_is_dir) { 4156 error = try_break_deleg(target, delegated_inode); 4157 if (error) 4158 goto out; 4159 } 4160 if (!old_dir->i_op->rename2) { 4161 error = old_dir->i_op->rename(old_dir, old_dentry, 4162 new_dir, new_dentry); 4163 } else { 4164 WARN_ON(old_dir->i_op->rename != NULL); 4165 error = old_dir->i_op->rename2(old_dir, old_dentry, 4166 new_dir, new_dentry, flags); 4167 } 4168 if (error) 4169 goto out; 4170 4171 if (!(flags & RENAME_EXCHANGE) && target) { 4172 if (is_dir) 4173 target->i_flags |= S_DEAD; 4174 dont_mount(new_dentry); 4175 detach_mounts(new_dentry); 4176 } 4177 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4178 if (!(flags & RENAME_EXCHANGE)) 4179 d_move(old_dentry, new_dentry); 4180 else 4181 d_exchange(old_dentry, new_dentry); 4182 } 4183 out: 4184 if (!is_dir || (flags & RENAME_EXCHANGE)) 4185 unlock_two_nondirectories(source, target); 4186 else if (target) 4187 mutex_unlock(&target->i_mutex); 4188 dput(new_dentry); 4189 if (!error) { 4190 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4191 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4192 if (flags & RENAME_EXCHANGE) { 4193 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4194 new_is_dir, NULL, new_dentry); 4195 } 4196 } 4197 fsnotify_oldname_free(old_name); 4198 4199 return error; 4200 } 4201 EXPORT_SYMBOL(vfs_rename); 4202 4203 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4204 int, newdfd, const char __user *, newname, unsigned int, flags) 4205 { 4206 struct dentry *old_dir, *new_dir; 4207 struct dentry *old_dentry, *new_dentry; 4208 struct dentry *trap; 4209 struct nameidata oldnd, newnd; 4210 struct inode *delegated_inode = NULL; 4211 struct filename *from; 4212 struct filename *to; 4213 unsigned int lookup_flags = 0; 4214 bool should_retry = false; 4215 int error; 4216 4217 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4218 return -EINVAL; 4219 4220 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4221 (flags & RENAME_EXCHANGE)) 4222 return -EINVAL; 4223 4224 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4225 return -EPERM; 4226 4227 retry: 4228 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4229 if (IS_ERR(from)) { 4230 error = PTR_ERR(from); 4231 goto exit; 4232 } 4233 4234 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4235 if (IS_ERR(to)) { 4236 error = PTR_ERR(to); 4237 goto exit1; 4238 } 4239 4240 error = -EXDEV; 4241 if (oldnd.path.mnt != newnd.path.mnt) 4242 goto exit2; 4243 4244 old_dir = oldnd.path.dentry; 4245 error = -EBUSY; 4246 if (oldnd.last_type != LAST_NORM) 4247 goto exit2; 4248 4249 new_dir = newnd.path.dentry; 4250 if (flags & RENAME_NOREPLACE) 4251 error = -EEXIST; 4252 if (newnd.last_type != LAST_NORM) 4253 goto exit2; 4254 4255 error = mnt_want_write(oldnd.path.mnt); 4256 if (error) 4257 goto exit2; 4258 4259 oldnd.flags &= ~LOOKUP_PARENT; 4260 newnd.flags &= ~LOOKUP_PARENT; 4261 if (!(flags & RENAME_EXCHANGE)) 4262 newnd.flags |= LOOKUP_RENAME_TARGET; 4263 4264 retry_deleg: 4265 trap = lock_rename(new_dir, old_dir); 4266 4267 old_dentry = lookup_hash(&oldnd); 4268 error = PTR_ERR(old_dentry); 4269 if (IS_ERR(old_dentry)) 4270 goto exit3; 4271 /* source must exist */ 4272 error = -ENOENT; 4273 if (d_is_negative(old_dentry)) 4274 goto exit4; 4275 new_dentry = lookup_hash(&newnd); 4276 error = PTR_ERR(new_dentry); 4277 if (IS_ERR(new_dentry)) 4278 goto exit4; 4279 error = -EEXIST; 4280 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4281 goto exit5; 4282 if (flags & RENAME_EXCHANGE) { 4283 error = -ENOENT; 4284 if (d_is_negative(new_dentry)) 4285 goto exit5; 4286 4287 if (!d_is_dir(new_dentry)) { 4288 error = -ENOTDIR; 4289 if (newnd.last.name[newnd.last.len]) 4290 goto exit5; 4291 } 4292 } 4293 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4294 if (!d_is_dir(old_dentry)) { 4295 error = -ENOTDIR; 4296 if (oldnd.last.name[oldnd.last.len]) 4297 goto exit5; 4298 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len]) 4299 goto exit5; 4300 } 4301 /* source should not be ancestor of target */ 4302 error = -EINVAL; 4303 if (old_dentry == trap) 4304 goto exit5; 4305 /* target should not be an ancestor of source */ 4306 if (!(flags & RENAME_EXCHANGE)) 4307 error = -ENOTEMPTY; 4308 if (new_dentry == trap) 4309 goto exit5; 4310 4311 error = security_path_rename(&oldnd.path, old_dentry, 4312 &newnd.path, new_dentry, flags); 4313 if (error) 4314 goto exit5; 4315 error = vfs_rename(old_dir->d_inode, old_dentry, 4316 new_dir->d_inode, new_dentry, 4317 &delegated_inode, flags); 4318 exit5: 4319 dput(new_dentry); 4320 exit4: 4321 dput(old_dentry); 4322 exit3: 4323 unlock_rename(new_dir, old_dir); 4324 if (delegated_inode) { 4325 error = break_deleg_wait(&delegated_inode); 4326 if (!error) 4327 goto retry_deleg; 4328 } 4329 mnt_drop_write(oldnd.path.mnt); 4330 exit2: 4331 if (retry_estale(error, lookup_flags)) 4332 should_retry = true; 4333 path_put(&newnd.path); 4334 putname(to); 4335 exit1: 4336 path_put(&oldnd.path); 4337 putname(from); 4338 if (should_retry) { 4339 should_retry = false; 4340 lookup_flags |= LOOKUP_REVAL; 4341 goto retry; 4342 } 4343 exit: 4344 return error; 4345 } 4346 4347 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4348 int, newdfd, const char __user *, newname) 4349 { 4350 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4351 } 4352 4353 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4354 { 4355 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4356 } 4357 4358 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4359 { 4360 int error = may_create(dir, dentry); 4361 if (error) 4362 return error; 4363 4364 if (!dir->i_op->mknod) 4365 return -EPERM; 4366 4367 return dir->i_op->mknod(dir, dentry, 4368 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4369 } 4370 EXPORT_SYMBOL(vfs_whiteout); 4371 4372 int readlink_copy(char __user *buffer, int buflen, const char *link) 4373 { 4374 int len = PTR_ERR(link); 4375 if (IS_ERR(link)) 4376 goto out; 4377 4378 len = strlen(link); 4379 if (len > (unsigned) buflen) 4380 len = buflen; 4381 if (copy_to_user(buffer, link, len)) 4382 len = -EFAULT; 4383 out: 4384 return len; 4385 } 4386 EXPORT_SYMBOL(readlink_copy); 4387 4388 /* 4389 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4390 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4391 * using) it for any given inode is up to filesystem. 4392 */ 4393 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4394 { 4395 struct nameidata nd; 4396 void *cookie; 4397 int res; 4398 4399 nd.depth = 0; 4400 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4401 if (IS_ERR(cookie)) 4402 return PTR_ERR(cookie); 4403 4404 res = readlink_copy(buffer, buflen, nd_get_link(&nd)); 4405 if (dentry->d_inode->i_op->put_link) 4406 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4407 return res; 4408 } 4409 EXPORT_SYMBOL(generic_readlink); 4410 4411 /* get the link contents into pagecache */ 4412 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4413 { 4414 char *kaddr; 4415 struct page *page; 4416 struct address_space *mapping = dentry->d_inode->i_mapping; 4417 page = read_mapping_page(mapping, 0, NULL); 4418 if (IS_ERR(page)) 4419 return (char*)page; 4420 *ppage = page; 4421 kaddr = kmap(page); 4422 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4423 return kaddr; 4424 } 4425 4426 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4427 { 4428 struct page *page = NULL; 4429 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4430 if (page) { 4431 kunmap(page); 4432 page_cache_release(page); 4433 } 4434 return res; 4435 } 4436 EXPORT_SYMBOL(page_readlink); 4437 4438 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4439 { 4440 struct page *page = NULL; 4441 nd_set_link(nd, page_getlink(dentry, &page)); 4442 return page; 4443 } 4444 EXPORT_SYMBOL(page_follow_link_light); 4445 4446 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4447 { 4448 struct page *page = cookie; 4449 4450 if (page) { 4451 kunmap(page); 4452 page_cache_release(page); 4453 } 4454 } 4455 EXPORT_SYMBOL(page_put_link); 4456 4457 /* 4458 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4459 */ 4460 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4461 { 4462 struct address_space *mapping = inode->i_mapping; 4463 struct page *page; 4464 void *fsdata; 4465 int err; 4466 char *kaddr; 4467 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4468 if (nofs) 4469 flags |= AOP_FLAG_NOFS; 4470 4471 retry: 4472 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4473 flags, &page, &fsdata); 4474 if (err) 4475 goto fail; 4476 4477 kaddr = kmap_atomic(page); 4478 memcpy(kaddr, symname, len-1); 4479 kunmap_atomic(kaddr); 4480 4481 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4482 page, fsdata); 4483 if (err < 0) 4484 goto fail; 4485 if (err < len-1) 4486 goto retry; 4487 4488 mark_inode_dirty(inode); 4489 return 0; 4490 fail: 4491 return err; 4492 } 4493 EXPORT_SYMBOL(__page_symlink); 4494 4495 int page_symlink(struct inode *inode, const char *symname, int len) 4496 { 4497 return __page_symlink(inode, symname, len, 4498 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4499 } 4500 EXPORT_SYMBOL(page_symlink); 4501 4502 const struct inode_operations page_symlink_inode_operations = { 4503 .readlink = generic_readlink, 4504 .follow_link = page_follow_link_light, 4505 .put_link = page_put_link, 4506 }; 4507 EXPORT_SYMBOL(page_symlink_inode_operations); 4508