1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 void final_putname(struct filename *name) 121 { 122 if (name->separate) { 123 __putname(name->name); 124 kfree(name); 125 } else { 126 __putname(name); 127 } 128 } 129 130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 131 132 static struct filename * 133 getname_flags(const char __user *filename, int flags, int *empty) 134 { 135 struct filename *result, *err; 136 int len; 137 long max; 138 char *kname; 139 140 result = audit_reusename(filename); 141 if (result) 142 return result; 143 144 result = __getname(); 145 if (unlikely(!result)) 146 return ERR_PTR(-ENOMEM); 147 148 /* 149 * First, try to embed the struct filename inside the names_cache 150 * allocation 151 */ 152 kname = (char *)result + sizeof(*result); 153 result->name = kname; 154 result->separate = false; 155 max = EMBEDDED_NAME_MAX; 156 157 recopy: 158 len = strncpy_from_user(kname, filename, max); 159 if (unlikely(len < 0)) { 160 err = ERR_PTR(len); 161 goto error; 162 } 163 164 /* 165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 166 * separate struct filename so we can dedicate the entire 167 * names_cache allocation for the pathname, and re-do the copy from 168 * userland. 169 */ 170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 171 kname = (char *)result; 172 173 result = kzalloc(sizeof(*result), GFP_KERNEL); 174 if (!result) { 175 err = ERR_PTR(-ENOMEM); 176 result = (struct filename *)kname; 177 goto error; 178 } 179 result->name = kname; 180 result->separate = true; 181 max = PATH_MAX; 182 goto recopy; 183 } 184 185 /* The empty path is special. */ 186 if (unlikely(!len)) { 187 if (empty) 188 *empty = 1; 189 err = ERR_PTR(-ENOENT); 190 if (!(flags & LOOKUP_EMPTY)) 191 goto error; 192 } 193 194 err = ERR_PTR(-ENAMETOOLONG); 195 if (unlikely(len >= PATH_MAX)) 196 goto error; 197 198 result->uptr = filename; 199 audit_getname(result); 200 return result; 201 202 error: 203 final_putname(result); 204 return err; 205 } 206 207 struct filename * 208 getname(const char __user * filename) 209 { 210 return getname_flags(filename, 0, NULL); 211 } 212 EXPORT_SYMBOL(getname); 213 214 #ifdef CONFIG_AUDITSYSCALL 215 void putname(struct filename *name) 216 { 217 if (unlikely(!audit_dummy_context())) 218 return audit_putname(name); 219 final_putname(name); 220 } 221 #endif 222 223 static int check_acl(struct inode *inode, int mask) 224 { 225 #ifdef CONFIG_FS_POSIX_ACL 226 struct posix_acl *acl; 227 228 if (mask & MAY_NOT_BLOCK) { 229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 230 if (!acl) 231 return -EAGAIN; 232 /* no ->get_acl() calls in RCU mode... */ 233 if (acl == ACL_NOT_CACHED) 234 return -ECHILD; 235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 236 } 237 238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 239 240 /* 241 * A filesystem can force a ACL callback by just never filling the 242 * ACL cache. But normally you'd fill the cache either at inode 243 * instantiation time, or on the first ->get_acl call. 244 * 245 * If the filesystem doesn't have a get_acl() function at all, we'll 246 * just create the negative cache entry. 247 */ 248 if (acl == ACL_NOT_CACHED) { 249 if (inode->i_op->get_acl) { 250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 251 if (IS_ERR(acl)) 252 return PTR_ERR(acl); 253 } else { 254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 255 return -EAGAIN; 256 } 257 } 258 259 if (acl) { 260 int error = posix_acl_permission(inode, acl, mask); 261 posix_acl_release(acl); 262 return error; 263 } 264 #endif 265 266 return -EAGAIN; 267 } 268 269 /* 270 * This does the basic permission checking 271 */ 272 static int acl_permission_check(struct inode *inode, int mask) 273 { 274 unsigned int mode = inode->i_mode; 275 276 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 277 mode >>= 6; 278 else { 279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 280 int error = check_acl(inode, mask); 281 if (error != -EAGAIN) 282 return error; 283 } 284 285 if (in_group_p(inode->i_gid)) 286 mode >>= 3; 287 } 288 289 /* 290 * If the DACs are ok we don't need any capability check. 291 */ 292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 293 return 0; 294 return -EACCES; 295 } 296 297 /** 298 * generic_permission - check for access rights on a Posix-like filesystem 299 * @inode: inode to check access rights for 300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 301 * 302 * Used to check for read/write/execute permissions on a file. 303 * We use "fsuid" for this, letting us set arbitrary permissions 304 * for filesystem access without changing the "normal" uids which 305 * are used for other things. 306 * 307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 308 * request cannot be satisfied (eg. requires blocking or too much complexity). 309 * It would then be called again in ref-walk mode. 310 */ 311 int generic_permission(struct inode *inode, int mask) 312 { 313 int ret; 314 315 /* 316 * Do the basic permission checks. 317 */ 318 ret = acl_permission_check(inode, mask); 319 if (ret != -EACCES) 320 return ret; 321 322 if (S_ISDIR(inode->i_mode)) { 323 /* DACs are overridable for directories */ 324 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 325 return 0; 326 if (!(mask & MAY_WRITE)) 327 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 328 return 0; 329 return -EACCES; 330 } 331 /* 332 * Read/write DACs are always overridable. 333 * Executable DACs are overridable when there is 334 * at least one exec bit set. 335 */ 336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 337 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 338 return 0; 339 340 /* 341 * Searching includes executable on directories, else just read. 342 */ 343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 344 if (mask == MAY_READ) 345 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 346 return 0; 347 348 return -EACCES; 349 } 350 351 /* 352 * We _really_ want to just do "generic_permission()" without 353 * even looking at the inode->i_op values. So we keep a cache 354 * flag in inode->i_opflags, that says "this has not special 355 * permission function, use the fast case". 356 */ 357 static inline int do_inode_permission(struct inode *inode, int mask) 358 { 359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 360 if (likely(inode->i_op->permission)) 361 return inode->i_op->permission(inode, mask); 362 363 /* This gets set once for the inode lifetime */ 364 spin_lock(&inode->i_lock); 365 inode->i_opflags |= IOP_FASTPERM; 366 spin_unlock(&inode->i_lock); 367 } 368 return generic_permission(inode, mask); 369 } 370 371 /** 372 * __inode_permission - Check for access rights to a given inode 373 * @inode: Inode to check permission on 374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 375 * 376 * Check for read/write/execute permissions on an inode. 377 * 378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 379 * 380 * This does not check for a read-only file system. You probably want 381 * inode_permission(). 382 */ 383 int __inode_permission(struct inode *inode, int mask) 384 { 385 int retval; 386 387 if (unlikely(mask & MAY_WRITE)) { 388 /* 389 * Nobody gets write access to an immutable file. 390 */ 391 if (IS_IMMUTABLE(inode)) 392 return -EACCES; 393 } 394 395 retval = do_inode_permission(inode, mask); 396 if (retval) 397 return retval; 398 399 retval = devcgroup_inode_permission(inode, mask); 400 if (retval) 401 return retval; 402 403 return security_inode_permission(inode, mask); 404 } 405 406 /** 407 * sb_permission - Check superblock-level permissions 408 * @sb: Superblock of inode to check permission on 409 * @inode: Inode to check permission on 410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 411 * 412 * Separate out file-system wide checks from inode-specific permission checks. 413 */ 414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 415 { 416 if (unlikely(mask & MAY_WRITE)) { 417 umode_t mode = inode->i_mode; 418 419 /* Nobody gets write access to a read-only fs. */ 420 if ((sb->s_flags & MS_RDONLY) && 421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 422 return -EROFS; 423 } 424 return 0; 425 } 426 427 /** 428 * inode_permission - Check for access rights to a given inode 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 433 * this, letting us set arbitrary permissions for filesystem access without 434 * changing the "normal" UIDs which are used for other things. 435 * 436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 437 */ 438 int inode_permission(struct inode *inode, int mask) 439 { 440 int retval; 441 442 retval = sb_permission(inode->i_sb, inode, mask); 443 if (retval) 444 return retval; 445 return __inode_permission(inode, mask); 446 } 447 448 /** 449 * path_get - get a reference to a path 450 * @path: path to get the reference to 451 * 452 * Given a path increment the reference count to the dentry and the vfsmount. 453 */ 454 void path_get(const struct path *path) 455 { 456 mntget(path->mnt); 457 dget(path->dentry); 458 } 459 EXPORT_SYMBOL(path_get); 460 461 /** 462 * path_put - put a reference to a path 463 * @path: path to put the reference to 464 * 465 * Given a path decrement the reference count to the dentry and the vfsmount. 466 */ 467 void path_put(const struct path *path) 468 { 469 dput(path->dentry); 470 mntput(path->mnt); 471 } 472 EXPORT_SYMBOL(path_put); 473 474 /* 475 * Path walking has 2 modes, rcu-walk and ref-walk (see 476 * Documentation/filesystems/path-lookup.txt). In situations when we can't 477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 479 * mode. Refcounts are grabbed at the last known good point before rcu-walk 480 * got stuck, so ref-walk may continue from there. If this is not successful 481 * (eg. a seqcount has changed), then failure is returned and it's up to caller 482 * to restart the path walk from the beginning in ref-walk mode. 483 */ 484 485 static inline void lock_rcu_walk(void) 486 { 487 br_read_lock(&vfsmount_lock); 488 rcu_read_lock(); 489 } 490 491 static inline void unlock_rcu_walk(void) 492 { 493 rcu_read_unlock(); 494 br_read_unlock(&vfsmount_lock); 495 } 496 497 /** 498 * unlazy_walk - try to switch to ref-walk mode. 499 * @nd: nameidata pathwalk data 500 * @dentry: child of nd->path.dentry or NULL 501 * Returns: 0 on success, -ECHILD on failure 502 * 503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 505 * @nd or NULL. Must be called from rcu-walk context. 506 */ 507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 508 { 509 struct fs_struct *fs = current->fs; 510 struct dentry *parent = nd->path.dentry; 511 int want_root = 0; 512 513 BUG_ON(!(nd->flags & LOOKUP_RCU)); 514 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 515 want_root = 1; 516 spin_lock(&fs->lock); 517 if (nd->root.mnt != fs->root.mnt || 518 nd->root.dentry != fs->root.dentry) 519 goto err_root; 520 } 521 spin_lock(&parent->d_lock); 522 if (!dentry) { 523 if (!__d_rcu_to_refcount(parent, nd->seq)) 524 goto err_parent; 525 BUG_ON(nd->inode != parent->d_inode); 526 } else { 527 if (dentry->d_parent != parent) 528 goto err_parent; 529 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 530 if (!__d_rcu_to_refcount(dentry, nd->seq)) 531 goto err_child; 532 /* 533 * If the sequence check on the child dentry passed, then 534 * the child has not been removed from its parent. This 535 * means the parent dentry must be valid and able to take 536 * a reference at this point. 537 */ 538 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 539 BUG_ON(!parent->d_count); 540 parent->d_count++; 541 spin_unlock(&dentry->d_lock); 542 } 543 spin_unlock(&parent->d_lock); 544 if (want_root) { 545 path_get(&nd->root); 546 spin_unlock(&fs->lock); 547 } 548 mntget(nd->path.mnt); 549 550 unlock_rcu_walk(); 551 nd->flags &= ~LOOKUP_RCU; 552 return 0; 553 554 err_child: 555 spin_unlock(&dentry->d_lock); 556 err_parent: 557 spin_unlock(&parent->d_lock); 558 err_root: 559 if (want_root) 560 spin_unlock(&fs->lock); 561 return -ECHILD; 562 } 563 564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 565 { 566 return dentry->d_op->d_revalidate(dentry, flags); 567 } 568 569 /** 570 * complete_walk - successful completion of path walk 571 * @nd: pointer nameidata 572 * 573 * If we had been in RCU mode, drop out of it and legitimize nd->path. 574 * Revalidate the final result, unless we'd already done that during 575 * the path walk or the filesystem doesn't ask for it. Return 0 on 576 * success, -error on failure. In case of failure caller does not 577 * need to drop nd->path. 578 */ 579 static int complete_walk(struct nameidata *nd) 580 { 581 struct dentry *dentry = nd->path.dentry; 582 int status; 583 584 if (nd->flags & LOOKUP_RCU) { 585 nd->flags &= ~LOOKUP_RCU; 586 if (!(nd->flags & LOOKUP_ROOT)) 587 nd->root.mnt = NULL; 588 spin_lock(&dentry->d_lock); 589 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 590 spin_unlock(&dentry->d_lock); 591 unlock_rcu_walk(); 592 return -ECHILD; 593 } 594 BUG_ON(nd->inode != dentry->d_inode); 595 spin_unlock(&dentry->d_lock); 596 mntget(nd->path.mnt); 597 unlock_rcu_walk(); 598 } 599 600 if (likely(!(nd->flags & LOOKUP_JUMPED))) 601 return 0; 602 603 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 604 return 0; 605 606 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 607 if (status > 0) 608 return 0; 609 610 if (!status) 611 status = -ESTALE; 612 613 path_put(&nd->path); 614 return status; 615 } 616 617 static __always_inline void set_root(struct nameidata *nd) 618 { 619 if (!nd->root.mnt) 620 get_fs_root(current->fs, &nd->root); 621 } 622 623 static int link_path_walk(const char *, struct nameidata *); 624 625 static __always_inline void set_root_rcu(struct nameidata *nd) 626 { 627 if (!nd->root.mnt) { 628 struct fs_struct *fs = current->fs; 629 unsigned seq; 630 631 do { 632 seq = read_seqcount_begin(&fs->seq); 633 nd->root = fs->root; 634 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 635 } while (read_seqcount_retry(&fs->seq, seq)); 636 } 637 } 638 639 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 640 { 641 int ret; 642 643 if (IS_ERR(link)) 644 goto fail; 645 646 if (*link == '/') { 647 set_root(nd); 648 path_put(&nd->path); 649 nd->path = nd->root; 650 path_get(&nd->root); 651 nd->flags |= LOOKUP_JUMPED; 652 } 653 nd->inode = nd->path.dentry->d_inode; 654 655 ret = link_path_walk(link, nd); 656 return ret; 657 fail: 658 path_put(&nd->path); 659 return PTR_ERR(link); 660 } 661 662 static void path_put_conditional(struct path *path, struct nameidata *nd) 663 { 664 dput(path->dentry); 665 if (path->mnt != nd->path.mnt) 666 mntput(path->mnt); 667 } 668 669 static inline void path_to_nameidata(const struct path *path, 670 struct nameidata *nd) 671 { 672 if (!(nd->flags & LOOKUP_RCU)) { 673 dput(nd->path.dentry); 674 if (nd->path.mnt != path->mnt) 675 mntput(nd->path.mnt); 676 } 677 nd->path.mnt = path->mnt; 678 nd->path.dentry = path->dentry; 679 } 680 681 /* 682 * Helper to directly jump to a known parsed path from ->follow_link, 683 * caller must have taken a reference to path beforehand. 684 */ 685 void nd_jump_link(struct nameidata *nd, struct path *path) 686 { 687 path_put(&nd->path); 688 689 nd->path = *path; 690 nd->inode = nd->path.dentry->d_inode; 691 nd->flags |= LOOKUP_JUMPED; 692 693 BUG_ON(nd->inode->i_op->follow_link); 694 } 695 696 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 697 { 698 struct inode *inode = link->dentry->d_inode; 699 if (inode->i_op->put_link) 700 inode->i_op->put_link(link->dentry, nd, cookie); 701 path_put(link); 702 } 703 704 int sysctl_protected_symlinks __read_mostly = 0; 705 int sysctl_protected_hardlinks __read_mostly = 0; 706 707 /** 708 * may_follow_link - Check symlink following for unsafe situations 709 * @link: The path of the symlink 710 * @nd: nameidata pathwalk data 711 * 712 * In the case of the sysctl_protected_symlinks sysctl being enabled, 713 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 714 * in a sticky world-writable directory. This is to protect privileged 715 * processes from failing races against path names that may change out 716 * from under them by way of other users creating malicious symlinks. 717 * It will permit symlinks to be followed only when outside a sticky 718 * world-writable directory, or when the uid of the symlink and follower 719 * match, or when the directory owner matches the symlink's owner. 720 * 721 * Returns 0 if following the symlink is allowed, -ve on error. 722 */ 723 static inline int may_follow_link(struct path *link, struct nameidata *nd) 724 { 725 const struct inode *inode; 726 const struct inode *parent; 727 728 if (!sysctl_protected_symlinks) 729 return 0; 730 731 /* Allowed if owner and follower match. */ 732 inode = link->dentry->d_inode; 733 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 734 return 0; 735 736 /* Allowed if parent directory not sticky and world-writable. */ 737 parent = nd->path.dentry->d_inode; 738 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 739 return 0; 740 741 /* Allowed if parent directory and link owner match. */ 742 if (uid_eq(parent->i_uid, inode->i_uid)) 743 return 0; 744 745 audit_log_link_denied("follow_link", link); 746 path_put_conditional(link, nd); 747 path_put(&nd->path); 748 return -EACCES; 749 } 750 751 /** 752 * safe_hardlink_source - Check for safe hardlink conditions 753 * @inode: the source inode to hardlink from 754 * 755 * Return false if at least one of the following conditions: 756 * - inode is not a regular file 757 * - inode is setuid 758 * - inode is setgid and group-exec 759 * - access failure for read and write 760 * 761 * Otherwise returns true. 762 */ 763 static bool safe_hardlink_source(struct inode *inode) 764 { 765 umode_t mode = inode->i_mode; 766 767 /* Special files should not get pinned to the filesystem. */ 768 if (!S_ISREG(mode)) 769 return false; 770 771 /* Setuid files should not get pinned to the filesystem. */ 772 if (mode & S_ISUID) 773 return false; 774 775 /* Executable setgid files should not get pinned to the filesystem. */ 776 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 777 return false; 778 779 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 780 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 781 return false; 782 783 return true; 784 } 785 786 /** 787 * may_linkat - Check permissions for creating a hardlink 788 * @link: the source to hardlink from 789 * 790 * Block hardlink when all of: 791 * - sysctl_protected_hardlinks enabled 792 * - fsuid does not match inode 793 * - hardlink source is unsafe (see safe_hardlink_source() above) 794 * - not CAP_FOWNER 795 * 796 * Returns 0 if successful, -ve on error. 797 */ 798 static int may_linkat(struct path *link) 799 { 800 const struct cred *cred; 801 struct inode *inode; 802 803 if (!sysctl_protected_hardlinks) 804 return 0; 805 806 cred = current_cred(); 807 inode = link->dentry->d_inode; 808 809 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 810 * otherwise, it must be a safe source. 811 */ 812 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 813 capable(CAP_FOWNER)) 814 return 0; 815 816 audit_log_link_denied("linkat", link); 817 return -EPERM; 818 } 819 820 static __always_inline int 821 follow_link(struct path *link, struct nameidata *nd, void **p) 822 { 823 struct dentry *dentry = link->dentry; 824 int error; 825 char *s; 826 827 BUG_ON(nd->flags & LOOKUP_RCU); 828 829 if (link->mnt == nd->path.mnt) 830 mntget(link->mnt); 831 832 error = -ELOOP; 833 if (unlikely(current->total_link_count >= 40)) 834 goto out_put_nd_path; 835 836 cond_resched(); 837 current->total_link_count++; 838 839 touch_atime(link); 840 nd_set_link(nd, NULL); 841 842 error = security_inode_follow_link(link->dentry, nd); 843 if (error) 844 goto out_put_nd_path; 845 846 nd->last_type = LAST_BIND; 847 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 848 error = PTR_ERR(*p); 849 if (IS_ERR(*p)) 850 goto out_put_nd_path; 851 852 error = 0; 853 s = nd_get_link(nd); 854 if (s) { 855 error = __vfs_follow_link(nd, s); 856 if (unlikely(error)) 857 put_link(nd, link, *p); 858 } 859 860 return error; 861 862 out_put_nd_path: 863 *p = NULL; 864 path_put(&nd->path); 865 path_put(link); 866 return error; 867 } 868 869 static int follow_up_rcu(struct path *path) 870 { 871 struct mount *mnt = real_mount(path->mnt); 872 struct mount *parent; 873 struct dentry *mountpoint; 874 875 parent = mnt->mnt_parent; 876 if (&parent->mnt == path->mnt) 877 return 0; 878 mountpoint = mnt->mnt_mountpoint; 879 path->dentry = mountpoint; 880 path->mnt = &parent->mnt; 881 return 1; 882 } 883 884 /* 885 * follow_up - Find the mountpoint of path's vfsmount 886 * 887 * Given a path, find the mountpoint of its source file system. 888 * Replace @path with the path of the mountpoint in the parent mount. 889 * Up is towards /. 890 * 891 * Return 1 if we went up a level and 0 if we were already at the 892 * root. 893 */ 894 int follow_up(struct path *path) 895 { 896 struct mount *mnt = real_mount(path->mnt); 897 struct mount *parent; 898 struct dentry *mountpoint; 899 900 br_read_lock(&vfsmount_lock); 901 parent = mnt->mnt_parent; 902 if (parent == mnt) { 903 br_read_unlock(&vfsmount_lock); 904 return 0; 905 } 906 mntget(&parent->mnt); 907 mountpoint = dget(mnt->mnt_mountpoint); 908 br_read_unlock(&vfsmount_lock); 909 dput(path->dentry); 910 path->dentry = mountpoint; 911 mntput(path->mnt); 912 path->mnt = &parent->mnt; 913 return 1; 914 } 915 916 /* 917 * Perform an automount 918 * - return -EISDIR to tell follow_managed() to stop and return the path we 919 * were called with. 920 */ 921 static int follow_automount(struct path *path, unsigned flags, 922 bool *need_mntput) 923 { 924 struct vfsmount *mnt; 925 int err; 926 927 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 928 return -EREMOTE; 929 930 /* We don't want to mount if someone's just doing a stat - 931 * unless they're stat'ing a directory and appended a '/' to 932 * the name. 933 * 934 * We do, however, want to mount if someone wants to open or 935 * create a file of any type under the mountpoint, wants to 936 * traverse through the mountpoint or wants to open the 937 * mounted directory. Also, autofs may mark negative dentries 938 * as being automount points. These will need the attentions 939 * of the daemon to instantiate them before they can be used. 940 */ 941 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 942 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 943 path->dentry->d_inode) 944 return -EISDIR; 945 946 current->total_link_count++; 947 if (current->total_link_count >= 40) 948 return -ELOOP; 949 950 mnt = path->dentry->d_op->d_automount(path); 951 if (IS_ERR(mnt)) { 952 /* 953 * The filesystem is allowed to return -EISDIR here to indicate 954 * it doesn't want to automount. For instance, autofs would do 955 * this so that its userspace daemon can mount on this dentry. 956 * 957 * However, we can only permit this if it's a terminal point in 958 * the path being looked up; if it wasn't then the remainder of 959 * the path is inaccessible and we should say so. 960 */ 961 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 962 return -EREMOTE; 963 return PTR_ERR(mnt); 964 } 965 966 if (!mnt) /* mount collision */ 967 return 0; 968 969 if (!*need_mntput) { 970 /* lock_mount() may release path->mnt on error */ 971 mntget(path->mnt); 972 *need_mntput = true; 973 } 974 err = finish_automount(mnt, path); 975 976 switch (err) { 977 case -EBUSY: 978 /* Someone else made a mount here whilst we were busy */ 979 return 0; 980 case 0: 981 path_put(path); 982 path->mnt = mnt; 983 path->dentry = dget(mnt->mnt_root); 984 return 0; 985 default: 986 return err; 987 } 988 989 } 990 991 /* 992 * Handle a dentry that is managed in some way. 993 * - Flagged for transit management (autofs) 994 * - Flagged as mountpoint 995 * - Flagged as automount point 996 * 997 * This may only be called in refwalk mode. 998 * 999 * Serialization is taken care of in namespace.c 1000 */ 1001 static int follow_managed(struct path *path, unsigned flags) 1002 { 1003 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1004 unsigned managed; 1005 bool need_mntput = false; 1006 int ret = 0; 1007 1008 /* Given that we're not holding a lock here, we retain the value in a 1009 * local variable for each dentry as we look at it so that we don't see 1010 * the components of that value change under us */ 1011 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1012 managed &= DCACHE_MANAGED_DENTRY, 1013 unlikely(managed != 0)) { 1014 /* Allow the filesystem to manage the transit without i_mutex 1015 * being held. */ 1016 if (managed & DCACHE_MANAGE_TRANSIT) { 1017 BUG_ON(!path->dentry->d_op); 1018 BUG_ON(!path->dentry->d_op->d_manage); 1019 ret = path->dentry->d_op->d_manage(path->dentry, false); 1020 if (ret < 0) 1021 break; 1022 } 1023 1024 /* Transit to a mounted filesystem. */ 1025 if (managed & DCACHE_MOUNTED) { 1026 struct vfsmount *mounted = lookup_mnt(path); 1027 if (mounted) { 1028 dput(path->dentry); 1029 if (need_mntput) 1030 mntput(path->mnt); 1031 path->mnt = mounted; 1032 path->dentry = dget(mounted->mnt_root); 1033 need_mntput = true; 1034 continue; 1035 } 1036 1037 /* Something is mounted on this dentry in another 1038 * namespace and/or whatever was mounted there in this 1039 * namespace got unmounted before we managed to get the 1040 * vfsmount_lock */ 1041 } 1042 1043 /* Handle an automount point */ 1044 if (managed & DCACHE_NEED_AUTOMOUNT) { 1045 ret = follow_automount(path, flags, &need_mntput); 1046 if (ret < 0) 1047 break; 1048 continue; 1049 } 1050 1051 /* We didn't change the current path point */ 1052 break; 1053 } 1054 1055 if (need_mntput && path->mnt == mnt) 1056 mntput(path->mnt); 1057 if (ret == -EISDIR) 1058 ret = 0; 1059 return ret < 0 ? ret : need_mntput; 1060 } 1061 1062 int follow_down_one(struct path *path) 1063 { 1064 struct vfsmount *mounted; 1065 1066 mounted = lookup_mnt(path); 1067 if (mounted) { 1068 dput(path->dentry); 1069 mntput(path->mnt); 1070 path->mnt = mounted; 1071 path->dentry = dget(mounted->mnt_root); 1072 return 1; 1073 } 1074 return 0; 1075 } 1076 1077 static inline bool managed_dentry_might_block(struct dentry *dentry) 1078 { 1079 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 1080 dentry->d_op->d_manage(dentry, true) < 0); 1081 } 1082 1083 /* 1084 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1085 * we meet a managed dentry that would need blocking. 1086 */ 1087 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1088 struct inode **inode) 1089 { 1090 for (;;) { 1091 struct mount *mounted; 1092 /* 1093 * Don't forget we might have a non-mountpoint managed dentry 1094 * that wants to block transit. 1095 */ 1096 if (unlikely(managed_dentry_might_block(path->dentry))) 1097 return false; 1098 1099 if (!d_mountpoint(path->dentry)) 1100 break; 1101 1102 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 1103 if (!mounted) 1104 break; 1105 path->mnt = &mounted->mnt; 1106 path->dentry = mounted->mnt.mnt_root; 1107 nd->flags |= LOOKUP_JUMPED; 1108 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1109 /* 1110 * Update the inode too. We don't need to re-check the 1111 * dentry sequence number here after this d_inode read, 1112 * because a mount-point is always pinned. 1113 */ 1114 *inode = path->dentry->d_inode; 1115 } 1116 return true; 1117 } 1118 1119 static void follow_mount_rcu(struct nameidata *nd) 1120 { 1121 while (d_mountpoint(nd->path.dentry)) { 1122 struct mount *mounted; 1123 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 1124 if (!mounted) 1125 break; 1126 nd->path.mnt = &mounted->mnt; 1127 nd->path.dentry = mounted->mnt.mnt_root; 1128 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1129 } 1130 } 1131 1132 static int follow_dotdot_rcu(struct nameidata *nd) 1133 { 1134 set_root_rcu(nd); 1135 1136 while (1) { 1137 if (nd->path.dentry == nd->root.dentry && 1138 nd->path.mnt == nd->root.mnt) { 1139 break; 1140 } 1141 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1142 struct dentry *old = nd->path.dentry; 1143 struct dentry *parent = old->d_parent; 1144 unsigned seq; 1145 1146 seq = read_seqcount_begin(&parent->d_seq); 1147 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1148 goto failed; 1149 nd->path.dentry = parent; 1150 nd->seq = seq; 1151 break; 1152 } 1153 if (!follow_up_rcu(&nd->path)) 1154 break; 1155 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1156 } 1157 follow_mount_rcu(nd); 1158 nd->inode = nd->path.dentry->d_inode; 1159 return 0; 1160 1161 failed: 1162 nd->flags &= ~LOOKUP_RCU; 1163 if (!(nd->flags & LOOKUP_ROOT)) 1164 nd->root.mnt = NULL; 1165 unlock_rcu_walk(); 1166 return -ECHILD; 1167 } 1168 1169 /* 1170 * Follow down to the covering mount currently visible to userspace. At each 1171 * point, the filesystem owning that dentry may be queried as to whether the 1172 * caller is permitted to proceed or not. 1173 */ 1174 int follow_down(struct path *path) 1175 { 1176 unsigned managed; 1177 int ret; 1178 1179 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1180 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1181 /* Allow the filesystem to manage the transit without i_mutex 1182 * being held. 1183 * 1184 * We indicate to the filesystem if someone is trying to mount 1185 * something here. This gives autofs the chance to deny anyone 1186 * other than its daemon the right to mount on its 1187 * superstructure. 1188 * 1189 * The filesystem may sleep at this point. 1190 */ 1191 if (managed & DCACHE_MANAGE_TRANSIT) { 1192 BUG_ON(!path->dentry->d_op); 1193 BUG_ON(!path->dentry->d_op->d_manage); 1194 ret = path->dentry->d_op->d_manage( 1195 path->dentry, false); 1196 if (ret < 0) 1197 return ret == -EISDIR ? 0 : ret; 1198 } 1199 1200 /* Transit to a mounted filesystem. */ 1201 if (managed & DCACHE_MOUNTED) { 1202 struct vfsmount *mounted = lookup_mnt(path); 1203 if (!mounted) 1204 break; 1205 dput(path->dentry); 1206 mntput(path->mnt); 1207 path->mnt = mounted; 1208 path->dentry = dget(mounted->mnt_root); 1209 continue; 1210 } 1211 1212 /* Don't handle automount points here */ 1213 break; 1214 } 1215 return 0; 1216 } 1217 1218 /* 1219 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1220 */ 1221 static void follow_mount(struct path *path) 1222 { 1223 while (d_mountpoint(path->dentry)) { 1224 struct vfsmount *mounted = lookup_mnt(path); 1225 if (!mounted) 1226 break; 1227 dput(path->dentry); 1228 mntput(path->mnt); 1229 path->mnt = mounted; 1230 path->dentry = dget(mounted->mnt_root); 1231 } 1232 } 1233 1234 static void follow_dotdot(struct nameidata *nd) 1235 { 1236 set_root(nd); 1237 1238 while(1) { 1239 struct dentry *old = nd->path.dentry; 1240 1241 if (nd->path.dentry == nd->root.dentry && 1242 nd->path.mnt == nd->root.mnt) { 1243 break; 1244 } 1245 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1246 /* rare case of legitimate dget_parent()... */ 1247 nd->path.dentry = dget_parent(nd->path.dentry); 1248 dput(old); 1249 break; 1250 } 1251 if (!follow_up(&nd->path)) 1252 break; 1253 } 1254 follow_mount(&nd->path); 1255 nd->inode = nd->path.dentry->d_inode; 1256 } 1257 1258 /* 1259 * This looks up the name in dcache, possibly revalidates the old dentry and 1260 * allocates a new one if not found or not valid. In the need_lookup argument 1261 * returns whether i_op->lookup is necessary. 1262 * 1263 * dir->d_inode->i_mutex must be held 1264 */ 1265 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1266 unsigned int flags, bool *need_lookup) 1267 { 1268 struct dentry *dentry; 1269 int error; 1270 1271 *need_lookup = false; 1272 dentry = d_lookup(dir, name); 1273 if (dentry) { 1274 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1275 error = d_revalidate(dentry, flags); 1276 if (unlikely(error <= 0)) { 1277 if (error < 0) { 1278 dput(dentry); 1279 return ERR_PTR(error); 1280 } else if (!d_invalidate(dentry)) { 1281 dput(dentry); 1282 dentry = NULL; 1283 } 1284 } 1285 } 1286 } 1287 1288 if (!dentry) { 1289 dentry = d_alloc(dir, name); 1290 if (unlikely(!dentry)) 1291 return ERR_PTR(-ENOMEM); 1292 1293 *need_lookup = true; 1294 } 1295 return dentry; 1296 } 1297 1298 /* 1299 * Call i_op->lookup on the dentry. The dentry must be negative but may be 1300 * hashed if it was pouplated with DCACHE_NEED_LOOKUP. 1301 * 1302 * dir->d_inode->i_mutex must be held 1303 */ 1304 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1305 unsigned int flags) 1306 { 1307 struct dentry *old; 1308 1309 /* Don't create child dentry for a dead directory. */ 1310 if (unlikely(IS_DEADDIR(dir))) { 1311 dput(dentry); 1312 return ERR_PTR(-ENOENT); 1313 } 1314 1315 old = dir->i_op->lookup(dir, dentry, flags); 1316 if (unlikely(old)) { 1317 dput(dentry); 1318 dentry = old; 1319 } 1320 return dentry; 1321 } 1322 1323 static struct dentry *__lookup_hash(struct qstr *name, 1324 struct dentry *base, unsigned int flags) 1325 { 1326 bool need_lookup; 1327 struct dentry *dentry; 1328 1329 dentry = lookup_dcache(name, base, flags, &need_lookup); 1330 if (!need_lookup) 1331 return dentry; 1332 1333 return lookup_real(base->d_inode, dentry, flags); 1334 } 1335 1336 /* 1337 * It's more convoluted than I'd like it to be, but... it's still fairly 1338 * small and for now I'd prefer to have fast path as straight as possible. 1339 * It _is_ time-critical. 1340 */ 1341 static int lookup_fast(struct nameidata *nd, 1342 struct path *path, struct inode **inode) 1343 { 1344 struct vfsmount *mnt = nd->path.mnt; 1345 struct dentry *dentry, *parent = nd->path.dentry; 1346 int need_reval = 1; 1347 int status = 1; 1348 int err; 1349 1350 /* 1351 * Rename seqlock is not required here because in the off chance 1352 * of a false negative due to a concurrent rename, we're going to 1353 * do the non-racy lookup, below. 1354 */ 1355 if (nd->flags & LOOKUP_RCU) { 1356 unsigned seq; 1357 dentry = __d_lookup_rcu(parent, &nd->last, &seq, nd->inode); 1358 if (!dentry) 1359 goto unlazy; 1360 1361 /* 1362 * This sequence count validates that the inode matches 1363 * the dentry name information from lookup. 1364 */ 1365 *inode = dentry->d_inode; 1366 if (read_seqcount_retry(&dentry->d_seq, seq)) 1367 return -ECHILD; 1368 1369 /* 1370 * This sequence count validates that the parent had no 1371 * changes while we did the lookup of the dentry above. 1372 * 1373 * The memory barrier in read_seqcount_begin of child is 1374 * enough, we can use __read_seqcount_retry here. 1375 */ 1376 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1377 return -ECHILD; 1378 nd->seq = seq; 1379 1380 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1381 status = d_revalidate(dentry, nd->flags); 1382 if (unlikely(status <= 0)) { 1383 if (status != -ECHILD) 1384 need_reval = 0; 1385 goto unlazy; 1386 } 1387 } 1388 path->mnt = mnt; 1389 path->dentry = dentry; 1390 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1391 goto unlazy; 1392 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1393 goto unlazy; 1394 return 0; 1395 unlazy: 1396 if (unlazy_walk(nd, dentry)) 1397 return -ECHILD; 1398 } else { 1399 dentry = __d_lookup(parent, &nd->last); 1400 } 1401 1402 if (unlikely(!dentry)) 1403 goto need_lookup; 1404 1405 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1406 status = d_revalidate(dentry, nd->flags); 1407 if (unlikely(status <= 0)) { 1408 if (status < 0) { 1409 dput(dentry); 1410 return status; 1411 } 1412 if (!d_invalidate(dentry)) { 1413 dput(dentry); 1414 goto need_lookup; 1415 } 1416 } 1417 1418 path->mnt = mnt; 1419 path->dentry = dentry; 1420 err = follow_managed(path, nd->flags); 1421 if (unlikely(err < 0)) { 1422 path_put_conditional(path, nd); 1423 return err; 1424 } 1425 if (err) 1426 nd->flags |= LOOKUP_JUMPED; 1427 *inode = path->dentry->d_inode; 1428 return 0; 1429 1430 need_lookup: 1431 return 1; 1432 } 1433 1434 /* Fast lookup failed, do it the slow way */ 1435 static int lookup_slow(struct nameidata *nd, struct path *path) 1436 { 1437 struct dentry *dentry, *parent; 1438 int err; 1439 1440 parent = nd->path.dentry; 1441 BUG_ON(nd->inode != parent->d_inode); 1442 1443 mutex_lock(&parent->d_inode->i_mutex); 1444 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1445 mutex_unlock(&parent->d_inode->i_mutex); 1446 if (IS_ERR(dentry)) 1447 return PTR_ERR(dentry); 1448 path->mnt = nd->path.mnt; 1449 path->dentry = dentry; 1450 err = follow_managed(path, nd->flags); 1451 if (unlikely(err < 0)) { 1452 path_put_conditional(path, nd); 1453 return err; 1454 } 1455 if (err) 1456 nd->flags |= LOOKUP_JUMPED; 1457 return 0; 1458 } 1459 1460 static inline int may_lookup(struct nameidata *nd) 1461 { 1462 if (nd->flags & LOOKUP_RCU) { 1463 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1464 if (err != -ECHILD) 1465 return err; 1466 if (unlazy_walk(nd, NULL)) 1467 return -ECHILD; 1468 } 1469 return inode_permission(nd->inode, MAY_EXEC); 1470 } 1471 1472 static inline int handle_dots(struct nameidata *nd, int type) 1473 { 1474 if (type == LAST_DOTDOT) { 1475 if (nd->flags & LOOKUP_RCU) { 1476 if (follow_dotdot_rcu(nd)) 1477 return -ECHILD; 1478 } else 1479 follow_dotdot(nd); 1480 } 1481 return 0; 1482 } 1483 1484 static void terminate_walk(struct nameidata *nd) 1485 { 1486 if (!(nd->flags & LOOKUP_RCU)) { 1487 path_put(&nd->path); 1488 } else { 1489 nd->flags &= ~LOOKUP_RCU; 1490 if (!(nd->flags & LOOKUP_ROOT)) 1491 nd->root.mnt = NULL; 1492 unlock_rcu_walk(); 1493 } 1494 } 1495 1496 /* 1497 * Do we need to follow links? We _really_ want to be able 1498 * to do this check without having to look at inode->i_op, 1499 * so we keep a cache of "no, this doesn't need follow_link" 1500 * for the common case. 1501 */ 1502 static inline int should_follow_link(struct inode *inode, int follow) 1503 { 1504 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1505 if (likely(inode->i_op->follow_link)) 1506 return follow; 1507 1508 /* This gets set once for the inode lifetime */ 1509 spin_lock(&inode->i_lock); 1510 inode->i_opflags |= IOP_NOFOLLOW; 1511 spin_unlock(&inode->i_lock); 1512 } 1513 return 0; 1514 } 1515 1516 static inline int walk_component(struct nameidata *nd, struct path *path, 1517 int follow) 1518 { 1519 struct inode *inode; 1520 int err; 1521 /* 1522 * "." and ".." are special - ".." especially so because it has 1523 * to be able to know about the current root directory and 1524 * parent relationships. 1525 */ 1526 if (unlikely(nd->last_type != LAST_NORM)) 1527 return handle_dots(nd, nd->last_type); 1528 err = lookup_fast(nd, path, &inode); 1529 if (unlikely(err)) { 1530 if (err < 0) 1531 goto out_err; 1532 1533 err = lookup_slow(nd, path); 1534 if (err < 0) 1535 goto out_err; 1536 1537 inode = path->dentry->d_inode; 1538 } 1539 err = -ENOENT; 1540 if (!inode) 1541 goto out_path_put; 1542 1543 if (should_follow_link(inode, follow)) { 1544 if (nd->flags & LOOKUP_RCU) { 1545 if (unlikely(unlazy_walk(nd, path->dentry))) { 1546 err = -ECHILD; 1547 goto out_err; 1548 } 1549 } 1550 BUG_ON(inode != path->dentry->d_inode); 1551 return 1; 1552 } 1553 path_to_nameidata(path, nd); 1554 nd->inode = inode; 1555 return 0; 1556 1557 out_path_put: 1558 path_to_nameidata(path, nd); 1559 out_err: 1560 terminate_walk(nd); 1561 return err; 1562 } 1563 1564 /* 1565 * This limits recursive symlink follows to 8, while 1566 * limiting consecutive symlinks to 40. 1567 * 1568 * Without that kind of total limit, nasty chains of consecutive 1569 * symlinks can cause almost arbitrarily long lookups. 1570 */ 1571 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1572 { 1573 int res; 1574 1575 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1576 path_put_conditional(path, nd); 1577 path_put(&nd->path); 1578 return -ELOOP; 1579 } 1580 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1581 1582 nd->depth++; 1583 current->link_count++; 1584 1585 do { 1586 struct path link = *path; 1587 void *cookie; 1588 1589 res = follow_link(&link, nd, &cookie); 1590 if (res) 1591 break; 1592 res = walk_component(nd, path, LOOKUP_FOLLOW); 1593 put_link(nd, &link, cookie); 1594 } while (res > 0); 1595 1596 current->link_count--; 1597 nd->depth--; 1598 return res; 1599 } 1600 1601 /* 1602 * We really don't want to look at inode->i_op->lookup 1603 * when we don't have to. So we keep a cache bit in 1604 * the inode ->i_opflags field that says "yes, we can 1605 * do lookup on this inode". 1606 */ 1607 static inline int can_lookup(struct inode *inode) 1608 { 1609 if (likely(inode->i_opflags & IOP_LOOKUP)) 1610 return 1; 1611 if (likely(!inode->i_op->lookup)) 1612 return 0; 1613 1614 /* We do this once for the lifetime of the inode */ 1615 spin_lock(&inode->i_lock); 1616 inode->i_opflags |= IOP_LOOKUP; 1617 spin_unlock(&inode->i_lock); 1618 return 1; 1619 } 1620 1621 /* 1622 * We can do the critical dentry name comparison and hashing 1623 * operations one word at a time, but we are limited to: 1624 * 1625 * - Architectures with fast unaligned word accesses. We could 1626 * do a "get_unaligned()" if this helps and is sufficiently 1627 * fast. 1628 * 1629 * - Little-endian machines (so that we can generate the mask 1630 * of low bytes efficiently). Again, we *could* do a byte 1631 * swapping load on big-endian architectures if that is not 1632 * expensive enough to make the optimization worthless. 1633 * 1634 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1635 * do not trap on the (extremely unlikely) case of a page 1636 * crossing operation. 1637 * 1638 * - Furthermore, we need an efficient 64-bit compile for the 1639 * 64-bit case in order to generate the "number of bytes in 1640 * the final mask". Again, that could be replaced with a 1641 * efficient population count instruction or similar. 1642 */ 1643 #ifdef CONFIG_DCACHE_WORD_ACCESS 1644 1645 #include <asm/word-at-a-time.h> 1646 1647 #ifdef CONFIG_64BIT 1648 1649 static inline unsigned int fold_hash(unsigned long hash) 1650 { 1651 hash += hash >> (8*sizeof(int)); 1652 return hash; 1653 } 1654 1655 #else /* 32-bit case */ 1656 1657 #define fold_hash(x) (x) 1658 1659 #endif 1660 1661 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1662 { 1663 unsigned long a, mask; 1664 unsigned long hash = 0; 1665 1666 for (;;) { 1667 a = load_unaligned_zeropad(name); 1668 if (len < sizeof(unsigned long)) 1669 break; 1670 hash += a; 1671 hash *= 9; 1672 name += sizeof(unsigned long); 1673 len -= sizeof(unsigned long); 1674 if (!len) 1675 goto done; 1676 } 1677 mask = ~(~0ul << len*8); 1678 hash += mask & a; 1679 done: 1680 return fold_hash(hash); 1681 } 1682 EXPORT_SYMBOL(full_name_hash); 1683 1684 /* 1685 * Calculate the length and hash of the path component, and 1686 * return the length of the component; 1687 */ 1688 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1689 { 1690 unsigned long a, b, adata, bdata, mask, hash, len; 1691 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1692 1693 hash = a = 0; 1694 len = -sizeof(unsigned long); 1695 do { 1696 hash = (hash + a) * 9; 1697 len += sizeof(unsigned long); 1698 a = load_unaligned_zeropad(name+len); 1699 b = a ^ REPEAT_BYTE('/'); 1700 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1701 1702 adata = prep_zero_mask(a, adata, &constants); 1703 bdata = prep_zero_mask(b, bdata, &constants); 1704 1705 mask = create_zero_mask(adata | bdata); 1706 1707 hash += a & zero_bytemask(mask); 1708 *hashp = fold_hash(hash); 1709 1710 return len + find_zero(mask); 1711 } 1712 1713 #else 1714 1715 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1716 { 1717 unsigned long hash = init_name_hash(); 1718 while (len--) 1719 hash = partial_name_hash(*name++, hash); 1720 return end_name_hash(hash); 1721 } 1722 EXPORT_SYMBOL(full_name_hash); 1723 1724 /* 1725 * We know there's a real path component here of at least 1726 * one character. 1727 */ 1728 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1729 { 1730 unsigned long hash = init_name_hash(); 1731 unsigned long len = 0, c; 1732 1733 c = (unsigned char)*name; 1734 do { 1735 len++; 1736 hash = partial_name_hash(c, hash); 1737 c = (unsigned char)name[len]; 1738 } while (c && c != '/'); 1739 *hashp = end_name_hash(hash); 1740 return len; 1741 } 1742 1743 #endif 1744 1745 /* 1746 * Name resolution. 1747 * This is the basic name resolution function, turning a pathname into 1748 * the final dentry. We expect 'base' to be positive and a directory. 1749 * 1750 * Returns 0 and nd will have valid dentry and mnt on success. 1751 * Returns error and drops reference to input namei data on failure. 1752 */ 1753 static int link_path_walk(const char *name, struct nameidata *nd) 1754 { 1755 struct path next; 1756 int err; 1757 1758 while (*name=='/') 1759 name++; 1760 if (!*name) 1761 return 0; 1762 1763 /* At this point we know we have a real path component. */ 1764 for(;;) { 1765 struct qstr this; 1766 long len; 1767 int type; 1768 1769 err = may_lookup(nd); 1770 if (err) 1771 break; 1772 1773 len = hash_name(name, &this.hash); 1774 this.name = name; 1775 this.len = len; 1776 1777 type = LAST_NORM; 1778 if (name[0] == '.') switch (len) { 1779 case 2: 1780 if (name[1] == '.') { 1781 type = LAST_DOTDOT; 1782 nd->flags |= LOOKUP_JUMPED; 1783 } 1784 break; 1785 case 1: 1786 type = LAST_DOT; 1787 } 1788 if (likely(type == LAST_NORM)) { 1789 struct dentry *parent = nd->path.dentry; 1790 nd->flags &= ~LOOKUP_JUMPED; 1791 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1792 err = parent->d_op->d_hash(parent, nd->inode, 1793 &this); 1794 if (err < 0) 1795 break; 1796 } 1797 } 1798 1799 nd->last = this; 1800 nd->last_type = type; 1801 1802 if (!name[len]) 1803 return 0; 1804 /* 1805 * If it wasn't NUL, we know it was '/'. Skip that 1806 * slash, and continue until no more slashes. 1807 */ 1808 do { 1809 len++; 1810 } while (unlikely(name[len] == '/')); 1811 if (!name[len]) 1812 return 0; 1813 1814 name += len; 1815 1816 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1817 if (err < 0) 1818 return err; 1819 1820 if (err) { 1821 err = nested_symlink(&next, nd); 1822 if (err) 1823 return err; 1824 } 1825 if (!can_lookup(nd->inode)) { 1826 err = -ENOTDIR; 1827 break; 1828 } 1829 } 1830 terminate_walk(nd); 1831 return err; 1832 } 1833 1834 static int path_init(int dfd, const char *name, unsigned int flags, 1835 struct nameidata *nd, struct file **fp) 1836 { 1837 int retval = 0; 1838 1839 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1840 nd->flags = flags | LOOKUP_JUMPED; 1841 nd->depth = 0; 1842 if (flags & LOOKUP_ROOT) { 1843 struct inode *inode = nd->root.dentry->d_inode; 1844 if (*name) { 1845 if (!can_lookup(inode)) 1846 return -ENOTDIR; 1847 retval = inode_permission(inode, MAY_EXEC); 1848 if (retval) 1849 return retval; 1850 } 1851 nd->path = nd->root; 1852 nd->inode = inode; 1853 if (flags & LOOKUP_RCU) { 1854 lock_rcu_walk(); 1855 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1856 } else { 1857 path_get(&nd->path); 1858 } 1859 return 0; 1860 } 1861 1862 nd->root.mnt = NULL; 1863 1864 if (*name=='/') { 1865 if (flags & LOOKUP_RCU) { 1866 lock_rcu_walk(); 1867 set_root_rcu(nd); 1868 } else { 1869 set_root(nd); 1870 path_get(&nd->root); 1871 } 1872 nd->path = nd->root; 1873 } else if (dfd == AT_FDCWD) { 1874 if (flags & LOOKUP_RCU) { 1875 struct fs_struct *fs = current->fs; 1876 unsigned seq; 1877 1878 lock_rcu_walk(); 1879 1880 do { 1881 seq = read_seqcount_begin(&fs->seq); 1882 nd->path = fs->pwd; 1883 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1884 } while (read_seqcount_retry(&fs->seq, seq)); 1885 } else { 1886 get_fs_pwd(current->fs, &nd->path); 1887 } 1888 } else { 1889 /* Caller must check execute permissions on the starting path component */ 1890 struct fd f = fdget_raw(dfd); 1891 struct dentry *dentry; 1892 1893 if (!f.file) 1894 return -EBADF; 1895 1896 dentry = f.file->f_path.dentry; 1897 1898 if (*name) { 1899 if (!can_lookup(dentry->d_inode)) { 1900 fdput(f); 1901 return -ENOTDIR; 1902 } 1903 } 1904 1905 nd->path = f.file->f_path; 1906 if (flags & LOOKUP_RCU) { 1907 if (f.need_put) 1908 *fp = f.file; 1909 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1910 lock_rcu_walk(); 1911 } else { 1912 path_get(&nd->path); 1913 fdput(f); 1914 } 1915 } 1916 1917 nd->inode = nd->path.dentry->d_inode; 1918 return 0; 1919 } 1920 1921 static inline int lookup_last(struct nameidata *nd, struct path *path) 1922 { 1923 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1924 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1925 1926 nd->flags &= ~LOOKUP_PARENT; 1927 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1928 } 1929 1930 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1931 static int path_lookupat(int dfd, const char *name, 1932 unsigned int flags, struct nameidata *nd) 1933 { 1934 struct file *base = NULL; 1935 struct path path; 1936 int err; 1937 1938 /* 1939 * Path walking is largely split up into 2 different synchronisation 1940 * schemes, rcu-walk and ref-walk (explained in 1941 * Documentation/filesystems/path-lookup.txt). These share much of the 1942 * path walk code, but some things particularly setup, cleanup, and 1943 * following mounts are sufficiently divergent that functions are 1944 * duplicated. Typically there is a function foo(), and its RCU 1945 * analogue, foo_rcu(). 1946 * 1947 * -ECHILD is the error number of choice (just to avoid clashes) that 1948 * is returned if some aspect of an rcu-walk fails. Such an error must 1949 * be handled by restarting a traditional ref-walk (which will always 1950 * be able to complete). 1951 */ 1952 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1953 1954 if (unlikely(err)) 1955 return err; 1956 1957 current->total_link_count = 0; 1958 err = link_path_walk(name, nd); 1959 1960 if (!err && !(flags & LOOKUP_PARENT)) { 1961 err = lookup_last(nd, &path); 1962 while (err > 0) { 1963 void *cookie; 1964 struct path link = path; 1965 err = may_follow_link(&link, nd); 1966 if (unlikely(err)) 1967 break; 1968 nd->flags |= LOOKUP_PARENT; 1969 err = follow_link(&link, nd, &cookie); 1970 if (err) 1971 break; 1972 err = lookup_last(nd, &path); 1973 put_link(nd, &link, cookie); 1974 } 1975 } 1976 1977 if (!err) 1978 err = complete_walk(nd); 1979 1980 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1981 if (!nd->inode->i_op->lookup) { 1982 path_put(&nd->path); 1983 err = -ENOTDIR; 1984 } 1985 } 1986 1987 if (base) 1988 fput(base); 1989 1990 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1991 path_put(&nd->root); 1992 nd->root.mnt = NULL; 1993 } 1994 return err; 1995 } 1996 1997 static int filename_lookup(int dfd, struct filename *name, 1998 unsigned int flags, struct nameidata *nd) 1999 { 2000 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 2001 if (unlikely(retval == -ECHILD)) 2002 retval = path_lookupat(dfd, name->name, flags, nd); 2003 if (unlikely(retval == -ESTALE)) 2004 retval = path_lookupat(dfd, name->name, 2005 flags | LOOKUP_REVAL, nd); 2006 2007 if (likely(!retval)) 2008 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2009 return retval; 2010 } 2011 2012 static int do_path_lookup(int dfd, const char *name, 2013 unsigned int flags, struct nameidata *nd) 2014 { 2015 struct filename filename = { .name = name }; 2016 2017 return filename_lookup(dfd, &filename, flags, nd); 2018 } 2019 2020 /* does lookup, returns the object with parent locked */ 2021 struct dentry *kern_path_locked(const char *name, struct path *path) 2022 { 2023 struct nameidata nd; 2024 struct dentry *d; 2025 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 2026 if (err) 2027 return ERR_PTR(err); 2028 if (nd.last_type != LAST_NORM) { 2029 path_put(&nd.path); 2030 return ERR_PTR(-EINVAL); 2031 } 2032 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2033 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2034 if (IS_ERR(d)) { 2035 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2036 path_put(&nd.path); 2037 return d; 2038 } 2039 *path = nd.path; 2040 return d; 2041 } 2042 2043 int kern_path(const char *name, unsigned int flags, struct path *path) 2044 { 2045 struct nameidata nd; 2046 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2047 if (!res) 2048 *path = nd.path; 2049 return res; 2050 } 2051 2052 /** 2053 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2054 * @dentry: pointer to dentry of the base directory 2055 * @mnt: pointer to vfs mount of the base directory 2056 * @name: pointer to file name 2057 * @flags: lookup flags 2058 * @path: pointer to struct path to fill 2059 */ 2060 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2061 const char *name, unsigned int flags, 2062 struct path *path) 2063 { 2064 struct nameidata nd; 2065 int err; 2066 nd.root.dentry = dentry; 2067 nd.root.mnt = mnt; 2068 BUG_ON(flags & LOOKUP_PARENT); 2069 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2070 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2071 if (!err) 2072 *path = nd.path; 2073 return err; 2074 } 2075 2076 /* 2077 * Restricted form of lookup. Doesn't follow links, single-component only, 2078 * needs parent already locked. Doesn't follow mounts. 2079 * SMP-safe. 2080 */ 2081 static struct dentry *lookup_hash(struct nameidata *nd) 2082 { 2083 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2084 } 2085 2086 /** 2087 * lookup_one_len - filesystem helper to lookup single pathname component 2088 * @name: pathname component to lookup 2089 * @base: base directory to lookup from 2090 * @len: maximum length @len should be interpreted to 2091 * 2092 * Note that this routine is purely a helper for filesystem usage and should 2093 * not be called by generic code. Also note that by using this function the 2094 * nameidata argument is passed to the filesystem methods and a filesystem 2095 * using this helper needs to be prepared for that. 2096 */ 2097 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2098 { 2099 struct qstr this; 2100 unsigned int c; 2101 int err; 2102 2103 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2104 2105 this.name = name; 2106 this.len = len; 2107 this.hash = full_name_hash(name, len); 2108 if (!len) 2109 return ERR_PTR(-EACCES); 2110 2111 if (unlikely(name[0] == '.')) { 2112 if (len < 2 || (len == 2 && name[1] == '.')) 2113 return ERR_PTR(-EACCES); 2114 } 2115 2116 while (len--) { 2117 c = *(const unsigned char *)name++; 2118 if (c == '/' || c == '\0') 2119 return ERR_PTR(-EACCES); 2120 } 2121 /* 2122 * See if the low-level filesystem might want 2123 * to use its own hash.. 2124 */ 2125 if (base->d_flags & DCACHE_OP_HASH) { 2126 int err = base->d_op->d_hash(base, base->d_inode, &this); 2127 if (err < 0) 2128 return ERR_PTR(err); 2129 } 2130 2131 err = inode_permission(base->d_inode, MAY_EXEC); 2132 if (err) 2133 return ERR_PTR(err); 2134 2135 return __lookup_hash(&this, base, 0); 2136 } 2137 2138 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2139 struct path *path, int *empty) 2140 { 2141 struct nameidata nd; 2142 struct filename *tmp = getname_flags(name, flags, empty); 2143 int err = PTR_ERR(tmp); 2144 if (!IS_ERR(tmp)) { 2145 2146 BUG_ON(flags & LOOKUP_PARENT); 2147 2148 err = filename_lookup(dfd, tmp, flags, &nd); 2149 putname(tmp); 2150 if (!err) 2151 *path = nd.path; 2152 } 2153 return err; 2154 } 2155 2156 int user_path_at(int dfd, const char __user *name, unsigned flags, 2157 struct path *path) 2158 { 2159 return user_path_at_empty(dfd, name, flags, path, NULL); 2160 } 2161 2162 /* 2163 * NB: most callers don't do anything directly with the reference to the 2164 * to struct filename, but the nd->last pointer points into the name string 2165 * allocated by getname. So we must hold the reference to it until all 2166 * path-walking is complete. 2167 */ 2168 static struct filename * 2169 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2170 unsigned int flags) 2171 { 2172 struct filename *s = getname(path); 2173 int error; 2174 2175 /* only LOOKUP_REVAL is allowed in extra flags */ 2176 flags &= LOOKUP_REVAL; 2177 2178 if (IS_ERR(s)) 2179 return s; 2180 2181 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2182 if (error) { 2183 putname(s); 2184 return ERR_PTR(error); 2185 } 2186 2187 return s; 2188 } 2189 2190 /* 2191 * It's inline, so penalty for filesystems that don't use sticky bit is 2192 * minimal. 2193 */ 2194 static inline int check_sticky(struct inode *dir, struct inode *inode) 2195 { 2196 kuid_t fsuid = current_fsuid(); 2197 2198 if (!(dir->i_mode & S_ISVTX)) 2199 return 0; 2200 if (uid_eq(inode->i_uid, fsuid)) 2201 return 0; 2202 if (uid_eq(dir->i_uid, fsuid)) 2203 return 0; 2204 return !inode_capable(inode, CAP_FOWNER); 2205 } 2206 2207 /* 2208 * Check whether we can remove a link victim from directory dir, check 2209 * whether the type of victim is right. 2210 * 1. We can't do it if dir is read-only (done in permission()) 2211 * 2. We should have write and exec permissions on dir 2212 * 3. We can't remove anything from append-only dir 2213 * 4. We can't do anything with immutable dir (done in permission()) 2214 * 5. If the sticky bit on dir is set we should either 2215 * a. be owner of dir, or 2216 * b. be owner of victim, or 2217 * c. have CAP_FOWNER capability 2218 * 6. If the victim is append-only or immutable we can't do antyhing with 2219 * links pointing to it. 2220 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2221 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2222 * 9. We can't remove a root or mountpoint. 2223 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2224 * nfs_async_unlink(). 2225 */ 2226 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 2227 { 2228 int error; 2229 2230 if (!victim->d_inode) 2231 return -ENOENT; 2232 2233 BUG_ON(victim->d_parent->d_inode != dir); 2234 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2235 2236 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2237 if (error) 2238 return error; 2239 if (IS_APPEND(dir)) 2240 return -EPERM; 2241 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 2242 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 2243 return -EPERM; 2244 if (isdir) { 2245 if (!S_ISDIR(victim->d_inode->i_mode)) 2246 return -ENOTDIR; 2247 if (IS_ROOT(victim)) 2248 return -EBUSY; 2249 } else if (S_ISDIR(victim->d_inode->i_mode)) 2250 return -EISDIR; 2251 if (IS_DEADDIR(dir)) 2252 return -ENOENT; 2253 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2254 return -EBUSY; 2255 return 0; 2256 } 2257 2258 /* Check whether we can create an object with dentry child in directory 2259 * dir. 2260 * 1. We can't do it if child already exists (open has special treatment for 2261 * this case, but since we are inlined it's OK) 2262 * 2. We can't do it if dir is read-only (done in permission()) 2263 * 3. We should have write and exec permissions on dir 2264 * 4. We can't do it if dir is immutable (done in permission()) 2265 */ 2266 static inline int may_create(struct inode *dir, struct dentry *child) 2267 { 2268 if (child->d_inode) 2269 return -EEXIST; 2270 if (IS_DEADDIR(dir)) 2271 return -ENOENT; 2272 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2273 } 2274 2275 /* 2276 * p1 and p2 should be directories on the same fs. 2277 */ 2278 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2279 { 2280 struct dentry *p; 2281 2282 if (p1 == p2) { 2283 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2284 return NULL; 2285 } 2286 2287 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2288 2289 p = d_ancestor(p2, p1); 2290 if (p) { 2291 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2292 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2293 return p; 2294 } 2295 2296 p = d_ancestor(p1, p2); 2297 if (p) { 2298 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2299 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2300 return p; 2301 } 2302 2303 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2304 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2305 return NULL; 2306 } 2307 2308 void unlock_rename(struct dentry *p1, struct dentry *p2) 2309 { 2310 mutex_unlock(&p1->d_inode->i_mutex); 2311 if (p1 != p2) { 2312 mutex_unlock(&p2->d_inode->i_mutex); 2313 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2314 } 2315 } 2316 2317 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2318 bool want_excl) 2319 { 2320 int error = may_create(dir, dentry); 2321 if (error) 2322 return error; 2323 2324 if (!dir->i_op->create) 2325 return -EACCES; /* shouldn't it be ENOSYS? */ 2326 mode &= S_IALLUGO; 2327 mode |= S_IFREG; 2328 error = security_inode_create(dir, dentry, mode); 2329 if (error) 2330 return error; 2331 error = dir->i_op->create(dir, dentry, mode, want_excl); 2332 if (!error) 2333 fsnotify_create(dir, dentry); 2334 return error; 2335 } 2336 2337 static int may_open(struct path *path, int acc_mode, int flag) 2338 { 2339 struct dentry *dentry = path->dentry; 2340 struct inode *inode = dentry->d_inode; 2341 int error; 2342 2343 /* O_PATH? */ 2344 if (!acc_mode) 2345 return 0; 2346 2347 if (!inode) 2348 return -ENOENT; 2349 2350 switch (inode->i_mode & S_IFMT) { 2351 case S_IFLNK: 2352 return -ELOOP; 2353 case S_IFDIR: 2354 if (acc_mode & MAY_WRITE) 2355 return -EISDIR; 2356 break; 2357 case S_IFBLK: 2358 case S_IFCHR: 2359 if (path->mnt->mnt_flags & MNT_NODEV) 2360 return -EACCES; 2361 /*FALLTHRU*/ 2362 case S_IFIFO: 2363 case S_IFSOCK: 2364 flag &= ~O_TRUNC; 2365 break; 2366 } 2367 2368 error = inode_permission(inode, acc_mode); 2369 if (error) 2370 return error; 2371 2372 /* 2373 * An append-only file must be opened in append mode for writing. 2374 */ 2375 if (IS_APPEND(inode)) { 2376 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2377 return -EPERM; 2378 if (flag & O_TRUNC) 2379 return -EPERM; 2380 } 2381 2382 /* O_NOATIME can only be set by the owner or superuser */ 2383 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2384 return -EPERM; 2385 2386 return 0; 2387 } 2388 2389 static int handle_truncate(struct file *filp) 2390 { 2391 struct path *path = &filp->f_path; 2392 struct inode *inode = path->dentry->d_inode; 2393 int error = get_write_access(inode); 2394 if (error) 2395 return error; 2396 /* 2397 * Refuse to truncate files with mandatory locks held on them. 2398 */ 2399 error = locks_verify_locked(inode); 2400 if (!error) 2401 error = security_path_truncate(path); 2402 if (!error) { 2403 error = do_truncate(path->dentry, 0, 2404 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2405 filp); 2406 } 2407 put_write_access(inode); 2408 return error; 2409 } 2410 2411 static inline int open_to_namei_flags(int flag) 2412 { 2413 if ((flag & O_ACCMODE) == 3) 2414 flag--; 2415 return flag; 2416 } 2417 2418 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2419 { 2420 int error = security_path_mknod(dir, dentry, mode, 0); 2421 if (error) 2422 return error; 2423 2424 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2425 if (error) 2426 return error; 2427 2428 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2429 } 2430 2431 /* 2432 * Attempt to atomically look up, create and open a file from a negative 2433 * dentry. 2434 * 2435 * Returns 0 if successful. The file will have been created and attached to 2436 * @file by the filesystem calling finish_open(). 2437 * 2438 * Returns 1 if the file was looked up only or didn't need creating. The 2439 * caller will need to perform the open themselves. @path will have been 2440 * updated to point to the new dentry. This may be negative. 2441 * 2442 * Returns an error code otherwise. 2443 */ 2444 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2445 struct path *path, struct file *file, 2446 const struct open_flags *op, 2447 bool got_write, bool need_lookup, 2448 int *opened) 2449 { 2450 struct inode *dir = nd->path.dentry->d_inode; 2451 unsigned open_flag = open_to_namei_flags(op->open_flag); 2452 umode_t mode; 2453 int error; 2454 int acc_mode; 2455 int create_error = 0; 2456 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2457 2458 BUG_ON(dentry->d_inode); 2459 2460 /* Don't create child dentry for a dead directory. */ 2461 if (unlikely(IS_DEADDIR(dir))) { 2462 error = -ENOENT; 2463 goto out; 2464 } 2465 2466 mode = op->mode; 2467 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2468 mode &= ~current_umask(); 2469 2470 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) { 2471 open_flag &= ~O_TRUNC; 2472 *opened |= FILE_CREATED; 2473 } 2474 2475 /* 2476 * Checking write permission is tricky, bacuse we don't know if we are 2477 * going to actually need it: O_CREAT opens should work as long as the 2478 * file exists. But checking existence breaks atomicity. The trick is 2479 * to check access and if not granted clear O_CREAT from the flags. 2480 * 2481 * Another problem is returing the "right" error value (e.g. for an 2482 * O_EXCL open we want to return EEXIST not EROFS). 2483 */ 2484 if (((open_flag & (O_CREAT | O_TRUNC)) || 2485 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2486 if (!(open_flag & O_CREAT)) { 2487 /* 2488 * No O_CREATE -> atomicity not a requirement -> fall 2489 * back to lookup + open 2490 */ 2491 goto no_open; 2492 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2493 /* Fall back and fail with the right error */ 2494 create_error = -EROFS; 2495 goto no_open; 2496 } else { 2497 /* No side effects, safe to clear O_CREAT */ 2498 create_error = -EROFS; 2499 open_flag &= ~O_CREAT; 2500 } 2501 } 2502 2503 if (open_flag & O_CREAT) { 2504 error = may_o_create(&nd->path, dentry, mode); 2505 if (error) { 2506 create_error = error; 2507 if (open_flag & O_EXCL) 2508 goto no_open; 2509 open_flag &= ~O_CREAT; 2510 } 2511 } 2512 2513 if (nd->flags & LOOKUP_DIRECTORY) 2514 open_flag |= O_DIRECTORY; 2515 2516 file->f_path.dentry = DENTRY_NOT_SET; 2517 file->f_path.mnt = nd->path.mnt; 2518 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2519 opened); 2520 if (error < 0) { 2521 if (create_error && error == -ENOENT) 2522 error = create_error; 2523 goto out; 2524 } 2525 2526 acc_mode = op->acc_mode; 2527 if (*opened & FILE_CREATED) { 2528 fsnotify_create(dir, dentry); 2529 acc_mode = MAY_OPEN; 2530 } 2531 2532 if (error) { /* returned 1, that is */ 2533 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2534 error = -EIO; 2535 goto out; 2536 } 2537 if (file->f_path.dentry) { 2538 dput(dentry); 2539 dentry = file->f_path.dentry; 2540 } 2541 if (create_error && dentry->d_inode == NULL) { 2542 error = create_error; 2543 goto out; 2544 } 2545 goto looked_up; 2546 } 2547 2548 /* 2549 * We didn't have the inode before the open, so check open permission 2550 * here. 2551 */ 2552 error = may_open(&file->f_path, acc_mode, open_flag); 2553 if (error) 2554 fput(file); 2555 2556 out: 2557 dput(dentry); 2558 return error; 2559 2560 no_open: 2561 if (need_lookup) { 2562 dentry = lookup_real(dir, dentry, nd->flags); 2563 if (IS_ERR(dentry)) 2564 return PTR_ERR(dentry); 2565 2566 if (create_error) { 2567 int open_flag = op->open_flag; 2568 2569 error = create_error; 2570 if ((open_flag & O_EXCL)) { 2571 if (!dentry->d_inode) 2572 goto out; 2573 } else if (!dentry->d_inode) { 2574 goto out; 2575 } else if ((open_flag & O_TRUNC) && 2576 S_ISREG(dentry->d_inode->i_mode)) { 2577 goto out; 2578 } 2579 /* will fail later, go on to get the right error */ 2580 } 2581 } 2582 looked_up: 2583 path->dentry = dentry; 2584 path->mnt = nd->path.mnt; 2585 return 1; 2586 } 2587 2588 /* 2589 * Look up and maybe create and open the last component. 2590 * 2591 * Must be called with i_mutex held on parent. 2592 * 2593 * Returns 0 if the file was successfully atomically created (if necessary) and 2594 * opened. In this case the file will be returned attached to @file. 2595 * 2596 * Returns 1 if the file was not completely opened at this time, though lookups 2597 * and creations will have been performed and the dentry returned in @path will 2598 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2599 * specified then a negative dentry may be returned. 2600 * 2601 * An error code is returned otherwise. 2602 * 2603 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2604 * cleared otherwise prior to returning. 2605 */ 2606 static int lookup_open(struct nameidata *nd, struct path *path, 2607 struct file *file, 2608 const struct open_flags *op, 2609 bool got_write, int *opened) 2610 { 2611 struct dentry *dir = nd->path.dentry; 2612 struct inode *dir_inode = dir->d_inode; 2613 struct dentry *dentry; 2614 int error; 2615 bool need_lookup; 2616 2617 *opened &= ~FILE_CREATED; 2618 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2619 if (IS_ERR(dentry)) 2620 return PTR_ERR(dentry); 2621 2622 /* Cached positive dentry: will open in f_op->open */ 2623 if (!need_lookup && dentry->d_inode) 2624 goto out_no_open; 2625 2626 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2627 return atomic_open(nd, dentry, path, file, op, got_write, 2628 need_lookup, opened); 2629 } 2630 2631 if (need_lookup) { 2632 BUG_ON(dentry->d_inode); 2633 2634 dentry = lookup_real(dir_inode, dentry, nd->flags); 2635 if (IS_ERR(dentry)) 2636 return PTR_ERR(dentry); 2637 } 2638 2639 /* Negative dentry, just create the file */ 2640 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2641 umode_t mode = op->mode; 2642 if (!IS_POSIXACL(dir->d_inode)) 2643 mode &= ~current_umask(); 2644 /* 2645 * This write is needed to ensure that a 2646 * rw->ro transition does not occur between 2647 * the time when the file is created and when 2648 * a permanent write count is taken through 2649 * the 'struct file' in finish_open(). 2650 */ 2651 if (!got_write) { 2652 error = -EROFS; 2653 goto out_dput; 2654 } 2655 *opened |= FILE_CREATED; 2656 error = security_path_mknod(&nd->path, dentry, mode, 0); 2657 if (error) 2658 goto out_dput; 2659 error = vfs_create(dir->d_inode, dentry, mode, 2660 nd->flags & LOOKUP_EXCL); 2661 if (error) 2662 goto out_dput; 2663 } 2664 out_no_open: 2665 path->dentry = dentry; 2666 path->mnt = nd->path.mnt; 2667 return 1; 2668 2669 out_dput: 2670 dput(dentry); 2671 return error; 2672 } 2673 2674 /* 2675 * Handle the last step of open() 2676 */ 2677 static int do_last(struct nameidata *nd, struct path *path, 2678 struct file *file, const struct open_flags *op, 2679 int *opened, struct filename *name) 2680 { 2681 struct dentry *dir = nd->path.dentry; 2682 int open_flag = op->open_flag; 2683 bool will_truncate = (open_flag & O_TRUNC) != 0; 2684 bool got_write = false; 2685 int acc_mode = op->acc_mode; 2686 struct inode *inode; 2687 bool symlink_ok = false; 2688 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2689 bool retried = false; 2690 int error; 2691 2692 nd->flags &= ~LOOKUP_PARENT; 2693 nd->flags |= op->intent; 2694 2695 switch (nd->last_type) { 2696 case LAST_DOTDOT: 2697 case LAST_DOT: 2698 error = handle_dots(nd, nd->last_type); 2699 if (error) 2700 return error; 2701 /* fallthrough */ 2702 case LAST_ROOT: 2703 error = complete_walk(nd); 2704 if (error) 2705 return error; 2706 audit_inode(name, nd->path.dentry, 0); 2707 if (open_flag & O_CREAT) { 2708 error = -EISDIR; 2709 goto out; 2710 } 2711 goto finish_open; 2712 case LAST_BIND: 2713 error = complete_walk(nd); 2714 if (error) 2715 return error; 2716 audit_inode(name, dir, 0); 2717 goto finish_open; 2718 } 2719 2720 if (!(open_flag & O_CREAT)) { 2721 if (nd->last.name[nd->last.len]) 2722 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2723 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2724 symlink_ok = true; 2725 /* we _can_ be in RCU mode here */ 2726 error = lookup_fast(nd, path, &inode); 2727 if (likely(!error)) 2728 goto finish_lookup; 2729 2730 if (error < 0) 2731 goto out; 2732 2733 BUG_ON(nd->inode != dir->d_inode); 2734 } else { 2735 /* create side of things */ 2736 /* 2737 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2738 * has been cleared when we got to the last component we are 2739 * about to look up 2740 */ 2741 error = complete_walk(nd); 2742 if (error) 2743 return error; 2744 2745 audit_inode(name, dir, 0); 2746 error = -EISDIR; 2747 /* trailing slashes? */ 2748 if (nd->last.name[nd->last.len]) 2749 goto out; 2750 } 2751 2752 retry_lookup: 2753 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2754 error = mnt_want_write(nd->path.mnt); 2755 if (!error) 2756 got_write = true; 2757 /* 2758 * do _not_ fail yet - we might not need that or fail with 2759 * a different error; let lookup_open() decide; we'll be 2760 * dropping this one anyway. 2761 */ 2762 } 2763 mutex_lock(&dir->d_inode->i_mutex); 2764 error = lookup_open(nd, path, file, op, got_write, opened); 2765 mutex_unlock(&dir->d_inode->i_mutex); 2766 2767 if (error <= 0) { 2768 if (error) 2769 goto out; 2770 2771 if ((*opened & FILE_CREATED) || 2772 !S_ISREG(file_inode(file)->i_mode)) 2773 will_truncate = false; 2774 2775 audit_inode(name, file->f_path.dentry, 0); 2776 goto opened; 2777 } 2778 2779 if (*opened & FILE_CREATED) { 2780 /* Don't check for write permission, don't truncate */ 2781 open_flag &= ~O_TRUNC; 2782 will_truncate = false; 2783 acc_mode = MAY_OPEN; 2784 path_to_nameidata(path, nd); 2785 goto finish_open_created; 2786 } 2787 2788 /* 2789 * create/update audit record if it already exists. 2790 */ 2791 if (path->dentry->d_inode) 2792 audit_inode(name, path->dentry, 0); 2793 2794 /* 2795 * If atomic_open() acquired write access it is dropped now due to 2796 * possible mount and symlink following (this might be optimized away if 2797 * necessary...) 2798 */ 2799 if (got_write) { 2800 mnt_drop_write(nd->path.mnt); 2801 got_write = false; 2802 } 2803 2804 error = -EEXIST; 2805 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 2806 goto exit_dput; 2807 2808 error = follow_managed(path, nd->flags); 2809 if (error < 0) 2810 goto exit_dput; 2811 2812 if (error) 2813 nd->flags |= LOOKUP_JUMPED; 2814 2815 BUG_ON(nd->flags & LOOKUP_RCU); 2816 inode = path->dentry->d_inode; 2817 finish_lookup: 2818 /* we _can_ be in RCU mode here */ 2819 error = -ENOENT; 2820 if (!inode) { 2821 path_to_nameidata(path, nd); 2822 goto out; 2823 } 2824 2825 if (should_follow_link(inode, !symlink_ok)) { 2826 if (nd->flags & LOOKUP_RCU) { 2827 if (unlikely(unlazy_walk(nd, path->dentry))) { 2828 error = -ECHILD; 2829 goto out; 2830 } 2831 } 2832 BUG_ON(inode != path->dentry->d_inode); 2833 return 1; 2834 } 2835 2836 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 2837 path_to_nameidata(path, nd); 2838 } else { 2839 save_parent.dentry = nd->path.dentry; 2840 save_parent.mnt = mntget(path->mnt); 2841 nd->path.dentry = path->dentry; 2842 2843 } 2844 nd->inode = inode; 2845 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2846 error = complete_walk(nd); 2847 if (error) { 2848 path_put(&save_parent); 2849 return error; 2850 } 2851 error = -EISDIR; 2852 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode)) 2853 goto out; 2854 error = -ENOTDIR; 2855 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup) 2856 goto out; 2857 audit_inode(name, nd->path.dentry, 0); 2858 finish_open: 2859 if (!S_ISREG(nd->inode->i_mode)) 2860 will_truncate = false; 2861 2862 if (will_truncate) { 2863 error = mnt_want_write(nd->path.mnt); 2864 if (error) 2865 goto out; 2866 got_write = true; 2867 } 2868 finish_open_created: 2869 error = may_open(&nd->path, acc_mode, open_flag); 2870 if (error) 2871 goto out; 2872 file->f_path.mnt = nd->path.mnt; 2873 error = finish_open(file, nd->path.dentry, NULL, opened); 2874 if (error) { 2875 if (error == -EOPENSTALE) 2876 goto stale_open; 2877 goto out; 2878 } 2879 opened: 2880 error = open_check_o_direct(file); 2881 if (error) 2882 goto exit_fput; 2883 error = ima_file_check(file, op->acc_mode); 2884 if (error) 2885 goto exit_fput; 2886 2887 if (will_truncate) { 2888 error = handle_truncate(file); 2889 if (error) 2890 goto exit_fput; 2891 } 2892 out: 2893 if (got_write) 2894 mnt_drop_write(nd->path.mnt); 2895 path_put(&save_parent); 2896 terminate_walk(nd); 2897 return error; 2898 2899 exit_dput: 2900 path_put_conditional(path, nd); 2901 goto out; 2902 exit_fput: 2903 fput(file); 2904 goto out; 2905 2906 stale_open: 2907 /* If no saved parent or already retried then can't retry */ 2908 if (!save_parent.dentry || retried) 2909 goto out; 2910 2911 BUG_ON(save_parent.dentry != dir); 2912 path_put(&nd->path); 2913 nd->path = save_parent; 2914 nd->inode = dir->d_inode; 2915 save_parent.mnt = NULL; 2916 save_parent.dentry = NULL; 2917 if (got_write) { 2918 mnt_drop_write(nd->path.mnt); 2919 got_write = false; 2920 } 2921 retried = true; 2922 goto retry_lookup; 2923 } 2924 2925 static struct file *path_openat(int dfd, struct filename *pathname, 2926 struct nameidata *nd, const struct open_flags *op, int flags) 2927 { 2928 struct file *base = NULL; 2929 struct file *file; 2930 struct path path; 2931 int opened = 0; 2932 int error; 2933 2934 file = get_empty_filp(); 2935 if (IS_ERR(file)) 2936 return file; 2937 2938 file->f_flags = op->open_flag; 2939 2940 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 2941 if (unlikely(error)) 2942 goto out; 2943 2944 current->total_link_count = 0; 2945 error = link_path_walk(pathname->name, nd); 2946 if (unlikely(error)) 2947 goto out; 2948 2949 error = do_last(nd, &path, file, op, &opened, pathname); 2950 while (unlikely(error > 0)) { /* trailing symlink */ 2951 struct path link = path; 2952 void *cookie; 2953 if (!(nd->flags & LOOKUP_FOLLOW)) { 2954 path_put_conditional(&path, nd); 2955 path_put(&nd->path); 2956 error = -ELOOP; 2957 break; 2958 } 2959 error = may_follow_link(&link, nd); 2960 if (unlikely(error)) 2961 break; 2962 nd->flags |= LOOKUP_PARENT; 2963 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2964 error = follow_link(&link, nd, &cookie); 2965 if (unlikely(error)) 2966 break; 2967 error = do_last(nd, &path, file, op, &opened, pathname); 2968 put_link(nd, &link, cookie); 2969 } 2970 out: 2971 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2972 path_put(&nd->root); 2973 if (base) 2974 fput(base); 2975 if (!(opened & FILE_OPENED)) { 2976 BUG_ON(!error); 2977 put_filp(file); 2978 } 2979 if (unlikely(error)) { 2980 if (error == -EOPENSTALE) { 2981 if (flags & LOOKUP_RCU) 2982 error = -ECHILD; 2983 else 2984 error = -ESTALE; 2985 } 2986 file = ERR_PTR(error); 2987 } 2988 return file; 2989 } 2990 2991 struct file *do_filp_open(int dfd, struct filename *pathname, 2992 const struct open_flags *op, int flags) 2993 { 2994 struct nameidata nd; 2995 struct file *filp; 2996 2997 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2998 if (unlikely(filp == ERR_PTR(-ECHILD))) 2999 filp = path_openat(dfd, pathname, &nd, op, flags); 3000 if (unlikely(filp == ERR_PTR(-ESTALE))) 3001 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3002 return filp; 3003 } 3004 3005 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3006 const char *name, const struct open_flags *op, int flags) 3007 { 3008 struct nameidata nd; 3009 struct file *file; 3010 struct filename filename = { .name = name }; 3011 3012 nd.root.mnt = mnt; 3013 nd.root.dentry = dentry; 3014 3015 flags |= LOOKUP_ROOT; 3016 3017 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 3018 return ERR_PTR(-ELOOP); 3019 3020 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3021 if (unlikely(file == ERR_PTR(-ECHILD))) 3022 file = path_openat(-1, &filename, &nd, op, flags); 3023 if (unlikely(file == ERR_PTR(-ESTALE))) 3024 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3025 return file; 3026 } 3027 3028 struct dentry *kern_path_create(int dfd, const char *pathname, 3029 struct path *path, unsigned int lookup_flags) 3030 { 3031 struct dentry *dentry = ERR_PTR(-EEXIST); 3032 struct nameidata nd; 3033 int err2; 3034 int error; 3035 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3036 3037 /* 3038 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3039 * other flags passed in are ignored! 3040 */ 3041 lookup_flags &= LOOKUP_REVAL; 3042 3043 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3044 if (error) 3045 return ERR_PTR(error); 3046 3047 /* 3048 * Yucky last component or no last component at all? 3049 * (foo/., foo/.., /////) 3050 */ 3051 if (nd.last_type != LAST_NORM) 3052 goto out; 3053 nd.flags &= ~LOOKUP_PARENT; 3054 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3055 3056 /* don't fail immediately if it's r/o, at least try to report other errors */ 3057 err2 = mnt_want_write(nd.path.mnt); 3058 /* 3059 * Do the final lookup. 3060 */ 3061 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3062 dentry = lookup_hash(&nd); 3063 if (IS_ERR(dentry)) 3064 goto unlock; 3065 3066 error = -EEXIST; 3067 if (dentry->d_inode) 3068 goto fail; 3069 /* 3070 * Special case - lookup gave negative, but... we had foo/bar/ 3071 * From the vfs_mknod() POV we just have a negative dentry - 3072 * all is fine. Let's be bastards - you had / on the end, you've 3073 * been asking for (non-existent) directory. -ENOENT for you. 3074 */ 3075 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3076 error = -ENOENT; 3077 goto fail; 3078 } 3079 if (unlikely(err2)) { 3080 error = err2; 3081 goto fail; 3082 } 3083 *path = nd.path; 3084 return dentry; 3085 fail: 3086 dput(dentry); 3087 dentry = ERR_PTR(error); 3088 unlock: 3089 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3090 if (!err2) 3091 mnt_drop_write(nd.path.mnt); 3092 out: 3093 path_put(&nd.path); 3094 return dentry; 3095 } 3096 EXPORT_SYMBOL(kern_path_create); 3097 3098 void done_path_create(struct path *path, struct dentry *dentry) 3099 { 3100 dput(dentry); 3101 mutex_unlock(&path->dentry->d_inode->i_mutex); 3102 mnt_drop_write(path->mnt); 3103 path_put(path); 3104 } 3105 EXPORT_SYMBOL(done_path_create); 3106 3107 struct dentry *user_path_create(int dfd, const char __user *pathname, 3108 struct path *path, unsigned int lookup_flags) 3109 { 3110 struct filename *tmp = getname(pathname); 3111 struct dentry *res; 3112 if (IS_ERR(tmp)) 3113 return ERR_CAST(tmp); 3114 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3115 putname(tmp); 3116 return res; 3117 } 3118 EXPORT_SYMBOL(user_path_create); 3119 3120 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3121 { 3122 int error = may_create(dir, dentry); 3123 3124 if (error) 3125 return error; 3126 3127 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3128 return -EPERM; 3129 3130 if (!dir->i_op->mknod) 3131 return -EPERM; 3132 3133 error = devcgroup_inode_mknod(mode, dev); 3134 if (error) 3135 return error; 3136 3137 error = security_inode_mknod(dir, dentry, mode, dev); 3138 if (error) 3139 return error; 3140 3141 error = dir->i_op->mknod(dir, dentry, mode, dev); 3142 if (!error) 3143 fsnotify_create(dir, dentry); 3144 return error; 3145 } 3146 3147 static int may_mknod(umode_t mode) 3148 { 3149 switch (mode & S_IFMT) { 3150 case S_IFREG: 3151 case S_IFCHR: 3152 case S_IFBLK: 3153 case S_IFIFO: 3154 case S_IFSOCK: 3155 case 0: /* zero mode translates to S_IFREG */ 3156 return 0; 3157 case S_IFDIR: 3158 return -EPERM; 3159 default: 3160 return -EINVAL; 3161 } 3162 } 3163 3164 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3165 unsigned, dev) 3166 { 3167 struct dentry *dentry; 3168 struct path path; 3169 int error; 3170 unsigned int lookup_flags = 0; 3171 3172 error = may_mknod(mode); 3173 if (error) 3174 return error; 3175 retry: 3176 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3177 if (IS_ERR(dentry)) 3178 return PTR_ERR(dentry); 3179 3180 if (!IS_POSIXACL(path.dentry->d_inode)) 3181 mode &= ~current_umask(); 3182 error = security_path_mknod(&path, dentry, mode, dev); 3183 if (error) 3184 goto out; 3185 switch (mode & S_IFMT) { 3186 case 0: case S_IFREG: 3187 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3188 break; 3189 case S_IFCHR: case S_IFBLK: 3190 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3191 new_decode_dev(dev)); 3192 break; 3193 case S_IFIFO: case S_IFSOCK: 3194 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3195 break; 3196 } 3197 out: 3198 done_path_create(&path, dentry); 3199 if (retry_estale(error, lookup_flags)) { 3200 lookup_flags |= LOOKUP_REVAL; 3201 goto retry; 3202 } 3203 return error; 3204 } 3205 3206 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3207 { 3208 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3209 } 3210 3211 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3212 { 3213 int error = may_create(dir, dentry); 3214 unsigned max_links = dir->i_sb->s_max_links; 3215 3216 if (error) 3217 return error; 3218 3219 if (!dir->i_op->mkdir) 3220 return -EPERM; 3221 3222 mode &= (S_IRWXUGO|S_ISVTX); 3223 error = security_inode_mkdir(dir, dentry, mode); 3224 if (error) 3225 return error; 3226 3227 if (max_links && dir->i_nlink >= max_links) 3228 return -EMLINK; 3229 3230 error = dir->i_op->mkdir(dir, dentry, mode); 3231 if (!error) 3232 fsnotify_mkdir(dir, dentry); 3233 return error; 3234 } 3235 3236 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3237 { 3238 struct dentry *dentry; 3239 struct path path; 3240 int error; 3241 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3242 3243 retry: 3244 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3245 if (IS_ERR(dentry)) 3246 return PTR_ERR(dentry); 3247 3248 if (!IS_POSIXACL(path.dentry->d_inode)) 3249 mode &= ~current_umask(); 3250 error = security_path_mkdir(&path, dentry, mode); 3251 if (!error) 3252 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3253 done_path_create(&path, dentry); 3254 if (retry_estale(error, lookup_flags)) { 3255 lookup_flags |= LOOKUP_REVAL; 3256 goto retry; 3257 } 3258 return error; 3259 } 3260 3261 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3262 { 3263 return sys_mkdirat(AT_FDCWD, pathname, mode); 3264 } 3265 3266 /* 3267 * The dentry_unhash() helper will try to drop the dentry early: we 3268 * should have a usage count of 1 if we're the only user of this 3269 * dentry, and if that is true (possibly after pruning the dcache), 3270 * then we drop the dentry now. 3271 * 3272 * A low-level filesystem can, if it choses, legally 3273 * do a 3274 * 3275 * if (!d_unhashed(dentry)) 3276 * return -EBUSY; 3277 * 3278 * if it cannot handle the case of removing a directory 3279 * that is still in use by something else.. 3280 */ 3281 void dentry_unhash(struct dentry *dentry) 3282 { 3283 shrink_dcache_parent(dentry); 3284 spin_lock(&dentry->d_lock); 3285 if (dentry->d_count == 1) 3286 __d_drop(dentry); 3287 spin_unlock(&dentry->d_lock); 3288 } 3289 3290 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3291 { 3292 int error = may_delete(dir, dentry, 1); 3293 3294 if (error) 3295 return error; 3296 3297 if (!dir->i_op->rmdir) 3298 return -EPERM; 3299 3300 dget(dentry); 3301 mutex_lock(&dentry->d_inode->i_mutex); 3302 3303 error = -EBUSY; 3304 if (d_mountpoint(dentry)) 3305 goto out; 3306 3307 error = security_inode_rmdir(dir, dentry); 3308 if (error) 3309 goto out; 3310 3311 shrink_dcache_parent(dentry); 3312 error = dir->i_op->rmdir(dir, dentry); 3313 if (error) 3314 goto out; 3315 3316 dentry->d_inode->i_flags |= S_DEAD; 3317 dont_mount(dentry); 3318 3319 out: 3320 mutex_unlock(&dentry->d_inode->i_mutex); 3321 dput(dentry); 3322 if (!error) 3323 d_delete(dentry); 3324 return error; 3325 } 3326 3327 static long do_rmdir(int dfd, const char __user *pathname) 3328 { 3329 int error = 0; 3330 struct filename *name; 3331 struct dentry *dentry; 3332 struct nameidata nd; 3333 unsigned int lookup_flags = 0; 3334 retry: 3335 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3336 if (IS_ERR(name)) 3337 return PTR_ERR(name); 3338 3339 switch(nd.last_type) { 3340 case LAST_DOTDOT: 3341 error = -ENOTEMPTY; 3342 goto exit1; 3343 case LAST_DOT: 3344 error = -EINVAL; 3345 goto exit1; 3346 case LAST_ROOT: 3347 error = -EBUSY; 3348 goto exit1; 3349 } 3350 3351 nd.flags &= ~LOOKUP_PARENT; 3352 error = mnt_want_write(nd.path.mnt); 3353 if (error) 3354 goto exit1; 3355 3356 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3357 dentry = lookup_hash(&nd); 3358 error = PTR_ERR(dentry); 3359 if (IS_ERR(dentry)) 3360 goto exit2; 3361 if (!dentry->d_inode) { 3362 error = -ENOENT; 3363 goto exit3; 3364 } 3365 error = security_path_rmdir(&nd.path, dentry); 3366 if (error) 3367 goto exit3; 3368 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3369 exit3: 3370 dput(dentry); 3371 exit2: 3372 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3373 mnt_drop_write(nd.path.mnt); 3374 exit1: 3375 path_put(&nd.path); 3376 putname(name); 3377 if (retry_estale(error, lookup_flags)) { 3378 lookup_flags |= LOOKUP_REVAL; 3379 goto retry; 3380 } 3381 return error; 3382 } 3383 3384 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3385 { 3386 return do_rmdir(AT_FDCWD, pathname); 3387 } 3388 3389 int vfs_unlink(struct inode *dir, struct dentry *dentry) 3390 { 3391 int error = may_delete(dir, dentry, 0); 3392 3393 if (error) 3394 return error; 3395 3396 if (!dir->i_op->unlink) 3397 return -EPERM; 3398 3399 mutex_lock(&dentry->d_inode->i_mutex); 3400 if (d_mountpoint(dentry)) 3401 error = -EBUSY; 3402 else { 3403 error = security_inode_unlink(dir, dentry); 3404 if (!error) { 3405 error = dir->i_op->unlink(dir, dentry); 3406 if (!error) 3407 dont_mount(dentry); 3408 } 3409 } 3410 mutex_unlock(&dentry->d_inode->i_mutex); 3411 3412 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3413 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3414 fsnotify_link_count(dentry->d_inode); 3415 d_delete(dentry); 3416 } 3417 3418 return error; 3419 } 3420 3421 /* 3422 * Make sure that the actual truncation of the file will occur outside its 3423 * directory's i_mutex. Truncate can take a long time if there is a lot of 3424 * writeout happening, and we don't want to prevent access to the directory 3425 * while waiting on the I/O. 3426 */ 3427 static long do_unlinkat(int dfd, const char __user *pathname) 3428 { 3429 int error; 3430 struct filename *name; 3431 struct dentry *dentry; 3432 struct nameidata nd; 3433 struct inode *inode = NULL; 3434 unsigned int lookup_flags = 0; 3435 retry: 3436 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3437 if (IS_ERR(name)) 3438 return PTR_ERR(name); 3439 3440 error = -EISDIR; 3441 if (nd.last_type != LAST_NORM) 3442 goto exit1; 3443 3444 nd.flags &= ~LOOKUP_PARENT; 3445 error = mnt_want_write(nd.path.mnt); 3446 if (error) 3447 goto exit1; 3448 3449 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3450 dentry = lookup_hash(&nd); 3451 error = PTR_ERR(dentry); 3452 if (!IS_ERR(dentry)) { 3453 /* Why not before? Because we want correct error value */ 3454 if (nd.last.name[nd.last.len]) 3455 goto slashes; 3456 inode = dentry->d_inode; 3457 if (!inode) 3458 goto slashes; 3459 ihold(inode); 3460 error = security_path_unlink(&nd.path, dentry); 3461 if (error) 3462 goto exit2; 3463 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 3464 exit2: 3465 dput(dentry); 3466 } 3467 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3468 if (inode) 3469 iput(inode); /* truncate the inode here */ 3470 mnt_drop_write(nd.path.mnt); 3471 exit1: 3472 path_put(&nd.path); 3473 putname(name); 3474 if (retry_estale(error, lookup_flags)) { 3475 lookup_flags |= LOOKUP_REVAL; 3476 inode = NULL; 3477 goto retry; 3478 } 3479 return error; 3480 3481 slashes: 3482 error = !dentry->d_inode ? -ENOENT : 3483 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 3484 goto exit2; 3485 } 3486 3487 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3488 { 3489 if ((flag & ~AT_REMOVEDIR) != 0) 3490 return -EINVAL; 3491 3492 if (flag & AT_REMOVEDIR) 3493 return do_rmdir(dfd, pathname); 3494 3495 return do_unlinkat(dfd, pathname); 3496 } 3497 3498 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3499 { 3500 return do_unlinkat(AT_FDCWD, pathname); 3501 } 3502 3503 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3504 { 3505 int error = may_create(dir, dentry); 3506 3507 if (error) 3508 return error; 3509 3510 if (!dir->i_op->symlink) 3511 return -EPERM; 3512 3513 error = security_inode_symlink(dir, dentry, oldname); 3514 if (error) 3515 return error; 3516 3517 error = dir->i_op->symlink(dir, dentry, oldname); 3518 if (!error) 3519 fsnotify_create(dir, dentry); 3520 return error; 3521 } 3522 3523 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3524 int, newdfd, const char __user *, newname) 3525 { 3526 int error; 3527 struct filename *from; 3528 struct dentry *dentry; 3529 struct path path; 3530 unsigned int lookup_flags = 0; 3531 3532 from = getname(oldname); 3533 if (IS_ERR(from)) 3534 return PTR_ERR(from); 3535 retry: 3536 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3537 error = PTR_ERR(dentry); 3538 if (IS_ERR(dentry)) 3539 goto out_putname; 3540 3541 error = security_path_symlink(&path, dentry, from->name); 3542 if (!error) 3543 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3544 done_path_create(&path, dentry); 3545 if (retry_estale(error, lookup_flags)) { 3546 lookup_flags |= LOOKUP_REVAL; 3547 goto retry; 3548 } 3549 out_putname: 3550 putname(from); 3551 return error; 3552 } 3553 3554 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3555 { 3556 return sys_symlinkat(oldname, AT_FDCWD, newname); 3557 } 3558 3559 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3560 { 3561 struct inode *inode = old_dentry->d_inode; 3562 unsigned max_links = dir->i_sb->s_max_links; 3563 int error; 3564 3565 if (!inode) 3566 return -ENOENT; 3567 3568 error = may_create(dir, new_dentry); 3569 if (error) 3570 return error; 3571 3572 if (dir->i_sb != inode->i_sb) 3573 return -EXDEV; 3574 3575 /* 3576 * A link to an append-only or immutable file cannot be created. 3577 */ 3578 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3579 return -EPERM; 3580 if (!dir->i_op->link) 3581 return -EPERM; 3582 if (S_ISDIR(inode->i_mode)) 3583 return -EPERM; 3584 3585 error = security_inode_link(old_dentry, dir, new_dentry); 3586 if (error) 3587 return error; 3588 3589 mutex_lock(&inode->i_mutex); 3590 /* Make sure we don't allow creating hardlink to an unlinked file */ 3591 if (inode->i_nlink == 0) 3592 error = -ENOENT; 3593 else if (max_links && inode->i_nlink >= max_links) 3594 error = -EMLINK; 3595 else 3596 error = dir->i_op->link(old_dentry, dir, new_dentry); 3597 mutex_unlock(&inode->i_mutex); 3598 if (!error) 3599 fsnotify_link(dir, inode, new_dentry); 3600 return error; 3601 } 3602 3603 /* 3604 * Hardlinks are often used in delicate situations. We avoid 3605 * security-related surprises by not following symlinks on the 3606 * newname. --KAB 3607 * 3608 * We don't follow them on the oldname either to be compatible 3609 * with linux 2.0, and to avoid hard-linking to directories 3610 * and other special files. --ADM 3611 */ 3612 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3613 int, newdfd, const char __user *, newname, int, flags) 3614 { 3615 struct dentry *new_dentry; 3616 struct path old_path, new_path; 3617 int how = 0; 3618 int error; 3619 3620 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3621 return -EINVAL; 3622 /* 3623 * To use null names we require CAP_DAC_READ_SEARCH 3624 * This ensures that not everyone will be able to create 3625 * handlink using the passed filedescriptor. 3626 */ 3627 if (flags & AT_EMPTY_PATH) { 3628 if (!capable(CAP_DAC_READ_SEARCH)) 3629 return -ENOENT; 3630 how = LOOKUP_EMPTY; 3631 } 3632 3633 if (flags & AT_SYMLINK_FOLLOW) 3634 how |= LOOKUP_FOLLOW; 3635 retry: 3636 error = user_path_at(olddfd, oldname, how, &old_path); 3637 if (error) 3638 return error; 3639 3640 new_dentry = user_path_create(newdfd, newname, &new_path, 3641 (how & LOOKUP_REVAL)); 3642 error = PTR_ERR(new_dentry); 3643 if (IS_ERR(new_dentry)) 3644 goto out; 3645 3646 error = -EXDEV; 3647 if (old_path.mnt != new_path.mnt) 3648 goto out_dput; 3649 error = may_linkat(&old_path); 3650 if (unlikely(error)) 3651 goto out_dput; 3652 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3653 if (error) 3654 goto out_dput; 3655 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 3656 out_dput: 3657 done_path_create(&new_path, new_dentry); 3658 if (retry_estale(error, how)) { 3659 how |= LOOKUP_REVAL; 3660 goto retry; 3661 } 3662 out: 3663 path_put(&old_path); 3664 3665 return error; 3666 } 3667 3668 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3669 { 3670 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3671 } 3672 3673 /* 3674 * The worst of all namespace operations - renaming directory. "Perverted" 3675 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3676 * Problems: 3677 * a) we can get into loop creation. Check is done in is_subdir(). 3678 * b) race potential - two innocent renames can create a loop together. 3679 * That's where 4.4 screws up. Current fix: serialization on 3680 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3681 * story. 3682 * c) we have to lock _three_ objects - parents and victim (if it exists). 3683 * And that - after we got ->i_mutex on parents (until then we don't know 3684 * whether the target exists). Solution: try to be smart with locking 3685 * order for inodes. We rely on the fact that tree topology may change 3686 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3687 * move will be locked. Thus we can rank directories by the tree 3688 * (ancestors first) and rank all non-directories after them. 3689 * That works since everybody except rename does "lock parent, lookup, 3690 * lock child" and rename is under ->s_vfs_rename_mutex. 3691 * HOWEVER, it relies on the assumption that any object with ->lookup() 3692 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3693 * we'd better make sure that there's no link(2) for them. 3694 * d) conversion from fhandle to dentry may come in the wrong moment - when 3695 * we are removing the target. Solution: we will have to grab ->i_mutex 3696 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3697 * ->i_mutex on parents, which works but leads to some truly excessive 3698 * locking]. 3699 */ 3700 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3701 struct inode *new_dir, struct dentry *new_dentry) 3702 { 3703 int error = 0; 3704 struct inode *target = new_dentry->d_inode; 3705 unsigned max_links = new_dir->i_sb->s_max_links; 3706 3707 /* 3708 * If we are going to change the parent - check write permissions, 3709 * we'll need to flip '..'. 3710 */ 3711 if (new_dir != old_dir) { 3712 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3713 if (error) 3714 return error; 3715 } 3716 3717 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3718 if (error) 3719 return error; 3720 3721 dget(new_dentry); 3722 if (target) 3723 mutex_lock(&target->i_mutex); 3724 3725 error = -EBUSY; 3726 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3727 goto out; 3728 3729 error = -EMLINK; 3730 if (max_links && !target && new_dir != old_dir && 3731 new_dir->i_nlink >= max_links) 3732 goto out; 3733 3734 if (target) 3735 shrink_dcache_parent(new_dentry); 3736 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3737 if (error) 3738 goto out; 3739 3740 if (target) { 3741 target->i_flags |= S_DEAD; 3742 dont_mount(new_dentry); 3743 } 3744 out: 3745 if (target) 3746 mutex_unlock(&target->i_mutex); 3747 dput(new_dentry); 3748 if (!error) 3749 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3750 d_move(old_dentry,new_dentry); 3751 return error; 3752 } 3753 3754 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3755 struct inode *new_dir, struct dentry *new_dentry) 3756 { 3757 struct inode *target = new_dentry->d_inode; 3758 int error; 3759 3760 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3761 if (error) 3762 return error; 3763 3764 dget(new_dentry); 3765 if (target) 3766 mutex_lock(&target->i_mutex); 3767 3768 error = -EBUSY; 3769 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3770 goto out; 3771 3772 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3773 if (error) 3774 goto out; 3775 3776 if (target) 3777 dont_mount(new_dentry); 3778 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3779 d_move(old_dentry, new_dentry); 3780 out: 3781 if (target) 3782 mutex_unlock(&target->i_mutex); 3783 dput(new_dentry); 3784 return error; 3785 } 3786 3787 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3788 struct inode *new_dir, struct dentry *new_dentry) 3789 { 3790 int error; 3791 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3792 const unsigned char *old_name; 3793 3794 if (old_dentry->d_inode == new_dentry->d_inode) 3795 return 0; 3796 3797 error = may_delete(old_dir, old_dentry, is_dir); 3798 if (error) 3799 return error; 3800 3801 if (!new_dentry->d_inode) 3802 error = may_create(new_dir, new_dentry); 3803 else 3804 error = may_delete(new_dir, new_dentry, is_dir); 3805 if (error) 3806 return error; 3807 3808 if (!old_dir->i_op->rename) 3809 return -EPERM; 3810 3811 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3812 3813 if (is_dir) 3814 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3815 else 3816 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3817 if (!error) 3818 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3819 new_dentry->d_inode, old_dentry); 3820 fsnotify_oldname_free(old_name); 3821 3822 return error; 3823 } 3824 3825 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3826 int, newdfd, const char __user *, newname) 3827 { 3828 struct dentry *old_dir, *new_dir; 3829 struct dentry *old_dentry, *new_dentry; 3830 struct dentry *trap; 3831 struct nameidata oldnd, newnd; 3832 struct filename *from; 3833 struct filename *to; 3834 unsigned int lookup_flags = 0; 3835 bool should_retry = false; 3836 int error; 3837 retry: 3838 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 3839 if (IS_ERR(from)) { 3840 error = PTR_ERR(from); 3841 goto exit; 3842 } 3843 3844 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 3845 if (IS_ERR(to)) { 3846 error = PTR_ERR(to); 3847 goto exit1; 3848 } 3849 3850 error = -EXDEV; 3851 if (oldnd.path.mnt != newnd.path.mnt) 3852 goto exit2; 3853 3854 old_dir = oldnd.path.dentry; 3855 error = -EBUSY; 3856 if (oldnd.last_type != LAST_NORM) 3857 goto exit2; 3858 3859 new_dir = newnd.path.dentry; 3860 if (newnd.last_type != LAST_NORM) 3861 goto exit2; 3862 3863 error = mnt_want_write(oldnd.path.mnt); 3864 if (error) 3865 goto exit2; 3866 3867 oldnd.flags &= ~LOOKUP_PARENT; 3868 newnd.flags &= ~LOOKUP_PARENT; 3869 newnd.flags |= LOOKUP_RENAME_TARGET; 3870 3871 trap = lock_rename(new_dir, old_dir); 3872 3873 old_dentry = lookup_hash(&oldnd); 3874 error = PTR_ERR(old_dentry); 3875 if (IS_ERR(old_dentry)) 3876 goto exit3; 3877 /* source must exist */ 3878 error = -ENOENT; 3879 if (!old_dentry->d_inode) 3880 goto exit4; 3881 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3882 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3883 error = -ENOTDIR; 3884 if (oldnd.last.name[oldnd.last.len]) 3885 goto exit4; 3886 if (newnd.last.name[newnd.last.len]) 3887 goto exit4; 3888 } 3889 /* source should not be ancestor of target */ 3890 error = -EINVAL; 3891 if (old_dentry == trap) 3892 goto exit4; 3893 new_dentry = lookup_hash(&newnd); 3894 error = PTR_ERR(new_dentry); 3895 if (IS_ERR(new_dentry)) 3896 goto exit4; 3897 /* target should not be an ancestor of source */ 3898 error = -ENOTEMPTY; 3899 if (new_dentry == trap) 3900 goto exit5; 3901 3902 error = security_path_rename(&oldnd.path, old_dentry, 3903 &newnd.path, new_dentry); 3904 if (error) 3905 goto exit5; 3906 error = vfs_rename(old_dir->d_inode, old_dentry, 3907 new_dir->d_inode, new_dentry); 3908 exit5: 3909 dput(new_dentry); 3910 exit4: 3911 dput(old_dentry); 3912 exit3: 3913 unlock_rename(new_dir, old_dir); 3914 mnt_drop_write(oldnd.path.mnt); 3915 exit2: 3916 if (retry_estale(error, lookup_flags)) 3917 should_retry = true; 3918 path_put(&newnd.path); 3919 putname(to); 3920 exit1: 3921 path_put(&oldnd.path); 3922 putname(from); 3923 if (should_retry) { 3924 should_retry = false; 3925 lookup_flags |= LOOKUP_REVAL; 3926 goto retry; 3927 } 3928 exit: 3929 return error; 3930 } 3931 3932 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3933 { 3934 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3935 } 3936 3937 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3938 { 3939 int len; 3940 3941 len = PTR_ERR(link); 3942 if (IS_ERR(link)) 3943 goto out; 3944 3945 len = strlen(link); 3946 if (len > (unsigned) buflen) 3947 len = buflen; 3948 if (copy_to_user(buffer, link, len)) 3949 len = -EFAULT; 3950 out: 3951 return len; 3952 } 3953 3954 /* 3955 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3956 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3957 * using) it for any given inode is up to filesystem. 3958 */ 3959 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3960 { 3961 struct nameidata nd; 3962 void *cookie; 3963 int res; 3964 3965 nd.depth = 0; 3966 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3967 if (IS_ERR(cookie)) 3968 return PTR_ERR(cookie); 3969 3970 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3971 if (dentry->d_inode->i_op->put_link) 3972 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3973 return res; 3974 } 3975 3976 int vfs_follow_link(struct nameidata *nd, const char *link) 3977 { 3978 return __vfs_follow_link(nd, link); 3979 } 3980 3981 /* get the link contents into pagecache */ 3982 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3983 { 3984 char *kaddr; 3985 struct page *page; 3986 struct address_space *mapping = dentry->d_inode->i_mapping; 3987 page = read_mapping_page(mapping, 0, NULL); 3988 if (IS_ERR(page)) 3989 return (char*)page; 3990 *ppage = page; 3991 kaddr = kmap(page); 3992 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3993 return kaddr; 3994 } 3995 3996 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3997 { 3998 struct page *page = NULL; 3999 char *s = page_getlink(dentry, &page); 4000 int res = vfs_readlink(dentry,buffer,buflen,s); 4001 if (page) { 4002 kunmap(page); 4003 page_cache_release(page); 4004 } 4005 return res; 4006 } 4007 4008 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4009 { 4010 struct page *page = NULL; 4011 nd_set_link(nd, page_getlink(dentry, &page)); 4012 return page; 4013 } 4014 4015 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4016 { 4017 struct page *page = cookie; 4018 4019 if (page) { 4020 kunmap(page); 4021 page_cache_release(page); 4022 } 4023 } 4024 4025 /* 4026 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4027 */ 4028 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4029 { 4030 struct address_space *mapping = inode->i_mapping; 4031 struct page *page; 4032 void *fsdata; 4033 int err; 4034 char *kaddr; 4035 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4036 if (nofs) 4037 flags |= AOP_FLAG_NOFS; 4038 4039 retry: 4040 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4041 flags, &page, &fsdata); 4042 if (err) 4043 goto fail; 4044 4045 kaddr = kmap_atomic(page); 4046 memcpy(kaddr, symname, len-1); 4047 kunmap_atomic(kaddr); 4048 4049 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4050 page, fsdata); 4051 if (err < 0) 4052 goto fail; 4053 if (err < len-1) 4054 goto retry; 4055 4056 mark_inode_dirty(inode); 4057 return 0; 4058 fail: 4059 return err; 4060 } 4061 4062 int page_symlink(struct inode *inode, const char *symname, int len) 4063 { 4064 return __page_symlink(inode, symname, len, 4065 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4066 } 4067 4068 const struct inode_operations page_symlink_inode_operations = { 4069 .readlink = generic_readlink, 4070 .follow_link = page_follow_link_light, 4071 .put_link = page_put_link, 4072 }; 4073 4074 EXPORT_SYMBOL(user_path_at); 4075 EXPORT_SYMBOL(follow_down_one); 4076 EXPORT_SYMBOL(follow_down); 4077 EXPORT_SYMBOL(follow_up); 4078 EXPORT_SYMBOL(get_write_access); /* nfsd */ 4079 EXPORT_SYMBOL(lock_rename); 4080 EXPORT_SYMBOL(lookup_one_len); 4081 EXPORT_SYMBOL(page_follow_link_light); 4082 EXPORT_SYMBOL(page_put_link); 4083 EXPORT_SYMBOL(page_readlink); 4084 EXPORT_SYMBOL(__page_symlink); 4085 EXPORT_SYMBOL(page_symlink); 4086 EXPORT_SYMBOL(page_symlink_inode_operations); 4087 EXPORT_SYMBOL(kern_path); 4088 EXPORT_SYMBOL(vfs_path_lookup); 4089 EXPORT_SYMBOL(inode_permission); 4090 EXPORT_SYMBOL(unlock_rename); 4091 EXPORT_SYMBOL(vfs_create); 4092 EXPORT_SYMBOL(vfs_follow_link); 4093 EXPORT_SYMBOL(vfs_link); 4094 EXPORT_SYMBOL(vfs_mkdir); 4095 EXPORT_SYMBOL(vfs_mknod); 4096 EXPORT_SYMBOL(generic_permission); 4097 EXPORT_SYMBOL(vfs_readlink); 4098 EXPORT_SYMBOL(vfs_rename); 4099 EXPORT_SYMBOL(vfs_rmdir); 4100 EXPORT_SYMBOL(vfs_symlink); 4101 EXPORT_SYMBOL(vfs_unlink); 4102 EXPORT_SYMBOL(dentry_unhash); 4103 EXPORT_SYMBOL(generic_readlink); 4104