xref: /openbmc/linux/fs/namei.c (revision 82ced6fd)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
37 
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existant name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 static int __link_path_walk(const char *name, struct nameidata *nd);
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 static int do_getname(const char __user *filename, char *page)
121 {
122 	int retval;
123 	unsigned long len = PATH_MAX;
124 
125 	if (!segment_eq(get_fs(), KERNEL_DS)) {
126 		if ((unsigned long) filename >= TASK_SIZE)
127 			return -EFAULT;
128 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 			len = TASK_SIZE - (unsigned long) filename;
130 	}
131 
132 	retval = strncpy_from_user(page, filename, len);
133 	if (retval > 0) {
134 		if (retval < len)
135 			return 0;
136 		return -ENAMETOOLONG;
137 	} else if (!retval)
138 		retval = -ENOENT;
139 	return retval;
140 }
141 
142 char * getname(const char __user * filename)
143 {
144 	char *tmp, *result;
145 
146 	result = ERR_PTR(-ENOMEM);
147 	tmp = __getname();
148 	if (tmp)  {
149 		int retval = do_getname(filename, tmp);
150 
151 		result = tmp;
152 		if (retval < 0) {
153 			__putname(tmp);
154 			result = ERR_PTR(retval);
155 		}
156 	}
157 	audit_getname(result);
158 	return result;
159 }
160 
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
163 {
164 	if (unlikely(!audit_dummy_context()))
165 		audit_putname(name);
166 	else
167 		__putname(name);
168 }
169 EXPORT_SYMBOL(putname);
170 #endif
171 
172 
173 /**
174  * generic_permission  -  check for access rights on a Posix-like filesystem
175  * @inode:	inode to check access rights for
176  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
177  * @check_acl:	optional callback to check for Posix ACLs
178  *
179  * Used to check for read/write/execute permissions on a file.
180  * We use "fsuid" for this, letting us set arbitrary permissions
181  * for filesystem access without changing the "normal" uids which
182  * are used for other things..
183  */
184 int generic_permission(struct inode *inode, int mask,
185 		int (*check_acl)(struct inode *inode, int mask))
186 {
187 	umode_t			mode = inode->i_mode;
188 
189 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
190 
191 	if (current_fsuid() == inode->i_uid)
192 		mode >>= 6;
193 	else {
194 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
195 			int error = check_acl(inode, mask);
196 			if (error == -EACCES)
197 				goto check_capabilities;
198 			else if (error != -EAGAIN)
199 				return error;
200 		}
201 
202 		if (in_group_p(inode->i_gid))
203 			mode >>= 3;
204 	}
205 
206 	/*
207 	 * If the DACs are ok we don't need any capability check.
208 	 */
209 	if ((mask & ~mode) == 0)
210 		return 0;
211 
212  check_capabilities:
213 	/*
214 	 * Read/write DACs are always overridable.
215 	 * Executable DACs are overridable if at least one exec bit is set.
216 	 */
217 	if (!(mask & MAY_EXEC) || execute_ok(inode))
218 		if (capable(CAP_DAC_OVERRIDE))
219 			return 0;
220 
221 	/*
222 	 * Searching includes executable on directories, else just read.
223 	 */
224 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
225 		if (capable(CAP_DAC_READ_SEARCH))
226 			return 0;
227 
228 	return -EACCES;
229 }
230 
231 /**
232  * inode_permission  -  check for access rights to a given inode
233  * @inode:	inode to check permission on
234  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
235  *
236  * Used to check for read/write/execute permissions on an inode.
237  * We use "fsuid" for this, letting us set arbitrary permissions
238  * for filesystem access without changing the "normal" uids which
239  * are used for other things.
240  */
241 int inode_permission(struct inode *inode, int mask)
242 {
243 	int retval;
244 
245 	if (mask & MAY_WRITE) {
246 		umode_t mode = inode->i_mode;
247 
248 		/*
249 		 * Nobody gets write access to a read-only fs.
250 		 */
251 		if (IS_RDONLY(inode) &&
252 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
253 			return -EROFS;
254 
255 		/*
256 		 * Nobody gets write access to an immutable file.
257 		 */
258 		if (IS_IMMUTABLE(inode))
259 			return -EACCES;
260 	}
261 
262 	if (inode->i_op->permission)
263 		retval = inode->i_op->permission(inode, mask);
264 	else
265 		retval = generic_permission(inode, mask, NULL);
266 
267 	if (retval)
268 		return retval;
269 
270 	retval = devcgroup_inode_permission(inode, mask);
271 	if (retval)
272 		return retval;
273 
274 	return security_inode_permission(inode,
275 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
276 }
277 
278 /**
279  * file_permission  -  check for additional access rights to a given file
280  * @file:	file to check access rights for
281  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
282  *
283  * Used to check for read/write/execute permissions on an already opened
284  * file.
285  *
286  * Note:
287  *	Do not use this function in new code.  All access checks should
288  *	be done using inode_permission().
289  */
290 int file_permission(struct file *file, int mask)
291 {
292 	return inode_permission(file->f_path.dentry->d_inode, mask);
293 }
294 
295 /*
296  * get_write_access() gets write permission for a file.
297  * put_write_access() releases this write permission.
298  * This is used for regular files.
299  * We cannot support write (and maybe mmap read-write shared) accesses and
300  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
301  * can have the following values:
302  * 0: no writers, no VM_DENYWRITE mappings
303  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
304  * > 0: (i_writecount) users are writing to the file.
305  *
306  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
307  * except for the cases where we don't hold i_writecount yet. Then we need to
308  * use {get,deny}_write_access() - these functions check the sign and refuse
309  * to do the change if sign is wrong. Exclusion between them is provided by
310  * the inode->i_lock spinlock.
311  */
312 
313 int get_write_access(struct inode * inode)
314 {
315 	spin_lock(&inode->i_lock);
316 	if (atomic_read(&inode->i_writecount) < 0) {
317 		spin_unlock(&inode->i_lock);
318 		return -ETXTBSY;
319 	}
320 	atomic_inc(&inode->i_writecount);
321 	spin_unlock(&inode->i_lock);
322 
323 	return 0;
324 }
325 
326 int deny_write_access(struct file * file)
327 {
328 	struct inode *inode = file->f_path.dentry->d_inode;
329 
330 	spin_lock(&inode->i_lock);
331 	if (atomic_read(&inode->i_writecount) > 0) {
332 		spin_unlock(&inode->i_lock);
333 		return -ETXTBSY;
334 	}
335 	atomic_dec(&inode->i_writecount);
336 	spin_unlock(&inode->i_lock);
337 
338 	return 0;
339 }
340 
341 /**
342  * path_get - get a reference to a path
343  * @path: path to get the reference to
344  *
345  * Given a path increment the reference count to the dentry and the vfsmount.
346  */
347 void path_get(struct path *path)
348 {
349 	mntget(path->mnt);
350 	dget(path->dentry);
351 }
352 EXPORT_SYMBOL(path_get);
353 
354 /**
355  * path_put - put a reference to a path
356  * @path: path to put the reference to
357  *
358  * Given a path decrement the reference count to the dentry and the vfsmount.
359  */
360 void path_put(struct path *path)
361 {
362 	dput(path->dentry);
363 	mntput(path->mnt);
364 }
365 EXPORT_SYMBOL(path_put);
366 
367 /**
368  * release_open_intent - free up open intent resources
369  * @nd: pointer to nameidata
370  */
371 void release_open_intent(struct nameidata *nd)
372 {
373 	if (nd->intent.open.file->f_path.dentry == NULL)
374 		put_filp(nd->intent.open.file);
375 	else
376 		fput(nd->intent.open.file);
377 }
378 
379 static inline struct dentry *
380 do_revalidate(struct dentry *dentry, struct nameidata *nd)
381 {
382 	int status = dentry->d_op->d_revalidate(dentry, nd);
383 	if (unlikely(status <= 0)) {
384 		/*
385 		 * The dentry failed validation.
386 		 * If d_revalidate returned 0 attempt to invalidate
387 		 * the dentry otherwise d_revalidate is asking us
388 		 * to return a fail status.
389 		 */
390 		if (!status) {
391 			if (!d_invalidate(dentry)) {
392 				dput(dentry);
393 				dentry = NULL;
394 			}
395 		} else {
396 			dput(dentry);
397 			dentry = ERR_PTR(status);
398 		}
399 	}
400 	return dentry;
401 }
402 
403 /*
404  * Internal lookup() using the new generic dcache.
405  * SMP-safe
406  */
407 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
408 {
409 	struct dentry * dentry = __d_lookup(parent, name);
410 
411 	/* lockess __d_lookup may fail due to concurrent d_move()
412 	 * in some unrelated directory, so try with d_lookup
413 	 */
414 	if (!dentry)
415 		dentry = d_lookup(parent, name);
416 
417 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
418 		dentry = do_revalidate(dentry, nd);
419 
420 	return dentry;
421 }
422 
423 /*
424  * Short-cut version of permission(), for calling by
425  * path_walk(), when dcache lock is held.  Combines parts
426  * of permission() and generic_permission(), and tests ONLY for
427  * MAY_EXEC permission.
428  *
429  * If appropriate, check DAC only.  If not appropriate, or
430  * short-cut DAC fails, then call permission() to do more
431  * complete permission check.
432  */
433 static int exec_permission_lite(struct inode *inode)
434 {
435 	umode_t	mode = inode->i_mode;
436 
437 	if (inode->i_op->permission)
438 		return -EAGAIN;
439 
440 	if (current_fsuid() == inode->i_uid)
441 		mode >>= 6;
442 	else if (in_group_p(inode->i_gid))
443 		mode >>= 3;
444 
445 	if (mode & MAY_EXEC)
446 		goto ok;
447 
448 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
449 		goto ok;
450 
451 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
452 		goto ok;
453 
454 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
455 		goto ok;
456 
457 	return -EACCES;
458 ok:
459 	return security_inode_permission(inode, MAY_EXEC);
460 }
461 
462 /*
463  * This is called when everything else fails, and we actually have
464  * to go to the low-level filesystem to find out what we should do..
465  *
466  * We get the directory semaphore, and after getting that we also
467  * make sure that nobody added the entry to the dcache in the meantime..
468  * SMP-safe
469  */
470 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
471 {
472 	struct dentry * result;
473 	struct inode *dir = parent->d_inode;
474 
475 	mutex_lock(&dir->i_mutex);
476 	/*
477 	 * First re-do the cached lookup just in case it was created
478 	 * while we waited for the directory semaphore..
479 	 *
480 	 * FIXME! This could use version numbering or similar to
481 	 * avoid unnecessary cache lookups.
482 	 *
483 	 * The "dcache_lock" is purely to protect the RCU list walker
484 	 * from concurrent renames at this point (we mustn't get false
485 	 * negatives from the RCU list walk here, unlike the optimistic
486 	 * fast walk).
487 	 *
488 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
489 	 */
490 	result = d_lookup(parent, name);
491 	if (!result) {
492 		struct dentry *dentry;
493 
494 		/* Don't create child dentry for a dead directory. */
495 		result = ERR_PTR(-ENOENT);
496 		if (IS_DEADDIR(dir))
497 			goto out_unlock;
498 
499 		dentry = d_alloc(parent, name);
500 		result = ERR_PTR(-ENOMEM);
501 		if (dentry) {
502 			result = dir->i_op->lookup(dir, dentry, nd);
503 			if (result)
504 				dput(dentry);
505 			else
506 				result = dentry;
507 		}
508 out_unlock:
509 		mutex_unlock(&dir->i_mutex);
510 		return result;
511 	}
512 
513 	/*
514 	 * Uhhuh! Nasty case: the cache was re-populated while
515 	 * we waited on the semaphore. Need to revalidate.
516 	 */
517 	mutex_unlock(&dir->i_mutex);
518 	if (result->d_op && result->d_op->d_revalidate) {
519 		result = do_revalidate(result, nd);
520 		if (!result)
521 			result = ERR_PTR(-ENOENT);
522 	}
523 	return result;
524 }
525 
526 /*
527  * Wrapper to retry pathname resolution whenever the underlying
528  * file system returns an ESTALE.
529  *
530  * Retry the whole path once, forcing real lookup requests
531  * instead of relying on the dcache.
532  */
533 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
534 {
535 	struct path save = nd->path;
536 	int result;
537 
538 	/* make sure the stuff we saved doesn't go away */
539 	path_get(&save);
540 
541 	result = __link_path_walk(name, nd);
542 	if (result == -ESTALE) {
543 		/* nd->path had been dropped */
544 		nd->path = save;
545 		path_get(&nd->path);
546 		nd->flags |= LOOKUP_REVAL;
547 		result = __link_path_walk(name, nd);
548 	}
549 
550 	path_put(&save);
551 
552 	return result;
553 }
554 
555 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
556 {
557 	int res = 0;
558 	char *name;
559 	if (IS_ERR(link))
560 		goto fail;
561 
562 	if (*link == '/') {
563 		struct fs_struct *fs = current->fs;
564 
565 		path_put(&nd->path);
566 
567 		read_lock(&fs->lock);
568 		nd->path = fs->root;
569 		path_get(&fs->root);
570 		read_unlock(&fs->lock);
571 	}
572 
573 	res = link_path_walk(link, nd);
574 	if (nd->depth || res || nd->last_type!=LAST_NORM)
575 		return res;
576 	/*
577 	 * If it is an iterative symlinks resolution in open_namei() we
578 	 * have to copy the last component. And all that crap because of
579 	 * bloody create() on broken symlinks. Furrfu...
580 	 */
581 	name = __getname();
582 	if (unlikely(!name)) {
583 		path_put(&nd->path);
584 		return -ENOMEM;
585 	}
586 	strcpy(name, nd->last.name);
587 	nd->last.name = name;
588 	return 0;
589 fail:
590 	path_put(&nd->path);
591 	return PTR_ERR(link);
592 }
593 
594 static void path_put_conditional(struct path *path, struct nameidata *nd)
595 {
596 	dput(path->dentry);
597 	if (path->mnt != nd->path.mnt)
598 		mntput(path->mnt);
599 }
600 
601 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
602 {
603 	dput(nd->path.dentry);
604 	if (nd->path.mnt != path->mnt)
605 		mntput(nd->path.mnt);
606 	nd->path.mnt = path->mnt;
607 	nd->path.dentry = path->dentry;
608 }
609 
610 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
611 {
612 	int error;
613 	void *cookie;
614 	struct dentry *dentry = path->dentry;
615 
616 	touch_atime(path->mnt, dentry);
617 	nd_set_link(nd, NULL);
618 
619 	if (path->mnt != nd->path.mnt) {
620 		path_to_nameidata(path, nd);
621 		dget(dentry);
622 	}
623 	mntget(path->mnt);
624 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
625 	error = PTR_ERR(cookie);
626 	if (!IS_ERR(cookie)) {
627 		char *s = nd_get_link(nd);
628 		error = 0;
629 		if (s)
630 			error = __vfs_follow_link(nd, s);
631 		if (dentry->d_inode->i_op->put_link)
632 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
633 	}
634 	path_put(path);
635 
636 	return error;
637 }
638 
639 /*
640  * This limits recursive symlink follows to 8, while
641  * limiting consecutive symlinks to 40.
642  *
643  * Without that kind of total limit, nasty chains of consecutive
644  * symlinks can cause almost arbitrarily long lookups.
645  */
646 static inline int do_follow_link(struct path *path, struct nameidata *nd)
647 {
648 	int err = -ELOOP;
649 	if (current->link_count >= MAX_NESTED_LINKS)
650 		goto loop;
651 	if (current->total_link_count >= 40)
652 		goto loop;
653 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
654 	cond_resched();
655 	err = security_inode_follow_link(path->dentry, nd);
656 	if (err)
657 		goto loop;
658 	current->link_count++;
659 	current->total_link_count++;
660 	nd->depth++;
661 	err = __do_follow_link(path, nd);
662 	current->link_count--;
663 	nd->depth--;
664 	return err;
665 loop:
666 	path_put_conditional(path, nd);
667 	path_put(&nd->path);
668 	return err;
669 }
670 
671 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
672 {
673 	struct vfsmount *parent;
674 	struct dentry *mountpoint;
675 	spin_lock(&vfsmount_lock);
676 	parent=(*mnt)->mnt_parent;
677 	if (parent == *mnt) {
678 		spin_unlock(&vfsmount_lock);
679 		return 0;
680 	}
681 	mntget(parent);
682 	mountpoint=dget((*mnt)->mnt_mountpoint);
683 	spin_unlock(&vfsmount_lock);
684 	dput(*dentry);
685 	*dentry = mountpoint;
686 	mntput(*mnt);
687 	*mnt = parent;
688 	return 1;
689 }
690 
691 /* no need for dcache_lock, as serialization is taken care in
692  * namespace.c
693  */
694 static int __follow_mount(struct path *path)
695 {
696 	int res = 0;
697 	while (d_mountpoint(path->dentry)) {
698 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
699 		if (!mounted)
700 			break;
701 		dput(path->dentry);
702 		if (res)
703 			mntput(path->mnt);
704 		path->mnt = mounted;
705 		path->dentry = dget(mounted->mnt_root);
706 		res = 1;
707 	}
708 	return res;
709 }
710 
711 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
712 {
713 	while (d_mountpoint(*dentry)) {
714 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
715 		if (!mounted)
716 			break;
717 		dput(*dentry);
718 		mntput(*mnt);
719 		*mnt = mounted;
720 		*dentry = dget(mounted->mnt_root);
721 	}
722 }
723 
724 /* no need for dcache_lock, as serialization is taken care in
725  * namespace.c
726  */
727 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
728 {
729 	struct vfsmount *mounted;
730 
731 	mounted = lookup_mnt(*mnt, *dentry);
732 	if (mounted) {
733 		dput(*dentry);
734 		mntput(*mnt);
735 		*mnt = mounted;
736 		*dentry = dget(mounted->mnt_root);
737 		return 1;
738 	}
739 	return 0;
740 }
741 
742 static __always_inline void follow_dotdot(struct nameidata *nd)
743 {
744 	struct fs_struct *fs = current->fs;
745 
746 	while(1) {
747 		struct vfsmount *parent;
748 		struct dentry *old = nd->path.dentry;
749 
750                 read_lock(&fs->lock);
751 		if (nd->path.dentry == fs->root.dentry &&
752 		    nd->path.mnt == fs->root.mnt) {
753                         read_unlock(&fs->lock);
754 			break;
755 		}
756                 read_unlock(&fs->lock);
757 		spin_lock(&dcache_lock);
758 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
759 			nd->path.dentry = dget(nd->path.dentry->d_parent);
760 			spin_unlock(&dcache_lock);
761 			dput(old);
762 			break;
763 		}
764 		spin_unlock(&dcache_lock);
765 		spin_lock(&vfsmount_lock);
766 		parent = nd->path.mnt->mnt_parent;
767 		if (parent == nd->path.mnt) {
768 			spin_unlock(&vfsmount_lock);
769 			break;
770 		}
771 		mntget(parent);
772 		nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
773 		spin_unlock(&vfsmount_lock);
774 		dput(old);
775 		mntput(nd->path.mnt);
776 		nd->path.mnt = parent;
777 	}
778 	follow_mount(&nd->path.mnt, &nd->path.dentry);
779 }
780 
781 /*
782  *  It's more convoluted than I'd like it to be, but... it's still fairly
783  *  small and for now I'd prefer to have fast path as straight as possible.
784  *  It _is_ time-critical.
785  */
786 static int do_lookup(struct nameidata *nd, struct qstr *name,
787 		     struct path *path)
788 {
789 	struct vfsmount *mnt = nd->path.mnt;
790 	struct dentry *dentry = __d_lookup(nd->path.dentry, name);
791 
792 	if (!dentry)
793 		goto need_lookup;
794 	if (dentry->d_op && dentry->d_op->d_revalidate)
795 		goto need_revalidate;
796 done:
797 	path->mnt = mnt;
798 	path->dentry = dentry;
799 	__follow_mount(path);
800 	return 0;
801 
802 need_lookup:
803 	dentry = real_lookup(nd->path.dentry, name, nd);
804 	if (IS_ERR(dentry))
805 		goto fail;
806 	goto done;
807 
808 need_revalidate:
809 	dentry = do_revalidate(dentry, nd);
810 	if (!dentry)
811 		goto need_lookup;
812 	if (IS_ERR(dentry))
813 		goto fail;
814 	goto done;
815 
816 fail:
817 	return PTR_ERR(dentry);
818 }
819 
820 /*
821  * Name resolution.
822  * This is the basic name resolution function, turning a pathname into
823  * the final dentry. We expect 'base' to be positive and a directory.
824  *
825  * Returns 0 and nd will have valid dentry and mnt on success.
826  * Returns error and drops reference to input namei data on failure.
827  */
828 static int __link_path_walk(const char *name, struct nameidata *nd)
829 {
830 	struct path next;
831 	struct inode *inode;
832 	int err;
833 	unsigned int lookup_flags = nd->flags;
834 
835 	while (*name=='/')
836 		name++;
837 	if (!*name)
838 		goto return_reval;
839 
840 	inode = nd->path.dentry->d_inode;
841 	if (nd->depth)
842 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
843 
844 	/* At this point we know we have a real path component. */
845 	for(;;) {
846 		unsigned long hash;
847 		struct qstr this;
848 		unsigned int c;
849 
850 		nd->flags |= LOOKUP_CONTINUE;
851 		err = exec_permission_lite(inode);
852 		if (err == -EAGAIN)
853 			err = inode_permission(nd->path.dentry->d_inode,
854 					       MAY_EXEC);
855 		if (!err)
856 			err = ima_path_check(&nd->path, MAY_EXEC);
857  		if (err)
858 			break;
859 
860 		this.name = name;
861 		c = *(const unsigned char *)name;
862 
863 		hash = init_name_hash();
864 		do {
865 			name++;
866 			hash = partial_name_hash(c, hash);
867 			c = *(const unsigned char *)name;
868 		} while (c && (c != '/'));
869 		this.len = name - (const char *) this.name;
870 		this.hash = end_name_hash(hash);
871 
872 		/* remove trailing slashes? */
873 		if (!c)
874 			goto last_component;
875 		while (*++name == '/');
876 		if (!*name)
877 			goto last_with_slashes;
878 
879 		/*
880 		 * "." and ".." are special - ".." especially so because it has
881 		 * to be able to know about the current root directory and
882 		 * parent relationships.
883 		 */
884 		if (this.name[0] == '.') switch (this.len) {
885 			default:
886 				break;
887 			case 2:
888 				if (this.name[1] != '.')
889 					break;
890 				follow_dotdot(nd);
891 				inode = nd->path.dentry->d_inode;
892 				/* fallthrough */
893 			case 1:
894 				continue;
895 		}
896 		/*
897 		 * See if the low-level filesystem might want
898 		 * to use its own hash..
899 		 */
900 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
901 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
902 							    &this);
903 			if (err < 0)
904 				break;
905 		}
906 		/* This does the actual lookups.. */
907 		err = do_lookup(nd, &this, &next);
908 		if (err)
909 			break;
910 
911 		err = -ENOENT;
912 		inode = next.dentry->d_inode;
913 		if (!inode)
914 			goto out_dput;
915 
916 		if (inode->i_op->follow_link) {
917 			err = do_follow_link(&next, nd);
918 			if (err)
919 				goto return_err;
920 			err = -ENOENT;
921 			inode = nd->path.dentry->d_inode;
922 			if (!inode)
923 				break;
924 		} else
925 			path_to_nameidata(&next, nd);
926 		err = -ENOTDIR;
927 		if (!inode->i_op->lookup)
928 			break;
929 		continue;
930 		/* here ends the main loop */
931 
932 last_with_slashes:
933 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
934 last_component:
935 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
936 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
937 		if (lookup_flags & LOOKUP_PARENT)
938 			goto lookup_parent;
939 		if (this.name[0] == '.') switch (this.len) {
940 			default:
941 				break;
942 			case 2:
943 				if (this.name[1] != '.')
944 					break;
945 				follow_dotdot(nd);
946 				inode = nd->path.dentry->d_inode;
947 				/* fallthrough */
948 			case 1:
949 				goto return_reval;
950 		}
951 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
952 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
953 							    &this);
954 			if (err < 0)
955 				break;
956 		}
957 		err = do_lookup(nd, &this, &next);
958 		if (err)
959 			break;
960 		inode = next.dentry->d_inode;
961 		if ((lookup_flags & LOOKUP_FOLLOW)
962 		    && inode && inode->i_op->follow_link) {
963 			err = do_follow_link(&next, nd);
964 			if (err)
965 				goto return_err;
966 			inode = nd->path.dentry->d_inode;
967 		} else
968 			path_to_nameidata(&next, nd);
969 		err = -ENOENT;
970 		if (!inode)
971 			break;
972 		if (lookup_flags & LOOKUP_DIRECTORY) {
973 			err = -ENOTDIR;
974 			if (!inode->i_op->lookup)
975 				break;
976 		}
977 		goto return_base;
978 lookup_parent:
979 		nd->last = this;
980 		nd->last_type = LAST_NORM;
981 		if (this.name[0] != '.')
982 			goto return_base;
983 		if (this.len == 1)
984 			nd->last_type = LAST_DOT;
985 		else if (this.len == 2 && this.name[1] == '.')
986 			nd->last_type = LAST_DOTDOT;
987 		else
988 			goto return_base;
989 return_reval:
990 		/*
991 		 * We bypassed the ordinary revalidation routines.
992 		 * We may need to check the cached dentry for staleness.
993 		 */
994 		if (nd->path.dentry && nd->path.dentry->d_sb &&
995 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
996 			err = -ESTALE;
997 			/* Note: we do not d_invalidate() */
998 			if (!nd->path.dentry->d_op->d_revalidate(
999 					nd->path.dentry, nd))
1000 				break;
1001 		}
1002 return_base:
1003 		return 0;
1004 out_dput:
1005 		path_put_conditional(&next, nd);
1006 		break;
1007 	}
1008 	path_put(&nd->path);
1009 return_err:
1010 	return err;
1011 }
1012 
1013 static int path_walk(const char *name, struct nameidata *nd)
1014 {
1015 	current->total_link_count = 0;
1016 	return link_path_walk(name, nd);
1017 }
1018 
1019 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1020 static int do_path_lookup(int dfd, const char *name,
1021 				unsigned int flags, struct nameidata *nd)
1022 {
1023 	int retval = 0;
1024 	int fput_needed;
1025 	struct file *file;
1026 	struct fs_struct *fs = current->fs;
1027 
1028 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1029 	nd->flags = flags;
1030 	nd->depth = 0;
1031 
1032 	if (*name=='/') {
1033 		read_lock(&fs->lock);
1034 		nd->path = fs->root;
1035 		path_get(&fs->root);
1036 		read_unlock(&fs->lock);
1037 	} else if (dfd == AT_FDCWD) {
1038 		read_lock(&fs->lock);
1039 		nd->path = fs->pwd;
1040 		path_get(&fs->pwd);
1041 		read_unlock(&fs->lock);
1042 	} else {
1043 		struct dentry *dentry;
1044 
1045 		file = fget_light(dfd, &fput_needed);
1046 		retval = -EBADF;
1047 		if (!file)
1048 			goto out_fail;
1049 
1050 		dentry = file->f_path.dentry;
1051 
1052 		retval = -ENOTDIR;
1053 		if (!S_ISDIR(dentry->d_inode->i_mode))
1054 			goto fput_fail;
1055 
1056 		retval = file_permission(file, MAY_EXEC);
1057 		if (retval)
1058 			goto fput_fail;
1059 
1060 		nd->path = file->f_path;
1061 		path_get(&file->f_path);
1062 
1063 		fput_light(file, fput_needed);
1064 	}
1065 
1066 	retval = path_walk(name, nd);
1067 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1068 				nd->path.dentry->d_inode))
1069 		audit_inode(name, nd->path.dentry);
1070 out_fail:
1071 	return retval;
1072 
1073 fput_fail:
1074 	fput_light(file, fput_needed);
1075 	goto out_fail;
1076 }
1077 
1078 int path_lookup(const char *name, unsigned int flags,
1079 			struct nameidata *nd)
1080 {
1081 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1082 }
1083 
1084 int kern_path(const char *name, unsigned int flags, struct path *path)
1085 {
1086 	struct nameidata nd;
1087 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1088 	if (!res)
1089 		*path = nd.path;
1090 	return res;
1091 }
1092 
1093 /**
1094  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1095  * @dentry:  pointer to dentry of the base directory
1096  * @mnt: pointer to vfs mount of the base directory
1097  * @name: pointer to file name
1098  * @flags: lookup flags
1099  * @nd: pointer to nameidata
1100  */
1101 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1102 		    const char *name, unsigned int flags,
1103 		    struct nameidata *nd)
1104 {
1105 	int retval;
1106 
1107 	/* same as do_path_lookup */
1108 	nd->last_type = LAST_ROOT;
1109 	nd->flags = flags;
1110 	nd->depth = 0;
1111 
1112 	nd->path.dentry = dentry;
1113 	nd->path.mnt = mnt;
1114 	path_get(&nd->path);
1115 
1116 	retval = path_walk(name, nd);
1117 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1118 				nd->path.dentry->d_inode))
1119 		audit_inode(name, nd->path.dentry);
1120 
1121 	return retval;
1122 
1123 }
1124 
1125 /**
1126  * path_lookup_open - lookup a file path with open intent
1127  * @dfd: the directory to use as base, or AT_FDCWD
1128  * @name: pointer to file name
1129  * @lookup_flags: lookup intent flags
1130  * @nd: pointer to nameidata
1131  * @open_flags: open intent flags
1132  */
1133 static int path_lookup_open(int dfd, const char *name,
1134 		unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1135 {
1136 	struct file *filp = get_empty_filp();
1137 	int err;
1138 
1139 	if (filp == NULL)
1140 		return -ENFILE;
1141 	nd->intent.open.file = filp;
1142 	nd->intent.open.flags = open_flags;
1143 	nd->intent.open.create_mode = 0;
1144 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1145 	if (IS_ERR(nd->intent.open.file)) {
1146 		if (err == 0) {
1147 			err = PTR_ERR(nd->intent.open.file);
1148 			path_put(&nd->path);
1149 		}
1150 	} else if (err != 0)
1151 		release_open_intent(nd);
1152 	return err;
1153 }
1154 
1155 static struct dentry *__lookup_hash(struct qstr *name,
1156 		struct dentry *base, struct nameidata *nd)
1157 {
1158 	struct dentry *dentry;
1159 	struct inode *inode;
1160 	int err;
1161 
1162 	inode = base->d_inode;
1163 
1164 	/*
1165 	 * See if the low-level filesystem might want
1166 	 * to use its own hash..
1167 	 */
1168 	if (base->d_op && base->d_op->d_hash) {
1169 		err = base->d_op->d_hash(base, name);
1170 		dentry = ERR_PTR(err);
1171 		if (err < 0)
1172 			goto out;
1173 	}
1174 
1175 	dentry = cached_lookup(base, name, nd);
1176 	if (!dentry) {
1177 		struct dentry *new;
1178 
1179 		/* Don't create child dentry for a dead directory. */
1180 		dentry = ERR_PTR(-ENOENT);
1181 		if (IS_DEADDIR(inode))
1182 			goto out;
1183 
1184 		new = d_alloc(base, name);
1185 		dentry = ERR_PTR(-ENOMEM);
1186 		if (!new)
1187 			goto out;
1188 		dentry = inode->i_op->lookup(inode, new, nd);
1189 		if (!dentry)
1190 			dentry = new;
1191 		else
1192 			dput(new);
1193 	}
1194 out:
1195 	return dentry;
1196 }
1197 
1198 /*
1199  * Restricted form of lookup. Doesn't follow links, single-component only,
1200  * needs parent already locked. Doesn't follow mounts.
1201  * SMP-safe.
1202  */
1203 static struct dentry *lookup_hash(struct nameidata *nd)
1204 {
1205 	int err;
1206 
1207 	err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1208 	if (err)
1209 		return ERR_PTR(err);
1210 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1211 }
1212 
1213 static int __lookup_one_len(const char *name, struct qstr *this,
1214 		struct dentry *base, int len)
1215 {
1216 	unsigned long hash;
1217 	unsigned int c;
1218 
1219 	this->name = name;
1220 	this->len = len;
1221 	if (!len)
1222 		return -EACCES;
1223 
1224 	hash = init_name_hash();
1225 	while (len--) {
1226 		c = *(const unsigned char *)name++;
1227 		if (c == '/' || c == '\0')
1228 			return -EACCES;
1229 		hash = partial_name_hash(c, hash);
1230 	}
1231 	this->hash = end_name_hash(hash);
1232 	return 0;
1233 }
1234 
1235 /**
1236  * lookup_one_len - filesystem helper to lookup single pathname component
1237  * @name:	pathname component to lookup
1238  * @base:	base directory to lookup from
1239  * @len:	maximum length @len should be interpreted to
1240  *
1241  * Note that this routine is purely a helper for filesystem usage and should
1242  * not be called by generic code.  Also note that by using this function the
1243  * nameidata argument is passed to the filesystem methods and a filesystem
1244  * using this helper needs to be prepared for that.
1245  */
1246 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1247 {
1248 	int err;
1249 	struct qstr this;
1250 
1251 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1252 
1253 	err = __lookup_one_len(name, &this, base, len);
1254 	if (err)
1255 		return ERR_PTR(err);
1256 
1257 	err = inode_permission(base->d_inode, MAY_EXEC);
1258 	if (err)
1259 		return ERR_PTR(err);
1260 	return __lookup_hash(&this, base, NULL);
1261 }
1262 
1263 /**
1264  * lookup_one_noperm - bad hack for sysfs
1265  * @name:	pathname component to lookup
1266  * @base:	base directory to lookup from
1267  *
1268  * This is a variant of lookup_one_len that doesn't perform any permission
1269  * checks.   It's a horrible hack to work around the braindead sysfs
1270  * architecture and should not be used anywhere else.
1271  *
1272  * DON'T USE THIS FUNCTION EVER, thanks.
1273  */
1274 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1275 {
1276 	int err;
1277 	struct qstr this;
1278 
1279 	err = __lookup_one_len(name, &this, base, strlen(name));
1280 	if (err)
1281 		return ERR_PTR(err);
1282 	return __lookup_hash(&this, base, NULL);
1283 }
1284 
1285 int user_path_at(int dfd, const char __user *name, unsigned flags,
1286 		 struct path *path)
1287 {
1288 	struct nameidata nd;
1289 	char *tmp = getname(name);
1290 	int err = PTR_ERR(tmp);
1291 	if (!IS_ERR(tmp)) {
1292 
1293 		BUG_ON(flags & LOOKUP_PARENT);
1294 
1295 		err = do_path_lookup(dfd, tmp, flags, &nd);
1296 		putname(tmp);
1297 		if (!err)
1298 			*path = nd.path;
1299 	}
1300 	return err;
1301 }
1302 
1303 static int user_path_parent(int dfd, const char __user *path,
1304 			struct nameidata *nd, char **name)
1305 {
1306 	char *s = getname(path);
1307 	int error;
1308 
1309 	if (IS_ERR(s))
1310 		return PTR_ERR(s);
1311 
1312 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1313 	if (error)
1314 		putname(s);
1315 	else
1316 		*name = s;
1317 
1318 	return error;
1319 }
1320 
1321 /*
1322  * It's inline, so penalty for filesystems that don't use sticky bit is
1323  * minimal.
1324  */
1325 static inline int check_sticky(struct inode *dir, struct inode *inode)
1326 {
1327 	uid_t fsuid = current_fsuid();
1328 
1329 	if (!(dir->i_mode & S_ISVTX))
1330 		return 0;
1331 	if (inode->i_uid == fsuid)
1332 		return 0;
1333 	if (dir->i_uid == fsuid)
1334 		return 0;
1335 	return !capable(CAP_FOWNER);
1336 }
1337 
1338 /*
1339  *	Check whether we can remove a link victim from directory dir, check
1340  *  whether the type of victim is right.
1341  *  1. We can't do it if dir is read-only (done in permission())
1342  *  2. We should have write and exec permissions on dir
1343  *  3. We can't remove anything from append-only dir
1344  *  4. We can't do anything with immutable dir (done in permission())
1345  *  5. If the sticky bit on dir is set we should either
1346  *	a. be owner of dir, or
1347  *	b. be owner of victim, or
1348  *	c. have CAP_FOWNER capability
1349  *  6. If the victim is append-only or immutable we can't do antyhing with
1350  *     links pointing to it.
1351  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1352  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1353  *  9. We can't remove a root or mountpoint.
1354  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1355  *     nfs_async_unlink().
1356  */
1357 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1358 {
1359 	int error;
1360 
1361 	if (!victim->d_inode)
1362 		return -ENOENT;
1363 
1364 	BUG_ON(victim->d_parent->d_inode != dir);
1365 	audit_inode_child(victim->d_name.name, victim, dir);
1366 
1367 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1368 	if (error)
1369 		return error;
1370 	if (IS_APPEND(dir))
1371 		return -EPERM;
1372 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1373 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1374 		return -EPERM;
1375 	if (isdir) {
1376 		if (!S_ISDIR(victim->d_inode->i_mode))
1377 			return -ENOTDIR;
1378 		if (IS_ROOT(victim))
1379 			return -EBUSY;
1380 	} else if (S_ISDIR(victim->d_inode->i_mode))
1381 		return -EISDIR;
1382 	if (IS_DEADDIR(dir))
1383 		return -ENOENT;
1384 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1385 		return -EBUSY;
1386 	return 0;
1387 }
1388 
1389 /*	Check whether we can create an object with dentry child in directory
1390  *  dir.
1391  *  1. We can't do it if child already exists (open has special treatment for
1392  *     this case, but since we are inlined it's OK)
1393  *  2. We can't do it if dir is read-only (done in permission())
1394  *  3. We should have write and exec permissions on dir
1395  *  4. We can't do it if dir is immutable (done in permission())
1396  */
1397 static inline int may_create(struct inode *dir, struct dentry *child)
1398 {
1399 	if (child->d_inode)
1400 		return -EEXIST;
1401 	if (IS_DEADDIR(dir))
1402 		return -ENOENT;
1403 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1404 }
1405 
1406 /*
1407  * O_DIRECTORY translates into forcing a directory lookup.
1408  */
1409 static inline int lookup_flags(unsigned int f)
1410 {
1411 	unsigned long retval = LOOKUP_FOLLOW;
1412 
1413 	if (f & O_NOFOLLOW)
1414 		retval &= ~LOOKUP_FOLLOW;
1415 
1416 	if (f & O_DIRECTORY)
1417 		retval |= LOOKUP_DIRECTORY;
1418 
1419 	return retval;
1420 }
1421 
1422 /*
1423  * p1 and p2 should be directories on the same fs.
1424  */
1425 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1426 {
1427 	struct dentry *p;
1428 
1429 	if (p1 == p2) {
1430 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1431 		return NULL;
1432 	}
1433 
1434 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1435 
1436 	p = d_ancestor(p2, p1);
1437 	if (p) {
1438 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1439 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1440 		return p;
1441 	}
1442 
1443 	p = d_ancestor(p1, p2);
1444 	if (p) {
1445 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1446 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1447 		return p;
1448 	}
1449 
1450 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1451 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1452 	return NULL;
1453 }
1454 
1455 void unlock_rename(struct dentry *p1, struct dentry *p2)
1456 {
1457 	mutex_unlock(&p1->d_inode->i_mutex);
1458 	if (p1 != p2) {
1459 		mutex_unlock(&p2->d_inode->i_mutex);
1460 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1461 	}
1462 }
1463 
1464 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1465 		struct nameidata *nd)
1466 {
1467 	int error = may_create(dir, dentry);
1468 
1469 	if (error)
1470 		return error;
1471 
1472 	if (!dir->i_op->create)
1473 		return -EACCES;	/* shouldn't it be ENOSYS? */
1474 	mode &= S_IALLUGO;
1475 	mode |= S_IFREG;
1476 	error = security_inode_create(dir, dentry, mode);
1477 	if (error)
1478 		return error;
1479 	vfs_dq_init(dir);
1480 	error = dir->i_op->create(dir, dentry, mode, nd);
1481 	if (!error)
1482 		fsnotify_create(dir, dentry);
1483 	return error;
1484 }
1485 
1486 int may_open(struct path *path, int acc_mode, int flag)
1487 {
1488 	struct dentry *dentry = path->dentry;
1489 	struct inode *inode = dentry->d_inode;
1490 	int error;
1491 
1492 	if (!inode)
1493 		return -ENOENT;
1494 
1495 	switch (inode->i_mode & S_IFMT) {
1496 	case S_IFLNK:
1497 		return -ELOOP;
1498 	case S_IFDIR:
1499 		if (acc_mode & MAY_WRITE)
1500 			return -EISDIR;
1501 		break;
1502 	case S_IFBLK:
1503 	case S_IFCHR:
1504 		if (path->mnt->mnt_flags & MNT_NODEV)
1505 			return -EACCES;
1506 		/*FALLTHRU*/
1507 	case S_IFIFO:
1508 	case S_IFSOCK:
1509 		flag &= ~O_TRUNC;
1510 		break;
1511 	}
1512 
1513 	error = inode_permission(inode, acc_mode);
1514 	if (error)
1515 		return error;
1516 
1517 	error = ima_path_check(path,
1518 			       acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1519 	if (error)
1520 		return error;
1521 	/*
1522 	 * An append-only file must be opened in append mode for writing.
1523 	 */
1524 	if (IS_APPEND(inode)) {
1525 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1526 			return -EPERM;
1527 		if (flag & O_TRUNC)
1528 			return -EPERM;
1529 	}
1530 
1531 	/* O_NOATIME can only be set by the owner or superuser */
1532 	if (flag & O_NOATIME)
1533 		if (!is_owner_or_cap(inode))
1534 			return -EPERM;
1535 
1536 	/*
1537 	 * Ensure there are no outstanding leases on the file.
1538 	 */
1539 	error = break_lease(inode, flag);
1540 	if (error)
1541 		return error;
1542 
1543 	if (flag & O_TRUNC) {
1544 		error = get_write_access(inode);
1545 		if (error)
1546 			return error;
1547 
1548 		/*
1549 		 * Refuse to truncate files with mandatory locks held on them.
1550 		 */
1551 		error = locks_verify_locked(inode);
1552 		if (!error)
1553 			error = security_path_truncate(path, 0,
1554 					       ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1555 		if (!error) {
1556 			vfs_dq_init(inode);
1557 
1558 			error = do_truncate(dentry, 0,
1559 					    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1560 					    NULL);
1561 		}
1562 		put_write_access(inode);
1563 		if (error)
1564 			return error;
1565 	} else
1566 		if (flag & FMODE_WRITE)
1567 			vfs_dq_init(inode);
1568 
1569 	return 0;
1570 }
1571 
1572 /*
1573  * Be careful about ever adding any more callers of this
1574  * function.  Its flags must be in the namei format, not
1575  * what get passed to sys_open().
1576  */
1577 static int __open_namei_create(struct nameidata *nd, struct path *path,
1578 				int flag, int mode)
1579 {
1580 	int error;
1581 	struct dentry *dir = nd->path.dentry;
1582 
1583 	if (!IS_POSIXACL(dir->d_inode))
1584 		mode &= ~current_umask();
1585 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1586 	if (error)
1587 		goto out_unlock;
1588 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1589 out_unlock:
1590 	mutex_unlock(&dir->d_inode->i_mutex);
1591 	dput(nd->path.dentry);
1592 	nd->path.dentry = path->dentry;
1593 	if (error)
1594 		return error;
1595 	/* Don't check for write permission, don't truncate */
1596 	return may_open(&nd->path, 0, flag & ~O_TRUNC);
1597 }
1598 
1599 /*
1600  * Note that while the flag value (low two bits) for sys_open means:
1601  *	00 - read-only
1602  *	01 - write-only
1603  *	10 - read-write
1604  *	11 - special
1605  * it is changed into
1606  *	00 - no permissions needed
1607  *	01 - read-permission
1608  *	10 - write-permission
1609  *	11 - read-write
1610  * for the internal routines (ie open_namei()/follow_link() etc)
1611  * This is more logical, and also allows the 00 "no perm needed"
1612  * to be used for symlinks (where the permissions are checked
1613  * later).
1614  *
1615 */
1616 static inline int open_to_namei_flags(int flag)
1617 {
1618 	if ((flag+1) & O_ACCMODE)
1619 		flag++;
1620 	return flag;
1621 }
1622 
1623 static int open_will_write_to_fs(int flag, struct inode *inode)
1624 {
1625 	/*
1626 	 * We'll never write to the fs underlying
1627 	 * a device file.
1628 	 */
1629 	if (special_file(inode->i_mode))
1630 		return 0;
1631 	return (flag & O_TRUNC);
1632 }
1633 
1634 /*
1635  * Note that the low bits of the passed in "open_flag"
1636  * are not the same as in the local variable "flag". See
1637  * open_to_namei_flags() for more details.
1638  */
1639 struct file *do_filp_open(int dfd, const char *pathname,
1640 		int open_flag, int mode, int acc_mode)
1641 {
1642 	struct file *filp;
1643 	struct nameidata nd;
1644 	int error;
1645 	struct path path;
1646 	struct dentry *dir;
1647 	int count = 0;
1648 	int will_write;
1649 	int flag = open_to_namei_flags(open_flag);
1650 
1651 	if (!acc_mode)
1652 		acc_mode = MAY_OPEN | ACC_MODE(flag);
1653 
1654 	/* O_TRUNC implies we need access checks for write permissions */
1655 	if (flag & O_TRUNC)
1656 		acc_mode |= MAY_WRITE;
1657 
1658 	/* Allow the LSM permission hook to distinguish append
1659 	   access from general write access. */
1660 	if (flag & O_APPEND)
1661 		acc_mode |= MAY_APPEND;
1662 
1663 	/*
1664 	 * The simplest case - just a plain lookup.
1665 	 */
1666 	if (!(flag & O_CREAT)) {
1667 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1668 					 &nd, flag);
1669 		if (error)
1670 			return ERR_PTR(error);
1671 		goto ok;
1672 	}
1673 
1674 	/*
1675 	 * Create - we need to know the parent.
1676 	 */
1677 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1678 	if (error)
1679 		return ERR_PTR(error);
1680 
1681 	/*
1682 	 * We have the parent and last component. First of all, check
1683 	 * that we are not asked to creat(2) an obvious directory - that
1684 	 * will not do.
1685 	 */
1686 	error = -EISDIR;
1687 	if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1688 		goto exit_parent;
1689 
1690 	error = -ENFILE;
1691 	filp = get_empty_filp();
1692 	if (filp == NULL)
1693 		goto exit_parent;
1694 	nd.intent.open.file = filp;
1695 	nd.intent.open.flags = flag;
1696 	nd.intent.open.create_mode = mode;
1697 	dir = nd.path.dentry;
1698 	nd.flags &= ~LOOKUP_PARENT;
1699 	nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1700 	if (flag & O_EXCL)
1701 		nd.flags |= LOOKUP_EXCL;
1702 	mutex_lock(&dir->d_inode->i_mutex);
1703 	path.dentry = lookup_hash(&nd);
1704 	path.mnt = nd.path.mnt;
1705 
1706 do_last:
1707 	error = PTR_ERR(path.dentry);
1708 	if (IS_ERR(path.dentry)) {
1709 		mutex_unlock(&dir->d_inode->i_mutex);
1710 		goto exit;
1711 	}
1712 
1713 	if (IS_ERR(nd.intent.open.file)) {
1714 		error = PTR_ERR(nd.intent.open.file);
1715 		goto exit_mutex_unlock;
1716 	}
1717 
1718 	/* Negative dentry, just create the file */
1719 	if (!path.dentry->d_inode) {
1720 		/*
1721 		 * This write is needed to ensure that a
1722 		 * ro->rw transition does not occur between
1723 		 * the time when the file is created and when
1724 		 * a permanent write count is taken through
1725 		 * the 'struct file' in nameidata_to_filp().
1726 		 */
1727 		error = mnt_want_write(nd.path.mnt);
1728 		if (error)
1729 			goto exit_mutex_unlock;
1730 		error = __open_namei_create(&nd, &path, flag, mode);
1731 		if (error) {
1732 			mnt_drop_write(nd.path.mnt);
1733 			goto exit;
1734 		}
1735 		filp = nameidata_to_filp(&nd, open_flag);
1736 		mnt_drop_write(nd.path.mnt);
1737 		return filp;
1738 	}
1739 
1740 	/*
1741 	 * It already exists.
1742 	 */
1743 	mutex_unlock(&dir->d_inode->i_mutex);
1744 	audit_inode(pathname, path.dentry);
1745 
1746 	error = -EEXIST;
1747 	if (flag & O_EXCL)
1748 		goto exit_dput;
1749 
1750 	if (__follow_mount(&path)) {
1751 		error = -ELOOP;
1752 		if (flag & O_NOFOLLOW)
1753 			goto exit_dput;
1754 	}
1755 
1756 	error = -ENOENT;
1757 	if (!path.dentry->d_inode)
1758 		goto exit_dput;
1759 	if (path.dentry->d_inode->i_op->follow_link)
1760 		goto do_link;
1761 
1762 	path_to_nameidata(&path, &nd);
1763 	error = -EISDIR;
1764 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1765 		goto exit;
1766 ok:
1767 	/*
1768 	 * Consider:
1769 	 * 1. may_open() truncates a file
1770 	 * 2. a rw->ro mount transition occurs
1771 	 * 3. nameidata_to_filp() fails due to
1772 	 *    the ro mount.
1773 	 * That would be inconsistent, and should
1774 	 * be avoided. Taking this mnt write here
1775 	 * ensures that (2) can not occur.
1776 	 */
1777 	will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1778 	if (will_write) {
1779 		error = mnt_want_write(nd.path.mnt);
1780 		if (error)
1781 			goto exit;
1782 	}
1783 	error = may_open(&nd.path, acc_mode, flag);
1784 	if (error) {
1785 		if (will_write)
1786 			mnt_drop_write(nd.path.mnt);
1787 		goto exit;
1788 	}
1789 	filp = nameidata_to_filp(&nd, open_flag);
1790 	/*
1791 	 * It is now safe to drop the mnt write
1792 	 * because the filp has had a write taken
1793 	 * on its behalf.
1794 	 */
1795 	if (will_write)
1796 		mnt_drop_write(nd.path.mnt);
1797 	return filp;
1798 
1799 exit_mutex_unlock:
1800 	mutex_unlock(&dir->d_inode->i_mutex);
1801 exit_dput:
1802 	path_put_conditional(&path, &nd);
1803 exit:
1804 	if (!IS_ERR(nd.intent.open.file))
1805 		release_open_intent(&nd);
1806 exit_parent:
1807 	path_put(&nd.path);
1808 	return ERR_PTR(error);
1809 
1810 do_link:
1811 	error = -ELOOP;
1812 	if (flag & O_NOFOLLOW)
1813 		goto exit_dput;
1814 	/*
1815 	 * This is subtle. Instead of calling do_follow_link() we do the
1816 	 * thing by hands. The reason is that this way we have zero link_count
1817 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1818 	 * After that we have the parent and last component, i.e.
1819 	 * we are in the same situation as after the first path_walk().
1820 	 * Well, almost - if the last component is normal we get its copy
1821 	 * stored in nd->last.name and we will have to putname() it when we
1822 	 * are done. Procfs-like symlinks just set LAST_BIND.
1823 	 */
1824 	nd.flags |= LOOKUP_PARENT;
1825 	error = security_inode_follow_link(path.dentry, &nd);
1826 	if (error)
1827 		goto exit_dput;
1828 	error = __do_follow_link(&path, &nd);
1829 	if (error) {
1830 		/* Does someone understand code flow here? Or it is only
1831 		 * me so stupid? Anathema to whoever designed this non-sense
1832 		 * with "intent.open".
1833 		 */
1834 		release_open_intent(&nd);
1835 		return ERR_PTR(error);
1836 	}
1837 	nd.flags &= ~LOOKUP_PARENT;
1838 	if (nd.last_type == LAST_BIND)
1839 		goto ok;
1840 	error = -EISDIR;
1841 	if (nd.last_type != LAST_NORM)
1842 		goto exit;
1843 	if (nd.last.name[nd.last.len]) {
1844 		__putname(nd.last.name);
1845 		goto exit;
1846 	}
1847 	error = -ELOOP;
1848 	if (count++==32) {
1849 		__putname(nd.last.name);
1850 		goto exit;
1851 	}
1852 	dir = nd.path.dentry;
1853 	mutex_lock(&dir->d_inode->i_mutex);
1854 	path.dentry = lookup_hash(&nd);
1855 	path.mnt = nd.path.mnt;
1856 	__putname(nd.last.name);
1857 	goto do_last;
1858 }
1859 
1860 /**
1861  * filp_open - open file and return file pointer
1862  *
1863  * @filename:	path to open
1864  * @flags:	open flags as per the open(2) second argument
1865  * @mode:	mode for the new file if O_CREAT is set, else ignored
1866  *
1867  * This is the helper to open a file from kernelspace if you really
1868  * have to.  But in generally you should not do this, so please move
1869  * along, nothing to see here..
1870  */
1871 struct file *filp_open(const char *filename, int flags, int mode)
1872 {
1873 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1874 }
1875 EXPORT_SYMBOL(filp_open);
1876 
1877 /**
1878  * lookup_create - lookup a dentry, creating it if it doesn't exist
1879  * @nd: nameidata info
1880  * @is_dir: directory flag
1881  *
1882  * Simple function to lookup and return a dentry and create it
1883  * if it doesn't exist.  Is SMP-safe.
1884  *
1885  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1886  */
1887 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1888 {
1889 	struct dentry *dentry = ERR_PTR(-EEXIST);
1890 
1891 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1892 	/*
1893 	 * Yucky last component or no last component at all?
1894 	 * (foo/., foo/.., /////)
1895 	 */
1896 	if (nd->last_type != LAST_NORM)
1897 		goto fail;
1898 	nd->flags &= ~LOOKUP_PARENT;
1899 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1900 	nd->intent.open.flags = O_EXCL;
1901 
1902 	/*
1903 	 * Do the final lookup.
1904 	 */
1905 	dentry = lookup_hash(nd);
1906 	if (IS_ERR(dentry))
1907 		goto fail;
1908 
1909 	if (dentry->d_inode)
1910 		goto eexist;
1911 	/*
1912 	 * Special case - lookup gave negative, but... we had foo/bar/
1913 	 * From the vfs_mknod() POV we just have a negative dentry -
1914 	 * all is fine. Let's be bastards - you had / on the end, you've
1915 	 * been asking for (non-existent) directory. -ENOENT for you.
1916 	 */
1917 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1918 		dput(dentry);
1919 		dentry = ERR_PTR(-ENOENT);
1920 	}
1921 	return dentry;
1922 eexist:
1923 	dput(dentry);
1924 	dentry = ERR_PTR(-EEXIST);
1925 fail:
1926 	return dentry;
1927 }
1928 EXPORT_SYMBOL_GPL(lookup_create);
1929 
1930 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1931 {
1932 	int error = may_create(dir, dentry);
1933 
1934 	if (error)
1935 		return error;
1936 
1937 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1938 		return -EPERM;
1939 
1940 	if (!dir->i_op->mknod)
1941 		return -EPERM;
1942 
1943 	error = devcgroup_inode_mknod(mode, dev);
1944 	if (error)
1945 		return error;
1946 
1947 	error = security_inode_mknod(dir, dentry, mode, dev);
1948 	if (error)
1949 		return error;
1950 
1951 	vfs_dq_init(dir);
1952 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1953 	if (!error)
1954 		fsnotify_create(dir, dentry);
1955 	return error;
1956 }
1957 
1958 static int may_mknod(mode_t mode)
1959 {
1960 	switch (mode & S_IFMT) {
1961 	case S_IFREG:
1962 	case S_IFCHR:
1963 	case S_IFBLK:
1964 	case S_IFIFO:
1965 	case S_IFSOCK:
1966 	case 0: /* zero mode translates to S_IFREG */
1967 		return 0;
1968 	case S_IFDIR:
1969 		return -EPERM;
1970 	default:
1971 		return -EINVAL;
1972 	}
1973 }
1974 
1975 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1976 		unsigned, dev)
1977 {
1978 	int error;
1979 	char *tmp;
1980 	struct dentry *dentry;
1981 	struct nameidata nd;
1982 
1983 	if (S_ISDIR(mode))
1984 		return -EPERM;
1985 
1986 	error = user_path_parent(dfd, filename, &nd, &tmp);
1987 	if (error)
1988 		return error;
1989 
1990 	dentry = lookup_create(&nd, 0);
1991 	if (IS_ERR(dentry)) {
1992 		error = PTR_ERR(dentry);
1993 		goto out_unlock;
1994 	}
1995 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
1996 		mode &= ~current_umask();
1997 	error = may_mknod(mode);
1998 	if (error)
1999 		goto out_dput;
2000 	error = mnt_want_write(nd.path.mnt);
2001 	if (error)
2002 		goto out_dput;
2003 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2004 	if (error)
2005 		goto out_drop_write;
2006 	switch (mode & S_IFMT) {
2007 		case 0: case S_IFREG:
2008 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2009 			break;
2010 		case S_IFCHR: case S_IFBLK:
2011 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2012 					new_decode_dev(dev));
2013 			break;
2014 		case S_IFIFO: case S_IFSOCK:
2015 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2016 			break;
2017 	}
2018 out_drop_write:
2019 	mnt_drop_write(nd.path.mnt);
2020 out_dput:
2021 	dput(dentry);
2022 out_unlock:
2023 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2024 	path_put(&nd.path);
2025 	putname(tmp);
2026 
2027 	return error;
2028 }
2029 
2030 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2031 {
2032 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2033 }
2034 
2035 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2036 {
2037 	int error = may_create(dir, dentry);
2038 
2039 	if (error)
2040 		return error;
2041 
2042 	if (!dir->i_op->mkdir)
2043 		return -EPERM;
2044 
2045 	mode &= (S_IRWXUGO|S_ISVTX);
2046 	error = security_inode_mkdir(dir, dentry, mode);
2047 	if (error)
2048 		return error;
2049 
2050 	vfs_dq_init(dir);
2051 	error = dir->i_op->mkdir(dir, dentry, mode);
2052 	if (!error)
2053 		fsnotify_mkdir(dir, dentry);
2054 	return error;
2055 }
2056 
2057 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2058 {
2059 	int error = 0;
2060 	char * tmp;
2061 	struct dentry *dentry;
2062 	struct nameidata nd;
2063 
2064 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2065 	if (error)
2066 		goto out_err;
2067 
2068 	dentry = lookup_create(&nd, 1);
2069 	error = PTR_ERR(dentry);
2070 	if (IS_ERR(dentry))
2071 		goto out_unlock;
2072 
2073 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2074 		mode &= ~current_umask();
2075 	error = mnt_want_write(nd.path.mnt);
2076 	if (error)
2077 		goto out_dput;
2078 	error = security_path_mkdir(&nd.path, dentry, mode);
2079 	if (error)
2080 		goto out_drop_write;
2081 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2082 out_drop_write:
2083 	mnt_drop_write(nd.path.mnt);
2084 out_dput:
2085 	dput(dentry);
2086 out_unlock:
2087 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2088 	path_put(&nd.path);
2089 	putname(tmp);
2090 out_err:
2091 	return error;
2092 }
2093 
2094 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2095 {
2096 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2097 }
2098 
2099 /*
2100  * We try to drop the dentry early: we should have
2101  * a usage count of 2 if we're the only user of this
2102  * dentry, and if that is true (possibly after pruning
2103  * the dcache), then we drop the dentry now.
2104  *
2105  * A low-level filesystem can, if it choses, legally
2106  * do a
2107  *
2108  *	if (!d_unhashed(dentry))
2109  *		return -EBUSY;
2110  *
2111  * if it cannot handle the case of removing a directory
2112  * that is still in use by something else..
2113  */
2114 void dentry_unhash(struct dentry *dentry)
2115 {
2116 	dget(dentry);
2117 	shrink_dcache_parent(dentry);
2118 	spin_lock(&dcache_lock);
2119 	spin_lock(&dentry->d_lock);
2120 	if (atomic_read(&dentry->d_count) == 2)
2121 		__d_drop(dentry);
2122 	spin_unlock(&dentry->d_lock);
2123 	spin_unlock(&dcache_lock);
2124 }
2125 
2126 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2127 {
2128 	int error = may_delete(dir, dentry, 1);
2129 
2130 	if (error)
2131 		return error;
2132 
2133 	if (!dir->i_op->rmdir)
2134 		return -EPERM;
2135 
2136 	vfs_dq_init(dir);
2137 
2138 	mutex_lock(&dentry->d_inode->i_mutex);
2139 	dentry_unhash(dentry);
2140 	if (d_mountpoint(dentry))
2141 		error = -EBUSY;
2142 	else {
2143 		error = security_inode_rmdir(dir, dentry);
2144 		if (!error) {
2145 			error = dir->i_op->rmdir(dir, dentry);
2146 			if (!error)
2147 				dentry->d_inode->i_flags |= S_DEAD;
2148 		}
2149 	}
2150 	mutex_unlock(&dentry->d_inode->i_mutex);
2151 	if (!error) {
2152 		d_delete(dentry);
2153 	}
2154 	dput(dentry);
2155 
2156 	return error;
2157 }
2158 
2159 static long do_rmdir(int dfd, const char __user *pathname)
2160 {
2161 	int error = 0;
2162 	char * name;
2163 	struct dentry *dentry;
2164 	struct nameidata nd;
2165 
2166 	error = user_path_parent(dfd, pathname, &nd, &name);
2167 	if (error)
2168 		return error;
2169 
2170 	switch(nd.last_type) {
2171 	case LAST_DOTDOT:
2172 		error = -ENOTEMPTY;
2173 		goto exit1;
2174 	case LAST_DOT:
2175 		error = -EINVAL;
2176 		goto exit1;
2177 	case LAST_ROOT:
2178 		error = -EBUSY;
2179 		goto exit1;
2180 	}
2181 
2182 	nd.flags &= ~LOOKUP_PARENT;
2183 
2184 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2185 	dentry = lookup_hash(&nd);
2186 	error = PTR_ERR(dentry);
2187 	if (IS_ERR(dentry))
2188 		goto exit2;
2189 	error = mnt_want_write(nd.path.mnt);
2190 	if (error)
2191 		goto exit3;
2192 	error = security_path_rmdir(&nd.path, dentry);
2193 	if (error)
2194 		goto exit4;
2195 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2196 exit4:
2197 	mnt_drop_write(nd.path.mnt);
2198 exit3:
2199 	dput(dentry);
2200 exit2:
2201 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2202 exit1:
2203 	path_put(&nd.path);
2204 	putname(name);
2205 	return error;
2206 }
2207 
2208 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2209 {
2210 	return do_rmdir(AT_FDCWD, pathname);
2211 }
2212 
2213 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2214 {
2215 	int error = may_delete(dir, dentry, 0);
2216 
2217 	if (error)
2218 		return error;
2219 
2220 	if (!dir->i_op->unlink)
2221 		return -EPERM;
2222 
2223 	vfs_dq_init(dir);
2224 
2225 	mutex_lock(&dentry->d_inode->i_mutex);
2226 	if (d_mountpoint(dentry))
2227 		error = -EBUSY;
2228 	else {
2229 		error = security_inode_unlink(dir, dentry);
2230 		if (!error)
2231 			error = dir->i_op->unlink(dir, dentry);
2232 	}
2233 	mutex_unlock(&dentry->d_inode->i_mutex);
2234 
2235 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2236 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2237 		fsnotify_link_count(dentry->d_inode);
2238 		d_delete(dentry);
2239 	}
2240 
2241 	return error;
2242 }
2243 
2244 /*
2245  * Make sure that the actual truncation of the file will occur outside its
2246  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2247  * writeout happening, and we don't want to prevent access to the directory
2248  * while waiting on the I/O.
2249  */
2250 static long do_unlinkat(int dfd, const char __user *pathname)
2251 {
2252 	int error;
2253 	char *name;
2254 	struct dentry *dentry;
2255 	struct nameidata nd;
2256 	struct inode *inode = NULL;
2257 
2258 	error = user_path_parent(dfd, pathname, &nd, &name);
2259 	if (error)
2260 		return error;
2261 
2262 	error = -EISDIR;
2263 	if (nd.last_type != LAST_NORM)
2264 		goto exit1;
2265 
2266 	nd.flags &= ~LOOKUP_PARENT;
2267 
2268 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2269 	dentry = lookup_hash(&nd);
2270 	error = PTR_ERR(dentry);
2271 	if (!IS_ERR(dentry)) {
2272 		/* Why not before? Because we want correct error value */
2273 		if (nd.last.name[nd.last.len])
2274 			goto slashes;
2275 		inode = dentry->d_inode;
2276 		if (inode)
2277 			atomic_inc(&inode->i_count);
2278 		error = mnt_want_write(nd.path.mnt);
2279 		if (error)
2280 			goto exit2;
2281 		error = security_path_unlink(&nd.path, dentry);
2282 		if (error)
2283 			goto exit3;
2284 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2285 exit3:
2286 		mnt_drop_write(nd.path.mnt);
2287 	exit2:
2288 		dput(dentry);
2289 	}
2290 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2291 	if (inode)
2292 		iput(inode);	/* truncate the inode here */
2293 exit1:
2294 	path_put(&nd.path);
2295 	putname(name);
2296 	return error;
2297 
2298 slashes:
2299 	error = !dentry->d_inode ? -ENOENT :
2300 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2301 	goto exit2;
2302 }
2303 
2304 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2305 {
2306 	if ((flag & ~AT_REMOVEDIR) != 0)
2307 		return -EINVAL;
2308 
2309 	if (flag & AT_REMOVEDIR)
2310 		return do_rmdir(dfd, pathname);
2311 
2312 	return do_unlinkat(dfd, pathname);
2313 }
2314 
2315 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2316 {
2317 	return do_unlinkat(AT_FDCWD, pathname);
2318 }
2319 
2320 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2321 {
2322 	int error = may_create(dir, dentry);
2323 
2324 	if (error)
2325 		return error;
2326 
2327 	if (!dir->i_op->symlink)
2328 		return -EPERM;
2329 
2330 	error = security_inode_symlink(dir, dentry, oldname);
2331 	if (error)
2332 		return error;
2333 
2334 	vfs_dq_init(dir);
2335 	error = dir->i_op->symlink(dir, dentry, oldname);
2336 	if (!error)
2337 		fsnotify_create(dir, dentry);
2338 	return error;
2339 }
2340 
2341 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2342 		int, newdfd, const char __user *, newname)
2343 {
2344 	int error;
2345 	char *from;
2346 	char *to;
2347 	struct dentry *dentry;
2348 	struct nameidata nd;
2349 
2350 	from = getname(oldname);
2351 	if (IS_ERR(from))
2352 		return PTR_ERR(from);
2353 
2354 	error = user_path_parent(newdfd, newname, &nd, &to);
2355 	if (error)
2356 		goto out_putname;
2357 
2358 	dentry = lookup_create(&nd, 0);
2359 	error = PTR_ERR(dentry);
2360 	if (IS_ERR(dentry))
2361 		goto out_unlock;
2362 
2363 	error = mnt_want_write(nd.path.mnt);
2364 	if (error)
2365 		goto out_dput;
2366 	error = security_path_symlink(&nd.path, dentry, from);
2367 	if (error)
2368 		goto out_drop_write;
2369 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2370 out_drop_write:
2371 	mnt_drop_write(nd.path.mnt);
2372 out_dput:
2373 	dput(dentry);
2374 out_unlock:
2375 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2376 	path_put(&nd.path);
2377 	putname(to);
2378 out_putname:
2379 	putname(from);
2380 	return error;
2381 }
2382 
2383 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2384 {
2385 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2386 }
2387 
2388 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2389 {
2390 	struct inode *inode = old_dentry->d_inode;
2391 	int error;
2392 
2393 	if (!inode)
2394 		return -ENOENT;
2395 
2396 	error = may_create(dir, new_dentry);
2397 	if (error)
2398 		return error;
2399 
2400 	if (dir->i_sb != inode->i_sb)
2401 		return -EXDEV;
2402 
2403 	/*
2404 	 * A link to an append-only or immutable file cannot be created.
2405 	 */
2406 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2407 		return -EPERM;
2408 	if (!dir->i_op->link)
2409 		return -EPERM;
2410 	if (S_ISDIR(inode->i_mode))
2411 		return -EPERM;
2412 
2413 	error = security_inode_link(old_dentry, dir, new_dentry);
2414 	if (error)
2415 		return error;
2416 
2417 	mutex_lock(&inode->i_mutex);
2418 	vfs_dq_init(dir);
2419 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2420 	mutex_unlock(&inode->i_mutex);
2421 	if (!error)
2422 		fsnotify_link(dir, inode, new_dentry);
2423 	return error;
2424 }
2425 
2426 /*
2427  * Hardlinks are often used in delicate situations.  We avoid
2428  * security-related surprises by not following symlinks on the
2429  * newname.  --KAB
2430  *
2431  * We don't follow them on the oldname either to be compatible
2432  * with linux 2.0, and to avoid hard-linking to directories
2433  * and other special files.  --ADM
2434  */
2435 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2436 		int, newdfd, const char __user *, newname, int, flags)
2437 {
2438 	struct dentry *new_dentry;
2439 	struct nameidata nd;
2440 	struct path old_path;
2441 	int error;
2442 	char *to;
2443 
2444 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2445 		return -EINVAL;
2446 
2447 	error = user_path_at(olddfd, oldname,
2448 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2449 			     &old_path);
2450 	if (error)
2451 		return error;
2452 
2453 	error = user_path_parent(newdfd, newname, &nd, &to);
2454 	if (error)
2455 		goto out;
2456 	error = -EXDEV;
2457 	if (old_path.mnt != nd.path.mnt)
2458 		goto out_release;
2459 	new_dentry = lookup_create(&nd, 0);
2460 	error = PTR_ERR(new_dentry);
2461 	if (IS_ERR(new_dentry))
2462 		goto out_unlock;
2463 	error = mnt_want_write(nd.path.mnt);
2464 	if (error)
2465 		goto out_dput;
2466 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2467 	if (error)
2468 		goto out_drop_write;
2469 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2470 out_drop_write:
2471 	mnt_drop_write(nd.path.mnt);
2472 out_dput:
2473 	dput(new_dentry);
2474 out_unlock:
2475 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2476 out_release:
2477 	path_put(&nd.path);
2478 	putname(to);
2479 out:
2480 	path_put(&old_path);
2481 
2482 	return error;
2483 }
2484 
2485 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2486 {
2487 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2488 }
2489 
2490 /*
2491  * The worst of all namespace operations - renaming directory. "Perverted"
2492  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2493  * Problems:
2494  *	a) we can get into loop creation. Check is done in is_subdir().
2495  *	b) race potential - two innocent renames can create a loop together.
2496  *	   That's where 4.4 screws up. Current fix: serialization on
2497  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2498  *	   story.
2499  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2500  *	   And that - after we got ->i_mutex on parents (until then we don't know
2501  *	   whether the target exists).  Solution: try to be smart with locking
2502  *	   order for inodes.  We rely on the fact that tree topology may change
2503  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2504  *	   move will be locked.  Thus we can rank directories by the tree
2505  *	   (ancestors first) and rank all non-directories after them.
2506  *	   That works since everybody except rename does "lock parent, lookup,
2507  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2508  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2509  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2510  *	   we'd better make sure that there's no link(2) for them.
2511  *	d) some filesystems don't support opened-but-unlinked directories,
2512  *	   either because of layout or because they are not ready to deal with
2513  *	   all cases correctly. The latter will be fixed (taking this sort of
2514  *	   stuff into VFS), but the former is not going away. Solution: the same
2515  *	   trick as in rmdir().
2516  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2517  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2518  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2519  *	   ->i_mutex on parents, which works but leads to some truely excessive
2520  *	   locking].
2521  */
2522 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2523 			  struct inode *new_dir, struct dentry *new_dentry)
2524 {
2525 	int error = 0;
2526 	struct inode *target;
2527 
2528 	/*
2529 	 * If we are going to change the parent - check write permissions,
2530 	 * we'll need to flip '..'.
2531 	 */
2532 	if (new_dir != old_dir) {
2533 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2534 		if (error)
2535 			return error;
2536 	}
2537 
2538 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2539 	if (error)
2540 		return error;
2541 
2542 	target = new_dentry->d_inode;
2543 	if (target) {
2544 		mutex_lock(&target->i_mutex);
2545 		dentry_unhash(new_dentry);
2546 	}
2547 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2548 		error = -EBUSY;
2549 	else
2550 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2551 	if (target) {
2552 		if (!error)
2553 			target->i_flags |= S_DEAD;
2554 		mutex_unlock(&target->i_mutex);
2555 		if (d_unhashed(new_dentry))
2556 			d_rehash(new_dentry);
2557 		dput(new_dentry);
2558 	}
2559 	if (!error)
2560 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2561 			d_move(old_dentry,new_dentry);
2562 	return error;
2563 }
2564 
2565 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2566 			    struct inode *new_dir, struct dentry *new_dentry)
2567 {
2568 	struct inode *target;
2569 	int error;
2570 
2571 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2572 	if (error)
2573 		return error;
2574 
2575 	dget(new_dentry);
2576 	target = new_dentry->d_inode;
2577 	if (target)
2578 		mutex_lock(&target->i_mutex);
2579 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2580 		error = -EBUSY;
2581 	else
2582 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2583 	if (!error) {
2584 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2585 			d_move(old_dentry, new_dentry);
2586 	}
2587 	if (target)
2588 		mutex_unlock(&target->i_mutex);
2589 	dput(new_dentry);
2590 	return error;
2591 }
2592 
2593 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2594 	       struct inode *new_dir, struct dentry *new_dentry)
2595 {
2596 	int error;
2597 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2598 	const char *old_name;
2599 
2600 	if (old_dentry->d_inode == new_dentry->d_inode)
2601  		return 0;
2602 
2603 	error = may_delete(old_dir, old_dentry, is_dir);
2604 	if (error)
2605 		return error;
2606 
2607 	if (!new_dentry->d_inode)
2608 		error = may_create(new_dir, new_dentry);
2609 	else
2610 		error = may_delete(new_dir, new_dentry, is_dir);
2611 	if (error)
2612 		return error;
2613 
2614 	if (!old_dir->i_op->rename)
2615 		return -EPERM;
2616 
2617 	vfs_dq_init(old_dir);
2618 	vfs_dq_init(new_dir);
2619 
2620 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2621 
2622 	if (is_dir)
2623 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2624 	else
2625 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2626 	if (!error) {
2627 		const char *new_name = old_dentry->d_name.name;
2628 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2629 			      new_dentry->d_inode, old_dentry);
2630 	}
2631 	fsnotify_oldname_free(old_name);
2632 
2633 	return error;
2634 }
2635 
2636 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2637 		int, newdfd, const char __user *, newname)
2638 {
2639 	struct dentry *old_dir, *new_dir;
2640 	struct dentry *old_dentry, *new_dentry;
2641 	struct dentry *trap;
2642 	struct nameidata oldnd, newnd;
2643 	char *from;
2644 	char *to;
2645 	int error;
2646 
2647 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2648 	if (error)
2649 		goto exit;
2650 
2651 	error = user_path_parent(newdfd, newname, &newnd, &to);
2652 	if (error)
2653 		goto exit1;
2654 
2655 	error = -EXDEV;
2656 	if (oldnd.path.mnt != newnd.path.mnt)
2657 		goto exit2;
2658 
2659 	old_dir = oldnd.path.dentry;
2660 	error = -EBUSY;
2661 	if (oldnd.last_type != LAST_NORM)
2662 		goto exit2;
2663 
2664 	new_dir = newnd.path.dentry;
2665 	if (newnd.last_type != LAST_NORM)
2666 		goto exit2;
2667 
2668 	oldnd.flags &= ~LOOKUP_PARENT;
2669 	newnd.flags &= ~LOOKUP_PARENT;
2670 	newnd.flags |= LOOKUP_RENAME_TARGET;
2671 
2672 	trap = lock_rename(new_dir, old_dir);
2673 
2674 	old_dentry = lookup_hash(&oldnd);
2675 	error = PTR_ERR(old_dentry);
2676 	if (IS_ERR(old_dentry))
2677 		goto exit3;
2678 	/* source must exist */
2679 	error = -ENOENT;
2680 	if (!old_dentry->d_inode)
2681 		goto exit4;
2682 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2683 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2684 		error = -ENOTDIR;
2685 		if (oldnd.last.name[oldnd.last.len])
2686 			goto exit4;
2687 		if (newnd.last.name[newnd.last.len])
2688 			goto exit4;
2689 	}
2690 	/* source should not be ancestor of target */
2691 	error = -EINVAL;
2692 	if (old_dentry == trap)
2693 		goto exit4;
2694 	new_dentry = lookup_hash(&newnd);
2695 	error = PTR_ERR(new_dentry);
2696 	if (IS_ERR(new_dentry))
2697 		goto exit4;
2698 	/* target should not be an ancestor of source */
2699 	error = -ENOTEMPTY;
2700 	if (new_dentry == trap)
2701 		goto exit5;
2702 
2703 	error = mnt_want_write(oldnd.path.mnt);
2704 	if (error)
2705 		goto exit5;
2706 	error = security_path_rename(&oldnd.path, old_dentry,
2707 				     &newnd.path, new_dentry);
2708 	if (error)
2709 		goto exit6;
2710 	error = vfs_rename(old_dir->d_inode, old_dentry,
2711 				   new_dir->d_inode, new_dentry);
2712 exit6:
2713 	mnt_drop_write(oldnd.path.mnt);
2714 exit5:
2715 	dput(new_dentry);
2716 exit4:
2717 	dput(old_dentry);
2718 exit3:
2719 	unlock_rename(new_dir, old_dir);
2720 exit2:
2721 	path_put(&newnd.path);
2722 	putname(to);
2723 exit1:
2724 	path_put(&oldnd.path);
2725 	putname(from);
2726 exit:
2727 	return error;
2728 }
2729 
2730 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2731 {
2732 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2733 }
2734 
2735 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2736 {
2737 	int len;
2738 
2739 	len = PTR_ERR(link);
2740 	if (IS_ERR(link))
2741 		goto out;
2742 
2743 	len = strlen(link);
2744 	if (len > (unsigned) buflen)
2745 		len = buflen;
2746 	if (copy_to_user(buffer, link, len))
2747 		len = -EFAULT;
2748 out:
2749 	return len;
2750 }
2751 
2752 /*
2753  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2754  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2755  * using) it for any given inode is up to filesystem.
2756  */
2757 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2758 {
2759 	struct nameidata nd;
2760 	void *cookie;
2761 	int res;
2762 
2763 	nd.depth = 0;
2764 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2765 	if (IS_ERR(cookie))
2766 		return PTR_ERR(cookie);
2767 
2768 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2769 	if (dentry->d_inode->i_op->put_link)
2770 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2771 	return res;
2772 }
2773 
2774 int vfs_follow_link(struct nameidata *nd, const char *link)
2775 {
2776 	return __vfs_follow_link(nd, link);
2777 }
2778 
2779 /* get the link contents into pagecache */
2780 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2781 {
2782 	char *kaddr;
2783 	struct page *page;
2784 	struct address_space *mapping = dentry->d_inode->i_mapping;
2785 	page = read_mapping_page(mapping, 0, NULL);
2786 	if (IS_ERR(page))
2787 		return (char*)page;
2788 	*ppage = page;
2789 	kaddr = kmap(page);
2790 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2791 	return kaddr;
2792 }
2793 
2794 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2795 {
2796 	struct page *page = NULL;
2797 	char *s = page_getlink(dentry, &page);
2798 	int res = vfs_readlink(dentry,buffer,buflen,s);
2799 	if (page) {
2800 		kunmap(page);
2801 		page_cache_release(page);
2802 	}
2803 	return res;
2804 }
2805 
2806 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2807 {
2808 	struct page *page = NULL;
2809 	nd_set_link(nd, page_getlink(dentry, &page));
2810 	return page;
2811 }
2812 
2813 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2814 {
2815 	struct page *page = cookie;
2816 
2817 	if (page) {
2818 		kunmap(page);
2819 		page_cache_release(page);
2820 	}
2821 }
2822 
2823 /*
2824  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2825  */
2826 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2827 {
2828 	struct address_space *mapping = inode->i_mapping;
2829 	struct page *page;
2830 	void *fsdata;
2831 	int err;
2832 	char *kaddr;
2833 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2834 	if (nofs)
2835 		flags |= AOP_FLAG_NOFS;
2836 
2837 retry:
2838 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2839 				flags, &page, &fsdata);
2840 	if (err)
2841 		goto fail;
2842 
2843 	kaddr = kmap_atomic(page, KM_USER0);
2844 	memcpy(kaddr, symname, len-1);
2845 	kunmap_atomic(kaddr, KM_USER0);
2846 
2847 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2848 							page, fsdata);
2849 	if (err < 0)
2850 		goto fail;
2851 	if (err < len-1)
2852 		goto retry;
2853 
2854 	mark_inode_dirty(inode);
2855 	return 0;
2856 fail:
2857 	return err;
2858 }
2859 
2860 int page_symlink(struct inode *inode, const char *symname, int len)
2861 {
2862 	return __page_symlink(inode, symname, len,
2863 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2864 }
2865 
2866 const struct inode_operations page_symlink_inode_operations = {
2867 	.readlink	= generic_readlink,
2868 	.follow_link	= page_follow_link_light,
2869 	.put_link	= page_put_link,
2870 };
2871 
2872 EXPORT_SYMBOL(user_path_at);
2873 EXPORT_SYMBOL(follow_down);
2874 EXPORT_SYMBOL(follow_up);
2875 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2876 EXPORT_SYMBOL(getname);
2877 EXPORT_SYMBOL(lock_rename);
2878 EXPORT_SYMBOL(lookup_one_len);
2879 EXPORT_SYMBOL(page_follow_link_light);
2880 EXPORT_SYMBOL(page_put_link);
2881 EXPORT_SYMBOL(page_readlink);
2882 EXPORT_SYMBOL(__page_symlink);
2883 EXPORT_SYMBOL(page_symlink);
2884 EXPORT_SYMBOL(page_symlink_inode_operations);
2885 EXPORT_SYMBOL(path_lookup);
2886 EXPORT_SYMBOL(kern_path);
2887 EXPORT_SYMBOL(vfs_path_lookup);
2888 EXPORT_SYMBOL(inode_permission);
2889 EXPORT_SYMBOL(file_permission);
2890 EXPORT_SYMBOL(unlock_rename);
2891 EXPORT_SYMBOL(vfs_create);
2892 EXPORT_SYMBOL(vfs_follow_link);
2893 EXPORT_SYMBOL(vfs_link);
2894 EXPORT_SYMBOL(vfs_mkdir);
2895 EXPORT_SYMBOL(vfs_mknod);
2896 EXPORT_SYMBOL(generic_permission);
2897 EXPORT_SYMBOL(vfs_readlink);
2898 EXPORT_SYMBOL(vfs_rename);
2899 EXPORT_SYMBOL(vfs_rmdir);
2900 EXPORT_SYMBOL(vfs_symlink);
2901 EXPORT_SYMBOL(vfs_unlink);
2902 EXPORT_SYMBOL(dentry_unhash);
2903 EXPORT_SYMBOL(generic_readlink);
2904