1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <linux/bitops.h> 39 #include <linux/init_task.h> 40 #include <linux/uaccess.h> 41 42 #include "internal.h" 43 #include "mount.h" 44 45 /* [Feb-1997 T. Schoebel-Theuer] 46 * Fundamental changes in the pathname lookup mechanisms (namei) 47 * were necessary because of omirr. The reason is that omirr needs 48 * to know the _real_ pathname, not the user-supplied one, in case 49 * of symlinks (and also when transname replacements occur). 50 * 51 * The new code replaces the old recursive symlink resolution with 52 * an iterative one (in case of non-nested symlink chains). It does 53 * this with calls to <fs>_follow_link(). 54 * As a side effect, dir_namei(), _namei() and follow_link() are now 55 * replaced with a single function lookup_dentry() that can handle all 56 * the special cases of the former code. 57 * 58 * With the new dcache, the pathname is stored at each inode, at least as 59 * long as the refcount of the inode is positive. As a side effect, the 60 * size of the dcache depends on the inode cache and thus is dynamic. 61 * 62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 63 * resolution to correspond with current state of the code. 64 * 65 * Note that the symlink resolution is not *completely* iterative. 66 * There is still a significant amount of tail- and mid- recursion in 67 * the algorithm. Also, note that <fs>_readlink() is not used in 68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 69 * may return different results than <fs>_follow_link(). Many virtual 70 * filesystems (including /proc) exhibit this behavior. 71 */ 72 73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 75 * and the name already exists in form of a symlink, try to create the new 76 * name indicated by the symlink. The old code always complained that the 77 * name already exists, due to not following the symlink even if its target 78 * is nonexistent. The new semantics affects also mknod() and link() when 79 * the name is a symlink pointing to a non-existent name. 80 * 81 * I don't know which semantics is the right one, since I have no access 82 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 84 * "old" one. Personally, I think the new semantics is much more logical. 85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 86 * file does succeed in both HP-UX and SunOs, but not in Solaris 87 * and in the old Linux semantics. 88 */ 89 90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 91 * semantics. See the comments in "open_namei" and "do_link" below. 92 * 93 * [10-Sep-98 Alan Modra] Another symlink change. 94 */ 95 96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 97 * inside the path - always follow. 98 * in the last component in creation/removal/renaming - never follow. 99 * if LOOKUP_FOLLOW passed - follow. 100 * if the pathname has trailing slashes - follow. 101 * otherwise - don't follow. 102 * (applied in that order). 103 * 104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 106 * During the 2.4 we need to fix the userland stuff depending on it - 107 * hopefully we will be able to get rid of that wart in 2.5. So far only 108 * XEmacs seems to be relying on it... 109 */ 110 /* 111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 113 * any extra contention... 114 */ 115 116 /* In order to reduce some races, while at the same time doing additional 117 * checking and hopefully speeding things up, we copy filenames to the 118 * kernel data space before using them.. 119 * 120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 121 * PATH_MAX includes the nul terminator --RR. 122 */ 123 124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 125 126 struct filename * 127 getname_flags(const char __user *filename, int flags, int *empty) 128 { 129 struct filename *result; 130 char *kname; 131 int len; 132 133 result = audit_reusename(filename); 134 if (result) 135 return result; 136 137 result = __getname(); 138 if (unlikely(!result)) 139 return ERR_PTR(-ENOMEM); 140 141 /* 142 * First, try to embed the struct filename inside the names_cache 143 * allocation 144 */ 145 kname = (char *)result->iname; 146 result->name = kname; 147 148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 149 if (unlikely(len < 0)) { 150 __putname(result); 151 return ERR_PTR(len); 152 } 153 154 /* 155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 156 * separate struct filename so we can dedicate the entire 157 * names_cache allocation for the pathname, and re-do the copy from 158 * userland. 159 */ 160 if (unlikely(len == EMBEDDED_NAME_MAX)) { 161 const size_t size = offsetof(struct filename, iname[1]); 162 kname = (char *)result; 163 164 /* 165 * size is chosen that way we to guarantee that 166 * result->iname[0] is within the same object and that 167 * kname can't be equal to result->iname, no matter what. 168 */ 169 result = kzalloc(size, GFP_KERNEL); 170 if (unlikely(!result)) { 171 __putname(kname); 172 return ERR_PTR(-ENOMEM); 173 } 174 result->name = kname; 175 len = strncpy_from_user(kname, filename, PATH_MAX); 176 if (unlikely(len < 0)) { 177 __putname(kname); 178 kfree(result); 179 return ERR_PTR(len); 180 } 181 if (unlikely(len == PATH_MAX)) { 182 __putname(kname); 183 kfree(result); 184 return ERR_PTR(-ENAMETOOLONG); 185 } 186 } 187 188 result->refcnt = 1; 189 /* The empty path is special. */ 190 if (unlikely(!len)) { 191 if (empty) 192 *empty = 1; 193 if (!(flags & LOOKUP_EMPTY)) { 194 putname(result); 195 return ERR_PTR(-ENOENT); 196 } 197 } 198 199 result->uptr = filename; 200 result->aname = NULL; 201 audit_getname(result); 202 return result; 203 } 204 205 struct filename * 206 getname(const char __user * filename) 207 { 208 return getname_flags(filename, 0, NULL); 209 } 210 211 struct filename * 212 getname_kernel(const char * filename) 213 { 214 struct filename *result; 215 int len = strlen(filename) + 1; 216 217 result = __getname(); 218 if (unlikely(!result)) 219 return ERR_PTR(-ENOMEM); 220 221 if (len <= EMBEDDED_NAME_MAX) { 222 result->name = (char *)result->iname; 223 } else if (len <= PATH_MAX) { 224 struct filename *tmp; 225 226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 227 if (unlikely(!tmp)) { 228 __putname(result); 229 return ERR_PTR(-ENOMEM); 230 } 231 tmp->name = (char *)result; 232 result = tmp; 233 } else { 234 __putname(result); 235 return ERR_PTR(-ENAMETOOLONG); 236 } 237 memcpy((char *)result->name, filename, len); 238 result->uptr = NULL; 239 result->aname = NULL; 240 result->refcnt = 1; 241 audit_getname(result); 242 243 return result; 244 } 245 246 void putname(struct filename *name) 247 { 248 BUG_ON(name->refcnt <= 0); 249 250 if (--name->refcnt > 0) 251 return; 252 253 if (name->name != name->iname) { 254 __putname(name->name); 255 kfree(name); 256 } else 257 __putname(name); 258 } 259 260 static int check_acl(struct inode *inode, int mask) 261 { 262 #ifdef CONFIG_FS_POSIX_ACL 263 struct posix_acl *acl; 264 265 if (mask & MAY_NOT_BLOCK) { 266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 267 if (!acl) 268 return -EAGAIN; 269 /* no ->get_acl() calls in RCU mode... */ 270 if (is_uncached_acl(acl)) 271 return -ECHILD; 272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 273 } 274 275 acl = get_acl(inode, ACL_TYPE_ACCESS); 276 if (IS_ERR(acl)) 277 return PTR_ERR(acl); 278 if (acl) { 279 int error = posix_acl_permission(inode, acl, mask); 280 posix_acl_release(acl); 281 return error; 282 } 283 #endif 284 285 return -EAGAIN; 286 } 287 288 /* 289 * This does the basic permission checking 290 */ 291 static int acl_permission_check(struct inode *inode, int mask) 292 { 293 unsigned int mode = inode->i_mode; 294 295 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 296 mode >>= 6; 297 else { 298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 299 int error = check_acl(inode, mask); 300 if (error != -EAGAIN) 301 return error; 302 } 303 304 if (in_group_p(inode->i_gid)) 305 mode >>= 3; 306 } 307 308 /* 309 * If the DACs are ok we don't need any capability check. 310 */ 311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 312 return 0; 313 return -EACCES; 314 } 315 316 /** 317 * generic_permission - check for access rights on a Posix-like filesystem 318 * @inode: inode to check access rights for 319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 320 * 321 * Used to check for read/write/execute permissions on a file. 322 * We use "fsuid" for this, letting us set arbitrary permissions 323 * for filesystem access without changing the "normal" uids which 324 * are used for other things. 325 * 326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 327 * request cannot be satisfied (eg. requires blocking or too much complexity). 328 * It would then be called again in ref-walk mode. 329 */ 330 int generic_permission(struct inode *inode, int mask) 331 { 332 int ret; 333 334 /* 335 * Do the basic permission checks. 336 */ 337 ret = acl_permission_check(inode, mask); 338 if (ret != -EACCES) 339 return ret; 340 341 if (S_ISDIR(inode->i_mode)) { 342 /* DACs are overridable for directories */ 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 348 return 0; 349 return -EACCES; 350 } 351 352 /* 353 * Searching includes executable on directories, else just read. 354 */ 355 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 356 if (mask == MAY_READ) 357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 358 return 0; 359 /* 360 * Read/write DACs are always overridable. 361 * Executable DACs are overridable when there is 362 * at least one exec bit set. 363 */ 364 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 366 return 0; 367 368 return -EACCES; 369 } 370 EXPORT_SYMBOL(generic_permission); 371 372 /* 373 * We _really_ want to just do "generic_permission()" without 374 * even looking at the inode->i_op values. So we keep a cache 375 * flag in inode->i_opflags, that says "this has not special 376 * permission function, use the fast case". 377 */ 378 static inline int do_inode_permission(struct inode *inode, int mask) 379 { 380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 381 if (likely(inode->i_op->permission)) 382 return inode->i_op->permission(inode, mask); 383 384 /* This gets set once for the inode lifetime */ 385 spin_lock(&inode->i_lock); 386 inode->i_opflags |= IOP_FASTPERM; 387 spin_unlock(&inode->i_lock); 388 } 389 return generic_permission(inode, mask); 390 } 391 392 /** 393 * __inode_permission - Check for access rights to a given inode 394 * @inode: Inode to check permission on 395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 396 * 397 * Check for read/write/execute permissions on an inode. 398 * 399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 400 * 401 * This does not check for a read-only file system. You probably want 402 * inode_permission(). 403 */ 404 int __inode_permission(struct inode *inode, int mask) 405 { 406 int retval; 407 408 if (unlikely(mask & MAY_WRITE)) { 409 /* 410 * Nobody gets write access to an immutable file. 411 */ 412 if (IS_IMMUTABLE(inode)) 413 return -EPERM; 414 415 /* 416 * Updating mtime will likely cause i_uid and i_gid to be 417 * written back improperly if their true value is unknown 418 * to the vfs. 419 */ 420 if (HAS_UNMAPPED_ID(inode)) 421 return -EACCES; 422 } 423 424 retval = do_inode_permission(inode, mask); 425 if (retval) 426 return retval; 427 428 retval = devcgroup_inode_permission(inode, mask); 429 if (retval) 430 return retval; 431 432 return security_inode_permission(inode, mask); 433 } 434 EXPORT_SYMBOL(__inode_permission); 435 436 /** 437 * sb_permission - Check superblock-level permissions 438 * @sb: Superblock of inode to check permission on 439 * @inode: Inode to check permission on 440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 441 * 442 * Separate out file-system wide checks from inode-specific permission checks. 443 */ 444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 445 { 446 if (unlikely(mask & MAY_WRITE)) { 447 umode_t mode = inode->i_mode; 448 449 /* Nobody gets write access to a read-only fs. */ 450 if ((sb->s_flags & MS_RDONLY) && 451 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 452 return -EROFS; 453 } 454 return 0; 455 } 456 457 /** 458 * inode_permission - Check for access rights to a given inode 459 * @inode: Inode to check permission on 460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 461 * 462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 463 * this, letting us set arbitrary permissions for filesystem access without 464 * changing the "normal" UIDs which are used for other things. 465 * 466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 467 */ 468 int inode_permission(struct inode *inode, int mask) 469 { 470 int retval; 471 472 retval = sb_permission(inode->i_sb, inode, mask); 473 if (retval) 474 return retval; 475 return __inode_permission(inode, mask); 476 } 477 EXPORT_SYMBOL(inode_permission); 478 479 /** 480 * path_get - get a reference to a path 481 * @path: path to get the reference to 482 * 483 * Given a path increment the reference count to the dentry and the vfsmount. 484 */ 485 void path_get(const struct path *path) 486 { 487 mntget(path->mnt); 488 dget(path->dentry); 489 } 490 EXPORT_SYMBOL(path_get); 491 492 /** 493 * path_put - put a reference to a path 494 * @path: path to put the reference to 495 * 496 * Given a path decrement the reference count to the dentry and the vfsmount. 497 */ 498 void path_put(const struct path *path) 499 { 500 dput(path->dentry); 501 mntput(path->mnt); 502 } 503 EXPORT_SYMBOL(path_put); 504 505 #define EMBEDDED_LEVELS 2 506 struct nameidata { 507 struct path path; 508 struct qstr last; 509 struct path root; 510 struct inode *inode; /* path.dentry.d_inode */ 511 unsigned int flags; 512 unsigned seq, m_seq; 513 int last_type; 514 unsigned depth; 515 int total_link_count; 516 struct saved { 517 struct path link; 518 struct delayed_call done; 519 const char *name; 520 unsigned seq; 521 } *stack, internal[EMBEDDED_LEVELS]; 522 struct filename *name; 523 struct nameidata *saved; 524 struct inode *link_inode; 525 unsigned root_seq; 526 int dfd; 527 } __randomize_layout; 528 529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 530 { 531 struct nameidata *old = current->nameidata; 532 p->stack = p->internal; 533 p->dfd = dfd; 534 p->name = name; 535 p->total_link_count = old ? old->total_link_count : 0; 536 p->saved = old; 537 current->nameidata = p; 538 } 539 540 static void restore_nameidata(void) 541 { 542 struct nameidata *now = current->nameidata, *old = now->saved; 543 544 current->nameidata = old; 545 if (old) 546 old->total_link_count = now->total_link_count; 547 if (now->stack != now->internal) 548 kfree(now->stack); 549 } 550 551 static int __nd_alloc_stack(struct nameidata *nd) 552 { 553 struct saved *p; 554 555 if (nd->flags & LOOKUP_RCU) { 556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 557 GFP_ATOMIC); 558 if (unlikely(!p)) 559 return -ECHILD; 560 } else { 561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 562 GFP_KERNEL); 563 if (unlikely(!p)) 564 return -ENOMEM; 565 } 566 memcpy(p, nd->internal, sizeof(nd->internal)); 567 nd->stack = p; 568 return 0; 569 } 570 571 /** 572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 573 * @path: nameidate to verify 574 * 575 * Rename can sometimes move a file or directory outside of a bind 576 * mount, path_connected allows those cases to be detected. 577 */ 578 static bool path_connected(const struct path *path) 579 { 580 struct vfsmount *mnt = path->mnt; 581 582 /* Only bind mounts can have disconnected paths */ 583 if (mnt->mnt_root == mnt->mnt_sb->s_root) 584 return true; 585 586 return is_subdir(path->dentry, mnt->mnt_root); 587 } 588 589 static inline int nd_alloc_stack(struct nameidata *nd) 590 { 591 if (likely(nd->depth != EMBEDDED_LEVELS)) 592 return 0; 593 if (likely(nd->stack != nd->internal)) 594 return 0; 595 return __nd_alloc_stack(nd); 596 } 597 598 static void drop_links(struct nameidata *nd) 599 { 600 int i = nd->depth; 601 while (i--) { 602 struct saved *last = nd->stack + i; 603 do_delayed_call(&last->done); 604 clear_delayed_call(&last->done); 605 } 606 } 607 608 static void terminate_walk(struct nameidata *nd) 609 { 610 drop_links(nd); 611 if (!(nd->flags & LOOKUP_RCU)) { 612 int i; 613 path_put(&nd->path); 614 for (i = 0; i < nd->depth; i++) 615 path_put(&nd->stack[i].link); 616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 617 path_put(&nd->root); 618 nd->root.mnt = NULL; 619 } 620 } else { 621 nd->flags &= ~LOOKUP_RCU; 622 if (!(nd->flags & LOOKUP_ROOT)) 623 nd->root.mnt = NULL; 624 rcu_read_unlock(); 625 } 626 nd->depth = 0; 627 } 628 629 /* path_put is needed afterwards regardless of success or failure */ 630 static bool legitimize_path(struct nameidata *nd, 631 struct path *path, unsigned seq) 632 { 633 int res = __legitimize_mnt(path->mnt, nd->m_seq); 634 if (unlikely(res)) { 635 if (res > 0) 636 path->mnt = NULL; 637 path->dentry = NULL; 638 return false; 639 } 640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 641 path->dentry = NULL; 642 return false; 643 } 644 return !read_seqcount_retry(&path->dentry->d_seq, seq); 645 } 646 647 static bool legitimize_links(struct nameidata *nd) 648 { 649 int i; 650 for (i = 0; i < nd->depth; i++) { 651 struct saved *last = nd->stack + i; 652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 653 drop_links(nd); 654 nd->depth = i + 1; 655 return false; 656 } 657 } 658 return true; 659 } 660 661 /* 662 * Path walking has 2 modes, rcu-walk and ref-walk (see 663 * Documentation/filesystems/path-lookup.txt). In situations when we can't 664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 665 * normal reference counts on dentries and vfsmounts to transition to ref-walk 666 * mode. Refcounts are grabbed at the last known good point before rcu-walk 667 * got stuck, so ref-walk may continue from there. If this is not successful 668 * (eg. a seqcount has changed), then failure is returned and it's up to caller 669 * to restart the path walk from the beginning in ref-walk mode. 670 */ 671 672 /** 673 * unlazy_walk - try to switch to ref-walk mode. 674 * @nd: nameidata pathwalk data 675 * Returns: 0 on success, -ECHILD on failure 676 * 677 * unlazy_walk attempts to legitimize the current nd->path and nd->root 678 * for ref-walk mode. 679 * Must be called from rcu-walk context. 680 * Nothing should touch nameidata between unlazy_walk() failure and 681 * terminate_walk(). 682 */ 683 static int unlazy_walk(struct nameidata *nd) 684 { 685 struct dentry *parent = nd->path.dentry; 686 687 BUG_ON(!(nd->flags & LOOKUP_RCU)); 688 689 nd->flags &= ~LOOKUP_RCU; 690 if (unlikely(!legitimize_links(nd))) 691 goto out2; 692 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 693 goto out1; 694 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 695 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 696 goto out; 697 } 698 rcu_read_unlock(); 699 BUG_ON(nd->inode != parent->d_inode); 700 return 0; 701 702 out2: 703 nd->path.mnt = NULL; 704 nd->path.dentry = NULL; 705 out1: 706 if (!(nd->flags & LOOKUP_ROOT)) 707 nd->root.mnt = NULL; 708 out: 709 rcu_read_unlock(); 710 return -ECHILD; 711 } 712 713 /** 714 * unlazy_child - try to switch to ref-walk mode. 715 * @nd: nameidata pathwalk data 716 * @dentry: child of nd->path.dentry 717 * @seq: seq number to check dentry against 718 * Returns: 0 on success, -ECHILD on failure 719 * 720 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 721 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 722 * @nd. Must be called from rcu-walk context. 723 * Nothing should touch nameidata between unlazy_child() failure and 724 * terminate_walk(). 725 */ 726 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 727 { 728 BUG_ON(!(nd->flags & LOOKUP_RCU)); 729 730 nd->flags &= ~LOOKUP_RCU; 731 if (unlikely(!legitimize_links(nd))) 732 goto out2; 733 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 734 goto out2; 735 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 736 goto out1; 737 738 /* 739 * We need to move both the parent and the dentry from the RCU domain 740 * to be properly refcounted. And the sequence number in the dentry 741 * validates *both* dentry counters, since we checked the sequence 742 * number of the parent after we got the child sequence number. So we 743 * know the parent must still be valid if the child sequence number is 744 */ 745 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 746 goto out; 747 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 748 rcu_read_unlock(); 749 dput(dentry); 750 goto drop_root_mnt; 751 } 752 /* 753 * Sequence counts matched. Now make sure that the root is 754 * still valid and get it if required. 755 */ 756 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 757 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 758 rcu_read_unlock(); 759 dput(dentry); 760 return -ECHILD; 761 } 762 } 763 764 rcu_read_unlock(); 765 return 0; 766 767 out2: 768 nd->path.mnt = NULL; 769 out1: 770 nd->path.dentry = NULL; 771 out: 772 rcu_read_unlock(); 773 drop_root_mnt: 774 if (!(nd->flags & LOOKUP_ROOT)) 775 nd->root.mnt = NULL; 776 return -ECHILD; 777 } 778 779 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 780 { 781 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 782 return dentry->d_op->d_revalidate(dentry, flags); 783 else 784 return 1; 785 } 786 787 /** 788 * complete_walk - successful completion of path walk 789 * @nd: pointer nameidata 790 * 791 * If we had been in RCU mode, drop out of it and legitimize nd->path. 792 * Revalidate the final result, unless we'd already done that during 793 * the path walk or the filesystem doesn't ask for it. Return 0 on 794 * success, -error on failure. In case of failure caller does not 795 * need to drop nd->path. 796 */ 797 static int complete_walk(struct nameidata *nd) 798 { 799 struct dentry *dentry = nd->path.dentry; 800 int status; 801 802 if (nd->flags & LOOKUP_RCU) { 803 if (!(nd->flags & LOOKUP_ROOT)) 804 nd->root.mnt = NULL; 805 if (unlikely(unlazy_walk(nd))) 806 return -ECHILD; 807 } 808 809 if (likely(!(nd->flags & LOOKUP_JUMPED))) 810 return 0; 811 812 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 813 return 0; 814 815 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 816 if (status > 0) 817 return 0; 818 819 if (!status) 820 status = -ESTALE; 821 822 return status; 823 } 824 825 static void set_root(struct nameidata *nd) 826 { 827 struct fs_struct *fs = current->fs; 828 829 if (nd->flags & LOOKUP_RCU) { 830 unsigned seq; 831 832 do { 833 seq = read_seqcount_begin(&fs->seq); 834 nd->root = fs->root; 835 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 836 } while (read_seqcount_retry(&fs->seq, seq)); 837 } else { 838 get_fs_root(fs, &nd->root); 839 } 840 } 841 842 static void path_put_conditional(struct path *path, struct nameidata *nd) 843 { 844 dput(path->dentry); 845 if (path->mnt != nd->path.mnt) 846 mntput(path->mnt); 847 } 848 849 static inline void path_to_nameidata(const struct path *path, 850 struct nameidata *nd) 851 { 852 if (!(nd->flags & LOOKUP_RCU)) { 853 dput(nd->path.dentry); 854 if (nd->path.mnt != path->mnt) 855 mntput(nd->path.mnt); 856 } 857 nd->path.mnt = path->mnt; 858 nd->path.dentry = path->dentry; 859 } 860 861 static int nd_jump_root(struct nameidata *nd) 862 { 863 if (nd->flags & LOOKUP_RCU) { 864 struct dentry *d; 865 nd->path = nd->root; 866 d = nd->path.dentry; 867 nd->inode = d->d_inode; 868 nd->seq = nd->root_seq; 869 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 870 return -ECHILD; 871 } else { 872 path_put(&nd->path); 873 nd->path = nd->root; 874 path_get(&nd->path); 875 nd->inode = nd->path.dentry->d_inode; 876 } 877 nd->flags |= LOOKUP_JUMPED; 878 return 0; 879 } 880 881 /* 882 * Helper to directly jump to a known parsed path from ->get_link, 883 * caller must have taken a reference to path beforehand. 884 */ 885 void nd_jump_link(struct path *path) 886 { 887 struct nameidata *nd = current->nameidata; 888 path_put(&nd->path); 889 890 nd->path = *path; 891 nd->inode = nd->path.dentry->d_inode; 892 nd->flags |= LOOKUP_JUMPED; 893 } 894 895 static inline void put_link(struct nameidata *nd) 896 { 897 struct saved *last = nd->stack + --nd->depth; 898 do_delayed_call(&last->done); 899 if (!(nd->flags & LOOKUP_RCU)) 900 path_put(&last->link); 901 } 902 903 int sysctl_protected_symlinks __read_mostly = 0; 904 int sysctl_protected_hardlinks __read_mostly = 0; 905 906 /** 907 * may_follow_link - Check symlink following for unsafe situations 908 * @nd: nameidata pathwalk data 909 * 910 * In the case of the sysctl_protected_symlinks sysctl being enabled, 911 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 912 * in a sticky world-writable directory. This is to protect privileged 913 * processes from failing races against path names that may change out 914 * from under them by way of other users creating malicious symlinks. 915 * It will permit symlinks to be followed only when outside a sticky 916 * world-writable directory, or when the uid of the symlink and follower 917 * match, or when the directory owner matches the symlink's owner. 918 * 919 * Returns 0 if following the symlink is allowed, -ve on error. 920 */ 921 static inline int may_follow_link(struct nameidata *nd) 922 { 923 const struct inode *inode; 924 const struct inode *parent; 925 kuid_t puid; 926 927 if (!sysctl_protected_symlinks) 928 return 0; 929 930 /* Allowed if owner and follower match. */ 931 inode = nd->link_inode; 932 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 933 return 0; 934 935 /* Allowed if parent directory not sticky and world-writable. */ 936 parent = nd->inode; 937 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 938 return 0; 939 940 /* Allowed if parent directory and link owner match. */ 941 puid = parent->i_uid; 942 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 943 return 0; 944 945 if (nd->flags & LOOKUP_RCU) 946 return -ECHILD; 947 948 audit_log_link_denied("follow_link", &nd->stack[0].link); 949 return -EACCES; 950 } 951 952 /** 953 * safe_hardlink_source - Check for safe hardlink conditions 954 * @inode: the source inode to hardlink from 955 * 956 * Return false if at least one of the following conditions: 957 * - inode is not a regular file 958 * - inode is setuid 959 * - inode is setgid and group-exec 960 * - access failure for read and write 961 * 962 * Otherwise returns true. 963 */ 964 static bool safe_hardlink_source(struct inode *inode) 965 { 966 umode_t mode = inode->i_mode; 967 968 /* Special files should not get pinned to the filesystem. */ 969 if (!S_ISREG(mode)) 970 return false; 971 972 /* Setuid files should not get pinned to the filesystem. */ 973 if (mode & S_ISUID) 974 return false; 975 976 /* Executable setgid files should not get pinned to the filesystem. */ 977 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 978 return false; 979 980 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 981 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 982 return false; 983 984 return true; 985 } 986 987 /** 988 * may_linkat - Check permissions for creating a hardlink 989 * @link: the source to hardlink from 990 * 991 * Block hardlink when all of: 992 * - sysctl_protected_hardlinks enabled 993 * - fsuid does not match inode 994 * - hardlink source is unsafe (see safe_hardlink_source() above) 995 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 996 * 997 * Returns 0 if successful, -ve on error. 998 */ 999 static int may_linkat(struct path *link) 1000 { 1001 struct inode *inode; 1002 1003 if (!sysctl_protected_hardlinks) 1004 return 0; 1005 1006 inode = link->dentry->d_inode; 1007 1008 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1009 * otherwise, it must be a safe source. 1010 */ 1011 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1012 return 0; 1013 1014 audit_log_link_denied("linkat", link); 1015 return -EPERM; 1016 } 1017 1018 static __always_inline 1019 const char *get_link(struct nameidata *nd) 1020 { 1021 struct saved *last = nd->stack + nd->depth - 1; 1022 struct dentry *dentry = last->link.dentry; 1023 struct inode *inode = nd->link_inode; 1024 int error; 1025 const char *res; 1026 1027 if (!(nd->flags & LOOKUP_RCU)) { 1028 touch_atime(&last->link); 1029 cond_resched(); 1030 } else if (atime_needs_update_rcu(&last->link, inode)) { 1031 if (unlikely(unlazy_walk(nd))) 1032 return ERR_PTR(-ECHILD); 1033 touch_atime(&last->link); 1034 } 1035 1036 error = security_inode_follow_link(dentry, inode, 1037 nd->flags & LOOKUP_RCU); 1038 if (unlikely(error)) 1039 return ERR_PTR(error); 1040 1041 nd->last_type = LAST_BIND; 1042 res = inode->i_link; 1043 if (!res) { 1044 const char * (*get)(struct dentry *, struct inode *, 1045 struct delayed_call *); 1046 get = inode->i_op->get_link; 1047 if (nd->flags & LOOKUP_RCU) { 1048 res = get(NULL, inode, &last->done); 1049 if (res == ERR_PTR(-ECHILD)) { 1050 if (unlikely(unlazy_walk(nd))) 1051 return ERR_PTR(-ECHILD); 1052 res = get(dentry, inode, &last->done); 1053 } 1054 } else { 1055 res = get(dentry, inode, &last->done); 1056 } 1057 if (IS_ERR_OR_NULL(res)) 1058 return res; 1059 } 1060 if (*res == '/') { 1061 if (!nd->root.mnt) 1062 set_root(nd); 1063 if (unlikely(nd_jump_root(nd))) 1064 return ERR_PTR(-ECHILD); 1065 while (unlikely(*++res == '/')) 1066 ; 1067 } 1068 if (!*res) 1069 res = NULL; 1070 return res; 1071 } 1072 1073 /* 1074 * follow_up - Find the mountpoint of path's vfsmount 1075 * 1076 * Given a path, find the mountpoint of its source file system. 1077 * Replace @path with the path of the mountpoint in the parent mount. 1078 * Up is towards /. 1079 * 1080 * Return 1 if we went up a level and 0 if we were already at the 1081 * root. 1082 */ 1083 int follow_up(struct path *path) 1084 { 1085 struct mount *mnt = real_mount(path->mnt); 1086 struct mount *parent; 1087 struct dentry *mountpoint; 1088 1089 read_seqlock_excl(&mount_lock); 1090 parent = mnt->mnt_parent; 1091 if (parent == mnt) { 1092 read_sequnlock_excl(&mount_lock); 1093 return 0; 1094 } 1095 mntget(&parent->mnt); 1096 mountpoint = dget(mnt->mnt_mountpoint); 1097 read_sequnlock_excl(&mount_lock); 1098 dput(path->dentry); 1099 path->dentry = mountpoint; 1100 mntput(path->mnt); 1101 path->mnt = &parent->mnt; 1102 return 1; 1103 } 1104 EXPORT_SYMBOL(follow_up); 1105 1106 /* 1107 * Perform an automount 1108 * - return -EISDIR to tell follow_managed() to stop and return the path we 1109 * were called with. 1110 */ 1111 static int follow_automount(struct path *path, struct nameidata *nd, 1112 bool *need_mntput) 1113 { 1114 struct vfsmount *mnt; 1115 int err; 1116 1117 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1118 return -EREMOTE; 1119 1120 /* We don't want to mount if someone's just doing a stat - 1121 * unless they're stat'ing a directory and appended a '/' to 1122 * the name. 1123 * 1124 * We do, however, want to mount if someone wants to open or 1125 * create a file of any type under the mountpoint, wants to 1126 * traverse through the mountpoint or wants to open the 1127 * mounted directory. Also, autofs may mark negative dentries 1128 * as being automount points. These will need the attentions 1129 * of the daemon to instantiate them before they can be used. 1130 */ 1131 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1132 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1133 path->dentry->d_inode) 1134 return -EISDIR; 1135 1136 if (path->dentry->d_sb->s_user_ns != &init_user_ns) 1137 return -EACCES; 1138 1139 nd->total_link_count++; 1140 if (nd->total_link_count >= 40) 1141 return -ELOOP; 1142 1143 mnt = path->dentry->d_op->d_automount(path); 1144 if (IS_ERR(mnt)) { 1145 /* 1146 * The filesystem is allowed to return -EISDIR here to indicate 1147 * it doesn't want to automount. For instance, autofs would do 1148 * this so that its userspace daemon can mount on this dentry. 1149 * 1150 * However, we can only permit this if it's a terminal point in 1151 * the path being looked up; if it wasn't then the remainder of 1152 * the path is inaccessible and we should say so. 1153 */ 1154 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1155 return -EREMOTE; 1156 return PTR_ERR(mnt); 1157 } 1158 1159 if (!mnt) /* mount collision */ 1160 return 0; 1161 1162 if (!*need_mntput) { 1163 /* lock_mount() may release path->mnt on error */ 1164 mntget(path->mnt); 1165 *need_mntput = true; 1166 } 1167 err = finish_automount(mnt, path); 1168 1169 switch (err) { 1170 case -EBUSY: 1171 /* Someone else made a mount here whilst we were busy */ 1172 return 0; 1173 case 0: 1174 path_put(path); 1175 path->mnt = mnt; 1176 path->dentry = dget(mnt->mnt_root); 1177 return 0; 1178 default: 1179 return err; 1180 } 1181 1182 } 1183 1184 /* 1185 * Handle a dentry that is managed in some way. 1186 * - Flagged for transit management (autofs) 1187 * - Flagged as mountpoint 1188 * - Flagged as automount point 1189 * 1190 * This may only be called in refwalk mode. 1191 * 1192 * Serialization is taken care of in namespace.c 1193 */ 1194 static int follow_managed(struct path *path, struct nameidata *nd) 1195 { 1196 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1197 unsigned managed; 1198 bool need_mntput = false; 1199 int ret = 0; 1200 1201 /* Given that we're not holding a lock here, we retain the value in a 1202 * local variable for each dentry as we look at it so that we don't see 1203 * the components of that value change under us */ 1204 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1205 managed &= DCACHE_MANAGED_DENTRY, 1206 unlikely(managed != 0)) { 1207 /* Allow the filesystem to manage the transit without i_mutex 1208 * being held. */ 1209 if (managed & DCACHE_MANAGE_TRANSIT) { 1210 BUG_ON(!path->dentry->d_op); 1211 BUG_ON(!path->dentry->d_op->d_manage); 1212 ret = path->dentry->d_op->d_manage(path, false); 1213 if (ret < 0) 1214 break; 1215 } 1216 1217 /* Transit to a mounted filesystem. */ 1218 if (managed & DCACHE_MOUNTED) { 1219 struct vfsmount *mounted = lookup_mnt(path); 1220 if (mounted) { 1221 dput(path->dentry); 1222 if (need_mntput) 1223 mntput(path->mnt); 1224 path->mnt = mounted; 1225 path->dentry = dget(mounted->mnt_root); 1226 need_mntput = true; 1227 continue; 1228 } 1229 1230 /* Something is mounted on this dentry in another 1231 * namespace and/or whatever was mounted there in this 1232 * namespace got unmounted before lookup_mnt() could 1233 * get it */ 1234 } 1235 1236 /* Handle an automount point */ 1237 if (managed & DCACHE_NEED_AUTOMOUNT) { 1238 ret = follow_automount(path, nd, &need_mntput); 1239 if (ret < 0) 1240 break; 1241 continue; 1242 } 1243 1244 /* We didn't change the current path point */ 1245 break; 1246 } 1247 1248 if (need_mntput && path->mnt == mnt) 1249 mntput(path->mnt); 1250 if (ret == -EISDIR || !ret) 1251 ret = 1; 1252 if (need_mntput) 1253 nd->flags |= LOOKUP_JUMPED; 1254 if (unlikely(ret < 0)) 1255 path_put_conditional(path, nd); 1256 return ret; 1257 } 1258 1259 int follow_down_one(struct path *path) 1260 { 1261 struct vfsmount *mounted; 1262 1263 mounted = lookup_mnt(path); 1264 if (mounted) { 1265 dput(path->dentry); 1266 mntput(path->mnt); 1267 path->mnt = mounted; 1268 path->dentry = dget(mounted->mnt_root); 1269 return 1; 1270 } 1271 return 0; 1272 } 1273 EXPORT_SYMBOL(follow_down_one); 1274 1275 static inline int managed_dentry_rcu(const struct path *path) 1276 { 1277 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1278 path->dentry->d_op->d_manage(path, true) : 0; 1279 } 1280 1281 /* 1282 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1283 * we meet a managed dentry that would need blocking. 1284 */ 1285 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1286 struct inode **inode, unsigned *seqp) 1287 { 1288 for (;;) { 1289 struct mount *mounted; 1290 /* 1291 * Don't forget we might have a non-mountpoint managed dentry 1292 * that wants to block transit. 1293 */ 1294 switch (managed_dentry_rcu(path)) { 1295 case -ECHILD: 1296 default: 1297 return false; 1298 case -EISDIR: 1299 return true; 1300 case 0: 1301 break; 1302 } 1303 1304 if (!d_mountpoint(path->dentry)) 1305 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1306 1307 mounted = __lookup_mnt(path->mnt, path->dentry); 1308 if (!mounted) 1309 break; 1310 path->mnt = &mounted->mnt; 1311 path->dentry = mounted->mnt.mnt_root; 1312 nd->flags |= LOOKUP_JUMPED; 1313 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1314 /* 1315 * Update the inode too. We don't need to re-check the 1316 * dentry sequence number here after this d_inode read, 1317 * because a mount-point is always pinned. 1318 */ 1319 *inode = path->dentry->d_inode; 1320 } 1321 return !read_seqretry(&mount_lock, nd->m_seq) && 1322 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1323 } 1324 1325 static int follow_dotdot_rcu(struct nameidata *nd) 1326 { 1327 struct inode *inode = nd->inode; 1328 1329 while (1) { 1330 if (path_equal(&nd->path, &nd->root)) 1331 break; 1332 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1333 struct dentry *old = nd->path.dentry; 1334 struct dentry *parent = old->d_parent; 1335 unsigned seq; 1336 1337 inode = parent->d_inode; 1338 seq = read_seqcount_begin(&parent->d_seq); 1339 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1340 return -ECHILD; 1341 nd->path.dentry = parent; 1342 nd->seq = seq; 1343 if (unlikely(!path_connected(&nd->path))) 1344 return -ENOENT; 1345 break; 1346 } else { 1347 struct mount *mnt = real_mount(nd->path.mnt); 1348 struct mount *mparent = mnt->mnt_parent; 1349 struct dentry *mountpoint = mnt->mnt_mountpoint; 1350 struct inode *inode2 = mountpoint->d_inode; 1351 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1352 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1353 return -ECHILD; 1354 if (&mparent->mnt == nd->path.mnt) 1355 break; 1356 /* we know that mountpoint was pinned */ 1357 nd->path.dentry = mountpoint; 1358 nd->path.mnt = &mparent->mnt; 1359 inode = inode2; 1360 nd->seq = seq; 1361 } 1362 } 1363 while (unlikely(d_mountpoint(nd->path.dentry))) { 1364 struct mount *mounted; 1365 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1366 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1367 return -ECHILD; 1368 if (!mounted) 1369 break; 1370 nd->path.mnt = &mounted->mnt; 1371 nd->path.dentry = mounted->mnt.mnt_root; 1372 inode = nd->path.dentry->d_inode; 1373 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1374 } 1375 nd->inode = inode; 1376 return 0; 1377 } 1378 1379 /* 1380 * Follow down to the covering mount currently visible to userspace. At each 1381 * point, the filesystem owning that dentry may be queried as to whether the 1382 * caller is permitted to proceed or not. 1383 */ 1384 int follow_down(struct path *path) 1385 { 1386 unsigned managed; 1387 int ret; 1388 1389 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1390 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1391 /* Allow the filesystem to manage the transit without i_mutex 1392 * being held. 1393 * 1394 * We indicate to the filesystem if someone is trying to mount 1395 * something here. This gives autofs the chance to deny anyone 1396 * other than its daemon the right to mount on its 1397 * superstructure. 1398 * 1399 * The filesystem may sleep at this point. 1400 */ 1401 if (managed & DCACHE_MANAGE_TRANSIT) { 1402 BUG_ON(!path->dentry->d_op); 1403 BUG_ON(!path->dentry->d_op->d_manage); 1404 ret = path->dentry->d_op->d_manage(path, false); 1405 if (ret < 0) 1406 return ret == -EISDIR ? 0 : ret; 1407 } 1408 1409 /* Transit to a mounted filesystem. */ 1410 if (managed & DCACHE_MOUNTED) { 1411 struct vfsmount *mounted = lookup_mnt(path); 1412 if (!mounted) 1413 break; 1414 dput(path->dentry); 1415 mntput(path->mnt); 1416 path->mnt = mounted; 1417 path->dentry = dget(mounted->mnt_root); 1418 continue; 1419 } 1420 1421 /* Don't handle automount points here */ 1422 break; 1423 } 1424 return 0; 1425 } 1426 EXPORT_SYMBOL(follow_down); 1427 1428 /* 1429 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1430 */ 1431 static void follow_mount(struct path *path) 1432 { 1433 while (d_mountpoint(path->dentry)) { 1434 struct vfsmount *mounted = lookup_mnt(path); 1435 if (!mounted) 1436 break; 1437 dput(path->dentry); 1438 mntput(path->mnt); 1439 path->mnt = mounted; 1440 path->dentry = dget(mounted->mnt_root); 1441 } 1442 } 1443 1444 static int path_parent_directory(struct path *path) 1445 { 1446 struct dentry *old = path->dentry; 1447 /* rare case of legitimate dget_parent()... */ 1448 path->dentry = dget_parent(path->dentry); 1449 dput(old); 1450 if (unlikely(!path_connected(path))) 1451 return -ENOENT; 1452 return 0; 1453 } 1454 1455 static int follow_dotdot(struct nameidata *nd) 1456 { 1457 while(1) { 1458 if (nd->path.dentry == nd->root.dentry && 1459 nd->path.mnt == nd->root.mnt) { 1460 break; 1461 } 1462 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1463 int ret = path_parent_directory(&nd->path); 1464 if (ret) 1465 return ret; 1466 break; 1467 } 1468 if (!follow_up(&nd->path)) 1469 break; 1470 } 1471 follow_mount(&nd->path); 1472 nd->inode = nd->path.dentry->d_inode; 1473 return 0; 1474 } 1475 1476 /* 1477 * This looks up the name in dcache and possibly revalidates the found dentry. 1478 * NULL is returned if the dentry does not exist in the cache. 1479 */ 1480 static struct dentry *lookup_dcache(const struct qstr *name, 1481 struct dentry *dir, 1482 unsigned int flags) 1483 { 1484 struct dentry *dentry = d_lookup(dir, name); 1485 if (dentry) { 1486 int error = d_revalidate(dentry, flags); 1487 if (unlikely(error <= 0)) { 1488 if (!error) 1489 d_invalidate(dentry); 1490 dput(dentry); 1491 return ERR_PTR(error); 1492 } 1493 } 1494 return dentry; 1495 } 1496 1497 /* 1498 * Call i_op->lookup on the dentry. The dentry must be negative and 1499 * unhashed. 1500 * 1501 * dir->d_inode->i_mutex must be held 1502 */ 1503 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1504 unsigned int flags) 1505 { 1506 struct dentry *old; 1507 1508 /* Don't create child dentry for a dead directory. */ 1509 if (unlikely(IS_DEADDIR(dir))) { 1510 dput(dentry); 1511 return ERR_PTR(-ENOENT); 1512 } 1513 1514 old = dir->i_op->lookup(dir, dentry, flags); 1515 if (unlikely(old)) { 1516 dput(dentry); 1517 dentry = old; 1518 } 1519 return dentry; 1520 } 1521 1522 static struct dentry *__lookup_hash(const struct qstr *name, 1523 struct dentry *base, unsigned int flags) 1524 { 1525 struct dentry *dentry = lookup_dcache(name, base, flags); 1526 1527 if (dentry) 1528 return dentry; 1529 1530 dentry = d_alloc(base, name); 1531 if (unlikely(!dentry)) 1532 return ERR_PTR(-ENOMEM); 1533 1534 return lookup_real(base->d_inode, dentry, flags); 1535 } 1536 1537 static int lookup_fast(struct nameidata *nd, 1538 struct path *path, struct inode **inode, 1539 unsigned *seqp) 1540 { 1541 struct vfsmount *mnt = nd->path.mnt; 1542 struct dentry *dentry, *parent = nd->path.dentry; 1543 int status = 1; 1544 int err; 1545 1546 /* 1547 * Rename seqlock is not required here because in the off chance 1548 * of a false negative due to a concurrent rename, the caller is 1549 * going to fall back to non-racy lookup. 1550 */ 1551 if (nd->flags & LOOKUP_RCU) { 1552 unsigned seq; 1553 bool negative; 1554 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1555 if (unlikely(!dentry)) { 1556 if (unlazy_walk(nd)) 1557 return -ECHILD; 1558 return 0; 1559 } 1560 1561 /* 1562 * This sequence count validates that the inode matches 1563 * the dentry name information from lookup. 1564 */ 1565 *inode = d_backing_inode(dentry); 1566 negative = d_is_negative(dentry); 1567 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1568 return -ECHILD; 1569 1570 /* 1571 * This sequence count validates that the parent had no 1572 * changes while we did the lookup of the dentry above. 1573 * 1574 * The memory barrier in read_seqcount_begin of child is 1575 * enough, we can use __read_seqcount_retry here. 1576 */ 1577 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1578 return -ECHILD; 1579 1580 *seqp = seq; 1581 status = d_revalidate(dentry, nd->flags); 1582 if (likely(status > 0)) { 1583 /* 1584 * Note: do negative dentry check after revalidation in 1585 * case that drops it. 1586 */ 1587 if (unlikely(negative)) 1588 return -ENOENT; 1589 path->mnt = mnt; 1590 path->dentry = dentry; 1591 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1592 return 1; 1593 } 1594 if (unlazy_child(nd, dentry, seq)) 1595 return -ECHILD; 1596 if (unlikely(status == -ECHILD)) 1597 /* we'd been told to redo it in non-rcu mode */ 1598 status = d_revalidate(dentry, nd->flags); 1599 } else { 1600 dentry = __d_lookup(parent, &nd->last); 1601 if (unlikely(!dentry)) 1602 return 0; 1603 status = d_revalidate(dentry, nd->flags); 1604 } 1605 if (unlikely(status <= 0)) { 1606 if (!status) 1607 d_invalidate(dentry); 1608 dput(dentry); 1609 return status; 1610 } 1611 if (unlikely(d_is_negative(dentry))) { 1612 dput(dentry); 1613 return -ENOENT; 1614 } 1615 1616 path->mnt = mnt; 1617 path->dentry = dentry; 1618 err = follow_managed(path, nd); 1619 if (likely(err > 0)) 1620 *inode = d_backing_inode(path->dentry); 1621 return err; 1622 } 1623 1624 /* Fast lookup failed, do it the slow way */ 1625 static struct dentry *lookup_slow(const struct qstr *name, 1626 struct dentry *dir, 1627 unsigned int flags) 1628 { 1629 struct dentry *dentry = ERR_PTR(-ENOENT), *old; 1630 struct inode *inode = dir->d_inode; 1631 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1632 1633 inode_lock_shared(inode); 1634 /* Don't go there if it's already dead */ 1635 if (unlikely(IS_DEADDIR(inode))) 1636 goto out; 1637 again: 1638 dentry = d_alloc_parallel(dir, name, &wq); 1639 if (IS_ERR(dentry)) 1640 goto out; 1641 if (unlikely(!d_in_lookup(dentry))) { 1642 if (!(flags & LOOKUP_NO_REVAL)) { 1643 int error = d_revalidate(dentry, flags); 1644 if (unlikely(error <= 0)) { 1645 if (!error) { 1646 d_invalidate(dentry); 1647 dput(dentry); 1648 goto again; 1649 } 1650 dput(dentry); 1651 dentry = ERR_PTR(error); 1652 } 1653 } 1654 } else { 1655 old = inode->i_op->lookup(inode, dentry, flags); 1656 d_lookup_done(dentry); 1657 if (unlikely(old)) { 1658 dput(dentry); 1659 dentry = old; 1660 } 1661 } 1662 out: 1663 inode_unlock_shared(inode); 1664 return dentry; 1665 } 1666 1667 static inline int may_lookup(struct nameidata *nd) 1668 { 1669 if (nd->flags & LOOKUP_RCU) { 1670 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1671 if (err != -ECHILD) 1672 return err; 1673 if (unlazy_walk(nd)) 1674 return -ECHILD; 1675 } 1676 return inode_permission(nd->inode, MAY_EXEC); 1677 } 1678 1679 static inline int handle_dots(struct nameidata *nd, int type) 1680 { 1681 if (type == LAST_DOTDOT) { 1682 if (!nd->root.mnt) 1683 set_root(nd); 1684 if (nd->flags & LOOKUP_RCU) { 1685 return follow_dotdot_rcu(nd); 1686 } else 1687 return follow_dotdot(nd); 1688 } 1689 return 0; 1690 } 1691 1692 static int pick_link(struct nameidata *nd, struct path *link, 1693 struct inode *inode, unsigned seq) 1694 { 1695 int error; 1696 struct saved *last; 1697 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1698 path_to_nameidata(link, nd); 1699 return -ELOOP; 1700 } 1701 if (!(nd->flags & LOOKUP_RCU)) { 1702 if (link->mnt == nd->path.mnt) 1703 mntget(link->mnt); 1704 } 1705 error = nd_alloc_stack(nd); 1706 if (unlikely(error)) { 1707 if (error == -ECHILD) { 1708 if (unlikely(!legitimize_path(nd, link, seq))) { 1709 drop_links(nd); 1710 nd->depth = 0; 1711 nd->flags &= ~LOOKUP_RCU; 1712 nd->path.mnt = NULL; 1713 nd->path.dentry = NULL; 1714 if (!(nd->flags & LOOKUP_ROOT)) 1715 nd->root.mnt = NULL; 1716 rcu_read_unlock(); 1717 } else if (likely(unlazy_walk(nd)) == 0) 1718 error = nd_alloc_stack(nd); 1719 } 1720 if (error) { 1721 path_put(link); 1722 return error; 1723 } 1724 } 1725 1726 last = nd->stack + nd->depth++; 1727 last->link = *link; 1728 clear_delayed_call(&last->done); 1729 nd->link_inode = inode; 1730 last->seq = seq; 1731 return 1; 1732 } 1733 1734 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1735 1736 /* 1737 * Do we need to follow links? We _really_ want to be able 1738 * to do this check without having to look at inode->i_op, 1739 * so we keep a cache of "no, this doesn't need follow_link" 1740 * for the common case. 1741 */ 1742 static inline int step_into(struct nameidata *nd, struct path *path, 1743 int flags, struct inode *inode, unsigned seq) 1744 { 1745 if (!(flags & WALK_MORE) && nd->depth) 1746 put_link(nd); 1747 if (likely(!d_is_symlink(path->dentry)) || 1748 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1749 /* not a symlink or should not follow */ 1750 path_to_nameidata(path, nd); 1751 nd->inode = inode; 1752 nd->seq = seq; 1753 return 0; 1754 } 1755 /* make sure that d_is_symlink above matches inode */ 1756 if (nd->flags & LOOKUP_RCU) { 1757 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1758 return -ECHILD; 1759 } 1760 return pick_link(nd, path, inode, seq); 1761 } 1762 1763 static int walk_component(struct nameidata *nd, int flags) 1764 { 1765 struct path path; 1766 struct inode *inode; 1767 unsigned seq; 1768 int err; 1769 /* 1770 * "." and ".." are special - ".." especially so because it has 1771 * to be able to know about the current root directory and 1772 * parent relationships. 1773 */ 1774 if (unlikely(nd->last_type != LAST_NORM)) { 1775 err = handle_dots(nd, nd->last_type); 1776 if (!(flags & WALK_MORE) && nd->depth) 1777 put_link(nd); 1778 return err; 1779 } 1780 err = lookup_fast(nd, &path, &inode, &seq); 1781 if (unlikely(err <= 0)) { 1782 if (err < 0) 1783 return err; 1784 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1785 nd->flags); 1786 if (IS_ERR(path.dentry)) 1787 return PTR_ERR(path.dentry); 1788 1789 path.mnt = nd->path.mnt; 1790 err = follow_managed(&path, nd); 1791 if (unlikely(err < 0)) 1792 return err; 1793 1794 if (unlikely(d_is_negative(path.dentry))) { 1795 path_to_nameidata(&path, nd); 1796 return -ENOENT; 1797 } 1798 1799 seq = 0; /* we are already out of RCU mode */ 1800 inode = d_backing_inode(path.dentry); 1801 } 1802 1803 return step_into(nd, &path, flags, inode, seq); 1804 } 1805 1806 /* 1807 * We can do the critical dentry name comparison and hashing 1808 * operations one word at a time, but we are limited to: 1809 * 1810 * - Architectures with fast unaligned word accesses. We could 1811 * do a "get_unaligned()" if this helps and is sufficiently 1812 * fast. 1813 * 1814 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1815 * do not trap on the (extremely unlikely) case of a page 1816 * crossing operation. 1817 * 1818 * - Furthermore, we need an efficient 64-bit compile for the 1819 * 64-bit case in order to generate the "number of bytes in 1820 * the final mask". Again, that could be replaced with a 1821 * efficient population count instruction or similar. 1822 */ 1823 #ifdef CONFIG_DCACHE_WORD_ACCESS 1824 1825 #include <asm/word-at-a-time.h> 1826 1827 #ifdef HASH_MIX 1828 1829 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1830 1831 #elif defined(CONFIG_64BIT) 1832 /* 1833 * Register pressure in the mixing function is an issue, particularly 1834 * on 32-bit x86, but almost any function requires one state value and 1835 * one temporary. Instead, use a function designed for two state values 1836 * and no temporaries. 1837 * 1838 * This function cannot create a collision in only two iterations, so 1839 * we have two iterations to achieve avalanche. In those two iterations, 1840 * we have six layers of mixing, which is enough to spread one bit's 1841 * influence out to 2^6 = 64 state bits. 1842 * 1843 * Rotate constants are scored by considering either 64 one-bit input 1844 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1845 * probability of that delta causing a change to each of the 128 output 1846 * bits, using a sample of random initial states. 1847 * 1848 * The Shannon entropy of the computed probabilities is then summed 1849 * to produce a score. Ideally, any input change has a 50% chance of 1850 * toggling any given output bit. 1851 * 1852 * Mixing scores (in bits) for (12,45): 1853 * Input delta: 1-bit 2-bit 1854 * 1 round: 713.3 42542.6 1855 * 2 rounds: 2753.7 140389.8 1856 * 3 rounds: 5954.1 233458.2 1857 * 4 rounds: 7862.6 256672.2 1858 * Perfect: 8192 258048 1859 * (64*128) (64*63/2 * 128) 1860 */ 1861 #define HASH_MIX(x, y, a) \ 1862 ( x ^= (a), \ 1863 y ^= x, x = rol64(x,12),\ 1864 x += y, y = rol64(y,45),\ 1865 y *= 9 ) 1866 1867 /* 1868 * Fold two longs into one 32-bit hash value. This must be fast, but 1869 * latency isn't quite as critical, as there is a fair bit of additional 1870 * work done before the hash value is used. 1871 */ 1872 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1873 { 1874 y ^= x * GOLDEN_RATIO_64; 1875 y *= GOLDEN_RATIO_64; 1876 return y >> 32; 1877 } 1878 1879 #else /* 32-bit case */ 1880 1881 /* 1882 * Mixing scores (in bits) for (7,20): 1883 * Input delta: 1-bit 2-bit 1884 * 1 round: 330.3 9201.6 1885 * 2 rounds: 1246.4 25475.4 1886 * 3 rounds: 1907.1 31295.1 1887 * 4 rounds: 2042.3 31718.6 1888 * Perfect: 2048 31744 1889 * (32*64) (32*31/2 * 64) 1890 */ 1891 #define HASH_MIX(x, y, a) \ 1892 ( x ^= (a), \ 1893 y ^= x, x = rol32(x, 7),\ 1894 x += y, y = rol32(y,20),\ 1895 y *= 9 ) 1896 1897 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1898 { 1899 /* Use arch-optimized multiply if one exists */ 1900 return __hash_32(y ^ __hash_32(x)); 1901 } 1902 1903 #endif 1904 1905 /* 1906 * Return the hash of a string of known length. This is carfully 1907 * designed to match hash_name(), which is the more critical function. 1908 * In particular, we must end by hashing a final word containing 0..7 1909 * payload bytes, to match the way that hash_name() iterates until it 1910 * finds the delimiter after the name. 1911 */ 1912 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1913 { 1914 unsigned long a, x = 0, y = (unsigned long)salt; 1915 1916 for (;;) { 1917 if (!len) 1918 goto done; 1919 a = load_unaligned_zeropad(name); 1920 if (len < sizeof(unsigned long)) 1921 break; 1922 HASH_MIX(x, y, a); 1923 name += sizeof(unsigned long); 1924 len -= sizeof(unsigned long); 1925 } 1926 x ^= a & bytemask_from_count(len); 1927 done: 1928 return fold_hash(x, y); 1929 } 1930 EXPORT_SYMBOL(full_name_hash); 1931 1932 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1933 u64 hashlen_string(const void *salt, const char *name) 1934 { 1935 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1936 unsigned long adata, mask, len; 1937 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1938 1939 len = 0; 1940 goto inside; 1941 1942 do { 1943 HASH_MIX(x, y, a); 1944 len += sizeof(unsigned long); 1945 inside: 1946 a = load_unaligned_zeropad(name+len); 1947 } while (!has_zero(a, &adata, &constants)); 1948 1949 adata = prep_zero_mask(a, adata, &constants); 1950 mask = create_zero_mask(adata); 1951 x ^= a & zero_bytemask(mask); 1952 1953 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1954 } 1955 EXPORT_SYMBOL(hashlen_string); 1956 1957 /* 1958 * Calculate the length and hash of the path component, and 1959 * return the "hash_len" as the result. 1960 */ 1961 static inline u64 hash_name(const void *salt, const char *name) 1962 { 1963 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1964 unsigned long adata, bdata, mask, len; 1965 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1966 1967 len = 0; 1968 goto inside; 1969 1970 do { 1971 HASH_MIX(x, y, a); 1972 len += sizeof(unsigned long); 1973 inside: 1974 a = load_unaligned_zeropad(name+len); 1975 b = a ^ REPEAT_BYTE('/'); 1976 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1977 1978 adata = prep_zero_mask(a, adata, &constants); 1979 bdata = prep_zero_mask(b, bdata, &constants); 1980 mask = create_zero_mask(adata | bdata); 1981 x ^= a & zero_bytemask(mask); 1982 1983 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1984 } 1985 1986 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1987 1988 /* Return the hash of a string of known length */ 1989 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1990 { 1991 unsigned long hash = init_name_hash(salt); 1992 while (len--) 1993 hash = partial_name_hash((unsigned char)*name++, hash); 1994 return end_name_hash(hash); 1995 } 1996 EXPORT_SYMBOL(full_name_hash); 1997 1998 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1999 u64 hashlen_string(const void *salt, const char *name) 2000 { 2001 unsigned long hash = init_name_hash(salt); 2002 unsigned long len = 0, c; 2003 2004 c = (unsigned char)*name; 2005 while (c) { 2006 len++; 2007 hash = partial_name_hash(c, hash); 2008 c = (unsigned char)name[len]; 2009 } 2010 return hashlen_create(end_name_hash(hash), len); 2011 } 2012 EXPORT_SYMBOL(hashlen_string); 2013 2014 /* 2015 * We know there's a real path component here of at least 2016 * one character. 2017 */ 2018 static inline u64 hash_name(const void *salt, const char *name) 2019 { 2020 unsigned long hash = init_name_hash(salt); 2021 unsigned long len = 0, c; 2022 2023 c = (unsigned char)*name; 2024 do { 2025 len++; 2026 hash = partial_name_hash(c, hash); 2027 c = (unsigned char)name[len]; 2028 } while (c && c != '/'); 2029 return hashlen_create(end_name_hash(hash), len); 2030 } 2031 2032 #endif 2033 2034 /* 2035 * Name resolution. 2036 * This is the basic name resolution function, turning a pathname into 2037 * the final dentry. We expect 'base' to be positive and a directory. 2038 * 2039 * Returns 0 and nd will have valid dentry and mnt on success. 2040 * Returns error and drops reference to input namei data on failure. 2041 */ 2042 static int link_path_walk(const char *name, struct nameidata *nd) 2043 { 2044 int err; 2045 2046 while (*name=='/') 2047 name++; 2048 if (!*name) 2049 return 0; 2050 2051 /* At this point we know we have a real path component. */ 2052 for(;;) { 2053 u64 hash_len; 2054 int type; 2055 2056 err = may_lookup(nd); 2057 if (err) 2058 return err; 2059 2060 hash_len = hash_name(nd->path.dentry, name); 2061 2062 type = LAST_NORM; 2063 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2064 case 2: 2065 if (name[1] == '.') { 2066 type = LAST_DOTDOT; 2067 nd->flags |= LOOKUP_JUMPED; 2068 } 2069 break; 2070 case 1: 2071 type = LAST_DOT; 2072 } 2073 if (likely(type == LAST_NORM)) { 2074 struct dentry *parent = nd->path.dentry; 2075 nd->flags &= ~LOOKUP_JUMPED; 2076 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2077 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2078 err = parent->d_op->d_hash(parent, &this); 2079 if (err < 0) 2080 return err; 2081 hash_len = this.hash_len; 2082 name = this.name; 2083 } 2084 } 2085 2086 nd->last.hash_len = hash_len; 2087 nd->last.name = name; 2088 nd->last_type = type; 2089 2090 name += hashlen_len(hash_len); 2091 if (!*name) 2092 goto OK; 2093 /* 2094 * If it wasn't NUL, we know it was '/'. Skip that 2095 * slash, and continue until no more slashes. 2096 */ 2097 do { 2098 name++; 2099 } while (unlikely(*name == '/')); 2100 if (unlikely(!*name)) { 2101 OK: 2102 /* pathname body, done */ 2103 if (!nd->depth) 2104 return 0; 2105 name = nd->stack[nd->depth - 1].name; 2106 /* trailing symlink, done */ 2107 if (!name) 2108 return 0; 2109 /* last component of nested symlink */ 2110 err = walk_component(nd, WALK_FOLLOW); 2111 } else { 2112 /* not the last component */ 2113 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2114 } 2115 if (err < 0) 2116 return err; 2117 2118 if (err) { 2119 const char *s = get_link(nd); 2120 2121 if (IS_ERR(s)) 2122 return PTR_ERR(s); 2123 err = 0; 2124 if (unlikely(!s)) { 2125 /* jumped */ 2126 put_link(nd); 2127 } else { 2128 nd->stack[nd->depth - 1].name = name; 2129 name = s; 2130 continue; 2131 } 2132 } 2133 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2134 if (nd->flags & LOOKUP_RCU) { 2135 if (unlazy_walk(nd)) 2136 return -ECHILD; 2137 } 2138 return -ENOTDIR; 2139 } 2140 } 2141 } 2142 2143 static const char *path_init(struct nameidata *nd, unsigned flags) 2144 { 2145 const char *s = nd->name->name; 2146 2147 if (!*s) 2148 flags &= ~LOOKUP_RCU; 2149 2150 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2151 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2152 nd->depth = 0; 2153 if (flags & LOOKUP_ROOT) { 2154 struct dentry *root = nd->root.dentry; 2155 struct inode *inode = root->d_inode; 2156 if (*s && unlikely(!d_can_lookup(root))) 2157 return ERR_PTR(-ENOTDIR); 2158 nd->path = nd->root; 2159 nd->inode = inode; 2160 if (flags & LOOKUP_RCU) { 2161 rcu_read_lock(); 2162 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2163 nd->root_seq = nd->seq; 2164 nd->m_seq = read_seqbegin(&mount_lock); 2165 } else { 2166 path_get(&nd->path); 2167 } 2168 return s; 2169 } 2170 2171 nd->root.mnt = NULL; 2172 nd->path.mnt = NULL; 2173 nd->path.dentry = NULL; 2174 2175 nd->m_seq = read_seqbegin(&mount_lock); 2176 if (*s == '/') { 2177 if (flags & LOOKUP_RCU) 2178 rcu_read_lock(); 2179 set_root(nd); 2180 if (likely(!nd_jump_root(nd))) 2181 return s; 2182 nd->root.mnt = NULL; 2183 rcu_read_unlock(); 2184 return ERR_PTR(-ECHILD); 2185 } else if (nd->dfd == AT_FDCWD) { 2186 if (flags & LOOKUP_RCU) { 2187 struct fs_struct *fs = current->fs; 2188 unsigned seq; 2189 2190 rcu_read_lock(); 2191 2192 do { 2193 seq = read_seqcount_begin(&fs->seq); 2194 nd->path = fs->pwd; 2195 nd->inode = nd->path.dentry->d_inode; 2196 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2197 } while (read_seqcount_retry(&fs->seq, seq)); 2198 } else { 2199 get_fs_pwd(current->fs, &nd->path); 2200 nd->inode = nd->path.dentry->d_inode; 2201 } 2202 return s; 2203 } else { 2204 /* Caller must check execute permissions on the starting path component */ 2205 struct fd f = fdget_raw(nd->dfd); 2206 struct dentry *dentry; 2207 2208 if (!f.file) 2209 return ERR_PTR(-EBADF); 2210 2211 dentry = f.file->f_path.dentry; 2212 2213 if (*s) { 2214 if (!d_can_lookup(dentry)) { 2215 fdput(f); 2216 return ERR_PTR(-ENOTDIR); 2217 } 2218 } 2219 2220 nd->path = f.file->f_path; 2221 if (flags & LOOKUP_RCU) { 2222 rcu_read_lock(); 2223 nd->inode = nd->path.dentry->d_inode; 2224 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2225 } else { 2226 path_get(&nd->path); 2227 nd->inode = nd->path.dentry->d_inode; 2228 } 2229 fdput(f); 2230 return s; 2231 } 2232 } 2233 2234 static const char *trailing_symlink(struct nameidata *nd) 2235 { 2236 const char *s; 2237 int error = may_follow_link(nd); 2238 if (unlikely(error)) 2239 return ERR_PTR(error); 2240 nd->flags |= LOOKUP_PARENT; 2241 nd->stack[0].name = NULL; 2242 s = get_link(nd); 2243 return s ? s : ""; 2244 } 2245 2246 static inline int lookup_last(struct nameidata *nd) 2247 { 2248 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2249 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2250 2251 nd->flags &= ~LOOKUP_PARENT; 2252 return walk_component(nd, 0); 2253 } 2254 2255 static int handle_lookup_down(struct nameidata *nd) 2256 { 2257 struct path path = nd->path; 2258 struct inode *inode = nd->inode; 2259 unsigned seq = nd->seq; 2260 int err; 2261 2262 if (nd->flags & LOOKUP_RCU) { 2263 /* 2264 * don't bother with unlazy_walk on failure - we are 2265 * at the very beginning of walk, so we lose nothing 2266 * if we simply redo everything in non-RCU mode 2267 */ 2268 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2269 return -ECHILD; 2270 } else { 2271 dget(path.dentry); 2272 err = follow_managed(&path, nd); 2273 if (unlikely(err < 0)) 2274 return err; 2275 inode = d_backing_inode(path.dentry); 2276 seq = 0; 2277 } 2278 path_to_nameidata(&path, nd); 2279 nd->inode = inode; 2280 nd->seq = seq; 2281 return 0; 2282 } 2283 2284 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2285 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2286 { 2287 const char *s = path_init(nd, flags); 2288 int err; 2289 2290 if (IS_ERR(s)) 2291 return PTR_ERR(s); 2292 2293 if (unlikely(flags & LOOKUP_DOWN)) { 2294 err = handle_lookup_down(nd); 2295 if (unlikely(err < 0)) { 2296 terminate_walk(nd); 2297 return err; 2298 } 2299 } 2300 2301 while (!(err = link_path_walk(s, nd)) 2302 && ((err = lookup_last(nd)) > 0)) { 2303 s = trailing_symlink(nd); 2304 if (IS_ERR(s)) { 2305 err = PTR_ERR(s); 2306 break; 2307 } 2308 } 2309 if (!err) 2310 err = complete_walk(nd); 2311 2312 if (!err && nd->flags & LOOKUP_DIRECTORY) 2313 if (!d_can_lookup(nd->path.dentry)) 2314 err = -ENOTDIR; 2315 if (!err) { 2316 *path = nd->path; 2317 nd->path.mnt = NULL; 2318 nd->path.dentry = NULL; 2319 } 2320 terminate_walk(nd); 2321 return err; 2322 } 2323 2324 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2325 struct path *path, struct path *root) 2326 { 2327 int retval; 2328 struct nameidata nd; 2329 if (IS_ERR(name)) 2330 return PTR_ERR(name); 2331 if (unlikely(root)) { 2332 nd.root = *root; 2333 flags |= LOOKUP_ROOT; 2334 } 2335 set_nameidata(&nd, dfd, name); 2336 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2337 if (unlikely(retval == -ECHILD)) 2338 retval = path_lookupat(&nd, flags, path); 2339 if (unlikely(retval == -ESTALE)) 2340 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2341 2342 if (likely(!retval)) 2343 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2344 restore_nameidata(); 2345 putname(name); 2346 return retval; 2347 } 2348 2349 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2350 static int path_parentat(struct nameidata *nd, unsigned flags, 2351 struct path *parent) 2352 { 2353 const char *s = path_init(nd, flags); 2354 int err; 2355 if (IS_ERR(s)) 2356 return PTR_ERR(s); 2357 err = link_path_walk(s, nd); 2358 if (!err) 2359 err = complete_walk(nd); 2360 if (!err) { 2361 *parent = nd->path; 2362 nd->path.mnt = NULL; 2363 nd->path.dentry = NULL; 2364 } 2365 terminate_walk(nd); 2366 return err; 2367 } 2368 2369 static struct filename *filename_parentat(int dfd, struct filename *name, 2370 unsigned int flags, struct path *parent, 2371 struct qstr *last, int *type) 2372 { 2373 int retval; 2374 struct nameidata nd; 2375 2376 if (IS_ERR(name)) 2377 return name; 2378 set_nameidata(&nd, dfd, name); 2379 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2380 if (unlikely(retval == -ECHILD)) 2381 retval = path_parentat(&nd, flags, parent); 2382 if (unlikely(retval == -ESTALE)) 2383 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2384 if (likely(!retval)) { 2385 *last = nd.last; 2386 *type = nd.last_type; 2387 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2388 } else { 2389 putname(name); 2390 name = ERR_PTR(retval); 2391 } 2392 restore_nameidata(); 2393 return name; 2394 } 2395 2396 /* does lookup, returns the object with parent locked */ 2397 struct dentry *kern_path_locked(const char *name, struct path *path) 2398 { 2399 struct filename *filename; 2400 struct dentry *d; 2401 struct qstr last; 2402 int type; 2403 2404 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2405 &last, &type); 2406 if (IS_ERR(filename)) 2407 return ERR_CAST(filename); 2408 if (unlikely(type != LAST_NORM)) { 2409 path_put(path); 2410 putname(filename); 2411 return ERR_PTR(-EINVAL); 2412 } 2413 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2414 d = __lookup_hash(&last, path->dentry, 0); 2415 if (IS_ERR(d)) { 2416 inode_unlock(path->dentry->d_inode); 2417 path_put(path); 2418 } 2419 putname(filename); 2420 return d; 2421 } 2422 2423 int kern_path(const char *name, unsigned int flags, struct path *path) 2424 { 2425 return filename_lookup(AT_FDCWD, getname_kernel(name), 2426 flags, path, NULL); 2427 } 2428 EXPORT_SYMBOL(kern_path); 2429 2430 /** 2431 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2432 * @dentry: pointer to dentry of the base directory 2433 * @mnt: pointer to vfs mount of the base directory 2434 * @name: pointer to file name 2435 * @flags: lookup flags 2436 * @path: pointer to struct path to fill 2437 */ 2438 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2439 const char *name, unsigned int flags, 2440 struct path *path) 2441 { 2442 struct path root = {.mnt = mnt, .dentry = dentry}; 2443 /* the first argument of filename_lookup() is ignored with root */ 2444 return filename_lookup(AT_FDCWD, getname_kernel(name), 2445 flags , path, &root); 2446 } 2447 EXPORT_SYMBOL(vfs_path_lookup); 2448 2449 /** 2450 * lookup_one_len - filesystem helper to lookup single pathname component 2451 * @name: pathname component to lookup 2452 * @base: base directory to lookup from 2453 * @len: maximum length @len should be interpreted to 2454 * 2455 * Note that this routine is purely a helper for filesystem usage and should 2456 * not be called by generic code. 2457 * 2458 * The caller must hold base->i_mutex. 2459 */ 2460 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2461 { 2462 struct qstr this; 2463 unsigned int c; 2464 int err; 2465 2466 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2467 2468 this.name = name; 2469 this.len = len; 2470 this.hash = full_name_hash(base, name, len); 2471 if (!len) 2472 return ERR_PTR(-EACCES); 2473 2474 if (unlikely(name[0] == '.')) { 2475 if (len < 2 || (len == 2 && name[1] == '.')) 2476 return ERR_PTR(-EACCES); 2477 } 2478 2479 while (len--) { 2480 c = *(const unsigned char *)name++; 2481 if (c == '/' || c == '\0') 2482 return ERR_PTR(-EACCES); 2483 } 2484 /* 2485 * See if the low-level filesystem might want 2486 * to use its own hash.. 2487 */ 2488 if (base->d_flags & DCACHE_OP_HASH) { 2489 int err = base->d_op->d_hash(base, &this); 2490 if (err < 0) 2491 return ERR_PTR(err); 2492 } 2493 2494 err = inode_permission(base->d_inode, MAY_EXEC); 2495 if (err) 2496 return ERR_PTR(err); 2497 2498 return __lookup_hash(&this, base, 0); 2499 } 2500 EXPORT_SYMBOL(lookup_one_len); 2501 2502 /** 2503 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2504 * @name: pathname component to lookup 2505 * @base: base directory to lookup from 2506 * @len: maximum length @len should be interpreted to 2507 * 2508 * Note that this routine is purely a helper for filesystem usage and should 2509 * not be called by generic code. 2510 * 2511 * Unlike lookup_one_len, it should be called without the parent 2512 * i_mutex held, and will take the i_mutex itself if necessary. 2513 */ 2514 struct dentry *lookup_one_len_unlocked(const char *name, 2515 struct dentry *base, int len) 2516 { 2517 struct qstr this; 2518 unsigned int c; 2519 int err; 2520 struct dentry *ret; 2521 2522 this.name = name; 2523 this.len = len; 2524 this.hash = full_name_hash(base, name, len); 2525 if (!len) 2526 return ERR_PTR(-EACCES); 2527 2528 if (unlikely(name[0] == '.')) { 2529 if (len < 2 || (len == 2 && name[1] == '.')) 2530 return ERR_PTR(-EACCES); 2531 } 2532 2533 while (len--) { 2534 c = *(const unsigned char *)name++; 2535 if (c == '/' || c == '\0') 2536 return ERR_PTR(-EACCES); 2537 } 2538 /* 2539 * See if the low-level filesystem might want 2540 * to use its own hash.. 2541 */ 2542 if (base->d_flags & DCACHE_OP_HASH) { 2543 int err = base->d_op->d_hash(base, &this); 2544 if (err < 0) 2545 return ERR_PTR(err); 2546 } 2547 2548 err = inode_permission(base->d_inode, MAY_EXEC); 2549 if (err) 2550 return ERR_PTR(err); 2551 2552 ret = lookup_dcache(&this, base, 0); 2553 if (!ret) 2554 ret = lookup_slow(&this, base, 0); 2555 return ret; 2556 } 2557 EXPORT_SYMBOL(lookup_one_len_unlocked); 2558 2559 #ifdef CONFIG_UNIX98_PTYS 2560 int path_pts(struct path *path) 2561 { 2562 /* Find something mounted on "pts" in the same directory as 2563 * the input path. 2564 */ 2565 struct dentry *child, *parent; 2566 struct qstr this; 2567 int ret; 2568 2569 ret = path_parent_directory(path); 2570 if (ret) 2571 return ret; 2572 2573 parent = path->dentry; 2574 this.name = "pts"; 2575 this.len = 3; 2576 child = d_hash_and_lookup(parent, &this); 2577 if (!child) 2578 return -ENOENT; 2579 2580 path->dentry = child; 2581 dput(parent); 2582 follow_mount(path); 2583 return 0; 2584 } 2585 #endif 2586 2587 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2588 struct path *path, int *empty) 2589 { 2590 return filename_lookup(dfd, getname_flags(name, flags, empty), 2591 flags, path, NULL); 2592 } 2593 EXPORT_SYMBOL(user_path_at_empty); 2594 2595 /** 2596 * mountpoint_last - look up last component for umount 2597 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2598 * 2599 * This is a special lookup_last function just for umount. In this case, we 2600 * need to resolve the path without doing any revalidation. 2601 * 2602 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2603 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2604 * in almost all cases, this lookup will be served out of the dcache. The only 2605 * cases where it won't are if nd->last refers to a symlink or the path is 2606 * bogus and it doesn't exist. 2607 * 2608 * Returns: 2609 * -error: if there was an error during lookup. This includes -ENOENT if the 2610 * lookup found a negative dentry. 2611 * 2612 * 0: if we successfully resolved nd->last and found it to not to be a 2613 * symlink that needs to be followed. 2614 * 2615 * 1: if we successfully resolved nd->last and found it to be a symlink 2616 * that needs to be followed. 2617 */ 2618 static int 2619 mountpoint_last(struct nameidata *nd) 2620 { 2621 int error = 0; 2622 struct dentry *dir = nd->path.dentry; 2623 struct path path; 2624 2625 /* If we're in rcuwalk, drop out of it to handle last component */ 2626 if (nd->flags & LOOKUP_RCU) { 2627 if (unlazy_walk(nd)) 2628 return -ECHILD; 2629 } 2630 2631 nd->flags &= ~LOOKUP_PARENT; 2632 2633 if (unlikely(nd->last_type != LAST_NORM)) { 2634 error = handle_dots(nd, nd->last_type); 2635 if (error) 2636 return error; 2637 path.dentry = dget(nd->path.dentry); 2638 } else { 2639 path.dentry = d_lookup(dir, &nd->last); 2640 if (!path.dentry) { 2641 /* 2642 * No cached dentry. Mounted dentries are pinned in the 2643 * cache, so that means that this dentry is probably 2644 * a symlink or the path doesn't actually point 2645 * to a mounted dentry. 2646 */ 2647 path.dentry = lookup_slow(&nd->last, dir, 2648 nd->flags | LOOKUP_NO_REVAL); 2649 if (IS_ERR(path.dentry)) 2650 return PTR_ERR(path.dentry); 2651 } 2652 } 2653 if (d_is_negative(path.dentry)) { 2654 dput(path.dentry); 2655 return -ENOENT; 2656 } 2657 path.mnt = nd->path.mnt; 2658 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2659 } 2660 2661 /** 2662 * path_mountpoint - look up a path to be umounted 2663 * @nd: lookup context 2664 * @flags: lookup flags 2665 * @path: pointer to container for result 2666 * 2667 * Look up the given name, but don't attempt to revalidate the last component. 2668 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2669 */ 2670 static int 2671 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2672 { 2673 const char *s = path_init(nd, flags); 2674 int err; 2675 if (IS_ERR(s)) 2676 return PTR_ERR(s); 2677 while (!(err = link_path_walk(s, nd)) && 2678 (err = mountpoint_last(nd)) > 0) { 2679 s = trailing_symlink(nd); 2680 if (IS_ERR(s)) { 2681 err = PTR_ERR(s); 2682 break; 2683 } 2684 } 2685 if (!err) { 2686 *path = nd->path; 2687 nd->path.mnt = NULL; 2688 nd->path.dentry = NULL; 2689 follow_mount(path); 2690 } 2691 terminate_walk(nd); 2692 return err; 2693 } 2694 2695 static int 2696 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2697 unsigned int flags) 2698 { 2699 struct nameidata nd; 2700 int error; 2701 if (IS_ERR(name)) 2702 return PTR_ERR(name); 2703 set_nameidata(&nd, dfd, name); 2704 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2705 if (unlikely(error == -ECHILD)) 2706 error = path_mountpoint(&nd, flags, path); 2707 if (unlikely(error == -ESTALE)) 2708 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2709 if (likely(!error)) 2710 audit_inode(name, path->dentry, 0); 2711 restore_nameidata(); 2712 putname(name); 2713 return error; 2714 } 2715 2716 /** 2717 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2718 * @dfd: directory file descriptor 2719 * @name: pathname from userland 2720 * @flags: lookup flags 2721 * @path: pointer to container to hold result 2722 * 2723 * A umount is a special case for path walking. We're not actually interested 2724 * in the inode in this situation, and ESTALE errors can be a problem. We 2725 * simply want track down the dentry and vfsmount attached at the mountpoint 2726 * and avoid revalidating the last component. 2727 * 2728 * Returns 0 and populates "path" on success. 2729 */ 2730 int 2731 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2732 struct path *path) 2733 { 2734 return filename_mountpoint(dfd, getname(name), path, flags); 2735 } 2736 2737 int 2738 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2739 unsigned int flags) 2740 { 2741 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2742 } 2743 EXPORT_SYMBOL(kern_path_mountpoint); 2744 2745 int __check_sticky(struct inode *dir, struct inode *inode) 2746 { 2747 kuid_t fsuid = current_fsuid(); 2748 2749 if (uid_eq(inode->i_uid, fsuid)) 2750 return 0; 2751 if (uid_eq(dir->i_uid, fsuid)) 2752 return 0; 2753 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2754 } 2755 EXPORT_SYMBOL(__check_sticky); 2756 2757 /* 2758 * Check whether we can remove a link victim from directory dir, check 2759 * whether the type of victim is right. 2760 * 1. We can't do it if dir is read-only (done in permission()) 2761 * 2. We should have write and exec permissions on dir 2762 * 3. We can't remove anything from append-only dir 2763 * 4. We can't do anything with immutable dir (done in permission()) 2764 * 5. If the sticky bit on dir is set we should either 2765 * a. be owner of dir, or 2766 * b. be owner of victim, or 2767 * c. have CAP_FOWNER capability 2768 * 6. If the victim is append-only or immutable we can't do antyhing with 2769 * links pointing to it. 2770 * 7. If the victim has an unknown uid or gid we can't change the inode. 2771 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2772 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2773 * 10. We can't remove a root or mountpoint. 2774 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2775 * nfs_async_unlink(). 2776 */ 2777 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2778 { 2779 struct inode *inode = d_backing_inode(victim); 2780 int error; 2781 2782 if (d_is_negative(victim)) 2783 return -ENOENT; 2784 BUG_ON(!inode); 2785 2786 BUG_ON(victim->d_parent->d_inode != dir); 2787 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2788 2789 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2790 if (error) 2791 return error; 2792 if (IS_APPEND(dir)) 2793 return -EPERM; 2794 2795 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2796 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2797 return -EPERM; 2798 if (isdir) { 2799 if (!d_is_dir(victim)) 2800 return -ENOTDIR; 2801 if (IS_ROOT(victim)) 2802 return -EBUSY; 2803 } else if (d_is_dir(victim)) 2804 return -EISDIR; 2805 if (IS_DEADDIR(dir)) 2806 return -ENOENT; 2807 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2808 return -EBUSY; 2809 return 0; 2810 } 2811 2812 /* Check whether we can create an object with dentry child in directory 2813 * dir. 2814 * 1. We can't do it if child already exists (open has special treatment for 2815 * this case, but since we are inlined it's OK) 2816 * 2. We can't do it if dir is read-only (done in permission()) 2817 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2818 * 4. We should have write and exec permissions on dir 2819 * 5. We can't do it if dir is immutable (done in permission()) 2820 */ 2821 static inline int may_create(struct inode *dir, struct dentry *child) 2822 { 2823 struct user_namespace *s_user_ns; 2824 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2825 if (child->d_inode) 2826 return -EEXIST; 2827 if (IS_DEADDIR(dir)) 2828 return -ENOENT; 2829 s_user_ns = dir->i_sb->s_user_ns; 2830 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2831 !kgid_has_mapping(s_user_ns, current_fsgid())) 2832 return -EOVERFLOW; 2833 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2834 } 2835 2836 /* 2837 * p1 and p2 should be directories on the same fs. 2838 */ 2839 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2840 { 2841 struct dentry *p; 2842 2843 if (p1 == p2) { 2844 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2845 return NULL; 2846 } 2847 2848 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2849 2850 p = d_ancestor(p2, p1); 2851 if (p) { 2852 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2853 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2854 return p; 2855 } 2856 2857 p = d_ancestor(p1, p2); 2858 if (p) { 2859 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2860 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2861 return p; 2862 } 2863 2864 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2865 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2866 return NULL; 2867 } 2868 EXPORT_SYMBOL(lock_rename); 2869 2870 void unlock_rename(struct dentry *p1, struct dentry *p2) 2871 { 2872 inode_unlock(p1->d_inode); 2873 if (p1 != p2) { 2874 inode_unlock(p2->d_inode); 2875 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2876 } 2877 } 2878 EXPORT_SYMBOL(unlock_rename); 2879 2880 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2881 bool want_excl) 2882 { 2883 int error = may_create(dir, dentry); 2884 if (error) 2885 return error; 2886 2887 if (!dir->i_op->create) 2888 return -EACCES; /* shouldn't it be ENOSYS? */ 2889 mode &= S_IALLUGO; 2890 mode |= S_IFREG; 2891 error = security_inode_create(dir, dentry, mode); 2892 if (error) 2893 return error; 2894 error = dir->i_op->create(dir, dentry, mode, want_excl); 2895 if (!error) 2896 fsnotify_create(dir, dentry); 2897 return error; 2898 } 2899 EXPORT_SYMBOL(vfs_create); 2900 2901 bool may_open_dev(const struct path *path) 2902 { 2903 return !(path->mnt->mnt_flags & MNT_NODEV) && 2904 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2905 } 2906 2907 static int may_open(const struct path *path, int acc_mode, int flag) 2908 { 2909 struct dentry *dentry = path->dentry; 2910 struct inode *inode = dentry->d_inode; 2911 int error; 2912 2913 if (!inode) 2914 return -ENOENT; 2915 2916 switch (inode->i_mode & S_IFMT) { 2917 case S_IFLNK: 2918 return -ELOOP; 2919 case S_IFDIR: 2920 if (acc_mode & MAY_WRITE) 2921 return -EISDIR; 2922 break; 2923 case S_IFBLK: 2924 case S_IFCHR: 2925 if (!may_open_dev(path)) 2926 return -EACCES; 2927 /*FALLTHRU*/ 2928 case S_IFIFO: 2929 case S_IFSOCK: 2930 flag &= ~O_TRUNC; 2931 break; 2932 } 2933 2934 error = inode_permission(inode, MAY_OPEN | acc_mode); 2935 if (error) 2936 return error; 2937 2938 /* 2939 * An append-only file must be opened in append mode for writing. 2940 */ 2941 if (IS_APPEND(inode)) { 2942 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2943 return -EPERM; 2944 if (flag & O_TRUNC) 2945 return -EPERM; 2946 } 2947 2948 /* O_NOATIME can only be set by the owner or superuser */ 2949 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2950 return -EPERM; 2951 2952 return 0; 2953 } 2954 2955 static int handle_truncate(struct file *filp) 2956 { 2957 const struct path *path = &filp->f_path; 2958 struct inode *inode = path->dentry->d_inode; 2959 int error = get_write_access(inode); 2960 if (error) 2961 return error; 2962 /* 2963 * Refuse to truncate files with mandatory locks held on them. 2964 */ 2965 error = locks_verify_locked(filp); 2966 if (!error) 2967 error = security_path_truncate(path); 2968 if (!error) { 2969 error = do_truncate(path->dentry, 0, 2970 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2971 filp); 2972 } 2973 put_write_access(inode); 2974 return error; 2975 } 2976 2977 static inline int open_to_namei_flags(int flag) 2978 { 2979 if ((flag & O_ACCMODE) == 3) 2980 flag--; 2981 return flag; 2982 } 2983 2984 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2985 { 2986 struct user_namespace *s_user_ns; 2987 int error = security_path_mknod(dir, dentry, mode, 0); 2988 if (error) 2989 return error; 2990 2991 s_user_ns = dir->dentry->d_sb->s_user_ns; 2992 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2993 !kgid_has_mapping(s_user_ns, current_fsgid())) 2994 return -EOVERFLOW; 2995 2996 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2997 if (error) 2998 return error; 2999 3000 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3001 } 3002 3003 /* 3004 * Attempt to atomically look up, create and open a file from a negative 3005 * dentry. 3006 * 3007 * Returns 0 if successful. The file will have been created and attached to 3008 * @file by the filesystem calling finish_open(). 3009 * 3010 * Returns 1 if the file was looked up only or didn't need creating. The 3011 * caller will need to perform the open themselves. @path will have been 3012 * updated to point to the new dentry. This may be negative. 3013 * 3014 * Returns an error code otherwise. 3015 */ 3016 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3017 struct path *path, struct file *file, 3018 const struct open_flags *op, 3019 int open_flag, umode_t mode, 3020 int *opened) 3021 { 3022 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3023 struct inode *dir = nd->path.dentry->d_inode; 3024 int error; 3025 3026 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3027 open_flag &= ~O_TRUNC; 3028 3029 if (nd->flags & LOOKUP_DIRECTORY) 3030 open_flag |= O_DIRECTORY; 3031 3032 file->f_path.dentry = DENTRY_NOT_SET; 3033 file->f_path.mnt = nd->path.mnt; 3034 error = dir->i_op->atomic_open(dir, dentry, file, 3035 open_to_namei_flags(open_flag), 3036 mode, opened); 3037 d_lookup_done(dentry); 3038 if (!error) { 3039 /* 3040 * We didn't have the inode before the open, so check open 3041 * permission here. 3042 */ 3043 int acc_mode = op->acc_mode; 3044 if (*opened & FILE_CREATED) { 3045 WARN_ON(!(open_flag & O_CREAT)); 3046 fsnotify_create(dir, dentry); 3047 acc_mode = 0; 3048 } 3049 error = may_open(&file->f_path, acc_mode, open_flag); 3050 if (WARN_ON(error > 0)) 3051 error = -EINVAL; 3052 } else if (error > 0) { 3053 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3054 error = -EIO; 3055 } else { 3056 if (file->f_path.dentry) { 3057 dput(dentry); 3058 dentry = file->f_path.dentry; 3059 } 3060 if (*opened & FILE_CREATED) 3061 fsnotify_create(dir, dentry); 3062 if (unlikely(d_is_negative(dentry))) { 3063 error = -ENOENT; 3064 } else { 3065 path->dentry = dentry; 3066 path->mnt = nd->path.mnt; 3067 return 1; 3068 } 3069 } 3070 } 3071 dput(dentry); 3072 return error; 3073 } 3074 3075 /* 3076 * Look up and maybe create and open the last component. 3077 * 3078 * Must be called with i_mutex held on parent. 3079 * 3080 * Returns 0 if the file was successfully atomically created (if necessary) and 3081 * opened. In this case the file will be returned attached to @file. 3082 * 3083 * Returns 1 if the file was not completely opened at this time, though lookups 3084 * and creations will have been performed and the dentry returned in @path will 3085 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3086 * specified then a negative dentry may be returned. 3087 * 3088 * An error code is returned otherwise. 3089 * 3090 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3091 * cleared otherwise prior to returning. 3092 */ 3093 static int lookup_open(struct nameidata *nd, struct path *path, 3094 struct file *file, 3095 const struct open_flags *op, 3096 bool got_write, int *opened) 3097 { 3098 struct dentry *dir = nd->path.dentry; 3099 struct inode *dir_inode = dir->d_inode; 3100 int open_flag = op->open_flag; 3101 struct dentry *dentry; 3102 int error, create_error = 0; 3103 umode_t mode = op->mode; 3104 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3105 3106 if (unlikely(IS_DEADDIR(dir_inode))) 3107 return -ENOENT; 3108 3109 *opened &= ~FILE_CREATED; 3110 dentry = d_lookup(dir, &nd->last); 3111 for (;;) { 3112 if (!dentry) { 3113 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3114 if (IS_ERR(dentry)) 3115 return PTR_ERR(dentry); 3116 } 3117 if (d_in_lookup(dentry)) 3118 break; 3119 3120 error = d_revalidate(dentry, nd->flags); 3121 if (likely(error > 0)) 3122 break; 3123 if (error) 3124 goto out_dput; 3125 d_invalidate(dentry); 3126 dput(dentry); 3127 dentry = NULL; 3128 } 3129 if (dentry->d_inode) { 3130 /* Cached positive dentry: will open in f_op->open */ 3131 goto out_no_open; 3132 } 3133 3134 /* 3135 * Checking write permission is tricky, bacuse we don't know if we are 3136 * going to actually need it: O_CREAT opens should work as long as the 3137 * file exists. But checking existence breaks atomicity. The trick is 3138 * to check access and if not granted clear O_CREAT from the flags. 3139 * 3140 * Another problem is returing the "right" error value (e.g. for an 3141 * O_EXCL open we want to return EEXIST not EROFS). 3142 */ 3143 if (open_flag & O_CREAT) { 3144 if (!IS_POSIXACL(dir->d_inode)) 3145 mode &= ~current_umask(); 3146 if (unlikely(!got_write)) { 3147 create_error = -EROFS; 3148 open_flag &= ~O_CREAT; 3149 if (open_flag & (O_EXCL | O_TRUNC)) 3150 goto no_open; 3151 /* No side effects, safe to clear O_CREAT */ 3152 } else { 3153 create_error = may_o_create(&nd->path, dentry, mode); 3154 if (create_error) { 3155 open_flag &= ~O_CREAT; 3156 if (open_flag & O_EXCL) 3157 goto no_open; 3158 } 3159 } 3160 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3161 unlikely(!got_write)) { 3162 /* 3163 * No O_CREATE -> atomicity not a requirement -> fall 3164 * back to lookup + open 3165 */ 3166 goto no_open; 3167 } 3168 3169 if (dir_inode->i_op->atomic_open) { 3170 error = atomic_open(nd, dentry, path, file, op, open_flag, 3171 mode, opened); 3172 if (unlikely(error == -ENOENT) && create_error) 3173 error = create_error; 3174 return error; 3175 } 3176 3177 no_open: 3178 if (d_in_lookup(dentry)) { 3179 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3180 nd->flags); 3181 d_lookup_done(dentry); 3182 if (unlikely(res)) { 3183 if (IS_ERR(res)) { 3184 error = PTR_ERR(res); 3185 goto out_dput; 3186 } 3187 dput(dentry); 3188 dentry = res; 3189 } 3190 } 3191 3192 /* Negative dentry, just create the file */ 3193 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3194 *opened |= FILE_CREATED; 3195 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3196 if (!dir_inode->i_op->create) { 3197 error = -EACCES; 3198 goto out_dput; 3199 } 3200 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3201 open_flag & O_EXCL); 3202 if (error) 3203 goto out_dput; 3204 fsnotify_create(dir_inode, dentry); 3205 } 3206 if (unlikely(create_error) && !dentry->d_inode) { 3207 error = create_error; 3208 goto out_dput; 3209 } 3210 out_no_open: 3211 path->dentry = dentry; 3212 path->mnt = nd->path.mnt; 3213 return 1; 3214 3215 out_dput: 3216 dput(dentry); 3217 return error; 3218 } 3219 3220 /* 3221 * Handle the last step of open() 3222 */ 3223 static int do_last(struct nameidata *nd, 3224 struct file *file, const struct open_flags *op, 3225 int *opened) 3226 { 3227 struct dentry *dir = nd->path.dentry; 3228 int open_flag = op->open_flag; 3229 bool will_truncate = (open_flag & O_TRUNC) != 0; 3230 bool got_write = false; 3231 int acc_mode = op->acc_mode; 3232 unsigned seq; 3233 struct inode *inode; 3234 struct path path; 3235 int error; 3236 3237 nd->flags &= ~LOOKUP_PARENT; 3238 nd->flags |= op->intent; 3239 3240 if (nd->last_type != LAST_NORM) { 3241 error = handle_dots(nd, nd->last_type); 3242 if (unlikely(error)) 3243 return error; 3244 goto finish_open; 3245 } 3246 3247 if (!(open_flag & O_CREAT)) { 3248 if (nd->last.name[nd->last.len]) 3249 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3250 /* we _can_ be in RCU mode here */ 3251 error = lookup_fast(nd, &path, &inode, &seq); 3252 if (likely(error > 0)) 3253 goto finish_lookup; 3254 3255 if (error < 0) 3256 return error; 3257 3258 BUG_ON(nd->inode != dir->d_inode); 3259 BUG_ON(nd->flags & LOOKUP_RCU); 3260 } else { 3261 /* create side of things */ 3262 /* 3263 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3264 * has been cleared when we got to the last component we are 3265 * about to look up 3266 */ 3267 error = complete_walk(nd); 3268 if (error) 3269 return error; 3270 3271 audit_inode(nd->name, dir, LOOKUP_PARENT); 3272 /* trailing slashes? */ 3273 if (unlikely(nd->last.name[nd->last.len])) 3274 return -EISDIR; 3275 } 3276 3277 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3278 error = mnt_want_write(nd->path.mnt); 3279 if (!error) 3280 got_write = true; 3281 /* 3282 * do _not_ fail yet - we might not need that or fail with 3283 * a different error; let lookup_open() decide; we'll be 3284 * dropping this one anyway. 3285 */ 3286 } 3287 if (open_flag & O_CREAT) 3288 inode_lock(dir->d_inode); 3289 else 3290 inode_lock_shared(dir->d_inode); 3291 error = lookup_open(nd, &path, file, op, got_write, opened); 3292 if (open_flag & O_CREAT) 3293 inode_unlock(dir->d_inode); 3294 else 3295 inode_unlock_shared(dir->d_inode); 3296 3297 if (error <= 0) { 3298 if (error) 3299 goto out; 3300 3301 if ((*opened & FILE_CREATED) || 3302 !S_ISREG(file_inode(file)->i_mode)) 3303 will_truncate = false; 3304 3305 audit_inode(nd->name, file->f_path.dentry, 0); 3306 goto opened; 3307 } 3308 3309 if (*opened & FILE_CREATED) { 3310 /* Don't check for write permission, don't truncate */ 3311 open_flag &= ~O_TRUNC; 3312 will_truncate = false; 3313 acc_mode = 0; 3314 path_to_nameidata(&path, nd); 3315 goto finish_open_created; 3316 } 3317 3318 /* 3319 * If atomic_open() acquired write access it is dropped now due to 3320 * possible mount and symlink following (this might be optimized away if 3321 * necessary...) 3322 */ 3323 if (got_write) { 3324 mnt_drop_write(nd->path.mnt); 3325 got_write = false; 3326 } 3327 3328 error = follow_managed(&path, nd); 3329 if (unlikely(error < 0)) 3330 return error; 3331 3332 if (unlikely(d_is_negative(path.dentry))) { 3333 path_to_nameidata(&path, nd); 3334 return -ENOENT; 3335 } 3336 3337 /* 3338 * create/update audit record if it already exists. 3339 */ 3340 audit_inode(nd->name, path.dentry, 0); 3341 3342 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3343 path_to_nameidata(&path, nd); 3344 return -EEXIST; 3345 } 3346 3347 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3348 inode = d_backing_inode(path.dentry); 3349 finish_lookup: 3350 error = step_into(nd, &path, 0, inode, seq); 3351 if (unlikely(error)) 3352 return error; 3353 finish_open: 3354 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3355 error = complete_walk(nd); 3356 if (error) 3357 return error; 3358 audit_inode(nd->name, nd->path.dentry, 0); 3359 error = -EISDIR; 3360 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3361 goto out; 3362 error = -ENOTDIR; 3363 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3364 goto out; 3365 if (!d_is_reg(nd->path.dentry)) 3366 will_truncate = false; 3367 3368 if (will_truncate) { 3369 error = mnt_want_write(nd->path.mnt); 3370 if (error) 3371 goto out; 3372 got_write = true; 3373 } 3374 finish_open_created: 3375 error = may_open(&nd->path, acc_mode, open_flag); 3376 if (error) 3377 goto out; 3378 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3379 error = vfs_open(&nd->path, file, current_cred()); 3380 if (error) 3381 goto out; 3382 *opened |= FILE_OPENED; 3383 opened: 3384 error = open_check_o_direct(file); 3385 if (!error) 3386 error = ima_file_check(file, op->acc_mode, *opened); 3387 if (!error && will_truncate) 3388 error = handle_truncate(file); 3389 out: 3390 if (unlikely(error) && (*opened & FILE_OPENED)) 3391 fput(file); 3392 if (unlikely(error > 0)) { 3393 WARN_ON(1); 3394 error = -EINVAL; 3395 } 3396 if (got_write) 3397 mnt_drop_write(nd->path.mnt); 3398 return error; 3399 } 3400 3401 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3402 { 3403 struct dentry *child = NULL; 3404 struct inode *dir = dentry->d_inode; 3405 struct inode *inode; 3406 int error; 3407 3408 /* we want directory to be writable */ 3409 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3410 if (error) 3411 goto out_err; 3412 error = -EOPNOTSUPP; 3413 if (!dir->i_op->tmpfile) 3414 goto out_err; 3415 error = -ENOMEM; 3416 child = d_alloc(dentry, &slash_name); 3417 if (unlikely(!child)) 3418 goto out_err; 3419 error = dir->i_op->tmpfile(dir, child, mode); 3420 if (error) 3421 goto out_err; 3422 error = -ENOENT; 3423 inode = child->d_inode; 3424 if (unlikely(!inode)) 3425 goto out_err; 3426 if (!(open_flag & O_EXCL)) { 3427 spin_lock(&inode->i_lock); 3428 inode->i_state |= I_LINKABLE; 3429 spin_unlock(&inode->i_lock); 3430 } 3431 return child; 3432 3433 out_err: 3434 dput(child); 3435 return ERR_PTR(error); 3436 } 3437 EXPORT_SYMBOL(vfs_tmpfile); 3438 3439 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3440 const struct open_flags *op, 3441 struct file *file, int *opened) 3442 { 3443 struct dentry *child; 3444 struct path path; 3445 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3446 if (unlikely(error)) 3447 return error; 3448 error = mnt_want_write(path.mnt); 3449 if (unlikely(error)) 3450 goto out; 3451 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3452 error = PTR_ERR(child); 3453 if (unlikely(IS_ERR(child))) 3454 goto out2; 3455 dput(path.dentry); 3456 path.dentry = child; 3457 audit_inode(nd->name, child, 0); 3458 /* Don't check for other permissions, the inode was just created */ 3459 error = may_open(&path, 0, op->open_flag); 3460 if (error) 3461 goto out2; 3462 file->f_path.mnt = path.mnt; 3463 error = finish_open(file, child, NULL, opened); 3464 if (error) 3465 goto out2; 3466 error = open_check_o_direct(file); 3467 if (error) 3468 fput(file); 3469 out2: 3470 mnt_drop_write(path.mnt); 3471 out: 3472 path_put(&path); 3473 return error; 3474 } 3475 3476 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3477 { 3478 struct path path; 3479 int error = path_lookupat(nd, flags, &path); 3480 if (!error) { 3481 audit_inode(nd->name, path.dentry, 0); 3482 error = vfs_open(&path, file, current_cred()); 3483 path_put(&path); 3484 } 3485 return error; 3486 } 3487 3488 static struct file *path_openat(struct nameidata *nd, 3489 const struct open_flags *op, unsigned flags) 3490 { 3491 const char *s; 3492 struct file *file; 3493 int opened = 0; 3494 int error; 3495 3496 file = get_empty_filp(); 3497 if (IS_ERR(file)) 3498 return file; 3499 3500 file->f_flags = op->open_flag; 3501 3502 if (unlikely(file->f_flags & __O_TMPFILE)) { 3503 error = do_tmpfile(nd, flags, op, file, &opened); 3504 goto out2; 3505 } 3506 3507 if (unlikely(file->f_flags & O_PATH)) { 3508 error = do_o_path(nd, flags, file); 3509 if (!error) 3510 opened |= FILE_OPENED; 3511 goto out2; 3512 } 3513 3514 s = path_init(nd, flags); 3515 if (IS_ERR(s)) { 3516 put_filp(file); 3517 return ERR_CAST(s); 3518 } 3519 while (!(error = link_path_walk(s, nd)) && 3520 (error = do_last(nd, file, op, &opened)) > 0) { 3521 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3522 s = trailing_symlink(nd); 3523 if (IS_ERR(s)) { 3524 error = PTR_ERR(s); 3525 break; 3526 } 3527 } 3528 terminate_walk(nd); 3529 out2: 3530 if (!(opened & FILE_OPENED)) { 3531 BUG_ON(!error); 3532 put_filp(file); 3533 } 3534 if (unlikely(error)) { 3535 if (error == -EOPENSTALE) { 3536 if (flags & LOOKUP_RCU) 3537 error = -ECHILD; 3538 else 3539 error = -ESTALE; 3540 } 3541 file = ERR_PTR(error); 3542 } 3543 return file; 3544 } 3545 3546 struct file *do_filp_open(int dfd, struct filename *pathname, 3547 const struct open_flags *op) 3548 { 3549 struct nameidata nd; 3550 int flags = op->lookup_flags; 3551 struct file *filp; 3552 3553 set_nameidata(&nd, dfd, pathname); 3554 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3555 if (unlikely(filp == ERR_PTR(-ECHILD))) 3556 filp = path_openat(&nd, op, flags); 3557 if (unlikely(filp == ERR_PTR(-ESTALE))) 3558 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3559 restore_nameidata(); 3560 return filp; 3561 } 3562 3563 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3564 const char *name, const struct open_flags *op) 3565 { 3566 struct nameidata nd; 3567 struct file *file; 3568 struct filename *filename; 3569 int flags = op->lookup_flags | LOOKUP_ROOT; 3570 3571 nd.root.mnt = mnt; 3572 nd.root.dentry = dentry; 3573 3574 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3575 return ERR_PTR(-ELOOP); 3576 3577 filename = getname_kernel(name); 3578 if (IS_ERR(filename)) 3579 return ERR_CAST(filename); 3580 3581 set_nameidata(&nd, -1, filename); 3582 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3583 if (unlikely(file == ERR_PTR(-ECHILD))) 3584 file = path_openat(&nd, op, flags); 3585 if (unlikely(file == ERR_PTR(-ESTALE))) 3586 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3587 restore_nameidata(); 3588 putname(filename); 3589 return file; 3590 } 3591 3592 static struct dentry *filename_create(int dfd, struct filename *name, 3593 struct path *path, unsigned int lookup_flags) 3594 { 3595 struct dentry *dentry = ERR_PTR(-EEXIST); 3596 struct qstr last; 3597 int type; 3598 int err2; 3599 int error; 3600 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3601 3602 /* 3603 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3604 * other flags passed in are ignored! 3605 */ 3606 lookup_flags &= LOOKUP_REVAL; 3607 3608 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3609 if (IS_ERR(name)) 3610 return ERR_CAST(name); 3611 3612 /* 3613 * Yucky last component or no last component at all? 3614 * (foo/., foo/.., /////) 3615 */ 3616 if (unlikely(type != LAST_NORM)) 3617 goto out; 3618 3619 /* don't fail immediately if it's r/o, at least try to report other errors */ 3620 err2 = mnt_want_write(path->mnt); 3621 /* 3622 * Do the final lookup. 3623 */ 3624 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3625 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3626 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3627 if (IS_ERR(dentry)) 3628 goto unlock; 3629 3630 error = -EEXIST; 3631 if (d_is_positive(dentry)) 3632 goto fail; 3633 3634 /* 3635 * Special case - lookup gave negative, but... we had foo/bar/ 3636 * From the vfs_mknod() POV we just have a negative dentry - 3637 * all is fine. Let's be bastards - you had / on the end, you've 3638 * been asking for (non-existent) directory. -ENOENT for you. 3639 */ 3640 if (unlikely(!is_dir && last.name[last.len])) { 3641 error = -ENOENT; 3642 goto fail; 3643 } 3644 if (unlikely(err2)) { 3645 error = err2; 3646 goto fail; 3647 } 3648 putname(name); 3649 return dentry; 3650 fail: 3651 dput(dentry); 3652 dentry = ERR_PTR(error); 3653 unlock: 3654 inode_unlock(path->dentry->d_inode); 3655 if (!err2) 3656 mnt_drop_write(path->mnt); 3657 out: 3658 path_put(path); 3659 putname(name); 3660 return dentry; 3661 } 3662 3663 struct dentry *kern_path_create(int dfd, const char *pathname, 3664 struct path *path, unsigned int lookup_flags) 3665 { 3666 return filename_create(dfd, getname_kernel(pathname), 3667 path, lookup_flags); 3668 } 3669 EXPORT_SYMBOL(kern_path_create); 3670 3671 void done_path_create(struct path *path, struct dentry *dentry) 3672 { 3673 dput(dentry); 3674 inode_unlock(path->dentry->d_inode); 3675 mnt_drop_write(path->mnt); 3676 path_put(path); 3677 } 3678 EXPORT_SYMBOL(done_path_create); 3679 3680 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3681 struct path *path, unsigned int lookup_flags) 3682 { 3683 return filename_create(dfd, getname(pathname), path, lookup_flags); 3684 } 3685 EXPORT_SYMBOL(user_path_create); 3686 3687 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3688 { 3689 int error = may_create(dir, dentry); 3690 3691 if (error) 3692 return error; 3693 3694 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3695 return -EPERM; 3696 3697 if (!dir->i_op->mknod) 3698 return -EPERM; 3699 3700 error = devcgroup_inode_mknod(mode, dev); 3701 if (error) 3702 return error; 3703 3704 error = security_inode_mknod(dir, dentry, mode, dev); 3705 if (error) 3706 return error; 3707 3708 error = dir->i_op->mknod(dir, dentry, mode, dev); 3709 if (!error) 3710 fsnotify_create(dir, dentry); 3711 return error; 3712 } 3713 EXPORT_SYMBOL(vfs_mknod); 3714 3715 static int may_mknod(umode_t mode) 3716 { 3717 switch (mode & S_IFMT) { 3718 case S_IFREG: 3719 case S_IFCHR: 3720 case S_IFBLK: 3721 case S_IFIFO: 3722 case S_IFSOCK: 3723 case 0: /* zero mode translates to S_IFREG */ 3724 return 0; 3725 case S_IFDIR: 3726 return -EPERM; 3727 default: 3728 return -EINVAL; 3729 } 3730 } 3731 3732 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3733 unsigned, dev) 3734 { 3735 struct dentry *dentry; 3736 struct path path; 3737 int error; 3738 unsigned int lookup_flags = 0; 3739 3740 error = may_mknod(mode); 3741 if (error) 3742 return error; 3743 retry: 3744 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3745 if (IS_ERR(dentry)) 3746 return PTR_ERR(dentry); 3747 3748 if (!IS_POSIXACL(path.dentry->d_inode)) 3749 mode &= ~current_umask(); 3750 error = security_path_mknod(&path, dentry, mode, dev); 3751 if (error) 3752 goto out; 3753 switch (mode & S_IFMT) { 3754 case 0: case S_IFREG: 3755 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3756 if (!error) 3757 ima_post_path_mknod(dentry); 3758 break; 3759 case S_IFCHR: case S_IFBLK: 3760 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3761 new_decode_dev(dev)); 3762 break; 3763 case S_IFIFO: case S_IFSOCK: 3764 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3765 break; 3766 } 3767 out: 3768 done_path_create(&path, dentry); 3769 if (retry_estale(error, lookup_flags)) { 3770 lookup_flags |= LOOKUP_REVAL; 3771 goto retry; 3772 } 3773 return error; 3774 } 3775 3776 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3777 { 3778 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3779 } 3780 3781 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3782 { 3783 int error = may_create(dir, dentry); 3784 unsigned max_links = dir->i_sb->s_max_links; 3785 3786 if (error) 3787 return error; 3788 3789 if (!dir->i_op->mkdir) 3790 return -EPERM; 3791 3792 mode &= (S_IRWXUGO|S_ISVTX); 3793 error = security_inode_mkdir(dir, dentry, mode); 3794 if (error) 3795 return error; 3796 3797 if (max_links && dir->i_nlink >= max_links) 3798 return -EMLINK; 3799 3800 error = dir->i_op->mkdir(dir, dentry, mode); 3801 if (!error) 3802 fsnotify_mkdir(dir, dentry); 3803 return error; 3804 } 3805 EXPORT_SYMBOL(vfs_mkdir); 3806 3807 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3808 { 3809 struct dentry *dentry; 3810 struct path path; 3811 int error; 3812 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3813 3814 retry: 3815 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3816 if (IS_ERR(dentry)) 3817 return PTR_ERR(dentry); 3818 3819 if (!IS_POSIXACL(path.dentry->d_inode)) 3820 mode &= ~current_umask(); 3821 error = security_path_mkdir(&path, dentry, mode); 3822 if (!error) 3823 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3824 done_path_create(&path, dentry); 3825 if (retry_estale(error, lookup_flags)) { 3826 lookup_flags |= LOOKUP_REVAL; 3827 goto retry; 3828 } 3829 return error; 3830 } 3831 3832 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3833 { 3834 return sys_mkdirat(AT_FDCWD, pathname, mode); 3835 } 3836 3837 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3838 { 3839 int error = may_delete(dir, dentry, 1); 3840 3841 if (error) 3842 return error; 3843 3844 if (!dir->i_op->rmdir) 3845 return -EPERM; 3846 3847 dget(dentry); 3848 inode_lock(dentry->d_inode); 3849 3850 error = -EBUSY; 3851 if (is_local_mountpoint(dentry)) 3852 goto out; 3853 3854 error = security_inode_rmdir(dir, dentry); 3855 if (error) 3856 goto out; 3857 3858 shrink_dcache_parent(dentry); 3859 error = dir->i_op->rmdir(dir, dentry); 3860 if (error) 3861 goto out; 3862 3863 dentry->d_inode->i_flags |= S_DEAD; 3864 dont_mount(dentry); 3865 detach_mounts(dentry); 3866 3867 out: 3868 inode_unlock(dentry->d_inode); 3869 dput(dentry); 3870 if (!error) 3871 d_delete(dentry); 3872 return error; 3873 } 3874 EXPORT_SYMBOL(vfs_rmdir); 3875 3876 static long do_rmdir(int dfd, const char __user *pathname) 3877 { 3878 int error = 0; 3879 struct filename *name; 3880 struct dentry *dentry; 3881 struct path path; 3882 struct qstr last; 3883 int type; 3884 unsigned int lookup_flags = 0; 3885 retry: 3886 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3887 &path, &last, &type); 3888 if (IS_ERR(name)) 3889 return PTR_ERR(name); 3890 3891 switch (type) { 3892 case LAST_DOTDOT: 3893 error = -ENOTEMPTY; 3894 goto exit1; 3895 case LAST_DOT: 3896 error = -EINVAL; 3897 goto exit1; 3898 case LAST_ROOT: 3899 error = -EBUSY; 3900 goto exit1; 3901 } 3902 3903 error = mnt_want_write(path.mnt); 3904 if (error) 3905 goto exit1; 3906 3907 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3908 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3909 error = PTR_ERR(dentry); 3910 if (IS_ERR(dentry)) 3911 goto exit2; 3912 if (!dentry->d_inode) { 3913 error = -ENOENT; 3914 goto exit3; 3915 } 3916 error = security_path_rmdir(&path, dentry); 3917 if (error) 3918 goto exit3; 3919 error = vfs_rmdir(path.dentry->d_inode, dentry); 3920 exit3: 3921 dput(dentry); 3922 exit2: 3923 inode_unlock(path.dentry->d_inode); 3924 mnt_drop_write(path.mnt); 3925 exit1: 3926 path_put(&path); 3927 putname(name); 3928 if (retry_estale(error, lookup_flags)) { 3929 lookup_flags |= LOOKUP_REVAL; 3930 goto retry; 3931 } 3932 return error; 3933 } 3934 3935 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3936 { 3937 return do_rmdir(AT_FDCWD, pathname); 3938 } 3939 3940 /** 3941 * vfs_unlink - unlink a filesystem object 3942 * @dir: parent directory 3943 * @dentry: victim 3944 * @delegated_inode: returns victim inode, if the inode is delegated. 3945 * 3946 * The caller must hold dir->i_mutex. 3947 * 3948 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3949 * return a reference to the inode in delegated_inode. The caller 3950 * should then break the delegation on that inode and retry. Because 3951 * breaking a delegation may take a long time, the caller should drop 3952 * dir->i_mutex before doing so. 3953 * 3954 * Alternatively, a caller may pass NULL for delegated_inode. This may 3955 * be appropriate for callers that expect the underlying filesystem not 3956 * to be NFS exported. 3957 */ 3958 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3959 { 3960 struct inode *target = dentry->d_inode; 3961 int error = may_delete(dir, dentry, 0); 3962 3963 if (error) 3964 return error; 3965 3966 if (!dir->i_op->unlink) 3967 return -EPERM; 3968 3969 inode_lock(target); 3970 if (is_local_mountpoint(dentry)) 3971 error = -EBUSY; 3972 else { 3973 error = security_inode_unlink(dir, dentry); 3974 if (!error) { 3975 error = try_break_deleg(target, delegated_inode); 3976 if (error) 3977 goto out; 3978 error = dir->i_op->unlink(dir, dentry); 3979 if (!error) { 3980 dont_mount(dentry); 3981 detach_mounts(dentry); 3982 } 3983 } 3984 } 3985 out: 3986 inode_unlock(target); 3987 3988 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3989 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3990 fsnotify_link_count(target); 3991 d_delete(dentry); 3992 } 3993 3994 return error; 3995 } 3996 EXPORT_SYMBOL(vfs_unlink); 3997 3998 /* 3999 * Make sure that the actual truncation of the file will occur outside its 4000 * directory's i_mutex. Truncate can take a long time if there is a lot of 4001 * writeout happening, and we don't want to prevent access to the directory 4002 * while waiting on the I/O. 4003 */ 4004 static long do_unlinkat(int dfd, const char __user *pathname) 4005 { 4006 int error; 4007 struct filename *name; 4008 struct dentry *dentry; 4009 struct path path; 4010 struct qstr last; 4011 int type; 4012 struct inode *inode = NULL; 4013 struct inode *delegated_inode = NULL; 4014 unsigned int lookup_flags = 0; 4015 retry: 4016 name = filename_parentat(dfd, getname(pathname), lookup_flags, 4017 &path, &last, &type); 4018 if (IS_ERR(name)) 4019 return PTR_ERR(name); 4020 4021 error = -EISDIR; 4022 if (type != LAST_NORM) 4023 goto exit1; 4024 4025 error = mnt_want_write(path.mnt); 4026 if (error) 4027 goto exit1; 4028 retry_deleg: 4029 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4030 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4031 error = PTR_ERR(dentry); 4032 if (!IS_ERR(dentry)) { 4033 /* Why not before? Because we want correct error value */ 4034 if (last.name[last.len]) 4035 goto slashes; 4036 inode = dentry->d_inode; 4037 if (d_is_negative(dentry)) 4038 goto slashes; 4039 ihold(inode); 4040 error = security_path_unlink(&path, dentry); 4041 if (error) 4042 goto exit2; 4043 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4044 exit2: 4045 dput(dentry); 4046 } 4047 inode_unlock(path.dentry->d_inode); 4048 if (inode) 4049 iput(inode); /* truncate the inode here */ 4050 inode = NULL; 4051 if (delegated_inode) { 4052 error = break_deleg_wait(&delegated_inode); 4053 if (!error) 4054 goto retry_deleg; 4055 } 4056 mnt_drop_write(path.mnt); 4057 exit1: 4058 path_put(&path); 4059 putname(name); 4060 if (retry_estale(error, lookup_flags)) { 4061 lookup_flags |= LOOKUP_REVAL; 4062 inode = NULL; 4063 goto retry; 4064 } 4065 return error; 4066 4067 slashes: 4068 if (d_is_negative(dentry)) 4069 error = -ENOENT; 4070 else if (d_is_dir(dentry)) 4071 error = -EISDIR; 4072 else 4073 error = -ENOTDIR; 4074 goto exit2; 4075 } 4076 4077 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4078 { 4079 if ((flag & ~AT_REMOVEDIR) != 0) 4080 return -EINVAL; 4081 4082 if (flag & AT_REMOVEDIR) 4083 return do_rmdir(dfd, pathname); 4084 4085 return do_unlinkat(dfd, pathname); 4086 } 4087 4088 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4089 { 4090 return do_unlinkat(AT_FDCWD, pathname); 4091 } 4092 4093 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4094 { 4095 int error = may_create(dir, dentry); 4096 4097 if (error) 4098 return error; 4099 4100 if (!dir->i_op->symlink) 4101 return -EPERM; 4102 4103 error = security_inode_symlink(dir, dentry, oldname); 4104 if (error) 4105 return error; 4106 4107 error = dir->i_op->symlink(dir, dentry, oldname); 4108 if (!error) 4109 fsnotify_create(dir, dentry); 4110 return error; 4111 } 4112 EXPORT_SYMBOL(vfs_symlink); 4113 4114 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4115 int, newdfd, const char __user *, newname) 4116 { 4117 int error; 4118 struct filename *from; 4119 struct dentry *dentry; 4120 struct path path; 4121 unsigned int lookup_flags = 0; 4122 4123 from = getname(oldname); 4124 if (IS_ERR(from)) 4125 return PTR_ERR(from); 4126 retry: 4127 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4128 error = PTR_ERR(dentry); 4129 if (IS_ERR(dentry)) 4130 goto out_putname; 4131 4132 error = security_path_symlink(&path, dentry, from->name); 4133 if (!error) 4134 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4135 done_path_create(&path, dentry); 4136 if (retry_estale(error, lookup_flags)) { 4137 lookup_flags |= LOOKUP_REVAL; 4138 goto retry; 4139 } 4140 out_putname: 4141 putname(from); 4142 return error; 4143 } 4144 4145 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4146 { 4147 return sys_symlinkat(oldname, AT_FDCWD, newname); 4148 } 4149 4150 /** 4151 * vfs_link - create a new link 4152 * @old_dentry: object to be linked 4153 * @dir: new parent 4154 * @new_dentry: where to create the new link 4155 * @delegated_inode: returns inode needing a delegation break 4156 * 4157 * The caller must hold dir->i_mutex 4158 * 4159 * If vfs_link discovers a delegation on the to-be-linked file in need 4160 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4161 * inode in delegated_inode. The caller should then break the delegation 4162 * and retry. Because breaking a delegation may take a long time, the 4163 * caller should drop the i_mutex before doing so. 4164 * 4165 * Alternatively, a caller may pass NULL for delegated_inode. This may 4166 * be appropriate for callers that expect the underlying filesystem not 4167 * to be NFS exported. 4168 */ 4169 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4170 { 4171 struct inode *inode = old_dentry->d_inode; 4172 unsigned max_links = dir->i_sb->s_max_links; 4173 int error; 4174 4175 if (!inode) 4176 return -ENOENT; 4177 4178 error = may_create(dir, new_dentry); 4179 if (error) 4180 return error; 4181 4182 if (dir->i_sb != inode->i_sb) 4183 return -EXDEV; 4184 4185 /* 4186 * A link to an append-only or immutable file cannot be created. 4187 */ 4188 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4189 return -EPERM; 4190 /* 4191 * Updating the link count will likely cause i_uid and i_gid to 4192 * be writen back improperly if their true value is unknown to 4193 * the vfs. 4194 */ 4195 if (HAS_UNMAPPED_ID(inode)) 4196 return -EPERM; 4197 if (!dir->i_op->link) 4198 return -EPERM; 4199 if (S_ISDIR(inode->i_mode)) 4200 return -EPERM; 4201 4202 error = security_inode_link(old_dentry, dir, new_dentry); 4203 if (error) 4204 return error; 4205 4206 inode_lock(inode); 4207 /* Make sure we don't allow creating hardlink to an unlinked file */ 4208 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4209 error = -ENOENT; 4210 else if (max_links && inode->i_nlink >= max_links) 4211 error = -EMLINK; 4212 else { 4213 error = try_break_deleg(inode, delegated_inode); 4214 if (!error) 4215 error = dir->i_op->link(old_dentry, dir, new_dentry); 4216 } 4217 4218 if (!error && (inode->i_state & I_LINKABLE)) { 4219 spin_lock(&inode->i_lock); 4220 inode->i_state &= ~I_LINKABLE; 4221 spin_unlock(&inode->i_lock); 4222 } 4223 inode_unlock(inode); 4224 if (!error) 4225 fsnotify_link(dir, inode, new_dentry); 4226 return error; 4227 } 4228 EXPORT_SYMBOL(vfs_link); 4229 4230 /* 4231 * Hardlinks are often used in delicate situations. We avoid 4232 * security-related surprises by not following symlinks on the 4233 * newname. --KAB 4234 * 4235 * We don't follow them on the oldname either to be compatible 4236 * with linux 2.0, and to avoid hard-linking to directories 4237 * and other special files. --ADM 4238 */ 4239 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4240 int, newdfd, const char __user *, newname, int, flags) 4241 { 4242 struct dentry *new_dentry; 4243 struct path old_path, new_path; 4244 struct inode *delegated_inode = NULL; 4245 int how = 0; 4246 int error; 4247 4248 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4249 return -EINVAL; 4250 /* 4251 * To use null names we require CAP_DAC_READ_SEARCH 4252 * This ensures that not everyone will be able to create 4253 * handlink using the passed filedescriptor. 4254 */ 4255 if (flags & AT_EMPTY_PATH) { 4256 if (!capable(CAP_DAC_READ_SEARCH)) 4257 return -ENOENT; 4258 how = LOOKUP_EMPTY; 4259 } 4260 4261 if (flags & AT_SYMLINK_FOLLOW) 4262 how |= LOOKUP_FOLLOW; 4263 retry: 4264 error = user_path_at(olddfd, oldname, how, &old_path); 4265 if (error) 4266 return error; 4267 4268 new_dentry = user_path_create(newdfd, newname, &new_path, 4269 (how & LOOKUP_REVAL)); 4270 error = PTR_ERR(new_dentry); 4271 if (IS_ERR(new_dentry)) 4272 goto out; 4273 4274 error = -EXDEV; 4275 if (old_path.mnt != new_path.mnt) 4276 goto out_dput; 4277 error = may_linkat(&old_path); 4278 if (unlikely(error)) 4279 goto out_dput; 4280 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4281 if (error) 4282 goto out_dput; 4283 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4284 out_dput: 4285 done_path_create(&new_path, new_dentry); 4286 if (delegated_inode) { 4287 error = break_deleg_wait(&delegated_inode); 4288 if (!error) { 4289 path_put(&old_path); 4290 goto retry; 4291 } 4292 } 4293 if (retry_estale(error, how)) { 4294 path_put(&old_path); 4295 how |= LOOKUP_REVAL; 4296 goto retry; 4297 } 4298 out: 4299 path_put(&old_path); 4300 4301 return error; 4302 } 4303 4304 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4305 { 4306 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4307 } 4308 4309 /** 4310 * vfs_rename - rename a filesystem object 4311 * @old_dir: parent of source 4312 * @old_dentry: source 4313 * @new_dir: parent of destination 4314 * @new_dentry: destination 4315 * @delegated_inode: returns an inode needing a delegation break 4316 * @flags: rename flags 4317 * 4318 * The caller must hold multiple mutexes--see lock_rename()). 4319 * 4320 * If vfs_rename discovers a delegation in need of breaking at either 4321 * the source or destination, it will return -EWOULDBLOCK and return a 4322 * reference to the inode in delegated_inode. The caller should then 4323 * break the delegation and retry. Because breaking a delegation may 4324 * take a long time, the caller should drop all locks before doing 4325 * so. 4326 * 4327 * Alternatively, a caller may pass NULL for delegated_inode. This may 4328 * be appropriate for callers that expect the underlying filesystem not 4329 * to be NFS exported. 4330 * 4331 * The worst of all namespace operations - renaming directory. "Perverted" 4332 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4333 * Problems: 4334 * 4335 * a) we can get into loop creation. 4336 * b) race potential - two innocent renames can create a loop together. 4337 * That's where 4.4 screws up. Current fix: serialization on 4338 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4339 * story. 4340 * c) we have to lock _four_ objects - parents and victim (if it exists), 4341 * and source (if it is not a directory). 4342 * And that - after we got ->i_mutex on parents (until then we don't know 4343 * whether the target exists). Solution: try to be smart with locking 4344 * order for inodes. We rely on the fact that tree topology may change 4345 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4346 * move will be locked. Thus we can rank directories by the tree 4347 * (ancestors first) and rank all non-directories after them. 4348 * That works since everybody except rename does "lock parent, lookup, 4349 * lock child" and rename is under ->s_vfs_rename_mutex. 4350 * HOWEVER, it relies on the assumption that any object with ->lookup() 4351 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4352 * we'd better make sure that there's no link(2) for them. 4353 * d) conversion from fhandle to dentry may come in the wrong moment - when 4354 * we are removing the target. Solution: we will have to grab ->i_mutex 4355 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4356 * ->i_mutex on parents, which works but leads to some truly excessive 4357 * locking]. 4358 */ 4359 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4360 struct inode *new_dir, struct dentry *new_dentry, 4361 struct inode **delegated_inode, unsigned int flags) 4362 { 4363 int error; 4364 bool is_dir = d_is_dir(old_dentry); 4365 struct inode *source = old_dentry->d_inode; 4366 struct inode *target = new_dentry->d_inode; 4367 bool new_is_dir = false; 4368 unsigned max_links = new_dir->i_sb->s_max_links; 4369 struct name_snapshot old_name; 4370 4371 if (source == target) 4372 return 0; 4373 4374 error = may_delete(old_dir, old_dentry, is_dir); 4375 if (error) 4376 return error; 4377 4378 if (!target) { 4379 error = may_create(new_dir, new_dentry); 4380 } else { 4381 new_is_dir = d_is_dir(new_dentry); 4382 4383 if (!(flags & RENAME_EXCHANGE)) 4384 error = may_delete(new_dir, new_dentry, is_dir); 4385 else 4386 error = may_delete(new_dir, new_dentry, new_is_dir); 4387 } 4388 if (error) 4389 return error; 4390 4391 if (!old_dir->i_op->rename) 4392 return -EPERM; 4393 4394 /* 4395 * If we are going to change the parent - check write permissions, 4396 * we'll need to flip '..'. 4397 */ 4398 if (new_dir != old_dir) { 4399 if (is_dir) { 4400 error = inode_permission(source, MAY_WRITE); 4401 if (error) 4402 return error; 4403 } 4404 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4405 error = inode_permission(target, MAY_WRITE); 4406 if (error) 4407 return error; 4408 } 4409 } 4410 4411 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4412 flags); 4413 if (error) 4414 return error; 4415 4416 take_dentry_name_snapshot(&old_name, old_dentry); 4417 dget(new_dentry); 4418 if (!is_dir || (flags & RENAME_EXCHANGE)) 4419 lock_two_nondirectories(source, target); 4420 else if (target) 4421 inode_lock(target); 4422 4423 error = -EBUSY; 4424 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4425 goto out; 4426 4427 if (max_links && new_dir != old_dir) { 4428 error = -EMLINK; 4429 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4430 goto out; 4431 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4432 old_dir->i_nlink >= max_links) 4433 goto out; 4434 } 4435 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4436 shrink_dcache_parent(new_dentry); 4437 if (!is_dir) { 4438 error = try_break_deleg(source, delegated_inode); 4439 if (error) 4440 goto out; 4441 } 4442 if (target && !new_is_dir) { 4443 error = try_break_deleg(target, delegated_inode); 4444 if (error) 4445 goto out; 4446 } 4447 error = old_dir->i_op->rename(old_dir, old_dentry, 4448 new_dir, new_dentry, flags); 4449 if (error) 4450 goto out; 4451 4452 if (!(flags & RENAME_EXCHANGE) && target) { 4453 if (is_dir) 4454 target->i_flags |= S_DEAD; 4455 dont_mount(new_dentry); 4456 detach_mounts(new_dentry); 4457 } 4458 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4459 if (!(flags & RENAME_EXCHANGE)) 4460 d_move(old_dentry, new_dentry); 4461 else 4462 d_exchange(old_dentry, new_dentry); 4463 } 4464 out: 4465 if (!is_dir || (flags & RENAME_EXCHANGE)) 4466 unlock_two_nondirectories(source, target); 4467 else if (target) 4468 inode_unlock(target); 4469 dput(new_dentry); 4470 if (!error) { 4471 fsnotify_move(old_dir, new_dir, old_name.name, is_dir, 4472 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4473 if (flags & RENAME_EXCHANGE) { 4474 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4475 new_is_dir, NULL, new_dentry); 4476 } 4477 } 4478 release_dentry_name_snapshot(&old_name); 4479 4480 return error; 4481 } 4482 EXPORT_SYMBOL(vfs_rename); 4483 4484 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4485 int, newdfd, const char __user *, newname, unsigned int, flags) 4486 { 4487 struct dentry *old_dentry, *new_dentry; 4488 struct dentry *trap; 4489 struct path old_path, new_path; 4490 struct qstr old_last, new_last; 4491 int old_type, new_type; 4492 struct inode *delegated_inode = NULL; 4493 struct filename *from; 4494 struct filename *to; 4495 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4496 bool should_retry = false; 4497 int error; 4498 4499 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4500 return -EINVAL; 4501 4502 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4503 (flags & RENAME_EXCHANGE)) 4504 return -EINVAL; 4505 4506 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4507 return -EPERM; 4508 4509 if (flags & RENAME_EXCHANGE) 4510 target_flags = 0; 4511 4512 retry: 4513 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4514 &old_path, &old_last, &old_type); 4515 if (IS_ERR(from)) { 4516 error = PTR_ERR(from); 4517 goto exit; 4518 } 4519 4520 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4521 &new_path, &new_last, &new_type); 4522 if (IS_ERR(to)) { 4523 error = PTR_ERR(to); 4524 goto exit1; 4525 } 4526 4527 error = -EXDEV; 4528 if (old_path.mnt != new_path.mnt) 4529 goto exit2; 4530 4531 error = -EBUSY; 4532 if (old_type != LAST_NORM) 4533 goto exit2; 4534 4535 if (flags & RENAME_NOREPLACE) 4536 error = -EEXIST; 4537 if (new_type != LAST_NORM) 4538 goto exit2; 4539 4540 error = mnt_want_write(old_path.mnt); 4541 if (error) 4542 goto exit2; 4543 4544 retry_deleg: 4545 trap = lock_rename(new_path.dentry, old_path.dentry); 4546 4547 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4548 error = PTR_ERR(old_dentry); 4549 if (IS_ERR(old_dentry)) 4550 goto exit3; 4551 /* source must exist */ 4552 error = -ENOENT; 4553 if (d_is_negative(old_dentry)) 4554 goto exit4; 4555 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4556 error = PTR_ERR(new_dentry); 4557 if (IS_ERR(new_dentry)) 4558 goto exit4; 4559 error = -EEXIST; 4560 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4561 goto exit5; 4562 if (flags & RENAME_EXCHANGE) { 4563 error = -ENOENT; 4564 if (d_is_negative(new_dentry)) 4565 goto exit5; 4566 4567 if (!d_is_dir(new_dentry)) { 4568 error = -ENOTDIR; 4569 if (new_last.name[new_last.len]) 4570 goto exit5; 4571 } 4572 } 4573 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4574 if (!d_is_dir(old_dentry)) { 4575 error = -ENOTDIR; 4576 if (old_last.name[old_last.len]) 4577 goto exit5; 4578 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4579 goto exit5; 4580 } 4581 /* source should not be ancestor of target */ 4582 error = -EINVAL; 4583 if (old_dentry == trap) 4584 goto exit5; 4585 /* target should not be an ancestor of source */ 4586 if (!(flags & RENAME_EXCHANGE)) 4587 error = -ENOTEMPTY; 4588 if (new_dentry == trap) 4589 goto exit5; 4590 4591 error = security_path_rename(&old_path, old_dentry, 4592 &new_path, new_dentry, flags); 4593 if (error) 4594 goto exit5; 4595 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4596 new_path.dentry->d_inode, new_dentry, 4597 &delegated_inode, flags); 4598 exit5: 4599 dput(new_dentry); 4600 exit4: 4601 dput(old_dentry); 4602 exit3: 4603 unlock_rename(new_path.dentry, old_path.dentry); 4604 if (delegated_inode) { 4605 error = break_deleg_wait(&delegated_inode); 4606 if (!error) 4607 goto retry_deleg; 4608 } 4609 mnt_drop_write(old_path.mnt); 4610 exit2: 4611 if (retry_estale(error, lookup_flags)) 4612 should_retry = true; 4613 path_put(&new_path); 4614 putname(to); 4615 exit1: 4616 path_put(&old_path); 4617 putname(from); 4618 if (should_retry) { 4619 should_retry = false; 4620 lookup_flags |= LOOKUP_REVAL; 4621 goto retry; 4622 } 4623 exit: 4624 return error; 4625 } 4626 4627 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4628 int, newdfd, const char __user *, newname) 4629 { 4630 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4631 } 4632 4633 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4634 { 4635 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4636 } 4637 4638 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4639 { 4640 int error = may_create(dir, dentry); 4641 if (error) 4642 return error; 4643 4644 if (!dir->i_op->mknod) 4645 return -EPERM; 4646 4647 return dir->i_op->mknod(dir, dentry, 4648 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4649 } 4650 EXPORT_SYMBOL(vfs_whiteout); 4651 4652 int readlink_copy(char __user *buffer, int buflen, const char *link) 4653 { 4654 int len = PTR_ERR(link); 4655 if (IS_ERR(link)) 4656 goto out; 4657 4658 len = strlen(link); 4659 if (len > (unsigned) buflen) 4660 len = buflen; 4661 if (copy_to_user(buffer, link, len)) 4662 len = -EFAULT; 4663 out: 4664 return len; 4665 } 4666 4667 /* 4668 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4669 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4670 * for any given inode is up to filesystem. 4671 */ 4672 static int generic_readlink(struct dentry *dentry, char __user *buffer, 4673 int buflen) 4674 { 4675 DEFINE_DELAYED_CALL(done); 4676 struct inode *inode = d_inode(dentry); 4677 const char *link = inode->i_link; 4678 int res; 4679 4680 if (!link) { 4681 link = inode->i_op->get_link(dentry, inode, &done); 4682 if (IS_ERR(link)) 4683 return PTR_ERR(link); 4684 } 4685 res = readlink_copy(buffer, buflen, link); 4686 do_delayed_call(&done); 4687 return res; 4688 } 4689 4690 /** 4691 * vfs_readlink - copy symlink body into userspace buffer 4692 * @dentry: dentry on which to get symbolic link 4693 * @buffer: user memory pointer 4694 * @buflen: size of buffer 4695 * 4696 * Does not touch atime. That's up to the caller if necessary 4697 * 4698 * Does not call security hook. 4699 */ 4700 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4701 { 4702 struct inode *inode = d_inode(dentry); 4703 4704 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4705 if (unlikely(inode->i_op->readlink)) 4706 return inode->i_op->readlink(dentry, buffer, buflen); 4707 4708 if (!d_is_symlink(dentry)) 4709 return -EINVAL; 4710 4711 spin_lock(&inode->i_lock); 4712 inode->i_opflags |= IOP_DEFAULT_READLINK; 4713 spin_unlock(&inode->i_lock); 4714 } 4715 4716 return generic_readlink(dentry, buffer, buflen); 4717 } 4718 EXPORT_SYMBOL(vfs_readlink); 4719 4720 /** 4721 * vfs_get_link - get symlink body 4722 * @dentry: dentry on which to get symbolic link 4723 * @done: caller needs to free returned data with this 4724 * 4725 * Calls security hook and i_op->get_link() on the supplied inode. 4726 * 4727 * It does not touch atime. That's up to the caller if necessary. 4728 * 4729 * Does not work on "special" symlinks like /proc/$$/fd/N 4730 */ 4731 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4732 { 4733 const char *res = ERR_PTR(-EINVAL); 4734 struct inode *inode = d_inode(dentry); 4735 4736 if (d_is_symlink(dentry)) { 4737 res = ERR_PTR(security_inode_readlink(dentry)); 4738 if (!res) 4739 res = inode->i_op->get_link(dentry, inode, done); 4740 } 4741 return res; 4742 } 4743 EXPORT_SYMBOL(vfs_get_link); 4744 4745 /* get the link contents into pagecache */ 4746 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4747 struct delayed_call *callback) 4748 { 4749 char *kaddr; 4750 struct page *page; 4751 struct address_space *mapping = inode->i_mapping; 4752 4753 if (!dentry) { 4754 page = find_get_page(mapping, 0); 4755 if (!page) 4756 return ERR_PTR(-ECHILD); 4757 if (!PageUptodate(page)) { 4758 put_page(page); 4759 return ERR_PTR(-ECHILD); 4760 } 4761 } else { 4762 page = read_mapping_page(mapping, 0, NULL); 4763 if (IS_ERR(page)) 4764 return (char*)page; 4765 } 4766 set_delayed_call(callback, page_put_link, page); 4767 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4768 kaddr = page_address(page); 4769 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4770 return kaddr; 4771 } 4772 4773 EXPORT_SYMBOL(page_get_link); 4774 4775 void page_put_link(void *arg) 4776 { 4777 put_page(arg); 4778 } 4779 EXPORT_SYMBOL(page_put_link); 4780 4781 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4782 { 4783 DEFINE_DELAYED_CALL(done); 4784 int res = readlink_copy(buffer, buflen, 4785 page_get_link(dentry, d_inode(dentry), 4786 &done)); 4787 do_delayed_call(&done); 4788 return res; 4789 } 4790 EXPORT_SYMBOL(page_readlink); 4791 4792 /* 4793 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4794 */ 4795 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4796 { 4797 struct address_space *mapping = inode->i_mapping; 4798 struct page *page; 4799 void *fsdata; 4800 int err; 4801 unsigned int flags = 0; 4802 if (nofs) 4803 flags |= AOP_FLAG_NOFS; 4804 4805 retry: 4806 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4807 flags, &page, &fsdata); 4808 if (err) 4809 goto fail; 4810 4811 memcpy(page_address(page), symname, len-1); 4812 4813 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4814 page, fsdata); 4815 if (err < 0) 4816 goto fail; 4817 if (err < len-1) 4818 goto retry; 4819 4820 mark_inode_dirty(inode); 4821 return 0; 4822 fail: 4823 return err; 4824 } 4825 EXPORT_SYMBOL(__page_symlink); 4826 4827 int page_symlink(struct inode *inode, const char *symname, int len) 4828 { 4829 return __page_symlink(inode, symname, len, 4830 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4831 } 4832 EXPORT_SYMBOL(page_symlink); 4833 4834 const struct inode_operations page_symlink_inode_operations = { 4835 .get_link = page_get_link, 4836 }; 4837 EXPORT_SYMBOL(page_symlink_inode_operations); 4838