1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 void final_putname(struct filename *name) 121 { 122 if (name->separate) { 123 __putname(name->name); 124 kfree(name); 125 } else { 126 __putname(name); 127 } 128 } 129 130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 131 132 static struct filename * 133 getname_flags(const char __user *filename, int flags, int *empty) 134 { 135 struct filename *result, *err; 136 int len; 137 long max; 138 char *kname; 139 140 result = audit_reusename(filename); 141 if (result) 142 return result; 143 144 result = __getname(); 145 if (unlikely(!result)) 146 return ERR_PTR(-ENOMEM); 147 148 /* 149 * First, try to embed the struct filename inside the names_cache 150 * allocation 151 */ 152 kname = (char *)result + sizeof(*result); 153 result->name = kname; 154 result->separate = false; 155 max = EMBEDDED_NAME_MAX; 156 157 recopy: 158 len = strncpy_from_user(kname, filename, max); 159 if (unlikely(len < 0)) { 160 err = ERR_PTR(len); 161 goto error; 162 } 163 164 /* 165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 166 * separate struct filename so we can dedicate the entire 167 * names_cache allocation for the pathname, and re-do the copy from 168 * userland. 169 */ 170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 171 kname = (char *)result; 172 173 result = kzalloc(sizeof(*result), GFP_KERNEL); 174 if (!result) { 175 err = ERR_PTR(-ENOMEM); 176 result = (struct filename *)kname; 177 goto error; 178 } 179 result->name = kname; 180 result->separate = true; 181 max = PATH_MAX; 182 goto recopy; 183 } 184 185 /* The empty path is special. */ 186 if (unlikely(!len)) { 187 if (empty) 188 *empty = 1; 189 err = ERR_PTR(-ENOENT); 190 if (!(flags & LOOKUP_EMPTY)) 191 goto error; 192 } 193 194 err = ERR_PTR(-ENAMETOOLONG); 195 if (unlikely(len >= PATH_MAX)) 196 goto error; 197 198 result->uptr = filename; 199 result->aname = NULL; 200 audit_getname(result); 201 return result; 202 203 error: 204 final_putname(result); 205 return err; 206 } 207 208 struct filename * 209 getname(const char __user * filename) 210 { 211 return getname_flags(filename, 0, NULL); 212 } 213 214 /* 215 * The "getname_kernel()" interface doesn't do pathnames longer 216 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user. 217 */ 218 struct filename * 219 getname_kernel(const char * filename) 220 { 221 struct filename *result; 222 char *kname; 223 int len; 224 225 len = strlen(filename); 226 if (len >= EMBEDDED_NAME_MAX) 227 return ERR_PTR(-ENAMETOOLONG); 228 229 result = __getname(); 230 if (unlikely(!result)) 231 return ERR_PTR(-ENOMEM); 232 233 kname = (char *)result + sizeof(*result); 234 result->name = kname; 235 result->uptr = NULL; 236 result->aname = NULL; 237 result->separate = false; 238 239 strlcpy(kname, filename, EMBEDDED_NAME_MAX); 240 return result; 241 } 242 243 #ifdef CONFIG_AUDITSYSCALL 244 void putname(struct filename *name) 245 { 246 if (unlikely(!audit_dummy_context())) 247 return audit_putname(name); 248 final_putname(name); 249 } 250 #endif 251 252 static int check_acl(struct inode *inode, int mask) 253 { 254 #ifdef CONFIG_FS_POSIX_ACL 255 struct posix_acl *acl; 256 257 if (mask & MAY_NOT_BLOCK) { 258 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 259 if (!acl) 260 return -EAGAIN; 261 /* no ->get_acl() calls in RCU mode... */ 262 if (acl == ACL_NOT_CACHED) 263 return -ECHILD; 264 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 265 } 266 267 acl = get_acl(inode, ACL_TYPE_ACCESS); 268 if (IS_ERR(acl)) 269 return PTR_ERR(acl); 270 if (acl) { 271 int error = posix_acl_permission(inode, acl, mask); 272 posix_acl_release(acl); 273 return error; 274 } 275 #endif 276 277 return -EAGAIN; 278 } 279 280 /* 281 * This does the basic permission checking 282 */ 283 static int acl_permission_check(struct inode *inode, int mask) 284 { 285 unsigned int mode = inode->i_mode; 286 287 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 288 mode >>= 6; 289 else { 290 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 291 int error = check_acl(inode, mask); 292 if (error != -EAGAIN) 293 return error; 294 } 295 296 if (in_group_p(inode->i_gid)) 297 mode >>= 3; 298 } 299 300 /* 301 * If the DACs are ok we don't need any capability check. 302 */ 303 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 304 return 0; 305 return -EACCES; 306 } 307 308 /** 309 * generic_permission - check for access rights on a Posix-like filesystem 310 * @inode: inode to check access rights for 311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 312 * 313 * Used to check for read/write/execute permissions on a file. 314 * We use "fsuid" for this, letting us set arbitrary permissions 315 * for filesystem access without changing the "normal" uids which 316 * are used for other things. 317 * 318 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 319 * request cannot be satisfied (eg. requires blocking or too much complexity). 320 * It would then be called again in ref-walk mode. 321 */ 322 int generic_permission(struct inode *inode, int mask) 323 { 324 int ret; 325 326 /* 327 * Do the basic permission checks. 328 */ 329 ret = acl_permission_check(inode, mask); 330 if (ret != -EACCES) 331 return ret; 332 333 if (S_ISDIR(inode->i_mode)) { 334 /* DACs are overridable for directories */ 335 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 336 return 0; 337 if (!(mask & MAY_WRITE)) 338 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 339 return 0; 340 return -EACCES; 341 } 342 /* 343 * Read/write DACs are always overridable. 344 * Executable DACs are overridable when there is 345 * at least one exec bit set. 346 */ 347 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 348 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 349 return 0; 350 351 /* 352 * Searching includes executable on directories, else just read. 353 */ 354 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 355 if (mask == MAY_READ) 356 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 357 return 0; 358 359 return -EACCES; 360 } 361 EXPORT_SYMBOL(generic_permission); 362 363 /* 364 * We _really_ want to just do "generic_permission()" without 365 * even looking at the inode->i_op values. So we keep a cache 366 * flag in inode->i_opflags, that says "this has not special 367 * permission function, use the fast case". 368 */ 369 static inline int do_inode_permission(struct inode *inode, int mask) 370 { 371 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 372 if (likely(inode->i_op->permission)) 373 return inode->i_op->permission(inode, mask); 374 375 /* This gets set once for the inode lifetime */ 376 spin_lock(&inode->i_lock); 377 inode->i_opflags |= IOP_FASTPERM; 378 spin_unlock(&inode->i_lock); 379 } 380 return generic_permission(inode, mask); 381 } 382 383 /** 384 * __inode_permission - Check for access rights to a given inode 385 * @inode: Inode to check permission on 386 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 387 * 388 * Check for read/write/execute permissions on an inode. 389 * 390 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 391 * 392 * This does not check for a read-only file system. You probably want 393 * inode_permission(). 394 */ 395 int __inode_permission(struct inode *inode, int mask) 396 { 397 int retval; 398 399 if (unlikely(mask & MAY_WRITE)) { 400 /* 401 * Nobody gets write access to an immutable file. 402 */ 403 if (IS_IMMUTABLE(inode)) 404 return -EACCES; 405 } 406 407 retval = do_inode_permission(inode, mask); 408 if (retval) 409 return retval; 410 411 retval = devcgroup_inode_permission(inode, mask); 412 if (retval) 413 return retval; 414 415 return security_inode_permission(inode, mask); 416 } 417 418 /** 419 * sb_permission - Check superblock-level permissions 420 * @sb: Superblock of inode to check permission on 421 * @inode: Inode to check permission on 422 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 423 * 424 * Separate out file-system wide checks from inode-specific permission checks. 425 */ 426 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 427 { 428 if (unlikely(mask & MAY_WRITE)) { 429 umode_t mode = inode->i_mode; 430 431 /* Nobody gets write access to a read-only fs. */ 432 if ((sb->s_flags & MS_RDONLY) && 433 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 434 return -EROFS; 435 } 436 return 0; 437 } 438 439 /** 440 * inode_permission - Check for access rights to a given inode 441 * @inode: Inode to check permission on 442 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 443 * 444 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 445 * this, letting us set arbitrary permissions for filesystem access without 446 * changing the "normal" UIDs which are used for other things. 447 * 448 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 449 */ 450 int inode_permission(struct inode *inode, int mask) 451 { 452 int retval; 453 454 retval = sb_permission(inode->i_sb, inode, mask); 455 if (retval) 456 return retval; 457 return __inode_permission(inode, mask); 458 } 459 EXPORT_SYMBOL(inode_permission); 460 461 /** 462 * path_get - get a reference to a path 463 * @path: path to get the reference to 464 * 465 * Given a path increment the reference count to the dentry and the vfsmount. 466 */ 467 void path_get(const struct path *path) 468 { 469 mntget(path->mnt); 470 dget(path->dentry); 471 } 472 EXPORT_SYMBOL(path_get); 473 474 /** 475 * path_put - put a reference to a path 476 * @path: path to put the reference to 477 * 478 * Given a path decrement the reference count to the dentry and the vfsmount. 479 */ 480 void path_put(const struct path *path) 481 { 482 dput(path->dentry); 483 mntput(path->mnt); 484 } 485 EXPORT_SYMBOL(path_put); 486 487 /* 488 * Path walking has 2 modes, rcu-walk and ref-walk (see 489 * Documentation/filesystems/path-lookup.txt). In situations when we can't 490 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 491 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 492 * mode. Refcounts are grabbed at the last known good point before rcu-walk 493 * got stuck, so ref-walk may continue from there. If this is not successful 494 * (eg. a seqcount has changed), then failure is returned and it's up to caller 495 * to restart the path walk from the beginning in ref-walk mode. 496 */ 497 498 /** 499 * unlazy_walk - try to switch to ref-walk mode. 500 * @nd: nameidata pathwalk data 501 * @dentry: child of nd->path.dentry or NULL 502 * Returns: 0 on success, -ECHILD on failure 503 * 504 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 505 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 506 * @nd or NULL. Must be called from rcu-walk context. 507 */ 508 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 509 { 510 struct fs_struct *fs = current->fs; 511 struct dentry *parent = nd->path.dentry; 512 513 BUG_ON(!(nd->flags & LOOKUP_RCU)); 514 515 /* 516 * After legitimizing the bastards, terminate_walk() 517 * will do the right thing for non-RCU mode, and all our 518 * subsequent exit cases should rcu_read_unlock() 519 * before returning. Do vfsmount first; if dentry 520 * can't be legitimized, just set nd->path.dentry to NULL 521 * and rely on dput(NULL) being a no-op. 522 */ 523 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 524 return -ECHILD; 525 nd->flags &= ~LOOKUP_RCU; 526 527 if (!lockref_get_not_dead(&parent->d_lockref)) { 528 nd->path.dentry = NULL; 529 goto out; 530 } 531 532 /* 533 * For a negative lookup, the lookup sequence point is the parents 534 * sequence point, and it only needs to revalidate the parent dentry. 535 * 536 * For a positive lookup, we need to move both the parent and the 537 * dentry from the RCU domain to be properly refcounted. And the 538 * sequence number in the dentry validates *both* dentry counters, 539 * since we checked the sequence number of the parent after we got 540 * the child sequence number. So we know the parent must still 541 * be valid if the child sequence number is still valid. 542 */ 543 if (!dentry) { 544 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 545 goto out; 546 BUG_ON(nd->inode != parent->d_inode); 547 } else { 548 if (!lockref_get_not_dead(&dentry->d_lockref)) 549 goto out; 550 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 551 goto drop_dentry; 552 } 553 554 /* 555 * Sequence counts matched. Now make sure that the root is 556 * still valid and get it if required. 557 */ 558 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 559 spin_lock(&fs->lock); 560 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 561 goto unlock_and_drop_dentry; 562 path_get(&nd->root); 563 spin_unlock(&fs->lock); 564 } 565 566 rcu_read_unlock(); 567 return 0; 568 569 unlock_and_drop_dentry: 570 spin_unlock(&fs->lock); 571 drop_dentry: 572 rcu_read_unlock(); 573 dput(dentry); 574 goto drop_root_mnt; 575 out: 576 rcu_read_unlock(); 577 drop_root_mnt: 578 if (!(nd->flags & LOOKUP_ROOT)) 579 nd->root.mnt = NULL; 580 return -ECHILD; 581 } 582 583 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 584 { 585 return dentry->d_op->d_revalidate(dentry, flags); 586 } 587 588 /** 589 * complete_walk - successful completion of path walk 590 * @nd: pointer nameidata 591 * 592 * If we had been in RCU mode, drop out of it and legitimize nd->path. 593 * Revalidate the final result, unless we'd already done that during 594 * the path walk or the filesystem doesn't ask for it. Return 0 on 595 * success, -error on failure. In case of failure caller does not 596 * need to drop nd->path. 597 */ 598 static int complete_walk(struct nameidata *nd) 599 { 600 struct dentry *dentry = nd->path.dentry; 601 int status; 602 603 if (nd->flags & LOOKUP_RCU) { 604 nd->flags &= ~LOOKUP_RCU; 605 if (!(nd->flags & LOOKUP_ROOT)) 606 nd->root.mnt = NULL; 607 608 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 609 rcu_read_unlock(); 610 return -ECHILD; 611 } 612 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 613 rcu_read_unlock(); 614 mntput(nd->path.mnt); 615 return -ECHILD; 616 } 617 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 618 rcu_read_unlock(); 619 dput(dentry); 620 mntput(nd->path.mnt); 621 return -ECHILD; 622 } 623 rcu_read_unlock(); 624 } 625 626 if (likely(!(nd->flags & LOOKUP_JUMPED))) 627 return 0; 628 629 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 630 return 0; 631 632 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 633 if (status > 0) 634 return 0; 635 636 if (!status) 637 status = -ESTALE; 638 639 path_put(&nd->path); 640 return status; 641 } 642 643 static __always_inline void set_root(struct nameidata *nd) 644 { 645 if (!nd->root.mnt) 646 get_fs_root(current->fs, &nd->root); 647 } 648 649 static int link_path_walk(const char *, struct nameidata *); 650 651 static __always_inline void set_root_rcu(struct nameidata *nd) 652 { 653 if (!nd->root.mnt) { 654 struct fs_struct *fs = current->fs; 655 unsigned seq; 656 657 do { 658 seq = read_seqcount_begin(&fs->seq); 659 nd->root = fs->root; 660 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 661 } while (read_seqcount_retry(&fs->seq, seq)); 662 } 663 } 664 665 static void path_put_conditional(struct path *path, struct nameidata *nd) 666 { 667 dput(path->dentry); 668 if (path->mnt != nd->path.mnt) 669 mntput(path->mnt); 670 } 671 672 static inline void path_to_nameidata(const struct path *path, 673 struct nameidata *nd) 674 { 675 if (!(nd->flags & LOOKUP_RCU)) { 676 dput(nd->path.dentry); 677 if (nd->path.mnt != path->mnt) 678 mntput(nd->path.mnt); 679 } 680 nd->path.mnt = path->mnt; 681 nd->path.dentry = path->dentry; 682 } 683 684 /* 685 * Helper to directly jump to a known parsed path from ->follow_link, 686 * caller must have taken a reference to path beforehand. 687 */ 688 void nd_jump_link(struct nameidata *nd, struct path *path) 689 { 690 path_put(&nd->path); 691 692 nd->path = *path; 693 nd->inode = nd->path.dentry->d_inode; 694 nd->flags |= LOOKUP_JUMPED; 695 } 696 697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 698 { 699 struct inode *inode = link->dentry->d_inode; 700 if (inode->i_op->put_link) 701 inode->i_op->put_link(link->dentry, nd, cookie); 702 path_put(link); 703 } 704 705 int sysctl_protected_symlinks __read_mostly = 0; 706 int sysctl_protected_hardlinks __read_mostly = 0; 707 708 /** 709 * may_follow_link - Check symlink following for unsafe situations 710 * @link: The path of the symlink 711 * @nd: nameidata pathwalk data 712 * 713 * In the case of the sysctl_protected_symlinks sysctl being enabled, 714 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 715 * in a sticky world-writable directory. This is to protect privileged 716 * processes from failing races against path names that may change out 717 * from under them by way of other users creating malicious symlinks. 718 * It will permit symlinks to be followed only when outside a sticky 719 * world-writable directory, or when the uid of the symlink and follower 720 * match, or when the directory owner matches the symlink's owner. 721 * 722 * Returns 0 if following the symlink is allowed, -ve on error. 723 */ 724 static inline int may_follow_link(struct path *link, struct nameidata *nd) 725 { 726 const struct inode *inode; 727 const struct inode *parent; 728 729 if (!sysctl_protected_symlinks) 730 return 0; 731 732 /* Allowed if owner and follower match. */ 733 inode = link->dentry->d_inode; 734 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 735 return 0; 736 737 /* Allowed if parent directory not sticky and world-writable. */ 738 parent = nd->path.dentry->d_inode; 739 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 740 return 0; 741 742 /* Allowed if parent directory and link owner match. */ 743 if (uid_eq(parent->i_uid, inode->i_uid)) 744 return 0; 745 746 audit_log_link_denied("follow_link", link); 747 path_put_conditional(link, nd); 748 path_put(&nd->path); 749 return -EACCES; 750 } 751 752 /** 753 * safe_hardlink_source - Check for safe hardlink conditions 754 * @inode: the source inode to hardlink from 755 * 756 * Return false if at least one of the following conditions: 757 * - inode is not a regular file 758 * - inode is setuid 759 * - inode is setgid and group-exec 760 * - access failure for read and write 761 * 762 * Otherwise returns true. 763 */ 764 static bool safe_hardlink_source(struct inode *inode) 765 { 766 umode_t mode = inode->i_mode; 767 768 /* Special files should not get pinned to the filesystem. */ 769 if (!S_ISREG(mode)) 770 return false; 771 772 /* Setuid files should not get pinned to the filesystem. */ 773 if (mode & S_ISUID) 774 return false; 775 776 /* Executable setgid files should not get pinned to the filesystem. */ 777 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 778 return false; 779 780 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 781 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 782 return false; 783 784 return true; 785 } 786 787 /** 788 * may_linkat - Check permissions for creating a hardlink 789 * @link: the source to hardlink from 790 * 791 * Block hardlink when all of: 792 * - sysctl_protected_hardlinks enabled 793 * - fsuid does not match inode 794 * - hardlink source is unsafe (see safe_hardlink_source() above) 795 * - not CAP_FOWNER 796 * 797 * Returns 0 if successful, -ve on error. 798 */ 799 static int may_linkat(struct path *link) 800 { 801 const struct cred *cred; 802 struct inode *inode; 803 804 if (!sysctl_protected_hardlinks) 805 return 0; 806 807 cred = current_cred(); 808 inode = link->dentry->d_inode; 809 810 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 811 * otherwise, it must be a safe source. 812 */ 813 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 814 capable(CAP_FOWNER)) 815 return 0; 816 817 audit_log_link_denied("linkat", link); 818 return -EPERM; 819 } 820 821 static __always_inline int 822 follow_link(struct path *link, struct nameidata *nd, void **p) 823 { 824 struct dentry *dentry = link->dentry; 825 int error; 826 char *s; 827 828 BUG_ON(nd->flags & LOOKUP_RCU); 829 830 if (link->mnt == nd->path.mnt) 831 mntget(link->mnt); 832 833 error = -ELOOP; 834 if (unlikely(current->total_link_count >= 40)) 835 goto out_put_nd_path; 836 837 cond_resched(); 838 current->total_link_count++; 839 840 touch_atime(link); 841 nd_set_link(nd, NULL); 842 843 error = security_inode_follow_link(link->dentry, nd); 844 if (error) 845 goto out_put_nd_path; 846 847 nd->last_type = LAST_BIND; 848 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 849 error = PTR_ERR(*p); 850 if (IS_ERR(*p)) 851 goto out_put_nd_path; 852 853 error = 0; 854 s = nd_get_link(nd); 855 if (s) { 856 if (unlikely(IS_ERR(s))) { 857 path_put(&nd->path); 858 put_link(nd, link, *p); 859 return PTR_ERR(s); 860 } 861 if (*s == '/') { 862 set_root(nd); 863 path_put(&nd->path); 864 nd->path = nd->root; 865 path_get(&nd->root); 866 nd->flags |= LOOKUP_JUMPED; 867 } 868 nd->inode = nd->path.dentry->d_inode; 869 error = link_path_walk(s, nd); 870 if (unlikely(error)) 871 put_link(nd, link, *p); 872 } 873 874 return error; 875 876 out_put_nd_path: 877 *p = NULL; 878 path_put(&nd->path); 879 path_put(link); 880 return error; 881 } 882 883 static int follow_up_rcu(struct path *path) 884 { 885 struct mount *mnt = real_mount(path->mnt); 886 struct mount *parent; 887 struct dentry *mountpoint; 888 889 parent = mnt->mnt_parent; 890 if (&parent->mnt == path->mnt) 891 return 0; 892 mountpoint = mnt->mnt_mountpoint; 893 path->dentry = mountpoint; 894 path->mnt = &parent->mnt; 895 return 1; 896 } 897 898 /* 899 * follow_up - Find the mountpoint of path's vfsmount 900 * 901 * Given a path, find the mountpoint of its source file system. 902 * Replace @path with the path of the mountpoint in the parent mount. 903 * Up is towards /. 904 * 905 * Return 1 if we went up a level and 0 if we were already at the 906 * root. 907 */ 908 int follow_up(struct path *path) 909 { 910 struct mount *mnt = real_mount(path->mnt); 911 struct mount *parent; 912 struct dentry *mountpoint; 913 914 read_seqlock_excl(&mount_lock); 915 parent = mnt->mnt_parent; 916 if (parent == mnt) { 917 read_sequnlock_excl(&mount_lock); 918 return 0; 919 } 920 mntget(&parent->mnt); 921 mountpoint = dget(mnt->mnt_mountpoint); 922 read_sequnlock_excl(&mount_lock); 923 dput(path->dentry); 924 path->dentry = mountpoint; 925 mntput(path->mnt); 926 path->mnt = &parent->mnt; 927 return 1; 928 } 929 EXPORT_SYMBOL(follow_up); 930 931 /* 932 * Perform an automount 933 * - return -EISDIR to tell follow_managed() to stop and return the path we 934 * were called with. 935 */ 936 static int follow_automount(struct path *path, unsigned flags, 937 bool *need_mntput) 938 { 939 struct vfsmount *mnt; 940 int err; 941 942 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 943 return -EREMOTE; 944 945 /* We don't want to mount if someone's just doing a stat - 946 * unless they're stat'ing a directory and appended a '/' to 947 * the name. 948 * 949 * We do, however, want to mount if someone wants to open or 950 * create a file of any type under the mountpoint, wants to 951 * traverse through the mountpoint or wants to open the 952 * mounted directory. Also, autofs may mark negative dentries 953 * as being automount points. These will need the attentions 954 * of the daemon to instantiate them before they can be used. 955 */ 956 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 957 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 958 path->dentry->d_inode) 959 return -EISDIR; 960 961 current->total_link_count++; 962 if (current->total_link_count >= 40) 963 return -ELOOP; 964 965 mnt = path->dentry->d_op->d_automount(path); 966 if (IS_ERR(mnt)) { 967 /* 968 * The filesystem is allowed to return -EISDIR here to indicate 969 * it doesn't want to automount. For instance, autofs would do 970 * this so that its userspace daemon can mount on this dentry. 971 * 972 * However, we can only permit this if it's a terminal point in 973 * the path being looked up; if it wasn't then the remainder of 974 * the path is inaccessible and we should say so. 975 */ 976 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 977 return -EREMOTE; 978 return PTR_ERR(mnt); 979 } 980 981 if (!mnt) /* mount collision */ 982 return 0; 983 984 if (!*need_mntput) { 985 /* lock_mount() may release path->mnt on error */ 986 mntget(path->mnt); 987 *need_mntput = true; 988 } 989 err = finish_automount(mnt, path); 990 991 switch (err) { 992 case -EBUSY: 993 /* Someone else made a mount here whilst we were busy */ 994 return 0; 995 case 0: 996 path_put(path); 997 path->mnt = mnt; 998 path->dentry = dget(mnt->mnt_root); 999 return 0; 1000 default: 1001 return err; 1002 } 1003 1004 } 1005 1006 /* 1007 * Handle a dentry that is managed in some way. 1008 * - Flagged for transit management (autofs) 1009 * - Flagged as mountpoint 1010 * - Flagged as automount point 1011 * 1012 * This may only be called in refwalk mode. 1013 * 1014 * Serialization is taken care of in namespace.c 1015 */ 1016 static int follow_managed(struct path *path, unsigned flags) 1017 { 1018 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1019 unsigned managed; 1020 bool need_mntput = false; 1021 int ret = 0; 1022 1023 /* Given that we're not holding a lock here, we retain the value in a 1024 * local variable for each dentry as we look at it so that we don't see 1025 * the components of that value change under us */ 1026 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1027 managed &= DCACHE_MANAGED_DENTRY, 1028 unlikely(managed != 0)) { 1029 /* Allow the filesystem to manage the transit without i_mutex 1030 * being held. */ 1031 if (managed & DCACHE_MANAGE_TRANSIT) { 1032 BUG_ON(!path->dentry->d_op); 1033 BUG_ON(!path->dentry->d_op->d_manage); 1034 ret = path->dentry->d_op->d_manage(path->dentry, false); 1035 if (ret < 0) 1036 break; 1037 } 1038 1039 /* Transit to a mounted filesystem. */ 1040 if (managed & DCACHE_MOUNTED) { 1041 struct vfsmount *mounted = lookup_mnt(path); 1042 if (mounted) { 1043 dput(path->dentry); 1044 if (need_mntput) 1045 mntput(path->mnt); 1046 path->mnt = mounted; 1047 path->dentry = dget(mounted->mnt_root); 1048 need_mntput = true; 1049 continue; 1050 } 1051 1052 /* Something is mounted on this dentry in another 1053 * namespace and/or whatever was mounted there in this 1054 * namespace got unmounted before lookup_mnt() could 1055 * get it */ 1056 } 1057 1058 /* Handle an automount point */ 1059 if (managed & DCACHE_NEED_AUTOMOUNT) { 1060 ret = follow_automount(path, flags, &need_mntput); 1061 if (ret < 0) 1062 break; 1063 continue; 1064 } 1065 1066 /* We didn't change the current path point */ 1067 break; 1068 } 1069 1070 if (need_mntput && path->mnt == mnt) 1071 mntput(path->mnt); 1072 if (ret == -EISDIR) 1073 ret = 0; 1074 return ret < 0 ? ret : need_mntput; 1075 } 1076 1077 int follow_down_one(struct path *path) 1078 { 1079 struct vfsmount *mounted; 1080 1081 mounted = lookup_mnt(path); 1082 if (mounted) { 1083 dput(path->dentry); 1084 mntput(path->mnt); 1085 path->mnt = mounted; 1086 path->dentry = dget(mounted->mnt_root); 1087 return 1; 1088 } 1089 return 0; 1090 } 1091 EXPORT_SYMBOL(follow_down_one); 1092 1093 static inline bool managed_dentry_might_block(struct dentry *dentry) 1094 { 1095 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 1096 dentry->d_op->d_manage(dentry, true) < 0); 1097 } 1098 1099 /* 1100 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1101 * we meet a managed dentry that would need blocking. 1102 */ 1103 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1104 struct inode **inode) 1105 { 1106 for (;;) { 1107 struct mount *mounted; 1108 /* 1109 * Don't forget we might have a non-mountpoint managed dentry 1110 * that wants to block transit. 1111 */ 1112 if (unlikely(managed_dentry_might_block(path->dentry))) 1113 return false; 1114 1115 if (!d_mountpoint(path->dentry)) 1116 return true; 1117 1118 mounted = __lookup_mnt(path->mnt, path->dentry); 1119 if (!mounted) 1120 break; 1121 path->mnt = &mounted->mnt; 1122 path->dentry = mounted->mnt.mnt_root; 1123 nd->flags |= LOOKUP_JUMPED; 1124 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1125 /* 1126 * Update the inode too. We don't need to re-check the 1127 * dentry sequence number here after this d_inode read, 1128 * because a mount-point is always pinned. 1129 */ 1130 *inode = path->dentry->d_inode; 1131 } 1132 return read_seqretry(&mount_lock, nd->m_seq); 1133 } 1134 1135 static int follow_dotdot_rcu(struct nameidata *nd) 1136 { 1137 set_root_rcu(nd); 1138 1139 while (1) { 1140 if (nd->path.dentry == nd->root.dentry && 1141 nd->path.mnt == nd->root.mnt) { 1142 break; 1143 } 1144 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1145 struct dentry *old = nd->path.dentry; 1146 struct dentry *parent = old->d_parent; 1147 unsigned seq; 1148 1149 seq = read_seqcount_begin(&parent->d_seq); 1150 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1151 goto failed; 1152 nd->path.dentry = parent; 1153 nd->seq = seq; 1154 break; 1155 } 1156 if (!follow_up_rcu(&nd->path)) 1157 break; 1158 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1159 } 1160 while (d_mountpoint(nd->path.dentry)) { 1161 struct mount *mounted; 1162 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1163 if (!mounted) 1164 break; 1165 nd->path.mnt = &mounted->mnt; 1166 nd->path.dentry = mounted->mnt.mnt_root; 1167 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1168 if (!read_seqretry(&mount_lock, nd->m_seq)) 1169 goto failed; 1170 } 1171 nd->inode = nd->path.dentry->d_inode; 1172 return 0; 1173 1174 failed: 1175 nd->flags &= ~LOOKUP_RCU; 1176 if (!(nd->flags & LOOKUP_ROOT)) 1177 nd->root.mnt = NULL; 1178 rcu_read_unlock(); 1179 return -ECHILD; 1180 } 1181 1182 /* 1183 * Follow down to the covering mount currently visible to userspace. At each 1184 * point, the filesystem owning that dentry may be queried as to whether the 1185 * caller is permitted to proceed or not. 1186 */ 1187 int follow_down(struct path *path) 1188 { 1189 unsigned managed; 1190 int ret; 1191 1192 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1193 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1194 /* Allow the filesystem to manage the transit without i_mutex 1195 * being held. 1196 * 1197 * We indicate to the filesystem if someone is trying to mount 1198 * something here. This gives autofs the chance to deny anyone 1199 * other than its daemon the right to mount on its 1200 * superstructure. 1201 * 1202 * The filesystem may sleep at this point. 1203 */ 1204 if (managed & DCACHE_MANAGE_TRANSIT) { 1205 BUG_ON(!path->dentry->d_op); 1206 BUG_ON(!path->dentry->d_op->d_manage); 1207 ret = path->dentry->d_op->d_manage( 1208 path->dentry, false); 1209 if (ret < 0) 1210 return ret == -EISDIR ? 0 : ret; 1211 } 1212 1213 /* Transit to a mounted filesystem. */ 1214 if (managed & DCACHE_MOUNTED) { 1215 struct vfsmount *mounted = lookup_mnt(path); 1216 if (!mounted) 1217 break; 1218 dput(path->dentry); 1219 mntput(path->mnt); 1220 path->mnt = mounted; 1221 path->dentry = dget(mounted->mnt_root); 1222 continue; 1223 } 1224 1225 /* Don't handle automount points here */ 1226 break; 1227 } 1228 return 0; 1229 } 1230 EXPORT_SYMBOL(follow_down); 1231 1232 /* 1233 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1234 */ 1235 static void follow_mount(struct path *path) 1236 { 1237 while (d_mountpoint(path->dentry)) { 1238 struct vfsmount *mounted = lookup_mnt(path); 1239 if (!mounted) 1240 break; 1241 dput(path->dentry); 1242 mntput(path->mnt); 1243 path->mnt = mounted; 1244 path->dentry = dget(mounted->mnt_root); 1245 } 1246 } 1247 1248 static void follow_dotdot(struct nameidata *nd) 1249 { 1250 set_root(nd); 1251 1252 while(1) { 1253 struct dentry *old = nd->path.dentry; 1254 1255 if (nd->path.dentry == nd->root.dentry && 1256 nd->path.mnt == nd->root.mnt) { 1257 break; 1258 } 1259 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1260 /* rare case of legitimate dget_parent()... */ 1261 nd->path.dentry = dget_parent(nd->path.dentry); 1262 dput(old); 1263 break; 1264 } 1265 if (!follow_up(&nd->path)) 1266 break; 1267 } 1268 follow_mount(&nd->path); 1269 nd->inode = nd->path.dentry->d_inode; 1270 } 1271 1272 /* 1273 * This looks up the name in dcache, possibly revalidates the old dentry and 1274 * allocates a new one if not found or not valid. In the need_lookup argument 1275 * returns whether i_op->lookup is necessary. 1276 * 1277 * dir->d_inode->i_mutex must be held 1278 */ 1279 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1280 unsigned int flags, bool *need_lookup) 1281 { 1282 struct dentry *dentry; 1283 int error; 1284 1285 *need_lookup = false; 1286 dentry = d_lookup(dir, name); 1287 if (dentry) { 1288 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1289 error = d_revalidate(dentry, flags); 1290 if (unlikely(error <= 0)) { 1291 if (error < 0) { 1292 dput(dentry); 1293 return ERR_PTR(error); 1294 } else if (!d_invalidate(dentry)) { 1295 dput(dentry); 1296 dentry = NULL; 1297 } 1298 } 1299 } 1300 } 1301 1302 if (!dentry) { 1303 dentry = d_alloc(dir, name); 1304 if (unlikely(!dentry)) 1305 return ERR_PTR(-ENOMEM); 1306 1307 *need_lookup = true; 1308 } 1309 return dentry; 1310 } 1311 1312 /* 1313 * Call i_op->lookup on the dentry. The dentry must be negative and 1314 * unhashed. 1315 * 1316 * dir->d_inode->i_mutex must be held 1317 */ 1318 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1319 unsigned int flags) 1320 { 1321 struct dentry *old; 1322 1323 /* Don't create child dentry for a dead directory. */ 1324 if (unlikely(IS_DEADDIR(dir))) { 1325 dput(dentry); 1326 return ERR_PTR(-ENOENT); 1327 } 1328 1329 old = dir->i_op->lookup(dir, dentry, flags); 1330 if (unlikely(old)) { 1331 dput(dentry); 1332 dentry = old; 1333 } 1334 return dentry; 1335 } 1336 1337 static struct dentry *__lookup_hash(struct qstr *name, 1338 struct dentry *base, unsigned int flags) 1339 { 1340 bool need_lookup; 1341 struct dentry *dentry; 1342 1343 dentry = lookup_dcache(name, base, flags, &need_lookup); 1344 if (!need_lookup) 1345 return dentry; 1346 1347 return lookup_real(base->d_inode, dentry, flags); 1348 } 1349 1350 /* 1351 * It's more convoluted than I'd like it to be, but... it's still fairly 1352 * small and for now I'd prefer to have fast path as straight as possible. 1353 * It _is_ time-critical. 1354 */ 1355 static int lookup_fast(struct nameidata *nd, 1356 struct path *path, struct inode **inode) 1357 { 1358 struct vfsmount *mnt = nd->path.mnt; 1359 struct dentry *dentry, *parent = nd->path.dentry; 1360 int need_reval = 1; 1361 int status = 1; 1362 int err; 1363 1364 /* 1365 * Rename seqlock is not required here because in the off chance 1366 * of a false negative due to a concurrent rename, we're going to 1367 * do the non-racy lookup, below. 1368 */ 1369 if (nd->flags & LOOKUP_RCU) { 1370 unsigned seq; 1371 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1372 if (!dentry) 1373 goto unlazy; 1374 1375 /* 1376 * This sequence count validates that the inode matches 1377 * the dentry name information from lookup. 1378 */ 1379 *inode = dentry->d_inode; 1380 if (read_seqcount_retry(&dentry->d_seq, seq)) 1381 return -ECHILD; 1382 1383 /* 1384 * This sequence count validates that the parent had no 1385 * changes while we did the lookup of the dentry above. 1386 * 1387 * The memory barrier in read_seqcount_begin of child is 1388 * enough, we can use __read_seqcount_retry here. 1389 */ 1390 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1391 return -ECHILD; 1392 nd->seq = seq; 1393 1394 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1395 status = d_revalidate(dentry, nd->flags); 1396 if (unlikely(status <= 0)) { 1397 if (status != -ECHILD) 1398 need_reval = 0; 1399 goto unlazy; 1400 } 1401 } 1402 path->mnt = mnt; 1403 path->dentry = dentry; 1404 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1405 goto unlazy; 1406 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1407 goto unlazy; 1408 return 0; 1409 unlazy: 1410 if (unlazy_walk(nd, dentry)) 1411 return -ECHILD; 1412 } else { 1413 dentry = __d_lookup(parent, &nd->last); 1414 } 1415 1416 if (unlikely(!dentry)) 1417 goto need_lookup; 1418 1419 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1420 status = d_revalidate(dentry, nd->flags); 1421 if (unlikely(status <= 0)) { 1422 if (status < 0) { 1423 dput(dentry); 1424 return status; 1425 } 1426 if (!d_invalidate(dentry)) { 1427 dput(dentry); 1428 goto need_lookup; 1429 } 1430 } 1431 1432 path->mnt = mnt; 1433 path->dentry = dentry; 1434 err = follow_managed(path, nd->flags); 1435 if (unlikely(err < 0)) { 1436 path_put_conditional(path, nd); 1437 return err; 1438 } 1439 if (err) 1440 nd->flags |= LOOKUP_JUMPED; 1441 *inode = path->dentry->d_inode; 1442 return 0; 1443 1444 need_lookup: 1445 return 1; 1446 } 1447 1448 /* Fast lookup failed, do it the slow way */ 1449 static int lookup_slow(struct nameidata *nd, struct path *path) 1450 { 1451 struct dentry *dentry, *parent; 1452 int err; 1453 1454 parent = nd->path.dentry; 1455 BUG_ON(nd->inode != parent->d_inode); 1456 1457 mutex_lock(&parent->d_inode->i_mutex); 1458 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1459 mutex_unlock(&parent->d_inode->i_mutex); 1460 if (IS_ERR(dentry)) 1461 return PTR_ERR(dentry); 1462 path->mnt = nd->path.mnt; 1463 path->dentry = dentry; 1464 err = follow_managed(path, nd->flags); 1465 if (unlikely(err < 0)) { 1466 path_put_conditional(path, nd); 1467 return err; 1468 } 1469 if (err) 1470 nd->flags |= LOOKUP_JUMPED; 1471 return 0; 1472 } 1473 1474 static inline int may_lookup(struct nameidata *nd) 1475 { 1476 if (nd->flags & LOOKUP_RCU) { 1477 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1478 if (err != -ECHILD) 1479 return err; 1480 if (unlazy_walk(nd, NULL)) 1481 return -ECHILD; 1482 } 1483 return inode_permission(nd->inode, MAY_EXEC); 1484 } 1485 1486 static inline int handle_dots(struct nameidata *nd, int type) 1487 { 1488 if (type == LAST_DOTDOT) { 1489 if (nd->flags & LOOKUP_RCU) { 1490 if (follow_dotdot_rcu(nd)) 1491 return -ECHILD; 1492 } else 1493 follow_dotdot(nd); 1494 } 1495 return 0; 1496 } 1497 1498 static void terminate_walk(struct nameidata *nd) 1499 { 1500 if (!(nd->flags & LOOKUP_RCU)) { 1501 path_put(&nd->path); 1502 } else { 1503 nd->flags &= ~LOOKUP_RCU; 1504 if (!(nd->flags & LOOKUP_ROOT)) 1505 nd->root.mnt = NULL; 1506 rcu_read_unlock(); 1507 } 1508 } 1509 1510 /* 1511 * Do we need to follow links? We _really_ want to be able 1512 * to do this check without having to look at inode->i_op, 1513 * so we keep a cache of "no, this doesn't need follow_link" 1514 * for the common case. 1515 */ 1516 static inline int should_follow_link(struct dentry *dentry, int follow) 1517 { 1518 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1519 } 1520 1521 static inline int walk_component(struct nameidata *nd, struct path *path, 1522 int follow) 1523 { 1524 struct inode *inode; 1525 int err; 1526 /* 1527 * "." and ".." are special - ".." especially so because it has 1528 * to be able to know about the current root directory and 1529 * parent relationships. 1530 */ 1531 if (unlikely(nd->last_type != LAST_NORM)) 1532 return handle_dots(nd, nd->last_type); 1533 err = lookup_fast(nd, path, &inode); 1534 if (unlikely(err)) { 1535 if (err < 0) 1536 goto out_err; 1537 1538 err = lookup_slow(nd, path); 1539 if (err < 0) 1540 goto out_err; 1541 1542 inode = path->dentry->d_inode; 1543 } 1544 err = -ENOENT; 1545 if (!inode || d_is_negative(path->dentry)) 1546 goto out_path_put; 1547 1548 if (should_follow_link(path->dentry, follow)) { 1549 if (nd->flags & LOOKUP_RCU) { 1550 if (unlikely(unlazy_walk(nd, path->dentry))) { 1551 err = -ECHILD; 1552 goto out_err; 1553 } 1554 } 1555 BUG_ON(inode != path->dentry->d_inode); 1556 return 1; 1557 } 1558 path_to_nameidata(path, nd); 1559 nd->inode = inode; 1560 return 0; 1561 1562 out_path_put: 1563 path_to_nameidata(path, nd); 1564 out_err: 1565 terminate_walk(nd); 1566 return err; 1567 } 1568 1569 /* 1570 * This limits recursive symlink follows to 8, while 1571 * limiting consecutive symlinks to 40. 1572 * 1573 * Without that kind of total limit, nasty chains of consecutive 1574 * symlinks can cause almost arbitrarily long lookups. 1575 */ 1576 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1577 { 1578 int res; 1579 1580 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1581 path_put_conditional(path, nd); 1582 path_put(&nd->path); 1583 return -ELOOP; 1584 } 1585 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1586 1587 nd->depth++; 1588 current->link_count++; 1589 1590 do { 1591 struct path link = *path; 1592 void *cookie; 1593 1594 res = follow_link(&link, nd, &cookie); 1595 if (res) 1596 break; 1597 res = walk_component(nd, path, LOOKUP_FOLLOW); 1598 put_link(nd, &link, cookie); 1599 } while (res > 0); 1600 1601 current->link_count--; 1602 nd->depth--; 1603 return res; 1604 } 1605 1606 /* 1607 * We can do the critical dentry name comparison and hashing 1608 * operations one word at a time, but we are limited to: 1609 * 1610 * - Architectures with fast unaligned word accesses. We could 1611 * do a "get_unaligned()" if this helps and is sufficiently 1612 * fast. 1613 * 1614 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1615 * do not trap on the (extremely unlikely) case of a page 1616 * crossing operation. 1617 * 1618 * - Furthermore, we need an efficient 64-bit compile for the 1619 * 64-bit case in order to generate the "number of bytes in 1620 * the final mask". Again, that could be replaced with a 1621 * efficient population count instruction or similar. 1622 */ 1623 #ifdef CONFIG_DCACHE_WORD_ACCESS 1624 1625 #include <asm/word-at-a-time.h> 1626 1627 #ifdef CONFIG_64BIT 1628 1629 static inline unsigned int fold_hash(unsigned long hash) 1630 { 1631 hash += hash >> (8*sizeof(int)); 1632 return hash; 1633 } 1634 1635 #else /* 32-bit case */ 1636 1637 #define fold_hash(x) (x) 1638 1639 #endif 1640 1641 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1642 { 1643 unsigned long a, mask; 1644 unsigned long hash = 0; 1645 1646 for (;;) { 1647 a = load_unaligned_zeropad(name); 1648 if (len < sizeof(unsigned long)) 1649 break; 1650 hash += a; 1651 hash *= 9; 1652 name += sizeof(unsigned long); 1653 len -= sizeof(unsigned long); 1654 if (!len) 1655 goto done; 1656 } 1657 mask = bytemask_from_count(len); 1658 hash += mask & a; 1659 done: 1660 return fold_hash(hash); 1661 } 1662 EXPORT_SYMBOL(full_name_hash); 1663 1664 /* 1665 * Calculate the length and hash of the path component, and 1666 * return the length of the component; 1667 */ 1668 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1669 { 1670 unsigned long a, b, adata, bdata, mask, hash, len; 1671 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1672 1673 hash = a = 0; 1674 len = -sizeof(unsigned long); 1675 do { 1676 hash = (hash + a) * 9; 1677 len += sizeof(unsigned long); 1678 a = load_unaligned_zeropad(name+len); 1679 b = a ^ REPEAT_BYTE('/'); 1680 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1681 1682 adata = prep_zero_mask(a, adata, &constants); 1683 bdata = prep_zero_mask(b, bdata, &constants); 1684 1685 mask = create_zero_mask(adata | bdata); 1686 1687 hash += a & zero_bytemask(mask); 1688 *hashp = fold_hash(hash); 1689 1690 return len + find_zero(mask); 1691 } 1692 1693 #else 1694 1695 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1696 { 1697 unsigned long hash = init_name_hash(); 1698 while (len--) 1699 hash = partial_name_hash(*name++, hash); 1700 return end_name_hash(hash); 1701 } 1702 EXPORT_SYMBOL(full_name_hash); 1703 1704 /* 1705 * We know there's a real path component here of at least 1706 * one character. 1707 */ 1708 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1709 { 1710 unsigned long hash = init_name_hash(); 1711 unsigned long len = 0, c; 1712 1713 c = (unsigned char)*name; 1714 do { 1715 len++; 1716 hash = partial_name_hash(c, hash); 1717 c = (unsigned char)name[len]; 1718 } while (c && c != '/'); 1719 *hashp = end_name_hash(hash); 1720 return len; 1721 } 1722 1723 #endif 1724 1725 /* 1726 * Name resolution. 1727 * This is the basic name resolution function, turning a pathname into 1728 * the final dentry. We expect 'base' to be positive and a directory. 1729 * 1730 * Returns 0 and nd will have valid dentry and mnt on success. 1731 * Returns error and drops reference to input namei data on failure. 1732 */ 1733 static int link_path_walk(const char *name, struct nameidata *nd) 1734 { 1735 struct path next; 1736 int err; 1737 1738 while (*name=='/') 1739 name++; 1740 if (!*name) 1741 return 0; 1742 1743 /* At this point we know we have a real path component. */ 1744 for(;;) { 1745 struct qstr this; 1746 long len; 1747 int type; 1748 1749 err = may_lookup(nd); 1750 if (err) 1751 break; 1752 1753 len = hash_name(name, &this.hash); 1754 this.name = name; 1755 this.len = len; 1756 1757 type = LAST_NORM; 1758 if (name[0] == '.') switch (len) { 1759 case 2: 1760 if (name[1] == '.') { 1761 type = LAST_DOTDOT; 1762 nd->flags |= LOOKUP_JUMPED; 1763 } 1764 break; 1765 case 1: 1766 type = LAST_DOT; 1767 } 1768 if (likely(type == LAST_NORM)) { 1769 struct dentry *parent = nd->path.dentry; 1770 nd->flags &= ~LOOKUP_JUMPED; 1771 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1772 err = parent->d_op->d_hash(parent, &this); 1773 if (err < 0) 1774 break; 1775 } 1776 } 1777 1778 nd->last = this; 1779 nd->last_type = type; 1780 1781 if (!name[len]) 1782 return 0; 1783 /* 1784 * If it wasn't NUL, we know it was '/'. Skip that 1785 * slash, and continue until no more slashes. 1786 */ 1787 do { 1788 len++; 1789 } while (unlikely(name[len] == '/')); 1790 if (!name[len]) 1791 return 0; 1792 1793 name += len; 1794 1795 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1796 if (err < 0) 1797 return err; 1798 1799 if (err) { 1800 err = nested_symlink(&next, nd); 1801 if (err) 1802 return err; 1803 } 1804 if (!d_can_lookup(nd->path.dentry)) { 1805 err = -ENOTDIR; 1806 break; 1807 } 1808 } 1809 terminate_walk(nd); 1810 return err; 1811 } 1812 1813 static int path_init(int dfd, const char *name, unsigned int flags, 1814 struct nameidata *nd, struct file **fp) 1815 { 1816 int retval = 0; 1817 1818 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1819 nd->flags = flags | LOOKUP_JUMPED; 1820 nd->depth = 0; 1821 if (flags & LOOKUP_ROOT) { 1822 struct dentry *root = nd->root.dentry; 1823 struct inode *inode = root->d_inode; 1824 if (*name) { 1825 if (!d_can_lookup(root)) 1826 return -ENOTDIR; 1827 retval = inode_permission(inode, MAY_EXEC); 1828 if (retval) 1829 return retval; 1830 } 1831 nd->path = nd->root; 1832 nd->inode = inode; 1833 if (flags & LOOKUP_RCU) { 1834 rcu_read_lock(); 1835 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1836 nd->m_seq = read_seqbegin(&mount_lock); 1837 } else { 1838 path_get(&nd->path); 1839 } 1840 return 0; 1841 } 1842 1843 nd->root.mnt = NULL; 1844 1845 nd->m_seq = read_seqbegin(&mount_lock); 1846 if (*name=='/') { 1847 if (flags & LOOKUP_RCU) { 1848 rcu_read_lock(); 1849 set_root_rcu(nd); 1850 } else { 1851 set_root(nd); 1852 path_get(&nd->root); 1853 } 1854 nd->path = nd->root; 1855 } else if (dfd == AT_FDCWD) { 1856 if (flags & LOOKUP_RCU) { 1857 struct fs_struct *fs = current->fs; 1858 unsigned seq; 1859 1860 rcu_read_lock(); 1861 1862 do { 1863 seq = read_seqcount_begin(&fs->seq); 1864 nd->path = fs->pwd; 1865 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1866 } while (read_seqcount_retry(&fs->seq, seq)); 1867 } else { 1868 get_fs_pwd(current->fs, &nd->path); 1869 } 1870 } else { 1871 /* Caller must check execute permissions on the starting path component */ 1872 struct fd f = fdget_raw(dfd); 1873 struct dentry *dentry; 1874 1875 if (!f.file) 1876 return -EBADF; 1877 1878 dentry = f.file->f_path.dentry; 1879 1880 if (*name) { 1881 if (!d_can_lookup(dentry)) { 1882 fdput(f); 1883 return -ENOTDIR; 1884 } 1885 } 1886 1887 nd->path = f.file->f_path; 1888 if (flags & LOOKUP_RCU) { 1889 if (f.flags & FDPUT_FPUT) 1890 *fp = f.file; 1891 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1892 rcu_read_lock(); 1893 } else { 1894 path_get(&nd->path); 1895 fdput(f); 1896 } 1897 } 1898 1899 nd->inode = nd->path.dentry->d_inode; 1900 return 0; 1901 } 1902 1903 static inline int lookup_last(struct nameidata *nd, struct path *path) 1904 { 1905 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1906 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1907 1908 nd->flags &= ~LOOKUP_PARENT; 1909 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1910 } 1911 1912 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1913 static int path_lookupat(int dfd, const char *name, 1914 unsigned int flags, struct nameidata *nd) 1915 { 1916 struct file *base = NULL; 1917 struct path path; 1918 int err; 1919 1920 /* 1921 * Path walking is largely split up into 2 different synchronisation 1922 * schemes, rcu-walk and ref-walk (explained in 1923 * Documentation/filesystems/path-lookup.txt). These share much of the 1924 * path walk code, but some things particularly setup, cleanup, and 1925 * following mounts are sufficiently divergent that functions are 1926 * duplicated. Typically there is a function foo(), and its RCU 1927 * analogue, foo_rcu(). 1928 * 1929 * -ECHILD is the error number of choice (just to avoid clashes) that 1930 * is returned if some aspect of an rcu-walk fails. Such an error must 1931 * be handled by restarting a traditional ref-walk (which will always 1932 * be able to complete). 1933 */ 1934 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1935 1936 if (unlikely(err)) 1937 return err; 1938 1939 current->total_link_count = 0; 1940 err = link_path_walk(name, nd); 1941 1942 if (!err && !(flags & LOOKUP_PARENT)) { 1943 err = lookup_last(nd, &path); 1944 while (err > 0) { 1945 void *cookie; 1946 struct path link = path; 1947 err = may_follow_link(&link, nd); 1948 if (unlikely(err)) 1949 break; 1950 nd->flags |= LOOKUP_PARENT; 1951 err = follow_link(&link, nd, &cookie); 1952 if (err) 1953 break; 1954 err = lookup_last(nd, &path); 1955 put_link(nd, &link, cookie); 1956 } 1957 } 1958 1959 if (!err) 1960 err = complete_walk(nd); 1961 1962 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1963 if (!d_can_lookup(nd->path.dentry)) { 1964 path_put(&nd->path); 1965 err = -ENOTDIR; 1966 } 1967 } 1968 1969 if (base) 1970 fput(base); 1971 1972 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1973 path_put(&nd->root); 1974 nd->root.mnt = NULL; 1975 } 1976 return err; 1977 } 1978 1979 static int filename_lookup(int dfd, struct filename *name, 1980 unsigned int flags, struct nameidata *nd) 1981 { 1982 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 1983 if (unlikely(retval == -ECHILD)) 1984 retval = path_lookupat(dfd, name->name, flags, nd); 1985 if (unlikely(retval == -ESTALE)) 1986 retval = path_lookupat(dfd, name->name, 1987 flags | LOOKUP_REVAL, nd); 1988 1989 if (likely(!retval)) 1990 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 1991 return retval; 1992 } 1993 1994 static int do_path_lookup(int dfd, const char *name, 1995 unsigned int flags, struct nameidata *nd) 1996 { 1997 struct filename filename = { .name = name }; 1998 1999 return filename_lookup(dfd, &filename, flags, nd); 2000 } 2001 2002 /* does lookup, returns the object with parent locked */ 2003 struct dentry *kern_path_locked(const char *name, struct path *path) 2004 { 2005 struct nameidata nd; 2006 struct dentry *d; 2007 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 2008 if (err) 2009 return ERR_PTR(err); 2010 if (nd.last_type != LAST_NORM) { 2011 path_put(&nd.path); 2012 return ERR_PTR(-EINVAL); 2013 } 2014 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2015 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2016 if (IS_ERR(d)) { 2017 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2018 path_put(&nd.path); 2019 return d; 2020 } 2021 *path = nd.path; 2022 return d; 2023 } 2024 2025 int kern_path(const char *name, unsigned int flags, struct path *path) 2026 { 2027 struct nameidata nd; 2028 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2029 if (!res) 2030 *path = nd.path; 2031 return res; 2032 } 2033 EXPORT_SYMBOL(kern_path); 2034 2035 /** 2036 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2037 * @dentry: pointer to dentry of the base directory 2038 * @mnt: pointer to vfs mount of the base directory 2039 * @name: pointer to file name 2040 * @flags: lookup flags 2041 * @path: pointer to struct path to fill 2042 */ 2043 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2044 const char *name, unsigned int flags, 2045 struct path *path) 2046 { 2047 struct nameidata nd; 2048 int err; 2049 nd.root.dentry = dentry; 2050 nd.root.mnt = mnt; 2051 BUG_ON(flags & LOOKUP_PARENT); 2052 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2053 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2054 if (!err) 2055 *path = nd.path; 2056 return err; 2057 } 2058 EXPORT_SYMBOL(vfs_path_lookup); 2059 2060 /* 2061 * Restricted form of lookup. Doesn't follow links, single-component only, 2062 * needs parent already locked. Doesn't follow mounts. 2063 * SMP-safe. 2064 */ 2065 static struct dentry *lookup_hash(struct nameidata *nd) 2066 { 2067 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2068 } 2069 2070 /** 2071 * lookup_one_len - filesystem helper to lookup single pathname component 2072 * @name: pathname component to lookup 2073 * @base: base directory to lookup from 2074 * @len: maximum length @len should be interpreted to 2075 * 2076 * Note that this routine is purely a helper for filesystem usage and should 2077 * not be called by generic code. Also note that by using this function the 2078 * nameidata argument is passed to the filesystem methods and a filesystem 2079 * using this helper needs to be prepared for that. 2080 */ 2081 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2082 { 2083 struct qstr this; 2084 unsigned int c; 2085 int err; 2086 2087 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2088 2089 this.name = name; 2090 this.len = len; 2091 this.hash = full_name_hash(name, len); 2092 if (!len) 2093 return ERR_PTR(-EACCES); 2094 2095 if (unlikely(name[0] == '.')) { 2096 if (len < 2 || (len == 2 && name[1] == '.')) 2097 return ERR_PTR(-EACCES); 2098 } 2099 2100 while (len--) { 2101 c = *(const unsigned char *)name++; 2102 if (c == '/' || c == '\0') 2103 return ERR_PTR(-EACCES); 2104 } 2105 /* 2106 * See if the low-level filesystem might want 2107 * to use its own hash.. 2108 */ 2109 if (base->d_flags & DCACHE_OP_HASH) { 2110 int err = base->d_op->d_hash(base, &this); 2111 if (err < 0) 2112 return ERR_PTR(err); 2113 } 2114 2115 err = inode_permission(base->d_inode, MAY_EXEC); 2116 if (err) 2117 return ERR_PTR(err); 2118 2119 return __lookup_hash(&this, base, 0); 2120 } 2121 EXPORT_SYMBOL(lookup_one_len); 2122 2123 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2124 struct path *path, int *empty) 2125 { 2126 struct nameidata nd; 2127 struct filename *tmp = getname_flags(name, flags, empty); 2128 int err = PTR_ERR(tmp); 2129 if (!IS_ERR(tmp)) { 2130 2131 BUG_ON(flags & LOOKUP_PARENT); 2132 2133 err = filename_lookup(dfd, tmp, flags, &nd); 2134 putname(tmp); 2135 if (!err) 2136 *path = nd.path; 2137 } 2138 return err; 2139 } 2140 2141 int user_path_at(int dfd, const char __user *name, unsigned flags, 2142 struct path *path) 2143 { 2144 return user_path_at_empty(dfd, name, flags, path, NULL); 2145 } 2146 EXPORT_SYMBOL(user_path_at); 2147 2148 /* 2149 * NB: most callers don't do anything directly with the reference to the 2150 * to struct filename, but the nd->last pointer points into the name string 2151 * allocated by getname. So we must hold the reference to it until all 2152 * path-walking is complete. 2153 */ 2154 static struct filename * 2155 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2156 unsigned int flags) 2157 { 2158 struct filename *s = getname(path); 2159 int error; 2160 2161 /* only LOOKUP_REVAL is allowed in extra flags */ 2162 flags &= LOOKUP_REVAL; 2163 2164 if (IS_ERR(s)) 2165 return s; 2166 2167 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2168 if (error) { 2169 putname(s); 2170 return ERR_PTR(error); 2171 } 2172 2173 return s; 2174 } 2175 2176 /** 2177 * mountpoint_last - look up last component for umount 2178 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2179 * @path: pointer to container for result 2180 * 2181 * This is a special lookup_last function just for umount. In this case, we 2182 * need to resolve the path without doing any revalidation. 2183 * 2184 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2185 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2186 * in almost all cases, this lookup will be served out of the dcache. The only 2187 * cases where it won't are if nd->last refers to a symlink or the path is 2188 * bogus and it doesn't exist. 2189 * 2190 * Returns: 2191 * -error: if there was an error during lookup. This includes -ENOENT if the 2192 * lookup found a negative dentry. The nd->path reference will also be 2193 * put in this case. 2194 * 2195 * 0: if we successfully resolved nd->path and found it to not to be a 2196 * symlink that needs to be followed. "path" will also be populated. 2197 * The nd->path reference will also be put. 2198 * 2199 * 1: if we successfully resolved nd->last and found it to be a symlink 2200 * that needs to be followed. "path" will be populated with the path 2201 * to the link, and nd->path will *not* be put. 2202 */ 2203 static int 2204 mountpoint_last(struct nameidata *nd, struct path *path) 2205 { 2206 int error = 0; 2207 struct dentry *dentry; 2208 struct dentry *dir = nd->path.dentry; 2209 2210 /* If we're in rcuwalk, drop out of it to handle last component */ 2211 if (nd->flags & LOOKUP_RCU) { 2212 if (unlazy_walk(nd, NULL)) { 2213 error = -ECHILD; 2214 goto out; 2215 } 2216 } 2217 2218 nd->flags &= ~LOOKUP_PARENT; 2219 2220 if (unlikely(nd->last_type != LAST_NORM)) { 2221 error = handle_dots(nd, nd->last_type); 2222 if (error) 2223 goto out; 2224 dentry = dget(nd->path.dentry); 2225 goto done; 2226 } 2227 2228 mutex_lock(&dir->d_inode->i_mutex); 2229 dentry = d_lookup(dir, &nd->last); 2230 if (!dentry) { 2231 /* 2232 * No cached dentry. Mounted dentries are pinned in the cache, 2233 * so that means that this dentry is probably a symlink or the 2234 * path doesn't actually point to a mounted dentry. 2235 */ 2236 dentry = d_alloc(dir, &nd->last); 2237 if (!dentry) { 2238 error = -ENOMEM; 2239 mutex_unlock(&dir->d_inode->i_mutex); 2240 goto out; 2241 } 2242 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2243 error = PTR_ERR(dentry); 2244 if (IS_ERR(dentry)) { 2245 mutex_unlock(&dir->d_inode->i_mutex); 2246 goto out; 2247 } 2248 } 2249 mutex_unlock(&dir->d_inode->i_mutex); 2250 2251 done: 2252 if (!dentry->d_inode || d_is_negative(dentry)) { 2253 error = -ENOENT; 2254 dput(dentry); 2255 goto out; 2256 } 2257 path->dentry = dentry; 2258 path->mnt = mntget(nd->path.mnt); 2259 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2260 return 1; 2261 follow_mount(path); 2262 error = 0; 2263 out: 2264 terminate_walk(nd); 2265 return error; 2266 } 2267 2268 /** 2269 * path_mountpoint - look up a path to be umounted 2270 * @dfd: directory file descriptor to start walk from 2271 * @name: full pathname to walk 2272 * @path: pointer to container for result 2273 * @flags: lookup flags 2274 * 2275 * Look up the given name, but don't attempt to revalidate the last component. 2276 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2277 */ 2278 static int 2279 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2280 { 2281 struct file *base = NULL; 2282 struct nameidata nd; 2283 int err; 2284 2285 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base); 2286 if (unlikely(err)) 2287 return err; 2288 2289 current->total_link_count = 0; 2290 err = link_path_walk(name, &nd); 2291 if (err) 2292 goto out; 2293 2294 err = mountpoint_last(&nd, path); 2295 while (err > 0) { 2296 void *cookie; 2297 struct path link = *path; 2298 err = may_follow_link(&link, &nd); 2299 if (unlikely(err)) 2300 break; 2301 nd.flags |= LOOKUP_PARENT; 2302 err = follow_link(&link, &nd, &cookie); 2303 if (err) 2304 break; 2305 err = mountpoint_last(&nd, path); 2306 put_link(&nd, &link, cookie); 2307 } 2308 out: 2309 if (base) 2310 fput(base); 2311 2312 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT)) 2313 path_put(&nd.root); 2314 2315 return err; 2316 } 2317 2318 static int 2319 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2320 unsigned int flags) 2321 { 2322 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2323 if (unlikely(error == -ECHILD)) 2324 error = path_mountpoint(dfd, s->name, path, flags); 2325 if (unlikely(error == -ESTALE)) 2326 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2327 if (likely(!error)) 2328 audit_inode(s, path->dentry, 0); 2329 return error; 2330 } 2331 2332 /** 2333 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2334 * @dfd: directory file descriptor 2335 * @name: pathname from userland 2336 * @flags: lookup flags 2337 * @path: pointer to container to hold result 2338 * 2339 * A umount is a special case for path walking. We're not actually interested 2340 * in the inode in this situation, and ESTALE errors can be a problem. We 2341 * simply want track down the dentry and vfsmount attached at the mountpoint 2342 * and avoid revalidating the last component. 2343 * 2344 * Returns 0 and populates "path" on success. 2345 */ 2346 int 2347 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2348 struct path *path) 2349 { 2350 struct filename *s = getname(name); 2351 int error; 2352 if (IS_ERR(s)) 2353 return PTR_ERR(s); 2354 error = filename_mountpoint(dfd, s, path, flags); 2355 putname(s); 2356 return error; 2357 } 2358 2359 int 2360 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2361 unsigned int flags) 2362 { 2363 struct filename s = {.name = name}; 2364 return filename_mountpoint(dfd, &s, path, flags); 2365 } 2366 EXPORT_SYMBOL(kern_path_mountpoint); 2367 2368 /* 2369 * It's inline, so penalty for filesystems that don't use sticky bit is 2370 * minimal. 2371 */ 2372 static inline int check_sticky(struct inode *dir, struct inode *inode) 2373 { 2374 kuid_t fsuid = current_fsuid(); 2375 2376 if (!(dir->i_mode & S_ISVTX)) 2377 return 0; 2378 if (uid_eq(inode->i_uid, fsuid)) 2379 return 0; 2380 if (uid_eq(dir->i_uid, fsuid)) 2381 return 0; 2382 return !inode_capable(inode, CAP_FOWNER); 2383 } 2384 2385 /* 2386 * Check whether we can remove a link victim from directory dir, check 2387 * whether the type of victim is right. 2388 * 1. We can't do it if dir is read-only (done in permission()) 2389 * 2. We should have write and exec permissions on dir 2390 * 3. We can't remove anything from append-only dir 2391 * 4. We can't do anything with immutable dir (done in permission()) 2392 * 5. If the sticky bit on dir is set we should either 2393 * a. be owner of dir, or 2394 * b. be owner of victim, or 2395 * c. have CAP_FOWNER capability 2396 * 6. If the victim is append-only or immutable we can't do antyhing with 2397 * links pointing to it. 2398 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2399 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2400 * 9. We can't remove a root or mountpoint. 2401 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2402 * nfs_async_unlink(). 2403 */ 2404 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2405 { 2406 struct inode *inode = victim->d_inode; 2407 int error; 2408 2409 if (d_is_negative(victim)) 2410 return -ENOENT; 2411 BUG_ON(!inode); 2412 2413 BUG_ON(victim->d_parent->d_inode != dir); 2414 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2415 2416 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2417 if (error) 2418 return error; 2419 if (IS_APPEND(dir)) 2420 return -EPERM; 2421 2422 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2423 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2424 return -EPERM; 2425 if (isdir) { 2426 if (!d_is_dir(victim)) 2427 return -ENOTDIR; 2428 if (IS_ROOT(victim)) 2429 return -EBUSY; 2430 } else if (d_is_dir(victim)) 2431 return -EISDIR; 2432 if (IS_DEADDIR(dir)) 2433 return -ENOENT; 2434 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2435 return -EBUSY; 2436 return 0; 2437 } 2438 2439 /* Check whether we can create an object with dentry child in directory 2440 * dir. 2441 * 1. We can't do it if child already exists (open has special treatment for 2442 * this case, but since we are inlined it's OK) 2443 * 2. We can't do it if dir is read-only (done in permission()) 2444 * 3. We should have write and exec permissions on dir 2445 * 4. We can't do it if dir is immutable (done in permission()) 2446 */ 2447 static inline int may_create(struct inode *dir, struct dentry *child) 2448 { 2449 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2450 if (child->d_inode) 2451 return -EEXIST; 2452 if (IS_DEADDIR(dir)) 2453 return -ENOENT; 2454 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2455 } 2456 2457 /* 2458 * p1 and p2 should be directories on the same fs. 2459 */ 2460 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2461 { 2462 struct dentry *p; 2463 2464 if (p1 == p2) { 2465 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2466 return NULL; 2467 } 2468 2469 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2470 2471 p = d_ancestor(p2, p1); 2472 if (p) { 2473 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2474 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2475 return p; 2476 } 2477 2478 p = d_ancestor(p1, p2); 2479 if (p) { 2480 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2481 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2482 return p; 2483 } 2484 2485 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2486 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2487 return NULL; 2488 } 2489 EXPORT_SYMBOL(lock_rename); 2490 2491 void unlock_rename(struct dentry *p1, struct dentry *p2) 2492 { 2493 mutex_unlock(&p1->d_inode->i_mutex); 2494 if (p1 != p2) { 2495 mutex_unlock(&p2->d_inode->i_mutex); 2496 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2497 } 2498 } 2499 EXPORT_SYMBOL(unlock_rename); 2500 2501 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2502 bool want_excl) 2503 { 2504 int error = may_create(dir, dentry); 2505 if (error) 2506 return error; 2507 2508 if (!dir->i_op->create) 2509 return -EACCES; /* shouldn't it be ENOSYS? */ 2510 mode &= S_IALLUGO; 2511 mode |= S_IFREG; 2512 error = security_inode_create(dir, dentry, mode); 2513 if (error) 2514 return error; 2515 error = dir->i_op->create(dir, dentry, mode, want_excl); 2516 if (!error) 2517 fsnotify_create(dir, dentry); 2518 return error; 2519 } 2520 EXPORT_SYMBOL(vfs_create); 2521 2522 static int may_open(struct path *path, int acc_mode, int flag) 2523 { 2524 struct dentry *dentry = path->dentry; 2525 struct inode *inode = dentry->d_inode; 2526 int error; 2527 2528 /* O_PATH? */ 2529 if (!acc_mode) 2530 return 0; 2531 2532 if (!inode) 2533 return -ENOENT; 2534 2535 switch (inode->i_mode & S_IFMT) { 2536 case S_IFLNK: 2537 return -ELOOP; 2538 case S_IFDIR: 2539 if (acc_mode & MAY_WRITE) 2540 return -EISDIR; 2541 break; 2542 case S_IFBLK: 2543 case S_IFCHR: 2544 if (path->mnt->mnt_flags & MNT_NODEV) 2545 return -EACCES; 2546 /*FALLTHRU*/ 2547 case S_IFIFO: 2548 case S_IFSOCK: 2549 flag &= ~O_TRUNC; 2550 break; 2551 } 2552 2553 error = inode_permission(inode, acc_mode); 2554 if (error) 2555 return error; 2556 2557 /* 2558 * An append-only file must be opened in append mode for writing. 2559 */ 2560 if (IS_APPEND(inode)) { 2561 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2562 return -EPERM; 2563 if (flag & O_TRUNC) 2564 return -EPERM; 2565 } 2566 2567 /* O_NOATIME can only be set by the owner or superuser */ 2568 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2569 return -EPERM; 2570 2571 return 0; 2572 } 2573 2574 static int handle_truncate(struct file *filp) 2575 { 2576 struct path *path = &filp->f_path; 2577 struct inode *inode = path->dentry->d_inode; 2578 int error = get_write_access(inode); 2579 if (error) 2580 return error; 2581 /* 2582 * Refuse to truncate files with mandatory locks held on them. 2583 */ 2584 error = locks_verify_locked(filp); 2585 if (!error) 2586 error = security_path_truncate(path); 2587 if (!error) { 2588 error = do_truncate(path->dentry, 0, 2589 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2590 filp); 2591 } 2592 put_write_access(inode); 2593 return error; 2594 } 2595 2596 static inline int open_to_namei_flags(int flag) 2597 { 2598 if ((flag & O_ACCMODE) == 3) 2599 flag--; 2600 return flag; 2601 } 2602 2603 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2604 { 2605 int error = security_path_mknod(dir, dentry, mode, 0); 2606 if (error) 2607 return error; 2608 2609 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2610 if (error) 2611 return error; 2612 2613 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2614 } 2615 2616 /* 2617 * Attempt to atomically look up, create and open a file from a negative 2618 * dentry. 2619 * 2620 * Returns 0 if successful. The file will have been created and attached to 2621 * @file by the filesystem calling finish_open(). 2622 * 2623 * Returns 1 if the file was looked up only or didn't need creating. The 2624 * caller will need to perform the open themselves. @path will have been 2625 * updated to point to the new dentry. This may be negative. 2626 * 2627 * Returns an error code otherwise. 2628 */ 2629 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2630 struct path *path, struct file *file, 2631 const struct open_flags *op, 2632 bool got_write, bool need_lookup, 2633 int *opened) 2634 { 2635 struct inode *dir = nd->path.dentry->d_inode; 2636 unsigned open_flag = open_to_namei_flags(op->open_flag); 2637 umode_t mode; 2638 int error; 2639 int acc_mode; 2640 int create_error = 0; 2641 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2642 bool excl; 2643 2644 BUG_ON(dentry->d_inode); 2645 2646 /* Don't create child dentry for a dead directory. */ 2647 if (unlikely(IS_DEADDIR(dir))) { 2648 error = -ENOENT; 2649 goto out; 2650 } 2651 2652 mode = op->mode; 2653 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2654 mode &= ~current_umask(); 2655 2656 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2657 if (excl) 2658 open_flag &= ~O_TRUNC; 2659 2660 /* 2661 * Checking write permission is tricky, bacuse we don't know if we are 2662 * going to actually need it: O_CREAT opens should work as long as the 2663 * file exists. But checking existence breaks atomicity. The trick is 2664 * to check access and if not granted clear O_CREAT from the flags. 2665 * 2666 * Another problem is returing the "right" error value (e.g. for an 2667 * O_EXCL open we want to return EEXIST not EROFS). 2668 */ 2669 if (((open_flag & (O_CREAT | O_TRUNC)) || 2670 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2671 if (!(open_flag & O_CREAT)) { 2672 /* 2673 * No O_CREATE -> atomicity not a requirement -> fall 2674 * back to lookup + open 2675 */ 2676 goto no_open; 2677 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2678 /* Fall back and fail with the right error */ 2679 create_error = -EROFS; 2680 goto no_open; 2681 } else { 2682 /* No side effects, safe to clear O_CREAT */ 2683 create_error = -EROFS; 2684 open_flag &= ~O_CREAT; 2685 } 2686 } 2687 2688 if (open_flag & O_CREAT) { 2689 error = may_o_create(&nd->path, dentry, mode); 2690 if (error) { 2691 create_error = error; 2692 if (open_flag & O_EXCL) 2693 goto no_open; 2694 open_flag &= ~O_CREAT; 2695 } 2696 } 2697 2698 if (nd->flags & LOOKUP_DIRECTORY) 2699 open_flag |= O_DIRECTORY; 2700 2701 file->f_path.dentry = DENTRY_NOT_SET; 2702 file->f_path.mnt = nd->path.mnt; 2703 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2704 opened); 2705 if (error < 0) { 2706 if (create_error && error == -ENOENT) 2707 error = create_error; 2708 goto out; 2709 } 2710 2711 if (error) { /* returned 1, that is */ 2712 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2713 error = -EIO; 2714 goto out; 2715 } 2716 if (file->f_path.dentry) { 2717 dput(dentry); 2718 dentry = file->f_path.dentry; 2719 } 2720 if (*opened & FILE_CREATED) 2721 fsnotify_create(dir, dentry); 2722 if (!dentry->d_inode) { 2723 WARN_ON(*opened & FILE_CREATED); 2724 if (create_error) { 2725 error = create_error; 2726 goto out; 2727 } 2728 } else { 2729 if (excl && !(*opened & FILE_CREATED)) { 2730 error = -EEXIST; 2731 goto out; 2732 } 2733 } 2734 goto looked_up; 2735 } 2736 2737 /* 2738 * We didn't have the inode before the open, so check open permission 2739 * here. 2740 */ 2741 acc_mode = op->acc_mode; 2742 if (*opened & FILE_CREATED) { 2743 WARN_ON(!(open_flag & O_CREAT)); 2744 fsnotify_create(dir, dentry); 2745 acc_mode = MAY_OPEN; 2746 } 2747 error = may_open(&file->f_path, acc_mode, open_flag); 2748 if (error) 2749 fput(file); 2750 2751 out: 2752 dput(dentry); 2753 return error; 2754 2755 no_open: 2756 if (need_lookup) { 2757 dentry = lookup_real(dir, dentry, nd->flags); 2758 if (IS_ERR(dentry)) 2759 return PTR_ERR(dentry); 2760 2761 if (create_error) { 2762 int open_flag = op->open_flag; 2763 2764 error = create_error; 2765 if ((open_flag & O_EXCL)) { 2766 if (!dentry->d_inode) 2767 goto out; 2768 } else if (!dentry->d_inode) { 2769 goto out; 2770 } else if ((open_flag & O_TRUNC) && 2771 S_ISREG(dentry->d_inode->i_mode)) { 2772 goto out; 2773 } 2774 /* will fail later, go on to get the right error */ 2775 } 2776 } 2777 looked_up: 2778 path->dentry = dentry; 2779 path->mnt = nd->path.mnt; 2780 return 1; 2781 } 2782 2783 /* 2784 * Look up and maybe create and open the last component. 2785 * 2786 * Must be called with i_mutex held on parent. 2787 * 2788 * Returns 0 if the file was successfully atomically created (if necessary) and 2789 * opened. In this case the file will be returned attached to @file. 2790 * 2791 * Returns 1 if the file was not completely opened at this time, though lookups 2792 * and creations will have been performed and the dentry returned in @path will 2793 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2794 * specified then a negative dentry may be returned. 2795 * 2796 * An error code is returned otherwise. 2797 * 2798 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2799 * cleared otherwise prior to returning. 2800 */ 2801 static int lookup_open(struct nameidata *nd, struct path *path, 2802 struct file *file, 2803 const struct open_flags *op, 2804 bool got_write, int *opened) 2805 { 2806 struct dentry *dir = nd->path.dentry; 2807 struct inode *dir_inode = dir->d_inode; 2808 struct dentry *dentry; 2809 int error; 2810 bool need_lookup; 2811 2812 *opened &= ~FILE_CREATED; 2813 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2814 if (IS_ERR(dentry)) 2815 return PTR_ERR(dentry); 2816 2817 /* Cached positive dentry: will open in f_op->open */ 2818 if (!need_lookup && dentry->d_inode) 2819 goto out_no_open; 2820 2821 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2822 return atomic_open(nd, dentry, path, file, op, got_write, 2823 need_lookup, opened); 2824 } 2825 2826 if (need_lookup) { 2827 BUG_ON(dentry->d_inode); 2828 2829 dentry = lookup_real(dir_inode, dentry, nd->flags); 2830 if (IS_ERR(dentry)) 2831 return PTR_ERR(dentry); 2832 } 2833 2834 /* Negative dentry, just create the file */ 2835 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2836 umode_t mode = op->mode; 2837 if (!IS_POSIXACL(dir->d_inode)) 2838 mode &= ~current_umask(); 2839 /* 2840 * This write is needed to ensure that a 2841 * rw->ro transition does not occur between 2842 * the time when the file is created and when 2843 * a permanent write count is taken through 2844 * the 'struct file' in finish_open(). 2845 */ 2846 if (!got_write) { 2847 error = -EROFS; 2848 goto out_dput; 2849 } 2850 *opened |= FILE_CREATED; 2851 error = security_path_mknod(&nd->path, dentry, mode, 0); 2852 if (error) 2853 goto out_dput; 2854 error = vfs_create(dir->d_inode, dentry, mode, 2855 nd->flags & LOOKUP_EXCL); 2856 if (error) 2857 goto out_dput; 2858 } 2859 out_no_open: 2860 path->dentry = dentry; 2861 path->mnt = nd->path.mnt; 2862 return 1; 2863 2864 out_dput: 2865 dput(dentry); 2866 return error; 2867 } 2868 2869 /* 2870 * Handle the last step of open() 2871 */ 2872 static int do_last(struct nameidata *nd, struct path *path, 2873 struct file *file, const struct open_flags *op, 2874 int *opened, struct filename *name) 2875 { 2876 struct dentry *dir = nd->path.dentry; 2877 int open_flag = op->open_flag; 2878 bool will_truncate = (open_flag & O_TRUNC) != 0; 2879 bool got_write = false; 2880 int acc_mode = op->acc_mode; 2881 struct inode *inode; 2882 bool symlink_ok = false; 2883 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2884 bool retried = false; 2885 int error; 2886 2887 nd->flags &= ~LOOKUP_PARENT; 2888 nd->flags |= op->intent; 2889 2890 if (nd->last_type != LAST_NORM) { 2891 error = handle_dots(nd, nd->last_type); 2892 if (error) 2893 return error; 2894 goto finish_open; 2895 } 2896 2897 if (!(open_flag & O_CREAT)) { 2898 if (nd->last.name[nd->last.len]) 2899 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2900 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2901 symlink_ok = true; 2902 /* we _can_ be in RCU mode here */ 2903 error = lookup_fast(nd, path, &inode); 2904 if (likely(!error)) 2905 goto finish_lookup; 2906 2907 if (error < 0) 2908 goto out; 2909 2910 BUG_ON(nd->inode != dir->d_inode); 2911 } else { 2912 /* create side of things */ 2913 /* 2914 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2915 * has been cleared when we got to the last component we are 2916 * about to look up 2917 */ 2918 error = complete_walk(nd); 2919 if (error) 2920 return error; 2921 2922 audit_inode(name, dir, LOOKUP_PARENT); 2923 error = -EISDIR; 2924 /* trailing slashes? */ 2925 if (nd->last.name[nd->last.len]) 2926 goto out; 2927 } 2928 2929 retry_lookup: 2930 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2931 error = mnt_want_write(nd->path.mnt); 2932 if (!error) 2933 got_write = true; 2934 /* 2935 * do _not_ fail yet - we might not need that or fail with 2936 * a different error; let lookup_open() decide; we'll be 2937 * dropping this one anyway. 2938 */ 2939 } 2940 mutex_lock(&dir->d_inode->i_mutex); 2941 error = lookup_open(nd, path, file, op, got_write, opened); 2942 mutex_unlock(&dir->d_inode->i_mutex); 2943 2944 if (error <= 0) { 2945 if (error) 2946 goto out; 2947 2948 if ((*opened & FILE_CREATED) || 2949 !S_ISREG(file_inode(file)->i_mode)) 2950 will_truncate = false; 2951 2952 audit_inode(name, file->f_path.dentry, 0); 2953 goto opened; 2954 } 2955 2956 if (*opened & FILE_CREATED) { 2957 /* Don't check for write permission, don't truncate */ 2958 open_flag &= ~O_TRUNC; 2959 will_truncate = false; 2960 acc_mode = MAY_OPEN; 2961 path_to_nameidata(path, nd); 2962 goto finish_open_created; 2963 } 2964 2965 /* 2966 * create/update audit record if it already exists. 2967 */ 2968 if (d_is_positive(path->dentry)) 2969 audit_inode(name, path->dentry, 0); 2970 2971 /* 2972 * If atomic_open() acquired write access it is dropped now due to 2973 * possible mount and symlink following (this might be optimized away if 2974 * necessary...) 2975 */ 2976 if (got_write) { 2977 mnt_drop_write(nd->path.mnt); 2978 got_write = false; 2979 } 2980 2981 error = -EEXIST; 2982 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 2983 goto exit_dput; 2984 2985 error = follow_managed(path, nd->flags); 2986 if (error < 0) 2987 goto exit_dput; 2988 2989 if (error) 2990 nd->flags |= LOOKUP_JUMPED; 2991 2992 BUG_ON(nd->flags & LOOKUP_RCU); 2993 inode = path->dentry->d_inode; 2994 finish_lookup: 2995 /* we _can_ be in RCU mode here */ 2996 error = -ENOENT; 2997 if (!inode || d_is_negative(path->dentry)) { 2998 path_to_nameidata(path, nd); 2999 goto out; 3000 } 3001 3002 if (should_follow_link(path->dentry, !symlink_ok)) { 3003 if (nd->flags & LOOKUP_RCU) { 3004 if (unlikely(unlazy_walk(nd, path->dentry))) { 3005 error = -ECHILD; 3006 goto out; 3007 } 3008 } 3009 BUG_ON(inode != path->dentry->d_inode); 3010 return 1; 3011 } 3012 3013 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3014 path_to_nameidata(path, nd); 3015 } else { 3016 save_parent.dentry = nd->path.dentry; 3017 save_parent.mnt = mntget(path->mnt); 3018 nd->path.dentry = path->dentry; 3019 3020 } 3021 nd->inode = inode; 3022 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3023 finish_open: 3024 error = complete_walk(nd); 3025 if (error) { 3026 path_put(&save_parent); 3027 return error; 3028 } 3029 audit_inode(name, nd->path.dentry, 0); 3030 error = -EISDIR; 3031 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3032 goto out; 3033 error = -ENOTDIR; 3034 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3035 goto out; 3036 if (!S_ISREG(nd->inode->i_mode)) 3037 will_truncate = false; 3038 3039 if (will_truncate) { 3040 error = mnt_want_write(nd->path.mnt); 3041 if (error) 3042 goto out; 3043 got_write = true; 3044 } 3045 finish_open_created: 3046 error = may_open(&nd->path, acc_mode, open_flag); 3047 if (error) 3048 goto out; 3049 file->f_path.mnt = nd->path.mnt; 3050 error = finish_open(file, nd->path.dentry, NULL, opened); 3051 if (error) { 3052 if (error == -EOPENSTALE) 3053 goto stale_open; 3054 goto out; 3055 } 3056 opened: 3057 error = open_check_o_direct(file); 3058 if (error) 3059 goto exit_fput; 3060 error = ima_file_check(file, op->acc_mode); 3061 if (error) 3062 goto exit_fput; 3063 3064 if (will_truncate) { 3065 error = handle_truncate(file); 3066 if (error) 3067 goto exit_fput; 3068 } 3069 out: 3070 if (got_write) 3071 mnt_drop_write(nd->path.mnt); 3072 path_put(&save_parent); 3073 terminate_walk(nd); 3074 return error; 3075 3076 exit_dput: 3077 path_put_conditional(path, nd); 3078 goto out; 3079 exit_fput: 3080 fput(file); 3081 goto out; 3082 3083 stale_open: 3084 /* If no saved parent or already retried then can't retry */ 3085 if (!save_parent.dentry || retried) 3086 goto out; 3087 3088 BUG_ON(save_parent.dentry != dir); 3089 path_put(&nd->path); 3090 nd->path = save_parent; 3091 nd->inode = dir->d_inode; 3092 save_parent.mnt = NULL; 3093 save_parent.dentry = NULL; 3094 if (got_write) { 3095 mnt_drop_write(nd->path.mnt); 3096 got_write = false; 3097 } 3098 retried = true; 3099 goto retry_lookup; 3100 } 3101 3102 static int do_tmpfile(int dfd, struct filename *pathname, 3103 struct nameidata *nd, int flags, 3104 const struct open_flags *op, 3105 struct file *file, int *opened) 3106 { 3107 static const struct qstr name = QSTR_INIT("/", 1); 3108 struct dentry *dentry, *child; 3109 struct inode *dir; 3110 int error = path_lookupat(dfd, pathname->name, 3111 flags | LOOKUP_DIRECTORY, nd); 3112 if (unlikely(error)) 3113 return error; 3114 error = mnt_want_write(nd->path.mnt); 3115 if (unlikely(error)) 3116 goto out; 3117 /* we want directory to be writable */ 3118 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3119 if (error) 3120 goto out2; 3121 dentry = nd->path.dentry; 3122 dir = dentry->d_inode; 3123 if (!dir->i_op->tmpfile) { 3124 error = -EOPNOTSUPP; 3125 goto out2; 3126 } 3127 child = d_alloc(dentry, &name); 3128 if (unlikely(!child)) { 3129 error = -ENOMEM; 3130 goto out2; 3131 } 3132 nd->flags &= ~LOOKUP_DIRECTORY; 3133 nd->flags |= op->intent; 3134 dput(nd->path.dentry); 3135 nd->path.dentry = child; 3136 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3137 if (error) 3138 goto out2; 3139 audit_inode(pathname, nd->path.dentry, 0); 3140 error = may_open(&nd->path, op->acc_mode, op->open_flag); 3141 if (error) 3142 goto out2; 3143 file->f_path.mnt = nd->path.mnt; 3144 error = finish_open(file, nd->path.dentry, NULL, opened); 3145 if (error) 3146 goto out2; 3147 error = open_check_o_direct(file); 3148 if (error) { 3149 fput(file); 3150 } else if (!(op->open_flag & O_EXCL)) { 3151 struct inode *inode = file_inode(file); 3152 spin_lock(&inode->i_lock); 3153 inode->i_state |= I_LINKABLE; 3154 spin_unlock(&inode->i_lock); 3155 } 3156 out2: 3157 mnt_drop_write(nd->path.mnt); 3158 out: 3159 path_put(&nd->path); 3160 return error; 3161 } 3162 3163 static struct file *path_openat(int dfd, struct filename *pathname, 3164 struct nameidata *nd, const struct open_flags *op, int flags) 3165 { 3166 struct file *base = NULL; 3167 struct file *file; 3168 struct path path; 3169 int opened = 0; 3170 int error; 3171 3172 file = get_empty_filp(); 3173 if (IS_ERR(file)) 3174 return file; 3175 3176 file->f_flags = op->open_flag; 3177 3178 if (unlikely(file->f_flags & __O_TMPFILE)) { 3179 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3180 goto out; 3181 } 3182 3183 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 3184 if (unlikely(error)) 3185 goto out; 3186 3187 current->total_link_count = 0; 3188 error = link_path_walk(pathname->name, nd); 3189 if (unlikely(error)) 3190 goto out; 3191 3192 error = do_last(nd, &path, file, op, &opened, pathname); 3193 while (unlikely(error > 0)) { /* trailing symlink */ 3194 struct path link = path; 3195 void *cookie; 3196 if (!(nd->flags & LOOKUP_FOLLOW)) { 3197 path_put_conditional(&path, nd); 3198 path_put(&nd->path); 3199 error = -ELOOP; 3200 break; 3201 } 3202 error = may_follow_link(&link, nd); 3203 if (unlikely(error)) 3204 break; 3205 nd->flags |= LOOKUP_PARENT; 3206 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3207 error = follow_link(&link, nd, &cookie); 3208 if (unlikely(error)) 3209 break; 3210 error = do_last(nd, &path, file, op, &opened, pathname); 3211 put_link(nd, &link, cookie); 3212 } 3213 out: 3214 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 3215 path_put(&nd->root); 3216 if (base) 3217 fput(base); 3218 if (!(opened & FILE_OPENED)) { 3219 BUG_ON(!error); 3220 put_filp(file); 3221 } 3222 if (unlikely(error)) { 3223 if (error == -EOPENSTALE) { 3224 if (flags & LOOKUP_RCU) 3225 error = -ECHILD; 3226 else 3227 error = -ESTALE; 3228 } 3229 file = ERR_PTR(error); 3230 } 3231 return file; 3232 } 3233 3234 struct file *do_filp_open(int dfd, struct filename *pathname, 3235 const struct open_flags *op) 3236 { 3237 struct nameidata nd; 3238 int flags = op->lookup_flags; 3239 struct file *filp; 3240 3241 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3242 if (unlikely(filp == ERR_PTR(-ECHILD))) 3243 filp = path_openat(dfd, pathname, &nd, op, flags); 3244 if (unlikely(filp == ERR_PTR(-ESTALE))) 3245 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3246 return filp; 3247 } 3248 3249 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3250 const char *name, const struct open_flags *op) 3251 { 3252 struct nameidata nd; 3253 struct file *file; 3254 struct filename filename = { .name = name }; 3255 int flags = op->lookup_flags | LOOKUP_ROOT; 3256 3257 nd.root.mnt = mnt; 3258 nd.root.dentry = dentry; 3259 3260 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3261 return ERR_PTR(-ELOOP); 3262 3263 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3264 if (unlikely(file == ERR_PTR(-ECHILD))) 3265 file = path_openat(-1, &filename, &nd, op, flags); 3266 if (unlikely(file == ERR_PTR(-ESTALE))) 3267 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3268 return file; 3269 } 3270 3271 struct dentry *kern_path_create(int dfd, const char *pathname, 3272 struct path *path, unsigned int lookup_flags) 3273 { 3274 struct dentry *dentry = ERR_PTR(-EEXIST); 3275 struct nameidata nd; 3276 int err2; 3277 int error; 3278 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3279 3280 /* 3281 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3282 * other flags passed in are ignored! 3283 */ 3284 lookup_flags &= LOOKUP_REVAL; 3285 3286 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3287 if (error) 3288 return ERR_PTR(error); 3289 3290 /* 3291 * Yucky last component or no last component at all? 3292 * (foo/., foo/.., /////) 3293 */ 3294 if (nd.last_type != LAST_NORM) 3295 goto out; 3296 nd.flags &= ~LOOKUP_PARENT; 3297 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3298 3299 /* don't fail immediately if it's r/o, at least try to report other errors */ 3300 err2 = mnt_want_write(nd.path.mnt); 3301 /* 3302 * Do the final lookup. 3303 */ 3304 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3305 dentry = lookup_hash(&nd); 3306 if (IS_ERR(dentry)) 3307 goto unlock; 3308 3309 error = -EEXIST; 3310 if (d_is_positive(dentry)) 3311 goto fail; 3312 3313 /* 3314 * Special case - lookup gave negative, but... we had foo/bar/ 3315 * From the vfs_mknod() POV we just have a negative dentry - 3316 * all is fine. Let's be bastards - you had / on the end, you've 3317 * been asking for (non-existent) directory. -ENOENT for you. 3318 */ 3319 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3320 error = -ENOENT; 3321 goto fail; 3322 } 3323 if (unlikely(err2)) { 3324 error = err2; 3325 goto fail; 3326 } 3327 *path = nd.path; 3328 return dentry; 3329 fail: 3330 dput(dentry); 3331 dentry = ERR_PTR(error); 3332 unlock: 3333 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3334 if (!err2) 3335 mnt_drop_write(nd.path.mnt); 3336 out: 3337 path_put(&nd.path); 3338 return dentry; 3339 } 3340 EXPORT_SYMBOL(kern_path_create); 3341 3342 void done_path_create(struct path *path, struct dentry *dentry) 3343 { 3344 dput(dentry); 3345 mutex_unlock(&path->dentry->d_inode->i_mutex); 3346 mnt_drop_write(path->mnt); 3347 path_put(path); 3348 } 3349 EXPORT_SYMBOL(done_path_create); 3350 3351 struct dentry *user_path_create(int dfd, const char __user *pathname, 3352 struct path *path, unsigned int lookup_flags) 3353 { 3354 struct filename *tmp = getname(pathname); 3355 struct dentry *res; 3356 if (IS_ERR(tmp)) 3357 return ERR_CAST(tmp); 3358 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3359 putname(tmp); 3360 return res; 3361 } 3362 EXPORT_SYMBOL(user_path_create); 3363 3364 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3365 { 3366 int error = may_create(dir, dentry); 3367 3368 if (error) 3369 return error; 3370 3371 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3372 return -EPERM; 3373 3374 if (!dir->i_op->mknod) 3375 return -EPERM; 3376 3377 error = devcgroup_inode_mknod(mode, dev); 3378 if (error) 3379 return error; 3380 3381 error = security_inode_mknod(dir, dentry, mode, dev); 3382 if (error) 3383 return error; 3384 3385 error = dir->i_op->mknod(dir, dentry, mode, dev); 3386 if (!error) 3387 fsnotify_create(dir, dentry); 3388 return error; 3389 } 3390 EXPORT_SYMBOL(vfs_mknod); 3391 3392 static int may_mknod(umode_t mode) 3393 { 3394 switch (mode & S_IFMT) { 3395 case S_IFREG: 3396 case S_IFCHR: 3397 case S_IFBLK: 3398 case S_IFIFO: 3399 case S_IFSOCK: 3400 case 0: /* zero mode translates to S_IFREG */ 3401 return 0; 3402 case S_IFDIR: 3403 return -EPERM; 3404 default: 3405 return -EINVAL; 3406 } 3407 } 3408 3409 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3410 unsigned, dev) 3411 { 3412 struct dentry *dentry; 3413 struct path path; 3414 int error; 3415 unsigned int lookup_flags = 0; 3416 3417 error = may_mknod(mode); 3418 if (error) 3419 return error; 3420 retry: 3421 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3422 if (IS_ERR(dentry)) 3423 return PTR_ERR(dentry); 3424 3425 if (!IS_POSIXACL(path.dentry->d_inode)) 3426 mode &= ~current_umask(); 3427 error = security_path_mknod(&path, dentry, mode, dev); 3428 if (error) 3429 goto out; 3430 switch (mode & S_IFMT) { 3431 case 0: case S_IFREG: 3432 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3433 break; 3434 case S_IFCHR: case S_IFBLK: 3435 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3436 new_decode_dev(dev)); 3437 break; 3438 case S_IFIFO: case S_IFSOCK: 3439 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3440 break; 3441 } 3442 out: 3443 done_path_create(&path, dentry); 3444 if (retry_estale(error, lookup_flags)) { 3445 lookup_flags |= LOOKUP_REVAL; 3446 goto retry; 3447 } 3448 return error; 3449 } 3450 3451 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3452 { 3453 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3454 } 3455 3456 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3457 { 3458 int error = may_create(dir, dentry); 3459 unsigned max_links = dir->i_sb->s_max_links; 3460 3461 if (error) 3462 return error; 3463 3464 if (!dir->i_op->mkdir) 3465 return -EPERM; 3466 3467 mode &= (S_IRWXUGO|S_ISVTX); 3468 error = security_inode_mkdir(dir, dentry, mode); 3469 if (error) 3470 return error; 3471 3472 if (max_links && dir->i_nlink >= max_links) 3473 return -EMLINK; 3474 3475 error = dir->i_op->mkdir(dir, dentry, mode); 3476 if (!error) 3477 fsnotify_mkdir(dir, dentry); 3478 return error; 3479 } 3480 EXPORT_SYMBOL(vfs_mkdir); 3481 3482 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3483 { 3484 struct dentry *dentry; 3485 struct path path; 3486 int error; 3487 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3488 3489 retry: 3490 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3491 if (IS_ERR(dentry)) 3492 return PTR_ERR(dentry); 3493 3494 if (!IS_POSIXACL(path.dentry->d_inode)) 3495 mode &= ~current_umask(); 3496 error = security_path_mkdir(&path, dentry, mode); 3497 if (!error) 3498 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3499 done_path_create(&path, dentry); 3500 if (retry_estale(error, lookup_flags)) { 3501 lookup_flags |= LOOKUP_REVAL; 3502 goto retry; 3503 } 3504 return error; 3505 } 3506 3507 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3508 { 3509 return sys_mkdirat(AT_FDCWD, pathname, mode); 3510 } 3511 3512 /* 3513 * The dentry_unhash() helper will try to drop the dentry early: we 3514 * should have a usage count of 1 if we're the only user of this 3515 * dentry, and if that is true (possibly after pruning the dcache), 3516 * then we drop the dentry now. 3517 * 3518 * A low-level filesystem can, if it choses, legally 3519 * do a 3520 * 3521 * if (!d_unhashed(dentry)) 3522 * return -EBUSY; 3523 * 3524 * if it cannot handle the case of removing a directory 3525 * that is still in use by something else.. 3526 */ 3527 void dentry_unhash(struct dentry *dentry) 3528 { 3529 shrink_dcache_parent(dentry); 3530 spin_lock(&dentry->d_lock); 3531 if (dentry->d_lockref.count == 1) 3532 __d_drop(dentry); 3533 spin_unlock(&dentry->d_lock); 3534 } 3535 EXPORT_SYMBOL(dentry_unhash); 3536 3537 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3538 { 3539 int error = may_delete(dir, dentry, 1); 3540 3541 if (error) 3542 return error; 3543 3544 if (!dir->i_op->rmdir) 3545 return -EPERM; 3546 3547 dget(dentry); 3548 mutex_lock(&dentry->d_inode->i_mutex); 3549 3550 error = -EBUSY; 3551 if (d_mountpoint(dentry)) 3552 goto out; 3553 3554 error = security_inode_rmdir(dir, dentry); 3555 if (error) 3556 goto out; 3557 3558 shrink_dcache_parent(dentry); 3559 error = dir->i_op->rmdir(dir, dentry); 3560 if (error) 3561 goto out; 3562 3563 dentry->d_inode->i_flags |= S_DEAD; 3564 dont_mount(dentry); 3565 3566 out: 3567 mutex_unlock(&dentry->d_inode->i_mutex); 3568 dput(dentry); 3569 if (!error) 3570 d_delete(dentry); 3571 return error; 3572 } 3573 EXPORT_SYMBOL(vfs_rmdir); 3574 3575 static long do_rmdir(int dfd, const char __user *pathname) 3576 { 3577 int error = 0; 3578 struct filename *name; 3579 struct dentry *dentry; 3580 struct nameidata nd; 3581 unsigned int lookup_flags = 0; 3582 retry: 3583 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3584 if (IS_ERR(name)) 3585 return PTR_ERR(name); 3586 3587 switch(nd.last_type) { 3588 case LAST_DOTDOT: 3589 error = -ENOTEMPTY; 3590 goto exit1; 3591 case LAST_DOT: 3592 error = -EINVAL; 3593 goto exit1; 3594 case LAST_ROOT: 3595 error = -EBUSY; 3596 goto exit1; 3597 } 3598 3599 nd.flags &= ~LOOKUP_PARENT; 3600 error = mnt_want_write(nd.path.mnt); 3601 if (error) 3602 goto exit1; 3603 3604 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3605 dentry = lookup_hash(&nd); 3606 error = PTR_ERR(dentry); 3607 if (IS_ERR(dentry)) 3608 goto exit2; 3609 if (!dentry->d_inode) { 3610 error = -ENOENT; 3611 goto exit3; 3612 } 3613 error = security_path_rmdir(&nd.path, dentry); 3614 if (error) 3615 goto exit3; 3616 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3617 exit3: 3618 dput(dentry); 3619 exit2: 3620 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3621 mnt_drop_write(nd.path.mnt); 3622 exit1: 3623 path_put(&nd.path); 3624 putname(name); 3625 if (retry_estale(error, lookup_flags)) { 3626 lookup_flags |= LOOKUP_REVAL; 3627 goto retry; 3628 } 3629 return error; 3630 } 3631 3632 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3633 { 3634 return do_rmdir(AT_FDCWD, pathname); 3635 } 3636 3637 /** 3638 * vfs_unlink - unlink a filesystem object 3639 * @dir: parent directory 3640 * @dentry: victim 3641 * @delegated_inode: returns victim inode, if the inode is delegated. 3642 * 3643 * The caller must hold dir->i_mutex. 3644 * 3645 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3646 * return a reference to the inode in delegated_inode. The caller 3647 * should then break the delegation on that inode and retry. Because 3648 * breaking a delegation may take a long time, the caller should drop 3649 * dir->i_mutex before doing so. 3650 * 3651 * Alternatively, a caller may pass NULL for delegated_inode. This may 3652 * be appropriate for callers that expect the underlying filesystem not 3653 * to be NFS exported. 3654 */ 3655 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3656 { 3657 struct inode *target = dentry->d_inode; 3658 int error = may_delete(dir, dentry, 0); 3659 3660 if (error) 3661 return error; 3662 3663 if (!dir->i_op->unlink) 3664 return -EPERM; 3665 3666 mutex_lock(&target->i_mutex); 3667 if (d_mountpoint(dentry)) 3668 error = -EBUSY; 3669 else { 3670 error = security_inode_unlink(dir, dentry); 3671 if (!error) { 3672 error = try_break_deleg(target, delegated_inode); 3673 if (error) 3674 goto out; 3675 error = dir->i_op->unlink(dir, dentry); 3676 if (!error) 3677 dont_mount(dentry); 3678 } 3679 } 3680 out: 3681 mutex_unlock(&target->i_mutex); 3682 3683 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3684 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3685 fsnotify_link_count(target); 3686 d_delete(dentry); 3687 } 3688 3689 return error; 3690 } 3691 EXPORT_SYMBOL(vfs_unlink); 3692 3693 /* 3694 * Make sure that the actual truncation of the file will occur outside its 3695 * directory's i_mutex. Truncate can take a long time if there is a lot of 3696 * writeout happening, and we don't want to prevent access to the directory 3697 * while waiting on the I/O. 3698 */ 3699 static long do_unlinkat(int dfd, const char __user *pathname) 3700 { 3701 int error; 3702 struct filename *name; 3703 struct dentry *dentry; 3704 struct nameidata nd; 3705 struct inode *inode = NULL; 3706 struct inode *delegated_inode = NULL; 3707 unsigned int lookup_flags = 0; 3708 retry: 3709 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3710 if (IS_ERR(name)) 3711 return PTR_ERR(name); 3712 3713 error = -EISDIR; 3714 if (nd.last_type != LAST_NORM) 3715 goto exit1; 3716 3717 nd.flags &= ~LOOKUP_PARENT; 3718 error = mnt_want_write(nd.path.mnt); 3719 if (error) 3720 goto exit1; 3721 retry_deleg: 3722 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3723 dentry = lookup_hash(&nd); 3724 error = PTR_ERR(dentry); 3725 if (!IS_ERR(dentry)) { 3726 /* Why not before? Because we want correct error value */ 3727 if (nd.last.name[nd.last.len]) 3728 goto slashes; 3729 inode = dentry->d_inode; 3730 if (d_is_negative(dentry)) 3731 goto slashes; 3732 ihold(inode); 3733 error = security_path_unlink(&nd.path, dentry); 3734 if (error) 3735 goto exit2; 3736 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3737 exit2: 3738 dput(dentry); 3739 } 3740 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3741 if (inode) 3742 iput(inode); /* truncate the inode here */ 3743 inode = NULL; 3744 if (delegated_inode) { 3745 error = break_deleg_wait(&delegated_inode); 3746 if (!error) 3747 goto retry_deleg; 3748 } 3749 mnt_drop_write(nd.path.mnt); 3750 exit1: 3751 path_put(&nd.path); 3752 putname(name); 3753 if (retry_estale(error, lookup_flags)) { 3754 lookup_flags |= LOOKUP_REVAL; 3755 inode = NULL; 3756 goto retry; 3757 } 3758 return error; 3759 3760 slashes: 3761 if (d_is_negative(dentry)) 3762 error = -ENOENT; 3763 else if (d_is_dir(dentry)) 3764 error = -EISDIR; 3765 else 3766 error = -ENOTDIR; 3767 goto exit2; 3768 } 3769 3770 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3771 { 3772 if ((flag & ~AT_REMOVEDIR) != 0) 3773 return -EINVAL; 3774 3775 if (flag & AT_REMOVEDIR) 3776 return do_rmdir(dfd, pathname); 3777 3778 return do_unlinkat(dfd, pathname); 3779 } 3780 3781 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3782 { 3783 return do_unlinkat(AT_FDCWD, pathname); 3784 } 3785 3786 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3787 { 3788 int error = may_create(dir, dentry); 3789 3790 if (error) 3791 return error; 3792 3793 if (!dir->i_op->symlink) 3794 return -EPERM; 3795 3796 error = security_inode_symlink(dir, dentry, oldname); 3797 if (error) 3798 return error; 3799 3800 error = dir->i_op->symlink(dir, dentry, oldname); 3801 if (!error) 3802 fsnotify_create(dir, dentry); 3803 return error; 3804 } 3805 EXPORT_SYMBOL(vfs_symlink); 3806 3807 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3808 int, newdfd, const char __user *, newname) 3809 { 3810 int error; 3811 struct filename *from; 3812 struct dentry *dentry; 3813 struct path path; 3814 unsigned int lookup_flags = 0; 3815 3816 from = getname(oldname); 3817 if (IS_ERR(from)) 3818 return PTR_ERR(from); 3819 retry: 3820 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3821 error = PTR_ERR(dentry); 3822 if (IS_ERR(dentry)) 3823 goto out_putname; 3824 3825 error = security_path_symlink(&path, dentry, from->name); 3826 if (!error) 3827 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3828 done_path_create(&path, dentry); 3829 if (retry_estale(error, lookup_flags)) { 3830 lookup_flags |= LOOKUP_REVAL; 3831 goto retry; 3832 } 3833 out_putname: 3834 putname(from); 3835 return error; 3836 } 3837 3838 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3839 { 3840 return sys_symlinkat(oldname, AT_FDCWD, newname); 3841 } 3842 3843 /** 3844 * vfs_link - create a new link 3845 * @old_dentry: object to be linked 3846 * @dir: new parent 3847 * @new_dentry: where to create the new link 3848 * @delegated_inode: returns inode needing a delegation break 3849 * 3850 * The caller must hold dir->i_mutex 3851 * 3852 * If vfs_link discovers a delegation on the to-be-linked file in need 3853 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3854 * inode in delegated_inode. The caller should then break the delegation 3855 * and retry. Because breaking a delegation may take a long time, the 3856 * caller should drop the i_mutex before doing so. 3857 * 3858 * Alternatively, a caller may pass NULL for delegated_inode. This may 3859 * be appropriate for callers that expect the underlying filesystem not 3860 * to be NFS exported. 3861 */ 3862 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3863 { 3864 struct inode *inode = old_dentry->d_inode; 3865 unsigned max_links = dir->i_sb->s_max_links; 3866 int error; 3867 3868 if (!inode) 3869 return -ENOENT; 3870 3871 error = may_create(dir, new_dentry); 3872 if (error) 3873 return error; 3874 3875 if (dir->i_sb != inode->i_sb) 3876 return -EXDEV; 3877 3878 /* 3879 * A link to an append-only or immutable file cannot be created. 3880 */ 3881 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3882 return -EPERM; 3883 if (!dir->i_op->link) 3884 return -EPERM; 3885 if (S_ISDIR(inode->i_mode)) 3886 return -EPERM; 3887 3888 error = security_inode_link(old_dentry, dir, new_dentry); 3889 if (error) 3890 return error; 3891 3892 mutex_lock(&inode->i_mutex); 3893 /* Make sure we don't allow creating hardlink to an unlinked file */ 3894 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3895 error = -ENOENT; 3896 else if (max_links && inode->i_nlink >= max_links) 3897 error = -EMLINK; 3898 else { 3899 error = try_break_deleg(inode, delegated_inode); 3900 if (!error) 3901 error = dir->i_op->link(old_dentry, dir, new_dentry); 3902 } 3903 3904 if (!error && (inode->i_state & I_LINKABLE)) { 3905 spin_lock(&inode->i_lock); 3906 inode->i_state &= ~I_LINKABLE; 3907 spin_unlock(&inode->i_lock); 3908 } 3909 mutex_unlock(&inode->i_mutex); 3910 if (!error) 3911 fsnotify_link(dir, inode, new_dentry); 3912 return error; 3913 } 3914 EXPORT_SYMBOL(vfs_link); 3915 3916 /* 3917 * Hardlinks are often used in delicate situations. We avoid 3918 * security-related surprises by not following symlinks on the 3919 * newname. --KAB 3920 * 3921 * We don't follow them on the oldname either to be compatible 3922 * with linux 2.0, and to avoid hard-linking to directories 3923 * and other special files. --ADM 3924 */ 3925 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3926 int, newdfd, const char __user *, newname, int, flags) 3927 { 3928 struct dentry *new_dentry; 3929 struct path old_path, new_path; 3930 struct inode *delegated_inode = NULL; 3931 int how = 0; 3932 int error; 3933 3934 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3935 return -EINVAL; 3936 /* 3937 * To use null names we require CAP_DAC_READ_SEARCH 3938 * This ensures that not everyone will be able to create 3939 * handlink using the passed filedescriptor. 3940 */ 3941 if (flags & AT_EMPTY_PATH) { 3942 if (!capable(CAP_DAC_READ_SEARCH)) 3943 return -ENOENT; 3944 how = LOOKUP_EMPTY; 3945 } 3946 3947 if (flags & AT_SYMLINK_FOLLOW) 3948 how |= LOOKUP_FOLLOW; 3949 retry: 3950 error = user_path_at(olddfd, oldname, how, &old_path); 3951 if (error) 3952 return error; 3953 3954 new_dentry = user_path_create(newdfd, newname, &new_path, 3955 (how & LOOKUP_REVAL)); 3956 error = PTR_ERR(new_dentry); 3957 if (IS_ERR(new_dentry)) 3958 goto out; 3959 3960 error = -EXDEV; 3961 if (old_path.mnt != new_path.mnt) 3962 goto out_dput; 3963 error = may_linkat(&old_path); 3964 if (unlikely(error)) 3965 goto out_dput; 3966 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3967 if (error) 3968 goto out_dput; 3969 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 3970 out_dput: 3971 done_path_create(&new_path, new_dentry); 3972 if (delegated_inode) { 3973 error = break_deleg_wait(&delegated_inode); 3974 if (!error) { 3975 path_put(&old_path); 3976 goto retry; 3977 } 3978 } 3979 if (retry_estale(error, how)) { 3980 path_put(&old_path); 3981 how |= LOOKUP_REVAL; 3982 goto retry; 3983 } 3984 out: 3985 path_put(&old_path); 3986 3987 return error; 3988 } 3989 3990 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3991 { 3992 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3993 } 3994 3995 /** 3996 * vfs_rename - rename a filesystem object 3997 * @old_dir: parent of source 3998 * @old_dentry: source 3999 * @new_dir: parent of destination 4000 * @new_dentry: destination 4001 * @delegated_inode: returns an inode needing a delegation break 4002 * @flags: rename flags 4003 * 4004 * The caller must hold multiple mutexes--see lock_rename()). 4005 * 4006 * If vfs_rename discovers a delegation in need of breaking at either 4007 * the source or destination, it will return -EWOULDBLOCK and return a 4008 * reference to the inode in delegated_inode. The caller should then 4009 * break the delegation and retry. Because breaking a delegation may 4010 * take a long time, the caller should drop all locks before doing 4011 * so. 4012 * 4013 * Alternatively, a caller may pass NULL for delegated_inode. This may 4014 * be appropriate for callers that expect the underlying filesystem not 4015 * to be NFS exported. 4016 * 4017 * The worst of all namespace operations - renaming directory. "Perverted" 4018 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4019 * Problems: 4020 * a) we can get into loop creation. Check is done in is_subdir(). 4021 * b) race potential - two innocent renames can create a loop together. 4022 * That's where 4.4 screws up. Current fix: serialization on 4023 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4024 * story. 4025 * c) we have to lock _four_ objects - parents and victim (if it exists), 4026 * and source (if it is not a directory). 4027 * And that - after we got ->i_mutex on parents (until then we don't know 4028 * whether the target exists). Solution: try to be smart with locking 4029 * order for inodes. We rely on the fact that tree topology may change 4030 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4031 * move will be locked. Thus we can rank directories by the tree 4032 * (ancestors first) and rank all non-directories after them. 4033 * That works since everybody except rename does "lock parent, lookup, 4034 * lock child" and rename is under ->s_vfs_rename_mutex. 4035 * HOWEVER, it relies on the assumption that any object with ->lookup() 4036 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4037 * we'd better make sure that there's no link(2) for them. 4038 * d) conversion from fhandle to dentry may come in the wrong moment - when 4039 * we are removing the target. Solution: we will have to grab ->i_mutex 4040 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4041 * ->i_mutex on parents, which works but leads to some truly excessive 4042 * locking]. 4043 */ 4044 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4045 struct inode *new_dir, struct dentry *new_dentry, 4046 struct inode **delegated_inode, unsigned int flags) 4047 { 4048 int error; 4049 bool is_dir = d_is_dir(old_dentry); 4050 const unsigned char *old_name; 4051 struct inode *source = old_dentry->d_inode; 4052 struct inode *target = new_dentry->d_inode; 4053 bool new_is_dir = false; 4054 unsigned max_links = new_dir->i_sb->s_max_links; 4055 4056 if (source == target) 4057 return 0; 4058 4059 error = may_delete(old_dir, old_dentry, is_dir); 4060 if (error) 4061 return error; 4062 4063 if (!target) { 4064 error = may_create(new_dir, new_dentry); 4065 } else { 4066 new_is_dir = d_is_dir(new_dentry); 4067 4068 if (!(flags & RENAME_EXCHANGE)) 4069 error = may_delete(new_dir, new_dentry, is_dir); 4070 else 4071 error = may_delete(new_dir, new_dentry, new_is_dir); 4072 } 4073 if (error) 4074 return error; 4075 4076 if (!old_dir->i_op->rename) 4077 return -EPERM; 4078 4079 if (flags && !old_dir->i_op->rename2) 4080 return -EINVAL; 4081 4082 /* 4083 * If we are going to change the parent - check write permissions, 4084 * we'll need to flip '..'. 4085 */ 4086 if (new_dir != old_dir) { 4087 if (is_dir) { 4088 error = inode_permission(source, MAY_WRITE); 4089 if (error) 4090 return error; 4091 } 4092 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4093 error = inode_permission(target, MAY_WRITE); 4094 if (error) 4095 return error; 4096 } 4097 } 4098 4099 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4100 flags); 4101 if (error) 4102 return error; 4103 4104 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4105 dget(new_dentry); 4106 if (!is_dir || (flags & RENAME_EXCHANGE)) 4107 lock_two_nondirectories(source, target); 4108 else if (target) 4109 mutex_lock(&target->i_mutex); 4110 4111 error = -EBUSY; 4112 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 4113 goto out; 4114 4115 if (max_links && new_dir != old_dir) { 4116 error = -EMLINK; 4117 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4118 goto out; 4119 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4120 old_dir->i_nlink >= max_links) 4121 goto out; 4122 } 4123 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4124 shrink_dcache_parent(new_dentry); 4125 if (!is_dir) { 4126 error = try_break_deleg(source, delegated_inode); 4127 if (error) 4128 goto out; 4129 } 4130 if (target && !new_is_dir) { 4131 error = try_break_deleg(target, delegated_inode); 4132 if (error) 4133 goto out; 4134 } 4135 if (!flags) { 4136 error = old_dir->i_op->rename(old_dir, old_dentry, 4137 new_dir, new_dentry); 4138 } else { 4139 error = old_dir->i_op->rename2(old_dir, old_dentry, 4140 new_dir, new_dentry, flags); 4141 } 4142 if (error) 4143 goto out; 4144 4145 if (!(flags & RENAME_EXCHANGE) && target) { 4146 if (is_dir) 4147 target->i_flags |= S_DEAD; 4148 dont_mount(new_dentry); 4149 } 4150 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4151 if (!(flags & RENAME_EXCHANGE)) 4152 d_move(old_dentry, new_dentry); 4153 else 4154 d_exchange(old_dentry, new_dentry); 4155 } 4156 out: 4157 if (!is_dir || (flags & RENAME_EXCHANGE)) 4158 unlock_two_nondirectories(source, target); 4159 else if (target) 4160 mutex_unlock(&target->i_mutex); 4161 dput(new_dentry); 4162 if (!error) { 4163 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4164 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4165 if (flags & RENAME_EXCHANGE) { 4166 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4167 new_is_dir, NULL, new_dentry); 4168 } 4169 } 4170 fsnotify_oldname_free(old_name); 4171 4172 return error; 4173 } 4174 EXPORT_SYMBOL(vfs_rename); 4175 4176 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4177 int, newdfd, const char __user *, newname, unsigned int, flags) 4178 { 4179 struct dentry *old_dir, *new_dir; 4180 struct dentry *old_dentry, *new_dentry; 4181 struct dentry *trap; 4182 struct nameidata oldnd, newnd; 4183 struct inode *delegated_inode = NULL; 4184 struct filename *from; 4185 struct filename *to; 4186 unsigned int lookup_flags = 0; 4187 bool should_retry = false; 4188 int error; 4189 4190 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 4191 return -EINVAL; 4192 4193 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE)) 4194 return -EINVAL; 4195 4196 retry: 4197 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4198 if (IS_ERR(from)) { 4199 error = PTR_ERR(from); 4200 goto exit; 4201 } 4202 4203 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4204 if (IS_ERR(to)) { 4205 error = PTR_ERR(to); 4206 goto exit1; 4207 } 4208 4209 error = -EXDEV; 4210 if (oldnd.path.mnt != newnd.path.mnt) 4211 goto exit2; 4212 4213 old_dir = oldnd.path.dentry; 4214 error = -EBUSY; 4215 if (oldnd.last_type != LAST_NORM) 4216 goto exit2; 4217 4218 new_dir = newnd.path.dentry; 4219 if (flags & RENAME_NOREPLACE) 4220 error = -EEXIST; 4221 if (newnd.last_type != LAST_NORM) 4222 goto exit2; 4223 4224 error = mnt_want_write(oldnd.path.mnt); 4225 if (error) 4226 goto exit2; 4227 4228 oldnd.flags &= ~LOOKUP_PARENT; 4229 newnd.flags &= ~LOOKUP_PARENT; 4230 if (!(flags & RENAME_EXCHANGE)) 4231 newnd.flags |= LOOKUP_RENAME_TARGET; 4232 4233 retry_deleg: 4234 trap = lock_rename(new_dir, old_dir); 4235 4236 old_dentry = lookup_hash(&oldnd); 4237 error = PTR_ERR(old_dentry); 4238 if (IS_ERR(old_dentry)) 4239 goto exit3; 4240 /* source must exist */ 4241 error = -ENOENT; 4242 if (d_is_negative(old_dentry)) 4243 goto exit4; 4244 new_dentry = lookup_hash(&newnd); 4245 error = PTR_ERR(new_dentry); 4246 if (IS_ERR(new_dentry)) 4247 goto exit4; 4248 error = -EEXIST; 4249 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4250 goto exit5; 4251 if (flags & RENAME_EXCHANGE) { 4252 error = -ENOENT; 4253 if (d_is_negative(new_dentry)) 4254 goto exit5; 4255 4256 if (!d_is_dir(new_dentry)) { 4257 error = -ENOTDIR; 4258 if (newnd.last.name[newnd.last.len]) 4259 goto exit5; 4260 } 4261 } 4262 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4263 if (!d_is_dir(old_dentry)) { 4264 error = -ENOTDIR; 4265 if (oldnd.last.name[oldnd.last.len]) 4266 goto exit5; 4267 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len]) 4268 goto exit5; 4269 } 4270 /* source should not be ancestor of target */ 4271 error = -EINVAL; 4272 if (old_dentry == trap) 4273 goto exit5; 4274 /* target should not be an ancestor of source */ 4275 if (!(flags & RENAME_EXCHANGE)) 4276 error = -ENOTEMPTY; 4277 if (new_dentry == trap) 4278 goto exit5; 4279 4280 error = security_path_rename(&oldnd.path, old_dentry, 4281 &newnd.path, new_dentry, flags); 4282 if (error) 4283 goto exit5; 4284 error = vfs_rename(old_dir->d_inode, old_dentry, 4285 new_dir->d_inode, new_dentry, 4286 &delegated_inode, flags); 4287 exit5: 4288 dput(new_dentry); 4289 exit4: 4290 dput(old_dentry); 4291 exit3: 4292 unlock_rename(new_dir, old_dir); 4293 if (delegated_inode) { 4294 error = break_deleg_wait(&delegated_inode); 4295 if (!error) 4296 goto retry_deleg; 4297 } 4298 mnt_drop_write(oldnd.path.mnt); 4299 exit2: 4300 if (retry_estale(error, lookup_flags)) 4301 should_retry = true; 4302 path_put(&newnd.path); 4303 putname(to); 4304 exit1: 4305 path_put(&oldnd.path); 4306 putname(from); 4307 if (should_retry) { 4308 should_retry = false; 4309 lookup_flags |= LOOKUP_REVAL; 4310 goto retry; 4311 } 4312 exit: 4313 return error; 4314 } 4315 4316 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4317 int, newdfd, const char __user *, newname) 4318 { 4319 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4320 } 4321 4322 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4323 { 4324 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4325 } 4326 4327 int readlink_copy(char __user *buffer, int buflen, const char *link) 4328 { 4329 int len = PTR_ERR(link); 4330 if (IS_ERR(link)) 4331 goto out; 4332 4333 len = strlen(link); 4334 if (len > (unsigned) buflen) 4335 len = buflen; 4336 if (copy_to_user(buffer, link, len)) 4337 len = -EFAULT; 4338 out: 4339 return len; 4340 } 4341 EXPORT_SYMBOL(readlink_copy); 4342 4343 /* 4344 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4345 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4346 * using) it for any given inode is up to filesystem. 4347 */ 4348 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4349 { 4350 struct nameidata nd; 4351 void *cookie; 4352 int res; 4353 4354 nd.depth = 0; 4355 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4356 if (IS_ERR(cookie)) 4357 return PTR_ERR(cookie); 4358 4359 res = readlink_copy(buffer, buflen, nd_get_link(&nd)); 4360 if (dentry->d_inode->i_op->put_link) 4361 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4362 return res; 4363 } 4364 EXPORT_SYMBOL(generic_readlink); 4365 4366 /* get the link contents into pagecache */ 4367 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4368 { 4369 char *kaddr; 4370 struct page *page; 4371 struct address_space *mapping = dentry->d_inode->i_mapping; 4372 page = read_mapping_page(mapping, 0, NULL); 4373 if (IS_ERR(page)) 4374 return (char*)page; 4375 *ppage = page; 4376 kaddr = kmap(page); 4377 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4378 return kaddr; 4379 } 4380 4381 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4382 { 4383 struct page *page = NULL; 4384 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4385 if (page) { 4386 kunmap(page); 4387 page_cache_release(page); 4388 } 4389 return res; 4390 } 4391 EXPORT_SYMBOL(page_readlink); 4392 4393 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4394 { 4395 struct page *page = NULL; 4396 nd_set_link(nd, page_getlink(dentry, &page)); 4397 return page; 4398 } 4399 EXPORT_SYMBOL(page_follow_link_light); 4400 4401 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4402 { 4403 struct page *page = cookie; 4404 4405 if (page) { 4406 kunmap(page); 4407 page_cache_release(page); 4408 } 4409 } 4410 EXPORT_SYMBOL(page_put_link); 4411 4412 /* 4413 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4414 */ 4415 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4416 { 4417 struct address_space *mapping = inode->i_mapping; 4418 struct page *page; 4419 void *fsdata; 4420 int err; 4421 char *kaddr; 4422 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4423 if (nofs) 4424 flags |= AOP_FLAG_NOFS; 4425 4426 retry: 4427 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4428 flags, &page, &fsdata); 4429 if (err) 4430 goto fail; 4431 4432 kaddr = kmap_atomic(page); 4433 memcpy(kaddr, symname, len-1); 4434 kunmap_atomic(kaddr); 4435 4436 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4437 page, fsdata); 4438 if (err < 0) 4439 goto fail; 4440 if (err < len-1) 4441 goto retry; 4442 4443 mark_inode_dirty(inode); 4444 return 0; 4445 fail: 4446 return err; 4447 } 4448 EXPORT_SYMBOL(__page_symlink); 4449 4450 int page_symlink(struct inode *inode, const char *symname, int len) 4451 { 4452 return __page_symlink(inode, symname, len, 4453 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4454 } 4455 EXPORT_SYMBOL(page_symlink); 4456 4457 const struct inode_operations page_symlink_inode_operations = { 4458 .readlink = generic_readlink, 4459 .follow_link = page_follow_link_light, 4460 .put_link = page_put_link, 4461 }; 4462 EXPORT_SYMBOL(page_symlink_inode_operations); 4463