xref: /openbmc/linux/fs/namei.c (revision 84764a41)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	audit_getname(result);
200 	return result;
201 
202 error:
203 	final_putname(result);
204 	return err;
205 }
206 
207 struct filename *
208 getname(const char __user * filename)
209 {
210 	return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213 
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 	if (unlikely(!audit_dummy_context()))
218 		return audit_putname(name);
219 	final_putname(name);
220 }
221 #endif
222 
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 	struct posix_acl *acl;
227 
228 	if (mask & MAY_NOT_BLOCK) {
229 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 	        if (!acl)
231 	                return -EAGAIN;
232 		/* no ->get_acl() calls in RCU mode... */
233 		if (acl == ACL_NOT_CACHED)
234 			return -ECHILD;
235 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 	}
237 
238 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239 
240 	/*
241 	 * A filesystem can force a ACL callback by just never filling the
242 	 * ACL cache. But normally you'd fill the cache either at inode
243 	 * instantiation time, or on the first ->get_acl call.
244 	 *
245 	 * If the filesystem doesn't have a get_acl() function at all, we'll
246 	 * just create the negative cache entry.
247 	 */
248 	if (acl == ACL_NOT_CACHED) {
249 	        if (inode->i_op->get_acl) {
250 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 			if (IS_ERR(acl))
252 				return PTR_ERR(acl);
253 		} else {
254 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 		        return -EAGAIN;
256 		}
257 	}
258 
259 	if (acl) {
260 	        int error = posix_acl_permission(inode, acl, mask);
261 	        posix_acl_release(acl);
262 	        return error;
263 	}
264 #endif
265 
266 	return -EAGAIN;
267 }
268 
269 /*
270  * This does the basic permission checking
271  */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 	unsigned int mode = inode->i_mode;
275 
276 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 		mode >>= 6;
278 	else {
279 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 			int error = check_acl(inode, mask);
281 			if (error != -EAGAIN)
282 				return error;
283 		}
284 
285 		if (in_group_p(inode->i_gid))
286 			mode >>= 3;
287 	}
288 
289 	/*
290 	 * If the DACs are ok we don't need any capability check.
291 	 */
292 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 		return 0;
294 	return -EACCES;
295 }
296 
297 /**
298  * generic_permission -  check for access rights on a Posix-like filesystem
299  * @inode:	inode to check access rights for
300  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301  *
302  * Used to check for read/write/execute permissions on a file.
303  * We use "fsuid" for this, letting us set arbitrary permissions
304  * for filesystem access without changing the "normal" uids which
305  * are used for other things.
306  *
307  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308  * request cannot be satisfied (eg. requires blocking or too much complexity).
309  * It would then be called again in ref-walk mode.
310  */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 	int ret;
314 
315 	/*
316 	 * Do the basic permission checks.
317 	 */
318 	ret = acl_permission_check(inode, mask);
319 	if (ret != -EACCES)
320 		return ret;
321 
322 	if (S_ISDIR(inode->i_mode)) {
323 		/* DACs are overridable for directories */
324 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 			return 0;
326 		if (!(mask & MAY_WRITE))
327 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 				return 0;
329 		return -EACCES;
330 	}
331 	/*
332 	 * Read/write DACs are always overridable.
333 	 * Executable DACs are overridable when there is
334 	 * at least one exec bit set.
335 	 */
336 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 			return 0;
339 
340 	/*
341 	 * Searching includes executable on directories, else just read.
342 	 */
343 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 	if (mask == MAY_READ)
345 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 			return 0;
347 
348 	return -EACCES;
349 }
350 
351 /*
352  * We _really_ want to just do "generic_permission()" without
353  * even looking at the inode->i_op values. So we keep a cache
354  * flag in inode->i_opflags, that says "this has not special
355  * permission function, use the fast case".
356  */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 		if (likely(inode->i_op->permission))
361 			return inode->i_op->permission(inode, mask);
362 
363 		/* This gets set once for the inode lifetime */
364 		spin_lock(&inode->i_lock);
365 		inode->i_opflags |= IOP_FASTPERM;
366 		spin_unlock(&inode->i_lock);
367 	}
368 	return generic_permission(inode, mask);
369 }
370 
371 /**
372  * __inode_permission - Check for access rights to a given inode
373  * @inode: Inode to check permission on
374  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375  *
376  * Check for read/write/execute permissions on an inode.
377  *
378  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379  *
380  * This does not check for a read-only file system.  You probably want
381  * inode_permission().
382  */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 	int retval;
386 
387 	if (unlikely(mask & MAY_WRITE)) {
388 		/*
389 		 * Nobody gets write access to an immutable file.
390 		 */
391 		if (IS_IMMUTABLE(inode))
392 			return -EACCES;
393 	}
394 
395 	retval = do_inode_permission(inode, mask);
396 	if (retval)
397 		return retval;
398 
399 	retval = devcgroup_inode_permission(inode, mask);
400 	if (retval)
401 		return retval;
402 
403 	return security_inode_permission(inode, mask);
404 }
405 
406 /**
407  * sb_permission - Check superblock-level permissions
408  * @sb: Superblock of inode to check permission on
409  * @inode: Inode to check permission on
410  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411  *
412  * Separate out file-system wide checks from inode-specific permission checks.
413  */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 	if (unlikely(mask & MAY_WRITE)) {
417 		umode_t mode = inode->i_mode;
418 
419 		/* Nobody gets write access to a read-only fs. */
420 		if ((sb->s_flags & MS_RDONLY) &&
421 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 			return -EROFS;
423 	}
424 	return 0;
425 }
426 
427 /**
428  * inode_permission - Check for access rights to a given inode
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
433  * this, letting us set arbitrary permissions for filesystem access without
434  * changing the "normal" UIDs which are used for other things.
435  *
436  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437  */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 	int retval;
441 
442 	retval = sb_permission(inode->i_sb, inode, mask);
443 	if (retval)
444 		return retval;
445 	return __inode_permission(inode, mask);
446 }
447 
448 /**
449  * path_get - get a reference to a path
450  * @path: path to get the reference to
451  *
452  * Given a path increment the reference count to the dentry and the vfsmount.
453  */
454 void path_get(struct path *path)
455 {
456 	mntget(path->mnt);
457 	dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460 
461 /**
462  * path_put - put a reference to a path
463  * @path: path to put the reference to
464  *
465  * Given a path decrement the reference count to the dentry and the vfsmount.
466  */
467 void path_put(struct path *path)
468 {
469 	dput(path->dentry);
470 	mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473 
474 /*
475  * Path walking has 2 modes, rcu-walk and ref-walk (see
476  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
477  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
480  * got stuck, so ref-walk may continue from there. If this is not successful
481  * (eg. a seqcount has changed), then failure is returned and it's up to caller
482  * to restart the path walk from the beginning in ref-walk mode.
483  */
484 
485 static inline void lock_rcu_walk(void)
486 {
487 	br_read_lock(&vfsmount_lock);
488 	rcu_read_lock();
489 }
490 
491 static inline void unlock_rcu_walk(void)
492 {
493 	rcu_read_unlock();
494 	br_read_unlock(&vfsmount_lock);
495 }
496 
497 /**
498  * unlazy_walk - try to switch to ref-walk mode.
499  * @nd: nameidata pathwalk data
500  * @dentry: child of nd->path.dentry or NULL
501  * Returns: 0 on success, -ECHILD on failure
502  *
503  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
505  * @nd or NULL.  Must be called from rcu-walk context.
506  */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 	struct fs_struct *fs = current->fs;
510 	struct dentry *parent = nd->path.dentry;
511 	int want_root = 0;
512 
513 	BUG_ON(!(nd->flags & LOOKUP_RCU));
514 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
515 		want_root = 1;
516 		spin_lock(&fs->lock);
517 		if (nd->root.mnt != fs->root.mnt ||
518 				nd->root.dentry != fs->root.dentry)
519 			goto err_root;
520 	}
521 	spin_lock(&parent->d_lock);
522 	if (!dentry) {
523 		if (!__d_rcu_to_refcount(parent, nd->seq))
524 			goto err_parent;
525 		BUG_ON(nd->inode != parent->d_inode);
526 	} else {
527 		if (dentry->d_parent != parent)
528 			goto err_parent;
529 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
530 		if (!__d_rcu_to_refcount(dentry, nd->seq))
531 			goto err_child;
532 		/*
533 		 * If the sequence check on the child dentry passed, then
534 		 * the child has not been removed from its parent. This
535 		 * means the parent dentry must be valid and able to take
536 		 * a reference at this point.
537 		 */
538 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
539 		BUG_ON(!parent->d_count);
540 		parent->d_count++;
541 		spin_unlock(&dentry->d_lock);
542 	}
543 	spin_unlock(&parent->d_lock);
544 	if (want_root) {
545 		path_get(&nd->root);
546 		spin_unlock(&fs->lock);
547 	}
548 	mntget(nd->path.mnt);
549 
550 	unlock_rcu_walk();
551 	nd->flags &= ~LOOKUP_RCU;
552 	return 0;
553 
554 err_child:
555 	spin_unlock(&dentry->d_lock);
556 err_parent:
557 	spin_unlock(&parent->d_lock);
558 err_root:
559 	if (want_root)
560 		spin_unlock(&fs->lock);
561 	return -ECHILD;
562 }
563 
564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
565 {
566 	return dentry->d_op->d_revalidate(dentry, flags);
567 }
568 
569 /**
570  * complete_walk - successful completion of path walk
571  * @nd:  pointer nameidata
572  *
573  * If we had been in RCU mode, drop out of it and legitimize nd->path.
574  * Revalidate the final result, unless we'd already done that during
575  * the path walk or the filesystem doesn't ask for it.  Return 0 on
576  * success, -error on failure.  In case of failure caller does not
577  * need to drop nd->path.
578  */
579 static int complete_walk(struct nameidata *nd)
580 {
581 	struct dentry *dentry = nd->path.dentry;
582 	int status;
583 
584 	if (nd->flags & LOOKUP_RCU) {
585 		nd->flags &= ~LOOKUP_RCU;
586 		if (!(nd->flags & LOOKUP_ROOT))
587 			nd->root.mnt = NULL;
588 		spin_lock(&dentry->d_lock);
589 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
590 			spin_unlock(&dentry->d_lock);
591 			unlock_rcu_walk();
592 			return -ECHILD;
593 		}
594 		BUG_ON(nd->inode != dentry->d_inode);
595 		spin_unlock(&dentry->d_lock);
596 		mntget(nd->path.mnt);
597 		unlock_rcu_walk();
598 	}
599 
600 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
601 		return 0;
602 
603 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
604 		return 0;
605 
606 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
607 		return 0;
608 
609 	/* Note: we do not d_invalidate() */
610 	status = d_revalidate(dentry, nd->flags);
611 	if (status > 0)
612 		return 0;
613 
614 	if (!status)
615 		status = -ESTALE;
616 
617 	path_put(&nd->path);
618 	return status;
619 }
620 
621 static __always_inline void set_root(struct nameidata *nd)
622 {
623 	if (!nd->root.mnt)
624 		get_fs_root(current->fs, &nd->root);
625 }
626 
627 static int link_path_walk(const char *, struct nameidata *);
628 
629 static __always_inline void set_root_rcu(struct nameidata *nd)
630 {
631 	if (!nd->root.mnt) {
632 		struct fs_struct *fs = current->fs;
633 		unsigned seq;
634 
635 		do {
636 			seq = read_seqcount_begin(&fs->seq);
637 			nd->root = fs->root;
638 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
639 		} while (read_seqcount_retry(&fs->seq, seq));
640 	}
641 }
642 
643 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
644 {
645 	int ret;
646 
647 	if (IS_ERR(link))
648 		goto fail;
649 
650 	if (*link == '/') {
651 		set_root(nd);
652 		path_put(&nd->path);
653 		nd->path = nd->root;
654 		path_get(&nd->root);
655 		nd->flags |= LOOKUP_JUMPED;
656 	}
657 	nd->inode = nd->path.dentry->d_inode;
658 
659 	ret = link_path_walk(link, nd);
660 	return ret;
661 fail:
662 	path_put(&nd->path);
663 	return PTR_ERR(link);
664 }
665 
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 	dput(path->dentry);
669 	if (path->mnt != nd->path.mnt)
670 		mntput(path->mnt);
671 }
672 
673 static inline void path_to_nameidata(const struct path *path,
674 					struct nameidata *nd)
675 {
676 	if (!(nd->flags & LOOKUP_RCU)) {
677 		dput(nd->path.dentry);
678 		if (nd->path.mnt != path->mnt)
679 			mntput(nd->path.mnt);
680 	}
681 	nd->path.mnt = path->mnt;
682 	nd->path.dentry = path->dentry;
683 }
684 
685 /*
686  * Helper to directly jump to a known parsed path from ->follow_link,
687  * caller must have taken a reference to path beforehand.
688  */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 	path_put(&nd->path);
692 
693 	nd->path = *path;
694 	nd->inode = nd->path.dentry->d_inode;
695 	nd->flags |= LOOKUP_JUMPED;
696 
697 	BUG_ON(nd->inode->i_op->follow_link);
698 }
699 
700 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
701 {
702 	struct inode *inode = link->dentry->d_inode;
703 	if (inode->i_op->put_link)
704 		inode->i_op->put_link(link->dentry, nd, cookie);
705 	path_put(link);
706 }
707 
708 int sysctl_protected_symlinks __read_mostly = 0;
709 int sysctl_protected_hardlinks __read_mostly = 0;
710 
711 /**
712  * may_follow_link - Check symlink following for unsafe situations
713  * @link: The path of the symlink
714  * @nd: nameidata pathwalk data
715  *
716  * In the case of the sysctl_protected_symlinks sysctl being enabled,
717  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
718  * in a sticky world-writable directory. This is to protect privileged
719  * processes from failing races against path names that may change out
720  * from under them by way of other users creating malicious symlinks.
721  * It will permit symlinks to be followed only when outside a sticky
722  * world-writable directory, or when the uid of the symlink and follower
723  * match, or when the directory owner matches the symlink's owner.
724  *
725  * Returns 0 if following the symlink is allowed, -ve on error.
726  */
727 static inline int may_follow_link(struct path *link, struct nameidata *nd)
728 {
729 	const struct inode *inode;
730 	const struct inode *parent;
731 
732 	if (!sysctl_protected_symlinks)
733 		return 0;
734 
735 	/* Allowed if owner and follower match. */
736 	inode = link->dentry->d_inode;
737 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
738 		return 0;
739 
740 	/* Allowed if parent directory not sticky and world-writable. */
741 	parent = nd->path.dentry->d_inode;
742 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
743 		return 0;
744 
745 	/* Allowed if parent directory and link owner match. */
746 	if (uid_eq(parent->i_uid, inode->i_uid))
747 		return 0;
748 
749 	audit_log_link_denied("follow_link", link);
750 	path_put_conditional(link, nd);
751 	path_put(&nd->path);
752 	return -EACCES;
753 }
754 
755 /**
756  * safe_hardlink_source - Check for safe hardlink conditions
757  * @inode: the source inode to hardlink from
758  *
759  * Return false if at least one of the following conditions:
760  *    - inode is not a regular file
761  *    - inode is setuid
762  *    - inode is setgid and group-exec
763  *    - access failure for read and write
764  *
765  * Otherwise returns true.
766  */
767 static bool safe_hardlink_source(struct inode *inode)
768 {
769 	umode_t mode = inode->i_mode;
770 
771 	/* Special files should not get pinned to the filesystem. */
772 	if (!S_ISREG(mode))
773 		return false;
774 
775 	/* Setuid files should not get pinned to the filesystem. */
776 	if (mode & S_ISUID)
777 		return false;
778 
779 	/* Executable setgid files should not get pinned to the filesystem. */
780 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
781 		return false;
782 
783 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
784 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
785 		return false;
786 
787 	return true;
788 }
789 
790 /**
791  * may_linkat - Check permissions for creating a hardlink
792  * @link: the source to hardlink from
793  *
794  * Block hardlink when all of:
795  *  - sysctl_protected_hardlinks enabled
796  *  - fsuid does not match inode
797  *  - hardlink source is unsafe (see safe_hardlink_source() above)
798  *  - not CAP_FOWNER
799  *
800  * Returns 0 if successful, -ve on error.
801  */
802 static int may_linkat(struct path *link)
803 {
804 	const struct cred *cred;
805 	struct inode *inode;
806 
807 	if (!sysctl_protected_hardlinks)
808 		return 0;
809 
810 	cred = current_cred();
811 	inode = link->dentry->d_inode;
812 
813 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
814 	 * otherwise, it must be a safe source.
815 	 */
816 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
817 	    capable(CAP_FOWNER))
818 		return 0;
819 
820 	audit_log_link_denied("linkat", link);
821 	return -EPERM;
822 }
823 
824 static __always_inline int
825 follow_link(struct path *link, struct nameidata *nd, void **p)
826 {
827 	struct dentry *dentry = link->dentry;
828 	int error;
829 	char *s;
830 
831 	BUG_ON(nd->flags & LOOKUP_RCU);
832 
833 	if (link->mnt == nd->path.mnt)
834 		mntget(link->mnt);
835 
836 	error = -ELOOP;
837 	if (unlikely(current->total_link_count >= 40))
838 		goto out_put_nd_path;
839 
840 	cond_resched();
841 	current->total_link_count++;
842 
843 	touch_atime(link);
844 	nd_set_link(nd, NULL);
845 
846 	error = security_inode_follow_link(link->dentry, nd);
847 	if (error)
848 		goto out_put_nd_path;
849 
850 	nd->last_type = LAST_BIND;
851 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
852 	error = PTR_ERR(*p);
853 	if (IS_ERR(*p))
854 		goto out_put_nd_path;
855 
856 	error = 0;
857 	s = nd_get_link(nd);
858 	if (s) {
859 		error = __vfs_follow_link(nd, s);
860 		if (unlikely(error))
861 			put_link(nd, link, *p);
862 	}
863 
864 	return error;
865 
866 out_put_nd_path:
867 	*p = NULL;
868 	path_put(&nd->path);
869 	path_put(link);
870 	return error;
871 }
872 
873 static int follow_up_rcu(struct path *path)
874 {
875 	struct mount *mnt = real_mount(path->mnt);
876 	struct mount *parent;
877 	struct dentry *mountpoint;
878 
879 	parent = mnt->mnt_parent;
880 	if (&parent->mnt == path->mnt)
881 		return 0;
882 	mountpoint = mnt->mnt_mountpoint;
883 	path->dentry = mountpoint;
884 	path->mnt = &parent->mnt;
885 	return 1;
886 }
887 
888 /*
889  * follow_up - Find the mountpoint of path's vfsmount
890  *
891  * Given a path, find the mountpoint of its source file system.
892  * Replace @path with the path of the mountpoint in the parent mount.
893  * Up is towards /.
894  *
895  * Return 1 if we went up a level and 0 if we were already at the
896  * root.
897  */
898 int follow_up(struct path *path)
899 {
900 	struct mount *mnt = real_mount(path->mnt);
901 	struct mount *parent;
902 	struct dentry *mountpoint;
903 
904 	br_read_lock(&vfsmount_lock);
905 	parent = mnt->mnt_parent;
906 	if (parent == mnt) {
907 		br_read_unlock(&vfsmount_lock);
908 		return 0;
909 	}
910 	mntget(&parent->mnt);
911 	mountpoint = dget(mnt->mnt_mountpoint);
912 	br_read_unlock(&vfsmount_lock);
913 	dput(path->dentry);
914 	path->dentry = mountpoint;
915 	mntput(path->mnt);
916 	path->mnt = &parent->mnt;
917 	return 1;
918 }
919 
920 /*
921  * Perform an automount
922  * - return -EISDIR to tell follow_managed() to stop and return the path we
923  *   were called with.
924  */
925 static int follow_automount(struct path *path, unsigned flags,
926 			    bool *need_mntput)
927 {
928 	struct vfsmount *mnt;
929 	int err;
930 
931 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
932 		return -EREMOTE;
933 
934 	/* We don't want to mount if someone's just doing a stat -
935 	 * unless they're stat'ing a directory and appended a '/' to
936 	 * the name.
937 	 *
938 	 * We do, however, want to mount if someone wants to open or
939 	 * create a file of any type under the mountpoint, wants to
940 	 * traverse through the mountpoint or wants to open the
941 	 * mounted directory.  Also, autofs may mark negative dentries
942 	 * as being automount points.  These will need the attentions
943 	 * of the daemon to instantiate them before they can be used.
944 	 */
945 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
946 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
947 	    path->dentry->d_inode)
948 		return -EISDIR;
949 
950 	current->total_link_count++;
951 	if (current->total_link_count >= 40)
952 		return -ELOOP;
953 
954 	mnt = path->dentry->d_op->d_automount(path);
955 	if (IS_ERR(mnt)) {
956 		/*
957 		 * The filesystem is allowed to return -EISDIR here to indicate
958 		 * it doesn't want to automount.  For instance, autofs would do
959 		 * this so that its userspace daemon can mount on this dentry.
960 		 *
961 		 * However, we can only permit this if it's a terminal point in
962 		 * the path being looked up; if it wasn't then the remainder of
963 		 * the path is inaccessible and we should say so.
964 		 */
965 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
966 			return -EREMOTE;
967 		return PTR_ERR(mnt);
968 	}
969 
970 	if (!mnt) /* mount collision */
971 		return 0;
972 
973 	if (!*need_mntput) {
974 		/* lock_mount() may release path->mnt on error */
975 		mntget(path->mnt);
976 		*need_mntput = true;
977 	}
978 	err = finish_automount(mnt, path);
979 
980 	switch (err) {
981 	case -EBUSY:
982 		/* Someone else made a mount here whilst we were busy */
983 		return 0;
984 	case 0:
985 		path_put(path);
986 		path->mnt = mnt;
987 		path->dentry = dget(mnt->mnt_root);
988 		return 0;
989 	default:
990 		return err;
991 	}
992 
993 }
994 
995 /*
996  * Handle a dentry that is managed in some way.
997  * - Flagged for transit management (autofs)
998  * - Flagged as mountpoint
999  * - Flagged as automount point
1000  *
1001  * This may only be called in refwalk mode.
1002  *
1003  * Serialization is taken care of in namespace.c
1004  */
1005 static int follow_managed(struct path *path, unsigned flags)
1006 {
1007 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1008 	unsigned managed;
1009 	bool need_mntput = false;
1010 	int ret = 0;
1011 
1012 	/* Given that we're not holding a lock here, we retain the value in a
1013 	 * local variable for each dentry as we look at it so that we don't see
1014 	 * the components of that value change under us */
1015 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1016 	       managed &= DCACHE_MANAGED_DENTRY,
1017 	       unlikely(managed != 0)) {
1018 		/* Allow the filesystem to manage the transit without i_mutex
1019 		 * being held. */
1020 		if (managed & DCACHE_MANAGE_TRANSIT) {
1021 			BUG_ON(!path->dentry->d_op);
1022 			BUG_ON(!path->dentry->d_op->d_manage);
1023 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1024 			if (ret < 0)
1025 				break;
1026 		}
1027 
1028 		/* Transit to a mounted filesystem. */
1029 		if (managed & DCACHE_MOUNTED) {
1030 			struct vfsmount *mounted = lookup_mnt(path);
1031 			if (mounted) {
1032 				dput(path->dentry);
1033 				if (need_mntput)
1034 					mntput(path->mnt);
1035 				path->mnt = mounted;
1036 				path->dentry = dget(mounted->mnt_root);
1037 				need_mntput = true;
1038 				continue;
1039 			}
1040 
1041 			/* Something is mounted on this dentry in another
1042 			 * namespace and/or whatever was mounted there in this
1043 			 * namespace got unmounted before we managed to get the
1044 			 * vfsmount_lock */
1045 		}
1046 
1047 		/* Handle an automount point */
1048 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1049 			ret = follow_automount(path, flags, &need_mntput);
1050 			if (ret < 0)
1051 				break;
1052 			continue;
1053 		}
1054 
1055 		/* We didn't change the current path point */
1056 		break;
1057 	}
1058 
1059 	if (need_mntput && path->mnt == mnt)
1060 		mntput(path->mnt);
1061 	if (ret == -EISDIR)
1062 		ret = 0;
1063 	return ret < 0 ? ret : need_mntput;
1064 }
1065 
1066 int follow_down_one(struct path *path)
1067 {
1068 	struct vfsmount *mounted;
1069 
1070 	mounted = lookup_mnt(path);
1071 	if (mounted) {
1072 		dput(path->dentry);
1073 		mntput(path->mnt);
1074 		path->mnt = mounted;
1075 		path->dentry = dget(mounted->mnt_root);
1076 		return 1;
1077 	}
1078 	return 0;
1079 }
1080 
1081 static inline bool managed_dentry_might_block(struct dentry *dentry)
1082 {
1083 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1084 		dentry->d_op->d_manage(dentry, true) < 0);
1085 }
1086 
1087 /*
1088  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1089  * we meet a managed dentry that would need blocking.
1090  */
1091 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1092 			       struct inode **inode)
1093 {
1094 	for (;;) {
1095 		struct mount *mounted;
1096 		/*
1097 		 * Don't forget we might have a non-mountpoint managed dentry
1098 		 * that wants to block transit.
1099 		 */
1100 		if (unlikely(managed_dentry_might_block(path->dentry)))
1101 			return false;
1102 
1103 		if (!d_mountpoint(path->dentry))
1104 			break;
1105 
1106 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1107 		if (!mounted)
1108 			break;
1109 		path->mnt = &mounted->mnt;
1110 		path->dentry = mounted->mnt.mnt_root;
1111 		nd->flags |= LOOKUP_JUMPED;
1112 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1113 		/*
1114 		 * Update the inode too. We don't need to re-check the
1115 		 * dentry sequence number here after this d_inode read,
1116 		 * because a mount-point is always pinned.
1117 		 */
1118 		*inode = path->dentry->d_inode;
1119 	}
1120 	return true;
1121 }
1122 
1123 static void follow_mount_rcu(struct nameidata *nd)
1124 {
1125 	while (d_mountpoint(nd->path.dentry)) {
1126 		struct mount *mounted;
1127 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1128 		if (!mounted)
1129 			break;
1130 		nd->path.mnt = &mounted->mnt;
1131 		nd->path.dentry = mounted->mnt.mnt_root;
1132 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1133 	}
1134 }
1135 
1136 static int follow_dotdot_rcu(struct nameidata *nd)
1137 {
1138 	set_root_rcu(nd);
1139 
1140 	while (1) {
1141 		if (nd->path.dentry == nd->root.dentry &&
1142 		    nd->path.mnt == nd->root.mnt) {
1143 			break;
1144 		}
1145 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1146 			struct dentry *old = nd->path.dentry;
1147 			struct dentry *parent = old->d_parent;
1148 			unsigned seq;
1149 
1150 			seq = read_seqcount_begin(&parent->d_seq);
1151 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1152 				goto failed;
1153 			nd->path.dentry = parent;
1154 			nd->seq = seq;
1155 			break;
1156 		}
1157 		if (!follow_up_rcu(&nd->path))
1158 			break;
1159 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1160 	}
1161 	follow_mount_rcu(nd);
1162 	nd->inode = nd->path.dentry->d_inode;
1163 	return 0;
1164 
1165 failed:
1166 	nd->flags &= ~LOOKUP_RCU;
1167 	if (!(nd->flags & LOOKUP_ROOT))
1168 		nd->root.mnt = NULL;
1169 	unlock_rcu_walk();
1170 	return -ECHILD;
1171 }
1172 
1173 /*
1174  * Follow down to the covering mount currently visible to userspace.  At each
1175  * point, the filesystem owning that dentry may be queried as to whether the
1176  * caller is permitted to proceed or not.
1177  */
1178 int follow_down(struct path *path)
1179 {
1180 	unsigned managed;
1181 	int ret;
1182 
1183 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1184 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1185 		/* Allow the filesystem to manage the transit without i_mutex
1186 		 * being held.
1187 		 *
1188 		 * We indicate to the filesystem if someone is trying to mount
1189 		 * something here.  This gives autofs the chance to deny anyone
1190 		 * other than its daemon the right to mount on its
1191 		 * superstructure.
1192 		 *
1193 		 * The filesystem may sleep at this point.
1194 		 */
1195 		if (managed & DCACHE_MANAGE_TRANSIT) {
1196 			BUG_ON(!path->dentry->d_op);
1197 			BUG_ON(!path->dentry->d_op->d_manage);
1198 			ret = path->dentry->d_op->d_manage(
1199 				path->dentry, false);
1200 			if (ret < 0)
1201 				return ret == -EISDIR ? 0 : ret;
1202 		}
1203 
1204 		/* Transit to a mounted filesystem. */
1205 		if (managed & DCACHE_MOUNTED) {
1206 			struct vfsmount *mounted = lookup_mnt(path);
1207 			if (!mounted)
1208 				break;
1209 			dput(path->dentry);
1210 			mntput(path->mnt);
1211 			path->mnt = mounted;
1212 			path->dentry = dget(mounted->mnt_root);
1213 			continue;
1214 		}
1215 
1216 		/* Don't handle automount points here */
1217 		break;
1218 	}
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1224  */
1225 static void follow_mount(struct path *path)
1226 {
1227 	while (d_mountpoint(path->dentry)) {
1228 		struct vfsmount *mounted = lookup_mnt(path);
1229 		if (!mounted)
1230 			break;
1231 		dput(path->dentry);
1232 		mntput(path->mnt);
1233 		path->mnt = mounted;
1234 		path->dentry = dget(mounted->mnt_root);
1235 	}
1236 }
1237 
1238 static void follow_dotdot(struct nameidata *nd)
1239 {
1240 	set_root(nd);
1241 
1242 	while(1) {
1243 		struct dentry *old = nd->path.dentry;
1244 
1245 		if (nd->path.dentry == nd->root.dentry &&
1246 		    nd->path.mnt == nd->root.mnt) {
1247 			break;
1248 		}
1249 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1250 			/* rare case of legitimate dget_parent()... */
1251 			nd->path.dentry = dget_parent(nd->path.dentry);
1252 			dput(old);
1253 			break;
1254 		}
1255 		if (!follow_up(&nd->path))
1256 			break;
1257 	}
1258 	follow_mount(&nd->path);
1259 	nd->inode = nd->path.dentry->d_inode;
1260 }
1261 
1262 /*
1263  * This looks up the name in dcache, possibly revalidates the old dentry and
1264  * allocates a new one if not found or not valid.  In the need_lookup argument
1265  * returns whether i_op->lookup is necessary.
1266  *
1267  * dir->d_inode->i_mutex must be held
1268  */
1269 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1270 				    unsigned int flags, bool *need_lookup)
1271 {
1272 	struct dentry *dentry;
1273 	int error;
1274 
1275 	*need_lookup = false;
1276 	dentry = d_lookup(dir, name);
1277 	if (dentry) {
1278 		if (d_need_lookup(dentry)) {
1279 			*need_lookup = true;
1280 		} else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1281 			error = d_revalidate(dentry, flags);
1282 			if (unlikely(error <= 0)) {
1283 				if (error < 0) {
1284 					dput(dentry);
1285 					return ERR_PTR(error);
1286 				} else if (!d_invalidate(dentry)) {
1287 					dput(dentry);
1288 					dentry = NULL;
1289 				}
1290 			}
1291 		}
1292 	}
1293 
1294 	if (!dentry) {
1295 		dentry = d_alloc(dir, name);
1296 		if (unlikely(!dentry))
1297 			return ERR_PTR(-ENOMEM);
1298 
1299 		*need_lookup = true;
1300 	}
1301 	return dentry;
1302 }
1303 
1304 /*
1305  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1306  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1307  *
1308  * dir->d_inode->i_mutex must be held
1309  */
1310 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1311 				  unsigned int flags)
1312 {
1313 	struct dentry *old;
1314 
1315 	/* Don't create child dentry for a dead directory. */
1316 	if (unlikely(IS_DEADDIR(dir))) {
1317 		dput(dentry);
1318 		return ERR_PTR(-ENOENT);
1319 	}
1320 
1321 	old = dir->i_op->lookup(dir, dentry, flags);
1322 	if (unlikely(old)) {
1323 		dput(dentry);
1324 		dentry = old;
1325 	}
1326 	return dentry;
1327 }
1328 
1329 static struct dentry *__lookup_hash(struct qstr *name,
1330 		struct dentry *base, unsigned int flags)
1331 {
1332 	bool need_lookup;
1333 	struct dentry *dentry;
1334 
1335 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1336 	if (!need_lookup)
1337 		return dentry;
1338 
1339 	return lookup_real(base->d_inode, dentry, flags);
1340 }
1341 
1342 /*
1343  *  It's more convoluted than I'd like it to be, but... it's still fairly
1344  *  small and for now I'd prefer to have fast path as straight as possible.
1345  *  It _is_ time-critical.
1346  */
1347 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1348 		       struct path *path, struct inode **inode)
1349 {
1350 	struct vfsmount *mnt = nd->path.mnt;
1351 	struct dentry *dentry, *parent = nd->path.dentry;
1352 	int need_reval = 1;
1353 	int status = 1;
1354 	int err;
1355 
1356 	/*
1357 	 * Rename seqlock is not required here because in the off chance
1358 	 * of a false negative due to a concurrent rename, we're going to
1359 	 * do the non-racy lookup, below.
1360 	 */
1361 	if (nd->flags & LOOKUP_RCU) {
1362 		unsigned seq;
1363 		dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1364 		if (!dentry)
1365 			goto unlazy;
1366 
1367 		/*
1368 		 * This sequence count validates that the inode matches
1369 		 * the dentry name information from lookup.
1370 		 */
1371 		*inode = dentry->d_inode;
1372 		if (read_seqcount_retry(&dentry->d_seq, seq))
1373 			return -ECHILD;
1374 
1375 		/*
1376 		 * This sequence count validates that the parent had no
1377 		 * changes while we did the lookup of the dentry above.
1378 		 *
1379 		 * The memory barrier in read_seqcount_begin of child is
1380 		 *  enough, we can use __read_seqcount_retry here.
1381 		 */
1382 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1383 			return -ECHILD;
1384 		nd->seq = seq;
1385 
1386 		if (unlikely(d_need_lookup(dentry)))
1387 			goto unlazy;
1388 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1389 			status = d_revalidate(dentry, nd->flags);
1390 			if (unlikely(status <= 0)) {
1391 				if (status != -ECHILD)
1392 					need_reval = 0;
1393 				goto unlazy;
1394 			}
1395 		}
1396 		path->mnt = mnt;
1397 		path->dentry = dentry;
1398 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1399 			goto unlazy;
1400 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1401 			goto unlazy;
1402 		return 0;
1403 unlazy:
1404 		if (unlazy_walk(nd, dentry))
1405 			return -ECHILD;
1406 	} else {
1407 		dentry = __d_lookup(parent, name);
1408 	}
1409 
1410 	if (unlikely(!dentry))
1411 		goto need_lookup;
1412 
1413 	if (unlikely(d_need_lookup(dentry))) {
1414 		dput(dentry);
1415 		goto need_lookup;
1416 	}
1417 
1418 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1419 		status = d_revalidate(dentry, nd->flags);
1420 	if (unlikely(status <= 0)) {
1421 		if (status < 0) {
1422 			dput(dentry);
1423 			return status;
1424 		}
1425 		if (!d_invalidate(dentry)) {
1426 			dput(dentry);
1427 			goto need_lookup;
1428 		}
1429 	}
1430 
1431 	path->mnt = mnt;
1432 	path->dentry = dentry;
1433 	err = follow_managed(path, nd->flags);
1434 	if (unlikely(err < 0)) {
1435 		path_put_conditional(path, nd);
1436 		return err;
1437 	}
1438 	if (err)
1439 		nd->flags |= LOOKUP_JUMPED;
1440 	*inode = path->dentry->d_inode;
1441 	return 0;
1442 
1443 need_lookup:
1444 	return 1;
1445 }
1446 
1447 /* Fast lookup failed, do it the slow way */
1448 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1449 		       struct path *path)
1450 {
1451 	struct dentry *dentry, *parent;
1452 	int err;
1453 
1454 	parent = nd->path.dentry;
1455 	BUG_ON(nd->inode != parent->d_inode);
1456 
1457 	mutex_lock(&parent->d_inode->i_mutex);
1458 	dentry = __lookup_hash(name, parent, nd->flags);
1459 	mutex_unlock(&parent->d_inode->i_mutex);
1460 	if (IS_ERR(dentry))
1461 		return PTR_ERR(dentry);
1462 	path->mnt = nd->path.mnt;
1463 	path->dentry = dentry;
1464 	err = follow_managed(path, nd->flags);
1465 	if (unlikely(err < 0)) {
1466 		path_put_conditional(path, nd);
1467 		return err;
1468 	}
1469 	if (err)
1470 		nd->flags |= LOOKUP_JUMPED;
1471 	return 0;
1472 }
1473 
1474 static inline int may_lookup(struct nameidata *nd)
1475 {
1476 	if (nd->flags & LOOKUP_RCU) {
1477 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1478 		if (err != -ECHILD)
1479 			return err;
1480 		if (unlazy_walk(nd, NULL))
1481 			return -ECHILD;
1482 	}
1483 	return inode_permission(nd->inode, MAY_EXEC);
1484 }
1485 
1486 static inline int handle_dots(struct nameidata *nd, int type)
1487 {
1488 	if (type == LAST_DOTDOT) {
1489 		if (nd->flags & LOOKUP_RCU) {
1490 			if (follow_dotdot_rcu(nd))
1491 				return -ECHILD;
1492 		} else
1493 			follow_dotdot(nd);
1494 	}
1495 	return 0;
1496 }
1497 
1498 static void terminate_walk(struct nameidata *nd)
1499 {
1500 	if (!(nd->flags & LOOKUP_RCU)) {
1501 		path_put(&nd->path);
1502 	} else {
1503 		nd->flags &= ~LOOKUP_RCU;
1504 		if (!(nd->flags & LOOKUP_ROOT))
1505 			nd->root.mnt = NULL;
1506 		unlock_rcu_walk();
1507 	}
1508 }
1509 
1510 /*
1511  * Do we need to follow links? We _really_ want to be able
1512  * to do this check without having to look at inode->i_op,
1513  * so we keep a cache of "no, this doesn't need follow_link"
1514  * for the common case.
1515  */
1516 static inline int should_follow_link(struct inode *inode, int follow)
1517 {
1518 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1519 		if (likely(inode->i_op->follow_link))
1520 			return follow;
1521 
1522 		/* This gets set once for the inode lifetime */
1523 		spin_lock(&inode->i_lock);
1524 		inode->i_opflags |= IOP_NOFOLLOW;
1525 		spin_unlock(&inode->i_lock);
1526 	}
1527 	return 0;
1528 }
1529 
1530 static inline int walk_component(struct nameidata *nd, struct path *path,
1531 		struct qstr *name, int type, int follow)
1532 {
1533 	struct inode *inode;
1534 	int err;
1535 	/*
1536 	 * "." and ".." are special - ".." especially so because it has
1537 	 * to be able to know about the current root directory and
1538 	 * parent relationships.
1539 	 */
1540 	if (unlikely(type != LAST_NORM))
1541 		return handle_dots(nd, type);
1542 	err = lookup_fast(nd, name, path, &inode);
1543 	if (unlikely(err)) {
1544 		if (err < 0)
1545 			goto out_err;
1546 
1547 		err = lookup_slow(nd, name, path);
1548 		if (err < 0)
1549 			goto out_err;
1550 
1551 		inode = path->dentry->d_inode;
1552 	}
1553 	err = -ENOENT;
1554 	if (!inode)
1555 		goto out_path_put;
1556 
1557 	if (should_follow_link(inode, follow)) {
1558 		if (nd->flags & LOOKUP_RCU) {
1559 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1560 				err = -ECHILD;
1561 				goto out_err;
1562 			}
1563 		}
1564 		BUG_ON(inode != path->dentry->d_inode);
1565 		return 1;
1566 	}
1567 	path_to_nameidata(path, nd);
1568 	nd->inode = inode;
1569 	return 0;
1570 
1571 out_path_put:
1572 	path_to_nameidata(path, nd);
1573 out_err:
1574 	terminate_walk(nd);
1575 	return err;
1576 }
1577 
1578 /*
1579  * This limits recursive symlink follows to 8, while
1580  * limiting consecutive symlinks to 40.
1581  *
1582  * Without that kind of total limit, nasty chains of consecutive
1583  * symlinks can cause almost arbitrarily long lookups.
1584  */
1585 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1586 {
1587 	int res;
1588 
1589 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1590 		path_put_conditional(path, nd);
1591 		path_put(&nd->path);
1592 		return -ELOOP;
1593 	}
1594 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1595 
1596 	nd->depth++;
1597 	current->link_count++;
1598 
1599 	do {
1600 		struct path link = *path;
1601 		void *cookie;
1602 
1603 		res = follow_link(&link, nd, &cookie);
1604 		if (res)
1605 			break;
1606 		res = walk_component(nd, path, &nd->last,
1607 				     nd->last_type, LOOKUP_FOLLOW);
1608 		put_link(nd, &link, cookie);
1609 	} while (res > 0);
1610 
1611 	current->link_count--;
1612 	nd->depth--;
1613 	return res;
1614 }
1615 
1616 /*
1617  * We really don't want to look at inode->i_op->lookup
1618  * when we don't have to. So we keep a cache bit in
1619  * the inode ->i_opflags field that says "yes, we can
1620  * do lookup on this inode".
1621  */
1622 static inline int can_lookup(struct inode *inode)
1623 {
1624 	if (likely(inode->i_opflags & IOP_LOOKUP))
1625 		return 1;
1626 	if (likely(!inode->i_op->lookup))
1627 		return 0;
1628 
1629 	/* We do this once for the lifetime of the inode */
1630 	spin_lock(&inode->i_lock);
1631 	inode->i_opflags |= IOP_LOOKUP;
1632 	spin_unlock(&inode->i_lock);
1633 	return 1;
1634 }
1635 
1636 /*
1637  * We can do the critical dentry name comparison and hashing
1638  * operations one word at a time, but we are limited to:
1639  *
1640  * - Architectures with fast unaligned word accesses. We could
1641  *   do a "get_unaligned()" if this helps and is sufficiently
1642  *   fast.
1643  *
1644  * - Little-endian machines (so that we can generate the mask
1645  *   of low bytes efficiently). Again, we *could* do a byte
1646  *   swapping load on big-endian architectures if that is not
1647  *   expensive enough to make the optimization worthless.
1648  *
1649  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1650  *   do not trap on the (extremely unlikely) case of a page
1651  *   crossing operation.
1652  *
1653  * - Furthermore, we need an efficient 64-bit compile for the
1654  *   64-bit case in order to generate the "number of bytes in
1655  *   the final mask". Again, that could be replaced with a
1656  *   efficient population count instruction or similar.
1657  */
1658 #ifdef CONFIG_DCACHE_WORD_ACCESS
1659 
1660 #include <asm/word-at-a-time.h>
1661 
1662 #ifdef CONFIG_64BIT
1663 
1664 static inline unsigned int fold_hash(unsigned long hash)
1665 {
1666 	hash += hash >> (8*sizeof(int));
1667 	return hash;
1668 }
1669 
1670 #else	/* 32-bit case */
1671 
1672 #define fold_hash(x) (x)
1673 
1674 #endif
1675 
1676 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1677 {
1678 	unsigned long a, mask;
1679 	unsigned long hash = 0;
1680 
1681 	for (;;) {
1682 		a = load_unaligned_zeropad(name);
1683 		if (len < sizeof(unsigned long))
1684 			break;
1685 		hash += a;
1686 		hash *= 9;
1687 		name += sizeof(unsigned long);
1688 		len -= sizeof(unsigned long);
1689 		if (!len)
1690 			goto done;
1691 	}
1692 	mask = ~(~0ul << len*8);
1693 	hash += mask & a;
1694 done:
1695 	return fold_hash(hash);
1696 }
1697 EXPORT_SYMBOL(full_name_hash);
1698 
1699 /*
1700  * Calculate the length and hash of the path component, and
1701  * return the length of the component;
1702  */
1703 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1704 {
1705 	unsigned long a, b, adata, bdata, mask, hash, len;
1706 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1707 
1708 	hash = a = 0;
1709 	len = -sizeof(unsigned long);
1710 	do {
1711 		hash = (hash + a) * 9;
1712 		len += sizeof(unsigned long);
1713 		a = load_unaligned_zeropad(name+len);
1714 		b = a ^ REPEAT_BYTE('/');
1715 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1716 
1717 	adata = prep_zero_mask(a, adata, &constants);
1718 	bdata = prep_zero_mask(b, bdata, &constants);
1719 
1720 	mask = create_zero_mask(adata | bdata);
1721 
1722 	hash += a & zero_bytemask(mask);
1723 	*hashp = fold_hash(hash);
1724 
1725 	return len + find_zero(mask);
1726 }
1727 
1728 #else
1729 
1730 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1731 {
1732 	unsigned long hash = init_name_hash();
1733 	while (len--)
1734 		hash = partial_name_hash(*name++, hash);
1735 	return end_name_hash(hash);
1736 }
1737 EXPORT_SYMBOL(full_name_hash);
1738 
1739 /*
1740  * We know there's a real path component here of at least
1741  * one character.
1742  */
1743 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1744 {
1745 	unsigned long hash = init_name_hash();
1746 	unsigned long len = 0, c;
1747 
1748 	c = (unsigned char)*name;
1749 	do {
1750 		len++;
1751 		hash = partial_name_hash(c, hash);
1752 		c = (unsigned char)name[len];
1753 	} while (c && c != '/');
1754 	*hashp = end_name_hash(hash);
1755 	return len;
1756 }
1757 
1758 #endif
1759 
1760 /*
1761  * Name resolution.
1762  * This is the basic name resolution function, turning a pathname into
1763  * the final dentry. We expect 'base' to be positive and a directory.
1764  *
1765  * Returns 0 and nd will have valid dentry and mnt on success.
1766  * Returns error and drops reference to input namei data on failure.
1767  */
1768 static int link_path_walk(const char *name, struct nameidata *nd)
1769 {
1770 	struct path next;
1771 	int err;
1772 
1773 	while (*name=='/')
1774 		name++;
1775 	if (!*name)
1776 		return 0;
1777 
1778 	/* At this point we know we have a real path component. */
1779 	for(;;) {
1780 		struct qstr this;
1781 		long len;
1782 		int type;
1783 
1784 		err = may_lookup(nd);
1785  		if (err)
1786 			break;
1787 
1788 		len = hash_name(name, &this.hash);
1789 		this.name = name;
1790 		this.len = len;
1791 
1792 		type = LAST_NORM;
1793 		if (name[0] == '.') switch (len) {
1794 			case 2:
1795 				if (name[1] == '.') {
1796 					type = LAST_DOTDOT;
1797 					nd->flags |= LOOKUP_JUMPED;
1798 				}
1799 				break;
1800 			case 1:
1801 				type = LAST_DOT;
1802 		}
1803 		if (likely(type == LAST_NORM)) {
1804 			struct dentry *parent = nd->path.dentry;
1805 			nd->flags &= ~LOOKUP_JUMPED;
1806 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1807 				err = parent->d_op->d_hash(parent, nd->inode,
1808 							   &this);
1809 				if (err < 0)
1810 					break;
1811 			}
1812 		}
1813 
1814 		if (!name[len])
1815 			goto last_component;
1816 		/*
1817 		 * If it wasn't NUL, we know it was '/'. Skip that
1818 		 * slash, and continue until no more slashes.
1819 		 */
1820 		do {
1821 			len++;
1822 		} while (unlikely(name[len] == '/'));
1823 		if (!name[len])
1824 			goto last_component;
1825 		name += len;
1826 
1827 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1828 		if (err < 0)
1829 			return err;
1830 
1831 		if (err) {
1832 			err = nested_symlink(&next, nd);
1833 			if (err)
1834 				return err;
1835 		}
1836 		if (can_lookup(nd->inode))
1837 			continue;
1838 		err = -ENOTDIR;
1839 		break;
1840 		/* here ends the main loop */
1841 
1842 last_component:
1843 		nd->last = this;
1844 		nd->last_type = type;
1845 		return 0;
1846 	}
1847 	terminate_walk(nd);
1848 	return err;
1849 }
1850 
1851 static int path_init(int dfd, const char *name, unsigned int flags,
1852 		     struct nameidata *nd, struct file **fp)
1853 {
1854 	int retval = 0;
1855 
1856 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1857 	nd->flags = flags | LOOKUP_JUMPED;
1858 	nd->depth = 0;
1859 	if (flags & LOOKUP_ROOT) {
1860 		struct inode *inode = nd->root.dentry->d_inode;
1861 		if (*name) {
1862 			if (!inode->i_op->lookup)
1863 				return -ENOTDIR;
1864 			retval = inode_permission(inode, MAY_EXEC);
1865 			if (retval)
1866 				return retval;
1867 		}
1868 		nd->path = nd->root;
1869 		nd->inode = inode;
1870 		if (flags & LOOKUP_RCU) {
1871 			lock_rcu_walk();
1872 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1873 		} else {
1874 			path_get(&nd->path);
1875 		}
1876 		return 0;
1877 	}
1878 
1879 	nd->root.mnt = NULL;
1880 
1881 	if (*name=='/') {
1882 		if (flags & LOOKUP_RCU) {
1883 			lock_rcu_walk();
1884 			set_root_rcu(nd);
1885 		} else {
1886 			set_root(nd);
1887 			path_get(&nd->root);
1888 		}
1889 		nd->path = nd->root;
1890 	} else if (dfd == AT_FDCWD) {
1891 		if (flags & LOOKUP_RCU) {
1892 			struct fs_struct *fs = current->fs;
1893 			unsigned seq;
1894 
1895 			lock_rcu_walk();
1896 
1897 			do {
1898 				seq = read_seqcount_begin(&fs->seq);
1899 				nd->path = fs->pwd;
1900 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1901 			} while (read_seqcount_retry(&fs->seq, seq));
1902 		} else {
1903 			get_fs_pwd(current->fs, &nd->path);
1904 		}
1905 	} else {
1906 		struct fd f = fdget_raw(dfd);
1907 		struct dentry *dentry;
1908 
1909 		if (!f.file)
1910 			return -EBADF;
1911 
1912 		dentry = f.file->f_path.dentry;
1913 
1914 		if (*name) {
1915 			if (!S_ISDIR(dentry->d_inode->i_mode)) {
1916 				fdput(f);
1917 				return -ENOTDIR;
1918 			}
1919 
1920 			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1921 			if (retval) {
1922 				fdput(f);
1923 				return retval;
1924 			}
1925 		}
1926 
1927 		nd->path = f.file->f_path;
1928 		if (flags & LOOKUP_RCU) {
1929 			if (f.need_put)
1930 				*fp = f.file;
1931 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1932 			lock_rcu_walk();
1933 		} else {
1934 			path_get(&nd->path);
1935 			fdput(f);
1936 		}
1937 	}
1938 
1939 	nd->inode = nd->path.dentry->d_inode;
1940 	return 0;
1941 }
1942 
1943 static inline int lookup_last(struct nameidata *nd, struct path *path)
1944 {
1945 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1946 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1947 
1948 	nd->flags &= ~LOOKUP_PARENT;
1949 	return walk_component(nd, path, &nd->last, nd->last_type,
1950 					nd->flags & LOOKUP_FOLLOW);
1951 }
1952 
1953 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1954 static int path_lookupat(int dfd, const char *name,
1955 				unsigned int flags, struct nameidata *nd)
1956 {
1957 	struct file *base = NULL;
1958 	struct path path;
1959 	int err;
1960 
1961 	/*
1962 	 * Path walking is largely split up into 2 different synchronisation
1963 	 * schemes, rcu-walk and ref-walk (explained in
1964 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1965 	 * path walk code, but some things particularly setup, cleanup, and
1966 	 * following mounts are sufficiently divergent that functions are
1967 	 * duplicated. Typically there is a function foo(), and its RCU
1968 	 * analogue, foo_rcu().
1969 	 *
1970 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1971 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1972 	 * be handled by restarting a traditional ref-walk (which will always
1973 	 * be able to complete).
1974 	 */
1975 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1976 
1977 	if (unlikely(err))
1978 		return err;
1979 
1980 	current->total_link_count = 0;
1981 	err = link_path_walk(name, nd);
1982 
1983 	if (!err && !(flags & LOOKUP_PARENT)) {
1984 		err = lookup_last(nd, &path);
1985 		while (err > 0) {
1986 			void *cookie;
1987 			struct path link = path;
1988 			err = may_follow_link(&link, nd);
1989 			if (unlikely(err))
1990 				break;
1991 			nd->flags |= LOOKUP_PARENT;
1992 			err = follow_link(&link, nd, &cookie);
1993 			if (err)
1994 				break;
1995 			err = lookup_last(nd, &path);
1996 			put_link(nd, &link, cookie);
1997 		}
1998 	}
1999 
2000 	if (!err)
2001 		err = complete_walk(nd);
2002 
2003 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
2004 		if (!nd->inode->i_op->lookup) {
2005 			path_put(&nd->path);
2006 			err = -ENOTDIR;
2007 		}
2008 	}
2009 
2010 	if (base)
2011 		fput(base);
2012 
2013 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2014 		path_put(&nd->root);
2015 		nd->root.mnt = NULL;
2016 	}
2017 	return err;
2018 }
2019 
2020 static int filename_lookup(int dfd, struct filename *name,
2021 				unsigned int flags, struct nameidata *nd)
2022 {
2023 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2024 	if (unlikely(retval == -ECHILD))
2025 		retval = path_lookupat(dfd, name->name, flags, nd);
2026 	if (unlikely(retval == -ESTALE))
2027 		retval = path_lookupat(dfd, name->name,
2028 						flags | LOOKUP_REVAL, nd);
2029 
2030 	if (likely(!retval))
2031 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2032 	return retval;
2033 }
2034 
2035 static int do_path_lookup(int dfd, const char *name,
2036 				unsigned int flags, struct nameidata *nd)
2037 {
2038 	struct filename filename = { .name = name };
2039 
2040 	return filename_lookup(dfd, &filename, flags, nd);
2041 }
2042 
2043 /* does lookup, returns the object with parent locked */
2044 struct dentry *kern_path_locked(const char *name, struct path *path)
2045 {
2046 	struct nameidata nd;
2047 	struct dentry *d;
2048 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2049 	if (err)
2050 		return ERR_PTR(err);
2051 	if (nd.last_type != LAST_NORM) {
2052 		path_put(&nd.path);
2053 		return ERR_PTR(-EINVAL);
2054 	}
2055 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2056 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2057 	if (IS_ERR(d)) {
2058 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2059 		path_put(&nd.path);
2060 		return d;
2061 	}
2062 	*path = nd.path;
2063 	return d;
2064 }
2065 
2066 int kern_path(const char *name, unsigned int flags, struct path *path)
2067 {
2068 	struct nameidata nd;
2069 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2070 	if (!res)
2071 		*path = nd.path;
2072 	return res;
2073 }
2074 
2075 /**
2076  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2077  * @dentry:  pointer to dentry of the base directory
2078  * @mnt: pointer to vfs mount of the base directory
2079  * @name: pointer to file name
2080  * @flags: lookup flags
2081  * @path: pointer to struct path to fill
2082  */
2083 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2084 		    const char *name, unsigned int flags,
2085 		    struct path *path)
2086 {
2087 	struct nameidata nd;
2088 	int err;
2089 	nd.root.dentry = dentry;
2090 	nd.root.mnt = mnt;
2091 	BUG_ON(flags & LOOKUP_PARENT);
2092 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2093 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2094 	if (!err)
2095 		*path = nd.path;
2096 	return err;
2097 }
2098 
2099 /*
2100  * Restricted form of lookup. Doesn't follow links, single-component only,
2101  * needs parent already locked. Doesn't follow mounts.
2102  * SMP-safe.
2103  */
2104 static struct dentry *lookup_hash(struct nameidata *nd)
2105 {
2106 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2107 }
2108 
2109 /**
2110  * lookup_one_len - filesystem helper to lookup single pathname component
2111  * @name:	pathname component to lookup
2112  * @base:	base directory to lookup from
2113  * @len:	maximum length @len should be interpreted to
2114  *
2115  * Note that this routine is purely a helper for filesystem usage and should
2116  * not be called by generic code.  Also note that by using this function the
2117  * nameidata argument is passed to the filesystem methods and a filesystem
2118  * using this helper needs to be prepared for that.
2119  */
2120 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2121 {
2122 	struct qstr this;
2123 	unsigned int c;
2124 	int err;
2125 
2126 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2127 
2128 	this.name = name;
2129 	this.len = len;
2130 	this.hash = full_name_hash(name, len);
2131 	if (!len)
2132 		return ERR_PTR(-EACCES);
2133 
2134 	while (len--) {
2135 		c = *(const unsigned char *)name++;
2136 		if (c == '/' || c == '\0')
2137 			return ERR_PTR(-EACCES);
2138 	}
2139 	/*
2140 	 * See if the low-level filesystem might want
2141 	 * to use its own hash..
2142 	 */
2143 	if (base->d_flags & DCACHE_OP_HASH) {
2144 		int err = base->d_op->d_hash(base, base->d_inode, &this);
2145 		if (err < 0)
2146 			return ERR_PTR(err);
2147 	}
2148 
2149 	err = inode_permission(base->d_inode, MAY_EXEC);
2150 	if (err)
2151 		return ERR_PTR(err);
2152 
2153 	return __lookup_hash(&this, base, 0);
2154 }
2155 
2156 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2157 		 struct path *path, int *empty)
2158 {
2159 	struct nameidata nd;
2160 	struct filename *tmp = getname_flags(name, flags, empty);
2161 	int err = PTR_ERR(tmp);
2162 	if (!IS_ERR(tmp)) {
2163 
2164 		BUG_ON(flags & LOOKUP_PARENT);
2165 
2166 		err = filename_lookup(dfd, tmp, flags, &nd);
2167 		putname(tmp);
2168 		if (!err)
2169 			*path = nd.path;
2170 	}
2171 	return err;
2172 }
2173 
2174 int user_path_at(int dfd, const char __user *name, unsigned flags,
2175 		 struct path *path)
2176 {
2177 	return user_path_at_empty(dfd, name, flags, path, NULL);
2178 }
2179 
2180 /*
2181  * NB: most callers don't do anything directly with the reference to the
2182  *     to struct filename, but the nd->last pointer points into the name string
2183  *     allocated by getname. So we must hold the reference to it until all
2184  *     path-walking is complete.
2185  */
2186 static struct filename *
2187 user_path_parent(int dfd, const char __user *path, struct nameidata *nd)
2188 {
2189 	struct filename *s = getname(path);
2190 	int error;
2191 
2192 	if (IS_ERR(s))
2193 		return s;
2194 
2195 	error = filename_lookup(dfd, s, LOOKUP_PARENT, nd);
2196 	if (error) {
2197 		putname(s);
2198 		return ERR_PTR(error);
2199 	}
2200 
2201 	return s;
2202 }
2203 
2204 /*
2205  * It's inline, so penalty for filesystems that don't use sticky bit is
2206  * minimal.
2207  */
2208 static inline int check_sticky(struct inode *dir, struct inode *inode)
2209 {
2210 	kuid_t fsuid = current_fsuid();
2211 
2212 	if (!(dir->i_mode & S_ISVTX))
2213 		return 0;
2214 	if (uid_eq(inode->i_uid, fsuid))
2215 		return 0;
2216 	if (uid_eq(dir->i_uid, fsuid))
2217 		return 0;
2218 	return !inode_capable(inode, CAP_FOWNER);
2219 }
2220 
2221 /*
2222  *	Check whether we can remove a link victim from directory dir, check
2223  *  whether the type of victim is right.
2224  *  1. We can't do it if dir is read-only (done in permission())
2225  *  2. We should have write and exec permissions on dir
2226  *  3. We can't remove anything from append-only dir
2227  *  4. We can't do anything with immutable dir (done in permission())
2228  *  5. If the sticky bit on dir is set we should either
2229  *	a. be owner of dir, or
2230  *	b. be owner of victim, or
2231  *	c. have CAP_FOWNER capability
2232  *  6. If the victim is append-only or immutable we can't do antyhing with
2233  *     links pointing to it.
2234  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2235  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2236  *  9. We can't remove a root or mountpoint.
2237  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2238  *     nfs_async_unlink().
2239  */
2240 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2241 {
2242 	int error;
2243 
2244 	if (!victim->d_inode)
2245 		return -ENOENT;
2246 
2247 	BUG_ON(victim->d_parent->d_inode != dir);
2248 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2249 
2250 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2251 	if (error)
2252 		return error;
2253 	if (IS_APPEND(dir))
2254 		return -EPERM;
2255 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2256 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2257 		return -EPERM;
2258 	if (isdir) {
2259 		if (!S_ISDIR(victim->d_inode->i_mode))
2260 			return -ENOTDIR;
2261 		if (IS_ROOT(victim))
2262 			return -EBUSY;
2263 	} else if (S_ISDIR(victim->d_inode->i_mode))
2264 		return -EISDIR;
2265 	if (IS_DEADDIR(dir))
2266 		return -ENOENT;
2267 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2268 		return -EBUSY;
2269 	return 0;
2270 }
2271 
2272 /*	Check whether we can create an object with dentry child in directory
2273  *  dir.
2274  *  1. We can't do it if child already exists (open has special treatment for
2275  *     this case, but since we are inlined it's OK)
2276  *  2. We can't do it if dir is read-only (done in permission())
2277  *  3. We should have write and exec permissions on dir
2278  *  4. We can't do it if dir is immutable (done in permission())
2279  */
2280 static inline int may_create(struct inode *dir, struct dentry *child)
2281 {
2282 	if (child->d_inode)
2283 		return -EEXIST;
2284 	if (IS_DEADDIR(dir))
2285 		return -ENOENT;
2286 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2287 }
2288 
2289 /*
2290  * p1 and p2 should be directories on the same fs.
2291  */
2292 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2293 {
2294 	struct dentry *p;
2295 
2296 	if (p1 == p2) {
2297 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2298 		return NULL;
2299 	}
2300 
2301 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2302 
2303 	p = d_ancestor(p2, p1);
2304 	if (p) {
2305 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2306 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2307 		return p;
2308 	}
2309 
2310 	p = d_ancestor(p1, p2);
2311 	if (p) {
2312 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2313 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2314 		return p;
2315 	}
2316 
2317 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2318 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2319 	return NULL;
2320 }
2321 
2322 void unlock_rename(struct dentry *p1, struct dentry *p2)
2323 {
2324 	mutex_unlock(&p1->d_inode->i_mutex);
2325 	if (p1 != p2) {
2326 		mutex_unlock(&p2->d_inode->i_mutex);
2327 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2328 	}
2329 }
2330 
2331 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2332 		bool want_excl)
2333 {
2334 	int error = may_create(dir, dentry);
2335 	if (error)
2336 		return error;
2337 
2338 	if (!dir->i_op->create)
2339 		return -EACCES;	/* shouldn't it be ENOSYS? */
2340 	mode &= S_IALLUGO;
2341 	mode |= S_IFREG;
2342 	error = security_inode_create(dir, dentry, mode);
2343 	if (error)
2344 		return error;
2345 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2346 	if (!error)
2347 		fsnotify_create(dir, dentry);
2348 	return error;
2349 }
2350 
2351 static int may_open(struct path *path, int acc_mode, int flag)
2352 {
2353 	struct dentry *dentry = path->dentry;
2354 	struct inode *inode = dentry->d_inode;
2355 	int error;
2356 
2357 	/* O_PATH? */
2358 	if (!acc_mode)
2359 		return 0;
2360 
2361 	if (!inode)
2362 		return -ENOENT;
2363 
2364 	switch (inode->i_mode & S_IFMT) {
2365 	case S_IFLNK:
2366 		return -ELOOP;
2367 	case S_IFDIR:
2368 		if (acc_mode & MAY_WRITE)
2369 			return -EISDIR;
2370 		break;
2371 	case S_IFBLK:
2372 	case S_IFCHR:
2373 		if (path->mnt->mnt_flags & MNT_NODEV)
2374 			return -EACCES;
2375 		/*FALLTHRU*/
2376 	case S_IFIFO:
2377 	case S_IFSOCK:
2378 		flag &= ~O_TRUNC;
2379 		break;
2380 	}
2381 
2382 	error = inode_permission(inode, acc_mode);
2383 	if (error)
2384 		return error;
2385 
2386 	/*
2387 	 * An append-only file must be opened in append mode for writing.
2388 	 */
2389 	if (IS_APPEND(inode)) {
2390 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2391 			return -EPERM;
2392 		if (flag & O_TRUNC)
2393 			return -EPERM;
2394 	}
2395 
2396 	/* O_NOATIME can only be set by the owner or superuser */
2397 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2398 		return -EPERM;
2399 
2400 	return 0;
2401 }
2402 
2403 static int handle_truncate(struct file *filp)
2404 {
2405 	struct path *path = &filp->f_path;
2406 	struct inode *inode = path->dentry->d_inode;
2407 	int error = get_write_access(inode);
2408 	if (error)
2409 		return error;
2410 	/*
2411 	 * Refuse to truncate files with mandatory locks held on them.
2412 	 */
2413 	error = locks_verify_locked(inode);
2414 	if (!error)
2415 		error = security_path_truncate(path);
2416 	if (!error) {
2417 		error = do_truncate(path->dentry, 0,
2418 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2419 				    filp);
2420 	}
2421 	put_write_access(inode);
2422 	return error;
2423 }
2424 
2425 static inline int open_to_namei_flags(int flag)
2426 {
2427 	if ((flag & O_ACCMODE) == 3)
2428 		flag--;
2429 	return flag;
2430 }
2431 
2432 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2433 {
2434 	int error = security_path_mknod(dir, dentry, mode, 0);
2435 	if (error)
2436 		return error;
2437 
2438 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2439 	if (error)
2440 		return error;
2441 
2442 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2443 }
2444 
2445 /*
2446  * Attempt to atomically look up, create and open a file from a negative
2447  * dentry.
2448  *
2449  * Returns 0 if successful.  The file will have been created and attached to
2450  * @file by the filesystem calling finish_open().
2451  *
2452  * Returns 1 if the file was looked up only or didn't need creating.  The
2453  * caller will need to perform the open themselves.  @path will have been
2454  * updated to point to the new dentry.  This may be negative.
2455  *
2456  * Returns an error code otherwise.
2457  */
2458 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2459 			struct path *path, struct file *file,
2460 			const struct open_flags *op,
2461 			bool got_write, bool need_lookup,
2462 			int *opened)
2463 {
2464 	struct inode *dir =  nd->path.dentry->d_inode;
2465 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2466 	umode_t mode;
2467 	int error;
2468 	int acc_mode;
2469 	int create_error = 0;
2470 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2471 
2472 	BUG_ON(dentry->d_inode);
2473 
2474 	/* Don't create child dentry for a dead directory. */
2475 	if (unlikely(IS_DEADDIR(dir))) {
2476 		error = -ENOENT;
2477 		goto out;
2478 	}
2479 
2480 	mode = op->mode;
2481 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2482 		mode &= ~current_umask();
2483 
2484 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2485 		open_flag &= ~O_TRUNC;
2486 		*opened |= FILE_CREATED;
2487 	}
2488 
2489 	/*
2490 	 * Checking write permission is tricky, bacuse we don't know if we are
2491 	 * going to actually need it: O_CREAT opens should work as long as the
2492 	 * file exists.  But checking existence breaks atomicity.  The trick is
2493 	 * to check access and if not granted clear O_CREAT from the flags.
2494 	 *
2495 	 * Another problem is returing the "right" error value (e.g. for an
2496 	 * O_EXCL open we want to return EEXIST not EROFS).
2497 	 */
2498 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2499 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2500 		if (!(open_flag & O_CREAT)) {
2501 			/*
2502 			 * No O_CREATE -> atomicity not a requirement -> fall
2503 			 * back to lookup + open
2504 			 */
2505 			goto no_open;
2506 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2507 			/* Fall back and fail with the right error */
2508 			create_error = -EROFS;
2509 			goto no_open;
2510 		} else {
2511 			/* No side effects, safe to clear O_CREAT */
2512 			create_error = -EROFS;
2513 			open_flag &= ~O_CREAT;
2514 		}
2515 	}
2516 
2517 	if (open_flag & O_CREAT) {
2518 		error = may_o_create(&nd->path, dentry, mode);
2519 		if (error) {
2520 			create_error = error;
2521 			if (open_flag & O_EXCL)
2522 				goto no_open;
2523 			open_flag &= ~O_CREAT;
2524 		}
2525 	}
2526 
2527 	if (nd->flags & LOOKUP_DIRECTORY)
2528 		open_flag |= O_DIRECTORY;
2529 
2530 	file->f_path.dentry = DENTRY_NOT_SET;
2531 	file->f_path.mnt = nd->path.mnt;
2532 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2533 				      opened);
2534 	if (error < 0) {
2535 		if (create_error && error == -ENOENT)
2536 			error = create_error;
2537 		goto out;
2538 	}
2539 
2540 	acc_mode = op->acc_mode;
2541 	if (*opened & FILE_CREATED) {
2542 		fsnotify_create(dir, dentry);
2543 		acc_mode = MAY_OPEN;
2544 	}
2545 
2546 	if (error) {	/* returned 1, that is */
2547 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2548 			error = -EIO;
2549 			goto out;
2550 		}
2551 		if (file->f_path.dentry) {
2552 			dput(dentry);
2553 			dentry = file->f_path.dentry;
2554 		}
2555 		if (create_error && dentry->d_inode == NULL) {
2556 			error = create_error;
2557 			goto out;
2558 		}
2559 		goto looked_up;
2560 	}
2561 
2562 	/*
2563 	 * We didn't have the inode before the open, so check open permission
2564 	 * here.
2565 	 */
2566 	error = may_open(&file->f_path, acc_mode, open_flag);
2567 	if (error)
2568 		fput(file);
2569 
2570 out:
2571 	dput(dentry);
2572 	return error;
2573 
2574 no_open:
2575 	if (need_lookup) {
2576 		dentry = lookup_real(dir, dentry, nd->flags);
2577 		if (IS_ERR(dentry))
2578 			return PTR_ERR(dentry);
2579 
2580 		if (create_error) {
2581 			int open_flag = op->open_flag;
2582 
2583 			error = create_error;
2584 			if ((open_flag & O_EXCL)) {
2585 				if (!dentry->d_inode)
2586 					goto out;
2587 			} else if (!dentry->d_inode) {
2588 				goto out;
2589 			} else if ((open_flag & O_TRUNC) &&
2590 				   S_ISREG(dentry->d_inode->i_mode)) {
2591 				goto out;
2592 			}
2593 			/* will fail later, go on to get the right error */
2594 		}
2595 	}
2596 looked_up:
2597 	path->dentry = dentry;
2598 	path->mnt = nd->path.mnt;
2599 	return 1;
2600 }
2601 
2602 /*
2603  * Look up and maybe create and open the last component.
2604  *
2605  * Must be called with i_mutex held on parent.
2606  *
2607  * Returns 0 if the file was successfully atomically created (if necessary) and
2608  * opened.  In this case the file will be returned attached to @file.
2609  *
2610  * Returns 1 if the file was not completely opened at this time, though lookups
2611  * and creations will have been performed and the dentry returned in @path will
2612  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2613  * specified then a negative dentry may be returned.
2614  *
2615  * An error code is returned otherwise.
2616  *
2617  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2618  * cleared otherwise prior to returning.
2619  */
2620 static int lookup_open(struct nameidata *nd, struct path *path,
2621 			struct file *file,
2622 			const struct open_flags *op,
2623 			bool got_write, int *opened)
2624 {
2625 	struct dentry *dir = nd->path.dentry;
2626 	struct inode *dir_inode = dir->d_inode;
2627 	struct dentry *dentry;
2628 	int error;
2629 	bool need_lookup;
2630 
2631 	*opened &= ~FILE_CREATED;
2632 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2633 	if (IS_ERR(dentry))
2634 		return PTR_ERR(dentry);
2635 
2636 	/* Cached positive dentry: will open in f_op->open */
2637 	if (!need_lookup && dentry->d_inode)
2638 		goto out_no_open;
2639 
2640 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2641 		return atomic_open(nd, dentry, path, file, op, got_write,
2642 				   need_lookup, opened);
2643 	}
2644 
2645 	if (need_lookup) {
2646 		BUG_ON(dentry->d_inode);
2647 
2648 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2649 		if (IS_ERR(dentry))
2650 			return PTR_ERR(dentry);
2651 	}
2652 
2653 	/* Negative dentry, just create the file */
2654 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2655 		umode_t mode = op->mode;
2656 		if (!IS_POSIXACL(dir->d_inode))
2657 			mode &= ~current_umask();
2658 		/*
2659 		 * This write is needed to ensure that a
2660 		 * rw->ro transition does not occur between
2661 		 * the time when the file is created and when
2662 		 * a permanent write count is taken through
2663 		 * the 'struct file' in finish_open().
2664 		 */
2665 		if (!got_write) {
2666 			error = -EROFS;
2667 			goto out_dput;
2668 		}
2669 		*opened |= FILE_CREATED;
2670 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2671 		if (error)
2672 			goto out_dput;
2673 		error = vfs_create(dir->d_inode, dentry, mode,
2674 				   nd->flags & LOOKUP_EXCL);
2675 		if (error)
2676 			goto out_dput;
2677 	}
2678 out_no_open:
2679 	path->dentry = dentry;
2680 	path->mnt = nd->path.mnt;
2681 	return 1;
2682 
2683 out_dput:
2684 	dput(dentry);
2685 	return error;
2686 }
2687 
2688 /*
2689  * Handle the last step of open()
2690  */
2691 static int do_last(struct nameidata *nd, struct path *path,
2692 		   struct file *file, const struct open_flags *op,
2693 		   int *opened, struct filename *name)
2694 {
2695 	struct dentry *dir = nd->path.dentry;
2696 	int open_flag = op->open_flag;
2697 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2698 	bool got_write = false;
2699 	int acc_mode = op->acc_mode;
2700 	struct inode *inode;
2701 	bool symlink_ok = false;
2702 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2703 	bool retried = false;
2704 	int error;
2705 
2706 	nd->flags &= ~LOOKUP_PARENT;
2707 	nd->flags |= op->intent;
2708 
2709 	switch (nd->last_type) {
2710 	case LAST_DOTDOT:
2711 	case LAST_DOT:
2712 		error = handle_dots(nd, nd->last_type);
2713 		if (error)
2714 			return error;
2715 		/* fallthrough */
2716 	case LAST_ROOT:
2717 		error = complete_walk(nd);
2718 		if (error)
2719 			return error;
2720 		audit_inode(name, nd->path.dentry, 0);
2721 		if (open_flag & O_CREAT) {
2722 			error = -EISDIR;
2723 			goto out;
2724 		}
2725 		goto finish_open;
2726 	case LAST_BIND:
2727 		error = complete_walk(nd);
2728 		if (error)
2729 			return error;
2730 		audit_inode(name, dir, 0);
2731 		goto finish_open;
2732 	}
2733 
2734 	if (!(open_flag & O_CREAT)) {
2735 		if (nd->last.name[nd->last.len])
2736 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2737 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2738 			symlink_ok = true;
2739 		/* we _can_ be in RCU mode here */
2740 		error = lookup_fast(nd, &nd->last, path, &inode);
2741 		if (likely(!error))
2742 			goto finish_lookup;
2743 
2744 		if (error < 0)
2745 			goto out;
2746 
2747 		BUG_ON(nd->inode != dir->d_inode);
2748 	} else {
2749 		/* create side of things */
2750 		/*
2751 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2752 		 * has been cleared when we got to the last component we are
2753 		 * about to look up
2754 		 */
2755 		error = complete_walk(nd);
2756 		if (error)
2757 			return error;
2758 
2759 		audit_inode(name, dir, 0);
2760 		error = -EISDIR;
2761 		/* trailing slashes? */
2762 		if (nd->last.name[nd->last.len])
2763 			goto out;
2764 	}
2765 
2766 retry_lookup:
2767 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2768 		error = mnt_want_write(nd->path.mnt);
2769 		if (!error)
2770 			got_write = true;
2771 		/*
2772 		 * do _not_ fail yet - we might not need that or fail with
2773 		 * a different error; let lookup_open() decide; we'll be
2774 		 * dropping this one anyway.
2775 		 */
2776 	}
2777 	mutex_lock(&dir->d_inode->i_mutex);
2778 	error = lookup_open(nd, path, file, op, got_write, opened);
2779 	mutex_unlock(&dir->d_inode->i_mutex);
2780 
2781 	if (error <= 0) {
2782 		if (error)
2783 			goto out;
2784 
2785 		if ((*opened & FILE_CREATED) ||
2786 		    !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2787 			will_truncate = false;
2788 
2789 		audit_inode(name, file->f_path.dentry, 0);
2790 		goto opened;
2791 	}
2792 
2793 	if (*opened & FILE_CREATED) {
2794 		/* Don't check for write permission, don't truncate */
2795 		open_flag &= ~O_TRUNC;
2796 		will_truncate = false;
2797 		acc_mode = MAY_OPEN;
2798 		path_to_nameidata(path, nd);
2799 		goto finish_open_created;
2800 	}
2801 
2802 	/*
2803 	 * create/update audit record if it already exists.
2804 	 */
2805 	if (path->dentry->d_inode)
2806 		audit_inode(name, path->dentry, 0);
2807 
2808 	/*
2809 	 * If atomic_open() acquired write access it is dropped now due to
2810 	 * possible mount and symlink following (this might be optimized away if
2811 	 * necessary...)
2812 	 */
2813 	if (got_write) {
2814 		mnt_drop_write(nd->path.mnt);
2815 		got_write = false;
2816 	}
2817 
2818 	error = -EEXIST;
2819 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2820 		goto exit_dput;
2821 
2822 	error = follow_managed(path, nd->flags);
2823 	if (error < 0)
2824 		goto exit_dput;
2825 
2826 	if (error)
2827 		nd->flags |= LOOKUP_JUMPED;
2828 
2829 	BUG_ON(nd->flags & LOOKUP_RCU);
2830 	inode = path->dentry->d_inode;
2831 finish_lookup:
2832 	/* we _can_ be in RCU mode here */
2833 	error = -ENOENT;
2834 	if (!inode) {
2835 		path_to_nameidata(path, nd);
2836 		goto out;
2837 	}
2838 
2839 	if (should_follow_link(inode, !symlink_ok)) {
2840 		if (nd->flags & LOOKUP_RCU) {
2841 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2842 				error = -ECHILD;
2843 				goto out;
2844 			}
2845 		}
2846 		BUG_ON(inode != path->dentry->d_inode);
2847 		return 1;
2848 	}
2849 
2850 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2851 		path_to_nameidata(path, nd);
2852 	} else {
2853 		save_parent.dentry = nd->path.dentry;
2854 		save_parent.mnt = mntget(path->mnt);
2855 		nd->path.dentry = path->dentry;
2856 
2857 	}
2858 	nd->inode = inode;
2859 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2860 	error = complete_walk(nd);
2861 	if (error) {
2862 		path_put(&save_parent);
2863 		return error;
2864 	}
2865 	error = -EISDIR;
2866 	if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2867 		goto out;
2868 	error = -ENOTDIR;
2869 	if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2870 		goto out;
2871 	audit_inode(name, nd->path.dentry, 0);
2872 finish_open:
2873 	if (!S_ISREG(nd->inode->i_mode))
2874 		will_truncate = false;
2875 
2876 	if (will_truncate) {
2877 		error = mnt_want_write(nd->path.mnt);
2878 		if (error)
2879 			goto out;
2880 		got_write = true;
2881 	}
2882 finish_open_created:
2883 	error = may_open(&nd->path, acc_mode, open_flag);
2884 	if (error)
2885 		goto out;
2886 	file->f_path.mnt = nd->path.mnt;
2887 	error = finish_open(file, nd->path.dentry, NULL, opened);
2888 	if (error) {
2889 		if (error == -EOPENSTALE)
2890 			goto stale_open;
2891 		goto out;
2892 	}
2893 opened:
2894 	error = open_check_o_direct(file);
2895 	if (error)
2896 		goto exit_fput;
2897 	error = ima_file_check(file, op->acc_mode);
2898 	if (error)
2899 		goto exit_fput;
2900 
2901 	if (will_truncate) {
2902 		error = handle_truncate(file);
2903 		if (error)
2904 			goto exit_fput;
2905 	}
2906 out:
2907 	if (got_write)
2908 		mnt_drop_write(nd->path.mnt);
2909 	path_put(&save_parent);
2910 	terminate_walk(nd);
2911 	return error;
2912 
2913 exit_dput:
2914 	path_put_conditional(path, nd);
2915 	goto out;
2916 exit_fput:
2917 	fput(file);
2918 	goto out;
2919 
2920 stale_open:
2921 	/* If no saved parent or already retried then can't retry */
2922 	if (!save_parent.dentry || retried)
2923 		goto out;
2924 
2925 	BUG_ON(save_parent.dentry != dir);
2926 	path_put(&nd->path);
2927 	nd->path = save_parent;
2928 	nd->inode = dir->d_inode;
2929 	save_parent.mnt = NULL;
2930 	save_parent.dentry = NULL;
2931 	if (got_write) {
2932 		mnt_drop_write(nd->path.mnt);
2933 		got_write = false;
2934 	}
2935 	retried = true;
2936 	goto retry_lookup;
2937 }
2938 
2939 static struct file *path_openat(int dfd, struct filename *pathname,
2940 		struct nameidata *nd, const struct open_flags *op, int flags)
2941 {
2942 	struct file *base = NULL;
2943 	struct file *file;
2944 	struct path path;
2945 	int opened = 0;
2946 	int error;
2947 
2948 	file = get_empty_filp();
2949 	if (!file)
2950 		return ERR_PTR(-ENFILE);
2951 
2952 	file->f_flags = op->open_flag;
2953 
2954 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2955 	if (unlikely(error))
2956 		goto out;
2957 
2958 	current->total_link_count = 0;
2959 	error = link_path_walk(pathname->name, nd);
2960 	if (unlikely(error))
2961 		goto out;
2962 
2963 	error = do_last(nd, &path, file, op, &opened, pathname);
2964 	while (unlikely(error > 0)) { /* trailing symlink */
2965 		struct path link = path;
2966 		void *cookie;
2967 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2968 			path_put_conditional(&path, nd);
2969 			path_put(&nd->path);
2970 			error = -ELOOP;
2971 			break;
2972 		}
2973 		error = may_follow_link(&link, nd);
2974 		if (unlikely(error))
2975 			break;
2976 		nd->flags |= LOOKUP_PARENT;
2977 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2978 		error = follow_link(&link, nd, &cookie);
2979 		if (unlikely(error))
2980 			break;
2981 		error = do_last(nd, &path, file, op, &opened, pathname);
2982 		put_link(nd, &link, cookie);
2983 	}
2984 out:
2985 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2986 		path_put(&nd->root);
2987 	if (base)
2988 		fput(base);
2989 	if (!(opened & FILE_OPENED)) {
2990 		BUG_ON(!error);
2991 		put_filp(file);
2992 	}
2993 	if (unlikely(error)) {
2994 		if (error == -EOPENSTALE) {
2995 			if (flags & LOOKUP_RCU)
2996 				error = -ECHILD;
2997 			else
2998 				error = -ESTALE;
2999 		}
3000 		file = ERR_PTR(error);
3001 	}
3002 	return file;
3003 }
3004 
3005 struct file *do_filp_open(int dfd, struct filename *pathname,
3006 		const struct open_flags *op, int flags)
3007 {
3008 	struct nameidata nd;
3009 	struct file *filp;
3010 
3011 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3012 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3013 		filp = path_openat(dfd, pathname, &nd, op, flags);
3014 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3015 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3016 	return filp;
3017 }
3018 
3019 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3020 		const char *name, const struct open_flags *op, int flags)
3021 {
3022 	struct nameidata nd;
3023 	struct file *file;
3024 	struct filename filename = { .name = name };
3025 
3026 	nd.root.mnt = mnt;
3027 	nd.root.dentry = dentry;
3028 
3029 	flags |= LOOKUP_ROOT;
3030 
3031 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3032 		return ERR_PTR(-ELOOP);
3033 
3034 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3035 	if (unlikely(file == ERR_PTR(-ECHILD)))
3036 		file = path_openat(-1, &filename, &nd, op, flags);
3037 	if (unlikely(file == ERR_PTR(-ESTALE)))
3038 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3039 	return file;
3040 }
3041 
3042 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
3043 {
3044 	struct dentry *dentry = ERR_PTR(-EEXIST);
3045 	struct nameidata nd;
3046 	int err2;
3047 	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
3048 	if (error)
3049 		return ERR_PTR(error);
3050 
3051 	/*
3052 	 * Yucky last component or no last component at all?
3053 	 * (foo/., foo/.., /////)
3054 	 */
3055 	if (nd.last_type != LAST_NORM)
3056 		goto out;
3057 	nd.flags &= ~LOOKUP_PARENT;
3058 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3059 
3060 	/* don't fail immediately if it's r/o, at least try to report other errors */
3061 	err2 = mnt_want_write(nd.path.mnt);
3062 	/*
3063 	 * Do the final lookup.
3064 	 */
3065 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3066 	dentry = lookup_hash(&nd);
3067 	if (IS_ERR(dentry))
3068 		goto unlock;
3069 
3070 	error = -EEXIST;
3071 	if (dentry->d_inode)
3072 		goto fail;
3073 	/*
3074 	 * Special case - lookup gave negative, but... we had foo/bar/
3075 	 * From the vfs_mknod() POV we just have a negative dentry -
3076 	 * all is fine. Let's be bastards - you had / on the end, you've
3077 	 * been asking for (non-existent) directory. -ENOENT for you.
3078 	 */
3079 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3080 		error = -ENOENT;
3081 		goto fail;
3082 	}
3083 	if (unlikely(err2)) {
3084 		error = err2;
3085 		goto fail;
3086 	}
3087 	*path = nd.path;
3088 	return dentry;
3089 fail:
3090 	dput(dentry);
3091 	dentry = ERR_PTR(error);
3092 unlock:
3093 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3094 	if (!err2)
3095 		mnt_drop_write(nd.path.mnt);
3096 out:
3097 	path_put(&nd.path);
3098 	return dentry;
3099 }
3100 EXPORT_SYMBOL(kern_path_create);
3101 
3102 void done_path_create(struct path *path, struct dentry *dentry)
3103 {
3104 	dput(dentry);
3105 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3106 	mnt_drop_write(path->mnt);
3107 	path_put(path);
3108 }
3109 EXPORT_SYMBOL(done_path_create);
3110 
3111 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3112 {
3113 	struct filename *tmp = getname(pathname);
3114 	struct dentry *res;
3115 	if (IS_ERR(tmp))
3116 		return ERR_CAST(tmp);
3117 	res = kern_path_create(dfd, tmp->name, path, is_dir);
3118 	putname(tmp);
3119 	return res;
3120 }
3121 EXPORT_SYMBOL(user_path_create);
3122 
3123 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3124 {
3125 	int error = may_create(dir, dentry);
3126 
3127 	if (error)
3128 		return error;
3129 
3130 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3131 		return -EPERM;
3132 
3133 	if (!dir->i_op->mknod)
3134 		return -EPERM;
3135 
3136 	error = devcgroup_inode_mknod(mode, dev);
3137 	if (error)
3138 		return error;
3139 
3140 	error = security_inode_mknod(dir, dentry, mode, dev);
3141 	if (error)
3142 		return error;
3143 
3144 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3145 	if (!error)
3146 		fsnotify_create(dir, dentry);
3147 	return error;
3148 }
3149 
3150 static int may_mknod(umode_t mode)
3151 {
3152 	switch (mode & S_IFMT) {
3153 	case S_IFREG:
3154 	case S_IFCHR:
3155 	case S_IFBLK:
3156 	case S_IFIFO:
3157 	case S_IFSOCK:
3158 	case 0: /* zero mode translates to S_IFREG */
3159 		return 0;
3160 	case S_IFDIR:
3161 		return -EPERM;
3162 	default:
3163 		return -EINVAL;
3164 	}
3165 }
3166 
3167 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3168 		unsigned, dev)
3169 {
3170 	struct dentry *dentry;
3171 	struct path path;
3172 	int error;
3173 
3174 	error = may_mknod(mode);
3175 	if (error)
3176 		return error;
3177 
3178 	dentry = user_path_create(dfd, filename, &path, 0);
3179 	if (IS_ERR(dentry))
3180 		return PTR_ERR(dentry);
3181 
3182 	if (!IS_POSIXACL(path.dentry->d_inode))
3183 		mode &= ~current_umask();
3184 	error = security_path_mknod(&path, dentry, mode, dev);
3185 	if (error)
3186 		goto out;
3187 	switch (mode & S_IFMT) {
3188 		case 0: case S_IFREG:
3189 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3190 			break;
3191 		case S_IFCHR: case S_IFBLK:
3192 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3193 					new_decode_dev(dev));
3194 			break;
3195 		case S_IFIFO: case S_IFSOCK:
3196 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3197 			break;
3198 	}
3199 out:
3200 	done_path_create(&path, dentry);
3201 	return error;
3202 }
3203 
3204 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3205 {
3206 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3207 }
3208 
3209 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3210 {
3211 	int error = may_create(dir, dentry);
3212 	unsigned max_links = dir->i_sb->s_max_links;
3213 
3214 	if (error)
3215 		return error;
3216 
3217 	if (!dir->i_op->mkdir)
3218 		return -EPERM;
3219 
3220 	mode &= (S_IRWXUGO|S_ISVTX);
3221 	error = security_inode_mkdir(dir, dentry, mode);
3222 	if (error)
3223 		return error;
3224 
3225 	if (max_links && dir->i_nlink >= max_links)
3226 		return -EMLINK;
3227 
3228 	error = dir->i_op->mkdir(dir, dentry, mode);
3229 	if (!error)
3230 		fsnotify_mkdir(dir, dentry);
3231 	return error;
3232 }
3233 
3234 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3235 {
3236 	struct dentry *dentry;
3237 	struct path path;
3238 	int error;
3239 
3240 	dentry = user_path_create(dfd, pathname, &path, 1);
3241 	if (IS_ERR(dentry))
3242 		return PTR_ERR(dentry);
3243 
3244 	if (!IS_POSIXACL(path.dentry->d_inode))
3245 		mode &= ~current_umask();
3246 	error = security_path_mkdir(&path, dentry, mode);
3247 	if (!error)
3248 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3249 	done_path_create(&path, dentry);
3250 	return error;
3251 }
3252 
3253 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3254 {
3255 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3256 }
3257 
3258 /*
3259  * The dentry_unhash() helper will try to drop the dentry early: we
3260  * should have a usage count of 1 if we're the only user of this
3261  * dentry, and if that is true (possibly after pruning the dcache),
3262  * then we drop the dentry now.
3263  *
3264  * A low-level filesystem can, if it choses, legally
3265  * do a
3266  *
3267  *	if (!d_unhashed(dentry))
3268  *		return -EBUSY;
3269  *
3270  * if it cannot handle the case of removing a directory
3271  * that is still in use by something else..
3272  */
3273 void dentry_unhash(struct dentry *dentry)
3274 {
3275 	shrink_dcache_parent(dentry);
3276 	spin_lock(&dentry->d_lock);
3277 	if (dentry->d_count == 1)
3278 		__d_drop(dentry);
3279 	spin_unlock(&dentry->d_lock);
3280 }
3281 
3282 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3283 {
3284 	int error = may_delete(dir, dentry, 1);
3285 
3286 	if (error)
3287 		return error;
3288 
3289 	if (!dir->i_op->rmdir)
3290 		return -EPERM;
3291 
3292 	dget(dentry);
3293 	mutex_lock(&dentry->d_inode->i_mutex);
3294 
3295 	error = -EBUSY;
3296 	if (d_mountpoint(dentry))
3297 		goto out;
3298 
3299 	error = security_inode_rmdir(dir, dentry);
3300 	if (error)
3301 		goto out;
3302 
3303 	shrink_dcache_parent(dentry);
3304 	error = dir->i_op->rmdir(dir, dentry);
3305 	if (error)
3306 		goto out;
3307 
3308 	dentry->d_inode->i_flags |= S_DEAD;
3309 	dont_mount(dentry);
3310 
3311 out:
3312 	mutex_unlock(&dentry->d_inode->i_mutex);
3313 	dput(dentry);
3314 	if (!error)
3315 		d_delete(dentry);
3316 	return error;
3317 }
3318 
3319 static long do_rmdir(int dfd, const char __user *pathname)
3320 {
3321 	int error = 0;
3322 	struct filename *name;
3323 	struct dentry *dentry;
3324 	struct nameidata nd;
3325 
3326 	name = user_path_parent(dfd, pathname, &nd);
3327 	if (IS_ERR(name))
3328 		return PTR_ERR(name);
3329 
3330 	switch(nd.last_type) {
3331 	case LAST_DOTDOT:
3332 		error = -ENOTEMPTY;
3333 		goto exit1;
3334 	case LAST_DOT:
3335 		error = -EINVAL;
3336 		goto exit1;
3337 	case LAST_ROOT:
3338 		error = -EBUSY;
3339 		goto exit1;
3340 	}
3341 
3342 	nd.flags &= ~LOOKUP_PARENT;
3343 	error = mnt_want_write(nd.path.mnt);
3344 	if (error)
3345 		goto exit1;
3346 
3347 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3348 	dentry = lookup_hash(&nd);
3349 	error = PTR_ERR(dentry);
3350 	if (IS_ERR(dentry))
3351 		goto exit2;
3352 	if (!dentry->d_inode) {
3353 		error = -ENOENT;
3354 		goto exit3;
3355 	}
3356 	error = security_path_rmdir(&nd.path, dentry);
3357 	if (error)
3358 		goto exit3;
3359 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3360 exit3:
3361 	dput(dentry);
3362 exit2:
3363 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3364 	mnt_drop_write(nd.path.mnt);
3365 exit1:
3366 	path_put(&nd.path);
3367 	putname(name);
3368 	return error;
3369 }
3370 
3371 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3372 {
3373 	return do_rmdir(AT_FDCWD, pathname);
3374 }
3375 
3376 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3377 {
3378 	int error = may_delete(dir, dentry, 0);
3379 
3380 	if (error)
3381 		return error;
3382 
3383 	if (!dir->i_op->unlink)
3384 		return -EPERM;
3385 
3386 	mutex_lock(&dentry->d_inode->i_mutex);
3387 	if (d_mountpoint(dentry))
3388 		error = -EBUSY;
3389 	else {
3390 		error = security_inode_unlink(dir, dentry);
3391 		if (!error) {
3392 			error = dir->i_op->unlink(dir, dentry);
3393 			if (!error)
3394 				dont_mount(dentry);
3395 		}
3396 	}
3397 	mutex_unlock(&dentry->d_inode->i_mutex);
3398 
3399 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3400 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3401 		fsnotify_link_count(dentry->d_inode);
3402 		d_delete(dentry);
3403 	}
3404 
3405 	return error;
3406 }
3407 
3408 /*
3409  * Make sure that the actual truncation of the file will occur outside its
3410  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3411  * writeout happening, and we don't want to prevent access to the directory
3412  * while waiting on the I/O.
3413  */
3414 static long do_unlinkat(int dfd, const char __user *pathname)
3415 {
3416 	int error;
3417 	struct filename *name;
3418 	struct dentry *dentry;
3419 	struct nameidata nd;
3420 	struct inode *inode = NULL;
3421 
3422 	name = user_path_parent(dfd, pathname, &nd);
3423 	if (IS_ERR(name))
3424 		return PTR_ERR(name);
3425 
3426 	error = -EISDIR;
3427 	if (nd.last_type != LAST_NORM)
3428 		goto exit1;
3429 
3430 	nd.flags &= ~LOOKUP_PARENT;
3431 	error = mnt_want_write(nd.path.mnt);
3432 	if (error)
3433 		goto exit1;
3434 
3435 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3436 	dentry = lookup_hash(&nd);
3437 	error = PTR_ERR(dentry);
3438 	if (!IS_ERR(dentry)) {
3439 		/* Why not before? Because we want correct error value */
3440 		if (nd.last.name[nd.last.len])
3441 			goto slashes;
3442 		inode = dentry->d_inode;
3443 		if (!inode)
3444 			goto slashes;
3445 		ihold(inode);
3446 		error = security_path_unlink(&nd.path, dentry);
3447 		if (error)
3448 			goto exit2;
3449 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3450 exit2:
3451 		dput(dentry);
3452 	}
3453 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3454 	if (inode)
3455 		iput(inode);	/* truncate the inode here */
3456 	mnt_drop_write(nd.path.mnt);
3457 exit1:
3458 	path_put(&nd.path);
3459 	putname(name);
3460 	return error;
3461 
3462 slashes:
3463 	error = !dentry->d_inode ? -ENOENT :
3464 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3465 	goto exit2;
3466 }
3467 
3468 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3469 {
3470 	if ((flag & ~AT_REMOVEDIR) != 0)
3471 		return -EINVAL;
3472 
3473 	if (flag & AT_REMOVEDIR)
3474 		return do_rmdir(dfd, pathname);
3475 
3476 	return do_unlinkat(dfd, pathname);
3477 }
3478 
3479 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3480 {
3481 	return do_unlinkat(AT_FDCWD, pathname);
3482 }
3483 
3484 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3485 {
3486 	int error = may_create(dir, dentry);
3487 
3488 	if (error)
3489 		return error;
3490 
3491 	if (!dir->i_op->symlink)
3492 		return -EPERM;
3493 
3494 	error = security_inode_symlink(dir, dentry, oldname);
3495 	if (error)
3496 		return error;
3497 
3498 	error = dir->i_op->symlink(dir, dentry, oldname);
3499 	if (!error)
3500 		fsnotify_create(dir, dentry);
3501 	return error;
3502 }
3503 
3504 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3505 		int, newdfd, const char __user *, newname)
3506 {
3507 	int error;
3508 	struct filename *from;
3509 	struct dentry *dentry;
3510 	struct path path;
3511 
3512 	from = getname(oldname);
3513 	if (IS_ERR(from))
3514 		return PTR_ERR(from);
3515 
3516 	dentry = user_path_create(newdfd, newname, &path, 0);
3517 	error = PTR_ERR(dentry);
3518 	if (IS_ERR(dentry))
3519 		goto out_putname;
3520 
3521 	error = security_path_symlink(&path, dentry, from->name);
3522 	if (!error)
3523 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3524 	done_path_create(&path, dentry);
3525 out_putname:
3526 	putname(from);
3527 	return error;
3528 }
3529 
3530 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3531 {
3532 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3533 }
3534 
3535 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3536 {
3537 	struct inode *inode = old_dentry->d_inode;
3538 	unsigned max_links = dir->i_sb->s_max_links;
3539 	int error;
3540 
3541 	if (!inode)
3542 		return -ENOENT;
3543 
3544 	error = may_create(dir, new_dentry);
3545 	if (error)
3546 		return error;
3547 
3548 	if (dir->i_sb != inode->i_sb)
3549 		return -EXDEV;
3550 
3551 	/*
3552 	 * A link to an append-only or immutable file cannot be created.
3553 	 */
3554 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3555 		return -EPERM;
3556 	if (!dir->i_op->link)
3557 		return -EPERM;
3558 	if (S_ISDIR(inode->i_mode))
3559 		return -EPERM;
3560 
3561 	error = security_inode_link(old_dentry, dir, new_dentry);
3562 	if (error)
3563 		return error;
3564 
3565 	mutex_lock(&inode->i_mutex);
3566 	/* Make sure we don't allow creating hardlink to an unlinked file */
3567 	if (inode->i_nlink == 0)
3568 		error =  -ENOENT;
3569 	else if (max_links && inode->i_nlink >= max_links)
3570 		error = -EMLINK;
3571 	else
3572 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3573 	mutex_unlock(&inode->i_mutex);
3574 	if (!error)
3575 		fsnotify_link(dir, inode, new_dentry);
3576 	return error;
3577 }
3578 
3579 /*
3580  * Hardlinks are often used in delicate situations.  We avoid
3581  * security-related surprises by not following symlinks on the
3582  * newname.  --KAB
3583  *
3584  * We don't follow them on the oldname either to be compatible
3585  * with linux 2.0, and to avoid hard-linking to directories
3586  * and other special files.  --ADM
3587  */
3588 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3589 		int, newdfd, const char __user *, newname, int, flags)
3590 {
3591 	struct dentry *new_dentry;
3592 	struct path old_path, new_path;
3593 	int how = 0;
3594 	int error;
3595 
3596 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3597 		return -EINVAL;
3598 	/*
3599 	 * To use null names we require CAP_DAC_READ_SEARCH
3600 	 * This ensures that not everyone will be able to create
3601 	 * handlink using the passed filedescriptor.
3602 	 */
3603 	if (flags & AT_EMPTY_PATH) {
3604 		if (!capable(CAP_DAC_READ_SEARCH))
3605 			return -ENOENT;
3606 		how = LOOKUP_EMPTY;
3607 	}
3608 
3609 	if (flags & AT_SYMLINK_FOLLOW)
3610 		how |= LOOKUP_FOLLOW;
3611 
3612 	error = user_path_at(olddfd, oldname, how, &old_path);
3613 	if (error)
3614 		return error;
3615 
3616 	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3617 	error = PTR_ERR(new_dentry);
3618 	if (IS_ERR(new_dentry))
3619 		goto out;
3620 
3621 	error = -EXDEV;
3622 	if (old_path.mnt != new_path.mnt)
3623 		goto out_dput;
3624 	error = may_linkat(&old_path);
3625 	if (unlikely(error))
3626 		goto out_dput;
3627 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3628 	if (error)
3629 		goto out_dput;
3630 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3631 out_dput:
3632 	done_path_create(&new_path, new_dentry);
3633 out:
3634 	path_put(&old_path);
3635 
3636 	return error;
3637 }
3638 
3639 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3640 {
3641 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3642 }
3643 
3644 /*
3645  * The worst of all namespace operations - renaming directory. "Perverted"
3646  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3647  * Problems:
3648  *	a) we can get into loop creation. Check is done in is_subdir().
3649  *	b) race potential - two innocent renames can create a loop together.
3650  *	   That's where 4.4 screws up. Current fix: serialization on
3651  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3652  *	   story.
3653  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3654  *	   And that - after we got ->i_mutex on parents (until then we don't know
3655  *	   whether the target exists).  Solution: try to be smart with locking
3656  *	   order for inodes.  We rely on the fact that tree topology may change
3657  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3658  *	   move will be locked.  Thus we can rank directories by the tree
3659  *	   (ancestors first) and rank all non-directories after them.
3660  *	   That works since everybody except rename does "lock parent, lookup,
3661  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3662  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3663  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3664  *	   we'd better make sure that there's no link(2) for them.
3665  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3666  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3667  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3668  *	   ->i_mutex on parents, which works but leads to some truly excessive
3669  *	   locking].
3670  */
3671 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3672 			  struct inode *new_dir, struct dentry *new_dentry)
3673 {
3674 	int error = 0;
3675 	struct inode *target = new_dentry->d_inode;
3676 	unsigned max_links = new_dir->i_sb->s_max_links;
3677 
3678 	/*
3679 	 * If we are going to change the parent - check write permissions,
3680 	 * we'll need to flip '..'.
3681 	 */
3682 	if (new_dir != old_dir) {
3683 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3684 		if (error)
3685 			return error;
3686 	}
3687 
3688 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3689 	if (error)
3690 		return error;
3691 
3692 	dget(new_dentry);
3693 	if (target)
3694 		mutex_lock(&target->i_mutex);
3695 
3696 	error = -EBUSY;
3697 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3698 		goto out;
3699 
3700 	error = -EMLINK;
3701 	if (max_links && !target && new_dir != old_dir &&
3702 	    new_dir->i_nlink >= max_links)
3703 		goto out;
3704 
3705 	if (target)
3706 		shrink_dcache_parent(new_dentry);
3707 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3708 	if (error)
3709 		goto out;
3710 
3711 	if (target) {
3712 		target->i_flags |= S_DEAD;
3713 		dont_mount(new_dentry);
3714 	}
3715 out:
3716 	if (target)
3717 		mutex_unlock(&target->i_mutex);
3718 	dput(new_dentry);
3719 	if (!error)
3720 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3721 			d_move(old_dentry,new_dentry);
3722 	return error;
3723 }
3724 
3725 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3726 			    struct inode *new_dir, struct dentry *new_dentry)
3727 {
3728 	struct inode *target = new_dentry->d_inode;
3729 	int error;
3730 
3731 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3732 	if (error)
3733 		return error;
3734 
3735 	dget(new_dentry);
3736 	if (target)
3737 		mutex_lock(&target->i_mutex);
3738 
3739 	error = -EBUSY;
3740 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3741 		goto out;
3742 
3743 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3744 	if (error)
3745 		goto out;
3746 
3747 	if (target)
3748 		dont_mount(new_dentry);
3749 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3750 		d_move(old_dentry, new_dentry);
3751 out:
3752 	if (target)
3753 		mutex_unlock(&target->i_mutex);
3754 	dput(new_dentry);
3755 	return error;
3756 }
3757 
3758 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3759 	       struct inode *new_dir, struct dentry *new_dentry)
3760 {
3761 	int error;
3762 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3763 	const unsigned char *old_name;
3764 
3765 	if (old_dentry->d_inode == new_dentry->d_inode)
3766  		return 0;
3767 
3768 	error = may_delete(old_dir, old_dentry, is_dir);
3769 	if (error)
3770 		return error;
3771 
3772 	if (!new_dentry->d_inode)
3773 		error = may_create(new_dir, new_dentry);
3774 	else
3775 		error = may_delete(new_dir, new_dentry, is_dir);
3776 	if (error)
3777 		return error;
3778 
3779 	if (!old_dir->i_op->rename)
3780 		return -EPERM;
3781 
3782 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3783 
3784 	if (is_dir)
3785 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3786 	else
3787 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3788 	if (!error)
3789 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3790 			      new_dentry->d_inode, old_dentry);
3791 	fsnotify_oldname_free(old_name);
3792 
3793 	return error;
3794 }
3795 
3796 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3797 		int, newdfd, const char __user *, newname)
3798 {
3799 	struct dentry *old_dir, *new_dir;
3800 	struct dentry *old_dentry, *new_dentry;
3801 	struct dentry *trap;
3802 	struct nameidata oldnd, newnd;
3803 	struct filename *from;
3804 	struct filename *to;
3805 	int error;
3806 
3807 	from = user_path_parent(olddfd, oldname, &oldnd);
3808 	if (IS_ERR(from)) {
3809 		error = PTR_ERR(from);
3810 		goto exit;
3811 	}
3812 
3813 	to = user_path_parent(newdfd, newname, &newnd);
3814 	if (IS_ERR(to)) {
3815 		error = PTR_ERR(to);
3816 		goto exit1;
3817 	}
3818 
3819 	error = -EXDEV;
3820 	if (oldnd.path.mnt != newnd.path.mnt)
3821 		goto exit2;
3822 
3823 	old_dir = oldnd.path.dentry;
3824 	error = -EBUSY;
3825 	if (oldnd.last_type != LAST_NORM)
3826 		goto exit2;
3827 
3828 	new_dir = newnd.path.dentry;
3829 	if (newnd.last_type != LAST_NORM)
3830 		goto exit2;
3831 
3832 	error = mnt_want_write(oldnd.path.mnt);
3833 	if (error)
3834 		goto exit2;
3835 
3836 	oldnd.flags &= ~LOOKUP_PARENT;
3837 	newnd.flags &= ~LOOKUP_PARENT;
3838 	newnd.flags |= LOOKUP_RENAME_TARGET;
3839 
3840 	trap = lock_rename(new_dir, old_dir);
3841 
3842 	old_dentry = lookup_hash(&oldnd);
3843 	error = PTR_ERR(old_dentry);
3844 	if (IS_ERR(old_dentry))
3845 		goto exit3;
3846 	/* source must exist */
3847 	error = -ENOENT;
3848 	if (!old_dentry->d_inode)
3849 		goto exit4;
3850 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3851 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3852 		error = -ENOTDIR;
3853 		if (oldnd.last.name[oldnd.last.len])
3854 			goto exit4;
3855 		if (newnd.last.name[newnd.last.len])
3856 			goto exit4;
3857 	}
3858 	/* source should not be ancestor of target */
3859 	error = -EINVAL;
3860 	if (old_dentry == trap)
3861 		goto exit4;
3862 	new_dentry = lookup_hash(&newnd);
3863 	error = PTR_ERR(new_dentry);
3864 	if (IS_ERR(new_dentry))
3865 		goto exit4;
3866 	/* target should not be an ancestor of source */
3867 	error = -ENOTEMPTY;
3868 	if (new_dentry == trap)
3869 		goto exit5;
3870 
3871 	error = security_path_rename(&oldnd.path, old_dentry,
3872 				     &newnd.path, new_dentry);
3873 	if (error)
3874 		goto exit5;
3875 	error = vfs_rename(old_dir->d_inode, old_dentry,
3876 				   new_dir->d_inode, new_dentry);
3877 exit5:
3878 	dput(new_dentry);
3879 exit4:
3880 	dput(old_dentry);
3881 exit3:
3882 	unlock_rename(new_dir, old_dir);
3883 	mnt_drop_write(oldnd.path.mnt);
3884 exit2:
3885 	path_put(&newnd.path);
3886 	putname(to);
3887 exit1:
3888 	path_put(&oldnd.path);
3889 	putname(from);
3890 exit:
3891 	return error;
3892 }
3893 
3894 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3895 {
3896 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3897 }
3898 
3899 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3900 {
3901 	int len;
3902 
3903 	len = PTR_ERR(link);
3904 	if (IS_ERR(link))
3905 		goto out;
3906 
3907 	len = strlen(link);
3908 	if (len > (unsigned) buflen)
3909 		len = buflen;
3910 	if (copy_to_user(buffer, link, len))
3911 		len = -EFAULT;
3912 out:
3913 	return len;
3914 }
3915 
3916 /*
3917  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3918  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3919  * using) it for any given inode is up to filesystem.
3920  */
3921 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3922 {
3923 	struct nameidata nd;
3924 	void *cookie;
3925 	int res;
3926 
3927 	nd.depth = 0;
3928 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3929 	if (IS_ERR(cookie))
3930 		return PTR_ERR(cookie);
3931 
3932 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3933 	if (dentry->d_inode->i_op->put_link)
3934 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3935 	return res;
3936 }
3937 
3938 int vfs_follow_link(struct nameidata *nd, const char *link)
3939 {
3940 	return __vfs_follow_link(nd, link);
3941 }
3942 
3943 /* get the link contents into pagecache */
3944 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3945 {
3946 	char *kaddr;
3947 	struct page *page;
3948 	struct address_space *mapping = dentry->d_inode->i_mapping;
3949 	page = read_mapping_page(mapping, 0, NULL);
3950 	if (IS_ERR(page))
3951 		return (char*)page;
3952 	*ppage = page;
3953 	kaddr = kmap(page);
3954 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3955 	return kaddr;
3956 }
3957 
3958 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3959 {
3960 	struct page *page = NULL;
3961 	char *s = page_getlink(dentry, &page);
3962 	int res = vfs_readlink(dentry,buffer,buflen,s);
3963 	if (page) {
3964 		kunmap(page);
3965 		page_cache_release(page);
3966 	}
3967 	return res;
3968 }
3969 
3970 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3971 {
3972 	struct page *page = NULL;
3973 	nd_set_link(nd, page_getlink(dentry, &page));
3974 	return page;
3975 }
3976 
3977 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3978 {
3979 	struct page *page = cookie;
3980 
3981 	if (page) {
3982 		kunmap(page);
3983 		page_cache_release(page);
3984 	}
3985 }
3986 
3987 /*
3988  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3989  */
3990 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3991 {
3992 	struct address_space *mapping = inode->i_mapping;
3993 	struct page *page;
3994 	void *fsdata;
3995 	int err;
3996 	char *kaddr;
3997 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3998 	if (nofs)
3999 		flags |= AOP_FLAG_NOFS;
4000 
4001 retry:
4002 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4003 				flags, &page, &fsdata);
4004 	if (err)
4005 		goto fail;
4006 
4007 	kaddr = kmap_atomic(page);
4008 	memcpy(kaddr, symname, len-1);
4009 	kunmap_atomic(kaddr);
4010 
4011 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4012 							page, fsdata);
4013 	if (err < 0)
4014 		goto fail;
4015 	if (err < len-1)
4016 		goto retry;
4017 
4018 	mark_inode_dirty(inode);
4019 	return 0;
4020 fail:
4021 	return err;
4022 }
4023 
4024 int page_symlink(struct inode *inode, const char *symname, int len)
4025 {
4026 	return __page_symlink(inode, symname, len,
4027 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4028 }
4029 
4030 const struct inode_operations page_symlink_inode_operations = {
4031 	.readlink	= generic_readlink,
4032 	.follow_link	= page_follow_link_light,
4033 	.put_link	= page_put_link,
4034 };
4035 
4036 EXPORT_SYMBOL(user_path_at);
4037 EXPORT_SYMBOL(follow_down_one);
4038 EXPORT_SYMBOL(follow_down);
4039 EXPORT_SYMBOL(follow_up);
4040 EXPORT_SYMBOL(get_write_access); /* nfsd */
4041 EXPORT_SYMBOL(lock_rename);
4042 EXPORT_SYMBOL(lookup_one_len);
4043 EXPORT_SYMBOL(page_follow_link_light);
4044 EXPORT_SYMBOL(page_put_link);
4045 EXPORT_SYMBOL(page_readlink);
4046 EXPORT_SYMBOL(__page_symlink);
4047 EXPORT_SYMBOL(page_symlink);
4048 EXPORT_SYMBOL(page_symlink_inode_operations);
4049 EXPORT_SYMBOL(kern_path);
4050 EXPORT_SYMBOL(vfs_path_lookup);
4051 EXPORT_SYMBOL(inode_permission);
4052 EXPORT_SYMBOL(unlock_rename);
4053 EXPORT_SYMBOL(vfs_create);
4054 EXPORT_SYMBOL(vfs_follow_link);
4055 EXPORT_SYMBOL(vfs_link);
4056 EXPORT_SYMBOL(vfs_mkdir);
4057 EXPORT_SYMBOL(vfs_mknod);
4058 EXPORT_SYMBOL(generic_permission);
4059 EXPORT_SYMBOL(vfs_readlink);
4060 EXPORT_SYMBOL(vfs_rename);
4061 EXPORT_SYMBOL(vfs_rmdir);
4062 EXPORT_SYMBOL(vfs_symlink);
4063 EXPORT_SYMBOL(vfs_unlink);
4064 EXPORT_SYMBOL(dentry_unhash);
4065 EXPORT_SYMBOL(generic_readlink);
4066