1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 void final_putname(struct filename *name) 121 { 122 if (name->separate) { 123 __putname(name->name); 124 kfree(name); 125 } else { 126 __putname(name); 127 } 128 } 129 130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 131 132 static struct filename * 133 getname_flags(const char __user *filename, int flags, int *empty) 134 { 135 struct filename *result, *err; 136 int len; 137 long max; 138 char *kname; 139 140 result = audit_reusename(filename); 141 if (result) 142 return result; 143 144 result = __getname(); 145 if (unlikely(!result)) 146 return ERR_PTR(-ENOMEM); 147 148 /* 149 * First, try to embed the struct filename inside the names_cache 150 * allocation 151 */ 152 kname = (char *)result + sizeof(*result); 153 result->name = kname; 154 result->separate = false; 155 max = EMBEDDED_NAME_MAX; 156 157 recopy: 158 len = strncpy_from_user(kname, filename, max); 159 if (unlikely(len < 0)) { 160 err = ERR_PTR(len); 161 goto error; 162 } 163 164 /* 165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 166 * separate struct filename so we can dedicate the entire 167 * names_cache allocation for the pathname, and re-do the copy from 168 * userland. 169 */ 170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 171 kname = (char *)result; 172 173 result = kzalloc(sizeof(*result), GFP_KERNEL); 174 if (!result) { 175 err = ERR_PTR(-ENOMEM); 176 result = (struct filename *)kname; 177 goto error; 178 } 179 result->name = kname; 180 result->separate = true; 181 max = PATH_MAX; 182 goto recopy; 183 } 184 185 /* The empty path is special. */ 186 if (unlikely(!len)) { 187 if (empty) 188 *empty = 1; 189 err = ERR_PTR(-ENOENT); 190 if (!(flags & LOOKUP_EMPTY)) 191 goto error; 192 } 193 194 err = ERR_PTR(-ENAMETOOLONG); 195 if (unlikely(len >= PATH_MAX)) 196 goto error; 197 198 result->uptr = filename; 199 audit_getname(result); 200 return result; 201 202 error: 203 final_putname(result); 204 return err; 205 } 206 207 struct filename * 208 getname(const char __user * filename) 209 { 210 return getname_flags(filename, 0, NULL); 211 } 212 EXPORT_SYMBOL(getname); 213 214 #ifdef CONFIG_AUDITSYSCALL 215 void putname(struct filename *name) 216 { 217 if (unlikely(!audit_dummy_context())) 218 return audit_putname(name); 219 final_putname(name); 220 } 221 #endif 222 223 static int check_acl(struct inode *inode, int mask) 224 { 225 #ifdef CONFIG_FS_POSIX_ACL 226 struct posix_acl *acl; 227 228 if (mask & MAY_NOT_BLOCK) { 229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 230 if (!acl) 231 return -EAGAIN; 232 /* no ->get_acl() calls in RCU mode... */ 233 if (acl == ACL_NOT_CACHED) 234 return -ECHILD; 235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 236 } 237 238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 239 240 /* 241 * A filesystem can force a ACL callback by just never filling the 242 * ACL cache. But normally you'd fill the cache either at inode 243 * instantiation time, or on the first ->get_acl call. 244 * 245 * If the filesystem doesn't have a get_acl() function at all, we'll 246 * just create the negative cache entry. 247 */ 248 if (acl == ACL_NOT_CACHED) { 249 if (inode->i_op->get_acl) { 250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 251 if (IS_ERR(acl)) 252 return PTR_ERR(acl); 253 } else { 254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 255 return -EAGAIN; 256 } 257 } 258 259 if (acl) { 260 int error = posix_acl_permission(inode, acl, mask); 261 posix_acl_release(acl); 262 return error; 263 } 264 #endif 265 266 return -EAGAIN; 267 } 268 269 /* 270 * This does the basic permission checking 271 */ 272 static int acl_permission_check(struct inode *inode, int mask) 273 { 274 unsigned int mode = inode->i_mode; 275 276 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 277 mode >>= 6; 278 else { 279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 280 int error = check_acl(inode, mask); 281 if (error != -EAGAIN) 282 return error; 283 } 284 285 if (in_group_p(inode->i_gid)) 286 mode >>= 3; 287 } 288 289 /* 290 * If the DACs are ok we don't need any capability check. 291 */ 292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 293 return 0; 294 return -EACCES; 295 } 296 297 /** 298 * generic_permission - check for access rights on a Posix-like filesystem 299 * @inode: inode to check access rights for 300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 301 * 302 * Used to check for read/write/execute permissions on a file. 303 * We use "fsuid" for this, letting us set arbitrary permissions 304 * for filesystem access without changing the "normal" uids which 305 * are used for other things. 306 * 307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 308 * request cannot be satisfied (eg. requires blocking or too much complexity). 309 * It would then be called again in ref-walk mode. 310 */ 311 int generic_permission(struct inode *inode, int mask) 312 { 313 int ret; 314 315 /* 316 * Do the basic permission checks. 317 */ 318 ret = acl_permission_check(inode, mask); 319 if (ret != -EACCES) 320 return ret; 321 322 if (S_ISDIR(inode->i_mode)) { 323 /* DACs are overridable for directories */ 324 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 325 return 0; 326 if (!(mask & MAY_WRITE)) 327 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 328 return 0; 329 return -EACCES; 330 } 331 /* 332 * Read/write DACs are always overridable. 333 * Executable DACs are overridable when there is 334 * at least one exec bit set. 335 */ 336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 337 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 338 return 0; 339 340 /* 341 * Searching includes executable on directories, else just read. 342 */ 343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 344 if (mask == MAY_READ) 345 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 346 return 0; 347 348 return -EACCES; 349 } 350 351 /* 352 * We _really_ want to just do "generic_permission()" without 353 * even looking at the inode->i_op values. So we keep a cache 354 * flag in inode->i_opflags, that says "this has not special 355 * permission function, use the fast case". 356 */ 357 static inline int do_inode_permission(struct inode *inode, int mask) 358 { 359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 360 if (likely(inode->i_op->permission)) 361 return inode->i_op->permission(inode, mask); 362 363 /* This gets set once for the inode lifetime */ 364 spin_lock(&inode->i_lock); 365 inode->i_opflags |= IOP_FASTPERM; 366 spin_unlock(&inode->i_lock); 367 } 368 return generic_permission(inode, mask); 369 } 370 371 /** 372 * __inode_permission - Check for access rights to a given inode 373 * @inode: Inode to check permission on 374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 375 * 376 * Check for read/write/execute permissions on an inode. 377 * 378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 379 * 380 * This does not check for a read-only file system. You probably want 381 * inode_permission(). 382 */ 383 int __inode_permission(struct inode *inode, int mask) 384 { 385 int retval; 386 387 if (unlikely(mask & MAY_WRITE)) { 388 /* 389 * Nobody gets write access to an immutable file. 390 */ 391 if (IS_IMMUTABLE(inode)) 392 return -EACCES; 393 } 394 395 retval = do_inode_permission(inode, mask); 396 if (retval) 397 return retval; 398 399 retval = devcgroup_inode_permission(inode, mask); 400 if (retval) 401 return retval; 402 403 return security_inode_permission(inode, mask); 404 } 405 406 /** 407 * sb_permission - Check superblock-level permissions 408 * @sb: Superblock of inode to check permission on 409 * @inode: Inode to check permission on 410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 411 * 412 * Separate out file-system wide checks from inode-specific permission checks. 413 */ 414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 415 { 416 if (unlikely(mask & MAY_WRITE)) { 417 umode_t mode = inode->i_mode; 418 419 /* Nobody gets write access to a read-only fs. */ 420 if ((sb->s_flags & MS_RDONLY) && 421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 422 return -EROFS; 423 } 424 return 0; 425 } 426 427 /** 428 * inode_permission - Check for access rights to a given inode 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 433 * this, letting us set arbitrary permissions for filesystem access without 434 * changing the "normal" UIDs which are used for other things. 435 * 436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 437 */ 438 int inode_permission(struct inode *inode, int mask) 439 { 440 int retval; 441 442 retval = sb_permission(inode->i_sb, inode, mask); 443 if (retval) 444 return retval; 445 return __inode_permission(inode, mask); 446 } 447 448 /** 449 * path_get - get a reference to a path 450 * @path: path to get the reference to 451 * 452 * Given a path increment the reference count to the dentry and the vfsmount. 453 */ 454 void path_get(const struct path *path) 455 { 456 mntget(path->mnt); 457 dget(path->dentry); 458 } 459 EXPORT_SYMBOL(path_get); 460 461 /** 462 * path_put - put a reference to a path 463 * @path: path to put the reference to 464 * 465 * Given a path decrement the reference count to the dentry and the vfsmount. 466 */ 467 void path_put(const struct path *path) 468 { 469 dput(path->dentry); 470 mntput(path->mnt); 471 } 472 EXPORT_SYMBOL(path_put); 473 474 /* 475 * Path walking has 2 modes, rcu-walk and ref-walk (see 476 * Documentation/filesystems/path-lookup.txt). In situations when we can't 477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 479 * mode. Refcounts are grabbed at the last known good point before rcu-walk 480 * got stuck, so ref-walk may continue from there. If this is not successful 481 * (eg. a seqcount has changed), then failure is returned and it's up to caller 482 * to restart the path walk from the beginning in ref-walk mode. 483 */ 484 485 static inline void lock_rcu_walk(void) 486 { 487 br_read_lock(&vfsmount_lock); 488 rcu_read_lock(); 489 } 490 491 static inline void unlock_rcu_walk(void) 492 { 493 rcu_read_unlock(); 494 br_read_unlock(&vfsmount_lock); 495 } 496 497 /** 498 * unlazy_walk - try to switch to ref-walk mode. 499 * @nd: nameidata pathwalk data 500 * @dentry: child of nd->path.dentry or NULL 501 * Returns: 0 on success, -ECHILD on failure 502 * 503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 505 * @nd or NULL. Must be called from rcu-walk context. 506 */ 507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 508 { 509 struct fs_struct *fs = current->fs; 510 struct dentry *parent = nd->path.dentry; 511 int want_root = 0; 512 513 BUG_ON(!(nd->flags & LOOKUP_RCU)); 514 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 515 want_root = 1; 516 spin_lock(&fs->lock); 517 if (nd->root.mnt != fs->root.mnt || 518 nd->root.dentry != fs->root.dentry) 519 goto err_root; 520 } 521 spin_lock(&parent->d_lock); 522 if (!dentry) { 523 if (!__d_rcu_to_refcount(parent, nd->seq)) 524 goto err_parent; 525 BUG_ON(nd->inode != parent->d_inode); 526 } else { 527 if (dentry->d_parent != parent) 528 goto err_parent; 529 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 530 if (!__d_rcu_to_refcount(dentry, nd->seq)) 531 goto err_child; 532 /* 533 * If the sequence check on the child dentry passed, then 534 * the child has not been removed from its parent. This 535 * means the parent dentry must be valid and able to take 536 * a reference at this point. 537 */ 538 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 539 BUG_ON(!parent->d_count); 540 parent->d_count++; 541 spin_unlock(&dentry->d_lock); 542 } 543 spin_unlock(&parent->d_lock); 544 if (want_root) { 545 path_get(&nd->root); 546 spin_unlock(&fs->lock); 547 } 548 mntget(nd->path.mnt); 549 550 unlock_rcu_walk(); 551 nd->flags &= ~LOOKUP_RCU; 552 return 0; 553 554 err_child: 555 spin_unlock(&dentry->d_lock); 556 err_parent: 557 spin_unlock(&parent->d_lock); 558 err_root: 559 if (want_root) 560 spin_unlock(&fs->lock); 561 return -ECHILD; 562 } 563 564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 565 { 566 return dentry->d_op->d_revalidate(dentry, flags); 567 } 568 569 /** 570 * complete_walk - successful completion of path walk 571 * @nd: pointer nameidata 572 * 573 * If we had been in RCU mode, drop out of it and legitimize nd->path. 574 * Revalidate the final result, unless we'd already done that during 575 * the path walk or the filesystem doesn't ask for it. Return 0 on 576 * success, -error on failure. In case of failure caller does not 577 * need to drop nd->path. 578 */ 579 static int complete_walk(struct nameidata *nd) 580 { 581 struct dentry *dentry = nd->path.dentry; 582 int status; 583 584 if (nd->flags & LOOKUP_RCU) { 585 nd->flags &= ~LOOKUP_RCU; 586 if (!(nd->flags & LOOKUP_ROOT)) 587 nd->root.mnt = NULL; 588 spin_lock(&dentry->d_lock); 589 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { 590 spin_unlock(&dentry->d_lock); 591 unlock_rcu_walk(); 592 return -ECHILD; 593 } 594 BUG_ON(nd->inode != dentry->d_inode); 595 spin_unlock(&dentry->d_lock); 596 mntget(nd->path.mnt); 597 unlock_rcu_walk(); 598 } 599 600 if (likely(!(nd->flags & LOOKUP_JUMPED))) 601 return 0; 602 603 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 604 return 0; 605 606 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 607 if (status > 0) 608 return 0; 609 610 if (!status) 611 status = -ESTALE; 612 613 path_put(&nd->path); 614 return status; 615 } 616 617 static __always_inline void set_root(struct nameidata *nd) 618 { 619 if (!nd->root.mnt) 620 get_fs_root(current->fs, &nd->root); 621 } 622 623 static int link_path_walk(const char *, struct nameidata *); 624 625 static __always_inline void set_root_rcu(struct nameidata *nd) 626 { 627 if (!nd->root.mnt) { 628 struct fs_struct *fs = current->fs; 629 unsigned seq; 630 631 do { 632 seq = read_seqcount_begin(&fs->seq); 633 nd->root = fs->root; 634 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 635 } while (read_seqcount_retry(&fs->seq, seq)); 636 } 637 } 638 639 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 640 { 641 int ret; 642 643 if (IS_ERR(link)) 644 goto fail; 645 646 if (*link == '/') { 647 set_root(nd); 648 path_put(&nd->path); 649 nd->path = nd->root; 650 path_get(&nd->root); 651 nd->flags |= LOOKUP_JUMPED; 652 } 653 nd->inode = nd->path.dentry->d_inode; 654 655 ret = link_path_walk(link, nd); 656 return ret; 657 fail: 658 path_put(&nd->path); 659 return PTR_ERR(link); 660 } 661 662 static void path_put_conditional(struct path *path, struct nameidata *nd) 663 { 664 dput(path->dentry); 665 if (path->mnt != nd->path.mnt) 666 mntput(path->mnt); 667 } 668 669 static inline void path_to_nameidata(const struct path *path, 670 struct nameidata *nd) 671 { 672 if (!(nd->flags & LOOKUP_RCU)) { 673 dput(nd->path.dentry); 674 if (nd->path.mnt != path->mnt) 675 mntput(nd->path.mnt); 676 } 677 nd->path.mnt = path->mnt; 678 nd->path.dentry = path->dentry; 679 } 680 681 /* 682 * Helper to directly jump to a known parsed path from ->follow_link, 683 * caller must have taken a reference to path beforehand. 684 */ 685 void nd_jump_link(struct nameidata *nd, struct path *path) 686 { 687 path_put(&nd->path); 688 689 nd->path = *path; 690 nd->inode = nd->path.dentry->d_inode; 691 nd->flags |= LOOKUP_JUMPED; 692 } 693 694 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 695 { 696 struct inode *inode = link->dentry->d_inode; 697 if (inode->i_op->put_link) 698 inode->i_op->put_link(link->dentry, nd, cookie); 699 path_put(link); 700 } 701 702 int sysctl_protected_symlinks __read_mostly = 0; 703 int sysctl_protected_hardlinks __read_mostly = 0; 704 705 /** 706 * may_follow_link - Check symlink following for unsafe situations 707 * @link: The path of the symlink 708 * @nd: nameidata pathwalk data 709 * 710 * In the case of the sysctl_protected_symlinks sysctl being enabled, 711 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 712 * in a sticky world-writable directory. This is to protect privileged 713 * processes from failing races against path names that may change out 714 * from under them by way of other users creating malicious symlinks. 715 * It will permit symlinks to be followed only when outside a sticky 716 * world-writable directory, or when the uid of the symlink and follower 717 * match, or when the directory owner matches the symlink's owner. 718 * 719 * Returns 0 if following the symlink is allowed, -ve on error. 720 */ 721 static inline int may_follow_link(struct path *link, struct nameidata *nd) 722 { 723 const struct inode *inode; 724 const struct inode *parent; 725 726 if (!sysctl_protected_symlinks) 727 return 0; 728 729 /* Allowed if owner and follower match. */ 730 inode = link->dentry->d_inode; 731 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 732 return 0; 733 734 /* Allowed if parent directory not sticky and world-writable. */ 735 parent = nd->path.dentry->d_inode; 736 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 737 return 0; 738 739 /* Allowed if parent directory and link owner match. */ 740 if (uid_eq(parent->i_uid, inode->i_uid)) 741 return 0; 742 743 audit_log_link_denied("follow_link", link); 744 path_put_conditional(link, nd); 745 path_put(&nd->path); 746 return -EACCES; 747 } 748 749 /** 750 * safe_hardlink_source - Check for safe hardlink conditions 751 * @inode: the source inode to hardlink from 752 * 753 * Return false if at least one of the following conditions: 754 * - inode is not a regular file 755 * - inode is setuid 756 * - inode is setgid and group-exec 757 * - access failure for read and write 758 * 759 * Otherwise returns true. 760 */ 761 static bool safe_hardlink_source(struct inode *inode) 762 { 763 umode_t mode = inode->i_mode; 764 765 /* Special files should not get pinned to the filesystem. */ 766 if (!S_ISREG(mode)) 767 return false; 768 769 /* Setuid files should not get pinned to the filesystem. */ 770 if (mode & S_ISUID) 771 return false; 772 773 /* Executable setgid files should not get pinned to the filesystem. */ 774 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 775 return false; 776 777 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 778 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 779 return false; 780 781 return true; 782 } 783 784 /** 785 * may_linkat - Check permissions for creating a hardlink 786 * @link: the source to hardlink from 787 * 788 * Block hardlink when all of: 789 * - sysctl_protected_hardlinks enabled 790 * - fsuid does not match inode 791 * - hardlink source is unsafe (see safe_hardlink_source() above) 792 * - not CAP_FOWNER 793 * 794 * Returns 0 if successful, -ve on error. 795 */ 796 static int may_linkat(struct path *link) 797 { 798 const struct cred *cred; 799 struct inode *inode; 800 801 if (!sysctl_protected_hardlinks) 802 return 0; 803 804 cred = current_cred(); 805 inode = link->dentry->d_inode; 806 807 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 808 * otherwise, it must be a safe source. 809 */ 810 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 811 capable(CAP_FOWNER)) 812 return 0; 813 814 audit_log_link_denied("linkat", link); 815 return -EPERM; 816 } 817 818 static __always_inline int 819 follow_link(struct path *link, struct nameidata *nd, void **p) 820 { 821 struct dentry *dentry = link->dentry; 822 int error; 823 char *s; 824 825 BUG_ON(nd->flags & LOOKUP_RCU); 826 827 if (link->mnt == nd->path.mnt) 828 mntget(link->mnt); 829 830 error = -ELOOP; 831 if (unlikely(current->total_link_count >= 40)) 832 goto out_put_nd_path; 833 834 cond_resched(); 835 current->total_link_count++; 836 837 touch_atime(link); 838 nd_set_link(nd, NULL); 839 840 error = security_inode_follow_link(link->dentry, nd); 841 if (error) 842 goto out_put_nd_path; 843 844 nd->last_type = LAST_BIND; 845 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 846 error = PTR_ERR(*p); 847 if (IS_ERR(*p)) 848 goto out_put_nd_path; 849 850 error = 0; 851 s = nd_get_link(nd); 852 if (s) { 853 error = __vfs_follow_link(nd, s); 854 if (unlikely(error)) 855 put_link(nd, link, *p); 856 } 857 858 return error; 859 860 out_put_nd_path: 861 *p = NULL; 862 path_put(&nd->path); 863 path_put(link); 864 return error; 865 } 866 867 static int follow_up_rcu(struct path *path) 868 { 869 struct mount *mnt = real_mount(path->mnt); 870 struct mount *parent; 871 struct dentry *mountpoint; 872 873 parent = mnt->mnt_parent; 874 if (&parent->mnt == path->mnt) 875 return 0; 876 mountpoint = mnt->mnt_mountpoint; 877 path->dentry = mountpoint; 878 path->mnt = &parent->mnt; 879 return 1; 880 } 881 882 /* 883 * follow_up - Find the mountpoint of path's vfsmount 884 * 885 * Given a path, find the mountpoint of its source file system. 886 * Replace @path with the path of the mountpoint in the parent mount. 887 * Up is towards /. 888 * 889 * Return 1 if we went up a level and 0 if we were already at the 890 * root. 891 */ 892 int follow_up(struct path *path) 893 { 894 struct mount *mnt = real_mount(path->mnt); 895 struct mount *parent; 896 struct dentry *mountpoint; 897 898 br_read_lock(&vfsmount_lock); 899 parent = mnt->mnt_parent; 900 if (parent == mnt) { 901 br_read_unlock(&vfsmount_lock); 902 return 0; 903 } 904 mntget(&parent->mnt); 905 mountpoint = dget(mnt->mnt_mountpoint); 906 br_read_unlock(&vfsmount_lock); 907 dput(path->dentry); 908 path->dentry = mountpoint; 909 mntput(path->mnt); 910 path->mnt = &parent->mnt; 911 return 1; 912 } 913 914 /* 915 * Perform an automount 916 * - return -EISDIR to tell follow_managed() to stop and return the path we 917 * were called with. 918 */ 919 static int follow_automount(struct path *path, unsigned flags, 920 bool *need_mntput) 921 { 922 struct vfsmount *mnt; 923 int err; 924 925 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 926 return -EREMOTE; 927 928 /* We don't want to mount if someone's just doing a stat - 929 * unless they're stat'ing a directory and appended a '/' to 930 * the name. 931 * 932 * We do, however, want to mount if someone wants to open or 933 * create a file of any type under the mountpoint, wants to 934 * traverse through the mountpoint or wants to open the 935 * mounted directory. Also, autofs may mark negative dentries 936 * as being automount points. These will need the attentions 937 * of the daemon to instantiate them before they can be used. 938 */ 939 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 940 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 941 path->dentry->d_inode) 942 return -EISDIR; 943 944 current->total_link_count++; 945 if (current->total_link_count >= 40) 946 return -ELOOP; 947 948 mnt = path->dentry->d_op->d_automount(path); 949 if (IS_ERR(mnt)) { 950 /* 951 * The filesystem is allowed to return -EISDIR here to indicate 952 * it doesn't want to automount. For instance, autofs would do 953 * this so that its userspace daemon can mount on this dentry. 954 * 955 * However, we can only permit this if it's a terminal point in 956 * the path being looked up; if it wasn't then the remainder of 957 * the path is inaccessible and we should say so. 958 */ 959 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 960 return -EREMOTE; 961 return PTR_ERR(mnt); 962 } 963 964 if (!mnt) /* mount collision */ 965 return 0; 966 967 if (!*need_mntput) { 968 /* lock_mount() may release path->mnt on error */ 969 mntget(path->mnt); 970 *need_mntput = true; 971 } 972 err = finish_automount(mnt, path); 973 974 switch (err) { 975 case -EBUSY: 976 /* Someone else made a mount here whilst we were busy */ 977 return 0; 978 case 0: 979 path_put(path); 980 path->mnt = mnt; 981 path->dentry = dget(mnt->mnt_root); 982 return 0; 983 default: 984 return err; 985 } 986 987 } 988 989 /* 990 * Handle a dentry that is managed in some way. 991 * - Flagged for transit management (autofs) 992 * - Flagged as mountpoint 993 * - Flagged as automount point 994 * 995 * This may only be called in refwalk mode. 996 * 997 * Serialization is taken care of in namespace.c 998 */ 999 static int follow_managed(struct path *path, unsigned flags) 1000 { 1001 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1002 unsigned managed; 1003 bool need_mntput = false; 1004 int ret = 0; 1005 1006 /* Given that we're not holding a lock here, we retain the value in a 1007 * local variable for each dentry as we look at it so that we don't see 1008 * the components of that value change under us */ 1009 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1010 managed &= DCACHE_MANAGED_DENTRY, 1011 unlikely(managed != 0)) { 1012 /* Allow the filesystem to manage the transit without i_mutex 1013 * being held. */ 1014 if (managed & DCACHE_MANAGE_TRANSIT) { 1015 BUG_ON(!path->dentry->d_op); 1016 BUG_ON(!path->dentry->d_op->d_manage); 1017 ret = path->dentry->d_op->d_manage(path->dentry, false); 1018 if (ret < 0) 1019 break; 1020 } 1021 1022 /* Transit to a mounted filesystem. */ 1023 if (managed & DCACHE_MOUNTED) { 1024 struct vfsmount *mounted = lookup_mnt(path); 1025 if (mounted) { 1026 dput(path->dentry); 1027 if (need_mntput) 1028 mntput(path->mnt); 1029 path->mnt = mounted; 1030 path->dentry = dget(mounted->mnt_root); 1031 need_mntput = true; 1032 continue; 1033 } 1034 1035 /* Something is mounted on this dentry in another 1036 * namespace and/or whatever was mounted there in this 1037 * namespace got unmounted before we managed to get the 1038 * vfsmount_lock */ 1039 } 1040 1041 /* Handle an automount point */ 1042 if (managed & DCACHE_NEED_AUTOMOUNT) { 1043 ret = follow_automount(path, flags, &need_mntput); 1044 if (ret < 0) 1045 break; 1046 continue; 1047 } 1048 1049 /* We didn't change the current path point */ 1050 break; 1051 } 1052 1053 if (need_mntput && path->mnt == mnt) 1054 mntput(path->mnt); 1055 if (ret == -EISDIR) 1056 ret = 0; 1057 return ret < 0 ? ret : need_mntput; 1058 } 1059 1060 int follow_down_one(struct path *path) 1061 { 1062 struct vfsmount *mounted; 1063 1064 mounted = lookup_mnt(path); 1065 if (mounted) { 1066 dput(path->dentry); 1067 mntput(path->mnt); 1068 path->mnt = mounted; 1069 path->dentry = dget(mounted->mnt_root); 1070 return 1; 1071 } 1072 return 0; 1073 } 1074 1075 static inline bool managed_dentry_might_block(struct dentry *dentry) 1076 { 1077 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 1078 dentry->d_op->d_manage(dentry, true) < 0); 1079 } 1080 1081 /* 1082 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1083 * we meet a managed dentry that would need blocking. 1084 */ 1085 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1086 struct inode **inode) 1087 { 1088 for (;;) { 1089 struct mount *mounted; 1090 /* 1091 * Don't forget we might have a non-mountpoint managed dentry 1092 * that wants to block transit. 1093 */ 1094 if (unlikely(managed_dentry_might_block(path->dentry))) 1095 return false; 1096 1097 if (!d_mountpoint(path->dentry)) 1098 break; 1099 1100 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 1101 if (!mounted) 1102 break; 1103 path->mnt = &mounted->mnt; 1104 path->dentry = mounted->mnt.mnt_root; 1105 nd->flags |= LOOKUP_JUMPED; 1106 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1107 /* 1108 * Update the inode too. We don't need to re-check the 1109 * dentry sequence number here after this d_inode read, 1110 * because a mount-point is always pinned. 1111 */ 1112 *inode = path->dentry->d_inode; 1113 } 1114 return true; 1115 } 1116 1117 static void follow_mount_rcu(struct nameidata *nd) 1118 { 1119 while (d_mountpoint(nd->path.dentry)) { 1120 struct mount *mounted; 1121 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); 1122 if (!mounted) 1123 break; 1124 nd->path.mnt = &mounted->mnt; 1125 nd->path.dentry = mounted->mnt.mnt_root; 1126 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1127 } 1128 } 1129 1130 static int follow_dotdot_rcu(struct nameidata *nd) 1131 { 1132 set_root_rcu(nd); 1133 1134 while (1) { 1135 if (nd->path.dentry == nd->root.dentry && 1136 nd->path.mnt == nd->root.mnt) { 1137 break; 1138 } 1139 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1140 struct dentry *old = nd->path.dentry; 1141 struct dentry *parent = old->d_parent; 1142 unsigned seq; 1143 1144 seq = read_seqcount_begin(&parent->d_seq); 1145 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1146 goto failed; 1147 nd->path.dentry = parent; 1148 nd->seq = seq; 1149 break; 1150 } 1151 if (!follow_up_rcu(&nd->path)) 1152 break; 1153 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1154 } 1155 follow_mount_rcu(nd); 1156 nd->inode = nd->path.dentry->d_inode; 1157 return 0; 1158 1159 failed: 1160 nd->flags &= ~LOOKUP_RCU; 1161 if (!(nd->flags & LOOKUP_ROOT)) 1162 nd->root.mnt = NULL; 1163 unlock_rcu_walk(); 1164 return -ECHILD; 1165 } 1166 1167 /* 1168 * Follow down to the covering mount currently visible to userspace. At each 1169 * point, the filesystem owning that dentry may be queried as to whether the 1170 * caller is permitted to proceed or not. 1171 */ 1172 int follow_down(struct path *path) 1173 { 1174 unsigned managed; 1175 int ret; 1176 1177 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1178 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1179 /* Allow the filesystem to manage the transit without i_mutex 1180 * being held. 1181 * 1182 * We indicate to the filesystem if someone is trying to mount 1183 * something here. This gives autofs the chance to deny anyone 1184 * other than its daemon the right to mount on its 1185 * superstructure. 1186 * 1187 * The filesystem may sleep at this point. 1188 */ 1189 if (managed & DCACHE_MANAGE_TRANSIT) { 1190 BUG_ON(!path->dentry->d_op); 1191 BUG_ON(!path->dentry->d_op->d_manage); 1192 ret = path->dentry->d_op->d_manage( 1193 path->dentry, false); 1194 if (ret < 0) 1195 return ret == -EISDIR ? 0 : ret; 1196 } 1197 1198 /* Transit to a mounted filesystem. */ 1199 if (managed & DCACHE_MOUNTED) { 1200 struct vfsmount *mounted = lookup_mnt(path); 1201 if (!mounted) 1202 break; 1203 dput(path->dentry); 1204 mntput(path->mnt); 1205 path->mnt = mounted; 1206 path->dentry = dget(mounted->mnt_root); 1207 continue; 1208 } 1209 1210 /* Don't handle automount points here */ 1211 break; 1212 } 1213 return 0; 1214 } 1215 1216 /* 1217 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1218 */ 1219 static void follow_mount(struct path *path) 1220 { 1221 while (d_mountpoint(path->dentry)) { 1222 struct vfsmount *mounted = lookup_mnt(path); 1223 if (!mounted) 1224 break; 1225 dput(path->dentry); 1226 mntput(path->mnt); 1227 path->mnt = mounted; 1228 path->dentry = dget(mounted->mnt_root); 1229 } 1230 } 1231 1232 static void follow_dotdot(struct nameidata *nd) 1233 { 1234 set_root(nd); 1235 1236 while(1) { 1237 struct dentry *old = nd->path.dentry; 1238 1239 if (nd->path.dentry == nd->root.dentry && 1240 nd->path.mnt == nd->root.mnt) { 1241 break; 1242 } 1243 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1244 /* rare case of legitimate dget_parent()... */ 1245 nd->path.dentry = dget_parent(nd->path.dentry); 1246 dput(old); 1247 break; 1248 } 1249 if (!follow_up(&nd->path)) 1250 break; 1251 } 1252 follow_mount(&nd->path); 1253 nd->inode = nd->path.dentry->d_inode; 1254 } 1255 1256 /* 1257 * This looks up the name in dcache, possibly revalidates the old dentry and 1258 * allocates a new one if not found or not valid. In the need_lookup argument 1259 * returns whether i_op->lookup is necessary. 1260 * 1261 * dir->d_inode->i_mutex must be held 1262 */ 1263 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1264 unsigned int flags, bool *need_lookup) 1265 { 1266 struct dentry *dentry; 1267 int error; 1268 1269 *need_lookup = false; 1270 dentry = d_lookup(dir, name); 1271 if (dentry) { 1272 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1273 error = d_revalidate(dentry, flags); 1274 if (unlikely(error <= 0)) { 1275 if (error < 0) { 1276 dput(dentry); 1277 return ERR_PTR(error); 1278 } else if (!d_invalidate(dentry)) { 1279 dput(dentry); 1280 dentry = NULL; 1281 } 1282 } 1283 } 1284 } 1285 1286 if (!dentry) { 1287 dentry = d_alloc(dir, name); 1288 if (unlikely(!dentry)) 1289 return ERR_PTR(-ENOMEM); 1290 1291 *need_lookup = true; 1292 } 1293 return dentry; 1294 } 1295 1296 /* 1297 * Call i_op->lookup on the dentry. The dentry must be negative but may be 1298 * hashed if it was pouplated with DCACHE_NEED_LOOKUP. 1299 * 1300 * dir->d_inode->i_mutex must be held 1301 */ 1302 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1303 unsigned int flags) 1304 { 1305 struct dentry *old; 1306 1307 /* Don't create child dentry for a dead directory. */ 1308 if (unlikely(IS_DEADDIR(dir))) { 1309 dput(dentry); 1310 return ERR_PTR(-ENOENT); 1311 } 1312 1313 old = dir->i_op->lookup(dir, dentry, flags); 1314 if (unlikely(old)) { 1315 dput(dentry); 1316 dentry = old; 1317 } 1318 return dentry; 1319 } 1320 1321 static struct dentry *__lookup_hash(struct qstr *name, 1322 struct dentry *base, unsigned int flags) 1323 { 1324 bool need_lookup; 1325 struct dentry *dentry; 1326 1327 dentry = lookup_dcache(name, base, flags, &need_lookup); 1328 if (!need_lookup) 1329 return dentry; 1330 1331 return lookup_real(base->d_inode, dentry, flags); 1332 } 1333 1334 /* 1335 * It's more convoluted than I'd like it to be, but... it's still fairly 1336 * small and for now I'd prefer to have fast path as straight as possible. 1337 * It _is_ time-critical. 1338 */ 1339 static int lookup_fast(struct nameidata *nd, 1340 struct path *path, struct inode **inode) 1341 { 1342 struct vfsmount *mnt = nd->path.mnt; 1343 struct dentry *dentry, *parent = nd->path.dentry; 1344 int need_reval = 1; 1345 int status = 1; 1346 int err; 1347 1348 /* 1349 * Rename seqlock is not required here because in the off chance 1350 * of a false negative due to a concurrent rename, we're going to 1351 * do the non-racy lookup, below. 1352 */ 1353 if (nd->flags & LOOKUP_RCU) { 1354 unsigned seq; 1355 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1356 if (!dentry) 1357 goto unlazy; 1358 1359 /* 1360 * This sequence count validates that the inode matches 1361 * the dentry name information from lookup. 1362 */ 1363 *inode = dentry->d_inode; 1364 if (read_seqcount_retry(&dentry->d_seq, seq)) 1365 return -ECHILD; 1366 1367 /* 1368 * This sequence count validates that the parent had no 1369 * changes while we did the lookup of the dentry above. 1370 * 1371 * The memory barrier in read_seqcount_begin of child is 1372 * enough, we can use __read_seqcount_retry here. 1373 */ 1374 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1375 return -ECHILD; 1376 nd->seq = seq; 1377 1378 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1379 status = d_revalidate(dentry, nd->flags); 1380 if (unlikely(status <= 0)) { 1381 if (status != -ECHILD) 1382 need_reval = 0; 1383 goto unlazy; 1384 } 1385 } 1386 path->mnt = mnt; 1387 path->dentry = dentry; 1388 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1389 goto unlazy; 1390 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1391 goto unlazy; 1392 return 0; 1393 unlazy: 1394 if (unlazy_walk(nd, dentry)) 1395 return -ECHILD; 1396 } else { 1397 dentry = __d_lookup(parent, &nd->last); 1398 } 1399 1400 if (unlikely(!dentry)) 1401 goto need_lookup; 1402 1403 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1404 status = d_revalidate(dentry, nd->flags); 1405 if (unlikely(status <= 0)) { 1406 if (status < 0) { 1407 dput(dentry); 1408 return status; 1409 } 1410 if (!d_invalidate(dentry)) { 1411 dput(dentry); 1412 goto need_lookup; 1413 } 1414 } 1415 1416 path->mnt = mnt; 1417 path->dentry = dentry; 1418 err = follow_managed(path, nd->flags); 1419 if (unlikely(err < 0)) { 1420 path_put_conditional(path, nd); 1421 return err; 1422 } 1423 if (err) 1424 nd->flags |= LOOKUP_JUMPED; 1425 *inode = path->dentry->d_inode; 1426 return 0; 1427 1428 need_lookup: 1429 return 1; 1430 } 1431 1432 /* Fast lookup failed, do it the slow way */ 1433 static int lookup_slow(struct nameidata *nd, struct path *path) 1434 { 1435 struct dentry *dentry, *parent; 1436 int err; 1437 1438 parent = nd->path.dentry; 1439 BUG_ON(nd->inode != parent->d_inode); 1440 1441 mutex_lock(&parent->d_inode->i_mutex); 1442 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1443 mutex_unlock(&parent->d_inode->i_mutex); 1444 if (IS_ERR(dentry)) 1445 return PTR_ERR(dentry); 1446 path->mnt = nd->path.mnt; 1447 path->dentry = dentry; 1448 err = follow_managed(path, nd->flags); 1449 if (unlikely(err < 0)) { 1450 path_put_conditional(path, nd); 1451 return err; 1452 } 1453 if (err) 1454 nd->flags |= LOOKUP_JUMPED; 1455 return 0; 1456 } 1457 1458 static inline int may_lookup(struct nameidata *nd) 1459 { 1460 if (nd->flags & LOOKUP_RCU) { 1461 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1462 if (err != -ECHILD) 1463 return err; 1464 if (unlazy_walk(nd, NULL)) 1465 return -ECHILD; 1466 } 1467 return inode_permission(nd->inode, MAY_EXEC); 1468 } 1469 1470 static inline int handle_dots(struct nameidata *nd, int type) 1471 { 1472 if (type == LAST_DOTDOT) { 1473 if (nd->flags & LOOKUP_RCU) { 1474 if (follow_dotdot_rcu(nd)) 1475 return -ECHILD; 1476 } else 1477 follow_dotdot(nd); 1478 } 1479 return 0; 1480 } 1481 1482 static void terminate_walk(struct nameidata *nd) 1483 { 1484 if (!(nd->flags & LOOKUP_RCU)) { 1485 path_put(&nd->path); 1486 } else { 1487 nd->flags &= ~LOOKUP_RCU; 1488 if (!(nd->flags & LOOKUP_ROOT)) 1489 nd->root.mnt = NULL; 1490 unlock_rcu_walk(); 1491 } 1492 } 1493 1494 /* 1495 * Do we need to follow links? We _really_ want to be able 1496 * to do this check without having to look at inode->i_op, 1497 * so we keep a cache of "no, this doesn't need follow_link" 1498 * for the common case. 1499 */ 1500 static inline int should_follow_link(struct inode *inode, int follow) 1501 { 1502 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1503 if (likely(inode->i_op->follow_link)) 1504 return follow; 1505 1506 /* This gets set once for the inode lifetime */ 1507 spin_lock(&inode->i_lock); 1508 inode->i_opflags |= IOP_NOFOLLOW; 1509 spin_unlock(&inode->i_lock); 1510 } 1511 return 0; 1512 } 1513 1514 static inline int walk_component(struct nameidata *nd, struct path *path, 1515 int follow) 1516 { 1517 struct inode *inode; 1518 int err; 1519 /* 1520 * "." and ".." are special - ".." especially so because it has 1521 * to be able to know about the current root directory and 1522 * parent relationships. 1523 */ 1524 if (unlikely(nd->last_type != LAST_NORM)) 1525 return handle_dots(nd, nd->last_type); 1526 err = lookup_fast(nd, path, &inode); 1527 if (unlikely(err)) { 1528 if (err < 0) 1529 goto out_err; 1530 1531 err = lookup_slow(nd, path); 1532 if (err < 0) 1533 goto out_err; 1534 1535 inode = path->dentry->d_inode; 1536 } 1537 err = -ENOENT; 1538 if (!inode) 1539 goto out_path_put; 1540 1541 if (should_follow_link(inode, follow)) { 1542 if (nd->flags & LOOKUP_RCU) { 1543 if (unlikely(unlazy_walk(nd, path->dentry))) { 1544 err = -ECHILD; 1545 goto out_err; 1546 } 1547 } 1548 BUG_ON(inode != path->dentry->d_inode); 1549 return 1; 1550 } 1551 path_to_nameidata(path, nd); 1552 nd->inode = inode; 1553 return 0; 1554 1555 out_path_put: 1556 path_to_nameidata(path, nd); 1557 out_err: 1558 terminate_walk(nd); 1559 return err; 1560 } 1561 1562 /* 1563 * This limits recursive symlink follows to 8, while 1564 * limiting consecutive symlinks to 40. 1565 * 1566 * Without that kind of total limit, nasty chains of consecutive 1567 * symlinks can cause almost arbitrarily long lookups. 1568 */ 1569 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1570 { 1571 int res; 1572 1573 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1574 path_put_conditional(path, nd); 1575 path_put(&nd->path); 1576 return -ELOOP; 1577 } 1578 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1579 1580 nd->depth++; 1581 current->link_count++; 1582 1583 do { 1584 struct path link = *path; 1585 void *cookie; 1586 1587 res = follow_link(&link, nd, &cookie); 1588 if (res) 1589 break; 1590 res = walk_component(nd, path, LOOKUP_FOLLOW); 1591 put_link(nd, &link, cookie); 1592 } while (res > 0); 1593 1594 current->link_count--; 1595 nd->depth--; 1596 return res; 1597 } 1598 1599 /* 1600 * We really don't want to look at inode->i_op->lookup 1601 * when we don't have to. So we keep a cache bit in 1602 * the inode ->i_opflags field that says "yes, we can 1603 * do lookup on this inode". 1604 */ 1605 static inline int can_lookup(struct inode *inode) 1606 { 1607 if (likely(inode->i_opflags & IOP_LOOKUP)) 1608 return 1; 1609 if (likely(!inode->i_op->lookup)) 1610 return 0; 1611 1612 /* We do this once for the lifetime of the inode */ 1613 spin_lock(&inode->i_lock); 1614 inode->i_opflags |= IOP_LOOKUP; 1615 spin_unlock(&inode->i_lock); 1616 return 1; 1617 } 1618 1619 /* 1620 * We can do the critical dentry name comparison and hashing 1621 * operations one word at a time, but we are limited to: 1622 * 1623 * - Architectures with fast unaligned word accesses. We could 1624 * do a "get_unaligned()" if this helps and is sufficiently 1625 * fast. 1626 * 1627 * - Little-endian machines (so that we can generate the mask 1628 * of low bytes efficiently). Again, we *could* do a byte 1629 * swapping load on big-endian architectures if that is not 1630 * expensive enough to make the optimization worthless. 1631 * 1632 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1633 * do not trap on the (extremely unlikely) case of a page 1634 * crossing operation. 1635 * 1636 * - Furthermore, we need an efficient 64-bit compile for the 1637 * 64-bit case in order to generate the "number of bytes in 1638 * the final mask". Again, that could be replaced with a 1639 * efficient population count instruction or similar. 1640 */ 1641 #ifdef CONFIG_DCACHE_WORD_ACCESS 1642 1643 #include <asm/word-at-a-time.h> 1644 1645 #ifdef CONFIG_64BIT 1646 1647 static inline unsigned int fold_hash(unsigned long hash) 1648 { 1649 hash += hash >> (8*sizeof(int)); 1650 return hash; 1651 } 1652 1653 #else /* 32-bit case */ 1654 1655 #define fold_hash(x) (x) 1656 1657 #endif 1658 1659 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1660 { 1661 unsigned long a, mask; 1662 unsigned long hash = 0; 1663 1664 for (;;) { 1665 a = load_unaligned_zeropad(name); 1666 if (len < sizeof(unsigned long)) 1667 break; 1668 hash += a; 1669 hash *= 9; 1670 name += sizeof(unsigned long); 1671 len -= sizeof(unsigned long); 1672 if (!len) 1673 goto done; 1674 } 1675 mask = ~(~0ul << len*8); 1676 hash += mask & a; 1677 done: 1678 return fold_hash(hash); 1679 } 1680 EXPORT_SYMBOL(full_name_hash); 1681 1682 /* 1683 * Calculate the length and hash of the path component, and 1684 * return the length of the component; 1685 */ 1686 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1687 { 1688 unsigned long a, b, adata, bdata, mask, hash, len; 1689 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1690 1691 hash = a = 0; 1692 len = -sizeof(unsigned long); 1693 do { 1694 hash = (hash + a) * 9; 1695 len += sizeof(unsigned long); 1696 a = load_unaligned_zeropad(name+len); 1697 b = a ^ REPEAT_BYTE('/'); 1698 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1699 1700 adata = prep_zero_mask(a, adata, &constants); 1701 bdata = prep_zero_mask(b, bdata, &constants); 1702 1703 mask = create_zero_mask(adata | bdata); 1704 1705 hash += a & zero_bytemask(mask); 1706 *hashp = fold_hash(hash); 1707 1708 return len + find_zero(mask); 1709 } 1710 1711 #else 1712 1713 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1714 { 1715 unsigned long hash = init_name_hash(); 1716 while (len--) 1717 hash = partial_name_hash(*name++, hash); 1718 return end_name_hash(hash); 1719 } 1720 EXPORT_SYMBOL(full_name_hash); 1721 1722 /* 1723 * We know there's a real path component here of at least 1724 * one character. 1725 */ 1726 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1727 { 1728 unsigned long hash = init_name_hash(); 1729 unsigned long len = 0, c; 1730 1731 c = (unsigned char)*name; 1732 do { 1733 len++; 1734 hash = partial_name_hash(c, hash); 1735 c = (unsigned char)name[len]; 1736 } while (c && c != '/'); 1737 *hashp = end_name_hash(hash); 1738 return len; 1739 } 1740 1741 #endif 1742 1743 /* 1744 * Name resolution. 1745 * This is the basic name resolution function, turning a pathname into 1746 * the final dentry. We expect 'base' to be positive and a directory. 1747 * 1748 * Returns 0 and nd will have valid dentry and mnt on success. 1749 * Returns error and drops reference to input namei data on failure. 1750 */ 1751 static int link_path_walk(const char *name, struct nameidata *nd) 1752 { 1753 struct path next; 1754 int err; 1755 1756 while (*name=='/') 1757 name++; 1758 if (!*name) 1759 return 0; 1760 1761 /* At this point we know we have a real path component. */ 1762 for(;;) { 1763 struct qstr this; 1764 long len; 1765 int type; 1766 1767 err = may_lookup(nd); 1768 if (err) 1769 break; 1770 1771 len = hash_name(name, &this.hash); 1772 this.name = name; 1773 this.len = len; 1774 1775 type = LAST_NORM; 1776 if (name[0] == '.') switch (len) { 1777 case 2: 1778 if (name[1] == '.') { 1779 type = LAST_DOTDOT; 1780 nd->flags |= LOOKUP_JUMPED; 1781 } 1782 break; 1783 case 1: 1784 type = LAST_DOT; 1785 } 1786 if (likely(type == LAST_NORM)) { 1787 struct dentry *parent = nd->path.dentry; 1788 nd->flags &= ~LOOKUP_JUMPED; 1789 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1790 err = parent->d_op->d_hash(parent, &this); 1791 if (err < 0) 1792 break; 1793 } 1794 } 1795 1796 nd->last = this; 1797 nd->last_type = type; 1798 1799 if (!name[len]) 1800 return 0; 1801 /* 1802 * If it wasn't NUL, we know it was '/'. Skip that 1803 * slash, and continue until no more slashes. 1804 */ 1805 do { 1806 len++; 1807 } while (unlikely(name[len] == '/')); 1808 if (!name[len]) 1809 return 0; 1810 1811 name += len; 1812 1813 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1814 if (err < 0) 1815 return err; 1816 1817 if (err) { 1818 err = nested_symlink(&next, nd); 1819 if (err) 1820 return err; 1821 } 1822 if (!can_lookup(nd->inode)) { 1823 err = -ENOTDIR; 1824 break; 1825 } 1826 } 1827 terminate_walk(nd); 1828 return err; 1829 } 1830 1831 static int path_init(int dfd, const char *name, unsigned int flags, 1832 struct nameidata *nd, struct file **fp) 1833 { 1834 int retval = 0; 1835 1836 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1837 nd->flags = flags | LOOKUP_JUMPED; 1838 nd->depth = 0; 1839 if (flags & LOOKUP_ROOT) { 1840 struct inode *inode = nd->root.dentry->d_inode; 1841 if (*name) { 1842 if (!can_lookup(inode)) 1843 return -ENOTDIR; 1844 retval = inode_permission(inode, MAY_EXEC); 1845 if (retval) 1846 return retval; 1847 } 1848 nd->path = nd->root; 1849 nd->inode = inode; 1850 if (flags & LOOKUP_RCU) { 1851 lock_rcu_walk(); 1852 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1853 } else { 1854 path_get(&nd->path); 1855 } 1856 return 0; 1857 } 1858 1859 nd->root.mnt = NULL; 1860 1861 if (*name=='/') { 1862 if (flags & LOOKUP_RCU) { 1863 lock_rcu_walk(); 1864 set_root_rcu(nd); 1865 } else { 1866 set_root(nd); 1867 path_get(&nd->root); 1868 } 1869 nd->path = nd->root; 1870 } else if (dfd == AT_FDCWD) { 1871 if (flags & LOOKUP_RCU) { 1872 struct fs_struct *fs = current->fs; 1873 unsigned seq; 1874 1875 lock_rcu_walk(); 1876 1877 do { 1878 seq = read_seqcount_begin(&fs->seq); 1879 nd->path = fs->pwd; 1880 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1881 } while (read_seqcount_retry(&fs->seq, seq)); 1882 } else { 1883 get_fs_pwd(current->fs, &nd->path); 1884 } 1885 } else { 1886 /* Caller must check execute permissions on the starting path component */ 1887 struct fd f = fdget_raw(dfd); 1888 struct dentry *dentry; 1889 1890 if (!f.file) 1891 return -EBADF; 1892 1893 dentry = f.file->f_path.dentry; 1894 1895 if (*name) { 1896 if (!can_lookup(dentry->d_inode)) { 1897 fdput(f); 1898 return -ENOTDIR; 1899 } 1900 } 1901 1902 nd->path = f.file->f_path; 1903 if (flags & LOOKUP_RCU) { 1904 if (f.need_put) 1905 *fp = f.file; 1906 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1907 lock_rcu_walk(); 1908 } else { 1909 path_get(&nd->path); 1910 fdput(f); 1911 } 1912 } 1913 1914 nd->inode = nd->path.dentry->d_inode; 1915 return 0; 1916 } 1917 1918 static inline int lookup_last(struct nameidata *nd, struct path *path) 1919 { 1920 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1921 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1922 1923 nd->flags &= ~LOOKUP_PARENT; 1924 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1925 } 1926 1927 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1928 static int path_lookupat(int dfd, const char *name, 1929 unsigned int flags, struct nameidata *nd) 1930 { 1931 struct file *base = NULL; 1932 struct path path; 1933 int err; 1934 1935 /* 1936 * Path walking is largely split up into 2 different synchronisation 1937 * schemes, rcu-walk and ref-walk (explained in 1938 * Documentation/filesystems/path-lookup.txt). These share much of the 1939 * path walk code, but some things particularly setup, cleanup, and 1940 * following mounts are sufficiently divergent that functions are 1941 * duplicated. Typically there is a function foo(), and its RCU 1942 * analogue, foo_rcu(). 1943 * 1944 * -ECHILD is the error number of choice (just to avoid clashes) that 1945 * is returned if some aspect of an rcu-walk fails. Such an error must 1946 * be handled by restarting a traditional ref-walk (which will always 1947 * be able to complete). 1948 */ 1949 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1950 1951 if (unlikely(err)) 1952 return err; 1953 1954 current->total_link_count = 0; 1955 err = link_path_walk(name, nd); 1956 1957 if (!err && !(flags & LOOKUP_PARENT)) { 1958 err = lookup_last(nd, &path); 1959 while (err > 0) { 1960 void *cookie; 1961 struct path link = path; 1962 err = may_follow_link(&link, nd); 1963 if (unlikely(err)) 1964 break; 1965 nd->flags |= LOOKUP_PARENT; 1966 err = follow_link(&link, nd, &cookie); 1967 if (err) 1968 break; 1969 err = lookup_last(nd, &path); 1970 put_link(nd, &link, cookie); 1971 } 1972 } 1973 1974 if (!err) 1975 err = complete_walk(nd); 1976 1977 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1978 if (!can_lookup(nd->inode)) { 1979 path_put(&nd->path); 1980 err = -ENOTDIR; 1981 } 1982 } 1983 1984 if (base) 1985 fput(base); 1986 1987 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1988 path_put(&nd->root); 1989 nd->root.mnt = NULL; 1990 } 1991 return err; 1992 } 1993 1994 static int filename_lookup(int dfd, struct filename *name, 1995 unsigned int flags, struct nameidata *nd) 1996 { 1997 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 1998 if (unlikely(retval == -ECHILD)) 1999 retval = path_lookupat(dfd, name->name, flags, nd); 2000 if (unlikely(retval == -ESTALE)) 2001 retval = path_lookupat(dfd, name->name, 2002 flags | LOOKUP_REVAL, nd); 2003 2004 if (likely(!retval)) 2005 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2006 return retval; 2007 } 2008 2009 static int do_path_lookup(int dfd, const char *name, 2010 unsigned int flags, struct nameidata *nd) 2011 { 2012 struct filename filename = { .name = name }; 2013 2014 return filename_lookup(dfd, &filename, flags, nd); 2015 } 2016 2017 /* does lookup, returns the object with parent locked */ 2018 struct dentry *kern_path_locked(const char *name, struct path *path) 2019 { 2020 struct nameidata nd; 2021 struct dentry *d; 2022 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 2023 if (err) 2024 return ERR_PTR(err); 2025 if (nd.last_type != LAST_NORM) { 2026 path_put(&nd.path); 2027 return ERR_PTR(-EINVAL); 2028 } 2029 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2030 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2031 if (IS_ERR(d)) { 2032 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2033 path_put(&nd.path); 2034 return d; 2035 } 2036 *path = nd.path; 2037 return d; 2038 } 2039 2040 int kern_path(const char *name, unsigned int flags, struct path *path) 2041 { 2042 struct nameidata nd; 2043 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2044 if (!res) 2045 *path = nd.path; 2046 return res; 2047 } 2048 2049 /** 2050 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2051 * @dentry: pointer to dentry of the base directory 2052 * @mnt: pointer to vfs mount of the base directory 2053 * @name: pointer to file name 2054 * @flags: lookup flags 2055 * @path: pointer to struct path to fill 2056 */ 2057 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2058 const char *name, unsigned int flags, 2059 struct path *path) 2060 { 2061 struct nameidata nd; 2062 int err; 2063 nd.root.dentry = dentry; 2064 nd.root.mnt = mnt; 2065 BUG_ON(flags & LOOKUP_PARENT); 2066 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2067 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2068 if (!err) 2069 *path = nd.path; 2070 return err; 2071 } 2072 2073 /* 2074 * Restricted form of lookup. Doesn't follow links, single-component only, 2075 * needs parent already locked. Doesn't follow mounts. 2076 * SMP-safe. 2077 */ 2078 static struct dentry *lookup_hash(struct nameidata *nd) 2079 { 2080 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2081 } 2082 2083 /** 2084 * lookup_one_len - filesystem helper to lookup single pathname component 2085 * @name: pathname component to lookup 2086 * @base: base directory to lookup from 2087 * @len: maximum length @len should be interpreted to 2088 * 2089 * Note that this routine is purely a helper for filesystem usage and should 2090 * not be called by generic code. Also note that by using this function the 2091 * nameidata argument is passed to the filesystem methods and a filesystem 2092 * using this helper needs to be prepared for that. 2093 */ 2094 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2095 { 2096 struct qstr this; 2097 unsigned int c; 2098 int err; 2099 2100 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2101 2102 this.name = name; 2103 this.len = len; 2104 this.hash = full_name_hash(name, len); 2105 if (!len) 2106 return ERR_PTR(-EACCES); 2107 2108 if (unlikely(name[0] == '.')) { 2109 if (len < 2 || (len == 2 && name[1] == '.')) 2110 return ERR_PTR(-EACCES); 2111 } 2112 2113 while (len--) { 2114 c = *(const unsigned char *)name++; 2115 if (c == '/' || c == '\0') 2116 return ERR_PTR(-EACCES); 2117 } 2118 /* 2119 * See if the low-level filesystem might want 2120 * to use its own hash.. 2121 */ 2122 if (base->d_flags & DCACHE_OP_HASH) { 2123 int err = base->d_op->d_hash(base, &this); 2124 if (err < 0) 2125 return ERR_PTR(err); 2126 } 2127 2128 err = inode_permission(base->d_inode, MAY_EXEC); 2129 if (err) 2130 return ERR_PTR(err); 2131 2132 return __lookup_hash(&this, base, 0); 2133 } 2134 2135 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2136 struct path *path, int *empty) 2137 { 2138 struct nameidata nd; 2139 struct filename *tmp = getname_flags(name, flags, empty); 2140 int err = PTR_ERR(tmp); 2141 if (!IS_ERR(tmp)) { 2142 2143 BUG_ON(flags & LOOKUP_PARENT); 2144 2145 err = filename_lookup(dfd, tmp, flags, &nd); 2146 putname(tmp); 2147 if (!err) 2148 *path = nd.path; 2149 } 2150 return err; 2151 } 2152 2153 int user_path_at(int dfd, const char __user *name, unsigned flags, 2154 struct path *path) 2155 { 2156 return user_path_at_empty(dfd, name, flags, path, NULL); 2157 } 2158 2159 /* 2160 * NB: most callers don't do anything directly with the reference to the 2161 * to struct filename, but the nd->last pointer points into the name string 2162 * allocated by getname. So we must hold the reference to it until all 2163 * path-walking is complete. 2164 */ 2165 static struct filename * 2166 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2167 unsigned int flags) 2168 { 2169 struct filename *s = getname(path); 2170 int error; 2171 2172 /* only LOOKUP_REVAL is allowed in extra flags */ 2173 flags &= LOOKUP_REVAL; 2174 2175 if (IS_ERR(s)) 2176 return s; 2177 2178 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2179 if (error) { 2180 putname(s); 2181 return ERR_PTR(error); 2182 } 2183 2184 return s; 2185 } 2186 2187 /* 2188 * It's inline, so penalty for filesystems that don't use sticky bit is 2189 * minimal. 2190 */ 2191 static inline int check_sticky(struct inode *dir, struct inode *inode) 2192 { 2193 kuid_t fsuid = current_fsuid(); 2194 2195 if (!(dir->i_mode & S_ISVTX)) 2196 return 0; 2197 if (uid_eq(inode->i_uid, fsuid)) 2198 return 0; 2199 if (uid_eq(dir->i_uid, fsuid)) 2200 return 0; 2201 return !inode_capable(inode, CAP_FOWNER); 2202 } 2203 2204 /* 2205 * Check whether we can remove a link victim from directory dir, check 2206 * whether the type of victim is right. 2207 * 1. We can't do it if dir is read-only (done in permission()) 2208 * 2. We should have write and exec permissions on dir 2209 * 3. We can't remove anything from append-only dir 2210 * 4. We can't do anything with immutable dir (done in permission()) 2211 * 5. If the sticky bit on dir is set we should either 2212 * a. be owner of dir, or 2213 * b. be owner of victim, or 2214 * c. have CAP_FOWNER capability 2215 * 6. If the victim is append-only or immutable we can't do antyhing with 2216 * links pointing to it. 2217 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2218 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2219 * 9. We can't remove a root or mountpoint. 2220 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2221 * nfs_async_unlink(). 2222 */ 2223 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 2224 { 2225 int error; 2226 2227 if (!victim->d_inode) 2228 return -ENOENT; 2229 2230 BUG_ON(victim->d_parent->d_inode != dir); 2231 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2232 2233 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2234 if (error) 2235 return error; 2236 if (IS_APPEND(dir)) 2237 return -EPERM; 2238 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 2239 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 2240 return -EPERM; 2241 if (isdir) { 2242 if (!S_ISDIR(victim->d_inode->i_mode)) 2243 return -ENOTDIR; 2244 if (IS_ROOT(victim)) 2245 return -EBUSY; 2246 } else if (S_ISDIR(victim->d_inode->i_mode)) 2247 return -EISDIR; 2248 if (IS_DEADDIR(dir)) 2249 return -ENOENT; 2250 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2251 return -EBUSY; 2252 return 0; 2253 } 2254 2255 /* Check whether we can create an object with dentry child in directory 2256 * dir. 2257 * 1. We can't do it if child already exists (open has special treatment for 2258 * this case, but since we are inlined it's OK) 2259 * 2. We can't do it if dir is read-only (done in permission()) 2260 * 3. We should have write and exec permissions on dir 2261 * 4. We can't do it if dir is immutable (done in permission()) 2262 */ 2263 static inline int may_create(struct inode *dir, struct dentry *child) 2264 { 2265 if (child->d_inode) 2266 return -EEXIST; 2267 if (IS_DEADDIR(dir)) 2268 return -ENOENT; 2269 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2270 } 2271 2272 /* 2273 * p1 and p2 should be directories on the same fs. 2274 */ 2275 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2276 { 2277 struct dentry *p; 2278 2279 if (p1 == p2) { 2280 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2281 return NULL; 2282 } 2283 2284 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2285 2286 p = d_ancestor(p2, p1); 2287 if (p) { 2288 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2289 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2290 return p; 2291 } 2292 2293 p = d_ancestor(p1, p2); 2294 if (p) { 2295 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2296 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2297 return p; 2298 } 2299 2300 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2301 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2302 return NULL; 2303 } 2304 2305 void unlock_rename(struct dentry *p1, struct dentry *p2) 2306 { 2307 mutex_unlock(&p1->d_inode->i_mutex); 2308 if (p1 != p2) { 2309 mutex_unlock(&p2->d_inode->i_mutex); 2310 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2311 } 2312 } 2313 2314 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2315 bool want_excl) 2316 { 2317 int error = may_create(dir, dentry); 2318 if (error) 2319 return error; 2320 2321 if (!dir->i_op->create) 2322 return -EACCES; /* shouldn't it be ENOSYS? */ 2323 mode &= S_IALLUGO; 2324 mode |= S_IFREG; 2325 error = security_inode_create(dir, dentry, mode); 2326 if (error) 2327 return error; 2328 error = dir->i_op->create(dir, dentry, mode, want_excl); 2329 if (!error) 2330 fsnotify_create(dir, dentry); 2331 return error; 2332 } 2333 2334 static int may_open(struct path *path, int acc_mode, int flag) 2335 { 2336 struct dentry *dentry = path->dentry; 2337 struct inode *inode = dentry->d_inode; 2338 int error; 2339 2340 /* O_PATH? */ 2341 if (!acc_mode) 2342 return 0; 2343 2344 if (!inode) 2345 return -ENOENT; 2346 2347 switch (inode->i_mode & S_IFMT) { 2348 case S_IFLNK: 2349 return -ELOOP; 2350 case S_IFDIR: 2351 if (acc_mode & MAY_WRITE) 2352 return -EISDIR; 2353 break; 2354 case S_IFBLK: 2355 case S_IFCHR: 2356 if (path->mnt->mnt_flags & MNT_NODEV) 2357 return -EACCES; 2358 /*FALLTHRU*/ 2359 case S_IFIFO: 2360 case S_IFSOCK: 2361 flag &= ~O_TRUNC; 2362 break; 2363 } 2364 2365 error = inode_permission(inode, acc_mode); 2366 if (error) 2367 return error; 2368 2369 /* 2370 * An append-only file must be opened in append mode for writing. 2371 */ 2372 if (IS_APPEND(inode)) { 2373 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2374 return -EPERM; 2375 if (flag & O_TRUNC) 2376 return -EPERM; 2377 } 2378 2379 /* O_NOATIME can only be set by the owner or superuser */ 2380 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2381 return -EPERM; 2382 2383 return 0; 2384 } 2385 2386 static int handle_truncate(struct file *filp) 2387 { 2388 struct path *path = &filp->f_path; 2389 struct inode *inode = path->dentry->d_inode; 2390 int error = get_write_access(inode); 2391 if (error) 2392 return error; 2393 /* 2394 * Refuse to truncate files with mandatory locks held on them. 2395 */ 2396 error = locks_verify_locked(inode); 2397 if (!error) 2398 error = security_path_truncate(path); 2399 if (!error) { 2400 error = do_truncate(path->dentry, 0, 2401 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2402 filp); 2403 } 2404 put_write_access(inode); 2405 return error; 2406 } 2407 2408 static inline int open_to_namei_flags(int flag) 2409 { 2410 if ((flag & O_ACCMODE) == 3) 2411 flag--; 2412 return flag; 2413 } 2414 2415 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2416 { 2417 int error = security_path_mknod(dir, dentry, mode, 0); 2418 if (error) 2419 return error; 2420 2421 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2422 if (error) 2423 return error; 2424 2425 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2426 } 2427 2428 /* 2429 * Attempt to atomically look up, create and open a file from a negative 2430 * dentry. 2431 * 2432 * Returns 0 if successful. The file will have been created and attached to 2433 * @file by the filesystem calling finish_open(). 2434 * 2435 * Returns 1 if the file was looked up only or didn't need creating. The 2436 * caller will need to perform the open themselves. @path will have been 2437 * updated to point to the new dentry. This may be negative. 2438 * 2439 * Returns an error code otherwise. 2440 */ 2441 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2442 struct path *path, struct file *file, 2443 const struct open_flags *op, 2444 bool got_write, bool need_lookup, 2445 int *opened) 2446 { 2447 struct inode *dir = nd->path.dentry->d_inode; 2448 unsigned open_flag = open_to_namei_flags(op->open_flag); 2449 umode_t mode; 2450 int error; 2451 int acc_mode; 2452 int create_error = 0; 2453 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2454 2455 BUG_ON(dentry->d_inode); 2456 2457 /* Don't create child dentry for a dead directory. */ 2458 if (unlikely(IS_DEADDIR(dir))) { 2459 error = -ENOENT; 2460 goto out; 2461 } 2462 2463 mode = op->mode; 2464 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2465 mode &= ~current_umask(); 2466 2467 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) { 2468 open_flag &= ~O_TRUNC; 2469 *opened |= FILE_CREATED; 2470 } 2471 2472 /* 2473 * Checking write permission is tricky, bacuse we don't know if we are 2474 * going to actually need it: O_CREAT opens should work as long as the 2475 * file exists. But checking existence breaks atomicity. The trick is 2476 * to check access and if not granted clear O_CREAT from the flags. 2477 * 2478 * Another problem is returing the "right" error value (e.g. for an 2479 * O_EXCL open we want to return EEXIST not EROFS). 2480 */ 2481 if (((open_flag & (O_CREAT | O_TRUNC)) || 2482 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2483 if (!(open_flag & O_CREAT)) { 2484 /* 2485 * No O_CREATE -> atomicity not a requirement -> fall 2486 * back to lookup + open 2487 */ 2488 goto no_open; 2489 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2490 /* Fall back and fail with the right error */ 2491 create_error = -EROFS; 2492 goto no_open; 2493 } else { 2494 /* No side effects, safe to clear O_CREAT */ 2495 create_error = -EROFS; 2496 open_flag &= ~O_CREAT; 2497 } 2498 } 2499 2500 if (open_flag & O_CREAT) { 2501 error = may_o_create(&nd->path, dentry, mode); 2502 if (error) { 2503 create_error = error; 2504 if (open_flag & O_EXCL) 2505 goto no_open; 2506 open_flag &= ~O_CREAT; 2507 } 2508 } 2509 2510 if (nd->flags & LOOKUP_DIRECTORY) 2511 open_flag |= O_DIRECTORY; 2512 2513 file->f_path.dentry = DENTRY_NOT_SET; 2514 file->f_path.mnt = nd->path.mnt; 2515 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2516 opened); 2517 if (error < 0) { 2518 if (create_error && error == -ENOENT) 2519 error = create_error; 2520 goto out; 2521 } 2522 2523 acc_mode = op->acc_mode; 2524 if (*opened & FILE_CREATED) { 2525 fsnotify_create(dir, dentry); 2526 acc_mode = MAY_OPEN; 2527 } 2528 2529 if (error) { /* returned 1, that is */ 2530 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2531 error = -EIO; 2532 goto out; 2533 } 2534 if (file->f_path.dentry) { 2535 dput(dentry); 2536 dentry = file->f_path.dentry; 2537 } 2538 if (create_error && dentry->d_inode == NULL) { 2539 error = create_error; 2540 goto out; 2541 } 2542 goto looked_up; 2543 } 2544 2545 /* 2546 * We didn't have the inode before the open, so check open permission 2547 * here. 2548 */ 2549 error = may_open(&file->f_path, acc_mode, open_flag); 2550 if (error) 2551 fput(file); 2552 2553 out: 2554 dput(dentry); 2555 return error; 2556 2557 no_open: 2558 if (need_lookup) { 2559 dentry = lookup_real(dir, dentry, nd->flags); 2560 if (IS_ERR(dentry)) 2561 return PTR_ERR(dentry); 2562 2563 if (create_error) { 2564 int open_flag = op->open_flag; 2565 2566 error = create_error; 2567 if ((open_flag & O_EXCL)) { 2568 if (!dentry->d_inode) 2569 goto out; 2570 } else if (!dentry->d_inode) { 2571 goto out; 2572 } else if ((open_flag & O_TRUNC) && 2573 S_ISREG(dentry->d_inode->i_mode)) { 2574 goto out; 2575 } 2576 /* will fail later, go on to get the right error */ 2577 } 2578 } 2579 looked_up: 2580 path->dentry = dentry; 2581 path->mnt = nd->path.mnt; 2582 return 1; 2583 } 2584 2585 /* 2586 * Look up and maybe create and open the last component. 2587 * 2588 * Must be called with i_mutex held on parent. 2589 * 2590 * Returns 0 if the file was successfully atomically created (if necessary) and 2591 * opened. In this case the file will be returned attached to @file. 2592 * 2593 * Returns 1 if the file was not completely opened at this time, though lookups 2594 * and creations will have been performed and the dentry returned in @path will 2595 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2596 * specified then a negative dentry may be returned. 2597 * 2598 * An error code is returned otherwise. 2599 * 2600 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2601 * cleared otherwise prior to returning. 2602 */ 2603 static int lookup_open(struct nameidata *nd, struct path *path, 2604 struct file *file, 2605 const struct open_flags *op, 2606 bool got_write, int *opened) 2607 { 2608 struct dentry *dir = nd->path.dentry; 2609 struct inode *dir_inode = dir->d_inode; 2610 struct dentry *dentry; 2611 int error; 2612 bool need_lookup; 2613 2614 *opened &= ~FILE_CREATED; 2615 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2616 if (IS_ERR(dentry)) 2617 return PTR_ERR(dentry); 2618 2619 /* Cached positive dentry: will open in f_op->open */ 2620 if (!need_lookup && dentry->d_inode) 2621 goto out_no_open; 2622 2623 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2624 return atomic_open(nd, dentry, path, file, op, got_write, 2625 need_lookup, opened); 2626 } 2627 2628 if (need_lookup) { 2629 BUG_ON(dentry->d_inode); 2630 2631 dentry = lookup_real(dir_inode, dentry, nd->flags); 2632 if (IS_ERR(dentry)) 2633 return PTR_ERR(dentry); 2634 } 2635 2636 /* Negative dentry, just create the file */ 2637 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2638 umode_t mode = op->mode; 2639 if (!IS_POSIXACL(dir->d_inode)) 2640 mode &= ~current_umask(); 2641 /* 2642 * This write is needed to ensure that a 2643 * rw->ro transition does not occur between 2644 * the time when the file is created and when 2645 * a permanent write count is taken through 2646 * the 'struct file' in finish_open(). 2647 */ 2648 if (!got_write) { 2649 error = -EROFS; 2650 goto out_dput; 2651 } 2652 *opened |= FILE_CREATED; 2653 error = security_path_mknod(&nd->path, dentry, mode, 0); 2654 if (error) 2655 goto out_dput; 2656 error = vfs_create(dir->d_inode, dentry, mode, 2657 nd->flags & LOOKUP_EXCL); 2658 if (error) 2659 goto out_dput; 2660 } 2661 out_no_open: 2662 path->dentry = dentry; 2663 path->mnt = nd->path.mnt; 2664 return 1; 2665 2666 out_dput: 2667 dput(dentry); 2668 return error; 2669 } 2670 2671 /* 2672 * Handle the last step of open() 2673 */ 2674 static int do_last(struct nameidata *nd, struct path *path, 2675 struct file *file, const struct open_flags *op, 2676 int *opened, struct filename *name) 2677 { 2678 struct dentry *dir = nd->path.dentry; 2679 int open_flag = op->open_flag; 2680 bool will_truncate = (open_flag & O_TRUNC) != 0; 2681 bool got_write = false; 2682 int acc_mode = op->acc_mode; 2683 struct inode *inode; 2684 bool symlink_ok = false; 2685 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2686 bool retried = false; 2687 int error; 2688 2689 nd->flags &= ~LOOKUP_PARENT; 2690 nd->flags |= op->intent; 2691 2692 if (nd->last_type != LAST_NORM) { 2693 error = handle_dots(nd, nd->last_type); 2694 if (error) 2695 return error; 2696 goto finish_open; 2697 } 2698 2699 if (!(open_flag & O_CREAT)) { 2700 if (nd->last.name[nd->last.len]) 2701 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2702 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2703 symlink_ok = true; 2704 /* we _can_ be in RCU mode here */ 2705 error = lookup_fast(nd, path, &inode); 2706 if (likely(!error)) 2707 goto finish_lookup; 2708 2709 if (error < 0) 2710 goto out; 2711 2712 BUG_ON(nd->inode != dir->d_inode); 2713 } else { 2714 /* create side of things */ 2715 /* 2716 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2717 * has been cleared when we got to the last component we are 2718 * about to look up 2719 */ 2720 error = complete_walk(nd); 2721 if (error) 2722 return error; 2723 2724 audit_inode(name, dir, LOOKUP_PARENT); 2725 error = -EISDIR; 2726 /* trailing slashes? */ 2727 if (nd->last.name[nd->last.len]) 2728 goto out; 2729 } 2730 2731 retry_lookup: 2732 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2733 error = mnt_want_write(nd->path.mnt); 2734 if (!error) 2735 got_write = true; 2736 /* 2737 * do _not_ fail yet - we might not need that or fail with 2738 * a different error; let lookup_open() decide; we'll be 2739 * dropping this one anyway. 2740 */ 2741 } 2742 mutex_lock(&dir->d_inode->i_mutex); 2743 error = lookup_open(nd, path, file, op, got_write, opened); 2744 mutex_unlock(&dir->d_inode->i_mutex); 2745 2746 if (error <= 0) { 2747 if (error) 2748 goto out; 2749 2750 if ((*opened & FILE_CREATED) || 2751 !S_ISREG(file_inode(file)->i_mode)) 2752 will_truncate = false; 2753 2754 audit_inode(name, file->f_path.dentry, 0); 2755 goto opened; 2756 } 2757 2758 if (*opened & FILE_CREATED) { 2759 /* Don't check for write permission, don't truncate */ 2760 open_flag &= ~O_TRUNC; 2761 will_truncate = false; 2762 acc_mode = MAY_OPEN; 2763 path_to_nameidata(path, nd); 2764 goto finish_open_created; 2765 } 2766 2767 /* 2768 * create/update audit record if it already exists. 2769 */ 2770 if (path->dentry->d_inode) 2771 audit_inode(name, path->dentry, 0); 2772 2773 /* 2774 * If atomic_open() acquired write access it is dropped now due to 2775 * possible mount and symlink following (this might be optimized away if 2776 * necessary...) 2777 */ 2778 if (got_write) { 2779 mnt_drop_write(nd->path.mnt); 2780 got_write = false; 2781 } 2782 2783 error = -EEXIST; 2784 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 2785 goto exit_dput; 2786 2787 error = follow_managed(path, nd->flags); 2788 if (error < 0) 2789 goto exit_dput; 2790 2791 if (error) 2792 nd->flags |= LOOKUP_JUMPED; 2793 2794 BUG_ON(nd->flags & LOOKUP_RCU); 2795 inode = path->dentry->d_inode; 2796 finish_lookup: 2797 /* we _can_ be in RCU mode here */ 2798 error = -ENOENT; 2799 if (!inode) { 2800 path_to_nameidata(path, nd); 2801 goto out; 2802 } 2803 2804 if (should_follow_link(inode, !symlink_ok)) { 2805 if (nd->flags & LOOKUP_RCU) { 2806 if (unlikely(unlazy_walk(nd, path->dentry))) { 2807 error = -ECHILD; 2808 goto out; 2809 } 2810 } 2811 BUG_ON(inode != path->dentry->d_inode); 2812 return 1; 2813 } 2814 2815 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 2816 path_to_nameidata(path, nd); 2817 } else { 2818 save_parent.dentry = nd->path.dentry; 2819 save_parent.mnt = mntget(path->mnt); 2820 nd->path.dentry = path->dentry; 2821 2822 } 2823 nd->inode = inode; 2824 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2825 finish_open: 2826 error = complete_walk(nd); 2827 if (error) { 2828 path_put(&save_parent); 2829 return error; 2830 } 2831 audit_inode(name, nd->path.dentry, 0); 2832 error = -EISDIR; 2833 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode)) 2834 goto out; 2835 error = -ENOTDIR; 2836 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode)) 2837 goto out; 2838 if (!S_ISREG(nd->inode->i_mode)) 2839 will_truncate = false; 2840 2841 if (will_truncate) { 2842 error = mnt_want_write(nd->path.mnt); 2843 if (error) 2844 goto out; 2845 got_write = true; 2846 } 2847 finish_open_created: 2848 error = may_open(&nd->path, acc_mode, open_flag); 2849 if (error) 2850 goto out; 2851 file->f_path.mnt = nd->path.mnt; 2852 error = finish_open(file, nd->path.dentry, NULL, opened); 2853 if (error) { 2854 if (error == -EOPENSTALE) 2855 goto stale_open; 2856 goto out; 2857 } 2858 opened: 2859 error = open_check_o_direct(file); 2860 if (error) 2861 goto exit_fput; 2862 error = ima_file_check(file, op->acc_mode); 2863 if (error) 2864 goto exit_fput; 2865 2866 if (will_truncate) { 2867 error = handle_truncate(file); 2868 if (error) 2869 goto exit_fput; 2870 } 2871 out: 2872 if (got_write) 2873 mnt_drop_write(nd->path.mnt); 2874 path_put(&save_parent); 2875 terminate_walk(nd); 2876 return error; 2877 2878 exit_dput: 2879 path_put_conditional(path, nd); 2880 goto out; 2881 exit_fput: 2882 fput(file); 2883 goto out; 2884 2885 stale_open: 2886 /* If no saved parent or already retried then can't retry */ 2887 if (!save_parent.dentry || retried) 2888 goto out; 2889 2890 BUG_ON(save_parent.dentry != dir); 2891 path_put(&nd->path); 2892 nd->path = save_parent; 2893 nd->inode = dir->d_inode; 2894 save_parent.mnt = NULL; 2895 save_parent.dentry = NULL; 2896 if (got_write) { 2897 mnt_drop_write(nd->path.mnt); 2898 got_write = false; 2899 } 2900 retried = true; 2901 goto retry_lookup; 2902 } 2903 2904 static int do_tmpfile(int dfd, struct filename *pathname, 2905 struct nameidata *nd, int flags, 2906 const struct open_flags *op, 2907 struct file *file, int *opened) 2908 { 2909 static const struct qstr name = QSTR_INIT("/", 1); 2910 struct dentry *dentry, *child; 2911 struct inode *dir; 2912 int error = path_lookupat(dfd, pathname->name, 2913 flags | LOOKUP_DIRECTORY, nd); 2914 if (unlikely(error)) 2915 return error; 2916 error = mnt_want_write(nd->path.mnt); 2917 if (unlikely(error)) 2918 goto out; 2919 /* we want directory to be writable */ 2920 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 2921 if (error) 2922 goto out2; 2923 dentry = nd->path.dentry; 2924 dir = dentry->d_inode; 2925 if (!dir->i_op->tmpfile) { 2926 error = -EOPNOTSUPP; 2927 goto out2; 2928 } 2929 child = d_alloc(dentry, &name); 2930 if (unlikely(!child)) { 2931 error = -ENOMEM; 2932 goto out2; 2933 } 2934 nd->flags &= ~LOOKUP_DIRECTORY; 2935 nd->flags |= op->intent; 2936 dput(nd->path.dentry); 2937 nd->path.dentry = child; 2938 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 2939 if (error) 2940 goto out2; 2941 audit_inode(pathname, nd->path.dentry, 0); 2942 error = may_open(&nd->path, op->acc_mode, op->open_flag); 2943 if (error) 2944 goto out2; 2945 file->f_path.mnt = nd->path.mnt; 2946 error = finish_open(file, nd->path.dentry, NULL, opened); 2947 if (error) 2948 goto out2; 2949 error = open_check_o_direct(file); 2950 if (error) { 2951 fput(file); 2952 } else if (!(op->open_flag & O_EXCL)) { 2953 struct inode *inode = file_inode(file); 2954 spin_lock(&inode->i_lock); 2955 inode->i_state |= I_LINKABLE; 2956 spin_unlock(&inode->i_lock); 2957 } 2958 out2: 2959 mnt_drop_write(nd->path.mnt); 2960 out: 2961 path_put(&nd->path); 2962 return error; 2963 } 2964 2965 static struct file *path_openat(int dfd, struct filename *pathname, 2966 struct nameidata *nd, const struct open_flags *op, int flags) 2967 { 2968 struct file *base = NULL; 2969 struct file *file; 2970 struct path path; 2971 int opened = 0; 2972 int error; 2973 2974 file = get_empty_filp(); 2975 if (IS_ERR(file)) 2976 return file; 2977 2978 file->f_flags = op->open_flag; 2979 2980 if (unlikely(file->f_flags & __O_TMPFILE)) { 2981 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 2982 goto out; 2983 } 2984 2985 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 2986 if (unlikely(error)) 2987 goto out; 2988 2989 current->total_link_count = 0; 2990 error = link_path_walk(pathname->name, nd); 2991 if (unlikely(error)) 2992 goto out; 2993 2994 error = do_last(nd, &path, file, op, &opened, pathname); 2995 while (unlikely(error > 0)) { /* trailing symlink */ 2996 struct path link = path; 2997 void *cookie; 2998 if (!(nd->flags & LOOKUP_FOLLOW)) { 2999 path_put_conditional(&path, nd); 3000 path_put(&nd->path); 3001 error = -ELOOP; 3002 break; 3003 } 3004 error = may_follow_link(&link, nd); 3005 if (unlikely(error)) 3006 break; 3007 nd->flags |= LOOKUP_PARENT; 3008 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3009 error = follow_link(&link, nd, &cookie); 3010 if (unlikely(error)) 3011 break; 3012 error = do_last(nd, &path, file, op, &opened, pathname); 3013 put_link(nd, &link, cookie); 3014 } 3015 out: 3016 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 3017 path_put(&nd->root); 3018 if (base) 3019 fput(base); 3020 if (!(opened & FILE_OPENED)) { 3021 BUG_ON(!error); 3022 put_filp(file); 3023 } 3024 if (unlikely(error)) { 3025 if (error == -EOPENSTALE) { 3026 if (flags & LOOKUP_RCU) 3027 error = -ECHILD; 3028 else 3029 error = -ESTALE; 3030 } 3031 file = ERR_PTR(error); 3032 } 3033 return file; 3034 } 3035 3036 struct file *do_filp_open(int dfd, struct filename *pathname, 3037 const struct open_flags *op) 3038 { 3039 struct nameidata nd; 3040 int flags = op->lookup_flags; 3041 struct file *filp; 3042 3043 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3044 if (unlikely(filp == ERR_PTR(-ECHILD))) 3045 filp = path_openat(dfd, pathname, &nd, op, flags); 3046 if (unlikely(filp == ERR_PTR(-ESTALE))) 3047 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3048 return filp; 3049 } 3050 3051 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3052 const char *name, const struct open_flags *op) 3053 { 3054 struct nameidata nd; 3055 struct file *file; 3056 struct filename filename = { .name = name }; 3057 int flags = op->lookup_flags | LOOKUP_ROOT; 3058 3059 nd.root.mnt = mnt; 3060 nd.root.dentry = dentry; 3061 3062 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 3063 return ERR_PTR(-ELOOP); 3064 3065 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3066 if (unlikely(file == ERR_PTR(-ECHILD))) 3067 file = path_openat(-1, &filename, &nd, op, flags); 3068 if (unlikely(file == ERR_PTR(-ESTALE))) 3069 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3070 return file; 3071 } 3072 3073 struct dentry *kern_path_create(int dfd, const char *pathname, 3074 struct path *path, unsigned int lookup_flags) 3075 { 3076 struct dentry *dentry = ERR_PTR(-EEXIST); 3077 struct nameidata nd; 3078 int err2; 3079 int error; 3080 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3081 3082 /* 3083 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3084 * other flags passed in are ignored! 3085 */ 3086 lookup_flags &= LOOKUP_REVAL; 3087 3088 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3089 if (error) 3090 return ERR_PTR(error); 3091 3092 /* 3093 * Yucky last component or no last component at all? 3094 * (foo/., foo/.., /////) 3095 */ 3096 if (nd.last_type != LAST_NORM) 3097 goto out; 3098 nd.flags &= ~LOOKUP_PARENT; 3099 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3100 3101 /* don't fail immediately if it's r/o, at least try to report other errors */ 3102 err2 = mnt_want_write(nd.path.mnt); 3103 /* 3104 * Do the final lookup. 3105 */ 3106 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3107 dentry = lookup_hash(&nd); 3108 if (IS_ERR(dentry)) 3109 goto unlock; 3110 3111 error = -EEXIST; 3112 if (dentry->d_inode) 3113 goto fail; 3114 /* 3115 * Special case - lookup gave negative, but... we had foo/bar/ 3116 * From the vfs_mknod() POV we just have a negative dentry - 3117 * all is fine. Let's be bastards - you had / on the end, you've 3118 * been asking for (non-existent) directory. -ENOENT for you. 3119 */ 3120 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3121 error = -ENOENT; 3122 goto fail; 3123 } 3124 if (unlikely(err2)) { 3125 error = err2; 3126 goto fail; 3127 } 3128 *path = nd.path; 3129 return dentry; 3130 fail: 3131 dput(dentry); 3132 dentry = ERR_PTR(error); 3133 unlock: 3134 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3135 if (!err2) 3136 mnt_drop_write(nd.path.mnt); 3137 out: 3138 path_put(&nd.path); 3139 return dentry; 3140 } 3141 EXPORT_SYMBOL(kern_path_create); 3142 3143 void done_path_create(struct path *path, struct dentry *dentry) 3144 { 3145 dput(dentry); 3146 mutex_unlock(&path->dentry->d_inode->i_mutex); 3147 mnt_drop_write(path->mnt); 3148 path_put(path); 3149 } 3150 EXPORT_SYMBOL(done_path_create); 3151 3152 struct dentry *user_path_create(int dfd, const char __user *pathname, 3153 struct path *path, unsigned int lookup_flags) 3154 { 3155 struct filename *tmp = getname(pathname); 3156 struct dentry *res; 3157 if (IS_ERR(tmp)) 3158 return ERR_CAST(tmp); 3159 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3160 putname(tmp); 3161 return res; 3162 } 3163 EXPORT_SYMBOL(user_path_create); 3164 3165 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3166 { 3167 int error = may_create(dir, dentry); 3168 3169 if (error) 3170 return error; 3171 3172 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3173 return -EPERM; 3174 3175 if (!dir->i_op->mknod) 3176 return -EPERM; 3177 3178 error = devcgroup_inode_mknod(mode, dev); 3179 if (error) 3180 return error; 3181 3182 error = security_inode_mknod(dir, dentry, mode, dev); 3183 if (error) 3184 return error; 3185 3186 error = dir->i_op->mknod(dir, dentry, mode, dev); 3187 if (!error) 3188 fsnotify_create(dir, dentry); 3189 return error; 3190 } 3191 3192 static int may_mknod(umode_t mode) 3193 { 3194 switch (mode & S_IFMT) { 3195 case S_IFREG: 3196 case S_IFCHR: 3197 case S_IFBLK: 3198 case S_IFIFO: 3199 case S_IFSOCK: 3200 case 0: /* zero mode translates to S_IFREG */ 3201 return 0; 3202 case S_IFDIR: 3203 return -EPERM; 3204 default: 3205 return -EINVAL; 3206 } 3207 } 3208 3209 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3210 unsigned, dev) 3211 { 3212 struct dentry *dentry; 3213 struct path path; 3214 int error; 3215 unsigned int lookup_flags = 0; 3216 3217 error = may_mknod(mode); 3218 if (error) 3219 return error; 3220 retry: 3221 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3222 if (IS_ERR(dentry)) 3223 return PTR_ERR(dentry); 3224 3225 if (!IS_POSIXACL(path.dentry->d_inode)) 3226 mode &= ~current_umask(); 3227 error = security_path_mknod(&path, dentry, mode, dev); 3228 if (error) 3229 goto out; 3230 switch (mode & S_IFMT) { 3231 case 0: case S_IFREG: 3232 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3233 break; 3234 case S_IFCHR: case S_IFBLK: 3235 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3236 new_decode_dev(dev)); 3237 break; 3238 case S_IFIFO: case S_IFSOCK: 3239 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3240 break; 3241 } 3242 out: 3243 done_path_create(&path, dentry); 3244 if (retry_estale(error, lookup_flags)) { 3245 lookup_flags |= LOOKUP_REVAL; 3246 goto retry; 3247 } 3248 return error; 3249 } 3250 3251 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3252 { 3253 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3254 } 3255 3256 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3257 { 3258 int error = may_create(dir, dentry); 3259 unsigned max_links = dir->i_sb->s_max_links; 3260 3261 if (error) 3262 return error; 3263 3264 if (!dir->i_op->mkdir) 3265 return -EPERM; 3266 3267 mode &= (S_IRWXUGO|S_ISVTX); 3268 error = security_inode_mkdir(dir, dentry, mode); 3269 if (error) 3270 return error; 3271 3272 if (max_links && dir->i_nlink >= max_links) 3273 return -EMLINK; 3274 3275 error = dir->i_op->mkdir(dir, dentry, mode); 3276 if (!error) 3277 fsnotify_mkdir(dir, dentry); 3278 return error; 3279 } 3280 3281 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3282 { 3283 struct dentry *dentry; 3284 struct path path; 3285 int error; 3286 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3287 3288 retry: 3289 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3290 if (IS_ERR(dentry)) 3291 return PTR_ERR(dentry); 3292 3293 if (!IS_POSIXACL(path.dentry->d_inode)) 3294 mode &= ~current_umask(); 3295 error = security_path_mkdir(&path, dentry, mode); 3296 if (!error) 3297 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3298 done_path_create(&path, dentry); 3299 if (retry_estale(error, lookup_flags)) { 3300 lookup_flags |= LOOKUP_REVAL; 3301 goto retry; 3302 } 3303 return error; 3304 } 3305 3306 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3307 { 3308 return sys_mkdirat(AT_FDCWD, pathname, mode); 3309 } 3310 3311 /* 3312 * The dentry_unhash() helper will try to drop the dentry early: we 3313 * should have a usage count of 1 if we're the only user of this 3314 * dentry, and if that is true (possibly after pruning the dcache), 3315 * then we drop the dentry now. 3316 * 3317 * A low-level filesystem can, if it choses, legally 3318 * do a 3319 * 3320 * if (!d_unhashed(dentry)) 3321 * return -EBUSY; 3322 * 3323 * if it cannot handle the case of removing a directory 3324 * that is still in use by something else.. 3325 */ 3326 void dentry_unhash(struct dentry *dentry) 3327 { 3328 shrink_dcache_parent(dentry); 3329 spin_lock(&dentry->d_lock); 3330 if (dentry->d_count == 1) 3331 __d_drop(dentry); 3332 spin_unlock(&dentry->d_lock); 3333 } 3334 3335 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3336 { 3337 int error = may_delete(dir, dentry, 1); 3338 3339 if (error) 3340 return error; 3341 3342 if (!dir->i_op->rmdir) 3343 return -EPERM; 3344 3345 dget(dentry); 3346 mutex_lock(&dentry->d_inode->i_mutex); 3347 3348 error = -EBUSY; 3349 if (d_mountpoint(dentry)) 3350 goto out; 3351 3352 error = security_inode_rmdir(dir, dentry); 3353 if (error) 3354 goto out; 3355 3356 shrink_dcache_parent(dentry); 3357 error = dir->i_op->rmdir(dir, dentry); 3358 if (error) 3359 goto out; 3360 3361 dentry->d_inode->i_flags |= S_DEAD; 3362 dont_mount(dentry); 3363 3364 out: 3365 mutex_unlock(&dentry->d_inode->i_mutex); 3366 dput(dentry); 3367 if (!error) 3368 d_delete(dentry); 3369 return error; 3370 } 3371 3372 static long do_rmdir(int dfd, const char __user *pathname) 3373 { 3374 int error = 0; 3375 struct filename *name; 3376 struct dentry *dentry; 3377 struct nameidata nd; 3378 unsigned int lookup_flags = 0; 3379 retry: 3380 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3381 if (IS_ERR(name)) 3382 return PTR_ERR(name); 3383 3384 switch(nd.last_type) { 3385 case LAST_DOTDOT: 3386 error = -ENOTEMPTY; 3387 goto exit1; 3388 case LAST_DOT: 3389 error = -EINVAL; 3390 goto exit1; 3391 case LAST_ROOT: 3392 error = -EBUSY; 3393 goto exit1; 3394 } 3395 3396 nd.flags &= ~LOOKUP_PARENT; 3397 error = mnt_want_write(nd.path.mnt); 3398 if (error) 3399 goto exit1; 3400 3401 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3402 dentry = lookup_hash(&nd); 3403 error = PTR_ERR(dentry); 3404 if (IS_ERR(dentry)) 3405 goto exit2; 3406 if (!dentry->d_inode) { 3407 error = -ENOENT; 3408 goto exit3; 3409 } 3410 error = security_path_rmdir(&nd.path, dentry); 3411 if (error) 3412 goto exit3; 3413 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3414 exit3: 3415 dput(dentry); 3416 exit2: 3417 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3418 mnt_drop_write(nd.path.mnt); 3419 exit1: 3420 path_put(&nd.path); 3421 putname(name); 3422 if (retry_estale(error, lookup_flags)) { 3423 lookup_flags |= LOOKUP_REVAL; 3424 goto retry; 3425 } 3426 return error; 3427 } 3428 3429 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3430 { 3431 return do_rmdir(AT_FDCWD, pathname); 3432 } 3433 3434 int vfs_unlink(struct inode *dir, struct dentry *dentry) 3435 { 3436 int error = may_delete(dir, dentry, 0); 3437 3438 if (error) 3439 return error; 3440 3441 if (!dir->i_op->unlink) 3442 return -EPERM; 3443 3444 mutex_lock(&dentry->d_inode->i_mutex); 3445 if (d_mountpoint(dentry)) 3446 error = -EBUSY; 3447 else { 3448 error = security_inode_unlink(dir, dentry); 3449 if (!error) { 3450 error = dir->i_op->unlink(dir, dentry); 3451 if (!error) 3452 dont_mount(dentry); 3453 } 3454 } 3455 mutex_unlock(&dentry->d_inode->i_mutex); 3456 3457 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3458 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3459 fsnotify_link_count(dentry->d_inode); 3460 d_delete(dentry); 3461 } 3462 3463 return error; 3464 } 3465 3466 /* 3467 * Make sure that the actual truncation of the file will occur outside its 3468 * directory's i_mutex. Truncate can take a long time if there is a lot of 3469 * writeout happening, and we don't want to prevent access to the directory 3470 * while waiting on the I/O. 3471 */ 3472 static long do_unlinkat(int dfd, const char __user *pathname) 3473 { 3474 int error; 3475 struct filename *name; 3476 struct dentry *dentry; 3477 struct nameidata nd; 3478 struct inode *inode = NULL; 3479 unsigned int lookup_flags = 0; 3480 retry: 3481 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3482 if (IS_ERR(name)) 3483 return PTR_ERR(name); 3484 3485 error = -EISDIR; 3486 if (nd.last_type != LAST_NORM) 3487 goto exit1; 3488 3489 nd.flags &= ~LOOKUP_PARENT; 3490 error = mnt_want_write(nd.path.mnt); 3491 if (error) 3492 goto exit1; 3493 3494 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3495 dentry = lookup_hash(&nd); 3496 error = PTR_ERR(dentry); 3497 if (!IS_ERR(dentry)) { 3498 /* Why not before? Because we want correct error value */ 3499 if (nd.last.name[nd.last.len]) 3500 goto slashes; 3501 inode = dentry->d_inode; 3502 if (!inode) 3503 goto slashes; 3504 ihold(inode); 3505 error = security_path_unlink(&nd.path, dentry); 3506 if (error) 3507 goto exit2; 3508 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 3509 exit2: 3510 dput(dentry); 3511 } 3512 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3513 if (inode) 3514 iput(inode); /* truncate the inode here */ 3515 mnt_drop_write(nd.path.mnt); 3516 exit1: 3517 path_put(&nd.path); 3518 putname(name); 3519 if (retry_estale(error, lookup_flags)) { 3520 lookup_flags |= LOOKUP_REVAL; 3521 inode = NULL; 3522 goto retry; 3523 } 3524 return error; 3525 3526 slashes: 3527 error = !dentry->d_inode ? -ENOENT : 3528 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 3529 goto exit2; 3530 } 3531 3532 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3533 { 3534 if ((flag & ~AT_REMOVEDIR) != 0) 3535 return -EINVAL; 3536 3537 if (flag & AT_REMOVEDIR) 3538 return do_rmdir(dfd, pathname); 3539 3540 return do_unlinkat(dfd, pathname); 3541 } 3542 3543 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3544 { 3545 return do_unlinkat(AT_FDCWD, pathname); 3546 } 3547 3548 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3549 { 3550 int error = may_create(dir, dentry); 3551 3552 if (error) 3553 return error; 3554 3555 if (!dir->i_op->symlink) 3556 return -EPERM; 3557 3558 error = security_inode_symlink(dir, dentry, oldname); 3559 if (error) 3560 return error; 3561 3562 error = dir->i_op->symlink(dir, dentry, oldname); 3563 if (!error) 3564 fsnotify_create(dir, dentry); 3565 return error; 3566 } 3567 3568 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3569 int, newdfd, const char __user *, newname) 3570 { 3571 int error; 3572 struct filename *from; 3573 struct dentry *dentry; 3574 struct path path; 3575 unsigned int lookup_flags = 0; 3576 3577 from = getname(oldname); 3578 if (IS_ERR(from)) 3579 return PTR_ERR(from); 3580 retry: 3581 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3582 error = PTR_ERR(dentry); 3583 if (IS_ERR(dentry)) 3584 goto out_putname; 3585 3586 error = security_path_symlink(&path, dentry, from->name); 3587 if (!error) 3588 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3589 done_path_create(&path, dentry); 3590 if (retry_estale(error, lookup_flags)) { 3591 lookup_flags |= LOOKUP_REVAL; 3592 goto retry; 3593 } 3594 out_putname: 3595 putname(from); 3596 return error; 3597 } 3598 3599 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3600 { 3601 return sys_symlinkat(oldname, AT_FDCWD, newname); 3602 } 3603 3604 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3605 { 3606 struct inode *inode = old_dentry->d_inode; 3607 unsigned max_links = dir->i_sb->s_max_links; 3608 int error; 3609 3610 if (!inode) 3611 return -ENOENT; 3612 3613 error = may_create(dir, new_dentry); 3614 if (error) 3615 return error; 3616 3617 if (dir->i_sb != inode->i_sb) 3618 return -EXDEV; 3619 3620 /* 3621 * A link to an append-only or immutable file cannot be created. 3622 */ 3623 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3624 return -EPERM; 3625 if (!dir->i_op->link) 3626 return -EPERM; 3627 if (S_ISDIR(inode->i_mode)) 3628 return -EPERM; 3629 3630 error = security_inode_link(old_dentry, dir, new_dentry); 3631 if (error) 3632 return error; 3633 3634 mutex_lock(&inode->i_mutex); 3635 /* Make sure we don't allow creating hardlink to an unlinked file */ 3636 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3637 error = -ENOENT; 3638 else if (max_links && inode->i_nlink >= max_links) 3639 error = -EMLINK; 3640 else 3641 error = dir->i_op->link(old_dentry, dir, new_dentry); 3642 3643 if (!error && (inode->i_state & I_LINKABLE)) { 3644 spin_lock(&inode->i_lock); 3645 inode->i_state &= ~I_LINKABLE; 3646 spin_unlock(&inode->i_lock); 3647 } 3648 mutex_unlock(&inode->i_mutex); 3649 if (!error) 3650 fsnotify_link(dir, inode, new_dentry); 3651 return error; 3652 } 3653 3654 /* 3655 * Hardlinks are often used in delicate situations. We avoid 3656 * security-related surprises by not following symlinks on the 3657 * newname. --KAB 3658 * 3659 * We don't follow them on the oldname either to be compatible 3660 * with linux 2.0, and to avoid hard-linking to directories 3661 * and other special files. --ADM 3662 */ 3663 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3664 int, newdfd, const char __user *, newname, int, flags) 3665 { 3666 struct dentry *new_dentry; 3667 struct path old_path, new_path; 3668 int how = 0; 3669 int error; 3670 3671 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3672 return -EINVAL; 3673 /* 3674 * Using empty names is equivalent to using AT_SYMLINK_FOLLOW 3675 * on /proc/self/fd/<fd>. 3676 */ 3677 if (flags & AT_EMPTY_PATH) 3678 how = LOOKUP_EMPTY; 3679 3680 if (flags & AT_SYMLINK_FOLLOW) 3681 how |= LOOKUP_FOLLOW; 3682 retry: 3683 error = user_path_at(olddfd, oldname, how, &old_path); 3684 if (error) 3685 return error; 3686 3687 new_dentry = user_path_create(newdfd, newname, &new_path, 3688 (how & LOOKUP_REVAL)); 3689 error = PTR_ERR(new_dentry); 3690 if (IS_ERR(new_dentry)) 3691 goto out; 3692 3693 error = -EXDEV; 3694 if (old_path.mnt != new_path.mnt) 3695 goto out_dput; 3696 error = may_linkat(&old_path); 3697 if (unlikely(error)) 3698 goto out_dput; 3699 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3700 if (error) 3701 goto out_dput; 3702 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); 3703 out_dput: 3704 done_path_create(&new_path, new_dentry); 3705 if (retry_estale(error, how)) { 3706 how |= LOOKUP_REVAL; 3707 goto retry; 3708 } 3709 out: 3710 path_put(&old_path); 3711 3712 return error; 3713 } 3714 3715 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3716 { 3717 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3718 } 3719 3720 /* 3721 * The worst of all namespace operations - renaming directory. "Perverted" 3722 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3723 * Problems: 3724 * a) we can get into loop creation. Check is done in is_subdir(). 3725 * b) race potential - two innocent renames can create a loop together. 3726 * That's where 4.4 screws up. Current fix: serialization on 3727 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3728 * story. 3729 * c) we have to lock _three_ objects - parents and victim (if it exists). 3730 * And that - after we got ->i_mutex on parents (until then we don't know 3731 * whether the target exists). Solution: try to be smart with locking 3732 * order for inodes. We rely on the fact that tree topology may change 3733 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3734 * move will be locked. Thus we can rank directories by the tree 3735 * (ancestors first) and rank all non-directories after them. 3736 * That works since everybody except rename does "lock parent, lookup, 3737 * lock child" and rename is under ->s_vfs_rename_mutex. 3738 * HOWEVER, it relies on the assumption that any object with ->lookup() 3739 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3740 * we'd better make sure that there's no link(2) for them. 3741 * d) conversion from fhandle to dentry may come in the wrong moment - when 3742 * we are removing the target. Solution: we will have to grab ->i_mutex 3743 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3744 * ->i_mutex on parents, which works but leads to some truly excessive 3745 * locking]. 3746 */ 3747 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3748 struct inode *new_dir, struct dentry *new_dentry) 3749 { 3750 int error = 0; 3751 struct inode *target = new_dentry->d_inode; 3752 unsigned max_links = new_dir->i_sb->s_max_links; 3753 3754 /* 3755 * If we are going to change the parent - check write permissions, 3756 * we'll need to flip '..'. 3757 */ 3758 if (new_dir != old_dir) { 3759 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3760 if (error) 3761 return error; 3762 } 3763 3764 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3765 if (error) 3766 return error; 3767 3768 dget(new_dentry); 3769 if (target) 3770 mutex_lock(&target->i_mutex); 3771 3772 error = -EBUSY; 3773 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 3774 goto out; 3775 3776 error = -EMLINK; 3777 if (max_links && !target && new_dir != old_dir && 3778 new_dir->i_nlink >= max_links) 3779 goto out; 3780 3781 if (target) 3782 shrink_dcache_parent(new_dentry); 3783 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3784 if (error) 3785 goto out; 3786 3787 if (target) { 3788 target->i_flags |= S_DEAD; 3789 dont_mount(new_dentry); 3790 } 3791 out: 3792 if (target) 3793 mutex_unlock(&target->i_mutex); 3794 dput(new_dentry); 3795 if (!error) 3796 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3797 d_move(old_dentry,new_dentry); 3798 return error; 3799 } 3800 3801 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3802 struct inode *new_dir, struct dentry *new_dentry) 3803 { 3804 struct inode *target = new_dentry->d_inode; 3805 int error; 3806 3807 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3808 if (error) 3809 return error; 3810 3811 dget(new_dentry); 3812 if (target) 3813 mutex_lock(&target->i_mutex); 3814 3815 error = -EBUSY; 3816 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3817 goto out; 3818 3819 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3820 if (error) 3821 goto out; 3822 3823 if (target) 3824 dont_mount(new_dentry); 3825 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3826 d_move(old_dentry, new_dentry); 3827 out: 3828 if (target) 3829 mutex_unlock(&target->i_mutex); 3830 dput(new_dentry); 3831 return error; 3832 } 3833 3834 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3835 struct inode *new_dir, struct dentry *new_dentry) 3836 { 3837 int error; 3838 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3839 const unsigned char *old_name; 3840 3841 if (old_dentry->d_inode == new_dentry->d_inode) 3842 return 0; 3843 3844 error = may_delete(old_dir, old_dentry, is_dir); 3845 if (error) 3846 return error; 3847 3848 if (!new_dentry->d_inode) 3849 error = may_create(new_dir, new_dentry); 3850 else 3851 error = may_delete(new_dir, new_dentry, is_dir); 3852 if (error) 3853 return error; 3854 3855 if (!old_dir->i_op->rename) 3856 return -EPERM; 3857 3858 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3859 3860 if (is_dir) 3861 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3862 else 3863 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3864 if (!error) 3865 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3866 new_dentry->d_inode, old_dentry); 3867 fsnotify_oldname_free(old_name); 3868 3869 return error; 3870 } 3871 3872 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3873 int, newdfd, const char __user *, newname) 3874 { 3875 struct dentry *old_dir, *new_dir; 3876 struct dentry *old_dentry, *new_dentry; 3877 struct dentry *trap; 3878 struct nameidata oldnd, newnd; 3879 struct filename *from; 3880 struct filename *to; 3881 unsigned int lookup_flags = 0; 3882 bool should_retry = false; 3883 int error; 3884 retry: 3885 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 3886 if (IS_ERR(from)) { 3887 error = PTR_ERR(from); 3888 goto exit; 3889 } 3890 3891 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 3892 if (IS_ERR(to)) { 3893 error = PTR_ERR(to); 3894 goto exit1; 3895 } 3896 3897 error = -EXDEV; 3898 if (oldnd.path.mnt != newnd.path.mnt) 3899 goto exit2; 3900 3901 old_dir = oldnd.path.dentry; 3902 error = -EBUSY; 3903 if (oldnd.last_type != LAST_NORM) 3904 goto exit2; 3905 3906 new_dir = newnd.path.dentry; 3907 if (newnd.last_type != LAST_NORM) 3908 goto exit2; 3909 3910 error = mnt_want_write(oldnd.path.mnt); 3911 if (error) 3912 goto exit2; 3913 3914 oldnd.flags &= ~LOOKUP_PARENT; 3915 newnd.flags &= ~LOOKUP_PARENT; 3916 newnd.flags |= LOOKUP_RENAME_TARGET; 3917 3918 trap = lock_rename(new_dir, old_dir); 3919 3920 old_dentry = lookup_hash(&oldnd); 3921 error = PTR_ERR(old_dentry); 3922 if (IS_ERR(old_dentry)) 3923 goto exit3; 3924 /* source must exist */ 3925 error = -ENOENT; 3926 if (!old_dentry->d_inode) 3927 goto exit4; 3928 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3929 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3930 error = -ENOTDIR; 3931 if (oldnd.last.name[oldnd.last.len]) 3932 goto exit4; 3933 if (newnd.last.name[newnd.last.len]) 3934 goto exit4; 3935 } 3936 /* source should not be ancestor of target */ 3937 error = -EINVAL; 3938 if (old_dentry == trap) 3939 goto exit4; 3940 new_dentry = lookup_hash(&newnd); 3941 error = PTR_ERR(new_dentry); 3942 if (IS_ERR(new_dentry)) 3943 goto exit4; 3944 /* target should not be an ancestor of source */ 3945 error = -ENOTEMPTY; 3946 if (new_dentry == trap) 3947 goto exit5; 3948 3949 error = security_path_rename(&oldnd.path, old_dentry, 3950 &newnd.path, new_dentry); 3951 if (error) 3952 goto exit5; 3953 error = vfs_rename(old_dir->d_inode, old_dentry, 3954 new_dir->d_inode, new_dentry); 3955 exit5: 3956 dput(new_dentry); 3957 exit4: 3958 dput(old_dentry); 3959 exit3: 3960 unlock_rename(new_dir, old_dir); 3961 mnt_drop_write(oldnd.path.mnt); 3962 exit2: 3963 if (retry_estale(error, lookup_flags)) 3964 should_retry = true; 3965 path_put(&newnd.path); 3966 putname(to); 3967 exit1: 3968 path_put(&oldnd.path); 3969 putname(from); 3970 if (should_retry) { 3971 should_retry = false; 3972 lookup_flags |= LOOKUP_REVAL; 3973 goto retry; 3974 } 3975 exit: 3976 return error; 3977 } 3978 3979 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3980 { 3981 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3982 } 3983 3984 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3985 { 3986 int len; 3987 3988 len = PTR_ERR(link); 3989 if (IS_ERR(link)) 3990 goto out; 3991 3992 len = strlen(link); 3993 if (len > (unsigned) buflen) 3994 len = buflen; 3995 if (copy_to_user(buffer, link, len)) 3996 len = -EFAULT; 3997 out: 3998 return len; 3999 } 4000 4001 /* 4002 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4003 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4004 * using) it for any given inode is up to filesystem. 4005 */ 4006 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4007 { 4008 struct nameidata nd; 4009 void *cookie; 4010 int res; 4011 4012 nd.depth = 0; 4013 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4014 if (IS_ERR(cookie)) 4015 return PTR_ERR(cookie); 4016 4017 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 4018 if (dentry->d_inode->i_op->put_link) 4019 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4020 return res; 4021 } 4022 4023 int vfs_follow_link(struct nameidata *nd, const char *link) 4024 { 4025 return __vfs_follow_link(nd, link); 4026 } 4027 4028 /* get the link contents into pagecache */ 4029 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4030 { 4031 char *kaddr; 4032 struct page *page; 4033 struct address_space *mapping = dentry->d_inode->i_mapping; 4034 page = read_mapping_page(mapping, 0, NULL); 4035 if (IS_ERR(page)) 4036 return (char*)page; 4037 *ppage = page; 4038 kaddr = kmap(page); 4039 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4040 return kaddr; 4041 } 4042 4043 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4044 { 4045 struct page *page = NULL; 4046 char *s = page_getlink(dentry, &page); 4047 int res = vfs_readlink(dentry,buffer,buflen,s); 4048 if (page) { 4049 kunmap(page); 4050 page_cache_release(page); 4051 } 4052 return res; 4053 } 4054 4055 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4056 { 4057 struct page *page = NULL; 4058 nd_set_link(nd, page_getlink(dentry, &page)); 4059 return page; 4060 } 4061 4062 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4063 { 4064 struct page *page = cookie; 4065 4066 if (page) { 4067 kunmap(page); 4068 page_cache_release(page); 4069 } 4070 } 4071 4072 /* 4073 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4074 */ 4075 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4076 { 4077 struct address_space *mapping = inode->i_mapping; 4078 struct page *page; 4079 void *fsdata; 4080 int err; 4081 char *kaddr; 4082 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4083 if (nofs) 4084 flags |= AOP_FLAG_NOFS; 4085 4086 retry: 4087 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4088 flags, &page, &fsdata); 4089 if (err) 4090 goto fail; 4091 4092 kaddr = kmap_atomic(page); 4093 memcpy(kaddr, symname, len-1); 4094 kunmap_atomic(kaddr); 4095 4096 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4097 page, fsdata); 4098 if (err < 0) 4099 goto fail; 4100 if (err < len-1) 4101 goto retry; 4102 4103 mark_inode_dirty(inode); 4104 return 0; 4105 fail: 4106 return err; 4107 } 4108 4109 int page_symlink(struct inode *inode, const char *symname, int len) 4110 { 4111 return __page_symlink(inode, symname, len, 4112 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4113 } 4114 4115 const struct inode_operations page_symlink_inode_operations = { 4116 .readlink = generic_readlink, 4117 .follow_link = page_follow_link_light, 4118 .put_link = page_put_link, 4119 }; 4120 4121 EXPORT_SYMBOL(user_path_at); 4122 EXPORT_SYMBOL(follow_down_one); 4123 EXPORT_SYMBOL(follow_down); 4124 EXPORT_SYMBOL(follow_up); 4125 EXPORT_SYMBOL(get_write_access); /* nfsd */ 4126 EXPORT_SYMBOL(lock_rename); 4127 EXPORT_SYMBOL(lookup_one_len); 4128 EXPORT_SYMBOL(page_follow_link_light); 4129 EXPORT_SYMBOL(page_put_link); 4130 EXPORT_SYMBOL(page_readlink); 4131 EXPORT_SYMBOL(__page_symlink); 4132 EXPORT_SYMBOL(page_symlink); 4133 EXPORT_SYMBOL(page_symlink_inode_operations); 4134 EXPORT_SYMBOL(kern_path); 4135 EXPORT_SYMBOL(vfs_path_lookup); 4136 EXPORT_SYMBOL(inode_permission); 4137 EXPORT_SYMBOL(unlock_rename); 4138 EXPORT_SYMBOL(vfs_create); 4139 EXPORT_SYMBOL(vfs_follow_link); 4140 EXPORT_SYMBOL(vfs_link); 4141 EXPORT_SYMBOL(vfs_mkdir); 4142 EXPORT_SYMBOL(vfs_mknod); 4143 EXPORT_SYMBOL(generic_permission); 4144 EXPORT_SYMBOL(vfs_readlink); 4145 EXPORT_SYMBOL(vfs_rename); 4146 EXPORT_SYMBOL(vfs_rmdir); 4147 EXPORT_SYMBOL(vfs_symlink); 4148 EXPORT_SYMBOL(vfs_unlink); 4149 EXPORT_SYMBOL(dentry_unhash); 4150 EXPORT_SYMBOL(generic_readlink); 4151