xref: /openbmc/linux/fs/namei.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	audit_getname(result);
200 	return result;
201 
202 error:
203 	final_putname(result);
204 	return err;
205 }
206 
207 struct filename *
208 getname(const char __user * filename)
209 {
210 	return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213 
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 	if (unlikely(!audit_dummy_context()))
218 		return audit_putname(name);
219 	final_putname(name);
220 }
221 #endif
222 
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 	struct posix_acl *acl;
227 
228 	if (mask & MAY_NOT_BLOCK) {
229 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 	        if (!acl)
231 	                return -EAGAIN;
232 		/* no ->get_acl() calls in RCU mode... */
233 		if (acl == ACL_NOT_CACHED)
234 			return -ECHILD;
235 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 	}
237 
238 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239 
240 	/*
241 	 * A filesystem can force a ACL callback by just never filling the
242 	 * ACL cache. But normally you'd fill the cache either at inode
243 	 * instantiation time, or on the first ->get_acl call.
244 	 *
245 	 * If the filesystem doesn't have a get_acl() function at all, we'll
246 	 * just create the negative cache entry.
247 	 */
248 	if (acl == ACL_NOT_CACHED) {
249 	        if (inode->i_op->get_acl) {
250 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 			if (IS_ERR(acl))
252 				return PTR_ERR(acl);
253 		} else {
254 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 		        return -EAGAIN;
256 		}
257 	}
258 
259 	if (acl) {
260 	        int error = posix_acl_permission(inode, acl, mask);
261 	        posix_acl_release(acl);
262 	        return error;
263 	}
264 #endif
265 
266 	return -EAGAIN;
267 }
268 
269 /*
270  * This does the basic permission checking
271  */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 	unsigned int mode = inode->i_mode;
275 
276 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 		mode >>= 6;
278 	else {
279 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 			int error = check_acl(inode, mask);
281 			if (error != -EAGAIN)
282 				return error;
283 		}
284 
285 		if (in_group_p(inode->i_gid))
286 			mode >>= 3;
287 	}
288 
289 	/*
290 	 * If the DACs are ok we don't need any capability check.
291 	 */
292 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 		return 0;
294 	return -EACCES;
295 }
296 
297 /**
298  * generic_permission -  check for access rights on a Posix-like filesystem
299  * @inode:	inode to check access rights for
300  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301  *
302  * Used to check for read/write/execute permissions on a file.
303  * We use "fsuid" for this, letting us set arbitrary permissions
304  * for filesystem access without changing the "normal" uids which
305  * are used for other things.
306  *
307  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308  * request cannot be satisfied (eg. requires blocking or too much complexity).
309  * It would then be called again in ref-walk mode.
310  */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 	int ret;
314 
315 	/*
316 	 * Do the basic permission checks.
317 	 */
318 	ret = acl_permission_check(inode, mask);
319 	if (ret != -EACCES)
320 		return ret;
321 
322 	if (S_ISDIR(inode->i_mode)) {
323 		/* DACs are overridable for directories */
324 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 			return 0;
326 		if (!(mask & MAY_WRITE))
327 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 				return 0;
329 		return -EACCES;
330 	}
331 	/*
332 	 * Read/write DACs are always overridable.
333 	 * Executable DACs are overridable when there is
334 	 * at least one exec bit set.
335 	 */
336 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 			return 0;
339 
340 	/*
341 	 * Searching includes executable on directories, else just read.
342 	 */
343 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 	if (mask == MAY_READ)
345 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 			return 0;
347 
348 	return -EACCES;
349 }
350 
351 /*
352  * We _really_ want to just do "generic_permission()" without
353  * even looking at the inode->i_op values. So we keep a cache
354  * flag in inode->i_opflags, that says "this has not special
355  * permission function, use the fast case".
356  */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 		if (likely(inode->i_op->permission))
361 			return inode->i_op->permission(inode, mask);
362 
363 		/* This gets set once for the inode lifetime */
364 		spin_lock(&inode->i_lock);
365 		inode->i_opflags |= IOP_FASTPERM;
366 		spin_unlock(&inode->i_lock);
367 	}
368 	return generic_permission(inode, mask);
369 }
370 
371 /**
372  * __inode_permission - Check for access rights to a given inode
373  * @inode: Inode to check permission on
374  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375  *
376  * Check for read/write/execute permissions on an inode.
377  *
378  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379  *
380  * This does not check for a read-only file system.  You probably want
381  * inode_permission().
382  */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 	int retval;
386 
387 	if (unlikely(mask & MAY_WRITE)) {
388 		/*
389 		 * Nobody gets write access to an immutable file.
390 		 */
391 		if (IS_IMMUTABLE(inode))
392 			return -EACCES;
393 	}
394 
395 	retval = do_inode_permission(inode, mask);
396 	if (retval)
397 		return retval;
398 
399 	retval = devcgroup_inode_permission(inode, mask);
400 	if (retval)
401 		return retval;
402 
403 	return security_inode_permission(inode, mask);
404 }
405 
406 /**
407  * sb_permission - Check superblock-level permissions
408  * @sb: Superblock of inode to check permission on
409  * @inode: Inode to check permission on
410  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411  *
412  * Separate out file-system wide checks from inode-specific permission checks.
413  */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 	if (unlikely(mask & MAY_WRITE)) {
417 		umode_t mode = inode->i_mode;
418 
419 		/* Nobody gets write access to a read-only fs. */
420 		if ((sb->s_flags & MS_RDONLY) &&
421 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 			return -EROFS;
423 	}
424 	return 0;
425 }
426 
427 /**
428  * inode_permission - Check for access rights to a given inode
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
433  * this, letting us set arbitrary permissions for filesystem access without
434  * changing the "normal" UIDs which are used for other things.
435  *
436  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437  */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 	int retval;
441 
442 	retval = sb_permission(inode->i_sb, inode, mask);
443 	if (retval)
444 		return retval;
445 	return __inode_permission(inode, mask);
446 }
447 
448 /**
449  * path_get - get a reference to a path
450  * @path: path to get the reference to
451  *
452  * Given a path increment the reference count to the dentry and the vfsmount.
453  */
454 void path_get(const struct path *path)
455 {
456 	mntget(path->mnt);
457 	dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460 
461 /**
462  * path_put - put a reference to a path
463  * @path: path to put the reference to
464  *
465  * Given a path decrement the reference count to the dentry and the vfsmount.
466  */
467 void path_put(const struct path *path)
468 {
469 	dput(path->dentry);
470 	mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473 
474 /*
475  * Path walking has 2 modes, rcu-walk and ref-walk (see
476  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
477  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
480  * got stuck, so ref-walk may continue from there. If this is not successful
481  * (eg. a seqcount has changed), then failure is returned and it's up to caller
482  * to restart the path walk from the beginning in ref-walk mode.
483  */
484 
485 static inline void lock_rcu_walk(void)
486 {
487 	br_read_lock(&vfsmount_lock);
488 	rcu_read_lock();
489 }
490 
491 static inline void unlock_rcu_walk(void)
492 {
493 	rcu_read_unlock();
494 	br_read_unlock(&vfsmount_lock);
495 }
496 
497 /**
498  * unlazy_walk - try to switch to ref-walk mode.
499  * @nd: nameidata pathwalk data
500  * @dentry: child of nd->path.dentry or NULL
501  * Returns: 0 on success, -ECHILD on failure
502  *
503  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
505  * @nd or NULL.  Must be called from rcu-walk context.
506  */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 	struct fs_struct *fs = current->fs;
510 	struct dentry *parent = nd->path.dentry;
511 	int want_root = 0;
512 
513 	BUG_ON(!(nd->flags & LOOKUP_RCU));
514 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
515 		want_root = 1;
516 		spin_lock(&fs->lock);
517 		if (nd->root.mnt != fs->root.mnt ||
518 				nd->root.dentry != fs->root.dentry)
519 			goto err_root;
520 	}
521 	spin_lock(&parent->d_lock);
522 	if (!dentry) {
523 		if (!__d_rcu_to_refcount(parent, nd->seq))
524 			goto err_parent;
525 		BUG_ON(nd->inode != parent->d_inode);
526 	} else {
527 		if (dentry->d_parent != parent)
528 			goto err_parent;
529 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
530 		if (!__d_rcu_to_refcount(dentry, nd->seq))
531 			goto err_child;
532 		/*
533 		 * If the sequence check on the child dentry passed, then
534 		 * the child has not been removed from its parent. This
535 		 * means the parent dentry must be valid and able to take
536 		 * a reference at this point.
537 		 */
538 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
539 		BUG_ON(!parent->d_count);
540 		parent->d_count++;
541 		spin_unlock(&dentry->d_lock);
542 	}
543 	spin_unlock(&parent->d_lock);
544 	if (want_root) {
545 		path_get(&nd->root);
546 		spin_unlock(&fs->lock);
547 	}
548 	mntget(nd->path.mnt);
549 
550 	unlock_rcu_walk();
551 	nd->flags &= ~LOOKUP_RCU;
552 	return 0;
553 
554 err_child:
555 	spin_unlock(&dentry->d_lock);
556 err_parent:
557 	spin_unlock(&parent->d_lock);
558 err_root:
559 	if (want_root)
560 		spin_unlock(&fs->lock);
561 	return -ECHILD;
562 }
563 
564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
565 {
566 	return dentry->d_op->d_revalidate(dentry, flags);
567 }
568 
569 /**
570  * complete_walk - successful completion of path walk
571  * @nd:  pointer nameidata
572  *
573  * If we had been in RCU mode, drop out of it and legitimize nd->path.
574  * Revalidate the final result, unless we'd already done that during
575  * the path walk or the filesystem doesn't ask for it.  Return 0 on
576  * success, -error on failure.  In case of failure caller does not
577  * need to drop nd->path.
578  */
579 static int complete_walk(struct nameidata *nd)
580 {
581 	struct dentry *dentry = nd->path.dentry;
582 	int status;
583 
584 	if (nd->flags & LOOKUP_RCU) {
585 		nd->flags &= ~LOOKUP_RCU;
586 		if (!(nd->flags & LOOKUP_ROOT))
587 			nd->root.mnt = NULL;
588 		spin_lock(&dentry->d_lock);
589 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
590 			spin_unlock(&dentry->d_lock);
591 			unlock_rcu_walk();
592 			return -ECHILD;
593 		}
594 		BUG_ON(nd->inode != dentry->d_inode);
595 		spin_unlock(&dentry->d_lock);
596 		mntget(nd->path.mnt);
597 		unlock_rcu_walk();
598 	}
599 
600 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
601 		return 0;
602 
603 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
604 		return 0;
605 
606 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
607 	if (status > 0)
608 		return 0;
609 
610 	if (!status)
611 		status = -ESTALE;
612 
613 	path_put(&nd->path);
614 	return status;
615 }
616 
617 static __always_inline void set_root(struct nameidata *nd)
618 {
619 	if (!nd->root.mnt)
620 		get_fs_root(current->fs, &nd->root);
621 }
622 
623 static int link_path_walk(const char *, struct nameidata *);
624 
625 static __always_inline void set_root_rcu(struct nameidata *nd)
626 {
627 	if (!nd->root.mnt) {
628 		struct fs_struct *fs = current->fs;
629 		unsigned seq;
630 
631 		do {
632 			seq = read_seqcount_begin(&fs->seq);
633 			nd->root = fs->root;
634 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
635 		} while (read_seqcount_retry(&fs->seq, seq));
636 	}
637 }
638 
639 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
640 {
641 	int ret;
642 
643 	if (IS_ERR(link))
644 		goto fail;
645 
646 	if (*link == '/') {
647 		set_root(nd);
648 		path_put(&nd->path);
649 		nd->path = nd->root;
650 		path_get(&nd->root);
651 		nd->flags |= LOOKUP_JUMPED;
652 	}
653 	nd->inode = nd->path.dentry->d_inode;
654 
655 	ret = link_path_walk(link, nd);
656 	return ret;
657 fail:
658 	path_put(&nd->path);
659 	return PTR_ERR(link);
660 }
661 
662 static void path_put_conditional(struct path *path, struct nameidata *nd)
663 {
664 	dput(path->dentry);
665 	if (path->mnt != nd->path.mnt)
666 		mntput(path->mnt);
667 }
668 
669 static inline void path_to_nameidata(const struct path *path,
670 					struct nameidata *nd)
671 {
672 	if (!(nd->flags & LOOKUP_RCU)) {
673 		dput(nd->path.dentry);
674 		if (nd->path.mnt != path->mnt)
675 			mntput(nd->path.mnt);
676 	}
677 	nd->path.mnt = path->mnt;
678 	nd->path.dentry = path->dentry;
679 }
680 
681 /*
682  * Helper to directly jump to a known parsed path from ->follow_link,
683  * caller must have taken a reference to path beforehand.
684  */
685 void nd_jump_link(struct nameidata *nd, struct path *path)
686 {
687 	path_put(&nd->path);
688 
689 	nd->path = *path;
690 	nd->inode = nd->path.dentry->d_inode;
691 	nd->flags |= LOOKUP_JUMPED;
692 
693 	BUG_ON(nd->inode->i_op->follow_link);
694 }
695 
696 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
697 {
698 	struct inode *inode = link->dentry->d_inode;
699 	if (inode->i_op->put_link)
700 		inode->i_op->put_link(link->dentry, nd, cookie);
701 	path_put(link);
702 }
703 
704 int sysctl_protected_symlinks __read_mostly = 0;
705 int sysctl_protected_hardlinks __read_mostly = 0;
706 
707 /**
708  * may_follow_link - Check symlink following for unsafe situations
709  * @link: The path of the symlink
710  * @nd: nameidata pathwalk data
711  *
712  * In the case of the sysctl_protected_symlinks sysctl being enabled,
713  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
714  * in a sticky world-writable directory. This is to protect privileged
715  * processes from failing races against path names that may change out
716  * from under them by way of other users creating malicious symlinks.
717  * It will permit symlinks to be followed only when outside a sticky
718  * world-writable directory, or when the uid of the symlink and follower
719  * match, or when the directory owner matches the symlink's owner.
720  *
721  * Returns 0 if following the symlink is allowed, -ve on error.
722  */
723 static inline int may_follow_link(struct path *link, struct nameidata *nd)
724 {
725 	const struct inode *inode;
726 	const struct inode *parent;
727 
728 	if (!sysctl_protected_symlinks)
729 		return 0;
730 
731 	/* Allowed if owner and follower match. */
732 	inode = link->dentry->d_inode;
733 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
734 		return 0;
735 
736 	/* Allowed if parent directory not sticky and world-writable. */
737 	parent = nd->path.dentry->d_inode;
738 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
739 		return 0;
740 
741 	/* Allowed if parent directory and link owner match. */
742 	if (uid_eq(parent->i_uid, inode->i_uid))
743 		return 0;
744 
745 	audit_log_link_denied("follow_link", link);
746 	path_put_conditional(link, nd);
747 	path_put(&nd->path);
748 	return -EACCES;
749 }
750 
751 /**
752  * safe_hardlink_source - Check for safe hardlink conditions
753  * @inode: the source inode to hardlink from
754  *
755  * Return false if at least one of the following conditions:
756  *    - inode is not a regular file
757  *    - inode is setuid
758  *    - inode is setgid and group-exec
759  *    - access failure for read and write
760  *
761  * Otherwise returns true.
762  */
763 static bool safe_hardlink_source(struct inode *inode)
764 {
765 	umode_t mode = inode->i_mode;
766 
767 	/* Special files should not get pinned to the filesystem. */
768 	if (!S_ISREG(mode))
769 		return false;
770 
771 	/* Setuid files should not get pinned to the filesystem. */
772 	if (mode & S_ISUID)
773 		return false;
774 
775 	/* Executable setgid files should not get pinned to the filesystem. */
776 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
777 		return false;
778 
779 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
780 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
781 		return false;
782 
783 	return true;
784 }
785 
786 /**
787  * may_linkat - Check permissions for creating a hardlink
788  * @link: the source to hardlink from
789  *
790  * Block hardlink when all of:
791  *  - sysctl_protected_hardlinks enabled
792  *  - fsuid does not match inode
793  *  - hardlink source is unsafe (see safe_hardlink_source() above)
794  *  - not CAP_FOWNER
795  *
796  * Returns 0 if successful, -ve on error.
797  */
798 static int may_linkat(struct path *link)
799 {
800 	const struct cred *cred;
801 	struct inode *inode;
802 
803 	if (!sysctl_protected_hardlinks)
804 		return 0;
805 
806 	cred = current_cred();
807 	inode = link->dentry->d_inode;
808 
809 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
810 	 * otherwise, it must be a safe source.
811 	 */
812 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
813 	    capable(CAP_FOWNER))
814 		return 0;
815 
816 	audit_log_link_denied("linkat", link);
817 	return -EPERM;
818 }
819 
820 static __always_inline int
821 follow_link(struct path *link, struct nameidata *nd, void **p)
822 {
823 	struct dentry *dentry = link->dentry;
824 	int error;
825 	char *s;
826 
827 	BUG_ON(nd->flags & LOOKUP_RCU);
828 
829 	if (link->mnt == nd->path.mnt)
830 		mntget(link->mnt);
831 
832 	error = -ELOOP;
833 	if (unlikely(current->total_link_count >= 40))
834 		goto out_put_nd_path;
835 
836 	cond_resched();
837 	current->total_link_count++;
838 
839 	touch_atime(link);
840 	nd_set_link(nd, NULL);
841 
842 	error = security_inode_follow_link(link->dentry, nd);
843 	if (error)
844 		goto out_put_nd_path;
845 
846 	nd->last_type = LAST_BIND;
847 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
848 	error = PTR_ERR(*p);
849 	if (IS_ERR(*p))
850 		goto out_put_nd_path;
851 
852 	error = 0;
853 	s = nd_get_link(nd);
854 	if (s) {
855 		error = __vfs_follow_link(nd, s);
856 		if (unlikely(error))
857 			put_link(nd, link, *p);
858 	}
859 
860 	return error;
861 
862 out_put_nd_path:
863 	*p = NULL;
864 	path_put(&nd->path);
865 	path_put(link);
866 	return error;
867 }
868 
869 static int follow_up_rcu(struct path *path)
870 {
871 	struct mount *mnt = real_mount(path->mnt);
872 	struct mount *parent;
873 	struct dentry *mountpoint;
874 
875 	parent = mnt->mnt_parent;
876 	if (&parent->mnt == path->mnt)
877 		return 0;
878 	mountpoint = mnt->mnt_mountpoint;
879 	path->dentry = mountpoint;
880 	path->mnt = &parent->mnt;
881 	return 1;
882 }
883 
884 /*
885  * follow_up - Find the mountpoint of path's vfsmount
886  *
887  * Given a path, find the mountpoint of its source file system.
888  * Replace @path with the path of the mountpoint in the parent mount.
889  * Up is towards /.
890  *
891  * Return 1 if we went up a level and 0 if we were already at the
892  * root.
893  */
894 int follow_up(struct path *path)
895 {
896 	struct mount *mnt = real_mount(path->mnt);
897 	struct mount *parent;
898 	struct dentry *mountpoint;
899 
900 	br_read_lock(&vfsmount_lock);
901 	parent = mnt->mnt_parent;
902 	if (parent == mnt) {
903 		br_read_unlock(&vfsmount_lock);
904 		return 0;
905 	}
906 	mntget(&parent->mnt);
907 	mountpoint = dget(mnt->mnt_mountpoint);
908 	br_read_unlock(&vfsmount_lock);
909 	dput(path->dentry);
910 	path->dentry = mountpoint;
911 	mntput(path->mnt);
912 	path->mnt = &parent->mnt;
913 	return 1;
914 }
915 
916 /*
917  * Perform an automount
918  * - return -EISDIR to tell follow_managed() to stop and return the path we
919  *   were called with.
920  */
921 static int follow_automount(struct path *path, unsigned flags,
922 			    bool *need_mntput)
923 {
924 	struct vfsmount *mnt;
925 	int err;
926 
927 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
928 		return -EREMOTE;
929 
930 	/* We don't want to mount if someone's just doing a stat -
931 	 * unless they're stat'ing a directory and appended a '/' to
932 	 * the name.
933 	 *
934 	 * We do, however, want to mount if someone wants to open or
935 	 * create a file of any type under the mountpoint, wants to
936 	 * traverse through the mountpoint or wants to open the
937 	 * mounted directory.  Also, autofs may mark negative dentries
938 	 * as being automount points.  These will need the attentions
939 	 * of the daemon to instantiate them before they can be used.
940 	 */
941 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
942 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
943 	    path->dentry->d_inode)
944 		return -EISDIR;
945 
946 	current->total_link_count++;
947 	if (current->total_link_count >= 40)
948 		return -ELOOP;
949 
950 	mnt = path->dentry->d_op->d_automount(path);
951 	if (IS_ERR(mnt)) {
952 		/*
953 		 * The filesystem is allowed to return -EISDIR here to indicate
954 		 * it doesn't want to automount.  For instance, autofs would do
955 		 * this so that its userspace daemon can mount on this dentry.
956 		 *
957 		 * However, we can only permit this if it's a terminal point in
958 		 * the path being looked up; if it wasn't then the remainder of
959 		 * the path is inaccessible and we should say so.
960 		 */
961 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
962 			return -EREMOTE;
963 		return PTR_ERR(mnt);
964 	}
965 
966 	if (!mnt) /* mount collision */
967 		return 0;
968 
969 	if (!*need_mntput) {
970 		/* lock_mount() may release path->mnt on error */
971 		mntget(path->mnt);
972 		*need_mntput = true;
973 	}
974 	err = finish_automount(mnt, path);
975 
976 	switch (err) {
977 	case -EBUSY:
978 		/* Someone else made a mount here whilst we were busy */
979 		return 0;
980 	case 0:
981 		path_put(path);
982 		path->mnt = mnt;
983 		path->dentry = dget(mnt->mnt_root);
984 		return 0;
985 	default:
986 		return err;
987 	}
988 
989 }
990 
991 /*
992  * Handle a dentry that is managed in some way.
993  * - Flagged for transit management (autofs)
994  * - Flagged as mountpoint
995  * - Flagged as automount point
996  *
997  * This may only be called in refwalk mode.
998  *
999  * Serialization is taken care of in namespace.c
1000  */
1001 static int follow_managed(struct path *path, unsigned flags)
1002 {
1003 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1004 	unsigned managed;
1005 	bool need_mntput = false;
1006 	int ret = 0;
1007 
1008 	/* Given that we're not holding a lock here, we retain the value in a
1009 	 * local variable for each dentry as we look at it so that we don't see
1010 	 * the components of that value change under us */
1011 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1012 	       managed &= DCACHE_MANAGED_DENTRY,
1013 	       unlikely(managed != 0)) {
1014 		/* Allow the filesystem to manage the transit without i_mutex
1015 		 * being held. */
1016 		if (managed & DCACHE_MANAGE_TRANSIT) {
1017 			BUG_ON(!path->dentry->d_op);
1018 			BUG_ON(!path->dentry->d_op->d_manage);
1019 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1020 			if (ret < 0)
1021 				break;
1022 		}
1023 
1024 		/* Transit to a mounted filesystem. */
1025 		if (managed & DCACHE_MOUNTED) {
1026 			struct vfsmount *mounted = lookup_mnt(path);
1027 			if (mounted) {
1028 				dput(path->dentry);
1029 				if (need_mntput)
1030 					mntput(path->mnt);
1031 				path->mnt = mounted;
1032 				path->dentry = dget(mounted->mnt_root);
1033 				need_mntput = true;
1034 				continue;
1035 			}
1036 
1037 			/* Something is mounted on this dentry in another
1038 			 * namespace and/or whatever was mounted there in this
1039 			 * namespace got unmounted before we managed to get the
1040 			 * vfsmount_lock */
1041 		}
1042 
1043 		/* Handle an automount point */
1044 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1045 			ret = follow_automount(path, flags, &need_mntput);
1046 			if (ret < 0)
1047 				break;
1048 			continue;
1049 		}
1050 
1051 		/* We didn't change the current path point */
1052 		break;
1053 	}
1054 
1055 	if (need_mntput && path->mnt == mnt)
1056 		mntput(path->mnt);
1057 	if (ret == -EISDIR)
1058 		ret = 0;
1059 	return ret < 0 ? ret : need_mntput;
1060 }
1061 
1062 int follow_down_one(struct path *path)
1063 {
1064 	struct vfsmount *mounted;
1065 
1066 	mounted = lookup_mnt(path);
1067 	if (mounted) {
1068 		dput(path->dentry);
1069 		mntput(path->mnt);
1070 		path->mnt = mounted;
1071 		path->dentry = dget(mounted->mnt_root);
1072 		return 1;
1073 	}
1074 	return 0;
1075 }
1076 
1077 static inline bool managed_dentry_might_block(struct dentry *dentry)
1078 {
1079 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1080 		dentry->d_op->d_manage(dentry, true) < 0);
1081 }
1082 
1083 /*
1084  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1085  * we meet a managed dentry that would need blocking.
1086  */
1087 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1088 			       struct inode **inode)
1089 {
1090 	for (;;) {
1091 		struct mount *mounted;
1092 		/*
1093 		 * Don't forget we might have a non-mountpoint managed dentry
1094 		 * that wants to block transit.
1095 		 */
1096 		if (unlikely(managed_dentry_might_block(path->dentry)))
1097 			return false;
1098 
1099 		if (!d_mountpoint(path->dentry))
1100 			break;
1101 
1102 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1103 		if (!mounted)
1104 			break;
1105 		path->mnt = &mounted->mnt;
1106 		path->dentry = mounted->mnt.mnt_root;
1107 		nd->flags |= LOOKUP_JUMPED;
1108 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1109 		/*
1110 		 * Update the inode too. We don't need to re-check the
1111 		 * dentry sequence number here after this d_inode read,
1112 		 * because a mount-point is always pinned.
1113 		 */
1114 		*inode = path->dentry->d_inode;
1115 	}
1116 	return true;
1117 }
1118 
1119 static void follow_mount_rcu(struct nameidata *nd)
1120 {
1121 	while (d_mountpoint(nd->path.dentry)) {
1122 		struct mount *mounted;
1123 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1124 		if (!mounted)
1125 			break;
1126 		nd->path.mnt = &mounted->mnt;
1127 		nd->path.dentry = mounted->mnt.mnt_root;
1128 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1129 	}
1130 }
1131 
1132 static int follow_dotdot_rcu(struct nameidata *nd)
1133 {
1134 	set_root_rcu(nd);
1135 
1136 	while (1) {
1137 		if (nd->path.dentry == nd->root.dentry &&
1138 		    nd->path.mnt == nd->root.mnt) {
1139 			break;
1140 		}
1141 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1142 			struct dentry *old = nd->path.dentry;
1143 			struct dentry *parent = old->d_parent;
1144 			unsigned seq;
1145 
1146 			seq = read_seqcount_begin(&parent->d_seq);
1147 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1148 				goto failed;
1149 			nd->path.dentry = parent;
1150 			nd->seq = seq;
1151 			break;
1152 		}
1153 		if (!follow_up_rcu(&nd->path))
1154 			break;
1155 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1156 	}
1157 	follow_mount_rcu(nd);
1158 	nd->inode = nd->path.dentry->d_inode;
1159 	return 0;
1160 
1161 failed:
1162 	nd->flags &= ~LOOKUP_RCU;
1163 	if (!(nd->flags & LOOKUP_ROOT))
1164 		nd->root.mnt = NULL;
1165 	unlock_rcu_walk();
1166 	return -ECHILD;
1167 }
1168 
1169 /*
1170  * Follow down to the covering mount currently visible to userspace.  At each
1171  * point, the filesystem owning that dentry may be queried as to whether the
1172  * caller is permitted to proceed or not.
1173  */
1174 int follow_down(struct path *path)
1175 {
1176 	unsigned managed;
1177 	int ret;
1178 
1179 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1180 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1181 		/* Allow the filesystem to manage the transit without i_mutex
1182 		 * being held.
1183 		 *
1184 		 * We indicate to the filesystem if someone is trying to mount
1185 		 * something here.  This gives autofs the chance to deny anyone
1186 		 * other than its daemon the right to mount on its
1187 		 * superstructure.
1188 		 *
1189 		 * The filesystem may sleep at this point.
1190 		 */
1191 		if (managed & DCACHE_MANAGE_TRANSIT) {
1192 			BUG_ON(!path->dentry->d_op);
1193 			BUG_ON(!path->dentry->d_op->d_manage);
1194 			ret = path->dentry->d_op->d_manage(
1195 				path->dentry, false);
1196 			if (ret < 0)
1197 				return ret == -EISDIR ? 0 : ret;
1198 		}
1199 
1200 		/* Transit to a mounted filesystem. */
1201 		if (managed & DCACHE_MOUNTED) {
1202 			struct vfsmount *mounted = lookup_mnt(path);
1203 			if (!mounted)
1204 				break;
1205 			dput(path->dentry);
1206 			mntput(path->mnt);
1207 			path->mnt = mounted;
1208 			path->dentry = dget(mounted->mnt_root);
1209 			continue;
1210 		}
1211 
1212 		/* Don't handle automount points here */
1213 		break;
1214 	}
1215 	return 0;
1216 }
1217 
1218 /*
1219  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1220  */
1221 static void follow_mount(struct path *path)
1222 {
1223 	while (d_mountpoint(path->dentry)) {
1224 		struct vfsmount *mounted = lookup_mnt(path);
1225 		if (!mounted)
1226 			break;
1227 		dput(path->dentry);
1228 		mntput(path->mnt);
1229 		path->mnt = mounted;
1230 		path->dentry = dget(mounted->mnt_root);
1231 	}
1232 }
1233 
1234 static void follow_dotdot(struct nameidata *nd)
1235 {
1236 	set_root(nd);
1237 
1238 	while(1) {
1239 		struct dentry *old = nd->path.dentry;
1240 
1241 		if (nd->path.dentry == nd->root.dentry &&
1242 		    nd->path.mnt == nd->root.mnt) {
1243 			break;
1244 		}
1245 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1246 			/* rare case of legitimate dget_parent()... */
1247 			nd->path.dentry = dget_parent(nd->path.dentry);
1248 			dput(old);
1249 			break;
1250 		}
1251 		if (!follow_up(&nd->path))
1252 			break;
1253 	}
1254 	follow_mount(&nd->path);
1255 	nd->inode = nd->path.dentry->d_inode;
1256 }
1257 
1258 /*
1259  * This looks up the name in dcache, possibly revalidates the old dentry and
1260  * allocates a new one if not found or not valid.  In the need_lookup argument
1261  * returns whether i_op->lookup is necessary.
1262  *
1263  * dir->d_inode->i_mutex must be held
1264  */
1265 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1266 				    unsigned int flags, bool *need_lookup)
1267 {
1268 	struct dentry *dentry;
1269 	int error;
1270 
1271 	*need_lookup = false;
1272 	dentry = d_lookup(dir, name);
1273 	if (dentry) {
1274 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1275 			error = d_revalidate(dentry, flags);
1276 			if (unlikely(error <= 0)) {
1277 				if (error < 0) {
1278 					dput(dentry);
1279 					return ERR_PTR(error);
1280 				} else if (!d_invalidate(dentry)) {
1281 					dput(dentry);
1282 					dentry = NULL;
1283 				}
1284 			}
1285 		}
1286 	}
1287 
1288 	if (!dentry) {
1289 		dentry = d_alloc(dir, name);
1290 		if (unlikely(!dentry))
1291 			return ERR_PTR(-ENOMEM);
1292 
1293 		*need_lookup = true;
1294 	}
1295 	return dentry;
1296 }
1297 
1298 /*
1299  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1300  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1301  *
1302  * dir->d_inode->i_mutex must be held
1303  */
1304 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1305 				  unsigned int flags)
1306 {
1307 	struct dentry *old;
1308 
1309 	/* Don't create child dentry for a dead directory. */
1310 	if (unlikely(IS_DEADDIR(dir))) {
1311 		dput(dentry);
1312 		return ERR_PTR(-ENOENT);
1313 	}
1314 
1315 	old = dir->i_op->lookup(dir, dentry, flags);
1316 	if (unlikely(old)) {
1317 		dput(dentry);
1318 		dentry = old;
1319 	}
1320 	return dentry;
1321 }
1322 
1323 static struct dentry *__lookup_hash(struct qstr *name,
1324 		struct dentry *base, unsigned int flags)
1325 {
1326 	bool need_lookup;
1327 	struct dentry *dentry;
1328 
1329 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1330 	if (!need_lookup)
1331 		return dentry;
1332 
1333 	return lookup_real(base->d_inode, dentry, flags);
1334 }
1335 
1336 /*
1337  *  It's more convoluted than I'd like it to be, but... it's still fairly
1338  *  small and for now I'd prefer to have fast path as straight as possible.
1339  *  It _is_ time-critical.
1340  */
1341 static int lookup_fast(struct nameidata *nd,
1342 		       struct path *path, struct inode **inode)
1343 {
1344 	struct vfsmount *mnt = nd->path.mnt;
1345 	struct dentry *dentry, *parent = nd->path.dentry;
1346 	int need_reval = 1;
1347 	int status = 1;
1348 	int err;
1349 
1350 	/*
1351 	 * Rename seqlock is not required here because in the off chance
1352 	 * of a false negative due to a concurrent rename, we're going to
1353 	 * do the non-racy lookup, below.
1354 	 */
1355 	if (nd->flags & LOOKUP_RCU) {
1356 		unsigned seq;
1357 		dentry = __d_lookup_rcu(parent, &nd->last, &seq, nd->inode);
1358 		if (!dentry)
1359 			goto unlazy;
1360 
1361 		/*
1362 		 * This sequence count validates that the inode matches
1363 		 * the dentry name information from lookup.
1364 		 */
1365 		*inode = dentry->d_inode;
1366 		if (read_seqcount_retry(&dentry->d_seq, seq))
1367 			return -ECHILD;
1368 
1369 		/*
1370 		 * This sequence count validates that the parent had no
1371 		 * changes while we did the lookup of the dentry above.
1372 		 *
1373 		 * The memory barrier in read_seqcount_begin of child is
1374 		 *  enough, we can use __read_seqcount_retry here.
1375 		 */
1376 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1377 			return -ECHILD;
1378 		nd->seq = seq;
1379 
1380 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1381 			status = d_revalidate(dentry, nd->flags);
1382 			if (unlikely(status <= 0)) {
1383 				if (status != -ECHILD)
1384 					need_reval = 0;
1385 				goto unlazy;
1386 			}
1387 		}
1388 		path->mnt = mnt;
1389 		path->dentry = dentry;
1390 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1391 			goto unlazy;
1392 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1393 			goto unlazy;
1394 		return 0;
1395 unlazy:
1396 		if (unlazy_walk(nd, dentry))
1397 			return -ECHILD;
1398 	} else {
1399 		dentry = __d_lookup(parent, &nd->last);
1400 	}
1401 
1402 	if (unlikely(!dentry))
1403 		goto need_lookup;
1404 
1405 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1406 		status = d_revalidate(dentry, nd->flags);
1407 	if (unlikely(status <= 0)) {
1408 		if (status < 0) {
1409 			dput(dentry);
1410 			return status;
1411 		}
1412 		if (!d_invalidate(dentry)) {
1413 			dput(dentry);
1414 			goto need_lookup;
1415 		}
1416 	}
1417 
1418 	path->mnt = mnt;
1419 	path->dentry = dentry;
1420 	err = follow_managed(path, nd->flags);
1421 	if (unlikely(err < 0)) {
1422 		path_put_conditional(path, nd);
1423 		return err;
1424 	}
1425 	if (err)
1426 		nd->flags |= LOOKUP_JUMPED;
1427 	*inode = path->dentry->d_inode;
1428 	return 0;
1429 
1430 need_lookup:
1431 	return 1;
1432 }
1433 
1434 /* Fast lookup failed, do it the slow way */
1435 static int lookup_slow(struct nameidata *nd, struct path *path)
1436 {
1437 	struct dentry *dentry, *parent;
1438 	int err;
1439 
1440 	parent = nd->path.dentry;
1441 	BUG_ON(nd->inode != parent->d_inode);
1442 
1443 	mutex_lock(&parent->d_inode->i_mutex);
1444 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1445 	mutex_unlock(&parent->d_inode->i_mutex);
1446 	if (IS_ERR(dentry))
1447 		return PTR_ERR(dentry);
1448 	path->mnt = nd->path.mnt;
1449 	path->dentry = dentry;
1450 	err = follow_managed(path, nd->flags);
1451 	if (unlikely(err < 0)) {
1452 		path_put_conditional(path, nd);
1453 		return err;
1454 	}
1455 	if (err)
1456 		nd->flags |= LOOKUP_JUMPED;
1457 	return 0;
1458 }
1459 
1460 static inline int may_lookup(struct nameidata *nd)
1461 {
1462 	if (nd->flags & LOOKUP_RCU) {
1463 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1464 		if (err != -ECHILD)
1465 			return err;
1466 		if (unlazy_walk(nd, NULL))
1467 			return -ECHILD;
1468 	}
1469 	return inode_permission(nd->inode, MAY_EXEC);
1470 }
1471 
1472 static inline int handle_dots(struct nameidata *nd, int type)
1473 {
1474 	if (type == LAST_DOTDOT) {
1475 		if (nd->flags & LOOKUP_RCU) {
1476 			if (follow_dotdot_rcu(nd))
1477 				return -ECHILD;
1478 		} else
1479 			follow_dotdot(nd);
1480 	}
1481 	return 0;
1482 }
1483 
1484 static void terminate_walk(struct nameidata *nd)
1485 {
1486 	if (!(nd->flags & LOOKUP_RCU)) {
1487 		path_put(&nd->path);
1488 	} else {
1489 		nd->flags &= ~LOOKUP_RCU;
1490 		if (!(nd->flags & LOOKUP_ROOT))
1491 			nd->root.mnt = NULL;
1492 		unlock_rcu_walk();
1493 	}
1494 }
1495 
1496 /*
1497  * Do we need to follow links? We _really_ want to be able
1498  * to do this check without having to look at inode->i_op,
1499  * so we keep a cache of "no, this doesn't need follow_link"
1500  * for the common case.
1501  */
1502 static inline int should_follow_link(struct inode *inode, int follow)
1503 {
1504 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1505 		if (likely(inode->i_op->follow_link))
1506 			return follow;
1507 
1508 		/* This gets set once for the inode lifetime */
1509 		spin_lock(&inode->i_lock);
1510 		inode->i_opflags |= IOP_NOFOLLOW;
1511 		spin_unlock(&inode->i_lock);
1512 	}
1513 	return 0;
1514 }
1515 
1516 static inline int walk_component(struct nameidata *nd, struct path *path,
1517 		int follow)
1518 {
1519 	struct inode *inode;
1520 	int err;
1521 	/*
1522 	 * "." and ".." are special - ".." especially so because it has
1523 	 * to be able to know about the current root directory and
1524 	 * parent relationships.
1525 	 */
1526 	if (unlikely(nd->last_type != LAST_NORM))
1527 		return handle_dots(nd, nd->last_type);
1528 	err = lookup_fast(nd, path, &inode);
1529 	if (unlikely(err)) {
1530 		if (err < 0)
1531 			goto out_err;
1532 
1533 		err = lookup_slow(nd, path);
1534 		if (err < 0)
1535 			goto out_err;
1536 
1537 		inode = path->dentry->d_inode;
1538 	}
1539 	err = -ENOENT;
1540 	if (!inode)
1541 		goto out_path_put;
1542 
1543 	if (should_follow_link(inode, follow)) {
1544 		if (nd->flags & LOOKUP_RCU) {
1545 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1546 				err = -ECHILD;
1547 				goto out_err;
1548 			}
1549 		}
1550 		BUG_ON(inode != path->dentry->d_inode);
1551 		return 1;
1552 	}
1553 	path_to_nameidata(path, nd);
1554 	nd->inode = inode;
1555 	return 0;
1556 
1557 out_path_put:
1558 	path_to_nameidata(path, nd);
1559 out_err:
1560 	terminate_walk(nd);
1561 	return err;
1562 }
1563 
1564 /*
1565  * This limits recursive symlink follows to 8, while
1566  * limiting consecutive symlinks to 40.
1567  *
1568  * Without that kind of total limit, nasty chains of consecutive
1569  * symlinks can cause almost arbitrarily long lookups.
1570  */
1571 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1572 {
1573 	int res;
1574 
1575 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1576 		path_put_conditional(path, nd);
1577 		path_put(&nd->path);
1578 		return -ELOOP;
1579 	}
1580 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1581 
1582 	nd->depth++;
1583 	current->link_count++;
1584 
1585 	do {
1586 		struct path link = *path;
1587 		void *cookie;
1588 
1589 		res = follow_link(&link, nd, &cookie);
1590 		if (res)
1591 			break;
1592 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1593 		put_link(nd, &link, cookie);
1594 	} while (res > 0);
1595 
1596 	current->link_count--;
1597 	nd->depth--;
1598 	return res;
1599 }
1600 
1601 /*
1602  * We really don't want to look at inode->i_op->lookup
1603  * when we don't have to. So we keep a cache bit in
1604  * the inode ->i_opflags field that says "yes, we can
1605  * do lookup on this inode".
1606  */
1607 static inline int can_lookup(struct inode *inode)
1608 {
1609 	if (likely(inode->i_opflags & IOP_LOOKUP))
1610 		return 1;
1611 	if (likely(!inode->i_op->lookup))
1612 		return 0;
1613 
1614 	/* We do this once for the lifetime of the inode */
1615 	spin_lock(&inode->i_lock);
1616 	inode->i_opflags |= IOP_LOOKUP;
1617 	spin_unlock(&inode->i_lock);
1618 	return 1;
1619 }
1620 
1621 /*
1622  * We can do the critical dentry name comparison and hashing
1623  * operations one word at a time, but we are limited to:
1624  *
1625  * - Architectures with fast unaligned word accesses. We could
1626  *   do a "get_unaligned()" if this helps and is sufficiently
1627  *   fast.
1628  *
1629  * - Little-endian machines (so that we can generate the mask
1630  *   of low bytes efficiently). Again, we *could* do a byte
1631  *   swapping load on big-endian architectures if that is not
1632  *   expensive enough to make the optimization worthless.
1633  *
1634  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1635  *   do not trap on the (extremely unlikely) case of a page
1636  *   crossing operation.
1637  *
1638  * - Furthermore, we need an efficient 64-bit compile for the
1639  *   64-bit case in order to generate the "number of bytes in
1640  *   the final mask". Again, that could be replaced with a
1641  *   efficient population count instruction or similar.
1642  */
1643 #ifdef CONFIG_DCACHE_WORD_ACCESS
1644 
1645 #include <asm/word-at-a-time.h>
1646 
1647 #ifdef CONFIG_64BIT
1648 
1649 static inline unsigned int fold_hash(unsigned long hash)
1650 {
1651 	hash += hash >> (8*sizeof(int));
1652 	return hash;
1653 }
1654 
1655 #else	/* 32-bit case */
1656 
1657 #define fold_hash(x) (x)
1658 
1659 #endif
1660 
1661 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1662 {
1663 	unsigned long a, mask;
1664 	unsigned long hash = 0;
1665 
1666 	for (;;) {
1667 		a = load_unaligned_zeropad(name);
1668 		if (len < sizeof(unsigned long))
1669 			break;
1670 		hash += a;
1671 		hash *= 9;
1672 		name += sizeof(unsigned long);
1673 		len -= sizeof(unsigned long);
1674 		if (!len)
1675 			goto done;
1676 	}
1677 	mask = ~(~0ul << len*8);
1678 	hash += mask & a;
1679 done:
1680 	return fold_hash(hash);
1681 }
1682 EXPORT_SYMBOL(full_name_hash);
1683 
1684 /*
1685  * Calculate the length and hash of the path component, and
1686  * return the length of the component;
1687  */
1688 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1689 {
1690 	unsigned long a, b, adata, bdata, mask, hash, len;
1691 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1692 
1693 	hash = a = 0;
1694 	len = -sizeof(unsigned long);
1695 	do {
1696 		hash = (hash + a) * 9;
1697 		len += sizeof(unsigned long);
1698 		a = load_unaligned_zeropad(name+len);
1699 		b = a ^ REPEAT_BYTE('/');
1700 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1701 
1702 	adata = prep_zero_mask(a, adata, &constants);
1703 	bdata = prep_zero_mask(b, bdata, &constants);
1704 
1705 	mask = create_zero_mask(adata | bdata);
1706 
1707 	hash += a & zero_bytemask(mask);
1708 	*hashp = fold_hash(hash);
1709 
1710 	return len + find_zero(mask);
1711 }
1712 
1713 #else
1714 
1715 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1716 {
1717 	unsigned long hash = init_name_hash();
1718 	while (len--)
1719 		hash = partial_name_hash(*name++, hash);
1720 	return end_name_hash(hash);
1721 }
1722 EXPORT_SYMBOL(full_name_hash);
1723 
1724 /*
1725  * We know there's a real path component here of at least
1726  * one character.
1727  */
1728 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1729 {
1730 	unsigned long hash = init_name_hash();
1731 	unsigned long len = 0, c;
1732 
1733 	c = (unsigned char)*name;
1734 	do {
1735 		len++;
1736 		hash = partial_name_hash(c, hash);
1737 		c = (unsigned char)name[len];
1738 	} while (c && c != '/');
1739 	*hashp = end_name_hash(hash);
1740 	return len;
1741 }
1742 
1743 #endif
1744 
1745 /*
1746  * Name resolution.
1747  * This is the basic name resolution function, turning a pathname into
1748  * the final dentry. We expect 'base' to be positive and a directory.
1749  *
1750  * Returns 0 and nd will have valid dentry and mnt on success.
1751  * Returns error and drops reference to input namei data on failure.
1752  */
1753 static int link_path_walk(const char *name, struct nameidata *nd)
1754 {
1755 	struct path next;
1756 	int err;
1757 
1758 	while (*name=='/')
1759 		name++;
1760 	if (!*name)
1761 		return 0;
1762 
1763 	/* At this point we know we have a real path component. */
1764 	for(;;) {
1765 		struct qstr this;
1766 		long len;
1767 		int type;
1768 
1769 		err = may_lookup(nd);
1770  		if (err)
1771 			break;
1772 
1773 		len = hash_name(name, &this.hash);
1774 		this.name = name;
1775 		this.len = len;
1776 
1777 		type = LAST_NORM;
1778 		if (name[0] == '.') switch (len) {
1779 			case 2:
1780 				if (name[1] == '.') {
1781 					type = LAST_DOTDOT;
1782 					nd->flags |= LOOKUP_JUMPED;
1783 				}
1784 				break;
1785 			case 1:
1786 				type = LAST_DOT;
1787 		}
1788 		if (likely(type == LAST_NORM)) {
1789 			struct dentry *parent = nd->path.dentry;
1790 			nd->flags &= ~LOOKUP_JUMPED;
1791 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1792 				err = parent->d_op->d_hash(parent, nd->inode,
1793 							   &this);
1794 				if (err < 0)
1795 					break;
1796 			}
1797 		}
1798 
1799 		nd->last = this;
1800 		nd->last_type = type;
1801 
1802 		if (!name[len])
1803 			return 0;
1804 		/*
1805 		 * If it wasn't NUL, we know it was '/'. Skip that
1806 		 * slash, and continue until no more slashes.
1807 		 */
1808 		do {
1809 			len++;
1810 		} while (unlikely(name[len] == '/'));
1811 		if (!name[len])
1812 			return 0;
1813 
1814 		name += len;
1815 
1816 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1817 		if (err < 0)
1818 			return err;
1819 
1820 		if (err) {
1821 			err = nested_symlink(&next, nd);
1822 			if (err)
1823 				return err;
1824 		}
1825 		if (!can_lookup(nd->inode)) {
1826 			err = -ENOTDIR;
1827 			break;
1828 		}
1829 	}
1830 	terminate_walk(nd);
1831 	return err;
1832 }
1833 
1834 static int path_init(int dfd, const char *name, unsigned int flags,
1835 		     struct nameidata *nd, struct file **fp)
1836 {
1837 	int retval = 0;
1838 
1839 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1840 	nd->flags = flags | LOOKUP_JUMPED;
1841 	nd->depth = 0;
1842 	if (flags & LOOKUP_ROOT) {
1843 		struct inode *inode = nd->root.dentry->d_inode;
1844 		if (*name) {
1845 			if (!can_lookup(inode))
1846 				return -ENOTDIR;
1847 			retval = inode_permission(inode, MAY_EXEC);
1848 			if (retval)
1849 				return retval;
1850 		}
1851 		nd->path = nd->root;
1852 		nd->inode = inode;
1853 		if (flags & LOOKUP_RCU) {
1854 			lock_rcu_walk();
1855 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1856 		} else {
1857 			path_get(&nd->path);
1858 		}
1859 		return 0;
1860 	}
1861 
1862 	nd->root.mnt = NULL;
1863 
1864 	if (*name=='/') {
1865 		if (flags & LOOKUP_RCU) {
1866 			lock_rcu_walk();
1867 			set_root_rcu(nd);
1868 		} else {
1869 			set_root(nd);
1870 			path_get(&nd->root);
1871 		}
1872 		nd->path = nd->root;
1873 	} else if (dfd == AT_FDCWD) {
1874 		if (flags & LOOKUP_RCU) {
1875 			struct fs_struct *fs = current->fs;
1876 			unsigned seq;
1877 
1878 			lock_rcu_walk();
1879 
1880 			do {
1881 				seq = read_seqcount_begin(&fs->seq);
1882 				nd->path = fs->pwd;
1883 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1884 			} while (read_seqcount_retry(&fs->seq, seq));
1885 		} else {
1886 			get_fs_pwd(current->fs, &nd->path);
1887 		}
1888 	} else {
1889 		/* Caller must check execute permissions on the starting path component */
1890 		struct fd f = fdget_raw(dfd);
1891 		struct dentry *dentry;
1892 
1893 		if (!f.file)
1894 			return -EBADF;
1895 
1896 		dentry = f.file->f_path.dentry;
1897 
1898 		if (*name) {
1899 			if (!can_lookup(dentry->d_inode)) {
1900 				fdput(f);
1901 				return -ENOTDIR;
1902 			}
1903 		}
1904 
1905 		nd->path = f.file->f_path;
1906 		if (flags & LOOKUP_RCU) {
1907 			if (f.need_put)
1908 				*fp = f.file;
1909 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1910 			lock_rcu_walk();
1911 		} else {
1912 			path_get(&nd->path);
1913 			fdput(f);
1914 		}
1915 	}
1916 
1917 	nd->inode = nd->path.dentry->d_inode;
1918 	return 0;
1919 }
1920 
1921 static inline int lookup_last(struct nameidata *nd, struct path *path)
1922 {
1923 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1924 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1925 
1926 	nd->flags &= ~LOOKUP_PARENT;
1927 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1928 }
1929 
1930 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1931 static int path_lookupat(int dfd, const char *name,
1932 				unsigned int flags, struct nameidata *nd)
1933 {
1934 	struct file *base = NULL;
1935 	struct path path;
1936 	int err;
1937 
1938 	/*
1939 	 * Path walking is largely split up into 2 different synchronisation
1940 	 * schemes, rcu-walk and ref-walk (explained in
1941 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1942 	 * path walk code, but some things particularly setup, cleanup, and
1943 	 * following mounts are sufficiently divergent that functions are
1944 	 * duplicated. Typically there is a function foo(), and its RCU
1945 	 * analogue, foo_rcu().
1946 	 *
1947 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1948 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1949 	 * be handled by restarting a traditional ref-walk (which will always
1950 	 * be able to complete).
1951 	 */
1952 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1953 
1954 	if (unlikely(err))
1955 		return err;
1956 
1957 	current->total_link_count = 0;
1958 	err = link_path_walk(name, nd);
1959 
1960 	if (!err && !(flags & LOOKUP_PARENT)) {
1961 		err = lookup_last(nd, &path);
1962 		while (err > 0) {
1963 			void *cookie;
1964 			struct path link = path;
1965 			err = may_follow_link(&link, nd);
1966 			if (unlikely(err))
1967 				break;
1968 			nd->flags |= LOOKUP_PARENT;
1969 			err = follow_link(&link, nd, &cookie);
1970 			if (err)
1971 				break;
1972 			err = lookup_last(nd, &path);
1973 			put_link(nd, &link, cookie);
1974 		}
1975 	}
1976 
1977 	if (!err)
1978 		err = complete_walk(nd);
1979 
1980 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1981 		if (!nd->inode->i_op->lookup) {
1982 			path_put(&nd->path);
1983 			err = -ENOTDIR;
1984 		}
1985 	}
1986 
1987 	if (base)
1988 		fput(base);
1989 
1990 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1991 		path_put(&nd->root);
1992 		nd->root.mnt = NULL;
1993 	}
1994 	return err;
1995 }
1996 
1997 static int filename_lookup(int dfd, struct filename *name,
1998 				unsigned int flags, struct nameidata *nd)
1999 {
2000 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2001 	if (unlikely(retval == -ECHILD))
2002 		retval = path_lookupat(dfd, name->name, flags, nd);
2003 	if (unlikely(retval == -ESTALE))
2004 		retval = path_lookupat(dfd, name->name,
2005 						flags | LOOKUP_REVAL, nd);
2006 
2007 	if (likely(!retval))
2008 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2009 	return retval;
2010 }
2011 
2012 static int do_path_lookup(int dfd, const char *name,
2013 				unsigned int flags, struct nameidata *nd)
2014 {
2015 	struct filename filename = { .name = name };
2016 
2017 	return filename_lookup(dfd, &filename, flags, nd);
2018 }
2019 
2020 /* does lookup, returns the object with parent locked */
2021 struct dentry *kern_path_locked(const char *name, struct path *path)
2022 {
2023 	struct nameidata nd;
2024 	struct dentry *d;
2025 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2026 	if (err)
2027 		return ERR_PTR(err);
2028 	if (nd.last_type != LAST_NORM) {
2029 		path_put(&nd.path);
2030 		return ERR_PTR(-EINVAL);
2031 	}
2032 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2033 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2034 	if (IS_ERR(d)) {
2035 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2036 		path_put(&nd.path);
2037 		return d;
2038 	}
2039 	*path = nd.path;
2040 	return d;
2041 }
2042 
2043 int kern_path(const char *name, unsigned int flags, struct path *path)
2044 {
2045 	struct nameidata nd;
2046 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2047 	if (!res)
2048 		*path = nd.path;
2049 	return res;
2050 }
2051 
2052 /**
2053  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2054  * @dentry:  pointer to dentry of the base directory
2055  * @mnt: pointer to vfs mount of the base directory
2056  * @name: pointer to file name
2057  * @flags: lookup flags
2058  * @path: pointer to struct path to fill
2059  */
2060 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2061 		    const char *name, unsigned int flags,
2062 		    struct path *path)
2063 {
2064 	struct nameidata nd;
2065 	int err;
2066 	nd.root.dentry = dentry;
2067 	nd.root.mnt = mnt;
2068 	BUG_ON(flags & LOOKUP_PARENT);
2069 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2070 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2071 	if (!err)
2072 		*path = nd.path;
2073 	return err;
2074 }
2075 
2076 /*
2077  * Restricted form of lookup. Doesn't follow links, single-component only,
2078  * needs parent already locked. Doesn't follow mounts.
2079  * SMP-safe.
2080  */
2081 static struct dentry *lookup_hash(struct nameidata *nd)
2082 {
2083 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2084 }
2085 
2086 /**
2087  * lookup_one_len - filesystem helper to lookup single pathname component
2088  * @name:	pathname component to lookup
2089  * @base:	base directory to lookup from
2090  * @len:	maximum length @len should be interpreted to
2091  *
2092  * Note that this routine is purely a helper for filesystem usage and should
2093  * not be called by generic code.  Also note that by using this function the
2094  * nameidata argument is passed to the filesystem methods and a filesystem
2095  * using this helper needs to be prepared for that.
2096  */
2097 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2098 {
2099 	struct qstr this;
2100 	unsigned int c;
2101 	int err;
2102 
2103 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2104 
2105 	this.name = name;
2106 	this.len = len;
2107 	this.hash = full_name_hash(name, len);
2108 	if (!len)
2109 		return ERR_PTR(-EACCES);
2110 
2111 	if (unlikely(name[0] == '.')) {
2112 		if (len < 2 || (len == 2 && name[1] == '.'))
2113 			return ERR_PTR(-EACCES);
2114 	}
2115 
2116 	while (len--) {
2117 		c = *(const unsigned char *)name++;
2118 		if (c == '/' || c == '\0')
2119 			return ERR_PTR(-EACCES);
2120 	}
2121 	/*
2122 	 * See if the low-level filesystem might want
2123 	 * to use its own hash..
2124 	 */
2125 	if (base->d_flags & DCACHE_OP_HASH) {
2126 		int err = base->d_op->d_hash(base, base->d_inode, &this);
2127 		if (err < 0)
2128 			return ERR_PTR(err);
2129 	}
2130 
2131 	err = inode_permission(base->d_inode, MAY_EXEC);
2132 	if (err)
2133 		return ERR_PTR(err);
2134 
2135 	return __lookup_hash(&this, base, 0);
2136 }
2137 
2138 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2139 		 struct path *path, int *empty)
2140 {
2141 	struct nameidata nd;
2142 	struct filename *tmp = getname_flags(name, flags, empty);
2143 	int err = PTR_ERR(tmp);
2144 	if (!IS_ERR(tmp)) {
2145 
2146 		BUG_ON(flags & LOOKUP_PARENT);
2147 
2148 		err = filename_lookup(dfd, tmp, flags, &nd);
2149 		putname(tmp);
2150 		if (!err)
2151 			*path = nd.path;
2152 	}
2153 	return err;
2154 }
2155 
2156 int user_path_at(int dfd, const char __user *name, unsigned flags,
2157 		 struct path *path)
2158 {
2159 	return user_path_at_empty(dfd, name, flags, path, NULL);
2160 }
2161 
2162 /*
2163  * NB: most callers don't do anything directly with the reference to the
2164  *     to struct filename, but the nd->last pointer points into the name string
2165  *     allocated by getname. So we must hold the reference to it until all
2166  *     path-walking is complete.
2167  */
2168 static struct filename *
2169 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2170 		 unsigned int flags)
2171 {
2172 	struct filename *s = getname(path);
2173 	int error;
2174 
2175 	/* only LOOKUP_REVAL is allowed in extra flags */
2176 	flags &= LOOKUP_REVAL;
2177 
2178 	if (IS_ERR(s))
2179 		return s;
2180 
2181 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2182 	if (error) {
2183 		putname(s);
2184 		return ERR_PTR(error);
2185 	}
2186 
2187 	return s;
2188 }
2189 
2190 /*
2191  * It's inline, so penalty for filesystems that don't use sticky bit is
2192  * minimal.
2193  */
2194 static inline int check_sticky(struct inode *dir, struct inode *inode)
2195 {
2196 	kuid_t fsuid = current_fsuid();
2197 
2198 	if (!(dir->i_mode & S_ISVTX))
2199 		return 0;
2200 	if (uid_eq(inode->i_uid, fsuid))
2201 		return 0;
2202 	if (uid_eq(dir->i_uid, fsuid))
2203 		return 0;
2204 	return !inode_capable(inode, CAP_FOWNER);
2205 }
2206 
2207 /*
2208  *	Check whether we can remove a link victim from directory dir, check
2209  *  whether the type of victim is right.
2210  *  1. We can't do it if dir is read-only (done in permission())
2211  *  2. We should have write and exec permissions on dir
2212  *  3. We can't remove anything from append-only dir
2213  *  4. We can't do anything with immutable dir (done in permission())
2214  *  5. If the sticky bit on dir is set we should either
2215  *	a. be owner of dir, or
2216  *	b. be owner of victim, or
2217  *	c. have CAP_FOWNER capability
2218  *  6. If the victim is append-only or immutable we can't do antyhing with
2219  *     links pointing to it.
2220  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2221  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2222  *  9. We can't remove a root or mountpoint.
2223  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2224  *     nfs_async_unlink().
2225  */
2226 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2227 {
2228 	int error;
2229 
2230 	if (!victim->d_inode)
2231 		return -ENOENT;
2232 
2233 	BUG_ON(victim->d_parent->d_inode != dir);
2234 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2235 
2236 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2237 	if (error)
2238 		return error;
2239 	if (IS_APPEND(dir))
2240 		return -EPERM;
2241 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2242 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2243 		return -EPERM;
2244 	if (isdir) {
2245 		if (!S_ISDIR(victim->d_inode->i_mode))
2246 			return -ENOTDIR;
2247 		if (IS_ROOT(victim))
2248 			return -EBUSY;
2249 	} else if (S_ISDIR(victim->d_inode->i_mode))
2250 		return -EISDIR;
2251 	if (IS_DEADDIR(dir))
2252 		return -ENOENT;
2253 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2254 		return -EBUSY;
2255 	return 0;
2256 }
2257 
2258 /*	Check whether we can create an object with dentry child in directory
2259  *  dir.
2260  *  1. We can't do it if child already exists (open has special treatment for
2261  *     this case, but since we are inlined it's OK)
2262  *  2. We can't do it if dir is read-only (done in permission())
2263  *  3. We should have write and exec permissions on dir
2264  *  4. We can't do it if dir is immutable (done in permission())
2265  */
2266 static inline int may_create(struct inode *dir, struct dentry *child)
2267 {
2268 	if (child->d_inode)
2269 		return -EEXIST;
2270 	if (IS_DEADDIR(dir))
2271 		return -ENOENT;
2272 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2273 }
2274 
2275 /*
2276  * p1 and p2 should be directories on the same fs.
2277  */
2278 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2279 {
2280 	struct dentry *p;
2281 
2282 	if (p1 == p2) {
2283 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2284 		return NULL;
2285 	}
2286 
2287 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2288 
2289 	p = d_ancestor(p2, p1);
2290 	if (p) {
2291 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2292 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2293 		return p;
2294 	}
2295 
2296 	p = d_ancestor(p1, p2);
2297 	if (p) {
2298 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2299 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2300 		return p;
2301 	}
2302 
2303 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2304 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2305 	return NULL;
2306 }
2307 
2308 void unlock_rename(struct dentry *p1, struct dentry *p2)
2309 {
2310 	mutex_unlock(&p1->d_inode->i_mutex);
2311 	if (p1 != p2) {
2312 		mutex_unlock(&p2->d_inode->i_mutex);
2313 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2314 	}
2315 }
2316 
2317 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2318 		bool want_excl)
2319 {
2320 	int error = may_create(dir, dentry);
2321 	if (error)
2322 		return error;
2323 
2324 	if (!dir->i_op->create)
2325 		return -EACCES;	/* shouldn't it be ENOSYS? */
2326 	mode &= S_IALLUGO;
2327 	mode |= S_IFREG;
2328 	error = security_inode_create(dir, dentry, mode);
2329 	if (error)
2330 		return error;
2331 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2332 	if (!error)
2333 		fsnotify_create(dir, dentry);
2334 	return error;
2335 }
2336 
2337 static int may_open(struct path *path, int acc_mode, int flag)
2338 {
2339 	struct dentry *dentry = path->dentry;
2340 	struct inode *inode = dentry->d_inode;
2341 	int error;
2342 
2343 	/* O_PATH? */
2344 	if (!acc_mode)
2345 		return 0;
2346 
2347 	if (!inode)
2348 		return -ENOENT;
2349 
2350 	switch (inode->i_mode & S_IFMT) {
2351 	case S_IFLNK:
2352 		return -ELOOP;
2353 	case S_IFDIR:
2354 		if (acc_mode & MAY_WRITE)
2355 			return -EISDIR;
2356 		break;
2357 	case S_IFBLK:
2358 	case S_IFCHR:
2359 		if (path->mnt->mnt_flags & MNT_NODEV)
2360 			return -EACCES;
2361 		/*FALLTHRU*/
2362 	case S_IFIFO:
2363 	case S_IFSOCK:
2364 		flag &= ~O_TRUNC;
2365 		break;
2366 	}
2367 
2368 	error = inode_permission(inode, acc_mode);
2369 	if (error)
2370 		return error;
2371 
2372 	/*
2373 	 * An append-only file must be opened in append mode for writing.
2374 	 */
2375 	if (IS_APPEND(inode)) {
2376 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2377 			return -EPERM;
2378 		if (flag & O_TRUNC)
2379 			return -EPERM;
2380 	}
2381 
2382 	/* O_NOATIME can only be set by the owner or superuser */
2383 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2384 		return -EPERM;
2385 
2386 	return 0;
2387 }
2388 
2389 static int handle_truncate(struct file *filp)
2390 {
2391 	struct path *path = &filp->f_path;
2392 	struct inode *inode = path->dentry->d_inode;
2393 	int error = get_write_access(inode);
2394 	if (error)
2395 		return error;
2396 	/*
2397 	 * Refuse to truncate files with mandatory locks held on them.
2398 	 */
2399 	error = locks_verify_locked(inode);
2400 	if (!error)
2401 		error = security_path_truncate(path);
2402 	if (!error) {
2403 		error = do_truncate(path->dentry, 0,
2404 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2405 				    filp);
2406 	}
2407 	put_write_access(inode);
2408 	return error;
2409 }
2410 
2411 static inline int open_to_namei_flags(int flag)
2412 {
2413 	if ((flag & O_ACCMODE) == 3)
2414 		flag--;
2415 	return flag;
2416 }
2417 
2418 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2419 {
2420 	int error = security_path_mknod(dir, dentry, mode, 0);
2421 	if (error)
2422 		return error;
2423 
2424 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2425 	if (error)
2426 		return error;
2427 
2428 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2429 }
2430 
2431 /*
2432  * Attempt to atomically look up, create and open a file from a negative
2433  * dentry.
2434  *
2435  * Returns 0 if successful.  The file will have been created and attached to
2436  * @file by the filesystem calling finish_open().
2437  *
2438  * Returns 1 if the file was looked up only or didn't need creating.  The
2439  * caller will need to perform the open themselves.  @path will have been
2440  * updated to point to the new dentry.  This may be negative.
2441  *
2442  * Returns an error code otherwise.
2443  */
2444 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2445 			struct path *path, struct file *file,
2446 			const struct open_flags *op,
2447 			bool got_write, bool need_lookup,
2448 			int *opened)
2449 {
2450 	struct inode *dir =  nd->path.dentry->d_inode;
2451 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2452 	umode_t mode;
2453 	int error;
2454 	int acc_mode;
2455 	int create_error = 0;
2456 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2457 
2458 	BUG_ON(dentry->d_inode);
2459 
2460 	/* Don't create child dentry for a dead directory. */
2461 	if (unlikely(IS_DEADDIR(dir))) {
2462 		error = -ENOENT;
2463 		goto out;
2464 	}
2465 
2466 	mode = op->mode;
2467 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2468 		mode &= ~current_umask();
2469 
2470 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2471 		open_flag &= ~O_TRUNC;
2472 		*opened |= FILE_CREATED;
2473 	}
2474 
2475 	/*
2476 	 * Checking write permission is tricky, bacuse we don't know if we are
2477 	 * going to actually need it: O_CREAT opens should work as long as the
2478 	 * file exists.  But checking existence breaks atomicity.  The trick is
2479 	 * to check access and if not granted clear O_CREAT from the flags.
2480 	 *
2481 	 * Another problem is returing the "right" error value (e.g. for an
2482 	 * O_EXCL open we want to return EEXIST not EROFS).
2483 	 */
2484 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2485 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2486 		if (!(open_flag & O_CREAT)) {
2487 			/*
2488 			 * No O_CREATE -> atomicity not a requirement -> fall
2489 			 * back to lookup + open
2490 			 */
2491 			goto no_open;
2492 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2493 			/* Fall back and fail with the right error */
2494 			create_error = -EROFS;
2495 			goto no_open;
2496 		} else {
2497 			/* No side effects, safe to clear O_CREAT */
2498 			create_error = -EROFS;
2499 			open_flag &= ~O_CREAT;
2500 		}
2501 	}
2502 
2503 	if (open_flag & O_CREAT) {
2504 		error = may_o_create(&nd->path, dentry, mode);
2505 		if (error) {
2506 			create_error = error;
2507 			if (open_flag & O_EXCL)
2508 				goto no_open;
2509 			open_flag &= ~O_CREAT;
2510 		}
2511 	}
2512 
2513 	if (nd->flags & LOOKUP_DIRECTORY)
2514 		open_flag |= O_DIRECTORY;
2515 
2516 	file->f_path.dentry = DENTRY_NOT_SET;
2517 	file->f_path.mnt = nd->path.mnt;
2518 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2519 				      opened);
2520 	if (error < 0) {
2521 		if (create_error && error == -ENOENT)
2522 			error = create_error;
2523 		goto out;
2524 	}
2525 
2526 	acc_mode = op->acc_mode;
2527 	if (*opened & FILE_CREATED) {
2528 		fsnotify_create(dir, dentry);
2529 		acc_mode = MAY_OPEN;
2530 	}
2531 
2532 	if (error) {	/* returned 1, that is */
2533 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2534 			error = -EIO;
2535 			goto out;
2536 		}
2537 		if (file->f_path.dentry) {
2538 			dput(dentry);
2539 			dentry = file->f_path.dentry;
2540 		}
2541 		if (create_error && dentry->d_inode == NULL) {
2542 			error = create_error;
2543 			goto out;
2544 		}
2545 		goto looked_up;
2546 	}
2547 
2548 	/*
2549 	 * We didn't have the inode before the open, so check open permission
2550 	 * here.
2551 	 */
2552 	error = may_open(&file->f_path, acc_mode, open_flag);
2553 	if (error)
2554 		fput(file);
2555 
2556 out:
2557 	dput(dentry);
2558 	return error;
2559 
2560 no_open:
2561 	if (need_lookup) {
2562 		dentry = lookup_real(dir, dentry, nd->flags);
2563 		if (IS_ERR(dentry))
2564 			return PTR_ERR(dentry);
2565 
2566 		if (create_error) {
2567 			int open_flag = op->open_flag;
2568 
2569 			error = create_error;
2570 			if ((open_flag & O_EXCL)) {
2571 				if (!dentry->d_inode)
2572 					goto out;
2573 			} else if (!dentry->d_inode) {
2574 				goto out;
2575 			} else if ((open_flag & O_TRUNC) &&
2576 				   S_ISREG(dentry->d_inode->i_mode)) {
2577 				goto out;
2578 			}
2579 			/* will fail later, go on to get the right error */
2580 		}
2581 	}
2582 looked_up:
2583 	path->dentry = dentry;
2584 	path->mnt = nd->path.mnt;
2585 	return 1;
2586 }
2587 
2588 /*
2589  * Look up and maybe create and open the last component.
2590  *
2591  * Must be called with i_mutex held on parent.
2592  *
2593  * Returns 0 if the file was successfully atomically created (if necessary) and
2594  * opened.  In this case the file will be returned attached to @file.
2595  *
2596  * Returns 1 if the file was not completely opened at this time, though lookups
2597  * and creations will have been performed and the dentry returned in @path will
2598  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2599  * specified then a negative dentry may be returned.
2600  *
2601  * An error code is returned otherwise.
2602  *
2603  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2604  * cleared otherwise prior to returning.
2605  */
2606 static int lookup_open(struct nameidata *nd, struct path *path,
2607 			struct file *file,
2608 			const struct open_flags *op,
2609 			bool got_write, int *opened)
2610 {
2611 	struct dentry *dir = nd->path.dentry;
2612 	struct inode *dir_inode = dir->d_inode;
2613 	struct dentry *dentry;
2614 	int error;
2615 	bool need_lookup;
2616 
2617 	*opened &= ~FILE_CREATED;
2618 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2619 	if (IS_ERR(dentry))
2620 		return PTR_ERR(dentry);
2621 
2622 	/* Cached positive dentry: will open in f_op->open */
2623 	if (!need_lookup && dentry->d_inode)
2624 		goto out_no_open;
2625 
2626 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2627 		return atomic_open(nd, dentry, path, file, op, got_write,
2628 				   need_lookup, opened);
2629 	}
2630 
2631 	if (need_lookup) {
2632 		BUG_ON(dentry->d_inode);
2633 
2634 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2635 		if (IS_ERR(dentry))
2636 			return PTR_ERR(dentry);
2637 	}
2638 
2639 	/* Negative dentry, just create the file */
2640 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2641 		umode_t mode = op->mode;
2642 		if (!IS_POSIXACL(dir->d_inode))
2643 			mode &= ~current_umask();
2644 		/*
2645 		 * This write is needed to ensure that a
2646 		 * rw->ro transition does not occur between
2647 		 * the time when the file is created and when
2648 		 * a permanent write count is taken through
2649 		 * the 'struct file' in finish_open().
2650 		 */
2651 		if (!got_write) {
2652 			error = -EROFS;
2653 			goto out_dput;
2654 		}
2655 		*opened |= FILE_CREATED;
2656 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2657 		if (error)
2658 			goto out_dput;
2659 		error = vfs_create(dir->d_inode, dentry, mode,
2660 				   nd->flags & LOOKUP_EXCL);
2661 		if (error)
2662 			goto out_dput;
2663 	}
2664 out_no_open:
2665 	path->dentry = dentry;
2666 	path->mnt = nd->path.mnt;
2667 	return 1;
2668 
2669 out_dput:
2670 	dput(dentry);
2671 	return error;
2672 }
2673 
2674 /*
2675  * Handle the last step of open()
2676  */
2677 static int do_last(struct nameidata *nd, struct path *path,
2678 		   struct file *file, const struct open_flags *op,
2679 		   int *opened, struct filename *name)
2680 {
2681 	struct dentry *dir = nd->path.dentry;
2682 	int open_flag = op->open_flag;
2683 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2684 	bool got_write = false;
2685 	int acc_mode = op->acc_mode;
2686 	struct inode *inode;
2687 	bool symlink_ok = false;
2688 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2689 	bool retried = false;
2690 	int error;
2691 
2692 	nd->flags &= ~LOOKUP_PARENT;
2693 	nd->flags |= op->intent;
2694 
2695 	switch (nd->last_type) {
2696 	case LAST_DOTDOT:
2697 	case LAST_DOT:
2698 		error = handle_dots(nd, nd->last_type);
2699 		if (error)
2700 			return error;
2701 		/* fallthrough */
2702 	case LAST_ROOT:
2703 		error = complete_walk(nd);
2704 		if (error)
2705 			return error;
2706 		audit_inode(name, nd->path.dentry, 0);
2707 		if (open_flag & O_CREAT) {
2708 			error = -EISDIR;
2709 			goto out;
2710 		}
2711 		goto finish_open;
2712 	case LAST_BIND:
2713 		error = complete_walk(nd);
2714 		if (error)
2715 			return error;
2716 		audit_inode(name, dir, 0);
2717 		goto finish_open;
2718 	}
2719 
2720 	if (!(open_flag & O_CREAT)) {
2721 		if (nd->last.name[nd->last.len])
2722 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2723 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2724 			symlink_ok = true;
2725 		/* we _can_ be in RCU mode here */
2726 		error = lookup_fast(nd, path, &inode);
2727 		if (likely(!error))
2728 			goto finish_lookup;
2729 
2730 		if (error < 0)
2731 			goto out;
2732 
2733 		BUG_ON(nd->inode != dir->d_inode);
2734 	} else {
2735 		/* create side of things */
2736 		/*
2737 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2738 		 * has been cleared when we got to the last component we are
2739 		 * about to look up
2740 		 */
2741 		error = complete_walk(nd);
2742 		if (error)
2743 			return error;
2744 
2745 		audit_inode(name, dir, 0);
2746 		error = -EISDIR;
2747 		/* trailing slashes? */
2748 		if (nd->last.name[nd->last.len])
2749 			goto out;
2750 	}
2751 
2752 retry_lookup:
2753 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2754 		error = mnt_want_write(nd->path.mnt);
2755 		if (!error)
2756 			got_write = true;
2757 		/*
2758 		 * do _not_ fail yet - we might not need that or fail with
2759 		 * a different error; let lookup_open() decide; we'll be
2760 		 * dropping this one anyway.
2761 		 */
2762 	}
2763 	mutex_lock(&dir->d_inode->i_mutex);
2764 	error = lookup_open(nd, path, file, op, got_write, opened);
2765 	mutex_unlock(&dir->d_inode->i_mutex);
2766 
2767 	if (error <= 0) {
2768 		if (error)
2769 			goto out;
2770 
2771 		if ((*opened & FILE_CREATED) ||
2772 		    !S_ISREG(file_inode(file)->i_mode))
2773 			will_truncate = false;
2774 
2775 		audit_inode(name, file->f_path.dentry, 0);
2776 		goto opened;
2777 	}
2778 
2779 	if (*opened & FILE_CREATED) {
2780 		/* Don't check for write permission, don't truncate */
2781 		open_flag &= ~O_TRUNC;
2782 		will_truncate = false;
2783 		acc_mode = MAY_OPEN;
2784 		path_to_nameidata(path, nd);
2785 		goto finish_open_created;
2786 	}
2787 
2788 	/*
2789 	 * create/update audit record if it already exists.
2790 	 */
2791 	if (path->dentry->d_inode)
2792 		audit_inode(name, path->dentry, 0);
2793 
2794 	/*
2795 	 * If atomic_open() acquired write access it is dropped now due to
2796 	 * possible mount and symlink following (this might be optimized away if
2797 	 * necessary...)
2798 	 */
2799 	if (got_write) {
2800 		mnt_drop_write(nd->path.mnt);
2801 		got_write = false;
2802 	}
2803 
2804 	error = -EEXIST;
2805 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2806 		goto exit_dput;
2807 
2808 	error = follow_managed(path, nd->flags);
2809 	if (error < 0)
2810 		goto exit_dput;
2811 
2812 	if (error)
2813 		nd->flags |= LOOKUP_JUMPED;
2814 
2815 	BUG_ON(nd->flags & LOOKUP_RCU);
2816 	inode = path->dentry->d_inode;
2817 finish_lookup:
2818 	/* we _can_ be in RCU mode here */
2819 	error = -ENOENT;
2820 	if (!inode) {
2821 		path_to_nameidata(path, nd);
2822 		goto out;
2823 	}
2824 
2825 	if (should_follow_link(inode, !symlink_ok)) {
2826 		if (nd->flags & LOOKUP_RCU) {
2827 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2828 				error = -ECHILD;
2829 				goto out;
2830 			}
2831 		}
2832 		BUG_ON(inode != path->dentry->d_inode);
2833 		return 1;
2834 	}
2835 
2836 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2837 		path_to_nameidata(path, nd);
2838 	} else {
2839 		save_parent.dentry = nd->path.dentry;
2840 		save_parent.mnt = mntget(path->mnt);
2841 		nd->path.dentry = path->dentry;
2842 
2843 	}
2844 	nd->inode = inode;
2845 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2846 	error = complete_walk(nd);
2847 	if (error) {
2848 		path_put(&save_parent);
2849 		return error;
2850 	}
2851 	error = -EISDIR;
2852 	if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2853 		goto out;
2854 	error = -ENOTDIR;
2855 	if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2856 		goto out;
2857 	audit_inode(name, nd->path.dentry, 0);
2858 finish_open:
2859 	if (!S_ISREG(nd->inode->i_mode))
2860 		will_truncate = false;
2861 
2862 	if (will_truncate) {
2863 		error = mnt_want_write(nd->path.mnt);
2864 		if (error)
2865 			goto out;
2866 		got_write = true;
2867 	}
2868 finish_open_created:
2869 	error = may_open(&nd->path, acc_mode, open_flag);
2870 	if (error)
2871 		goto out;
2872 	file->f_path.mnt = nd->path.mnt;
2873 	error = finish_open(file, nd->path.dentry, NULL, opened);
2874 	if (error) {
2875 		if (error == -EOPENSTALE)
2876 			goto stale_open;
2877 		goto out;
2878 	}
2879 opened:
2880 	error = open_check_o_direct(file);
2881 	if (error)
2882 		goto exit_fput;
2883 	error = ima_file_check(file, op->acc_mode);
2884 	if (error)
2885 		goto exit_fput;
2886 
2887 	if (will_truncate) {
2888 		error = handle_truncate(file);
2889 		if (error)
2890 			goto exit_fput;
2891 	}
2892 out:
2893 	if (got_write)
2894 		mnt_drop_write(nd->path.mnt);
2895 	path_put(&save_parent);
2896 	terminate_walk(nd);
2897 	return error;
2898 
2899 exit_dput:
2900 	path_put_conditional(path, nd);
2901 	goto out;
2902 exit_fput:
2903 	fput(file);
2904 	goto out;
2905 
2906 stale_open:
2907 	/* If no saved parent or already retried then can't retry */
2908 	if (!save_parent.dentry || retried)
2909 		goto out;
2910 
2911 	BUG_ON(save_parent.dentry != dir);
2912 	path_put(&nd->path);
2913 	nd->path = save_parent;
2914 	nd->inode = dir->d_inode;
2915 	save_parent.mnt = NULL;
2916 	save_parent.dentry = NULL;
2917 	if (got_write) {
2918 		mnt_drop_write(nd->path.mnt);
2919 		got_write = false;
2920 	}
2921 	retried = true;
2922 	goto retry_lookup;
2923 }
2924 
2925 static struct file *path_openat(int dfd, struct filename *pathname,
2926 		struct nameidata *nd, const struct open_flags *op, int flags)
2927 {
2928 	struct file *base = NULL;
2929 	struct file *file;
2930 	struct path path;
2931 	int opened = 0;
2932 	int error;
2933 
2934 	file = get_empty_filp();
2935 	if (IS_ERR(file))
2936 		return file;
2937 
2938 	file->f_flags = op->open_flag;
2939 
2940 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2941 	if (unlikely(error))
2942 		goto out;
2943 
2944 	current->total_link_count = 0;
2945 	error = link_path_walk(pathname->name, nd);
2946 	if (unlikely(error))
2947 		goto out;
2948 
2949 	error = do_last(nd, &path, file, op, &opened, pathname);
2950 	while (unlikely(error > 0)) { /* trailing symlink */
2951 		struct path link = path;
2952 		void *cookie;
2953 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2954 			path_put_conditional(&path, nd);
2955 			path_put(&nd->path);
2956 			error = -ELOOP;
2957 			break;
2958 		}
2959 		error = may_follow_link(&link, nd);
2960 		if (unlikely(error))
2961 			break;
2962 		nd->flags |= LOOKUP_PARENT;
2963 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2964 		error = follow_link(&link, nd, &cookie);
2965 		if (unlikely(error))
2966 			break;
2967 		error = do_last(nd, &path, file, op, &opened, pathname);
2968 		put_link(nd, &link, cookie);
2969 	}
2970 out:
2971 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2972 		path_put(&nd->root);
2973 	if (base)
2974 		fput(base);
2975 	if (!(opened & FILE_OPENED)) {
2976 		BUG_ON(!error);
2977 		put_filp(file);
2978 	}
2979 	if (unlikely(error)) {
2980 		if (error == -EOPENSTALE) {
2981 			if (flags & LOOKUP_RCU)
2982 				error = -ECHILD;
2983 			else
2984 				error = -ESTALE;
2985 		}
2986 		file = ERR_PTR(error);
2987 	}
2988 	return file;
2989 }
2990 
2991 struct file *do_filp_open(int dfd, struct filename *pathname,
2992 		const struct open_flags *op, int flags)
2993 {
2994 	struct nameidata nd;
2995 	struct file *filp;
2996 
2997 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2998 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2999 		filp = path_openat(dfd, pathname, &nd, op, flags);
3000 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3001 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3002 	return filp;
3003 }
3004 
3005 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3006 		const char *name, const struct open_flags *op, int flags)
3007 {
3008 	struct nameidata nd;
3009 	struct file *file;
3010 	struct filename filename = { .name = name };
3011 
3012 	nd.root.mnt = mnt;
3013 	nd.root.dentry = dentry;
3014 
3015 	flags |= LOOKUP_ROOT;
3016 
3017 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3018 		return ERR_PTR(-ELOOP);
3019 
3020 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3021 	if (unlikely(file == ERR_PTR(-ECHILD)))
3022 		file = path_openat(-1, &filename, &nd, op, flags);
3023 	if (unlikely(file == ERR_PTR(-ESTALE)))
3024 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3025 	return file;
3026 }
3027 
3028 struct dentry *kern_path_create(int dfd, const char *pathname,
3029 				struct path *path, unsigned int lookup_flags)
3030 {
3031 	struct dentry *dentry = ERR_PTR(-EEXIST);
3032 	struct nameidata nd;
3033 	int err2;
3034 	int error;
3035 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3036 
3037 	/*
3038 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3039 	 * other flags passed in are ignored!
3040 	 */
3041 	lookup_flags &= LOOKUP_REVAL;
3042 
3043 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3044 	if (error)
3045 		return ERR_PTR(error);
3046 
3047 	/*
3048 	 * Yucky last component or no last component at all?
3049 	 * (foo/., foo/.., /////)
3050 	 */
3051 	if (nd.last_type != LAST_NORM)
3052 		goto out;
3053 	nd.flags &= ~LOOKUP_PARENT;
3054 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3055 
3056 	/* don't fail immediately if it's r/o, at least try to report other errors */
3057 	err2 = mnt_want_write(nd.path.mnt);
3058 	/*
3059 	 * Do the final lookup.
3060 	 */
3061 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3062 	dentry = lookup_hash(&nd);
3063 	if (IS_ERR(dentry))
3064 		goto unlock;
3065 
3066 	error = -EEXIST;
3067 	if (dentry->d_inode)
3068 		goto fail;
3069 	/*
3070 	 * Special case - lookup gave negative, but... we had foo/bar/
3071 	 * From the vfs_mknod() POV we just have a negative dentry -
3072 	 * all is fine. Let's be bastards - you had / on the end, you've
3073 	 * been asking for (non-existent) directory. -ENOENT for you.
3074 	 */
3075 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3076 		error = -ENOENT;
3077 		goto fail;
3078 	}
3079 	if (unlikely(err2)) {
3080 		error = err2;
3081 		goto fail;
3082 	}
3083 	*path = nd.path;
3084 	return dentry;
3085 fail:
3086 	dput(dentry);
3087 	dentry = ERR_PTR(error);
3088 unlock:
3089 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3090 	if (!err2)
3091 		mnt_drop_write(nd.path.mnt);
3092 out:
3093 	path_put(&nd.path);
3094 	return dentry;
3095 }
3096 EXPORT_SYMBOL(kern_path_create);
3097 
3098 void done_path_create(struct path *path, struct dentry *dentry)
3099 {
3100 	dput(dentry);
3101 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3102 	mnt_drop_write(path->mnt);
3103 	path_put(path);
3104 }
3105 EXPORT_SYMBOL(done_path_create);
3106 
3107 struct dentry *user_path_create(int dfd, const char __user *pathname,
3108 				struct path *path, unsigned int lookup_flags)
3109 {
3110 	struct filename *tmp = getname(pathname);
3111 	struct dentry *res;
3112 	if (IS_ERR(tmp))
3113 		return ERR_CAST(tmp);
3114 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3115 	putname(tmp);
3116 	return res;
3117 }
3118 EXPORT_SYMBOL(user_path_create);
3119 
3120 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3121 {
3122 	int error = may_create(dir, dentry);
3123 
3124 	if (error)
3125 		return error;
3126 
3127 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3128 		return -EPERM;
3129 
3130 	if (!dir->i_op->mknod)
3131 		return -EPERM;
3132 
3133 	error = devcgroup_inode_mknod(mode, dev);
3134 	if (error)
3135 		return error;
3136 
3137 	error = security_inode_mknod(dir, dentry, mode, dev);
3138 	if (error)
3139 		return error;
3140 
3141 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3142 	if (!error)
3143 		fsnotify_create(dir, dentry);
3144 	return error;
3145 }
3146 
3147 static int may_mknod(umode_t mode)
3148 {
3149 	switch (mode & S_IFMT) {
3150 	case S_IFREG:
3151 	case S_IFCHR:
3152 	case S_IFBLK:
3153 	case S_IFIFO:
3154 	case S_IFSOCK:
3155 	case 0: /* zero mode translates to S_IFREG */
3156 		return 0;
3157 	case S_IFDIR:
3158 		return -EPERM;
3159 	default:
3160 		return -EINVAL;
3161 	}
3162 }
3163 
3164 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3165 		unsigned, dev)
3166 {
3167 	struct dentry *dentry;
3168 	struct path path;
3169 	int error;
3170 	unsigned int lookup_flags = 0;
3171 
3172 	error = may_mknod(mode);
3173 	if (error)
3174 		return error;
3175 retry:
3176 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3177 	if (IS_ERR(dentry))
3178 		return PTR_ERR(dentry);
3179 
3180 	if (!IS_POSIXACL(path.dentry->d_inode))
3181 		mode &= ~current_umask();
3182 	error = security_path_mknod(&path, dentry, mode, dev);
3183 	if (error)
3184 		goto out;
3185 	switch (mode & S_IFMT) {
3186 		case 0: case S_IFREG:
3187 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3188 			break;
3189 		case S_IFCHR: case S_IFBLK:
3190 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3191 					new_decode_dev(dev));
3192 			break;
3193 		case S_IFIFO: case S_IFSOCK:
3194 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3195 			break;
3196 	}
3197 out:
3198 	done_path_create(&path, dentry);
3199 	if (retry_estale(error, lookup_flags)) {
3200 		lookup_flags |= LOOKUP_REVAL;
3201 		goto retry;
3202 	}
3203 	return error;
3204 }
3205 
3206 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3207 {
3208 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3209 }
3210 
3211 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3212 {
3213 	int error = may_create(dir, dentry);
3214 	unsigned max_links = dir->i_sb->s_max_links;
3215 
3216 	if (error)
3217 		return error;
3218 
3219 	if (!dir->i_op->mkdir)
3220 		return -EPERM;
3221 
3222 	mode &= (S_IRWXUGO|S_ISVTX);
3223 	error = security_inode_mkdir(dir, dentry, mode);
3224 	if (error)
3225 		return error;
3226 
3227 	if (max_links && dir->i_nlink >= max_links)
3228 		return -EMLINK;
3229 
3230 	error = dir->i_op->mkdir(dir, dentry, mode);
3231 	if (!error)
3232 		fsnotify_mkdir(dir, dentry);
3233 	return error;
3234 }
3235 
3236 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3237 {
3238 	struct dentry *dentry;
3239 	struct path path;
3240 	int error;
3241 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3242 
3243 retry:
3244 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3245 	if (IS_ERR(dentry))
3246 		return PTR_ERR(dentry);
3247 
3248 	if (!IS_POSIXACL(path.dentry->d_inode))
3249 		mode &= ~current_umask();
3250 	error = security_path_mkdir(&path, dentry, mode);
3251 	if (!error)
3252 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3253 	done_path_create(&path, dentry);
3254 	if (retry_estale(error, lookup_flags)) {
3255 		lookup_flags |= LOOKUP_REVAL;
3256 		goto retry;
3257 	}
3258 	return error;
3259 }
3260 
3261 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3262 {
3263 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3264 }
3265 
3266 /*
3267  * The dentry_unhash() helper will try to drop the dentry early: we
3268  * should have a usage count of 1 if we're the only user of this
3269  * dentry, and if that is true (possibly after pruning the dcache),
3270  * then we drop the dentry now.
3271  *
3272  * A low-level filesystem can, if it choses, legally
3273  * do a
3274  *
3275  *	if (!d_unhashed(dentry))
3276  *		return -EBUSY;
3277  *
3278  * if it cannot handle the case of removing a directory
3279  * that is still in use by something else..
3280  */
3281 void dentry_unhash(struct dentry *dentry)
3282 {
3283 	shrink_dcache_parent(dentry);
3284 	spin_lock(&dentry->d_lock);
3285 	if (dentry->d_count == 1)
3286 		__d_drop(dentry);
3287 	spin_unlock(&dentry->d_lock);
3288 }
3289 
3290 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3291 {
3292 	int error = may_delete(dir, dentry, 1);
3293 
3294 	if (error)
3295 		return error;
3296 
3297 	if (!dir->i_op->rmdir)
3298 		return -EPERM;
3299 
3300 	dget(dentry);
3301 	mutex_lock(&dentry->d_inode->i_mutex);
3302 
3303 	error = -EBUSY;
3304 	if (d_mountpoint(dentry))
3305 		goto out;
3306 
3307 	error = security_inode_rmdir(dir, dentry);
3308 	if (error)
3309 		goto out;
3310 
3311 	shrink_dcache_parent(dentry);
3312 	error = dir->i_op->rmdir(dir, dentry);
3313 	if (error)
3314 		goto out;
3315 
3316 	dentry->d_inode->i_flags |= S_DEAD;
3317 	dont_mount(dentry);
3318 
3319 out:
3320 	mutex_unlock(&dentry->d_inode->i_mutex);
3321 	dput(dentry);
3322 	if (!error)
3323 		d_delete(dentry);
3324 	return error;
3325 }
3326 
3327 static long do_rmdir(int dfd, const char __user *pathname)
3328 {
3329 	int error = 0;
3330 	struct filename *name;
3331 	struct dentry *dentry;
3332 	struct nameidata nd;
3333 	unsigned int lookup_flags = 0;
3334 retry:
3335 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3336 	if (IS_ERR(name))
3337 		return PTR_ERR(name);
3338 
3339 	switch(nd.last_type) {
3340 	case LAST_DOTDOT:
3341 		error = -ENOTEMPTY;
3342 		goto exit1;
3343 	case LAST_DOT:
3344 		error = -EINVAL;
3345 		goto exit1;
3346 	case LAST_ROOT:
3347 		error = -EBUSY;
3348 		goto exit1;
3349 	}
3350 
3351 	nd.flags &= ~LOOKUP_PARENT;
3352 	error = mnt_want_write(nd.path.mnt);
3353 	if (error)
3354 		goto exit1;
3355 
3356 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3357 	dentry = lookup_hash(&nd);
3358 	error = PTR_ERR(dentry);
3359 	if (IS_ERR(dentry))
3360 		goto exit2;
3361 	if (!dentry->d_inode) {
3362 		error = -ENOENT;
3363 		goto exit3;
3364 	}
3365 	error = security_path_rmdir(&nd.path, dentry);
3366 	if (error)
3367 		goto exit3;
3368 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3369 exit3:
3370 	dput(dentry);
3371 exit2:
3372 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3373 	mnt_drop_write(nd.path.mnt);
3374 exit1:
3375 	path_put(&nd.path);
3376 	putname(name);
3377 	if (retry_estale(error, lookup_flags)) {
3378 		lookup_flags |= LOOKUP_REVAL;
3379 		goto retry;
3380 	}
3381 	return error;
3382 }
3383 
3384 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3385 {
3386 	return do_rmdir(AT_FDCWD, pathname);
3387 }
3388 
3389 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3390 {
3391 	int error = may_delete(dir, dentry, 0);
3392 
3393 	if (error)
3394 		return error;
3395 
3396 	if (!dir->i_op->unlink)
3397 		return -EPERM;
3398 
3399 	mutex_lock(&dentry->d_inode->i_mutex);
3400 	if (d_mountpoint(dentry))
3401 		error = -EBUSY;
3402 	else {
3403 		error = security_inode_unlink(dir, dentry);
3404 		if (!error) {
3405 			error = dir->i_op->unlink(dir, dentry);
3406 			if (!error)
3407 				dont_mount(dentry);
3408 		}
3409 	}
3410 	mutex_unlock(&dentry->d_inode->i_mutex);
3411 
3412 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3413 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3414 		fsnotify_link_count(dentry->d_inode);
3415 		d_delete(dentry);
3416 	}
3417 
3418 	return error;
3419 }
3420 
3421 /*
3422  * Make sure that the actual truncation of the file will occur outside its
3423  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3424  * writeout happening, and we don't want to prevent access to the directory
3425  * while waiting on the I/O.
3426  */
3427 static long do_unlinkat(int dfd, const char __user *pathname)
3428 {
3429 	int error;
3430 	struct filename *name;
3431 	struct dentry *dentry;
3432 	struct nameidata nd;
3433 	struct inode *inode = NULL;
3434 	unsigned int lookup_flags = 0;
3435 retry:
3436 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3437 	if (IS_ERR(name))
3438 		return PTR_ERR(name);
3439 
3440 	error = -EISDIR;
3441 	if (nd.last_type != LAST_NORM)
3442 		goto exit1;
3443 
3444 	nd.flags &= ~LOOKUP_PARENT;
3445 	error = mnt_want_write(nd.path.mnt);
3446 	if (error)
3447 		goto exit1;
3448 
3449 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3450 	dentry = lookup_hash(&nd);
3451 	error = PTR_ERR(dentry);
3452 	if (!IS_ERR(dentry)) {
3453 		/* Why not before? Because we want correct error value */
3454 		if (nd.last.name[nd.last.len])
3455 			goto slashes;
3456 		inode = dentry->d_inode;
3457 		if (!inode)
3458 			goto slashes;
3459 		ihold(inode);
3460 		error = security_path_unlink(&nd.path, dentry);
3461 		if (error)
3462 			goto exit2;
3463 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3464 exit2:
3465 		dput(dentry);
3466 	}
3467 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3468 	if (inode)
3469 		iput(inode);	/* truncate the inode here */
3470 	mnt_drop_write(nd.path.mnt);
3471 exit1:
3472 	path_put(&nd.path);
3473 	putname(name);
3474 	if (retry_estale(error, lookup_flags)) {
3475 		lookup_flags |= LOOKUP_REVAL;
3476 		inode = NULL;
3477 		goto retry;
3478 	}
3479 	return error;
3480 
3481 slashes:
3482 	error = !dentry->d_inode ? -ENOENT :
3483 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3484 	goto exit2;
3485 }
3486 
3487 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3488 {
3489 	if ((flag & ~AT_REMOVEDIR) != 0)
3490 		return -EINVAL;
3491 
3492 	if (flag & AT_REMOVEDIR)
3493 		return do_rmdir(dfd, pathname);
3494 
3495 	return do_unlinkat(dfd, pathname);
3496 }
3497 
3498 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3499 {
3500 	return do_unlinkat(AT_FDCWD, pathname);
3501 }
3502 
3503 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3504 {
3505 	int error = may_create(dir, dentry);
3506 
3507 	if (error)
3508 		return error;
3509 
3510 	if (!dir->i_op->symlink)
3511 		return -EPERM;
3512 
3513 	error = security_inode_symlink(dir, dentry, oldname);
3514 	if (error)
3515 		return error;
3516 
3517 	error = dir->i_op->symlink(dir, dentry, oldname);
3518 	if (!error)
3519 		fsnotify_create(dir, dentry);
3520 	return error;
3521 }
3522 
3523 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3524 		int, newdfd, const char __user *, newname)
3525 {
3526 	int error;
3527 	struct filename *from;
3528 	struct dentry *dentry;
3529 	struct path path;
3530 	unsigned int lookup_flags = 0;
3531 
3532 	from = getname(oldname);
3533 	if (IS_ERR(from))
3534 		return PTR_ERR(from);
3535 retry:
3536 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3537 	error = PTR_ERR(dentry);
3538 	if (IS_ERR(dentry))
3539 		goto out_putname;
3540 
3541 	error = security_path_symlink(&path, dentry, from->name);
3542 	if (!error)
3543 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3544 	done_path_create(&path, dentry);
3545 	if (retry_estale(error, lookup_flags)) {
3546 		lookup_flags |= LOOKUP_REVAL;
3547 		goto retry;
3548 	}
3549 out_putname:
3550 	putname(from);
3551 	return error;
3552 }
3553 
3554 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3555 {
3556 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3557 }
3558 
3559 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3560 {
3561 	struct inode *inode = old_dentry->d_inode;
3562 	unsigned max_links = dir->i_sb->s_max_links;
3563 	int error;
3564 
3565 	if (!inode)
3566 		return -ENOENT;
3567 
3568 	error = may_create(dir, new_dentry);
3569 	if (error)
3570 		return error;
3571 
3572 	if (dir->i_sb != inode->i_sb)
3573 		return -EXDEV;
3574 
3575 	/*
3576 	 * A link to an append-only or immutable file cannot be created.
3577 	 */
3578 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3579 		return -EPERM;
3580 	if (!dir->i_op->link)
3581 		return -EPERM;
3582 	if (S_ISDIR(inode->i_mode))
3583 		return -EPERM;
3584 
3585 	error = security_inode_link(old_dentry, dir, new_dentry);
3586 	if (error)
3587 		return error;
3588 
3589 	mutex_lock(&inode->i_mutex);
3590 	/* Make sure we don't allow creating hardlink to an unlinked file */
3591 	if (inode->i_nlink == 0)
3592 		error =  -ENOENT;
3593 	else if (max_links && inode->i_nlink >= max_links)
3594 		error = -EMLINK;
3595 	else
3596 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3597 	mutex_unlock(&inode->i_mutex);
3598 	if (!error)
3599 		fsnotify_link(dir, inode, new_dentry);
3600 	return error;
3601 }
3602 
3603 /*
3604  * Hardlinks are often used in delicate situations.  We avoid
3605  * security-related surprises by not following symlinks on the
3606  * newname.  --KAB
3607  *
3608  * We don't follow them on the oldname either to be compatible
3609  * with linux 2.0, and to avoid hard-linking to directories
3610  * and other special files.  --ADM
3611  */
3612 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3613 		int, newdfd, const char __user *, newname, int, flags)
3614 {
3615 	struct dentry *new_dentry;
3616 	struct path old_path, new_path;
3617 	int how = 0;
3618 	int error;
3619 
3620 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3621 		return -EINVAL;
3622 	/*
3623 	 * To use null names we require CAP_DAC_READ_SEARCH
3624 	 * This ensures that not everyone will be able to create
3625 	 * handlink using the passed filedescriptor.
3626 	 */
3627 	if (flags & AT_EMPTY_PATH) {
3628 		if (!capable(CAP_DAC_READ_SEARCH))
3629 			return -ENOENT;
3630 		how = LOOKUP_EMPTY;
3631 	}
3632 
3633 	if (flags & AT_SYMLINK_FOLLOW)
3634 		how |= LOOKUP_FOLLOW;
3635 retry:
3636 	error = user_path_at(olddfd, oldname, how, &old_path);
3637 	if (error)
3638 		return error;
3639 
3640 	new_dentry = user_path_create(newdfd, newname, &new_path,
3641 					(how & LOOKUP_REVAL));
3642 	error = PTR_ERR(new_dentry);
3643 	if (IS_ERR(new_dentry))
3644 		goto out;
3645 
3646 	error = -EXDEV;
3647 	if (old_path.mnt != new_path.mnt)
3648 		goto out_dput;
3649 	error = may_linkat(&old_path);
3650 	if (unlikely(error))
3651 		goto out_dput;
3652 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3653 	if (error)
3654 		goto out_dput;
3655 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3656 out_dput:
3657 	done_path_create(&new_path, new_dentry);
3658 	if (retry_estale(error, how)) {
3659 		how |= LOOKUP_REVAL;
3660 		goto retry;
3661 	}
3662 out:
3663 	path_put(&old_path);
3664 
3665 	return error;
3666 }
3667 
3668 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3669 {
3670 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3671 }
3672 
3673 /*
3674  * The worst of all namespace operations - renaming directory. "Perverted"
3675  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3676  * Problems:
3677  *	a) we can get into loop creation. Check is done in is_subdir().
3678  *	b) race potential - two innocent renames can create a loop together.
3679  *	   That's where 4.4 screws up. Current fix: serialization on
3680  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3681  *	   story.
3682  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3683  *	   And that - after we got ->i_mutex on parents (until then we don't know
3684  *	   whether the target exists).  Solution: try to be smart with locking
3685  *	   order for inodes.  We rely on the fact that tree topology may change
3686  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3687  *	   move will be locked.  Thus we can rank directories by the tree
3688  *	   (ancestors first) and rank all non-directories after them.
3689  *	   That works since everybody except rename does "lock parent, lookup,
3690  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3691  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3692  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3693  *	   we'd better make sure that there's no link(2) for them.
3694  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3695  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3696  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3697  *	   ->i_mutex on parents, which works but leads to some truly excessive
3698  *	   locking].
3699  */
3700 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3701 			  struct inode *new_dir, struct dentry *new_dentry)
3702 {
3703 	int error = 0;
3704 	struct inode *target = new_dentry->d_inode;
3705 	unsigned max_links = new_dir->i_sb->s_max_links;
3706 
3707 	/*
3708 	 * If we are going to change the parent - check write permissions,
3709 	 * we'll need to flip '..'.
3710 	 */
3711 	if (new_dir != old_dir) {
3712 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3713 		if (error)
3714 			return error;
3715 	}
3716 
3717 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3718 	if (error)
3719 		return error;
3720 
3721 	dget(new_dentry);
3722 	if (target)
3723 		mutex_lock(&target->i_mutex);
3724 
3725 	error = -EBUSY;
3726 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3727 		goto out;
3728 
3729 	error = -EMLINK;
3730 	if (max_links && !target && new_dir != old_dir &&
3731 	    new_dir->i_nlink >= max_links)
3732 		goto out;
3733 
3734 	if (target)
3735 		shrink_dcache_parent(new_dentry);
3736 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3737 	if (error)
3738 		goto out;
3739 
3740 	if (target) {
3741 		target->i_flags |= S_DEAD;
3742 		dont_mount(new_dentry);
3743 	}
3744 out:
3745 	if (target)
3746 		mutex_unlock(&target->i_mutex);
3747 	dput(new_dentry);
3748 	if (!error)
3749 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3750 			d_move(old_dentry,new_dentry);
3751 	return error;
3752 }
3753 
3754 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3755 			    struct inode *new_dir, struct dentry *new_dentry)
3756 {
3757 	struct inode *target = new_dentry->d_inode;
3758 	int error;
3759 
3760 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3761 	if (error)
3762 		return error;
3763 
3764 	dget(new_dentry);
3765 	if (target)
3766 		mutex_lock(&target->i_mutex);
3767 
3768 	error = -EBUSY;
3769 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3770 		goto out;
3771 
3772 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3773 	if (error)
3774 		goto out;
3775 
3776 	if (target)
3777 		dont_mount(new_dentry);
3778 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3779 		d_move(old_dentry, new_dentry);
3780 out:
3781 	if (target)
3782 		mutex_unlock(&target->i_mutex);
3783 	dput(new_dentry);
3784 	return error;
3785 }
3786 
3787 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3788 	       struct inode *new_dir, struct dentry *new_dentry)
3789 {
3790 	int error;
3791 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3792 	const unsigned char *old_name;
3793 
3794 	if (old_dentry->d_inode == new_dentry->d_inode)
3795  		return 0;
3796 
3797 	error = may_delete(old_dir, old_dentry, is_dir);
3798 	if (error)
3799 		return error;
3800 
3801 	if (!new_dentry->d_inode)
3802 		error = may_create(new_dir, new_dentry);
3803 	else
3804 		error = may_delete(new_dir, new_dentry, is_dir);
3805 	if (error)
3806 		return error;
3807 
3808 	if (!old_dir->i_op->rename)
3809 		return -EPERM;
3810 
3811 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3812 
3813 	if (is_dir)
3814 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3815 	else
3816 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3817 	if (!error)
3818 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3819 			      new_dentry->d_inode, old_dentry);
3820 	fsnotify_oldname_free(old_name);
3821 
3822 	return error;
3823 }
3824 
3825 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3826 		int, newdfd, const char __user *, newname)
3827 {
3828 	struct dentry *old_dir, *new_dir;
3829 	struct dentry *old_dentry, *new_dentry;
3830 	struct dentry *trap;
3831 	struct nameidata oldnd, newnd;
3832 	struct filename *from;
3833 	struct filename *to;
3834 	unsigned int lookup_flags = 0;
3835 	bool should_retry = false;
3836 	int error;
3837 retry:
3838 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
3839 	if (IS_ERR(from)) {
3840 		error = PTR_ERR(from);
3841 		goto exit;
3842 	}
3843 
3844 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
3845 	if (IS_ERR(to)) {
3846 		error = PTR_ERR(to);
3847 		goto exit1;
3848 	}
3849 
3850 	error = -EXDEV;
3851 	if (oldnd.path.mnt != newnd.path.mnt)
3852 		goto exit2;
3853 
3854 	old_dir = oldnd.path.dentry;
3855 	error = -EBUSY;
3856 	if (oldnd.last_type != LAST_NORM)
3857 		goto exit2;
3858 
3859 	new_dir = newnd.path.dentry;
3860 	if (newnd.last_type != LAST_NORM)
3861 		goto exit2;
3862 
3863 	error = mnt_want_write(oldnd.path.mnt);
3864 	if (error)
3865 		goto exit2;
3866 
3867 	oldnd.flags &= ~LOOKUP_PARENT;
3868 	newnd.flags &= ~LOOKUP_PARENT;
3869 	newnd.flags |= LOOKUP_RENAME_TARGET;
3870 
3871 	trap = lock_rename(new_dir, old_dir);
3872 
3873 	old_dentry = lookup_hash(&oldnd);
3874 	error = PTR_ERR(old_dentry);
3875 	if (IS_ERR(old_dentry))
3876 		goto exit3;
3877 	/* source must exist */
3878 	error = -ENOENT;
3879 	if (!old_dentry->d_inode)
3880 		goto exit4;
3881 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3882 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3883 		error = -ENOTDIR;
3884 		if (oldnd.last.name[oldnd.last.len])
3885 			goto exit4;
3886 		if (newnd.last.name[newnd.last.len])
3887 			goto exit4;
3888 	}
3889 	/* source should not be ancestor of target */
3890 	error = -EINVAL;
3891 	if (old_dentry == trap)
3892 		goto exit4;
3893 	new_dentry = lookup_hash(&newnd);
3894 	error = PTR_ERR(new_dentry);
3895 	if (IS_ERR(new_dentry))
3896 		goto exit4;
3897 	/* target should not be an ancestor of source */
3898 	error = -ENOTEMPTY;
3899 	if (new_dentry == trap)
3900 		goto exit5;
3901 
3902 	error = security_path_rename(&oldnd.path, old_dentry,
3903 				     &newnd.path, new_dentry);
3904 	if (error)
3905 		goto exit5;
3906 	error = vfs_rename(old_dir->d_inode, old_dentry,
3907 				   new_dir->d_inode, new_dentry);
3908 exit5:
3909 	dput(new_dentry);
3910 exit4:
3911 	dput(old_dentry);
3912 exit3:
3913 	unlock_rename(new_dir, old_dir);
3914 	mnt_drop_write(oldnd.path.mnt);
3915 exit2:
3916 	if (retry_estale(error, lookup_flags))
3917 		should_retry = true;
3918 	path_put(&newnd.path);
3919 	putname(to);
3920 exit1:
3921 	path_put(&oldnd.path);
3922 	putname(from);
3923 	if (should_retry) {
3924 		should_retry = false;
3925 		lookup_flags |= LOOKUP_REVAL;
3926 		goto retry;
3927 	}
3928 exit:
3929 	return error;
3930 }
3931 
3932 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3933 {
3934 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3935 }
3936 
3937 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3938 {
3939 	int len;
3940 
3941 	len = PTR_ERR(link);
3942 	if (IS_ERR(link))
3943 		goto out;
3944 
3945 	len = strlen(link);
3946 	if (len > (unsigned) buflen)
3947 		len = buflen;
3948 	if (copy_to_user(buffer, link, len))
3949 		len = -EFAULT;
3950 out:
3951 	return len;
3952 }
3953 
3954 /*
3955  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3956  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3957  * using) it for any given inode is up to filesystem.
3958  */
3959 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3960 {
3961 	struct nameidata nd;
3962 	void *cookie;
3963 	int res;
3964 
3965 	nd.depth = 0;
3966 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3967 	if (IS_ERR(cookie))
3968 		return PTR_ERR(cookie);
3969 
3970 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3971 	if (dentry->d_inode->i_op->put_link)
3972 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3973 	return res;
3974 }
3975 
3976 int vfs_follow_link(struct nameidata *nd, const char *link)
3977 {
3978 	return __vfs_follow_link(nd, link);
3979 }
3980 
3981 /* get the link contents into pagecache */
3982 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3983 {
3984 	char *kaddr;
3985 	struct page *page;
3986 	struct address_space *mapping = dentry->d_inode->i_mapping;
3987 	page = read_mapping_page(mapping, 0, NULL);
3988 	if (IS_ERR(page))
3989 		return (char*)page;
3990 	*ppage = page;
3991 	kaddr = kmap(page);
3992 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3993 	return kaddr;
3994 }
3995 
3996 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3997 {
3998 	struct page *page = NULL;
3999 	char *s = page_getlink(dentry, &page);
4000 	int res = vfs_readlink(dentry,buffer,buflen,s);
4001 	if (page) {
4002 		kunmap(page);
4003 		page_cache_release(page);
4004 	}
4005 	return res;
4006 }
4007 
4008 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4009 {
4010 	struct page *page = NULL;
4011 	nd_set_link(nd, page_getlink(dentry, &page));
4012 	return page;
4013 }
4014 
4015 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4016 {
4017 	struct page *page = cookie;
4018 
4019 	if (page) {
4020 		kunmap(page);
4021 		page_cache_release(page);
4022 	}
4023 }
4024 
4025 /*
4026  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4027  */
4028 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4029 {
4030 	struct address_space *mapping = inode->i_mapping;
4031 	struct page *page;
4032 	void *fsdata;
4033 	int err;
4034 	char *kaddr;
4035 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4036 	if (nofs)
4037 		flags |= AOP_FLAG_NOFS;
4038 
4039 retry:
4040 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4041 				flags, &page, &fsdata);
4042 	if (err)
4043 		goto fail;
4044 
4045 	kaddr = kmap_atomic(page);
4046 	memcpy(kaddr, symname, len-1);
4047 	kunmap_atomic(kaddr);
4048 
4049 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4050 							page, fsdata);
4051 	if (err < 0)
4052 		goto fail;
4053 	if (err < len-1)
4054 		goto retry;
4055 
4056 	mark_inode_dirty(inode);
4057 	return 0;
4058 fail:
4059 	return err;
4060 }
4061 
4062 int page_symlink(struct inode *inode, const char *symname, int len)
4063 {
4064 	return __page_symlink(inode, symname, len,
4065 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4066 }
4067 
4068 const struct inode_operations page_symlink_inode_operations = {
4069 	.readlink	= generic_readlink,
4070 	.follow_link	= page_follow_link_light,
4071 	.put_link	= page_put_link,
4072 };
4073 
4074 EXPORT_SYMBOL(user_path_at);
4075 EXPORT_SYMBOL(follow_down_one);
4076 EXPORT_SYMBOL(follow_down);
4077 EXPORT_SYMBOL(follow_up);
4078 EXPORT_SYMBOL(get_write_access); /* nfsd */
4079 EXPORT_SYMBOL(lock_rename);
4080 EXPORT_SYMBOL(lookup_one_len);
4081 EXPORT_SYMBOL(page_follow_link_light);
4082 EXPORT_SYMBOL(page_put_link);
4083 EXPORT_SYMBOL(page_readlink);
4084 EXPORT_SYMBOL(__page_symlink);
4085 EXPORT_SYMBOL(page_symlink);
4086 EXPORT_SYMBOL(page_symlink_inode_operations);
4087 EXPORT_SYMBOL(kern_path);
4088 EXPORT_SYMBOL(vfs_path_lookup);
4089 EXPORT_SYMBOL(inode_permission);
4090 EXPORT_SYMBOL(unlock_rename);
4091 EXPORT_SYMBOL(vfs_create);
4092 EXPORT_SYMBOL(vfs_follow_link);
4093 EXPORT_SYMBOL(vfs_link);
4094 EXPORT_SYMBOL(vfs_mkdir);
4095 EXPORT_SYMBOL(vfs_mknod);
4096 EXPORT_SYMBOL(generic_permission);
4097 EXPORT_SYMBOL(vfs_readlink);
4098 EXPORT_SYMBOL(vfs_rename);
4099 EXPORT_SYMBOL(vfs_rmdir);
4100 EXPORT_SYMBOL(vfs_symlink);
4101 EXPORT_SYMBOL(vfs_unlink);
4102 EXPORT_SYMBOL(dentry_unhash);
4103 EXPORT_SYMBOL(generic_readlink);
4104