1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/sched/mm.h> 26 #include <linux/fsnotify.h> 27 #include <linux/personality.h> 28 #include <linux/security.h> 29 #include <linux/ima.h> 30 #include <linux/syscalls.h> 31 #include <linux/mount.h> 32 #include <linux/audit.h> 33 #include <linux/capability.h> 34 #include <linux/file.h> 35 #include <linux/fcntl.h> 36 #include <linux/device_cgroup.h> 37 #include <linux/fs_struct.h> 38 #include <linux/posix_acl.h> 39 #include <linux/hash.h> 40 #include <linux/bitops.h> 41 #include <linux/init_task.h> 42 #include <linux/uaccess.h> 43 44 #include "internal.h" 45 #include "mount.h" 46 47 /* [Feb-1997 T. Schoebel-Theuer] 48 * Fundamental changes in the pathname lookup mechanisms (namei) 49 * were necessary because of omirr. The reason is that omirr needs 50 * to know the _real_ pathname, not the user-supplied one, in case 51 * of symlinks (and also when transname replacements occur). 52 * 53 * The new code replaces the old recursive symlink resolution with 54 * an iterative one (in case of non-nested symlink chains). It does 55 * this with calls to <fs>_follow_link(). 56 * As a side effect, dir_namei(), _namei() and follow_link() are now 57 * replaced with a single function lookup_dentry() that can handle all 58 * the special cases of the former code. 59 * 60 * With the new dcache, the pathname is stored at each inode, at least as 61 * long as the refcount of the inode is positive. As a side effect, the 62 * size of the dcache depends on the inode cache and thus is dynamic. 63 * 64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 65 * resolution to correspond with current state of the code. 66 * 67 * Note that the symlink resolution is not *completely* iterative. 68 * There is still a significant amount of tail- and mid- recursion in 69 * the algorithm. Also, note that <fs>_readlink() is not used in 70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 71 * may return different results than <fs>_follow_link(). Many virtual 72 * filesystems (including /proc) exhibit this behavior. 73 */ 74 75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 77 * and the name already exists in form of a symlink, try to create the new 78 * name indicated by the symlink. The old code always complained that the 79 * name already exists, due to not following the symlink even if its target 80 * is nonexistent. The new semantics affects also mknod() and link() when 81 * the name is a symlink pointing to a non-existent name. 82 * 83 * I don't know which semantics is the right one, since I have no access 84 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 86 * "old" one. Personally, I think the new semantics is much more logical. 87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 88 * file does succeed in both HP-UX and SunOs, but not in Solaris 89 * and in the old Linux semantics. 90 */ 91 92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 93 * semantics. See the comments in "open_namei" and "do_link" below. 94 * 95 * [10-Sep-98 Alan Modra] Another symlink change. 96 */ 97 98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 99 * inside the path - always follow. 100 * in the last component in creation/removal/renaming - never follow. 101 * if LOOKUP_FOLLOW passed - follow. 102 * if the pathname has trailing slashes - follow. 103 * otherwise - don't follow. 104 * (applied in that order). 105 * 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 108 * During the 2.4 we need to fix the userland stuff depending on it - 109 * hopefully we will be able to get rid of that wart in 2.5. So far only 110 * XEmacs seems to be relying on it... 111 */ 112 /* 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 115 * any extra contention... 116 */ 117 118 /* In order to reduce some races, while at the same time doing additional 119 * checking and hopefully speeding things up, we copy filenames to the 120 * kernel data space before using them.. 121 * 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 123 * PATH_MAX includes the nul terminator --RR. 124 */ 125 126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 127 128 struct filename * 129 getname_flags(const char __user *filename, int flags, int *empty) 130 { 131 struct filename *result; 132 char *kname; 133 int len; 134 135 result = audit_reusename(filename); 136 if (result) 137 return result; 138 139 result = __getname(); 140 if (unlikely(!result)) 141 return ERR_PTR(-ENOMEM); 142 143 /* 144 * First, try to embed the struct filename inside the names_cache 145 * allocation 146 */ 147 kname = (char *)result->iname; 148 result->name = kname; 149 150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 151 if (unlikely(len < 0)) { 152 __putname(result); 153 return ERR_PTR(len); 154 } 155 156 /* 157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 158 * separate struct filename so we can dedicate the entire 159 * names_cache allocation for the pathname, and re-do the copy from 160 * userland. 161 */ 162 if (unlikely(len == EMBEDDED_NAME_MAX)) { 163 const size_t size = offsetof(struct filename, iname[1]); 164 kname = (char *)result; 165 166 /* 167 * size is chosen that way we to guarantee that 168 * result->iname[0] is within the same object and that 169 * kname can't be equal to result->iname, no matter what. 170 */ 171 result = kzalloc(size, GFP_KERNEL); 172 if (unlikely(!result)) { 173 __putname(kname); 174 return ERR_PTR(-ENOMEM); 175 } 176 result->name = kname; 177 len = strncpy_from_user(kname, filename, PATH_MAX); 178 if (unlikely(len < 0)) { 179 __putname(kname); 180 kfree(result); 181 return ERR_PTR(len); 182 } 183 if (unlikely(len == PATH_MAX)) { 184 __putname(kname); 185 kfree(result); 186 return ERR_PTR(-ENAMETOOLONG); 187 } 188 } 189 190 result->refcnt = 1; 191 /* The empty path is special. */ 192 if (unlikely(!len)) { 193 if (empty) 194 *empty = 1; 195 if (!(flags & LOOKUP_EMPTY)) { 196 putname(result); 197 return ERR_PTR(-ENOENT); 198 } 199 } 200 201 result->uptr = filename; 202 result->aname = NULL; 203 audit_getname(result); 204 return result; 205 } 206 207 struct filename * 208 getname_uflags(const char __user *filename, int uflags) 209 { 210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 211 212 return getname_flags(filename, flags, NULL); 213 } 214 215 struct filename * 216 getname(const char __user * filename) 217 { 218 return getname_flags(filename, 0, NULL); 219 } 220 221 struct filename * 222 getname_kernel(const char * filename) 223 { 224 struct filename *result; 225 int len = strlen(filename) + 1; 226 227 result = __getname(); 228 if (unlikely(!result)) 229 return ERR_PTR(-ENOMEM); 230 231 if (len <= EMBEDDED_NAME_MAX) { 232 result->name = (char *)result->iname; 233 } else if (len <= PATH_MAX) { 234 const size_t size = offsetof(struct filename, iname[1]); 235 struct filename *tmp; 236 237 tmp = kmalloc(size, GFP_KERNEL); 238 if (unlikely(!tmp)) { 239 __putname(result); 240 return ERR_PTR(-ENOMEM); 241 } 242 tmp->name = (char *)result; 243 result = tmp; 244 } else { 245 __putname(result); 246 return ERR_PTR(-ENAMETOOLONG); 247 } 248 memcpy((char *)result->name, filename, len); 249 result->uptr = NULL; 250 result->aname = NULL; 251 result->refcnt = 1; 252 audit_getname(result); 253 254 return result; 255 } 256 257 void putname(struct filename *name) 258 { 259 if (IS_ERR(name)) 260 return; 261 262 BUG_ON(name->refcnt <= 0); 263 264 if (--name->refcnt > 0) 265 return; 266 267 if (name->name != name->iname) { 268 __putname(name->name); 269 kfree(name); 270 } else 271 __putname(name); 272 } 273 274 /** 275 * check_acl - perform ACL permission checking 276 * @mnt_userns: user namespace of the mount the inode was found from 277 * @inode: inode to check permissions on 278 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 279 * 280 * This function performs the ACL permission checking. Since this function 281 * retrieve POSIX acls it needs to know whether it is called from a blocking or 282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 283 * 284 * If the inode has been found through an idmapped mount the user namespace of 285 * the vfsmount must be passed through @mnt_userns. This function will then take 286 * care to map the inode according to @mnt_userns before checking permissions. 287 * On non-idmapped mounts or if permission checking is to be performed on the 288 * raw inode simply passs init_user_ns. 289 */ 290 static int check_acl(struct user_namespace *mnt_userns, 291 struct inode *inode, int mask) 292 { 293 #ifdef CONFIG_FS_POSIX_ACL 294 struct posix_acl *acl; 295 296 if (mask & MAY_NOT_BLOCK) { 297 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 298 if (!acl) 299 return -EAGAIN; 300 /* no ->get_acl() calls in RCU mode... */ 301 if (is_uncached_acl(acl)) 302 return -ECHILD; 303 return posix_acl_permission(mnt_userns, inode, acl, mask); 304 } 305 306 acl = get_acl(inode, ACL_TYPE_ACCESS); 307 if (IS_ERR(acl)) 308 return PTR_ERR(acl); 309 if (acl) { 310 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 311 posix_acl_release(acl); 312 return error; 313 } 314 #endif 315 316 return -EAGAIN; 317 } 318 319 /** 320 * acl_permission_check - perform basic UNIX permission checking 321 * @mnt_userns: user namespace of the mount the inode was found from 322 * @inode: inode to check permissions on 323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 324 * 325 * This function performs the basic UNIX permission checking. Since this 326 * function may retrieve POSIX acls it needs to know whether it is called from a 327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 328 * 329 * If the inode has been found through an idmapped mount the user namespace of 330 * the vfsmount must be passed through @mnt_userns. This function will then take 331 * care to map the inode according to @mnt_userns before checking permissions. 332 * On non-idmapped mounts or if permission checking is to be performed on the 333 * raw inode simply passs init_user_ns. 334 */ 335 static int acl_permission_check(struct user_namespace *mnt_userns, 336 struct inode *inode, int mask) 337 { 338 unsigned int mode = inode->i_mode; 339 kuid_t i_uid; 340 341 /* Are we the owner? If so, ACL's don't matter */ 342 i_uid = i_uid_into_mnt(mnt_userns, inode); 343 if (likely(uid_eq(current_fsuid(), i_uid))) { 344 mask &= 7; 345 mode >>= 6; 346 return (mask & ~mode) ? -EACCES : 0; 347 } 348 349 /* Do we have ACL's? */ 350 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 351 int error = check_acl(mnt_userns, inode, mask); 352 if (error != -EAGAIN) 353 return error; 354 } 355 356 /* Only RWX matters for group/other mode bits */ 357 mask &= 7; 358 359 /* 360 * Are the group permissions different from 361 * the other permissions in the bits we care 362 * about? Need to check group ownership if so. 363 */ 364 if (mask & (mode ^ (mode >> 3))) { 365 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 366 if (in_group_p(kgid)) 367 mode >>= 3; 368 } 369 370 /* Bits in 'mode' clear that we require? */ 371 return (mask & ~mode) ? -EACCES : 0; 372 } 373 374 /** 375 * generic_permission - check for access rights on a Posix-like filesystem 376 * @mnt_userns: user namespace of the mount the inode was found from 377 * @inode: inode to check access rights for 378 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 379 * %MAY_NOT_BLOCK ...) 380 * 381 * Used to check for read/write/execute permissions on a file. 382 * We use "fsuid" for this, letting us set arbitrary permissions 383 * for filesystem access without changing the "normal" uids which 384 * are used for other things. 385 * 386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 387 * request cannot be satisfied (eg. requires blocking or too much complexity). 388 * It would then be called again in ref-walk mode. 389 * 390 * If the inode has been found through an idmapped mount the user namespace of 391 * the vfsmount must be passed through @mnt_userns. This function will then take 392 * care to map the inode according to @mnt_userns before checking permissions. 393 * On non-idmapped mounts or if permission checking is to be performed on the 394 * raw inode simply passs init_user_ns. 395 */ 396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 397 int mask) 398 { 399 int ret; 400 401 /* 402 * Do the basic permission checks. 403 */ 404 ret = acl_permission_check(mnt_userns, inode, mask); 405 if (ret != -EACCES) 406 return ret; 407 408 if (S_ISDIR(inode->i_mode)) { 409 /* DACs are overridable for directories */ 410 if (!(mask & MAY_WRITE)) 411 if (capable_wrt_inode_uidgid(mnt_userns, inode, 412 CAP_DAC_READ_SEARCH)) 413 return 0; 414 if (capable_wrt_inode_uidgid(mnt_userns, inode, 415 CAP_DAC_OVERRIDE)) 416 return 0; 417 return -EACCES; 418 } 419 420 /* 421 * Searching includes executable on directories, else just read. 422 */ 423 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 424 if (mask == MAY_READ) 425 if (capable_wrt_inode_uidgid(mnt_userns, inode, 426 CAP_DAC_READ_SEARCH)) 427 return 0; 428 /* 429 * Read/write DACs are always overridable. 430 * Executable DACs are overridable when there is 431 * at least one exec bit set. 432 */ 433 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 434 if (capable_wrt_inode_uidgid(mnt_userns, inode, 435 CAP_DAC_OVERRIDE)) 436 return 0; 437 438 return -EACCES; 439 } 440 EXPORT_SYMBOL(generic_permission); 441 442 /** 443 * do_inode_permission - UNIX permission checking 444 * @mnt_userns: user namespace of the mount the inode was found from 445 * @inode: inode to check permissions on 446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 447 * 448 * We _really_ want to just do "generic_permission()" without 449 * even looking at the inode->i_op values. So we keep a cache 450 * flag in inode->i_opflags, that says "this has not special 451 * permission function, use the fast case". 452 */ 453 static inline int do_inode_permission(struct user_namespace *mnt_userns, 454 struct inode *inode, int mask) 455 { 456 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 457 if (likely(inode->i_op->permission)) 458 return inode->i_op->permission(mnt_userns, inode, mask); 459 460 /* This gets set once for the inode lifetime */ 461 spin_lock(&inode->i_lock); 462 inode->i_opflags |= IOP_FASTPERM; 463 spin_unlock(&inode->i_lock); 464 } 465 return generic_permission(mnt_userns, inode, mask); 466 } 467 468 /** 469 * sb_permission - Check superblock-level permissions 470 * @sb: Superblock of inode to check permission on 471 * @inode: Inode to check permission on 472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 473 * 474 * Separate out file-system wide checks from inode-specific permission checks. 475 */ 476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 477 { 478 if (unlikely(mask & MAY_WRITE)) { 479 umode_t mode = inode->i_mode; 480 481 /* Nobody gets write access to a read-only fs. */ 482 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 483 return -EROFS; 484 } 485 return 0; 486 } 487 488 /** 489 * inode_permission - Check for access rights to a given inode 490 * @mnt_userns: User namespace of the mount the inode was found from 491 * @inode: Inode to check permission on 492 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 493 * 494 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 495 * this, letting us set arbitrary permissions for filesystem access without 496 * changing the "normal" UIDs which are used for other things. 497 * 498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 499 */ 500 int inode_permission(struct user_namespace *mnt_userns, 501 struct inode *inode, int mask) 502 { 503 int retval; 504 505 retval = sb_permission(inode->i_sb, inode, mask); 506 if (retval) 507 return retval; 508 509 if (unlikely(mask & MAY_WRITE)) { 510 /* 511 * Nobody gets write access to an immutable file. 512 */ 513 if (IS_IMMUTABLE(inode)) 514 return -EPERM; 515 516 /* 517 * Updating mtime will likely cause i_uid and i_gid to be 518 * written back improperly if their true value is unknown 519 * to the vfs. 520 */ 521 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 522 return -EACCES; 523 } 524 525 retval = do_inode_permission(mnt_userns, inode, mask); 526 if (retval) 527 return retval; 528 529 retval = devcgroup_inode_permission(inode, mask); 530 if (retval) 531 return retval; 532 533 return security_inode_permission(inode, mask); 534 } 535 EXPORT_SYMBOL(inode_permission); 536 537 /** 538 * path_get - get a reference to a path 539 * @path: path to get the reference to 540 * 541 * Given a path increment the reference count to the dentry and the vfsmount. 542 */ 543 void path_get(const struct path *path) 544 { 545 mntget(path->mnt); 546 dget(path->dentry); 547 } 548 EXPORT_SYMBOL(path_get); 549 550 /** 551 * path_put - put a reference to a path 552 * @path: path to put the reference to 553 * 554 * Given a path decrement the reference count to the dentry and the vfsmount. 555 */ 556 void path_put(const struct path *path) 557 { 558 dput(path->dentry); 559 mntput(path->mnt); 560 } 561 EXPORT_SYMBOL(path_put); 562 563 #define EMBEDDED_LEVELS 2 564 struct nameidata { 565 struct path path; 566 struct qstr last; 567 struct path root; 568 struct inode *inode; /* path.dentry.d_inode */ 569 unsigned int flags, state; 570 unsigned seq, next_seq, m_seq, r_seq; 571 int last_type; 572 unsigned depth; 573 int total_link_count; 574 struct saved { 575 struct path link; 576 struct delayed_call done; 577 const char *name; 578 unsigned seq; 579 } *stack, internal[EMBEDDED_LEVELS]; 580 struct filename *name; 581 struct nameidata *saved; 582 unsigned root_seq; 583 int dfd; 584 kuid_t dir_uid; 585 umode_t dir_mode; 586 } __randomize_layout; 587 588 #define ND_ROOT_PRESET 1 589 #define ND_ROOT_GRABBED 2 590 #define ND_JUMPED 4 591 592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 593 { 594 struct nameidata *old = current->nameidata; 595 p->stack = p->internal; 596 p->depth = 0; 597 p->dfd = dfd; 598 p->name = name; 599 p->path.mnt = NULL; 600 p->path.dentry = NULL; 601 p->total_link_count = old ? old->total_link_count : 0; 602 p->saved = old; 603 current->nameidata = p; 604 } 605 606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 607 const struct path *root) 608 { 609 __set_nameidata(p, dfd, name); 610 p->state = 0; 611 if (unlikely(root)) { 612 p->state = ND_ROOT_PRESET; 613 p->root = *root; 614 } 615 } 616 617 static void restore_nameidata(void) 618 { 619 struct nameidata *now = current->nameidata, *old = now->saved; 620 621 current->nameidata = old; 622 if (old) 623 old->total_link_count = now->total_link_count; 624 if (now->stack != now->internal) 625 kfree(now->stack); 626 } 627 628 static bool nd_alloc_stack(struct nameidata *nd) 629 { 630 struct saved *p; 631 632 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 633 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 634 if (unlikely(!p)) 635 return false; 636 memcpy(p, nd->internal, sizeof(nd->internal)); 637 nd->stack = p; 638 return true; 639 } 640 641 /** 642 * path_connected - Verify that a dentry is below mnt.mnt_root 643 * 644 * Rename can sometimes move a file or directory outside of a bind 645 * mount, path_connected allows those cases to be detected. 646 */ 647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 648 { 649 struct super_block *sb = mnt->mnt_sb; 650 651 /* Bind mounts can have disconnected paths */ 652 if (mnt->mnt_root == sb->s_root) 653 return true; 654 655 return is_subdir(dentry, mnt->mnt_root); 656 } 657 658 static void drop_links(struct nameidata *nd) 659 { 660 int i = nd->depth; 661 while (i--) { 662 struct saved *last = nd->stack + i; 663 do_delayed_call(&last->done); 664 clear_delayed_call(&last->done); 665 } 666 } 667 668 static void leave_rcu(struct nameidata *nd) 669 { 670 nd->flags &= ~LOOKUP_RCU; 671 nd->seq = nd->next_seq = 0; 672 rcu_read_unlock(); 673 } 674 675 static void terminate_walk(struct nameidata *nd) 676 { 677 drop_links(nd); 678 if (!(nd->flags & LOOKUP_RCU)) { 679 int i; 680 path_put(&nd->path); 681 for (i = 0; i < nd->depth; i++) 682 path_put(&nd->stack[i].link); 683 if (nd->state & ND_ROOT_GRABBED) { 684 path_put(&nd->root); 685 nd->state &= ~ND_ROOT_GRABBED; 686 } 687 } else { 688 leave_rcu(nd); 689 } 690 nd->depth = 0; 691 nd->path.mnt = NULL; 692 nd->path.dentry = NULL; 693 } 694 695 /* path_put is needed afterwards regardless of success or failure */ 696 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 697 { 698 int res = __legitimize_mnt(path->mnt, mseq); 699 if (unlikely(res)) { 700 if (res > 0) 701 path->mnt = NULL; 702 path->dentry = NULL; 703 return false; 704 } 705 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 706 path->dentry = NULL; 707 return false; 708 } 709 return !read_seqcount_retry(&path->dentry->d_seq, seq); 710 } 711 712 static inline bool legitimize_path(struct nameidata *nd, 713 struct path *path, unsigned seq) 714 { 715 return __legitimize_path(path, seq, nd->m_seq); 716 } 717 718 static bool legitimize_links(struct nameidata *nd) 719 { 720 int i; 721 if (unlikely(nd->flags & LOOKUP_CACHED)) { 722 drop_links(nd); 723 nd->depth = 0; 724 return false; 725 } 726 for (i = 0; i < nd->depth; i++) { 727 struct saved *last = nd->stack + i; 728 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 729 drop_links(nd); 730 nd->depth = i + 1; 731 return false; 732 } 733 } 734 return true; 735 } 736 737 static bool legitimize_root(struct nameidata *nd) 738 { 739 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 740 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 741 return true; 742 nd->state |= ND_ROOT_GRABBED; 743 return legitimize_path(nd, &nd->root, nd->root_seq); 744 } 745 746 /* 747 * Path walking has 2 modes, rcu-walk and ref-walk (see 748 * Documentation/filesystems/path-lookup.txt). In situations when we can't 749 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 750 * normal reference counts on dentries and vfsmounts to transition to ref-walk 751 * mode. Refcounts are grabbed at the last known good point before rcu-walk 752 * got stuck, so ref-walk may continue from there. If this is not successful 753 * (eg. a seqcount has changed), then failure is returned and it's up to caller 754 * to restart the path walk from the beginning in ref-walk mode. 755 */ 756 757 /** 758 * try_to_unlazy - try to switch to ref-walk mode. 759 * @nd: nameidata pathwalk data 760 * Returns: true on success, false on failure 761 * 762 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 763 * for ref-walk mode. 764 * Must be called from rcu-walk context. 765 * Nothing should touch nameidata between try_to_unlazy() failure and 766 * terminate_walk(). 767 */ 768 static bool try_to_unlazy(struct nameidata *nd) 769 { 770 struct dentry *parent = nd->path.dentry; 771 772 BUG_ON(!(nd->flags & LOOKUP_RCU)); 773 774 if (unlikely(!legitimize_links(nd))) 775 goto out1; 776 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 777 goto out; 778 if (unlikely(!legitimize_root(nd))) 779 goto out; 780 leave_rcu(nd); 781 BUG_ON(nd->inode != parent->d_inode); 782 return true; 783 784 out1: 785 nd->path.mnt = NULL; 786 nd->path.dentry = NULL; 787 out: 788 leave_rcu(nd); 789 return false; 790 } 791 792 /** 793 * try_to_unlazy_next - try to switch to ref-walk mode. 794 * @nd: nameidata pathwalk data 795 * @dentry: next dentry to step into 796 * Returns: true on success, false on failure 797 * 798 * Similar to try_to_unlazy(), but here we have the next dentry already 799 * picked by rcu-walk and want to legitimize that in addition to the current 800 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 801 * Nothing should touch nameidata between try_to_unlazy_next() failure and 802 * terminate_walk(). 803 */ 804 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 805 { 806 int res; 807 BUG_ON(!(nd->flags & LOOKUP_RCU)); 808 809 if (unlikely(!legitimize_links(nd))) 810 goto out2; 811 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 812 if (unlikely(res)) { 813 if (res > 0) 814 goto out2; 815 goto out1; 816 } 817 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 818 goto out1; 819 820 /* 821 * We need to move both the parent and the dentry from the RCU domain 822 * to be properly refcounted. And the sequence number in the dentry 823 * validates *both* dentry counters, since we checked the sequence 824 * number of the parent after we got the child sequence number. So we 825 * know the parent must still be valid if the child sequence number is 826 */ 827 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 828 goto out; 829 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 830 goto out_dput; 831 /* 832 * Sequence counts matched. Now make sure that the root is 833 * still valid and get it if required. 834 */ 835 if (unlikely(!legitimize_root(nd))) 836 goto out_dput; 837 leave_rcu(nd); 838 return true; 839 840 out2: 841 nd->path.mnt = NULL; 842 out1: 843 nd->path.dentry = NULL; 844 out: 845 leave_rcu(nd); 846 return false; 847 out_dput: 848 leave_rcu(nd); 849 dput(dentry); 850 return false; 851 } 852 853 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 854 { 855 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 856 return dentry->d_op->d_revalidate(dentry, flags); 857 else 858 return 1; 859 } 860 861 /** 862 * complete_walk - successful completion of path walk 863 * @nd: pointer nameidata 864 * 865 * If we had been in RCU mode, drop out of it and legitimize nd->path. 866 * Revalidate the final result, unless we'd already done that during 867 * the path walk or the filesystem doesn't ask for it. Return 0 on 868 * success, -error on failure. In case of failure caller does not 869 * need to drop nd->path. 870 */ 871 static int complete_walk(struct nameidata *nd) 872 { 873 struct dentry *dentry = nd->path.dentry; 874 int status; 875 876 if (nd->flags & LOOKUP_RCU) { 877 /* 878 * We don't want to zero nd->root for scoped-lookups or 879 * externally-managed nd->root. 880 */ 881 if (!(nd->state & ND_ROOT_PRESET)) 882 if (!(nd->flags & LOOKUP_IS_SCOPED)) 883 nd->root.mnt = NULL; 884 nd->flags &= ~LOOKUP_CACHED; 885 if (!try_to_unlazy(nd)) 886 return -ECHILD; 887 } 888 889 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 890 /* 891 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 892 * ever step outside the root during lookup" and should already 893 * be guaranteed by the rest of namei, we want to avoid a namei 894 * BUG resulting in userspace being given a path that was not 895 * scoped within the root at some point during the lookup. 896 * 897 * So, do a final sanity-check to make sure that in the 898 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 899 * we won't silently return an fd completely outside of the 900 * requested root to userspace. 901 * 902 * Userspace could move the path outside the root after this 903 * check, but as discussed elsewhere this is not a concern (the 904 * resolved file was inside the root at some point). 905 */ 906 if (!path_is_under(&nd->path, &nd->root)) 907 return -EXDEV; 908 } 909 910 if (likely(!(nd->state & ND_JUMPED))) 911 return 0; 912 913 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 914 return 0; 915 916 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 917 if (status > 0) 918 return 0; 919 920 if (!status) 921 status = -ESTALE; 922 923 return status; 924 } 925 926 static int set_root(struct nameidata *nd) 927 { 928 struct fs_struct *fs = current->fs; 929 930 /* 931 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 932 * still have to ensure it doesn't happen because it will cause a breakout 933 * from the dirfd. 934 */ 935 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 936 return -ENOTRECOVERABLE; 937 938 if (nd->flags & LOOKUP_RCU) { 939 unsigned seq; 940 941 do { 942 seq = read_seqcount_begin(&fs->seq); 943 nd->root = fs->root; 944 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 945 } while (read_seqcount_retry(&fs->seq, seq)); 946 } else { 947 get_fs_root(fs, &nd->root); 948 nd->state |= ND_ROOT_GRABBED; 949 } 950 return 0; 951 } 952 953 static int nd_jump_root(struct nameidata *nd) 954 { 955 if (unlikely(nd->flags & LOOKUP_BENEATH)) 956 return -EXDEV; 957 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 958 /* Absolute path arguments to path_init() are allowed. */ 959 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 960 return -EXDEV; 961 } 962 if (!nd->root.mnt) { 963 int error = set_root(nd); 964 if (error) 965 return error; 966 } 967 if (nd->flags & LOOKUP_RCU) { 968 struct dentry *d; 969 nd->path = nd->root; 970 d = nd->path.dentry; 971 nd->inode = d->d_inode; 972 nd->seq = nd->root_seq; 973 if (read_seqcount_retry(&d->d_seq, nd->seq)) 974 return -ECHILD; 975 } else { 976 path_put(&nd->path); 977 nd->path = nd->root; 978 path_get(&nd->path); 979 nd->inode = nd->path.dentry->d_inode; 980 } 981 nd->state |= ND_JUMPED; 982 return 0; 983 } 984 985 /* 986 * Helper to directly jump to a known parsed path from ->get_link, 987 * caller must have taken a reference to path beforehand. 988 */ 989 int nd_jump_link(const struct path *path) 990 { 991 int error = -ELOOP; 992 struct nameidata *nd = current->nameidata; 993 994 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 995 goto err; 996 997 error = -EXDEV; 998 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 999 if (nd->path.mnt != path->mnt) 1000 goto err; 1001 } 1002 /* Not currently safe for scoped-lookups. */ 1003 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1004 goto err; 1005 1006 path_put(&nd->path); 1007 nd->path = *path; 1008 nd->inode = nd->path.dentry->d_inode; 1009 nd->state |= ND_JUMPED; 1010 return 0; 1011 1012 err: 1013 path_put(path); 1014 return error; 1015 } 1016 1017 static inline void put_link(struct nameidata *nd) 1018 { 1019 struct saved *last = nd->stack + --nd->depth; 1020 do_delayed_call(&last->done); 1021 if (!(nd->flags & LOOKUP_RCU)) 1022 path_put(&last->link); 1023 } 1024 1025 static int sysctl_protected_symlinks __read_mostly; 1026 static int sysctl_protected_hardlinks __read_mostly; 1027 static int sysctl_protected_fifos __read_mostly; 1028 static int sysctl_protected_regular __read_mostly; 1029 1030 #ifdef CONFIG_SYSCTL 1031 static struct ctl_table namei_sysctls[] = { 1032 { 1033 .procname = "protected_symlinks", 1034 .data = &sysctl_protected_symlinks, 1035 .maxlen = sizeof(int), 1036 .mode = 0644, 1037 .proc_handler = proc_dointvec_minmax, 1038 .extra1 = SYSCTL_ZERO, 1039 .extra2 = SYSCTL_ONE, 1040 }, 1041 { 1042 .procname = "protected_hardlinks", 1043 .data = &sysctl_protected_hardlinks, 1044 .maxlen = sizeof(int), 1045 .mode = 0644, 1046 .proc_handler = proc_dointvec_minmax, 1047 .extra1 = SYSCTL_ZERO, 1048 .extra2 = SYSCTL_ONE, 1049 }, 1050 { 1051 .procname = "protected_fifos", 1052 .data = &sysctl_protected_fifos, 1053 .maxlen = sizeof(int), 1054 .mode = 0644, 1055 .proc_handler = proc_dointvec_minmax, 1056 .extra1 = SYSCTL_ZERO, 1057 .extra2 = SYSCTL_TWO, 1058 }, 1059 { 1060 .procname = "protected_regular", 1061 .data = &sysctl_protected_regular, 1062 .maxlen = sizeof(int), 1063 .mode = 0644, 1064 .proc_handler = proc_dointvec_minmax, 1065 .extra1 = SYSCTL_ZERO, 1066 .extra2 = SYSCTL_TWO, 1067 }, 1068 { } 1069 }; 1070 1071 static int __init init_fs_namei_sysctls(void) 1072 { 1073 register_sysctl_init("fs", namei_sysctls); 1074 return 0; 1075 } 1076 fs_initcall(init_fs_namei_sysctls); 1077 1078 #endif /* CONFIG_SYSCTL */ 1079 1080 /** 1081 * may_follow_link - Check symlink following for unsafe situations 1082 * @nd: nameidata pathwalk data 1083 * 1084 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1085 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1086 * in a sticky world-writable directory. This is to protect privileged 1087 * processes from failing races against path names that may change out 1088 * from under them by way of other users creating malicious symlinks. 1089 * It will permit symlinks to be followed only when outside a sticky 1090 * world-writable directory, or when the uid of the symlink and follower 1091 * match, or when the directory owner matches the symlink's owner. 1092 * 1093 * Returns 0 if following the symlink is allowed, -ve on error. 1094 */ 1095 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1096 { 1097 struct user_namespace *mnt_userns; 1098 kuid_t i_uid; 1099 1100 if (!sysctl_protected_symlinks) 1101 return 0; 1102 1103 mnt_userns = mnt_user_ns(nd->path.mnt); 1104 i_uid = i_uid_into_mnt(mnt_userns, inode); 1105 /* Allowed if owner and follower match. */ 1106 if (uid_eq(current_cred()->fsuid, i_uid)) 1107 return 0; 1108 1109 /* Allowed if parent directory not sticky and world-writable. */ 1110 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1111 return 0; 1112 1113 /* Allowed if parent directory and link owner match. */ 1114 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1115 return 0; 1116 1117 if (nd->flags & LOOKUP_RCU) 1118 return -ECHILD; 1119 1120 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1121 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1122 return -EACCES; 1123 } 1124 1125 /** 1126 * safe_hardlink_source - Check for safe hardlink conditions 1127 * @mnt_userns: user namespace of the mount the inode was found from 1128 * @inode: the source inode to hardlink from 1129 * 1130 * Return false if at least one of the following conditions: 1131 * - inode is not a regular file 1132 * - inode is setuid 1133 * - inode is setgid and group-exec 1134 * - access failure for read and write 1135 * 1136 * Otherwise returns true. 1137 */ 1138 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1139 struct inode *inode) 1140 { 1141 umode_t mode = inode->i_mode; 1142 1143 /* Special files should not get pinned to the filesystem. */ 1144 if (!S_ISREG(mode)) 1145 return false; 1146 1147 /* Setuid files should not get pinned to the filesystem. */ 1148 if (mode & S_ISUID) 1149 return false; 1150 1151 /* Executable setgid files should not get pinned to the filesystem. */ 1152 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1153 return false; 1154 1155 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1156 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1157 return false; 1158 1159 return true; 1160 } 1161 1162 /** 1163 * may_linkat - Check permissions for creating a hardlink 1164 * @mnt_userns: user namespace of the mount the inode was found from 1165 * @link: the source to hardlink from 1166 * 1167 * Block hardlink when all of: 1168 * - sysctl_protected_hardlinks enabled 1169 * - fsuid does not match inode 1170 * - hardlink source is unsafe (see safe_hardlink_source() above) 1171 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1172 * 1173 * If the inode has been found through an idmapped mount the user namespace of 1174 * the vfsmount must be passed through @mnt_userns. This function will then take 1175 * care to map the inode according to @mnt_userns before checking permissions. 1176 * On non-idmapped mounts or if permission checking is to be performed on the 1177 * raw inode simply passs init_user_ns. 1178 * 1179 * Returns 0 if successful, -ve on error. 1180 */ 1181 int may_linkat(struct user_namespace *mnt_userns, const struct path *link) 1182 { 1183 struct inode *inode = link->dentry->d_inode; 1184 1185 /* Inode writeback is not safe when the uid or gid are invalid. */ 1186 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1187 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1188 return -EOVERFLOW; 1189 1190 if (!sysctl_protected_hardlinks) 1191 return 0; 1192 1193 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1194 * otherwise, it must be a safe source. 1195 */ 1196 if (safe_hardlink_source(mnt_userns, inode) || 1197 inode_owner_or_capable(mnt_userns, inode)) 1198 return 0; 1199 1200 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1201 return -EPERM; 1202 } 1203 1204 /** 1205 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1206 * should be allowed, or not, on files that already 1207 * exist. 1208 * @mnt_userns: user namespace of the mount the inode was found from 1209 * @nd: nameidata pathwalk data 1210 * @inode: the inode of the file to open 1211 * 1212 * Block an O_CREAT open of a FIFO (or a regular file) when: 1213 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1214 * - the file already exists 1215 * - we are in a sticky directory 1216 * - we don't own the file 1217 * - the owner of the directory doesn't own the file 1218 * - the directory is world writable 1219 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1220 * the directory doesn't have to be world writable: being group writable will 1221 * be enough. 1222 * 1223 * If the inode has been found through an idmapped mount the user namespace of 1224 * the vfsmount must be passed through @mnt_userns. This function will then take 1225 * care to map the inode according to @mnt_userns before checking permissions. 1226 * On non-idmapped mounts or if permission checking is to be performed on the 1227 * raw inode simply passs init_user_ns. 1228 * 1229 * Returns 0 if the open is allowed, -ve on error. 1230 */ 1231 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1232 struct nameidata *nd, struct inode *const inode) 1233 { 1234 umode_t dir_mode = nd->dir_mode; 1235 kuid_t dir_uid = nd->dir_uid; 1236 1237 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1238 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1239 likely(!(dir_mode & S_ISVTX)) || 1240 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1241 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1242 return 0; 1243 1244 if (likely(dir_mode & 0002) || 1245 (dir_mode & 0020 && 1246 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1247 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1248 const char *operation = S_ISFIFO(inode->i_mode) ? 1249 "sticky_create_fifo" : 1250 "sticky_create_regular"; 1251 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1252 return -EACCES; 1253 } 1254 return 0; 1255 } 1256 1257 /* 1258 * follow_up - Find the mountpoint of path's vfsmount 1259 * 1260 * Given a path, find the mountpoint of its source file system. 1261 * Replace @path with the path of the mountpoint in the parent mount. 1262 * Up is towards /. 1263 * 1264 * Return 1 if we went up a level and 0 if we were already at the 1265 * root. 1266 */ 1267 int follow_up(struct path *path) 1268 { 1269 struct mount *mnt = real_mount(path->mnt); 1270 struct mount *parent; 1271 struct dentry *mountpoint; 1272 1273 read_seqlock_excl(&mount_lock); 1274 parent = mnt->mnt_parent; 1275 if (parent == mnt) { 1276 read_sequnlock_excl(&mount_lock); 1277 return 0; 1278 } 1279 mntget(&parent->mnt); 1280 mountpoint = dget(mnt->mnt_mountpoint); 1281 read_sequnlock_excl(&mount_lock); 1282 dput(path->dentry); 1283 path->dentry = mountpoint; 1284 mntput(path->mnt); 1285 path->mnt = &parent->mnt; 1286 return 1; 1287 } 1288 EXPORT_SYMBOL(follow_up); 1289 1290 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1291 struct path *path, unsigned *seqp) 1292 { 1293 while (mnt_has_parent(m)) { 1294 struct dentry *mountpoint = m->mnt_mountpoint; 1295 1296 m = m->mnt_parent; 1297 if (unlikely(root->dentry == mountpoint && 1298 root->mnt == &m->mnt)) 1299 break; 1300 if (mountpoint != m->mnt.mnt_root) { 1301 path->mnt = &m->mnt; 1302 path->dentry = mountpoint; 1303 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1304 return true; 1305 } 1306 } 1307 return false; 1308 } 1309 1310 static bool choose_mountpoint(struct mount *m, const struct path *root, 1311 struct path *path) 1312 { 1313 bool found; 1314 1315 rcu_read_lock(); 1316 while (1) { 1317 unsigned seq, mseq = read_seqbegin(&mount_lock); 1318 1319 found = choose_mountpoint_rcu(m, root, path, &seq); 1320 if (unlikely(!found)) { 1321 if (!read_seqretry(&mount_lock, mseq)) 1322 break; 1323 } else { 1324 if (likely(__legitimize_path(path, seq, mseq))) 1325 break; 1326 rcu_read_unlock(); 1327 path_put(path); 1328 rcu_read_lock(); 1329 } 1330 } 1331 rcu_read_unlock(); 1332 return found; 1333 } 1334 1335 /* 1336 * Perform an automount 1337 * - return -EISDIR to tell follow_managed() to stop and return the path we 1338 * were called with. 1339 */ 1340 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1341 { 1342 struct dentry *dentry = path->dentry; 1343 1344 /* We don't want to mount if someone's just doing a stat - 1345 * unless they're stat'ing a directory and appended a '/' to 1346 * the name. 1347 * 1348 * We do, however, want to mount if someone wants to open or 1349 * create a file of any type under the mountpoint, wants to 1350 * traverse through the mountpoint or wants to open the 1351 * mounted directory. Also, autofs may mark negative dentries 1352 * as being automount points. These will need the attentions 1353 * of the daemon to instantiate them before they can be used. 1354 */ 1355 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1356 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1357 dentry->d_inode) 1358 return -EISDIR; 1359 1360 if (count && (*count)++ >= MAXSYMLINKS) 1361 return -ELOOP; 1362 1363 return finish_automount(dentry->d_op->d_automount(path), path); 1364 } 1365 1366 /* 1367 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1368 * dentries are pinned but not locked here, so negative dentry can go 1369 * positive right under us. Use of smp_load_acquire() provides a barrier 1370 * sufficient for ->d_inode and ->d_flags consistency. 1371 */ 1372 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1373 int *count, unsigned lookup_flags) 1374 { 1375 struct vfsmount *mnt = path->mnt; 1376 bool need_mntput = false; 1377 int ret = 0; 1378 1379 while (flags & DCACHE_MANAGED_DENTRY) { 1380 /* Allow the filesystem to manage the transit without i_mutex 1381 * being held. */ 1382 if (flags & DCACHE_MANAGE_TRANSIT) { 1383 ret = path->dentry->d_op->d_manage(path, false); 1384 flags = smp_load_acquire(&path->dentry->d_flags); 1385 if (ret < 0) 1386 break; 1387 } 1388 1389 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1390 struct vfsmount *mounted = lookup_mnt(path); 1391 if (mounted) { // ... in our namespace 1392 dput(path->dentry); 1393 if (need_mntput) 1394 mntput(path->mnt); 1395 path->mnt = mounted; 1396 path->dentry = dget(mounted->mnt_root); 1397 // here we know it's positive 1398 flags = path->dentry->d_flags; 1399 need_mntput = true; 1400 continue; 1401 } 1402 } 1403 1404 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1405 break; 1406 1407 // uncovered automount point 1408 ret = follow_automount(path, count, lookup_flags); 1409 flags = smp_load_acquire(&path->dentry->d_flags); 1410 if (ret < 0) 1411 break; 1412 } 1413 1414 if (ret == -EISDIR) 1415 ret = 0; 1416 // possible if you race with several mount --move 1417 if (need_mntput && path->mnt == mnt) 1418 mntput(path->mnt); 1419 if (!ret && unlikely(d_flags_negative(flags))) 1420 ret = -ENOENT; 1421 *jumped = need_mntput; 1422 return ret; 1423 } 1424 1425 static inline int traverse_mounts(struct path *path, bool *jumped, 1426 int *count, unsigned lookup_flags) 1427 { 1428 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1429 1430 /* fastpath */ 1431 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1432 *jumped = false; 1433 if (unlikely(d_flags_negative(flags))) 1434 return -ENOENT; 1435 return 0; 1436 } 1437 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1438 } 1439 1440 int follow_down_one(struct path *path) 1441 { 1442 struct vfsmount *mounted; 1443 1444 mounted = lookup_mnt(path); 1445 if (mounted) { 1446 dput(path->dentry); 1447 mntput(path->mnt); 1448 path->mnt = mounted; 1449 path->dentry = dget(mounted->mnt_root); 1450 return 1; 1451 } 1452 return 0; 1453 } 1454 EXPORT_SYMBOL(follow_down_one); 1455 1456 /* 1457 * Follow down to the covering mount currently visible to userspace. At each 1458 * point, the filesystem owning that dentry may be queried as to whether the 1459 * caller is permitted to proceed or not. 1460 */ 1461 int follow_down(struct path *path) 1462 { 1463 struct vfsmount *mnt = path->mnt; 1464 bool jumped; 1465 int ret = traverse_mounts(path, &jumped, NULL, 0); 1466 1467 if (path->mnt != mnt) 1468 mntput(mnt); 1469 return ret; 1470 } 1471 EXPORT_SYMBOL(follow_down); 1472 1473 /* 1474 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1475 * we meet a managed dentry that would need blocking. 1476 */ 1477 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1478 { 1479 struct dentry *dentry = path->dentry; 1480 unsigned int flags = dentry->d_flags; 1481 1482 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1483 return true; 1484 1485 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1486 return false; 1487 1488 for (;;) { 1489 /* 1490 * Don't forget we might have a non-mountpoint managed dentry 1491 * that wants to block transit. 1492 */ 1493 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1494 int res = dentry->d_op->d_manage(path, true); 1495 if (res) 1496 return res == -EISDIR; 1497 flags = dentry->d_flags; 1498 } 1499 1500 if (flags & DCACHE_MOUNTED) { 1501 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1502 if (mounted) { 1503 path->mnt = &mounted->mnt; 1504 dentry = path->dentry = mounted->mnt.mnt_root; 1505 nd->state |= ND_JUMPED; 1506 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1507 flags = dentry->d_flags; 1508 // makes sure that non-RCU pathwalk could reach 1509 // this state. 1510 if (read_seqretry(&mount_lock, nd->m_seq)) 1511 return false; 1512 continue; 1513 } 1514 if (read_seqretry(&mount_lock, nd->m_seq)) 1515 return false; 1516 } 1517 return !(flags & DCACHE_NEED_AUTOMOUNT); 1518 } 1519 } 1520 1521 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1522 struct path *path) 1523 { 1524 bool jumped; 1525 int ret; 1526 1527 path->mnt = nd->path.mnt; 1528 path->dentry = dentry; 1529 if (nd->flags & LOOKUP_RCU) { 1530 unsigned int seq = nd->next_seq; 1531 if (likely(__follow_mount_rcu(nd, path))) 1532 return 0; 1533 // *path and nd->next_seq might've been clobbered 1534 path->mnt = nd->path.mnt; 1535 path->dentry = dentry; 1536 nd->next_seq = seq; 1537 if (!try_to_unlazy_next(nd, dentry)) 1538 return -ECHILD; 1539 } 1540 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1541 if (jumped) { 1542 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1543 ret = -EXDEV; 1544 else 1545 nd->state |= ND_JUMPED; 1546 } 1547 if (unlikely(ret)) { 1548 dput(path->dentry); 1549 if (path->mnt != nd->path.mnt) 1550 mntput(path->mnt); 1551 } 1552 return ret; 1553 } 1554 1555 /* 1556 * This looks up the name in dcache and possibly revalidates the found dentry. 1557 * NULL is returned if the dentry does not exist in the cache. 1558 */ 1559 static struct dentry *lookup_dcache(const struct qstr *name, 1560 struct dentry *dir, 1561 unsigned int flags) 1562 { 1563 struct dentry *dentry = d_lookup(dir, name); 1564 if (dentry) { 1565 int error = d_revalidate(dentry, flags); 1566 if (unlikely(error <= 0)) { 1567 if (!error) 1568 d_invalidate(dentry); 1569 dput(dentry); 1570 return ERR_PTR(error); 1571 } 1572 } 1573 return dentry; 1574 } 1575 1576 /* 1577 * Parent directory has inode locked exclusive. This is one 1578 * and only case when ->lookup() gets called on non in-lookup 1579 * dentries - as the matter of fact, this only gets called 1580 * when directory is guaranteed to have no in-lookup children 1581 * at all. 1582 */ 1583 static struct dentry *__lookup_hash(const struct qstr *name, 1584 struct dentry *base, unsigned int flags) 1585 { 1586 struct dentry *dentry = lookup_dcache(name, base, flags); 1587 struct dentry *old; 1588 struct inode *dir = base->d_inode; 1589 1590 if (dentry) 1591 return dentry; 1592 1593 /* Don't create child dentry for a dead directory. */ 1594 if (unlikely(IS_DEADDIR(dir))) 1595 return ERR_PTR(-ENOENT); 1596 1597 dentry = d_alloc(base, name); 1598 if (unlikely(!dentry)) 1599 return ERR_PTR(-ENOMEM); 1600 1601 old = dir->i_op->lookup(dir, dentry, flags); 1602 if (unlikely(old)) { 1603 dput(dentry); 1604 dentry = old; 1605 } 1606 return dentry; 1607 } 1608 1609 static struct dentry *lookup_fast(struct nameidata *nd) 1610 { 1611 struct dentry *dentry, *parent = nd->path.dentry; 1612 int status = 1; 1613 1614 /* 1615 * Rename seqlock is not required here because in the off chance 1616 * of a false negative due to a concurrent rename, the caller is 1617 * going to fall back to non-racy lookup. 1618 */ 1619 if (nd->flags & LOOKUP_RCU) { 1620 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1621 if (unlikely(!dentry)) { 1622 if (!try_to_unlazy(nd)) 1623 return ERR_PTR(-ECHILD); 1624 return NULL; 1625 } 1626 1627 /* 1628 * This sequence count validates that the parent had no 1629 * changes while we did the lookup of the dentry above. 1630 */ 1631 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1632 return ERR_PTR(-ECHILD); 1633 1634 status = d_revalidate(dentry, nd->flags); 1635 if (likely(status > 0)) 1636 return dentry; 1637 if (!try_to_unlazy_next(nd, dentry)) 1638 return ERR_PTR(-ECHILD); 1639 if (status == -ECHILD) 1640 /* we'd been told to redo it in non-rcu mode */ 1641 status = d_revalidate(dentry, nd->flags); 1642 } else { 1643 dentry = __d_lookup(parent, &nd->last); 1644 if (unlikely(!dentry)) 1645 return NULL; 1646 status = d_revalidate(dentry, nd->flags); 1647 } 1648 if (unlikely(status <= 0)) { 1649 if (!status) 1650 d_invalidate(dentry); 1651 dput(dentry); 1652 return ERR_PTR(status); 1653 } 1654 return dentry; 1655 } 1656 1657 /* Fast lookup failed, do it the slow way */ 1658 static struct dentry *__lookup_slow(const struct qstr *name, 1659 struct dentry *dir, 1660 unsigned int flags) 1661 { 1662 struct dentry *dentry, *old; 1663 struct inode *inode = dir->d_inode; 1664 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1665 1666 /* Don't go there if it's already dead */ 1667 if (unlikely(IS_DEADDIR(inode))) 1668 return ERR_PTR(-ENOENT); 1669 again: 1670 dentry = d_alloc_parallel(dir, name, &wq); 1671 if (IS_ERR(dentry)) 1672 return dentry; 1673 if (unlikely(!d_in_lookup(dentry))) { 1674 int error = d_revalidate(dentry, flags); 1675 if (unlikely(error <= 0)) { 1676 if (!error) { 1677 d_invalidate(dentry); 1678 dput(dentry); 1679 goto again; 1680 } 1681 dput(dentry); 1682 dentry = ERR_PTR(error); 1683 } 1684 } else { 1685 old = inode->i_op->lookup(inode, dentry, flags); 1686 d_lookup_done(dentry); 1687 if (unlikely(old)) { 1688 dput(dentry); 1689 dentry = old; 1690 } 1691 } 1692 return dentry; 1693 } 1694 1695 static struct dentry *lookup_slow(const struct qstr *name, 1696 struct dentry *dir, 1697 unsigned int flags) 1698 { 1699 struct inode *inode = dir->d_inode; 1700 struct dentry *res; 1701 inode_lock_shared(inode); 1702 res = __lookup_slow(name, dir, flags); 1703 inode_unlock_shared(inode); 1704 return res; 1705 } 1706 1707 static inline int may_lookup(struct user_namespace *mnt_userns, 1708 struct nameidata *nd) 1709 { 1710 if (nd->flags & LOOKUP_RCU) { 1711 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1712 if (err != -ECHILD || !try_to_unlazy(nd)) 1713 return err; 1714 } 1715 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1716 } 1717 1718 static int reserve_stack(struct nameidata *nd, struct path *link) 1719 { 1720 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1721 return -ELOOP; 1722 1723 if (likely(nd->depth != EMBEDDED_LEVELS)) 1724 return 0; 1725 if (likely(nd->stack != nd->internal)) 1726 return 0; 1727 if (likely(nd_alloc_stack(nd))) 1728 return 0; 1729 1730 if (nd->flags & LOOKUP_RCU) { 1731 // we need to grab link before we do unlazy. And we can't skip 1732 // unlazy even if we fail to grab the link - cleanup needs it 1733 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1734 1735 if (!try_to_unlazy(nd) || !grabbed_link) 1736 return -ECHILD; 1737 1738 if (nd_alloc_stack(nd)) 1739 return 0; 1740 } 1741 return -ENOMEM; 1742 } 1743 1744 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1745 1746 static const char *pick_link(struct nameidata *nd, struct path *link, 1747 struct inode *inode, int flags) 1748 { 1749 struct saved *last; 1750 const char *res; 1751 int error = reserve_stack(nd, link); 1752 1753 if (unlikely(error)) { 1754 if (!(nd->flags & LOOKUP_RCU)) 1755 path_put(link); 1756 return ERR_PTR(error); 1757 } 1758 last = nd->stack + nd->depth++; 1759 last->link = *link; 1760 clear_delayed_call(&last->done); 1761 last->seq = nd->next_seq; 1762 1763 if (flags & WALK_TRAILING) { 1764 error = may_follow_link(nd, inode); 1765 if (unlikely(error)) 1766 return ERR_PTR(error); 1767 } 1768 1769 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1770 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1771 return ERR_PTR(-ELOOP); 1772 1773 if (!(nd->flags & LOOKUP_RCU)) { 1774 touch_atime(&last->link); 1775 cond_resched(); 1776 } else if (atime_needs_update(&last->link, inode)) { 1777 if (!try_to_unlazy(nd)) 1778 return ERR_PTR(-ECHILD); 1779 touch_atime(&last->link); 1780 } 1781 1782 error = security_inode_follow_link(link->dentry, inode, 1783 nd->flags & LOOKUP_RCU); 1784 if (unlikely(error)) 1785 return ERR_PTR(error); 1786 1787 res = READ_ONCE(inode->i_link); 1788 if (!res) { 1789 const char * (*get)(struct dentry *, struct inode *, 1790 struct delayed_call *); 1791 get = inode->i_op->get_link; 1792 if (nd->flags & LOOKUP_RCU) { 1793 res = get(NULL, inode, &last->done); 1794 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1795 res = get(link->dentry, inode, &last->done); 1796 } else { 1797 res = get(link->dentry, inode, &last->done); 1798 } 1799 if (!res) 1800 goto all_done; 1801 if (IS_ERR(res)) 1802 return res; 1803 } 1804 if (*res == '/') { 1805 error = nd_jump_root(nd); 1806 if (unlikely(error)) 1807 return ERR_PTR(error); 1808 while (unlikely(*++res == '/')) 1809 ; 1810 } 1811 if (*res) 1812 return res; 1813 all_done: // pure jump 1814 put_link(nd); 1815 return NULL; 1816 } 1817 1818 /* 1819 * Do we need to follow links? We _really_ want to be able 1820 * to do this check without having to look at inode->i_op, 1821 * so we keep a cache of "no, this doesn't need follow_link" 1822 * for the common case. 1823 * 1824 * NOTE: dentry must be what nd->next_seq had been sampled from. 1825 */ 1826 static const char *step_into(struct nameidata *nd, int flags, 1827 struct dentry *dentry) 1828 { 1829 struct path path; 1830 struct inode *inode; 1831 int err = handle_mounts(nd, dentry, &path); 1832 1833 if (err < 0) 1834 return ERR_PTR(err); 1835 inode = path.dentry->d_inode; 1836 if (likely(!d_is_symlink(path.dentry)) || 1837 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1838 (flags & WALK_NOFOLLOW)) { 1839 /* not a symlink or should not follow */ 1840 if (nd->flags & LOOKUP_RCU) { 1841 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1842 return ERR_PTR(-ECHILD); 1843 if (unlikely(!inode)) 1844 return ERR_PTR(-ENOENT); 1845 } else { 1846 dput(nd->path.dentry); 1847 if (nd->path.mnt != path.mnt) 1848 mntput(nd->path.mnt); 1849 } 1850 nd->path = path; 1851 nd->inode = inode; 1852 nd->seq = nd->next_seq; 1853 return NULL; 1854 } 1855 if (nd->flags & LOOKUP_RCU) { 1856 /* make sure that d_is_symlink above matches inode */ 1857 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1858 return ERR_PTR(-ECHILD); 1859 } else { 1860 if (path.mnt == nd->path.mnt) 1861 mntget(path.mnt); 1862 } 1863 return pick_link(nd, &path, inode, flags); 1864 } 1865 1866 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1867 { 1868 struct dentry *parent, *old; 1869 1870 if (path_equal(&nd->path, &nd->root)) 1871 goto in_root; 1872 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1873 struct path path; 1874 unsigned seq; 1875 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1876 &nd->root, &path, &seq)) 1877 goto in_root; 1878 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1879 return ERR_PTR(-ECHILD); 1880 nd->path = path; 1881 nd->inode = path.dentry->d_inode; 1882 nd->seq = seq; 1883 // makes sure that non-RCU pathwalk could reach this state 1884 if (read_seqretry(&mount_lock, nd->m_seq)) 1885 return ERR_PTR(-ECHILD); 1886 /* we know that mountpoint was pinned */ 1887 } 1888 old = nd->path.dentry; 1889 parent = old->d_parent; 1890 nd->next_seq = read_seqcount_begin(&parent->d_seq); 1891 // makes sure that non-RCU pathwalk could reach this state 1892 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1893 return ERR_PTR(-ECHILD); 1894 if (unlikely(!path_connected(nd->path.mnt, parent))) 1895 return ERR_PTR(-ECHILD); 1896 return parent; 1897 in_root: 1898 if (read_seqretry(&mount_lock, nd->m_seq)) 1899 return ERR_PTR(-ECHILD); 1900 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1901 return ERR_PTR(-ECHILD); 1902 nd->next_seq = nd->seq; 1903 return nd->path.dentry; 1904 } 1905 1906 static struct dentry *follow_dotdot(struct nameidata *nd) 1907 { 1908 struct dentry *parent; 1909 1910 if (path_equal(&nd->path, &nd->root)) 1911 goto in_root; 1912 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1913 struct path path; 1914 1915 if (!choose_mountpoint(real_mount(nd->path.mnt), 1916 &nd->root, &path)) 1917 goto in_root; 1918 path_put(&nd->path); 1919 nd->path = path; 1920 nd->inode = path.dentry->d_inode; 1921 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1922 return ERR_PTR(-EXDEV); 1923 } 1924 /* rare case of legitimate dget_parent()... */ 1925 parent = dget_parent(nd->path.dentry); 1926 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1927 dput(parent); 1928 return ERR_PTR(-ENOENT); 1929 } 1930 return parent; 1931 1932 in_root: 1933 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1934 return ERR_PTR(-EXDEV); 1935 return dget(nd->path.dentry); 1936 } 1937 1938 static const char *handle_dots(struct nameidata *nd, int type) 1939 { 1940 if (type == LAST_DOTDOT) { 1941 const char *error = NULL; 1942 struct dentry *parent; 1943 1944 if (!nd->root.mnt) { 1945 error = ERR_PTR(set_root(nd)); 1946 if (error) 1947 return error; 1948 } 1949 if (nd->flags & LOOKUP_RCU) 1950 parent = follow_dotdot_rcu(nd); 1951 else 1952 parent = follow_dotdot(nd); 1953 if (IS_ERR(parent)) 1954 return ERR_CAST(parent); 1955 error = step_into(nd, WALK_NOFOLLOW, parent); 1956 if (unlikely(error)) 1957 return error; 1958 1959 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1960 /* 1961 * If there was a racing rename or mount along our 1962 * path, then we can't be sure that ".." hasn't jumped 1963 * above nd->root (and so userspace should retry or use 1964 * some fallback). 1965 */ 1966 smp_rmb(); 1967 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 1968 return ERR_PTR(-EAGAIN); 1969 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 1970 return ERR_PTR(-EAGAIN); 1971 } 1972 } 1973 return NULL; 1974 } 1975 1976 static const char *walk_component(struct nameidata *nd, int flags) 1977 { 1978 struct dentry *dentry; 1979 /* 1980 * "." and ".." are special - ".." especially so because it has 1981 * to be able to know about the current root directory and 1982 * parent relationships. 1983 */ 1984 if (unlikely(nd->last_type != LAST_NORM)) { 1985 if (!(flags & WALK_MORE) && nd->depth) 1986 put_link(nd); 1987 return handle_dots(nd, nd->last_type); 1988 } 1989 dentry = lookup_fast(nd); 1990 if (IS_ERR(dentry)) 1991 return ERR_CAST(dentry); 1992 if (unlikely(!dentry)) { 1993 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1994 if (IS_ERR(dentry)) 1995 return ERR_CAST(dentry); 1996 } 1997 if (!(flags & WALK_MORE) && nd->depth) 1998 put_link(nd); 1999 return step_into(nd, flags, dentry); 2000 } 2001 2002 /* 2003 * We can do the critical dentry name comparison and hashing 2004 * operations one word at a time, but we are limited to: 2005 * 2006 * - Architectures with fast unaligned word accesses. We could 2007 * do a "get_unaligned()" if this helps and is sufficiently 2008 * fast. 2009 * 2010 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2011 * do not trap on the (extremely unlikely) case of a page 2012 * crossing operation. 2013 * 2014 * - Furthermore, we need an efficient 64-bit compile for the 2015 * 64-bit case in order to generate the "number of bytes in 2016 * the final mask". Again, that could be replaced with a 2017 * efficient population count instruction or similar. 2018 */ 2019 #ifdef CONFIG_DCACHE_WORD_ACCESS 2020 2021 #include <asm/word-at-a-time.h> 2022 2023 #ifdef HASH_MIX 2024 2025 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2026 2027 #elif defined(CONFIG_64BIT) 2028 /* 2029 * Register pressure in the mixing function is an issue, particularly 2030 * on 32-bit x86, but almost any function requires one state value and 2031 * one temporary. Instead, use a function designed for two state values 2032 * and no temporaries. 2033 * 2034 * This function cannot create a collision in only two iterations, so 2035 * we have two iterations to achieve avalanche. In those two iterations, 2036 * we have six layers of mixing, which is enough to spread one bit's 2037 * influence out to 2^6 = 64 state bits. 2038 * 2039 * Rotate constants are scored by considering either 64 one-bit input 2040 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2041 * probability of that delta causing a change to each of the 128 output 2042 * bits, using a sample of random initial states. 2043 * 2044 * The Shannon entropy of the computed probabilities is then summed 2045 * to produce a score. Ideally, any input change has a 50% chance of 2046 * toggling any given output bit. 2047 * 2048 * Mixing scores (in bits) for (12,45): 2049 * Input delta: 1-bit 2-bit 2050 * 1 round: 713.3 42542.6 2051 * 2 rounds: 2753.7 140389.8 2052 * 3 rounds: 5954.1 233458.2 2053 * 4 rounds: 7862.6 256672.2 2054 * Perfect: 8192 258048 2055 * (64*128) (64*63/2 * 128) 2056 */ 2057 #define HASH_MIX(x, y, a) \ 2058 ( x ^= (a), \ 2059 y ^= x, x = rol64(x,12),\ 2060 x += y, y = rol64(y,45),\ 2061 y *= 9 ) 2062 2063 /* 2064 * Fold two longs into one 32-bit hash value. This must be fast, but 2065 * latency isn't quite as critical, as there is a fair bit of additional 2066 * work done before the hash value is used. 2067 */ 2068 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2069 { 2070 y ^= x * GOLDEN_RATIO_64; 2071 y *= GOLDEN_RATIO_64; 2072 return y >> 32; 2073 } 2074 2075 #else /* 32-bit case */ 2076 2077 /* 2078 * Mixing scores (in bits) for (7,20): 2079 * Input delta: 1-bit 2-bit 2080 * 1 round: 330.3 9201.6 2081 * 2 rounds: 1246.4 25475.4 2082 * 3 rounds: 1907.1 31295.1 2083 * 4 rounds: 2042.3 31718.6 2084 * Perfect: 2048 31744 2085 * (32*64) (32*31/2 * 64) 2086 */ 2087 #define HASH_MIX(x, y, a) \ 2088 ( x ^= (a), \ 2089 y ^= x, x = rol32(x, 7),\ 2090 x += y, y = rol32(y,20),\ 2091 y *= 9 ) 2092 2093 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2094 { 2095 /* Use arch-optimized multiply if one exists */ 2096 return __hash_32(y ^ __hash_32(x)); 2097 } 2098 2099 #endif 2100 2101 /* 2102 * Return the hash of a string of known length. This is carfully 2103 * designed to match hash_name(), which is the more critical function. 2104 * In particular, we must end by hashing a final word containing 0..7 2105 * payload bytes, to match the way that hash_name() iterates until it 2106 * finds the delimiter after the name. 2107 */ 2108 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2109 { 2110 unsigned long a, x = 0, y = (unsigned long)salt; 2111 2112 for (;;) { 2113 if (!len) 2114 goto done; 2115 a = load_unaligned_zeropad(name); 2116 if (len < sizeof(unsigned long)) 2117 break; 2118 HASH_MIX(x, y, a); 2119 name += sizeof(unsigned long); 2120 len -= sizeof(unsigned long); 2121 } 2122 x ^= a & bytemask_from_count(len); 2123 done: 2124 return fold_hash(x, y); 2125 } 2126 EXPORT_SYMBOL(full_name_hash); 2127 2128 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2129 u64 hashlen_string(const void *salt, const char *name) 2130 { 2131 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2132 unsigned long adata, mask, len; 2133 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2134 2135 len = 0; 2136 goto inside; 2137 2138 do { 2139 HASH_MIX(x, y, a); 2140 len += sizeof(unsigned long); 2141 inside: 2142 a = load_unaligned_zeropad(name+len); 2143 } while (!has_zero(a, &adata, &constants)); 2144 2145 adata = prep_zero_mask(a, adata, &constants); 2146 mask = create_zero_mask(adata); 2147 x ^= a & zero_bytemask(mask); 2148 2149 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2150 } 2151 EXPORT_SYMBOL(hashlen_string); 2152 2153 /* 2154 * Calculate the length and hash of the path component, and 2155 * return the "hash_len" as the result. 2156 */ 2157 static inline u64 hash_name(const void *salt, const char *name) 2158 { 2159 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2160 unsigned long adata, bdata, mask, len; 2161 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2162 2163 len = 0; 2164 goto inside; 2165 2166 do { 2167 HASH_MIX(x, y, a); 2168 len += sizeof(unsigned long); 2169 inside: 2170 a = load_unaligned_zeropad(name+len); 2171 b = a ^ REPEAT_BYTE('/'); 2172 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2173 2174 adata = prep_zero_mask(a, adata, &constants); 2175 bdata = prep_zero_mask(b, bdata, &constants); 2176 mask = create_zero_mask(adata | bdata); 2177 x ^= a & zero_bytemask(mask); 2178 2179 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2180 } 2181 2182 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2183 2184 /* Return the hash of a string of known length */ 2185 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2186 { 2187 unsigned long hash = init_name_hash(salt); 2188 while (len--) 2189 hash = partial_name_hash((unsigned char)*name++, hash); 2190 return end_name_hash(hash); 2191 } 2192 EXPORT_SYMBOL(full_name_hash); 2193 2194 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2195 u64 hashlen_string(const void *salt, const char *name) 2196 { 2197 unsigned long hash = init_name_hash(salt); 2198 unsigned long len = 0, c; 2199 2200 c = (unsigned char)*name; 2201 while (c) { 2202 len++; 2203 hash = partial_name_hash(c, hash); 2204 c = (unsigned char)name[len]; 2205 } 2206 return hashlen_create(end_name_hash(hash), len); 2207 } 2208 EXPORT_SYMBOL(hashlen_string); 2209 2210 /* 2211 * We know there's a real path component here of at least 2212 * one character. 2213 */ 2214 static inline u64 hash_name(const void *salt, const char *name) 2215 { 2216 unsigned long hash = init_name_hash(salt); 2217 unsigned long len = 0, c; 2218 2219 c = (unsigned char)*name; 2220 do { 2221 len++; 2222 hash = partial_name_hash(c, hash); 2223 c = (unsigned char)name[len]; 2224 } while (c && c != '/'); 2225 return hashlen_create(end_name_hash(hash), len); 2226 } 2227 2228 #endif 2229 2230 /* 2231 * Name resolution. 2232 * This is the basic name resolution function, turning a pathname into 2233 * the final dentry. We expect 'base' to be positive and a directory. 2234 * 2235 * Returns 0 and nd will have valid dentry and mnt on success. 2236 * Returns error and drops reference to input namei data on failure. 2237 */ 2238 static int link_path_walk(const char *name, struct nameidata *nd) 2239 { 2240 int depth = 0; // depth <= nd->depth 2241 int err; 2242 2243 nd->last_type = LAST_ROOT; 2244 nd->flags |= LOOKUP_PARENT; 2245 if (IS_ERR(name)) 2246 return PTR_ERR(name); 2247 while (*name=='/') 2248 name++; 2249 if (!*name) { 2250 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2251 return 0; 2252 } 2253 2254 /* At this point we know we have a real path component. */ 2255 for(;;) { 2256 struct user_namespace *mnt_userns; 2257 const char *link; 2258 u64 hash_len; 2259 int type; 2260 2261 mnt_userns = mnt_user_ns(nd->path.mnt); 2262 err = may_lookup(mnt_userns, nd); 2263 if (err) 2264 return err; 2265 2266 hash_len = hash_name(nd->path.dentry, name); 2267 2268 type = LAST_NORM; 2269 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2270 case 2: 2271 if (name[1] == '.') { 2272 type = LAST_DOTDOT; 2273 nd->state |= ND_JUMPED; 2274 } 2275 break; 2276 case 1: 2277 type = LAST_DOT; 2278 } 2279 if (likely(type == LAST_NORM)) { 2280 struct dentry *parent = nd->path.dentry; 2281 nd->state &= ~ND_JUMPED; 2282 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2283 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2284 err = parent->d_op->d_hash(parent, &this); 2285 if (err < 0) 2286 return err; 2287 hash_len = this.hash_len; 2288 name = this.name; 2289 } 2290 } 2291 2292 nd->last.hash_len = hash_len; 2293 nd->last.name = name; 2294 nd->last_type = type; 2295 2296 name += hashlen_len(hash_len); 2297 if (!*name) 2298 goto OK; 2299 /* 2300 * If it wasn't NUL, we know it was '/'. Skip that 2301 * slash, and continue until no more slashes. 2302 */ 2303 do { 2304 name++; 2305 } while (unlikely(*name == '/')); 2306 if (unlikely(!*name)) { 2307 OK: 2308 /* pathname or trailing symlink, done */ 2309 if (!depth) { 2310 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2311 nd->dir_mode = nd->inode->i_mode; 2312 nd->flags &= ~LOOKUP_PARENT; 2313 return 0; 2314 } 2315 /* last component of nested symlink */ 2316 name = nd->stack[--depth].name; 2317 link = walk_component(nd, 0); 2318 } else { 2319 /* not the last component */ 2320 link = walk_component(nd, WALK_MORE); 2321 } 2322 if (unlikely(link)) { 2323 if (IS_ERR(link)) 2324 return PTR_ERR(link); 2325 /* a symlink to follow */ 2326 nd->stack[depth++].name = name; 2327 name = link; 2328 continue; 2329 } 2330 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2331 if (nd->flags & LOOKUP_RCU) { 2332 if (!try_to_unlazy(nd)) 2333 return -ECHILD; 2334 } 2335 return -ENOTDIR; 2336 } 2337 } 2338 } 2339 2340 /* must be paired with terminate_walk() */ 2341 static const char *path_init(struct nameidata *nd, unsigned flags) 2342 { 2343 int error; 2344 const char *s = nd->name->name; 2345 2346 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2347 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2348 return ERR_PTR(-EAGAIN); 2349 2350 if (!*s) 2351 flags &= ~LOOKUP_RCU; 2352 if (flags & LOOKUP_RCU) 2353 rcu_read_lock(); 2354 else 2355 nd->seq = nd->next_seq = 0; 2356 2357 nd->flags = flags; 2358 nd->state |= ND_JUMPED; 2359 2360 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2361 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2362 smp_rmb(); 2363 2364 if (nd->state & ND_ROOT_PRESET) { 2365 struct dentry *root = nd->root.dentry; 2366 struct inode *inode = root->d_inode; 2367 if (*s && unlikely(!d_can_lookup(root))) 2368 return ERR_PTR(-ENOTDIR); 2369 nd->path = nd->root; 2370 nd->inode = inode; 2371 if (flags & LOOKUP_RCU) { 2372 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2373 nd->root_seq = nd->seq; 2374 } else { 2375 path_get(&nd->path); 2376 } 2377 return s; 2378 } 2379 2380 nd->root.mnt = NULL; 2381 2382 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2383 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2384 error = nd_jump_root(nd); 2385 if (unlikely(error)) 2386 return ERR_PTR(error); 2387 return s; 2388 } 2389 2390 /* Relative pathname -- get the starting-point it is relative to. */ 2391 if (nd->dfd == AT_FDCWD) { 2392 if (flags & LOOKUP_RCU) { 2393 struct fs_struct *fs = current->fs; 2394 unsigned seq; 2395 2396 do { 2397 seq = read_seqcount_begin(&fs->seq); 2398 nd->path = fs->pwd; 2399 nd->inode = nd->path.dentry->d_inode; 2400 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2401 } while (read_seqcount_retry(&fs->seq, seq)); 2402 } else { 2403 get_fs_pwd(current->fs, &nd->path); 2404 nd->inode = nd->path.dentry->d_inode; 2405 } 2406 } else { 2407 /* Caller must check execute permissions on the starting path component */ 2408 struct fd f = fdget_raw(nd->dfd); 2409 struct dentry *dentry; 2410 2411 if (!f.file) 2412 return ERR_PTR(-EBADF); 2413 2414 dentry = f.file->f_path.dentry; 2415 2416 if (*s && unlikely(!d_can_lookup(dentry))) { 2417 fdput(f); 2418 return ERR_PTR(-ENOTDIR); 2419 } 2420 2421 nd->path = f.file->f_path; 2422 if (flags & LOOKUP_RCU) { 2423 nd->inode = nd->path.dentry->d_inode; 2424 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2425 } else { 2426 path_get(&nd->path); 2427 nd->inode = nd->path.dentry->d_inode; 2428 } 2429 fdput(f); 2430 } 2431 2432 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2433 if (flags & LOOKUP_IS_SCOPED) { 2434 nd->root = nd->path; 2435 if (flags & LOOKUP_RCU) { 2436 nd->root_seq = nd->seq; 2437 } else { 2438 path_get(&nd->root); 2439 nd->state |= ND_ROOT_GRABBED; 2440 } 2441 } 2442 return s; 2443 } 2444 2445 static inline const char *lookup_last(struct nameidata *nd) 2446 { 2447 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2448 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2449 2450 return walk_component(nd, WALK_TRAILING); 2451 } 2452 2453 static int handle_lookup_down(struct nameidata *nd) 2454 { 2455 if (!(nd->flags & LOOKUP_RCU)) 2456 dget(nd->path.dentry); 2457 nd->next_seq = nd->seq; 2458 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2459 } 2460 2461 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2462 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2463 { 2464 const char *s = path_init(nd, flags); 2465 int err; 2466 2467 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2468 err = handle_lookup_down(nd); 2469 if (unlikely(err < 0)) 2470 s = ERR_PTR(err); 2471 } 2472 2473 while (!(err = link_path_walk(s, nd)) && 2474 (s = lookup_last(nd)) != NULL) 2475 ; 2476 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2477 err = handle_lookup_down(nd); 2478 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2479 } 2480 if (!err) 2481 err = complete_walk(nd); 2482 2483 if (!err && nd->flags & LOOKUP_DIRECTORY) 2484 if (!d_can_lookup(nd->path.dentry)) 2485 err = -ENOTDIR; 2486 if (!err) { 2487 *path = nd->path; 2488 nd->path.mnt = NULL; 2489 nd->path.dentry = NULL; 2490 } 2491 terminate_walk(nd); 2492 return err; 2493 } 2494 2495 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2496 struct path *path, struct path *root) 2497 { 2498 int retval; 2499 struct nameidata nd; 2500 if (IS_ERR(name)) 2501 return PTR_ERR(name); 2502 set_nameidata(&nd, dfd, name, root); 2503 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2504 if (unlikely(retval == -ECHILD)) 2505 retval = path_lookupat(&nd, flags, path); 2506 if (unlikely(retval == -ESTALE)) 2507 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2508 2509 if (likely(!retval)) 2510 audit_inode(name, path->dentry, 2511 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2512 restore_nameidata(); 2513 return retval; 2514 } 2515 2516 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2517 static int path_parentat(struct nameidata *nd, unsigned flags, 2518 struct path *parent) 2519 { 2520 const char *s = path_init(nd, flags); 2521 int err = link_path_walk(s, nd); 2522 if (!err) 2523 err = complete_walk(nd); 2524 if (!err) { 2525 *parent = nd->path; 2526 nd->path.mnt = NULL; 2527 nd->path.dentry = NULL; 2528 } 2529 terminate_walk(nd); 2530 return err; 2531 } 2532 2533 /* Note: this does not consume "name" */ 2534 static int filename_parentat(int dfd, struct filename *name, 2535 unsigned int flags, struct path *parent, 2536 struct qstr *last, int *type) 2537 { 2538 int retval; 2539 struct nameidata nd; 2540 2541 if (IS_ERR(name)) 2542 return PTR_ERR(name); 2543 set_nameidata(&nd, dfd, name, NULL); 2544 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2545 if (unlikely(retval == -ECHILD)) 2546 retval = path_parentat(&nd, flags, parent); 2547 if (unlikely(retval == -ESTALE)) 2548 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2549 if (likely(!retval)) { 2550 *last = nd.last; 2551 *type = nd.last_type; 2552 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2553 } 2554 restore_nameidata(); 2555 return retval; 2556 } 2557 2558 /* does lookup, returns the object with parent locked */ 2559 static struct dentry *__kern_path_locked(struct filename *name, struct path *path) 2560 { 2561 struct dentry *d; 2562 struct qstr last; 2563 int type, error; 2564 2565 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type); 2566 if (error) 2567 return ERR_PTR(error); 2568 if (unlikely(type != LAST_NORM)) { 2569 path_put(path); 2570 return ERR_PTR(-EINVAL); 2571 } 2572 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2573 d = __lookup_hash(&last, path->dentry, 0); 2574 if (IS_ERR(d)) { 2575 inode_unlock(path->dentry->d_inode); 2576 path_put(path); 2577 } 2578 return d; 2579 } 2580 2581 struct dentry *kern_path_locked(const char *name, struct path *path) 2582 { 2583 struct filename *filename = getname_kernel(name); 2584 struct dentry *res = __kern_path_locked(filename, path); 2585 2586 putname(filename); 2587 return res; 2588 } 2589 2590 int kern_path(const char *name, unsigned int flags, struct path *path) 2591 { 2592 struct filename *filename = getname_kernel(name); 2593 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2594 2595 putname(filename); 2596 return ret; 2597 2598 } 2599 EXPORT_SYMBOL(kern_path); 2600 2601 /** 2602 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2603 * @dentry: pointer to dentry of the base directory 2604 * @mnt: pointer to vfs mount of the base directory 2605 * @name: pointer to file name 2606 * @flags: lookup flags 2607 * @path: pointer to struct path to fill 2608 */ 2609 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2610 const char *name, unsigned int flags, 2611 struct path *path) 2612 { 2613 struct filename *filename; 2614 struct path root = {.mnt = mnt, .dentry = dentry}; 2615 int ret; 2616 2617 filename = getname_kernel(name); 2618 /* the first argument of filename_lookup() is ignored with root */ 2619 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2620 putname(filename); 2621 return ret; 2622 } 2623 EXPORT_SYMBOL(vfs_path_lookup); 2624 2625 static int lookup_one_common(struct user_namespace *mnt_userns, 2626 const char *name, struct dentry *base, int len, 2627 struct qstr *this) 2628 { 2629 this->name = name; 2630 this->len = len; 2631 this->hash = full_name_hash(base, name, len); 2632 if (!len) 2633 return -EACCES; 2634 2635 if (unlikely(name[0] == '.')) { 2636 if (len < 2 || (len == 2 && name[1] == '.')) 2637 return -EACCES; 2638 } 2639 2640 while (len--) { 2641 unsigned int c = *(const unsigned char *)name++; 2642 if (c == '/' || c == '\0') 2643 return -EACCES; 2644 } 2645 /* 2646 * See if the low-level filesystem might want 2647 * to use its own hash.. 2648 */ 2649 if (base->d_flags & DCACHE_OP_HASH) { 2650 int err = base->d_op->d_hash(base, this); 2651 if (err < 0) 2652 return err; 2653 } 2654 2655 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC); 2656 } 2657 2658 /** 2659 * try_lookup_one_len - filesystem helper to lookup single pathname component 2660 * @name: pathname component to lookup 2661 * @base: base directory to lookup from 2662 * @len: maximum length @len should be interpreted to 2663 * 2664 * Look up a dentry by name in the dcache, returning NULL if it does not 2665 * currently exist. The function does not try to create a dentry. 2666 * 2667 * Note that this routine is purely a helper for filesystem usage and should 2668 * not be called by generic code. 2669 * 2670 * The caller must hold base->i_mutex. 2671 */ 2672 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2673 { 2674 struct qstr this; 2675 int err; 2676 2677 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2678 2679 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2680 if (err) 2681 return ERR_PTR(err); 2682 2683 return lookup_dcache(&this, base, 0); 2684 } 2685 EXPORT_SYMBOL(try_lookup_one_len); 2686 2687 /** 2688 * lookup_one_len - filesystem helper to lookup single pathname component 2689 * @name: pathname component to lookup 2690 * @base: base directory to lookup from 2691 * @len: maximum length @len should be interpreted to 2692 * 2693 * Note that this routine is purely a helper for filesystem usage and should 2694 * not be called by generic code. 2695 * 2696 * The caller must hold base->i_mutex. 2697 */ 2698 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2699 { 2700 struct dentry *dentry; 2701 struct qstr this; 2702 int err; 2703 2704 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2705 2706 err = lookup_one_common(&init_user_ns, name, base, len, &this); 2707 if (err) 2708 return ERR_PTR(err); 2709 2710 dentry = lookup_dcache(&this, base, 0); 2711 return dentry ? dentry : __lookup_slow(&this, base, 0); 2712 } 2713 EXPORT_SYMBOL(lookup_one_len); 2714 2715 /** 2716 * lookup_one - filesystem helper to lookup single pathname component 2717 * @mnt_userns: user namespace of the mount the lookup is performed from 2718 * @name: pathname component to lookup 2719 * @base: base directory to lookup from 2720 * @len: maximum length @len should be interpreted to 2721 * 2722 * Note that this routine is purely a helper for filesystem usage and should 2723 * not be called by generic code. 2724 * 2725 * The caller must hold base->i_mutex. 2726 */ 2727 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name, 2728 struct dentry *base, int len) 2729 { 2730 struct dentry *dentry; 2731 struct qstr this; 2732 int err; 2733 2734 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2735 2736 err = lookup_one_common(mnt_userns, name, base, len, &this); 2737 if (err) 2738 return ERR_PTR(err); 2739 2740 dentry = lookup_dcache(&this, base, 0); 2741 return dentry ? dentry : __lookup_slow(&this, base, 0); 2742 } 2743 EXPORT_SYMBOL(lookup_one); 2744 2745 /** 2746 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2747 * @mnt_userns: idmapping of the mount the lookup is performed from 2748 * @name: pathname component to lookup 2749 * @base: base directory to lookup from 2750 * @len: maximum length @len should be interpreted to 2751 * 2752 * Note that this routine is purely a helper for filesystem usage and should 2753 * not be called by generic code. 2754 * 2755 * Unlike lookup_one_len, it should be called without the parent 2756 * i_mutex held, and will take the i_mutex itself if necessary. 2757 */ 2758 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns, 2759 const char *name, struct dentry *base, 2760 int len) 2761 { 2762 struct qstr this; 2763 int err; 2764 struct dentry *ret; 2765 2766 err = lookup_one_common(mnt_userns, name, base, len, &this); 2767 if (err) 2768 return ERR_PTR(err); 2769 2770 ret = lookup_dcache(&this, base, 0); 2771 if (!ret) 2772 ret = lookup_slow(&this, base, 0); 2773 return ret; 2774 } 2775 EXPORT_SYMBOL(lookup_one_unlocked); 2776 2777 /** 2778 * lookup_one_positive_unlocked - filesystem helper to lookup single 2779 * pathname component 2780 * @mnt_userns: idmapping of the mount the lookup is performed from 2781 * @name: pathname component to lookup 2782 * @base: base directory to lookup from 2783 * @len: maximum length @len should be interpreted to 2784 * 2785 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2786 * known positive or ERR_PTR(). This is what most of the users want. 2787 * 2788 * Note that pinned negative with unlocked parent _can_ become positive at any 2789 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2790 * positives have >d_inode stable, so this one avoids such problems. 2791 * 2792 * Note that this routine is purely a helper for filesystem usage and should 2793 * not be called by generic code. 2794 * 2795 * The helper should be called without i_mutex held. 2796 */ 2797 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns, 2798 const char *name, 2799 struct dentry *base, int len) 2800 { 2801 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len); 2802 2803 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2804 dput(ret); 2805 ret = ERR_PTR(-ENOENT); 2806 } 2807 return ret; 2808 } 2809 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2810 2811 /** 2812 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2813 * @name: pathname component to lookup 2814 * @base: base directory to lookup from 2815 * @len: maximum length @len should be interpreted to 2816 * 2817 * Note that this routine is purely a helper for filesystem usage and should 2818 * not be called by generic code. 2819 * 2820 * Unlike lookup_one_len, it should be called without the parent 2821 * i_mutex held, and will take the i_mutex itself if necessary. 2822 */ 2823 struct dentry *lookup_one_len_unlocked(const char *name, 2824 struct dentry *base, int len) 2825 { 2826 return lookup_one_unlocked(&init_user_ns, name, base, len); 2827 } 2828 EXPORT_SYMBOL(lookup_one_len_unlocked); 2829 2830 /* 2831 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2832 * on negatives. Returns known positive or ERR_PTR(); that's what 2833 * most of the users want. Note that pinned negative with unlocked parent 2834 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2835 * need to be very careful; pinned positives have ->d_inode stable, so 2836 * this one avoids such problems. 2837 */ 2838 struct dentry *lookup_positive_unlocked(const char *name, 2839 struct dentry *base, int len) 2840 { 2841 return lookup_one_positive_unlocked(&init_user_ns, name, base, len); 2842 } 2843 EXPORT_SYMBOL(lookup_positive_unlocked); 2844 2845 #ifdef CONFIG_UNIX98_PTYS 2846 int path_pts(struct path *path) 2847 { 2848 /* Find something mounted on "pts" in the same directory as 2849 * the input path. 2850 */ 2851 struct dentry *parent = dget_parent(path->dentry); 2852 struct dentry *child; 2853 struct qstr this = QSTR_INIT("pts", 3); 2854 2855 if (unlikely(!path_connected(path->mnt, parent))) { 2856 dput(parent); 2857 return -ENOENT; 2858 } 2859 dput(path->dentry); 2860 path->dentry = parent; 2861 child = d_hash_and_lookup(parent, &this); 2862 if (!child) 2863 return -ENOENT; 2864 2865 path->dentry = child; 2866 dput(parent); 2867 follow_down(path); 2868 return 0; 2869 } 2870 #endif 2871 2872 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2873 struct path *path, int *empty) 2874 { 2875 struct filename *filename = getname_flags(name, flags, empty); 2876 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2877 2878 putname(filename); 2879 return ret; 2880 } 2881 EXPORT_SYMBOL(user_path_at_empty); 2882 2883 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2884 struct inode *inode) 2885 { 2886 kuid_t fsuid = current_fsuid(); 2887 2888 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2889 return 0; 2890 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2891 return 0; 2892 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2893 } 2894 EXPORT_SYMBOL(__check_sticky); 2895 2896 /* 2897 * Check whether we can remove a link victim from directory dir, check 2898 * whether the type of victim is right. 2899 * 1. We can't do it if dir is read-only (done in permission()) 2900 * 2. We should have write and exec permissions on dir 2901 * 3. We can't remove anything from append-only dir 2902 * 4. We can't do anything with immutable dir (done in permission()) 2903 * 5. If the sticky bit on dir is set we should either 2904 * a. be owner of dir, or 2905 * b. be owner of victim, or 2906 * c. have CAP_FOWNER capability 2907 * 6. If the victim is append-only or immutable we can't do antyhing with 2908 * links pointing to it. 2909 * 7. If the victim has an unknown uid or gid we can't change the inode. 2910 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2911 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2912 * 10. We can't remove a root or mountpoint. 2913 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2914 * nfs_async_unlink(). 2915 */ 2916 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2917 struct dentry *victim, bool isdir) 2918 { 2919 struct inode *inode = d_backing_inode(victim); 2920 int error; 2921 2922 if (d_is_negative(victim)) 2923 return -ENOENT; 2924 BUG_ON(!inode); 2925 2926 BUG_ON(victim->d_parent->d_inode != dir); 2927 2928 /* Inode writeback is not safe when the uid or gid are invalid. */ 2929 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2930 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2931 return -EOVERFLOW; 2932 2933 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2934 2935 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2936 if (error) 2937 return error; 2938 if (IS_APPEND(dir)) 2939 return -EPERM; 2940 2941 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2942 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2943 HAS_UNMAPPED_ID(mnt_userns, inode)) 2944 return -EPERM; 2945 if (isdir) { 2946 if (!d_is_dir(victim)) 2947 return -ENOTDIR; 2948 if (IS_ROOT(victim)) 2949 return -EBUSY; 2950 } else if (d_is_dir(victim)) 2951 return -EISDIR; 2952 if (IS_DEADDIR(dir)) 2953 return -ENOENT; 2954 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2955 return -EBUSY; 2956 return 0; 2957 } 2958 2959 /* Check whether we can create an object with dentry child in directory 2960 * dir. 2961 * 1. We can't do it if child already exists (open has special treatment for 2962 * this case, but since we are inlined it's OK) 2963 * 2. We can't do it if dir is read-only (done in permission()) 2964 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2965 * 4. We should have write and exec permissions on dir 2966 * 5. We can't do it if dir is immutable (done in permission()) 2967 */ 2968 static inline int may_create(struct user_namespace *mnt_userns, 2969 struct inode *dir, struct dentry *child) 2970 { 2971 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2972 if (child->d_inode) 2973 return -EEXIST; 2974 if (IS_DEADDIR(dir)) 2975 return -ENOENT; 2976 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 2977 return -EOVERFLOW; 2978 2979 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2980 } 2981 2982 /* 2983 * p1 and p2 should be directories on the same fs. 2984 */ 2985 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2986 { 2987 struct dentry *p; 2988 2989 if (p1 == p2) { 2990 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2991 return NULL; 2992 } 2993 2994 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2995 2996 p = d_ancestor(p2, p1); 2997 if (p) { 2998 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2999 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 3000 return p; 3001 } 3002 3003 p = d_ancestor(p1, p2); 3004 if (p) { 3005 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3006 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 3007 return p; 3008 } 3009 3010 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3011 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3012 return NULL; 3013 } 3014 EXPORT_SYMBOL(lock_rename); 3015 3016 void unlock_rename(struct dentry *p1, struct dentry *p2) 3017 { 3018 inode_unlock(p1->d_inode); 3019 if (p1 != p2) { 3020 inode_unlock(p2->d_inode); 3021 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3022 } 3023 } 3024 EXPORT_SYMBOL(unlock_rename); 3025 3026 /** 3027 * mode_strip_umask - handle vfs umask stripping 3028 * @dir: parent directory of the new inode 3029 * @mode: mode of the new inode to be created in @dir 3030 * 3031 * Umask stripping depends on whether or not the filesystem supports POSIX 3032 * ACLs. If the filesystem doesn't support it umask stripping is done directly 3033 * in here. If the filesystem does support POSIX ACLs umask stripping is 3034 * deferred until the filesystem calls posix_acl_create(). 3035 * 3036 * Returns: mode 3037 */ 3038 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode) 3039 { 3040 if (!IS_POSIXACL(dir)) 3041 mode &= ~current_umask(); 3042 return mode; 3043 } 3044 3045 /** 3046 * vfs_prepare_mode - prepare the mode to be used for a new inode 3047 * @mnt_userns: user namespace of the mount the inode was found from 3048 * @dir: parent directory of the new inode 3049 * @mode: mode of the new inode 3050 * @mask_perms: allowed permission by the vfs 3051 * @type: type of file to be created 3052 * 3053 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3054 * object to be created. 3055 * 3056 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3057 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3058 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3059 * POSIX ACL supporting filesystems. 3060 * 3061 * Note that it's currently valid for @type to be 0 if a directory is created. 3062 * Filesystems raise that flag individually and we need to check whether each 3063 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3064 * non-zero type. 3065 * 3066 * Returns: mode to be passed to the filesystem 3067 */ 3068 static inline umode_t vfs_prepare_mode(struct user_namespace *mnt_userns, 3069 const struct inode *dir, umode_t mode, 3070 umode_t mask_perms, umode_t type) 3071 { 3072 mode = mode_strip_sgid(mnt_userns, dir, mode); 3073 mode = mode_strip_umask(dir, mode); 3074 3075 /* 3076 * Apply the vfs mandated allowed permission mask and set the type of 3077 * file to be created before we call into the filesystem. 3078 */ 3079 mode &= (mask_perms & ~S_IFMT); 3080 mode |= (type & S_IFMT); 3081 3082 return mode; 3083 } 3084 3085 /** 3086 * vfs_create - create new file 3087 * @mnt_userns: user namespace of the mount the inode was found from 3088 * @dir: inode of @dentry 3089 * @dentry: pointer to dentry of the base directory 3090 * @mode: mode of the new file 3091 * @want_excl: whether the file must not yet exist 3092 * 3093 * Create a new file. 3094 * 3095 * If the inode has been found through an idmapped mount the user namespace of 3096 * the vfsmount must be passed through @mnt_userns. This function will then take 3097 * care to map the inode according to @mnt_userns before checking permissions. 3098 * On non-idmapped mounts or if permission checking is to be performed on the 3099 * raw inode simply passs init_user_ns. 3100 */ 3101 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 3102 struct dentry *dentry, umode_t mode, bool want_excl) 3103 { 3104 int error = may_create(mnt_userns, dir, dentry); 3105 if (error) 3106 return error; 3107 3108 if (!dir->i_op->create) 3109 return -EACCES; /* shouldn't it be ENOSYS? */ 3110 3111 mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IALLUGO, S_IFREG); 3112 error = security_inode_create(dir, dentry, mode); 3113 if (error) 3114 return error; 3115 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 3116 if (!error) 3117 fsnotify_create(dir, dentry); 3118 return error; 3119 } 3120 EXPORT_SYMBOL(vfs_create); 3121 3122 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3123 int (*f)(struct dentry *, umode_t, void *), 3124 void *arg) 3125 { 3126 struct inode *dir = dentry->d_parent->d_inode; 3127 int error = may_create(&init_user_ns, dir, dentry); 3128 if (error) 3129 return error; 3130 3131 mode &= S_IALLUGO; 3132 mode |= S_IFREG; 3133 error = security_inode_create(dir, dentry, mode); 3134 if (error) 3135 return error; 3136 error = f(dentry, mode, arg); 3137 if (!error) 3138 fsnotify_create(dir, dentry); 3139 return error; 3140 } 3141 EXPORT_SYMBOL(vfs_mkobj); 3142 3143 bool may_open_dev(const struct path *path) 3144 { 3145 return !(path->mnt->mnt_flags & MNT_NODEV) && 3146 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3147 } 3148 3149 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 3150 int acc_mode, int flag) 3151 { 3152 struct dentry *dentry = path->dentry; 3153 struct inode *inode = dentry->d_inode; 3154 int error; 3155 3156 if (!inode) 3157 return -ENOENT; 3158 3159 switch (inode->i_mode & S_IFMT) { 3160 case S_IFLNK: 3161 return -ELOOP; 3162 case S_IFDIR: 3163 if (acc_mode & MAY_WRITE) 3164 return -EISDIR; 3165 if (acc_mode & MAY_EXEC) 3166 return -EACCES; 3167 break; 3168 case S_IFBLK: 3169 case S_IFCHR: 3170 if (!may_open_dev(path)) 3171 return -EACCES; 3172 fallthrough; 3173 case S_IFIFO: 3174 case S_IFSOCK: 3175 if (acc_mode & MAY_EXEC) 3176 return -EACCES; 3177 flag &= ~O_TRUNC; 3178 break; 3179 case S_IFREG: 3180 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3181 return -EACCES; 3182 break; 3183 } 3184 3185 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 3186 if (error) 3187 return error; 3188 3189 /* 3190 * An append-only file must be opened in append mode for writing. 3191 */ 3192 if (IS_APPEND(inode)) { 3193 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3194 return -EPERM; 3195 if (flag & O_TRUNC) 3196 return -EPERM; 3197 } 3198 3199 /* O_NOATIME can only be set by the owner or superuser */ 3200 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 3201 return -EPERM; 3202 3203 return 0; 3204 } 3205 3206 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3207 { 3208 const struct path *path = &filp->f_path; 3209 struct inode *inode = path->dentry->d_inode; 3210 int error = get_write_access(inode); 3211 if (error) 3212 return error; 3213 3214 error = security_path_truncate(path); 3215 if (!error) { 3216 error = do_truncate(mnt_userns, path->dentry, 0, 3217 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3218 filp); 3219 } 3220 put_write_access(inode); 3221 return error; 3222 } 3223 3224 static inline int open_to_namei_flags(int flag) 3225 { 3226 if ((flag & O_ACCMODE) == 3) 3227 flag--; 3228 return flag; 3229 } 3230 3231 static int may_o_create(struct user_namespace *mnt_userns, 3232 const struct path *dir, struct dentry *dentry, 3233 umode_t mode) 3234 { 3235 int error = security_path_mknod(dir, dentry, mode, 0); 3236 if (error) 3237 return error; 3238 3239 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns)) 3240 return -EOVERFLOW; 3241 3242 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3243 MAY_WRITE | MAY_EXEC); 3244 if (error) 3245 return error; 3246 3247 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3248 } 3249 3250 /* 3251 * Attempt to atomically look up, create and open a file from a negative 3252 * dentry. 3253 * 3254 * Returns 0 if successful. The file will have been created and attached to 3255 * @file by the filesystem calling finish_open(). 3256 * 3257 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3258 * be set. The caller will need to perform the open themselves. @path will 3259 * have been updated to point to the new dentry. This may be negative. 3260 * 3261 * Returns an error code otherwise. 3262 */ 3263 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3264 struct file *file, 3265 int open_flag, umode_t mode) 3266 { 3267 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3268 struct inode *dir = nd->path.dentry->d_inode; 3269 int error; 3270 3271 if (nd->flags & LOOKUP_DIRECTORY) 3272 open_flag |= O_DIRECTORY; 3273 3274 file->f_path.dentry = DENTRY_NOT_SET; 3275 file->f_path.mnt = nd->path.mnt; 3276 error = dir->i_op->atomic_open(dir, dentry, file, 3277 open_to_namei_flags(open_flag), mode); 3278 d_lookup_done(dentry); 3279 if (!error) { 3280 if (file->f_mode & FMODE_OPENED) { 3281 if (unlikely(dentry != file->f_path.dentry)) { 3282 dput(dentry); 3283 dentry = dget(file->f_path.dentry); 3284 } 3285 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3286 error = -EIO; 3287 } else { 3288 if (file->f_path.dentry) { 3289 dput(dentry); 3290 dentry = file->f_path.dentry; 3291 } 3292 if (unlikely(d_is_negative(dentry))) 3293 error = -ENOENT; 3294 } 3295 } 3296 if (error) { 3297 dput(dentry); 3298 dentry = ERR_PTR(error); 3299 } 3300 return dentry; 3301 } 3302 3303 /* 3304 * Look up and maybe create and open the last component. 3305 * 3306 * Must be called with parent locked (exclusive in O_CREAT case). 3307 * 3308 * Returns 0 on success, that is, if 3309 * the file was successfully atomically created (if necessary) and opened, or 3310 * the file was not completely opened at this time, though lookups and 3311 * creations were performed. 3312 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3313 * In the latter case dentry returned in @path might be negative if O_CREAT 3314 * hadn't been specified. 3315 * 3316 * An error code is returned on failure. 3317 */ 3318 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3319 const struct open_flags *op, 3320 bool got_write) 3321 { 3322 struct user_namespace *mnt_userns; 3323 struct dentry *dir = nd->path.dentry; 3324 struct inode *dir_inode = dir->d_inode; 3325 int open_flag = op->open_flag; 3326 struct dentry *dentry; 3327 int error, create_error = 0; 3328 umode_t mode = op->mode; 3329 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3330 3331 if (unlikely(IS_DEADDIR(dir_inode))) 3332 return ERR_PTR(-ENOENT); 3333 3334 file->f_mode &= ~FMODE_CREATED; 3335 dentry = d_lookup(dir, &nd->last); 3336 for (;;) { 3337 if (!dentry) { 3338 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3339 if (IS_ERR(dentry)) 3340 return dentry; 3341 } 3342 if (d_in_lookup(dentry)) 3343 break; 3344 3345 error = d_revalidate(dentry, nd->flags); 3346 if (likely(error > 0)) 3347 break; 3348 if (error) 3349 goto out_dput; 3350 d_invalidate(dentry); 3351 dput(dentry); 3352 dentry = NULL; 3353 } 3354 if (dentry->d_inode) { 3355 /* Cached positive dentry: will open in f_op->open */ 3356 return dentry; 3357 } 3358 3359 /* 3360 * Checking write permission is tricky, bacuse we don't know if we are 3361 * going to actually need it: O_CREAT opens should work as long as the 3362 * file exists. But checking existence breaks atomicity. The trick is 3363 * to check access and if not granted clear O_CREAT from the flags. 3364 * 3365 * Another problem is returing the "right" error value (e.g. for an 3366 * O_EXCL open we want to return EEXIST not EROFS). 3367 */ 3368 if (unlikely(!got_write)) 3369 open_flag &= ~O_TRUNC; 3370 mnt_userns = mnt_user_ns(nd->path.mnt); 3371 if (open_flag & O_CREAT) { 3372 if (open_flag & O_EXCL) 3373 open_flag &= ~O_TRUNC; 3374 mode = vfs_prepare_mode(mnt_userns, dir->d_inode, mode, mode, mode); 3375 if (likely(got_write)) 3376 create_error = may_o_create(mnt_userns, &nd->path, 3377 dentry, mode); 3378 else 3379 create_error = -EROFS; 3380 } 3381 if (create_error) 3382 open_flag &= ~O_CREAT; 3383 if (dir_inode->i_op->atomic_open) { 3384 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3385 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3386 dentry = ERR_PTR(create_error); 3387 return dentry; 3388 } 3389 3390 if (d_in_lookup(dentry)) { 3391 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3392 nd->flags); 3393 d_lookup_done(dentry); 3394 if (unlikely(res)) { 3395 if (IS_ERR(res)) { 3396 error = PTR_ERR(res); 3397 goto out_dput; 3398 } 3399 dput(dentry); 3400 dentry = res; 3401 } 3402 } 3403 3404 /* Negative dentry, just create the file */ 3405 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3406 file->f_mode |= FMODE_CREATED; 3407 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3408 if (!dir_inode->i_op->create) { 3409 error = -EACCES; 3410 goto out_dput; 3411 } 3412 3413 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3414 mode, open_flag & O_EXCL); 3415 if (error) 3416 goto out_dput; 3417 } 3418 if (unlikely(create_error) && !dentry->d_inode) { 3419 error = create_error; 3420 goto out_dput; 3421 } 3422 return dentry; 3423 3424 out_dput: 3425 dput(dentry); 3426 return ERR_PTR(error); 3427 } 3428 3429 static const char *open_last_lookups(struct nameidata *nd, 3430 struct file *file, const struct open_flags *op) 3431 { 3432 struct dentry *dir = nd->path.dentry; 3433 int open_flag = op->open_flag; 3434 bool got_write = false; 3435 struct dentry *dentry; 3436 const char *res; 3437 3438 nd->flags |= op->intent; 3439 3440 if (nd->last_type != LAST_NORM) { 3441 if (nd->depth) 3442 put_link(nd); 3443 return handle_dots(nd, nd->last_type); 3444 } 3445 3446 if (!(open_flag & O_CREAT)) { 3447 if (nd->last.name[nd->last.len]) 3448 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3449 /* we _can_ be in RCU mode here */ 3450 dentry = lookup_fast(nd); 3451 if (IS_ERR(dentry)) 3452 return ERR_CAST(dentry); 3453 if (likely(dentry)) 3454 goto finish_lookup; 3455 3456 BUG_ON(nd->flags & LOOKUP_RCU); 3457 } else { 3458 /* create side of things */ 3459 if (nd->flags & LOOKUP_RCU) { 3460 if (!try_to_unlazy(nd)) 3461 return ERR_PTR(-ECHILD); 3462 } 3463 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3464 /* trailing slashes? */ 3465 if (unlikely(nd->last.name[nd->last.len])) 3466 return ERR_PTR(-EISDIR); 3467 } 3468 3469 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3470 got_write = !mnt_want_write(nd->path.mnt); 3471 /* 3472 * do _not_ fail yet - we might not need that or fail with 3473 * a different error; let lookup_open() decide; we'll be 3474 * dropping this one anyway. 3475 */ 3476 } 3477 if (open_flag & O_CREAT) 3478 inode_lock(dir->d_inode); 3479 else 3480 inode_lock_shared(dir->d_inode); 3481 dentry = lookup_open(nd, file, op, got_write); 3482 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3483 fsnotify_create(dir->d_inode, dentry); 3484 if (open_flag & O_CREAT) 3485 inode_unlock(dir->d_inode); 3486 else 3487 inode_unlock_shared(dir->d_inode); 3488 3489 if (got_write) 3490 mnt_drop_write(nd->path.mnt); 3491 3492 if (IS_ERR(dentry)) 3493 return ERR_CAST(dentry); 3494 3495 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3496 dput(nd->path.dentry); 3497 nd->path.dentry = dentry; 3498 return NULL; 3499 } 3500 3501 finish_lookup: 3502 if (nd->depth) 3503 put_link(nd); 3504 res = step_into(nd, WALK_TRAILING, dentry); 3505 if (unlikely(res)) 3506 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3507 return res; 3508 } 3509 3510 /* 3511 * Handle the last step of open() 3512 */ 3513 static int do_open(struct nameidata *nd, 3514 struct file *file, const struct open_flags *op) 3515 { 3516 struct user_namespace *mnt_userns; 3517 int open_flag = op->open_flag; 3518 bool do_truncate; 3519 int acc_mode; 3520 int error; 3521 3522 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3523 error = complete_walk(nd); 3524 if (error) 3525 return error; 3526 } 3527 if (!(file->f_mode & FMODE_CREATED)) 3528 audit_inode(nd->name, nd->path.dentry, 0); 3529 mnt_userns = mnt_user_ns(nd->path.mnt); 3530 if (open_flag & O_CREAT) { 3531 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3532 return -EEXIST; 3533 if (d_is_dir(nd->path.dentry)) 3534 return -EISDIR; 3535 error = may_create_in_sticky(mnt_userns, nd, 3536 d_backing_inode(nd->path.dentry)); 3537 if (unlikely(error)) 3538 return error; 3539 } 3540 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3541 return -ENOTDIR; 3542 3543 do_truncate = false; 3544 acc_mode = op->acc_mode; 3545 if (file->f_mode & FMODE_CREATED) { 3546 /* Don't check for write permission, don't truncate */ 3547 open_flag &= ~O_TRUNC; 3548 acc_mode = 0; 3549 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3550 error = mnt_want_write(nd->path.mnt); 3551 if (error) 3552 return error; 3553 do_truncate = true; 3554 } 3555 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3556 if (!error && !(file->f_mode & FMODE_OPENED)) 3557 error = vfs_open(&nd->path, file); 3558 if (!error) 3559 error = ima_file_check(file, op->acc_mode); 3560 if (!error && do_truncate) 3561 error = handle_truncate(mnt_userns, file); 3562 if (unlikely(error > 0)) { 3563 WARN_ON(1); 3564 error = -EINVAL; 3565 } 3566 if (do_truncate) 3567 mnt_drop_write(nd->path.mnt); 3568 return error; 3569 } 3570 3571 /** 3572 * vfs_tmpfile - create tmpfile 3573 * @mnt_userns: user namespace of the mount the inode was found from 3574 * @dentry: pointer to dentry of the base directory 3575 * @mode: mode of the new tmpfile 3576 * @open_flag: flags 3577 * 3578 * Create a temporary file. 3579 * 3580 * If the inode has been found through an idmapped mount the user namespace of 3581 * the vfsmount must be passed through @mnt_userns. This function will then take 3582 * care to map the inode according to @mnt_userns before checking permissions. 3583 * On non-idmapped mounts or if permission checking is to be performed on the 3584 * raw inode simply passs init_user_ns. 3585 */ 3586 static int vfs_tmpfile(struct user_namespace *mnt_userns, 3587 const struct path *parentpath, 3588 struct file *file, umode_t mode) 3589 { 3590 struct dentry *child; 3591 struct inode *dir = d_inode(parentpath->dentry); 3592 struct inode *inode; 3593 int error; 3594 int open_flag = file->f_flags; 3595 3596 /* we want directory to be writable */ 3597 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3598 if (error) 3599 return error; 3600 if (!dir->i_op->tmpfile) 3601 return -EOPNOTSUPP; 3602 child = d_alloc(parentpath->dentry, &slash_name); 3603 if (unlikely(!child)) 3604 return -ENOMEM; 3605 file->f_path.mnt = parentpath->mnt; 3606 file->f_path.dentry = child; 3607 mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode); 3608 error = dir->i_op->tmpfile(mnt_userns, dir, file, mode); 3609 dput(child); 3610 if (error) 3611 return error; 3612 /* Don't check for other permissions, the inode was just created */ 3613 error = may_open(mnt_userns, &file->f_path, 0, file->f_flags); 3614 if (error) 3615 return error; 3616 inode = file_inode(file); 3617 if (!(open_flag & O_EXCL)) { 3618 spin_lock(&inode->i_lock); 3619 inode->i_state |= I_LINKABLE; 3620 spin_unlock(&inode->i_lock); 3621 } 3622 ima_post_create_tmpfile(mnt_userns, inode); 3623 return 0; 3624 } 3625 3626 /** 3627 * vfs_tmpfile_open - open a tmpfile for kernel internal use 3628 * @mnt_userns: user namespace of the mount the inode was found from 3629 * @parentpath: path of the base directory 3630 * @mode: mode of the new tmpfile 3631 * @open_flag: flags 3632 * @cred: credentials for open 3633 * 3634 * Create and open a temporary file. The file is not accounted in nr_files, 3635 * hence this is only for kernel internal use, and must not be installed into 3636 * file tables or such. 3637 */ 3638 struct file *vfs_tmpfile_open(struct user_namespace *mnt_userns, 3639 const struct path *parentpath, 3640 umode_t mode, int open_flag, const struct cred *cred) 3641 { 3642 struct file *file; 3643 int error; 3644 3645 file = alloc_empty_file_noaccount(open_flag, cred); 3646 if (!IS_ERR(file)) { 3647 error = vfs_tmpfile(mnt_userns, parentpath, file, mode); 3648 if (error) { 3649 fput(file); 3650 file = ERR_PTR(error); 3651 } 3652 } 3653 return file; 3654 } 3655 EXPORT_SYMBOL(vfs_tmpfile_open); 3656 3657 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3658 const struct open_flags *op, 3659 struct file *file) 3660 { 3661 struct user_namespace *mnt_userns; 3662 struct path path; 3663 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3664 3665 if (unlikely(error)) 3666 return error; 3667 error = mnt_want_write(path.mnt); 3668 if (unlikely(error)) 3669 goto out; 3670 mnt_userns = mnt_user_ns(path.mnt); 3671 error = vfs_tmpfile(mnt_userns, &path, file, op->mode); 3672 if (error) 3673 goto out2; 3674 audit_inode(nd->name, file->f_path.dentry, 0); 3675 out2: 3676 mnt_drop_write(path.mnt); 3677 out: 3678 path_put(&path); 3679 return error; 3680 } 3681 3682 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3683 { 3684 struct path path; 3685 int error = path_lookupat(nd, flags, &path); 3686 if (!error) { 3687 audit_inode(nd->name, path.dentry, 0); 3688 error = vfs_open(&path, file); 3689 path_put(&path); 3690 } 3691 return error; 3692 } 3693 3694 static struct file *path_openat(struct nameidata *nd, 3695 const struct open_flags *op, unsigned flags) 3696 { 3697 struct file *file; 3698 int error; 3699 3700 file = alloc_empty_file(op->open_flag, current_cred()); 3701 if (IS_ERR(file)) 3702 return file; 3703 3704 if (unlikely(file->f_flags & __O_TMPFILE)) { 3705 error = do_tmpfile(nd, flags, op, file); 3706 } else if (unlikely(file->f_flags & O_PATH)) { 3707 error = do_o_path(nd, flags, file); 3708 } else { 3709 const char *s = path_init(nd, flags); 3710 while (!(error = link_path_walk(s, nd)) && 3711 (s = open_last_lookups(nd, file, op)) != NULL) 3712 ; 3713 if (!error) 3714 error = do_open(nd, file, op); 3715 terminate_walk(nd); 3716 } 3717 if (likely(!error)) { 3718 if (likely(file->f_mode & FMODE_OPENED)) 3719 return file; 3720 WARN_ON(1); 3721 error = -EINVAL; 3722 } 3723 fput(file); 3724 if (error == -EOPENSTALE) { 3725 if (flags & LOOKUP_RCU) 3726 error = -ECHILD; 3727 else 3728 error = -ESTALE; 3729 } 3730 return ERR_PTR(error); 3731 } 3732 3733 struct file *do_filp_open(int dfd, struct filename *pathname, 3734 const struct open_flags *op) 3735 { 3736 struct nameidata nd; 3737 int flags = op->lookup_flags; 3738 struct file *filp; 3739 3740 set_nameidata(&nd, dfd, pathname, NULL); 3741 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3742 if (unlikely(filp == ERR_PTR(-ECHILD))) 3743 filp = path_openat(&nd, op, flags); 3744 if (unlikely(filp == ERR_PTR(-ESTALE))) 3745 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3746 restore_nameidata(); 3747 return filp; 3748 } 3749 3750 struct file *do_file_open_root(const struct path *root, 3751 const char *name, const struct open_flags *op) 3752 { 3753 struct nameidata nd; 3754 struct file *file; 3755 struct filename *filename; 3756 int flags = op->lookup_flags; 3757 3758 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3759 return ERR_PTR(-ELOOP); 3760 3761 filename = getname_kernel(name); 3762 if (IS_ERR(filename)) 3763 return ERR_CAST(filename); 3764 3765 set_nameidata(&nd, -1, filename, root); 3766 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3767 if (unlikely(file == ERR_PTR(-ECHILD))) 3768 file = path_openat(&nd, op, flags); 3769 if (unlikely(file == ERR_PTR(-ESTALE))) 3770 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3771 restore_nameidata(); 3772 putname(filename); 3773 return file; 3774 } 3775 3776 static struct dentry *filename_create(int dfd, struct filename *name, 3777 struct path *path, unsigned int lookup_flags) 3778 { 3779 struct dentry *dentry = ERR_PTR(-EEXIST); 3780 struct qstr last; 3781 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3782 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3783 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3784 int type; 3785 int err2; 3786 int error; 3787 3788 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3789 if (error) 3790 return ERR_PTR(error); 3791 3792 /* 3793 * Yucky last component or no last component at all? 3794 * (foo/., foo/.., /////) 3795 */ 3796 if (unlikely(type != LAST_NORM)) 3797 goto out; 3798 3799 /* don't fail immediately if it's r/o, at least try to report other errors */ 3800 err2 = mnt_want_write(path->mnt); 3801 /* 3802 * Do the final lookup. Suppress 'create' if there is a trailing 3803 * '/', and a directory wasn't requested. 3804 */ 3805 if (last.name[last.len] && !want_dir) 3806 create_flags = 0; 3807 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3808 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags); 3809 if (IS_ERR(dentry)) 3810 goto unlock; 3811 3812 error = -EEXIST; 3813 if (d_is_positive(dentry)) 3814 goto fail; 3815 3816 /* 3817 * Special case - lookup gave negative, but... we had foo/bar/ 3818 * From the vfs_mknod() POV we just have a negative dentry - 3819 * all is fine. Let's be bastards - you had / on the end, you've 3820 * been asking for (non-existent) directory. -ENOENT for you. 3821 */ 3822 if (unlikely(!create_flags)) { 3823 error = -ENOENT; 3824 goto fail; 3825 } 3826 if (unlikely(err2)) { 3827 error = err2; 3828 goto fail; 3829 } 3830 return dentry; 3831 fail: 3832 dput(dentry); 3833 dentry = ERR_PTR(error); 3834 unlock: 3835 inode_unlock(path->dentry->d_inode); 3836 if (!err2) 3837 mnt_drop_write(path->mnt); 3838 out: 3839 path_put(path); 3840 return dentry; 3841 } 3842 3843 struct dentry *kern_path_create(int dfd, const char *pathname, 3844 struct path *path, unsigned int lookup_flags) 3845 { 3846 struct filename *filename = getname_kernel(pathname); 3847 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3848 3849 putname(filename); 3850 return res; 3851 } 3852 EXPORT_SYMBOL(kern_path_create); 3853 3854 void done_path_create(struct path *path, struct dentry *dentry) 3855 { 3856 dput(dentry); 3857 inode_unlock(path->dentry->d_inode); 3858 mnt_drop_write(path->mnt); 3859 path_put(path); 3860 } 3861 EXPORT_SYMBOL(done_path_create); 3862 3863 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3864 struct path *path, unsigned int lookup_flags) 3865 { 3866 struct filename *filename = getname(pathname); 3867 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3868 3869 putname(filename); 3870 return res; 3871 } 3872 EXPORT_SYMBOL(user_path_create); 3873 3874 /** 3875 * vfs_mknod - create device node or file 3876 * @mnt_userns: user namespace of the mount the inode was found from 3877 * @dir: inode of @dentry 3878 * @dentry: pointer to dentry of the base directory 3879 * @mode: mode of the new device node or file 3880 * @dev: device number of device to create 3881 * 3882 * Create a device node or file. 3883 * 3884 * If the inode has been found through an idmapped mount the user namespace of 3885 * the vfsmount must be passed through @mnt_userns. This function will then take 3886 * care to map the inode according to @mnt_userns before checking permissions. 3887 * On non-idmapped mounts or if permission checking is to be performed on the 3888 * raw inode simply passs init_user_ns. 3889 */ 3890 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3891 struct dentry *dentry, umode_t mode, dev_t dev) 3892 { 3893 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3894 int error = may_create(mnt_userns, dir, dentry); 3895 3896 if (error) 3897 return error; 3898 3899 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3900 !capable(CAP_MKNOD)) 3901 return -EPERM; 3902 3903 if (!dir->i_op->mknod) 3904 return -EPERM; 3905 3906 mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode); 3907 error = devcgroup_inode_mknod(mode, dev); 3908 if (error) 3909 return error; 3910 3911 error = security_inode_mknod(dir, dentry, mode, dev); 3912 if (error) 3913 return error; 3914 3915 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3916 if (!error) 3917 fsnotify_create(dir, dentry); 3918 return error; 3919 } 3920 EXPORT_SYMBOL(vfs_mknod); 3921 3922 static int may_mknod(umode_t mode) 3923 { 3924 switch (mode & S_IFMT) { 3925 case S_IFREG: 3926 case S_IFCHR: 3927 case S_IFBLK: 3928 case S_IFIFO: 3929 case S_IFSOCK: 3930 case 0: /* zero mode translates to S_IFREG */ 3931 return 0; 3932 case S_IFDIR: 3933 return -EPERM; 3934 default: 3935 return -EINVAL; 3936 } 3937 } 3938 3939 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 3940 unsigned int dev) 3941 { 3942 struct user_namespace *mnt_userns; 3943 struct dentry *dentry; 3944 struct path path; 3945 int error; 3946 unsigned int lookup_flags = 0; 3947 3948 error = may_mknod(mode); 3949 if (error) 3950 goto out1; 3951 retry: 3952 dentry = filename_create(dfd, name, &path, lookup_flags); 3953 error = PTR_ERR(dentry); 3954 if (IS_ERR(dentry)) 3955 goto out1; 3956 3957 error = security_path_mknod(&path, dentry, 3958 mode_strip_umask(path.dentry->d_inode, mode), dev); 3959 if (error) 3960 goto out2; 3961 3962 mnt_userns = mnt_user_ns(path.mnt); 3963 switch (mode & S_IFMT) { 3964 case 0: case S_IFREG: 3965 error = vfs_create(mnt_userns, path.dentry->d_inode, 3966 dentry, mode, true); 3967 if (!error) 3968 ima_post_path_mknod(mnt_userns, dentry); 3969 break; 3970 case S_IFCHR: case S_IFBLK: 3971 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3972 dentry, mode, new_decode_dev(dev)); 3973 break; 3974 case S_IFIFO: case S_IFSOCK: 3975 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3976 dentry, mode, 0); 3977 break; 3978 } 3979 out2: 3980 done_path_create(&path, dentry); 3981 if (retry_estale(error, lookup_flags)) { 3982 lookup_flags |= LOOKUP_REVAL; 3983 goto retry; 3984 } 3985 out1: 3986 putname(name); 3987 return error; 3988 } 3989 3990 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3991 unsigned int, dev) 3992 { 3993 return do_mknodat(dfd, getname(filename), mode, dev); 3994 } 3995 3996 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3997 { 3998 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 3999 } 4000 4001 /** 4002 * vfs_mkdir - create directory 4003 * @mnt_userns: user namespace of the mount the inode was found from 4004 * @dir: inode of @dentry 4005 * @dentry: pointer to dentry of the base directory 4006 * @mode: mode of the new directory 4007 * 4008 * Create a directory. 4009 * 4010 * If the inode has been found through an idmapped mount the user namespace of 4011 * the vfsmount must be passed through @mnt_userns. This function will then take 4012 * care to map the inode according to @mnt_userns before checking permissions. 4013 * On non-idmapped mounts or if permission checking is to be performed on the 4014 * raw inode simply passs init_user_ns. 4015 */ 4016 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 4017 struct dentry *dentry, umode_t mode) 4018 { 4019 int error = may_create(mnt_userns, dir, dentry); 4020 unsigned max_links = dir->i_sb->s_max_links; 4021 4022 if (error) 4023 return error; 4024 4025 if (!dir->i_op->mkdir) 4026 return -EPERM; 4027 4028 mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4029 error = security_inode_mkdir(dir, dentry, mode); 4030 if (error) 4031 return error; 4032 4033 if (max_links && dir->i_nlink >= max_links) 4034 return -EMLINK; 4035 4036 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 4037 if (!error) 4038 fsnotify_mkdir(dir, dentry); 4039 return error; 4040 } 4041 EXPORT_SYMBOL(vfs_mkdir); 4042 4043 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4044 { 4045 struct dentry *dentry; 4046 struct path path; 4047 int error; 4048 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4049 4050 retry: 4051 dentry = filename_create(dfd, name, &path, lookup_flags); 4052 error = PTR_ERR(dentry); 4053 if (IS_ERR(dentry)) 4054 goto out_putname; 4055 4056 error = security_path_mkdir(&path, dentry, 4057 mode_strip_umask(path.dentry->d_inode, mode)); 4058 if (!error) { 4059 struct user_namespace *mnt_userns; 4060 mnt_userns = mnt_user_ns(path.mnt); 4061 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 4062 mode); 4063 } 4064 done_path_create(&path, dentry); 4065 if (retry_estale(error, lookup_flags)) { 4066 lookup_flags |= LOOKUP_REVAL; 4067 goto retry; 4068 } 4069 out_putname: 4070 putname(name); 4071 return error; 4072 } 4073 4074 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4075 { 4076 return do_mkdirat(dfd, getname(pathname), mode); 4077 } 4078 4079 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4080 { 4081 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4082 } 4083 4084 /** 4085 * vfs_rmdir - remove directory 4086 * @mnt_userns: user namespace of the mount the inode was found from 4087 * @dir: inode of @dentry 4088 * @dentry: pointer to dentry of the base directory 4089 * 4090 * Remove a directory. 4091 * 4092 * If the inode has been found through an idmapped mount the user namespace of 4093 * the vfsmount must be passed through @mnt_userns. This function will then take 4094 * care to map the inode according to @mnt_userns before checking permissions. 4095 * On non-idmapped mounts or if permission checking is to be performed on the 4096 * raw inode simply passs init_user_ns. 4097 */ 4098 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 4099 struct dentry *dentry) 4100 { 4101 int error = may_delete(mnt_userns, dir, dentry, 1); 4102 4103 if (error) 4104 return error; 4105 4106 if (!dir->i_op->rmdir) 4107 return -EPERM; 4108 4109 dget(dentry); 4110 inode_lock(dentry->d_inode); 4111 4112 error = -EBUSY; 4113 if (is_local_mountpoint(dentry) || 4114 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4115 goto out; 4116 4117 error = security_inode_rmdir(dir, dentry); 4118 if (error) 4119 goto out; 4120 4121 error = dir->i_op->rmdir(dir, dentry); 4122 if (error) 4123 goto out; 4124 4125 shrink_dcache_parent(dentry); 4126 dentry->d_inode->i_flags |= S_DEAD; 4127 dont_mount(dentry); 4128 detach_mounts(dentry); 4129 4130 out: 4131 inode_unlock(dentry->d_inode); 4132 dput(dentry); 4133 if (!error) 4134 d_delete_notify(dir, dentry); 4135 return error; 4136 } 4137 EXPORT_SYMBOL(vfs_rmdir); 4138 4139 int do_rmdir(int dfd, struct filename *name) 4140 { 4141 struct user_namespace *mnt_userns; 4142 int error; 4143 struct dentry *dentry; 4144 struct path path; 4145 struct qstr last; 4146 int type; 4147 unsigned int lookup_flags = 0; 4148 retry: 4149 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4150 if (error) 4151 goto exit1; 4152 4153 switch (type) { 4154 case LAST_DOTDOT: 4155 error = -ENOTEMPTY; 4156 goto exit2; 4157 case LAST_DOT: 4158 error = -EINVAL; 4159 goto exit2; 4160 case LAST_ROOT: 4161 error = -EBUSY; 4162 goto exit2; 4163 } 4164 4165 error = mnt_want_write(path.mnt); 4166 if (error) 4167 goto exit2; 4168 4169 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4170 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4171 error = PTR_ERR(dentry); 4172 if (IS_ERR(dentry)) 4173 goto exit3; 4174 if (!dentry->d_inode) { 4175 error = -ENOENT; 4176 goto exit4; 4177 } 4178 error = security_path_rmdir(&path, dentry); 4179 if (error) 4180 goto exit4; 4181 mnt_userns = mnt_user_ns(path.mnt); 4182 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 4183 exit4: 4184 dput(dentry); 4185 exit3: 4186 inode_unlock(path.dentry->d_inode); 4187 mnt_drop_write(path.mnt); 4188 exit2: 4189 path_put(&path); 4190 if (retry_estale(error, lookup_flags)) { 4191 lookup_flags |= LOOKUP_REVAL; 4192 goto retry; 4193 } 4194 exit1: 4195 putname(name); 4196 return error; 4197 } 4198 4199 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4200 { 4201 return do_rmdir(AT_FDCWD, getname(pathname)); 4202 } 4203 4204 /** 4205 * vfs_unlink - unlink a filesystem object 4206 * @mnt_userns: user namespace of the mount the inode was found from 4207 * @dir: parent directory 4208 * @dentry: victim 4209 * @delegated_inode: returns victim inode, if the inode is delegated. 4210 * 4211 * The caller must hold dir->i_mutex. 4212 * 4213 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4214 * return a reference to the inode in delegated_inode. The caller 4215 * should then break the delegation on that inode and retry. Because 4216 * breaking a delegation may take a long time, the caller should drop 4217 * dir->i_mutex before doing so. 4218 * 4219 * Alternatively, a caller may pass NULL for delegated_inode. This may 4220 * be appropriate for callers that expect the underlying filesystem not 4221 * to be NFS exported. 4222 * 4223 * If the inode has been found through an idmapped mount the user namespace of 4224 * the vfsmount must be passed through @mnt_userns. This function will then take 4225 * care to map the inode according to @mnt_userns before checking permissions. 4226 * On non-idmapped mounts or if permission checking is to be performed on the 4227 * raw inode simply passs init_user_ns. 4228 */ 4229 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4230 struct dentry *dentry, struct inode **delegated_inode) 4231 { 4232 struct inode *target = dentry->d_inode; 4233 int error = may_delete(mnt_userns, dir, dentry, 0); 4234 4235 if (error) 4236 return error; 4237 4238 if (!dir->i_op->unlink) 4239 return -EPERM; 4240 4241 inode_lock(target); 4242 if (IS_SWAPFILE(target)) 4243 error = -EPERM; 4244 else if (is_local_mountpoint(dentry)) 4245 error = -EBUSY; 4246 else { 4247 error = security_inode_unlink(dir, dentry); 4248 if (!error) { 4249 error = try_break_deleg(target, delegated_inode); 4250 if (error) 4251 goto out; 4252 error = dir->i_op->unlink(dir, dentry); 4253 if (!error) { 4254 dont_mount(dentry); 4255 detach_mounts(dentry); 4256 } 4257 } 4258 } 4259 out: 4260 inode_unlock(target); 4261 4262 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4263 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4264 fsnotify_unlink(dir, dentry); 4265 } else if (!error) { 4266 fsnotify_link_count(target); 4267 d_delete_notify(dir, dentry); 4268 } 4269 4270 return error; 4271 } 4272 EXPORT_SYMBOL(vfs_unlink); 4273 4274 /* 4275 * Make sure that the actual truncation of the file will occur outside its 4276 * directory's i_mutex. Truncate can take a long time if there is a lot of 4277 * writeout happening, and we don't want to prevent access to the directory 4278 * while waiting on the I/O. 4279 */ 4280 int do_unlinkat(int dfd, struct filename *name) 4281 { 4282 int error; 4283 struct dentry *dentry; 4284 struct path path; 4285 struct qstr last; 4286 int type; 4287 struct inode *inode = NULL; 4288 struct inode *delegated_inode = NULL; 4289 unsigned int lookup_flags = 0; 4290 retry: 4291 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4292 if (error) 4293 goto exit1; 4294 4295 error = -EISDIR; 4296 if (type != LAST_NORM) 4297 goto exit2; 4298 4299 error = mnt_want_write(path.mnt); 4300 if (error) 4301 goto exit2; 4302 retry_deleg: 4303 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4304 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4305 error = PTR_ERR(dentry); 4306 if (!IS_ERR(dentry)) { 4307 struct user_namespace *mnt_userns; 4308 4309 /* Why not before? Because we want correct error value */ 4310 if (last.name[last.len]) 4311 goto slashes; 4312 inode = dentry->d_inode; 4313 if (d_is_negative(dentry)) 4314 goto slashes; 4315 ihold(inode); 4316 error = security_path_unlink(&path, dentry); 4317 if (error) 4318 goto exit3; 4319 mnt_userns = mnt_user_ns(path.mnt); 4320 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4321 &delegated_inode); 4322 exit3: 4323 dput(dentry); 4324 } 4325 inode_unlock(path.dentry->d_inode); 4326 if (inode) 4327 iput(inode); /* truncate the inode here */ 4328 inode = NULL; 4329 if (delegated_inode) { 4330 error = break_deleg_wait(&delegated_inode); 4331 if (!error) 4332 goto retry_deleg; 4333 } 4334 mnt_drop_write(path.mnt); 4335 exit2: 4336 path_put(&path); 4337 if (retry_estale(error, lookup_flags)) { 4338 lookup_flags |= LOOKUP_REVAL; 4339 inode = NULL; 4340 goto retry; 4341 } 4342 exit1: 4343 putname(name); 4344 return error; 4345 4346 slashes: 4347 if (d_is_negative(dentry)) 4348 error = -ENOENT; 4349 else if (d_is_dir(dentry)) 4350 error = -EISDIR; 4351 else 4352 error = -ENOTDIR; 4353 goto exit3; 4354 } 4355 4356 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4357 { 4358 if ((flag & ~AT_REMOVEDIR) != 0) 4359 return -EINVAL; 4360 4361 if (flag & AT_REMOVEDIR) 4362 return do_rmdir(dfd, getname(pathname)); 4363 return do_unlinkat(dfd, getname(pathname)); 4364 } 4365 4366 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4367 { 4368 return do_unlinkat(AT_FDCWD, getname(pathname)); 4369 } 4370 4371 /** 4372 * vfs_symlink - create symlink 4373 * @mnt_userns: user namespace of the mount the inode was found from 4374 * @dir: inode of @dentry 4375 * @dentry: pointer to dentry of the base directory 4376 * @oldname: name of the file to link to 4377 * 4378 * Create a symlink. 4379 * 4380 * If the inode has been found through an idmapped mount the user namespace of 4381 * the vfsmount must be passed through @mnt_userns. This function will then take 4382 * care to map the inode according to @mnt_userns before checking permissions. 4383 * On non-idmapped mounts or if permission checking is to be performed on the 4384 * raw inode simply passs init_user_ns. 4385 */ 4386 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4387 struct dentry *dentry, const char *oldname) 4388 { 4389 int error = may_create(mnt_userns, dir, dentry); 4390 4391 if (error) 4392 return error; 4393 4394 if (!dir->i_op->symlink) 4395 return -EPERM; 4396 4397 error = security_inode_symlink(dir, dentry, oldname); 4398 if (error) 4399 return error; 4400 4401 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4402 if (!error) 4403 fsnotify_create(dir, dentry); 4404 return error; 4405 } 4406 EXPORT_SYMBOL(vfs_symlink); 4407 4408 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4409 { 4410 int error; 4411 struct dentry *dentry; 4412 struct path path; 4413 unsigned int lookup_flags = 0; 4414 4415 if (IS_ERR(from)) { 4416 error = PTR_ERR(from); 4417 goto out_putnames; 4418 } 4419 retry: 4420 dentry = filename_create(newdfd, to, &path, lookup_flags); 4421 error = PTR_ERR(dentry); 4422 if (IS_ERR(dentry)) 4423 goto out_putnames; 4424 4425 error = security_path_symlink(&path, dentry, from->name); 4426 if (!error) { 4427 struct user_namespace *mnt_userns; 4428 4429 mnt_userns = mnt_user_ns(path.mnt); 4430 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4431 from->name); 4432 } 4433 done_path_create(&path, dentry); 4434 if (retry_estale(error, lookup_flags)) { 4435 lookup_flags |= LOOKUP_REVAL; 4436 goto retry; 4437 } 4438 out_putnames: 4439 putname(to); 4440 putname(from); 4441 return error; 4442 } 4443 4444 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4445 int, newdfd, const char __user *, newname) 4446 { 4447 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4448 } 4449 4450 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4451 { 4452 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4453 } 4454 4455 /** 4456 * vfs_link - create a new link 4457 * @old_dentry: object to be linked 4458 * @mnt_userns: the user namespace of the mount 4459 * @dir: new parent 4460 * @new_dentry: where to create the new link 4461 * @delegated_inode: returns inode needing a delegation break 4462 * 4463 * The caller must hold dir->i_mutex 4464 * 4465 * If vfs_link discovers a delegation on the to-be-linked file in need 4466 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4467 * inode in delegated_inode. The caller should then break the delegation 4468 * and retry. Because breaking a delegation may take a long time, the 4469 * caller should drop the i_mutex before doing so. 4470 * 4471 * Alternatively, a caller may pass NULL for delegated_inode. This may 4472 * be appropriate for callers that expect the underlying filesystem not 4473 * to be NFS exported. 4474 * 4475 * If the inode has been found through an idmapped mount the user namespace of 4476 * the vfsmount must be passed through @mnt_userns. This function will then take 4477 * care to map the inode according to @mnt_userns before checking permissions. 4478 * On non-idmapped mounts or if permission checking is to be performed on the 4479 * raw inode simply passs init_user_ns. 4480 */ 4481 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4482 struct inode *dir, struct dentry *new_dentry, 4483 struct inode **delegated_inode) 4484 { 4485 struct inode *inode = old_dentry->d_inode; 4486 unsigned max_links = dir->i_sb->s_max_links; 4487 int error; 4488 4489 if (!inode) 4490 return -ENOENT; 4491 4492 error = may_create(mnt_userns, dir, new_dentry); 4493 if (error) 4494 return error; 4495 4496 if (dir->i_sb != inode->i_sb) 4497 return -EXDEV; 4498 4499 /* 4500 * A link to an append-only or immutable file cannot be created. 4501 */ 4502 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4503 return -EPERM; 4504 /* 4505 * Updating the link count will likely cause i_uid and i_gid to 4506 * be writen back improperly if their true value is unknown to 4507 * the vfs. 4508 */ 4509 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4510 return -EPERM; 4511 if (!dir->i_op->link) 4512 return -EPERM; 4513 if (S_ISDIR(inode->i_mode)) 4514 return -EPERM; 4515 4516 error = security_inode_link(old_dentry, dir, new_dentry); 4517 if (error) 4518 return error; 4519 4520 inode_lock(inode); 4521 /* Make sure we don't allow creating hardlink to an unlinked file */ 4522 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4523 error = -ENOENT; 4524 else if (max_links && inode->i_nlink >= max_links) 4525 error = -EMLINK; 4526 else { 4527 error = try_break_deleg(inode, delegated_inode); 4528 if (!error) 4529 error = dir->i_op->link(old_dentry, dir, new_dentry); 4530 } 4531 4532 if (!error && (inode->i_state & I_LINKABLE)) { 4533 spin_lock(&inode->i_lock); 4534 inode->i_state &= ~I_LINKABLE; 4535 spin_unlock(&inode->i_lock); 4536 } 4537 inode_unlock(inode); 4538 if (!error) 4539 fsnotify_link(dir, inode, new_dentry); 4540 return error; 4541 } 4542 EXPORT_SYMBOL(vfs_link); 4543 4544 /* 4545 * Hardlinks are often used in delicate situations. We avoid 4546 * security-related surprises by not following symlinks on the 4547 * newname. --KAB 4548 * 4549 * We don't follow them on the oldname either to be compatible 4550 * with linux 2.0, and to avoid hard-linking to directories 4551 * and other special files. --ADM 4552 */ 4553 int do_linkat(int olddfd, struct filename *old, int newdfd, 4554 struct filename *new, int flags) 4555 { 4556 struct user_namespace *mnt_userns; 4557 struct dentry *new_dentry; 4558 struct path old_path, new_path; 4559 struct inode *delegated_inode = NULL; 4560 int how = 0; 4561 int error; 4562 4563 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4564 error = -EINVAL; 4565 goto out_putnames; 4566 } 4567 /* 4568 * To use null names we require CAP_DAC_READ_SEARCH 4569 * This ensures that not everyone will be able to create 4570 * handlink using the passed filedescriptor. 4571 */ 4572 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4573 error = -ENOENT; 4574 goto out_putnames; 4575 } 4576 4577 if (flags & AT_SYMLINK_FOLLOW) 4578 how |= LOOKUP_FOLLOW; 4579 retry: 4580 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4581 if (error) 4582 goto out_putnames; 4583 4584 new_dentry = filename_create(newdfd, new, &new_path, 4585 (how & LOOKUP_REVAL)); 4586 error = PTR_ERR(new_dentry); 4587 if (IS_ERR(new_dentry)) 4588 goto out_putpath; 4589 4590 error = -EXDEV; 4591 if (old_path.mnt != new_path.mnt) 4592 goto out_dput; 4593 mnt_userns = mnt_user_ns(new_path.mnt); 4594 error = may_linkat(mnt_userns, &old_path); 4595 if (unlikely(error)) 4596 goto out_dput; 4597 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4598 if (error) 4599 goto out_dput; 4600 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4601 new_dentry, &delegated_inode); 4602 out_dput: 4603 done_path_create(&new_path, new_dentry); 4604 if (delegated_inode) { 4605 error = break_deleg_wait(&delegated_inode); 4606 if (!error) { 4607 path_put(&old_path); 4608 goto retry; 4609 } 4610 } 4611 if (retry_estale(error, how)) { 4612 path_put(&old_path); 4613 how |= LOOKUP_REVAL; 4614 goto retry; 4615 } 4616 out_putpath: 4617 path_put(&old_path); 4618 out_putnames: 4619 putname(old); 4620 putname(new); 4621 4622 return error; 4623 } 4624 4625 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4626 int, newdfd, const char __user *, newname, int, flags) 4627 { 4628 return do_linkat(olddfd, getname_uflags(oldname, flags), 4629 newdfd, getname(newname), flags); 4630 } 4631 4632 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4633 { 4634 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4635 } 4636 4637 /** 4638 * vfs_rename - rename a filesystem object 4639 * @rd: pointer to &struct renamedata info 4640 * 4641 * The caller must hold multiple mutexes--see lock_rename()). 4642 * 4643 * If vfs_rename discovers a delegation in need of breaking at either 4644 * the source or destination, it will return -EWOULDBLOCK and return a 4645 * reference to the inode in delegated_inode. The caller should then 4646 * break the delegation and retry. Because breaking a delegation may 4647 * take a long time, the caller should drop all locks before doing 4648 * so. 4649 * 4650 * Alternatively, a caller may pass NULL for delegated_inode. This may 4651 * be appropriate for callers that expect the underlying filesystem not 4652 * to be NFS exported. 4653 * 4654 * The worst of all namespace operations - renaming directory. "Perverted" 4655 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4656 * Problems: 4657 * 4658 * a) we can get into loop creation. 4659 * b) race potential - two innocent renames can create a loop together. 4660 * That's where 4.4 screws up. Current fix: serialization on 4661 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4662 * story. 4663 * c) we have to lock _four_ objects - parents and victim (if it exists), 4664 * and source (if it is not a directory). 4665 * And that - after we got ->i_mutex on parents (until then we don't know 4666 * whether the target exists). Solution: try to be smart with locking 4667 * order for inodes. We rely on the fact that tree topology may change 4668 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4669 * move will be locked. Thus we can rank directories by the tree 4670 * (ancestors first) and rank all non-directories after them. 4671 * That works since everybody except rename does "lock parent, lookup, 4672 * lock child" and rename is under ->s_vfs_rename_mutex. 4673 * HOWEVER, it relies on the assumption that any object with ->lookup() 4674 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4675 * we'd better make sure that there's no link(2) for them. 4676 * d) conversion from fhandle to dentry may come in the wrong moment - when 4677 * we are removing the target. Solution: we will have to grab ->i_mutex 4678 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4679 * ->i_mutex on parents, which works but leads to some truly excessive 4680 * locking]. 4681 */ 4682 int vfs_rename(struct renamedata *rd) 4683 { 4684 int error; 4685 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4686 struct dentry *old_dentry = rd->old_dentry; 4687 struct dentry *new_dentry = rd->new_dentry; 4688 struct inode **delegated_inode = rd->delegated_inode; 4689 unsigned int flags = rd->flags; 4690 bool is_dir = d_is_dir(old_dentry); 4691 struct inode *source = old_dentry->d_inode; 4692 struct inode *target = new_dentry->d_inode; 4693 bool new_is_dir = false; 4694 unsigned max_links = new_dir->i_sb->s_max_links; 4695 struct name_snapshot old_name; 4696 4697 if (source == target) 4698 return 0; 4699 4700 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4701 if (error) 4702 return error; 4703 4704 if (!target) { 4705 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4706 } else { 4707 new_is_dir = d_is_dir(new_dentry); 4708 4709 if (!(flags & RENAME_EXCHANGE)) 4710 error = may_delete(rd->new_mnt_userns, new_dir, 4711 new_dentry, is_dir); 4712 else 4713 error = may_delete(rd->new_mnt_userns, new_dir, 4714 new_dentry, new_is_dir); 4715 } 4716 if (error) 4717 return error; 4718 4719 if (!old_dir->i_op->rename) 4720 return -EPERM; 4721 4722 /* 4723 * If we are going to change the parent - check write permissions, 4724 * we'll need to flip '..'. 4725 */ 4726 if (new_dir != old_dir) { 4727 if (is_dir) { 4728 error = inode_permission(rd->old_mnt_userns, source, 4729 MAY_WRITE); 4730 if (error) 4731 return error; 4732 } 4733 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4734 error = inode_permission(rd->new_mnt_userns, target, 4735 MAY_WRITE); 4736 if (error) 4737 return error; 4738 } 4739 } 4740 4741 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4742 flags); 4743 if (error) 4744 return error; 4745 4746 take_dentry_name_snapshot(&old_name, old_dentry); 4747 dget(new_dentry); 4748 if (!is_dir || (flags & RENAME_EXCHANGE)) 4749 lock_two_nondirectories(source, target); 4750 else if (target) 4751 inode_lock(target); 4752 4753 error = -EPERM; 4754 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4755 goto out; 4756 4757 error = -EBUSY; 4758 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4759 goto out; 4760 4761 if (max_links && new_dir != old_dir) { 4762 error = -EMLINK; 4763 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4764 goto out; 4765 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4766 old_dir->i_nlink >= max_links) 4767 goto out; 4768 } 4769 if (!is_dir) { 4770 error = try_break_deleg(source, delegated_inode); 4771 if (error) 4772 goto out; 4773 } 4774 if (target && !new_is_dir) { 4775 error = try_break_deleg(target, delegated_inode); 4776 if (error) 4777 goto out; 4778 } 4779 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4780 new_dir, new_dentry, flags); 4781 if (error) 4782 goto out; 4783 4784 if (!(flags & RENAME_EXCHANGE) && target) { 4785 if (is_dir) { 4786 shrink_dcache_parent(new_dentry); 4787 target->i_flags |= S_DEAD; 4788 } 4789 dont_mount(new_dentry); 4790 detach_mounts(new_dentry); 4791 } 4792 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4793 if (!(flags & RENAME_EXCHANGE)) 4794 d_move(old_dentry, new_dentry); 4795 else 4796 d_exchange(old_dentry, new_dentry); 4797 } 4798 out: 4799 if (!is_dir || (flags & RENAME_EXCHANGE)) 4800 unlock_two_nondirectories(source, target); 4801 else if (target) 4802 inode_unlock(target); 4803 dput(new_dentry); 4804 if (!error) { 4805 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4806 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4807 if (flags & RENAME_EXCHANGE) { 4808 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4809 new_is_dir, NULL, new_dentry); 4810 } 4811 } 4812 release_dentry_name_snapshot(&old_name); 4813 4814 return error; 4815 } 4816 EXPORT_SYMBOL(vfs_rename); 4817 4818 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4819 struct filename *to, unsigned int flags) 4820 { 4821 struct renamedata rd; 4822 struct dentry *old_dentry, *new_dentry; 4823 struct dentry *trap; 4824 struct path old_path, new_path; 4825 struct qstr old_last, new_last; 4826 int old_type, new_type; 4827 struct inode *delegated_inode = NULL; 4828 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4829 bool should_retry = false; 4830 int error = -EINVAL; 4831 4832 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4833 goto put_names; 4834 4835 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4836 (flags & RENAME_EXCHANGE)) 4837 goto put_names; 4838 4839 if (flags & RENAME_EXCHANGE) 4840 target_flags = 0; 4841 4842 retry: 4843 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4844 &old_last, &old_type); 4845 if (error) 4846 goto put_names; 4847 4848 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4849 &new_type); 4850 if (error) 4851 goto exit1; 4852 4853 error = -EXDEV; 4854 if (old_path.mnt != new_path.mnt) 4855 goto exit2; 4856 4857 error = -EBUSY; 4858 if (old_type != LAST_NORM) 4859 goto exit2; 4860 4861 if (flags & RENAME_NOREPLACE) 4862 error = -EEXIST; 4863 if (new_type != LAST_NORM) 4864 goto exit2; 4865 4866 error = mnt_want_write(old_path.mnt); 4867 if (error) 4868 goto exit2; 4869 4870 retry_deleg: 4871 trap = lock_rename(new_path.dentry, old_path.dentry); 4872 4873 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4874 error = PTR_ERR(old_dentry); 4875 if (IS_ERR(old_dentry)) 4876 goto exit3; 4877 /* source must exist */ 4878 error = -ENOENT; 4879 if (d_is_negative(old_dentry)) 4880 goto exit4; 4881 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4882 error = PTR_ERR(new_dentry); 4883 if (IS_ERR(new_dentry)) 4884 goto exit4; 4885 error = -EEXIST; 4886 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4887 goto exit5; 4888 if (flags & RENAME_EXCHANGE) { 4889 error = -ENOENT; 4890 if (d_is_negative(new_dentry)) 4891 goto exit5; 4892 4893 if (!d_is_dir(new_dentry)) { 4894 error = -ENOTDIR; 4895 if (new_last.name[new_last.len]) 4896 goto exit5; 4897 } 4898 } 4899 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4900 if (!d_is_dir(old_dentry)) { 4901 error = -ENOTDIR; 4902 if (old_last.name[old_last.len]) 4903 goto exit5; 4904 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4905 goto exit5; 4906 } 4907 /* source should not be ancestor of target */ 4908 error = -EINVAL; 4909 if (old_dentry == trap) 4910 goto exit5; 4911 /* target should not be an ancestor of source */ 4912 if (!(flags & RENAME_EXCHANGE)) 4913 error = -ENOTEMPTY; 4914 if (new_dentry == trap) 4915 goto exit5; 4916 4917 error = security_path_rename(&old_path, old_dentry, 4918 &new_path, new_dentry, flags); 4919 if (error) 4920 goto exit5; 4921 4922 rd.old_dir = old_path.dentry->d_inode; 4923 rd.old_dentry = old_dentry; 4924 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4925 rd.new_dir = new_path.dentry->d_inode; 4926 rd.new_dentry = new_dentry; 4927 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4928 rd.delegated_inode = &delegated_inode; 4929 rd.flags = flags; 4930 error = vfs_rename(&rd); 4931 exit5: 4932 dput(new_dentry); 4933 exit4: 4934 dput(old_dentry); 4935 exit3: 4936 unlock_rename(new_path.dentry, old_path.dentry); 4937 if (delegated_inode) { 4938 error = break_deleg_wait(&delegated_inode); 4939 if (!error) 4940 goto retry_deleg; 4941 } 4942 mnt_drop_write(old_path.mnt); 4943 exit2: 4944 if (retry_estale(error, lookup_flags)) 4945 should_retry = true; 4946 path_put(&new_path); 4947 exit1: 4948 path_put(&old_path); 4949 if (should_retry) { 4950 should_retry = false; 4951 lookup_flags |= LOOKUP_REVAL; 4952 goto retry; 4953 } 4954 put_names: 4955 putname(from); 4956 putname(to); 4957 return error; 4958 } 4959 4960 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4961 int, newdfd, const char __user *, newname, unsigned int, flags) 4962 { 4963 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4964 flags); 4965 } 4966 4967 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4968 int, newdfd, const char __user *, newname) 4969 { 4970 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4971 0); 4972 } 4973 4974 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4975 { 4976 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4977 getname(newname), 0); 4978 } 4979 4980 int readlink_copy(char __user *buffer, int buflen, const char *link) 4981 { 4982 int len = PTR_ERR(link); 4983 if (IS_ERR(link)) 4984 goto out; 4985 4986 len = strlen(link); 4987 if (len > (unsigned) buflen) 4988 len = buflen; 4989 if (copy_to_user(buffer, link, len)) 4990 len = -EFAULT; 4991 out: 4992 return len; 4993 } 4994 4995 /** 4996 * vfs_readlink - copy symlink body into userspace buffer 4997 * @dentry: dentry on which to get symbolic link 4998 * @buffer: user memory pointer 4999 * @buflen: size of buffer 5000 * 5001 * Does not touch atime. That's up to the caller if necessary 5002 * 5003 * Does not call security hook. 5004 */ 5005 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5006 { 5007 struct inode *inode = d_inode(dentry); 5008 DEFINE_DELAYED_CALL(done); 5009 const char *link; 5010 int res; 5011 5012 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5013 if (unlikely(inode->i_op->readlink)) 5014 return inode->i_op->readlink(dentry, buffer, buflen); 5015 5016 if (!d_is_symlink(dentry)) 5017 return -EINVAL; 5018 5019 spin_lock(&inode->i_lock); 5020 inode->i_opflags |= IOP_DEFAULT_READLINK; 5021 spin_unlock(&inode->i_lock); 5022 } 5023 5024 link = READ_ONCE(inode->i_link); 5025 if (!link) { 5026 link = inode->i_op->get_link(dentry, inode, &done); 5027 if (IS_ERR(link)) 5028 return PTR_ERR(link); 5029 } 5030 res = readlink_copy(buffer, buflen, link); 5031 do_delayed_call(&done); 5032 return res; 5033 } 5034 EXPORT_SYMBOL(vfs_readlink); 5035 5036 /** 5037 * vfs_get_link - get symlink body 5038 * @dentry: dentry on which to get symbolic link 5039 * @done: caller needs to free returned data with this 5040 * 5041 * Calls security hook and i_op->get_link() on the supplied inode. 5042 * 5043 * It does not touch atime. That's up to the caller if necessary. 5044 * 5045 * Does not work on "special" symlinks like /proc/$$/fd/N 5046 */ 5047 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5048 { 5049 const char *res = ERR_PTR(-EINVAL); 5050 struct inode *inode = d_inode(dentry); 5051 5052 if (d_is_symlink(dentry)) { 5053 res = ERR_PTR(security_inode_readlink(dentry)); 5054 if (!res) 5055 res = inode->i_op->get_link(dentry, inode, done); 5056 } 5057 return res; 5058 } 5059 EXPORT_SYMBOL(vfs_get_link); 5060 5061 /* get the link contents into pagecache */ 5062 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5063 struct delayed_call *callback) 5064 { 5065 char *kaddr; 5066 struct page *page; 5067 struct address_space *mapping = inode->i_mapping; 5068 5069 if (!dentry) { 5070 page = find_get_page(mapping, 0); 5071 if (!page) 5072 return ERR_PTR(-ECHILD); 5073 if (!PageUptodate(page)) { 5074 put_page(page); 5075 return ERR_PTR(-ECHILD); 5076 } 5077 } else { 5078 page = read_mapping_page(mapping, 0, NULL); 5079 if (IS_ERR(page)) 5080 return (char*)page; 5081 } 5082 set_delayed_call(callback, page_put_link, page); 5083 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5084 kaddr = page_address(page); 5085 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5086 return kaddr; 5087 } 5088 5089 EXPORT_SYMBOL(page_get_link); 5090 5091 void page_put_link(void *arg) 5092 { 5093 put_page(arg); 5094 } 5095 EXPORT_SYMBOL(page_put_link); 5096 5097 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5098 { 5099 DEFINE_DELAYED_CALL(done); 5100 int res = readlink_copy(buffer, buflen, 5101 page_get_link(dentry, d_inode(dentry), 5102 &done)); 5103 do_delayed_call(&done); 5104 return res; 5105 } 5106 EXPORT_SYMBOL(page_readlink); 5107 5108 int page_symlink(struct inode *inode, const char *symname, int len) 5109 { 5110 struct address_space *mapping = inode->i_mapping; 5111 const struct address_space_operations *aops = mapping->a_ops; 5112 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5113 struct page *page; 5114 void *fsdata = NULL; 5115 int err; 5116 unsigned int flags; 5117 5118 retry: 5119 if (nofs) 5120 flags = memalloc_nofs_save(); 5121 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5122 if (nofs) 5123 memalloc_nofs_restore(flags); 5124 if (err) 5125 goto fail; 5126 5127 memcpy(page_address(page), symname, len-1); 5128 5129 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5130 page, fsdata); 5131 if (err < 0) 5132 goto fail; 5133 if (err < len-1) 5134 goto retry; 5135 5136 mark_inode_dirty(inode); 5137 return 0; 5138 fail: 5139 return err; 5140 } 5141 EXPORT_SYMBOL(page_symlink); 5142 5143 const struct inode_operations page_symlink_inode_operations = { 5144 .get_link = page_get_link, 5145 }; 5146 EXPORT_SYMBOL(page_symlink_inode_operations); 5147