xref: /openbmc/linux/fs/namei.c (revision 7b6d864b)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	audit_getname(result);
200 	return result;
201 
202 error:
203 	final_putname(result);
204 	return err;
205 }
206 
207 struct filename *
208 getname(const char __user * filename)
209 {
210 	return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213 
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 	if (unlikely(!audit_dummy_context()))
218 		return audit_putname(name);
219 	final_putname(name);
220 }
221 #endif
222 
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 	struct posix_acl *acl;
227 
228 	if (mask & MAY_NOT_BLOCK) {
229 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 	        if (!acl)
231 	                return -EAGAIN;
232 		/* no ->get_acl() calls in RCU mode... */
233 		if (acl == ACL_NOT_CACHED)
234 			return -ECHILD;
235 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 	}
237 
238 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239 
240 	/*
241 	 * A filesystem can force a ACL callback by just never filling the
242 	 * ACL cache. But normally you'd fill the cache either at inode
243 	 * instantiation time, or on the first ->get_acl call.
244 	 *
245 	 * If the filesystem doesn't have a get_acl() function at all, we'll
246 	 * just create the negative cache entry.
247 	 */
248 	if (acl == ACL_NOT_CACHED) {
249 	        if (inode->i_op->get_acl) {
250 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 			if (IS_ERR(acl))
252 				return PTR_ERR(acl);
253 		} else {
254 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 		        return -EAGAIN;
256 		}
257 	}
258 
259 	if (acl) {
260 	        int error = posix_acl_permission(inode, acl, mask);
261 	        posix_acl_release(acl);
262 	        return error;
263 	}
264 #endif
265 
266 	return -EAGAIN;
267 }
268 
269 /*
270  * This does the basic permission checking
271  */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 	unsigned int mode = inode->i_mode;
275 
276 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 		mode >>= 6;
278 	else {
279 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 			int error = check_acl(inode, mask);
281 			if (error != -EAGAIN)
282 				return error;
283 		}
284 
285 		if (in_group_p(inode->i_gid))
286 			mode >>= 3;
287 	}
288 
289 	/*
290 	 * If the DACs are ok we don't need any capability check.
291 	 */
292 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 		return 0;
294 	return -EACCES;
295 }
296 
297 /**
298  * generic_permission -  check for access rights on a Posix-like filesystem
299  * @inode:	inode to check access rights for
300  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301  *
302  * Used to check for read/write/execute permissions on a file.
303  * We use "fsuid" for this, letting us set arbitrary permissions
304  * for filesystem access without changing the "normal" uids which
305  * are used for other things.
306  *
307  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308  * request cannot be satisfied (eg. requires blocking or too much complexity).
309  * It would then be called again in ref-walk mode.
310  */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 	int ret;
314 
315 	/*
316 	 * Do the basic permission checks.
317 	 */
318 	ret = acl_permission_check(inode, mask);
319 	if (ret != -EACCES)
320 		return ret;
321 
322 	if (S_ISDIR(inode->i_mode)) {
323 		/* DACs are overridable for directories */
324 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 			return 0;
326 		if (!(mask & MAY_WRITE))
327 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 				return 0;
329 		return -EACCES;
330 	}
331 	/*
332 	 * Read/write DACs are always overridable.
333 	 * Executable DACs are overridable when there is
334 	 * at least one exec bit set.
335 	 */
336 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 			return 0;
339 
340 	/*
341 	 * Searching includes executable on directories, else just read.
342 	 */
343 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 	if (mask == MAY_READ)
345 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 			return 0;
347 
348 	return -EACCES;
349 }
350 
351 /*
352  * We _really_ want to just do "generic_permission()" without
353  * even looking at the inode->i_op values. So we keep a cache
354  * flag in inode->i_opflags, that says "this has not special
355  * permission function, use the fast case".
356  */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 		if (likely(inode->i_op->permission))
361 			return inode->i_op->permission(inode, mask);
362 
363 		/* This gets set once for the inode lifetime */
364 		spin_lock(&inode->i_lock);
365 		inode->i_opflags |= IOP_FASTPERM;
366 		spin_unlock(&inode->i_lock);
367 	}
368 	return generic_permission(inode, mask);
369 }
370 
371 /**
372  * __inode_permission - Check for access rights to a given inode
373  * @inode: Inode to check permission on
374  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375  *
376  * Check for read/write/execute permissions on an inode.
377  *
378  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379  *
380  * This does not check for a read-only file system.  You probably want
381  * inode_permission().
382  */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 	int retval;
386 
387 	if (unlikely(mask & MAY_WRITE)) {
388 		/*
389 		 * Nobody gets write access to an immutable file.
390 		 */
391 		if (IS_IMMUTABLE(inode))
392 			return -EACCES;
393 	}
394 
395 	retval = do_inode_permission(inode, mask);
396 	if (retval)
397 		return retval;
398 
399 	retval = devcgroup_inode_permission(inode, mask);
400 	if (retval)
401 		return retval;
402 
403 	return security_inode_permission(inode, mask);
404 }
405 
406 /**
407  * sb_permission - Check superblock-level permissions
408  * @sb: Superblock of inode to check permission on
409  * @inode: Inode to check permission on
410  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411  *
412  * Separate out file-system wide checks from inode-specific permission checks.
413  */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 	if (unlikely(mask & MAY_WRITE)) {
417 		umode_t mode = inode->i_mode;
418 
419 		/* Nobody gets write access to a read-only fs. */
420 		if ((sb->s_flags & MS_RDONLY) &&
421 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 			return -EROFS;
423 	}
424 	return 0;
425 }
426 
427 /**
428  * inode_permission - Check for access rights to a given inode
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
433  * this, letting us set arbitrary permissions for filesystem access without
434  * changing the "normal" UIDs which are used for other things.
435  *
436  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437  */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 	int retval;
441 
442 	retval = sb_permission(inode->i_sb, inode, mask);
443 	if (retval)
444 		return retval;
445 	return __inode_permission(inode, mask);
446 }
447 
448 /**
449  * path_get - get a reference to a path
450  * @path: path to get the reference to
451  *
452  * Given a path increment the reference count to the dentry and the vfsmount.
453  */
454 void path_get(const struct path *path)
455 {
456 	mntget(path->mnt);
457 	dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460 
461 /**
462  * path_put - put a reference to a path
463  * @path: path to put the reference to
464  *
465  * Given a path decrement the reference count to the dentry and the vfsmount.
466  */
467 void path_put(const struct path *path)
468 {
469 	dput(path->dentry);
470 	mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473 
474 /*
475  * Path walking has 2 modes, rcu-walk and ref-walk (see
476  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
477  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
480  * got stuck, so ref-walk may continue from there. If this is not successful
481  * (eg. a seqcount has changed), then failure is returned and it's up to caller
482  * to restart the path walk from the beginning in ref-walk mode.
483  */
484 
485 static inline void lock_rcu_walk(void)
486 {
487 	br_read_lock(&vfsmount_lock);
488 	rcu_read_lock();
489 }
490 
491 static inline void unlock_rcu_walk(void)
492 {
493 	rcu_read_unlock();
494 	br_read_unlock(&vfsmount_lock);
495 }
496 
497 /**
498  * unlazy_walk - try to switch to ref-walk mode.
499  * @nd: nameidata pathwalk data
500  * @dentry: child of nd->path.dentry or NULL
501  * Returns: 0 on success, -ECHILD on failure
502  *
503  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
505  * @nd or NULL.  Must be called from rcu-walk context.
506  */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 	struct fs_struct *fs = current->fs;
510 	struct dentry *parent = nd->path.dentry;
511 	int want_root = 0;
512 
513 	BUG_ON(!(nd->flags & LOOKUP_RCU));
514 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
515 		want_root = 1;
516 		spin_lock(&fs->lock);
517 		if (nd->root.mnt != fs->root.mnt ||
518 				nd->root.dentry != fs->root.dentry)
519 			goto err_root;
520 	}
521 	spin_lock(&parent->d_lock);
522 	if (!dentry) {
523 		if (!__d_rcu_to_refcount(parent, nd->seq))
524 			goto err_parent;
525 		BUG_ON(nd->inode != parent->d_inode);
526 	} else {
527 		if (dentry->d_parent != parent)
528 			goto err_parent;
529 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
530 		if (!__d_rcu_to_refcount(dentry, nd->seq))
531 			goto err_child;
532 		/*
533 		 * If the sequence check on the child dentry passed, then
534 		 * the child has not been removed from its parent. This
535 		 * means the parent dentry must be valid and able to take
536 		 * a reference at this point.
537 		 */
538 		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
539 		BUG_ON(!parent->d_count);
540 		parent->d_count++;
541 		spin_unlock(&dentry->d_lock);
542 	}
543 	spin_unlock(&parent->d_lock);
544 	if (want_root) {
545 		path_get(&nd->root);
546 		spin_unlock(&fs->lock);
547 	}
548 	mntget(nd->path.mnt);
549 
550 	unlock_rcu_walk();
551 	nd->flags &= ~LOOKUP_RCU;
552 	return 0;
553 
554 err_child:
555 	spin_unlock(&dentry->d_lock);
556 err_parent:
557 	spin_unlock(&parent->d_lock);
558 err_root:
559 	if (want_root)
560 		spin_unlock(&fs->lock);
561 	return -ECHILD;
562 }
563 
564 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
565 {
566 	return dentry->d_op->d_revalidate(dentry, flags);
567 }
568 
569 /**
570  * complete_walk - successful completion of path walk
571  * @nd:  pointer nameidata
572  *
573  * If we had been in RCU mode, drop out of it and legitimize nd->path.
574  * Revalidate the final result, unless we'd already done that during
575  * the path walk or the filesystem doesn't ask for it.  Return 0 on
576  * success, -error on failure.  In case of failure caller does not
577  * need to drop nd->path.
578  */
579 static int complete_walk(struct nameidata *nd)
580 {
581 	struct dentry *dentry = nd->path.dentry;
582 	int status;
583 
584 	if (nd->flags & LOOKUP_RCU) {
585 		nd->flags &= ~LOOKUP_RCU;
586 		if (!(nd->flags & LOOKUP_ROOT))
587 			nd->root.mnt = NULL;
588 		spin_lock(&dentry->d_lock);
589 		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
590 			spin_unlock(&dentry->d_lock);
591 			unlock_rcu_walk();
592 			return -ECHILD;
593 		}
594 		BUG_ON(nd->inode != dentry->d_inode);
595 		spin_unlock(&dentry->d_lock);
596 		mntget(nd->path.mnt);
597 		unlock_rcu_walk();
598 	}
599 
600 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
601 		return 0;
602 
603 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
604 		return 0;
605 
606 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
607 	if (status > 0)
608 		return 0;
609 
610 	if (!status)
611 		status = -ESTALE;
612 
613 	path_put(&nd->path);
614 	return status;
615 }
616 
617 static __always_inline void set_root(struct nameidata *nd)
618 {
619 	if (!nd->root.mnt)
620 		get_fs_root(current->fs, &nd->root);
621 }
622 
623 static int link_path_walk(const char *, struct nameidata *);
624 
625 static __always_inline void set_root_rcu(struct nameidata *nd)
626 {
627 	if (!nd->root.mnt) {
628 		struct fs_struct *fs = current->fs;
629 		unsigned seq;
630 
631 		do {
632 			seq = read_seqcount_begin(&fs->seq);
633 			nd->root = fs->root;
634 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
635 		} while (read_seqcount_retry(&fs->seq, seq));
636 	}
637 }
638 
639 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
640 {
641 	int ret;
642 
643 	if (IS_ERR(link))
644 		goto fail;
645 
646 	if (*link == '/') {
647 		set_root(nd);
648 		path_put(&nd->path);
649 		nd->path = nd->root;
650 		path_get(&nd->root);
651 		nd->flags |= LOOKUP_JUMPED;
652 	}
653 	nd->inode = nd->path.dentry->d_inode;
654 
655 	ret = link_path_walk(link, nd);
656 	return ret;
657 fail:
658 	path_put(&nd->path);
659 	return PTR_ERR(link);
660 }
661 
662 static void path_put_conditional(struct path *path, struct nameidata *nd)
663 {
664 	dput(path->dentry);
665 	if (path->mnt != nd->path.mnt)
666 		mntput(path->mnt);
667 }
668 
669 static inline void path_to_nameidata(const struct path *path,
670 					struct nameidata *nd)
671 {
672 	if (!(nd->flags & LOOKUP_RCU)) {
673 		dput(nd->path.dentry);
674 		if (nd->path.mnt != path->mnt)
675 			mntput(nd->path.mnt);
676 	}
677 	nd->path.mnt = path->mnt;
678 	nd->path.dentry = path->dentry;
679 }
680 
681 /*
682  * Helper to directly jump to a known parsed path from ->follow_link,
683  * caller must have taken a reference to path beforehand.
684  */
685 void nd_jump_link(struct nameidata *nd, struct path *path)
686 {
687 	path_put(&nd->path);
688 
689 	nd->path = *path;
690 	nd->inode = nd->path.dentry->d_inode;
691 	nd->flags |= LOOKUP_JUMPED;
692 }
693 
694 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
695 {
696 	struct inode *inode = link->dentry->d_inode;
697 	if (inode->i_op->put_link)
698 		inode->i_op->put_link(link->dentry, nd, cookie);
699 	path_put(link);
700 }
701 
702 int sysctl_protected_symlinks __read_mostly = 0;
703 int sysctl_protected_hardlinks __read_mostly = 0;
704 
705 /**
706  * may_follow_link - Check symlink following for unsafe situations
707  * @link: The path of the symlink
708  * @nd: nameidata pathwalk data
709  *
710  * In the case of the sysctl_protected_symlinks sysctl being enabled,
711  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
712  * in a sticky world-writable directory. This is to protect privileged
713  * processes from failing races against path names that may change out
714  * from under them by way of other users creating malicious symlinks.
715  * It will permit symlinks to be followed only when outside a sticky
716  * world-writable directory, or when the uid of the symlink and follower
717  * match, or when the directory owner matches the symlink's owner.
718  *
719  * Returns 0 if following the symlink is allowed, -ve on error.
720  */
721 static inline int may_follow_link(struct path *link, struct nameidata *nd)
722 {
723 	const struct inode *inode;
724 	const struct inode *parent;
725 
726 	if (!sysctl_protected_symlinks)
727 		return 0;
728 
729 	/* Allowed if owner and follower match. */
730 	inode = link->dentry->d_inode;
731 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
732 		return 0;
733 
734 	/* Allowed if parent directory not sticky and world-writable. */
735 	parent = nd->path.dentry->d_inode;
736 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
737 		return 0;
738 
739 	/* Allowed if parent directory and link owner match. */
740 	if (uid_eq(parent->i_uid, inode->i_uid))
741 		return 0;
742 
743 	audit_log_link_denied("follow_link", link);
744 	path_put_conditional(link, nd);
745 	path_put(&nd->path);
746 	return -EACCES;
747 }
748 
749 /**
750  * safe_hardlink_source - Check for safe hardlink conditions
751  * @inode: the source inode to hardlink from
752  *
753  * Return false if at least one of the following conditions:
754  *    - inode is not a regular file
755  *    - inode is setuid
756  *    - inode is setgid and group-exec
757  *    - access failure for read and write
758  *
759  * Otherwise returns true.
760  */
761 static bool safe_hardlink_source(struct inode *inode)
762 {
763 	umode_t mode = inode->i_mode;
764 
765 	/* Special files should not get pinned to the filesystem. */
766 	if (!S_ISREG(mode))
767 		return false;
768 
769 	/* Setuid files should not get pinned to the filesystem. */
770 	if (mode & S_ISUID)
771 		return false;
772 
773 	/* Executable setgid files should not get pinned to the filesystem. */
774 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
775 		return false;
776 
777 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
778 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
779 		return false;
780 
781 	return true;
782 }
783 
784 /**
785  * may_linkat - Check permissions for creating a hardlink
786  * @link: the source to hardlink from
787  *
788  * Block hardlink when all of:
789  *  - sysctl_protected_hardlinks enabled
790  *  - fsuid does not match inode
791  *  - hardlink source is unsafe (see safe_hardlink_source() above)
792  *  - not CAP_FOWNER
793  *
794  * Returns 0 if successful, -ve on error.
795  */
796 static int may_linkat(struct path *link)
797 {
798 	const struct cred *cred;
799 	struct inode *inode;
800 
801 	if (!sysctl_protected_hardlinks)
802 		return 0;
803 
804 	cred = current_cred();
805 	inode = link->dentry->d_inode;
806 
807 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
808 	 * otherwise, it must be a safe source.
809 	 */
810 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
811 	    capable(CAP_FOWNER))
812 		return 0;
813 
814 	audit_log_link_denied("linkat", link);
815 	return -EPERM;
816 }
817 
818 static __always_inline int
819 follow_link(struct path *link, struct nameidata *nd, void **p)
820 {
821 	struct dentry *dentry = link->dentry;
822 	int error;
823 	char *s;
824 
825 	BUG_ON(nd->flags & LOOKUP_RCU);
826 
827 	if (link->mnt == nd->path.mnt)
828 		mntget(link->mnt);
829 
830 	error = -ELOOP;
831 	if (unlikely(current->total_link_count >= 40))
832 		goto out_put_nd_path;
833 
834 	cond_resched();
835 	current->total_link_count++;
836 
837 	touch_atime(link);
838 	nd_set_link(nd, NULL);
839 
840 	error = security_inode_follow_link(link->dentry, nd);
841 	if (error)
842 		goto out_put_nd_path;
843 
844 	nd->last_type = LAST_BIND;
845 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
846 	error = PTR_ERR(*p);
847 	if (IS_ERR(*p))
848 		goto out_put_nd_path;
849 
850 	error = 0;
851 	s = nd_get_link(nd);
852 	if (s) {
853 		error = __vfs_follow_link(nd, s);
854 		if (unlikely(error))
855 			put_link(nd, link, *p);
856 	}
857 
858 	return error;
859 
860 out_put_nd_path:
861 	*p = NULL;
862 	path_put(&nd->path);
863 	path_put(link);
864 	return error;
865 }
866 
867 static int follow_up_rcu(struct path *path)
868 {
869 	struct mount *mnt = real_mount(path->mnt);
870 	struct mount *parent;
871 	struct dentry *mountpoint;
872 
873 	parent = mnt->mnt_parent;
874 	if (&parent->mnt == path->mnt)
875 		return 0;
876 	mountpoint = mnt->mnt_mountpoint;
877 	path->dentry = mountpoint;
878 	path->mnt = &parent->mnt;
879 	return 1;
880 }
881 
882 /*
883  * follow_up - Find the mountpoint of path's vfsmount
884  *
885  * Given a path, find the mountpoint of its source file system.
886  * Replace @path with the path of the mountpoint in the parent mount.
887  * Up is towards /.
888  *
889  * Return 1 if we went up a level and 0 if we were already at the
890  * root.
891  */
892 int follow_up(struct path *path)
893 {
894 	struct mount *mnt = real_mount(path->mnt);
895 	struct mount *parent;
896 	struct dentry *mountpoint;
897 
898 	br_read_lock(&vfsmount_lock);
899 	parent = mnt->mnt_parent;
900 	if (parent == mnt) {
901 		br_read_unlock(&vfsmount_lock);
902 		return 0;
903 	}
904 	mntget(&parent->mnt);
905 	mountpoint = dget(mnt->mnt_mountpoint);
906 	br_read_unlock(&vfsmount_lock);
907 	dput(path->dentry);
908 	path->dentry = mountpoint;
909 	mntput(path->mnt);
910 	path->mnt = &parent->mnt;
911 	return 1;
912 }
913 
914 /*
915  * Perform an automount
916  * - return -EISDIR to tell follow_managed() to stop and return the path we
917  *   were called with.
918  */
919 static int follow_automount(struct path *path, unsigned flags,
920 			    bool *need_mntput)
921 {
922 	struct vfsmount *mnt;
923 	int err;
924 
925 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
926 		return -EREMOTE;
927 
928 	/* We don't want to mount if someone's just doing a stat -
929 	 * unless they're stat'ing a directory and appended a '/' to
930 	 * the name.
931 	 *
932 	 * We do, however, want to mount if someone wants to open or
933 	 * create a file of any type under the mountpoint, wants to
934 	 * traverse through the mountpoint or wants to open the
935 	 * mounted directory.  Also, autofs may mark negative dentries
936 	 * as being automount points.  These will need the attentions
937 	 * of the daemon to instantiate them before they can be used.
938 	 */
939 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
940 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
941 	    path->dentry->d_inode)
942 		return -EISDIR;
943 
944 	current->total_link_count++;
945 	if (current->total_link_count >= 40)
946 		return -ELOOP;
947 
948 	mnt = path->dentry->d_op->d_automount(path);
949 	if (IS_ERR(mnt)) {
950 		/*
951 		 * The filesystem is allowed to return -EISDIR here to indicate
952 		 * it doesn't want to automount.  For instance, autofs would do
953 		 * this so that its userspace daemon can mount on this dentry.
954 		 *
955 		 * However, we can only permit this if it's a terminal point in
956 		 * the path being looked up; if it wasn't then the remainder of
957 		 * the path is inaccessible and we should say so.
958 		 */
959 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
960 			return -EREMOTE;
961 		return PTR_ERR(mnt);
962 	}
963 
964 	if (!mnt) /* mount collision */
965 		return 0;
966 
967 	if (!*need_mntput) {
968 		/* lock_mount() may release path->mnt on error */
969 		mntget(path->mnt);
970 		*need_mntput = true;
971 	}
972 	err = finish_automount(mnt, path);
973 
974 	switch (err) {
975 	case -EBUSY:
976 		/* Someone else made a mount here whilst we were busy */
977 		return 0;
978 	case 0:
979 		path_put(path);
980 		path->mnt = mnt;
981 		path->dentry = dget(mnt->mnt_root);
982 		return 0;
983 	default:
984 		return err;
985 	}
986 
987 }
988 
989 /*
990  * Handle a dentry that is managed in some way.
991  * - Flagged for transit management (autofs)
992  * - Flagged as mountpoint
993  * - Flagged as automount point
994  *
995  * This may only be called in refwalk mode.
996  *
997  * Serialization is taken care of in namespace.c
998  */
999 static int follow_managed(struct path *path, unsigned flags)
1000 {
1001 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1002 	unsigned managed;
1003 	bool need_mntput = false;
1004 	int ret = 0;
1005 
1006 	/* Given that we're not holding a lock here, we retain the value in a
1007 	 * local variable for each dentry as we look at it so that we don't see
1008 	 * the components of that value change under us */
1009 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1010 	       managed &= DCACHE_MANAGED_DENTRY,
1011 	       unlikely(managed != 0)) {
1012 		/* Allow the filesystem to manage the transit without i_mutex
1013 		 * being held. */
1014 		if (managed & DCACHE_MANAGE_TRANSIT) {
1015 			BUG_ON(!path->dentry->d_op);
1016 			BUG_ON(!path->dentry->d_op->d_manage);
1017 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1018 			if (ret < 0)
1019 				break;
1020 		}
1021 
1022 		/* Transit to a mounted filesystem. */
1023 		if (managed & DCACHE_MOUNTED) {
1024 			struct vfsmount *mounted = lookup_mnt(path);
1025 			if (mounted) {
1026 				dput(path->dentry);
1027 				if (need_mntput)
1028 					mntput(path->mnt);
1029 				path->mnt = mounted;
1030 				path->dentry = dget(mounted->mnt_root);
1031 				need_mntput = true;
1032 				continue;
1033 			}
1034 
1035 			/* Something is mounted on this dentry in another
1036 			 * namespace and/or whatever was mounted there in this
1037 			 * namespace got unmounted before we managed to get the
1038 			 * vfsmount_lock */
1039 		}
1040 
1041 		/* Handle an automount point */
1042 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1043 			ret = follow_automount(path, flags, &need_mntput);
1044 			if (ret < 0)
1045 				break;
1046 			continue;
1047 		}
1048 
1049 		/* We didn't change the current path point */
1050 		break;
1051 	}
1052 
1053 	if (need_mntput && path->mnt == mnt)
1054 		mntput(path->mnt);
1055 	if (ret == -EISDIR)
1056 		ret = 0;
1057 	return ret < 0 ? ret : need_mntput;
1058 }
1059 
1060 int follow_down_one(struct path *path)
1061 {
1062 	struct vfsmount *mounted;
1063 
1064 	mounted = lookup_mnt(path);
1065 	if (mounted) {
1066 		dput(path->dentry);
1067 		mntput(path->mnt);
1068 		path->mnt = mounted;
1069 		path->dentry = dget(mounted->mnt_root);
1070 		return 1;
1071 	}
1072 	return 0;
1073 }
1074 
1075 static inline bool managed_dentry_might_block(struct dentry *dentry)
1076 {
1077 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1078 		dentry->d_op->d_manage(dentry, true) < 0);
1079 }
1080 
1081 /*
1082  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1083  * we meet a managed dentry that would need blocking.
1084  */
1085 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1086 			       struct inode **inode)
1087 {
1088 	for (;;) {
1089 		struct mount *mounted;
1090 		/*
1091 		 * Don't forget we might have a non-mountpoint managed dentry
1092 		 * that wants to block transit.
1093 		 */
1094 		if (unlikely(managed_dentry_might_block(path->dentry)))
1095 			return false;
1096 
1097 		if (!d_mountpoint(path->dentry))
1098 			break;
1099 
1100 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1101 		if (!mounted)
1102 			break;
1103 		path->mnt = &mounted->mnt;
1104 		path->dentry = mounted->mnt.mnt_root;
1105 		nd->flags |= LOOKUP_JUMPED;
1106 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1107 		/*
1108 		 * Update the inode too. We don't need to re-check the
1109 		 * dentry sequence number here after this d_inode read,
1110 		 * because a mount-point is always pinned.
1111 		 */
1112 		*inode = path->dentry->d_inode;
1113 	}
1114 	return true;
1115 }
1116 
1117 static void follow_mount_rcu(struct nameidata *nd)
1118 {
1119 	while (d_mountpoint(nd->path.dentry)) {
1120 		struct mount *mounted;
1121 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1122 		if (!mounted)
1123 			break;
1124 		nd->path.mnt = &mounted->mnt;
1125 		nd->path.dentry = mounted->mnt.mnt_root;
1126 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1127 	}
1128 }
1129 
1130 static int follow_dotdot_rcu(struct nameidata *nd)
1131 {
1132 	set_root_rcu(nd);
1133 
1134 	while (1) {
1135 		if (nd->path.dentry == nd->root.dentry &&
1136 		    nd->path.mnt == nd->root.mnt) {
1137 			break;
1138 		}
1139 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1140 			struct dentry *old = nd->path.dentry;
1141 			struct dentry *parent = old->d_parent;
1142 			unsigned seq;
1143 
1144 			seq = read_seqcount_begin(&parent->d_seq);
1145 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1146 				goto failed;
1147 			nd->path.dentry = parent;
1148 			nd->seq = seq;
1149 			break;
1150 		}
1151 		if (!follow_up_rcu(&nd->path))
1152 			break;
1153 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1154 	}
1155 	follow_mount_rcu(nd);
1156 	nd->inode = nd->path.dentry->d_inode;
1157 	return 0;
1158 
1159 failed:
1160 	nd->flags &= ~LOOKUP_RCU;
1161 	if (!(nd->flags & LOOKUP_ROOT))
1162 		nd->root.mnt = NULL;
1163 	unlock_rcu_walk();
1164 	return -ECHILD;
1165 }
1166 
1167 /*
1168  * Follow down to the covering mount currently visible to userspace.  At each
1169  * point, the filesystem owning that dentry may be queried as to whether the
1170  * caller is permitted to proceed or not.
1171  */
1172 int follow_down(struct path *path)
1173 {
1174 	unsigned managed;
1175 	int ret;
1176 
1177 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1179 		/* Allow the filesystem to manage the transit without i_mutex
1180 		 * being held.
1181 		 *
1182 		 * We indicate to the filesystem if someone is trying to mount
1183 		 * something here.  This gives autofs the chance to deny anyone
1184 		 * other than its daemon the right to mount on its
1185 		 * superstructure.
1186 		 *
1187 		 * The filesystem may sleep at this point.
1188 		 */
1189 		if (managed & DCACHE_MANAGE_TRANSIT) {
1190 			BUG_ON(!path->dentry->d_op);
1191 			BUG_ON(!path->dentry->d_op->d_manage);
1192 			ret = path->dentry->d_op->d_manage(
1193 				path->dentry, false);
1194 			if (ret < 0)
1195 				return ret == -EISDIR ? 0 : ret;
1196 		}
1197 
1198 		/* Transit to a mounted filesystem. */
1199 		if (managed & DCACHE_MOUNTED) {
1200 			struct vfsmount *mounted = lookup_mnt(path);
1201 			if (!mounted)
1202 				break;
1203 			dput(path->dentry);
1204 			mntput(path->mnt);
1205 			path->mnt = mounted;
1206 			path->dentry = dget(mounted->mnt_root);
1207 			continue;
1208 		}
1209 
1210 		/* Don't handle automount points here */
1211 		break;
1212 	}
1213 	return 0;
1214 }
1215 
1216 /*
1217  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1218  */
1219 static void follow_mount(struct path *path)
1220 {
1221 	while (d_mountpoint(path->dentry)) {
1222 		struct vfsmount *mounted = lookup_mnt(path);
1223 		if (!mounted)
1224 			break;
1225 		dput(path->dentry);
1226 		mntput(path->mnt);
1227 		path->mnt = mounted;
1228 		path->dentry = dget(mounted->mnt_root);
1229 	}
1230 }
1231 
1232 static void follow_dotdot(struct nameidata *nd)
1233 {
1234 	set_root(nd);
1235 
1236 	while(1) {
1237 		struct dentry *old = nd->path.dentry;
1238 
1239 		if (nd->path.dentry == nd->root.dentry &&
1240 		    nd->path.mnt == nd->root.mnt) {
1241 			break;
1242 		}
1243 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1244 			/* rare case of legitimate dget_parent()... */
1245 			nd->path.dentry = dget_parent(nd->path.dentry);
1246 			dput(old);
1247 			break;
1248 		}
1249 		if (!follow_up(&nd->path))
1250 			break;
1251 	}
1252 	follow_mount(&nd->path);
1253 	nd->inode = nd->path.dentry->d_inode;
1254 }
1255 
1256 /*
1257  * This looks up the name in dcache, possibly revalidates the old dentry and
1258  * allocates a new one if not found or not valid.  In the need_lookup argument
1259  * returns whether i_op->lookup is necessary.
1260  *
1261  * dir->d_inode->i_mutex must be held
1262  */
1263 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1264 				    unsigned int flags, bool *need_lookup)
1265 {
1266 	struct dentry *dentry;
1267 	int error;
1268 
1269 	*need_lookup = false;
1270 	dentry = d_lookup(dir, name);
1271 	if (dentry) {
1272 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1273 			error = d_revalidate(dentry, flags);
1274 			if (unlikely(error <= 0)) {
1275 				if (error < 0) {
1276 					dput(dentry);
1277 					return ERR_PTR(error);
1278 				} else if (!d_invalidate(dentry)) {
1279 					dput(dentry);
1280 					dentry = NULL;
1281 				}
1282 			}
1283 		}
1284 	}
1285 
1286 	if (!dentry) {
1287 		dentry = d_alloc(dir, name);
1288 		if (unlikely(!dentry))
1289 			return ERR_PTR(-ENOMEM);
1290 
1291 		*need_lookup = true;
1292 	}
1293 	return dentry;
1294 }
1295 
1296 /*
1297  * Call i_op->lookup on the dentry.  The dentry must be negative but may be
1298  * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1299  *
1300  * dir->d_inode->i_mutex must be held
1301  */
1302 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1303 				  unsigned int flags)
1304 {
1305 	struct dentry *old;
1306 
1307 	/* Don't create child dentry for a dead directory. */
1308 	if (unlikely(IS_DEADDIR(dir))) {
1309 		dput(dentry);
1310 		return ERR_PTR(-ENOENT);
1311 	}
1312 
1313 	old = dir->i_op->lookup(dir, dentry, flags);
1314 	if (unlikely(old)) {
1315 		dput(dentry);
1316 		dentry = old;
1317 	}
1318 	return dentry;
1319 }
1320 
1321 static struct dentry *__lookup_hash(struct qstr *name,
1322 		struct dentry *base, unsigned int flags)
1323 {
1324 	bool need_lookup;
1325 	struct dentry *dentry;
1326 
1327 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1328 	if (!need_lookup)
1329 		return dentry;
1330 
1331 	return lookup_real(base->d_inode, dentry, flags);
1332 }
1333 
1334 /*
1335  *  It's more convoluted than I'd like it to be, but... it's still fairly
1336  *  small and for now I'd prefer to have fast path as straight as possible.
1337  *  It _is_ time-critical.
1338  */
1339 static int lookup_fast(struct nameidata *nd,
1340 		       struct path *path, struct inode **inode)
1341 {
1342 	struct vfsmount *mnt = nd->path.mnt;
1343 	struct dentry *dentry, *parent = nd->path.dentry;
1344 	int need_reval = 1;
1345 	int status = 1;
1346 	int err;
1347 
1348 	/*
1349 	 * Rename seqlock is not required here because in the off chance
1350 	 * of a false negative due to a concurrent rename, we're going to
1351 	 * do the non-racy lookup, below.
1352 	 */
1353 	if (nd->flags & LOOKUP_RCU) {
1354 		unsigned seq;
1355 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1356 		if (!dentry)
1357 			goto unlazy;
1358 
1359 		/*
1360 		 * This sequence count validates that the inode matches
1361 		 * the dentry name information from lookup.
1362 		 */
1363 		*inode = dentry->d_inode;
1364 		if (read_seqcount_retry(&dentry->d_seq, seq))
1365 			return -ECHILD;
1366 
1367 		/*
1368 		 * This sequence count validates that the parent had no
1369 		 * changes while we did the lookup of the dentry above.
1370 		 *
1371 		 * The memory barrier in read_seqcount_begin of child is
1372 		 *  enough, we can use __read_seqcount_retry here.
1373 		 */
1374 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1375 			return -ECHILD;
1376 		nd->seq = seq;
1377 
1378 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1379 			status = d_revalidate(dentry, nd->flags);
1380 			if (unlikely(status <= 0)) {
1381 				if (status != -ECHILD)
1382 					need_reval = 0;
1383 				goto unlazy;
1384 			}
1385 		}
1386 		path->mnt = mnt;
1387 		path->dentry = dentry;
1388 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1389 			goto unlazy;
1390 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1391 			goto unlazy;
1392 		return 0;
1393 unlazy:
1394 		if (unlazy_walk(nd, dentry))
1395 			return -ECHILD;
1396 	} else {
1397 		dentry = __d_lookup(parent, &nd->last);
1398 	}
1399 
1400 	if (unlikely(!dentry))
1401 		goto need_lookup;
1402 
1403 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1404 		status = d_revalidate(dentry, nd->flags);
1405 	if (unlikely(status <= 0)) {
1406 		if (status < 0) {
1407 			dput(dentry);
1408 			return status;
1409 		}
1410 		if (!d_invalidate(dentry)) {
1411 			dput(dentry);
1412 			goto need_lookup;
1413 		}
1414 	}
1415 
1416 	path->mnt = mnt;
1417 	path->dentry = dentry;
1418 	err = follow_managed(path, nd->flags);
1419 	if (unlikely(err < 0)) {
1420 		path_put_conditional(path, nd);
1421 		return err;
1422 	}
1423 	if (err)
1424 		nd->flags |= LOOKUP_JUMPED;
1425 	*inode = path->dentry->d_inode;
1426 	return 0;
1427 
1428 need_lookup:
1429 	return 1;
1430 }
1431 
1432 /* Fast lookup failed, do it the slow way */
1433 static int lookup_slow(struct nameidata *nd, struct path *path)
1434 {
1435 	struct dentry *dentry, *parent;
1436 	int err;
1437 
1438 	parent = nd->path.dentry;
1439 	BUG_ON(nd->inode != parent->d_inode);
1440 
1441 	mutex_lock(&parent->d_inode->i_mutex);
1442 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1443 	mutex_unlock(&parent->d_inode->i_mutex);
1444 	if (IS_ERR(dentry))
1445 		return PTR_ERR(dentry);
1446 	path->mnt = nd->path.mnt;
1447 	path->dentry = dentry;
1448 	err = follow_managed(path, nd->flags);
1449 	if (unlikely(err < 0)) {
1450 		path_put_conditional(path, nd);
1451 		return err;
1452 	}
1453 	if (err)
1454 		nd->flags |= LOOKUP_JUMPED;
1455 	return 0;
1456 }
1457 
1458 static inline int may_lookup(struct nameidata *nd)
1459 {
1460 	if (nd->flags & LOOKUP_RCU) {
1461 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1462 		if (err != -ECHILD)
1463 			return err;
1464 		if (unlazy_walk(nd, NULL))
1465 			return -ECHILD;
1466 	}
1467 	return inode_permission(nd->inode, MAY_EXEC);
1468 }
1469 
1470 static inline int handle_dots(struct nameidata *nd, int type)
1471 {
1472 	if (type == LAST_DOTDOT) {
1473 		if (nd->flags & LOOKUP_RCU) {
1474 			if (follow_dotdot_rcu(nd))
1475 				return -ECHILD;
1476 		} else
1477 			follow_dotdot(nd);
1478 	}
1479 	return 0;
1480 }
1481 
1482 static void terminate_walk(struct nameidata *nd)
1483 {
1484 	if (!(nd->flags & LOOKUP_RCU)) {
1485 		path_put(&nd->path);
1486 	} else {
1487 		nd->flags &= ~LOOKUP_RCU;
1488 		if (!(nd->flags & LOOKUP_ROOT))
1489 			nd->root.mnt = NULL;
1490 		unlock_rcu_walk();
1491 	}
1492 }
1493 
1494 /*
1495  * Do we need to follow links? We _really_ want to be able
1496  * to do this check without having to look at inode->i_op,
1497  * so we keep a cache of "no, this doesn't need follow_link"
1498  * for the common case.
1499  */
1500 static inline int should_follow_link(struct inode *inode, int follow)
1501 {
1502 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1503 		if (likely(inode->i_op->follow_link))
1504 			return follow;
1505 
1506 		/* This gets set once for the inode lifetime */
1507 		spin_lock(&inode->i_lock);
1508 		inode->i_opflags |= IOP_NOFOLLOW;
1509 		spin_unlock(&inode->i_lock);
1510 	}
1511 	return 0;
1512 }
1513 
1514 static inline int walk_component(struct nameidata *nd, struct path *path,
1515 		int follow)
1516 {
1517 	struct inode *inode;
1518 	int err;
1519 	/*
1520 	 * "." and ".." are special - ".." especially so because it has
1521 	 * to be able to know about the current root directory and
1522 	 * parent relationships.
1523 	 */
1524 	if (unlikely(nd->last_type != LAST_NORM))
1525 		return handle_dots(nd, nd->last_type);
1526 	err = lookup_fast(nd, path, &inode);
1527 	if (unlikely(err)) {
1528 		if (err < 0)
1529 			goto out_err;
1530 
1531 		err = lookup_slow(nd, path);
1532 		if (err < 0)
1533 			goto out_err;
1534 
1535 		inode = path->dentry->d_inode;
1536 	}
1537 	err = -ENOENT;
1538 	if (!inode)
1539 		goto out_path_put;
1540 
1541 	if (should_follow_link(inode, follow)) {
1542 		if (nd->flags & LOOKUP_RCU) {
1543 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1544 				err = -ECHILD;
1545 				goto out_err;
1546 			}
1547 		}
1548 		BUG_ON(inode != path->dentry->d_inode);
1549 		return 1;
1550 	}
1551 	path_to_nameidata(path, nd);
1552 	nd->inode = inode;
1553 	return 0;
1554 
1555 out_path_put:
1556 	path_to_nameidata(path, nd);
1557 out_err:
1558 	terminate_walk(nd);
1559 	return err;
1560 }
1561 
1562 /*
1563  * This limits recursive symlink follows to 8, while
1564  * limiting consecutive symlinks to 40.
1565  *
1566  * Without that kind of total limit, nasty chains of consecutive
1567  * symlinks can cause almost arbitrarily long lookups.
1568  */
1569 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1570 {
1571 	int res;
1572 
1573 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1574 		path_put_conditional(path, nd);
1575 		path_put(&nd->path);
1576 		return -ELOOP;
1577 	}
1578 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1579 
1580 	nd->depth++;
1581 	current->link_count++;
1582 
1583 	do {
1584 		struct path link = *path;
1585 		void *cookie;
1586 
1587 		res = follow_link(&link, nd, &cookie);
1588 		if (res)
1589 			break;
1590 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1591 		put_link(nd, &link, cookie);
1592 	} while (res > 0);
1593 
1594 	current->link_count--;
1595 	nd->depth--;
1596 	return res;
1597 }
1598 
1599 /*
1600  * We really don't want to look at inode->i_op->lookup
1601  * when we don't have to. So we keep a cache bit in
1602  * the inode ->i_opflags field that says "yes, we can
1603  * do lookup on this inode".
1604  */
1605 static inline int can_lookup(struct inode *inode)
1606 {
1607 	if (likely(inode->i_opflags & IOP_LOOKUP))
1608 		return 1;
1609 	if (likely(!inode->i_op->lookup))
1610 		return 0;
1611 
1612 	/* We do this once for the lifetime of the inode */
1613 	spin_lock(&inode->i_lock);
1614 	inode->i_opflags |= IOP_LOOKUP;
1615 	spin_unlock(&inode->i_lock);
1616 	return 1;
1617 }
1618 
1619 /*
1620  * We can do the critical dentry name comparison and hashing
1621  * operations one word at a time, but we are limited to:
1622  *
1623  * - Architectures with fast unaligned word accesses. We could
1624  *   do a "get_unaligned()" if this helps and is sufficiently
1625  *   fast.
1626  *
1627  * - Little-endian machines (so that we can generate the mask
1628  *   of low bytes efficiently). Again, we *could* do a byte
1629  *   swapping load on big-endian architectures if that is not
1630  *   expensive enough to make the optimization worthless.
1631  *
1632  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1633  *   do not trap on the (extremely unlikely) case of a page
1634  *   crossing operation.
1635  *
1636  * - Furthermore, we need an efficient 64-bit compile for the
1637  *   64-bit case in order to generate the "number of bytes in
1638  *   the final mask". Again, that could be replaced with a
1639  *   efficient population count instruction or similar.
1640  */
1641 #ifdef CONFIG_DCACHE_WORD_ACCESS
1642 
1643 #include <asm/word-at-a-time.h>
1644 
1645 #ifdef CONFIG_64BIT
1646 
1647 static inline unsigned int fold_hash(unsigned long hash)
1648 {
1649 	hash += hash >> (8*sizeof(int));
1650 	return hash;
1651 }
1652 
1653 #else	/* 32-bit case */
1654 
1655 #define fold_hash(x) (x)
1656 
1657 #endif
1658 
1659 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1660 {
1661 	unsigned long a, mask;
1662 	unsigned long hash = 0;
1663 
1664 	for (;;) {
1665 		a = load_unaligned_zeropad(name);
1666 		if (len < sizeof(unsigned long))
1667 			break;
1668 		hash += a;
1669 		hash *= 9;
1670 		name += sizeof(unsigned long);
1671 		len -= sizeof(unsigned long);
1672 		if (!len)
1673 			goto done;
1674 	}
1675 	mask = ~(~0ul << len*8);
1676 	hash += mask & a;
1677 done:
1678 	return fold_hash(hash);
1679 }
1680 EXPORT_SYMBOL(full_name_hash);
1681 
1682 /*
1683  * Calculate the length and hash of the path component, and
1684  * return the length of the component;
1685  */
1686 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1687 {
1688 	unsigned long a, b, adata, bdata, mask, hash, len;
1689 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1690 
1691 	hash = a = 0;
1692 	len = -sizeof(unsigned long);
1693 	do {
1694 		hash = (hash + a) * 9;
1695 		len += sizeof(unsigned long);
1696 		a = load_unaligned_zeropad(name+len);
1697 		b = a ^ REPEAT_BYTE('/');
1698 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1699 
1700 	adata = prep_zero_mask(a, adata, &constants);
1701 	bdata = prep_zero_mask(b, bdata, &constants);
1702 
1703 	mask = create_zero_mask(adata | bdata);
1704 
1705 	hash += a & zero_bytemask(mask);
1706 	*hashp = fold_hash(hash);
1707 
1708 	return len + find_zero(mask);
1709 }
1710 
1711 #else
1712 
1713 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1714 {
1715 	unsigned long hash = init_name_hash();
1716 	while (len--)
1717 		hash = partial_name_hash(*name++, hash);
1718 	return end_name_hash(hash);
1719 }
1720 EXPORT_SYMBOL(full_name_hash);
1721 
1722 /*
1723  * We know there's a real path component here of at least
1724  * one character.
1725  */
1726 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1727 {
1728 	unsigned long hash = init_name_hash();
1729 	unsigned long len = 0, c;
1730 
1731 	c = (unsigned char)*name;
1732 	do {
1733 		len++;
1734 		hash = partial_name_hash(c, hash);
1735 		c = (unsigned char)name[len];
1736 	} while (c && c != '/');
1737 	*hashp = end_name_hash(hash);
1738 	return len;
1739 }
1740 
1741 #endif
1742 
1743 /*
1744  * Name resolution.
1745  * This is the basic name resolution function, turning a pathname into
1746  * the final dentry. We expect 'base' to be positive and a directory.
1747  *
1748  * Returns 0 and nd will have valid dentry and mnt on success.
1749  * Returns error and drops reference to input namei data on failure.
1750  */
1751 static int link_path_walk(const char *name, struct nameidata *nd)
1752 {
1753 	struct path next;
1754 	int err;
1755 
1756 	while (*name=='/')
1757 		name++;
1758 	if (!*name)
1759 		return 0;
1760 
1761 	/* At this point we know we have a real path component. */
1762 	for(;;) {
1763 		struct qstr this;
1764 		long len;
1765 		int type;
1766 
1767 		err = may_lookup(nd);
1768  		if (err)
1769 			break;
1770 
1771 		len = hash_name(name, &this.hash);
1772 		this.name = name;
1773 		this.len = len;
1774 
1775 		type = LAST_NORM;
1776 		if (name[0] == '.') switch (len) {
1777 			case 2:
1778 				if (name[1] == '.') {
1779 					type = LAST_DOTDOT;
1780 					nd->flags |= LOOKUP_JUMPED;
1781 				}
1782 				break;
1783 			case 1:
1784 				type = LAST_DOT;
1785 		}
1786 		if (likely(type == LAST_NORM)) {
1787 			struct dentry *parent = nd->path.dentry;
1788 			nd->flags &= ~LOOKUP_JUMPED;
1789 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1790 				err = parent->d_op->d_hash(parent, &this);
1791 				if (err < 0)
1792 					break;
1793 			}
1794 		}
1795 
1796 		nd->last = this;
1797 		nd->last_type = type;
1798 
1799 		if (!name[len])
1800 			return 0;
1801 		/*
1802 		 * If it wasn't NUL, we know it was '/'. Skip that
1803 		 * slash, and continue until no more slashes.
1804 		 */
1805 		do {
1806 			len++;
1807 		} while (unlikely(name[len] == '/'));
1808 		if (!name[len])
1809 			return 0;
1810 
1811 		name += len;
1812 
1813 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1814 		if (err < 0)
1815 			return err;
1816 
1817 		if (err) {
1818 			err = nested_symlink(&next, nd);
1819 			if (err)
1820 				return err;
1821 		}
1822 		if (!can_lookup(nd->inode)) {
1823 			err = -ENOTDIR;
1824 			break;
1825 		}
1826 	}
1827 	terminate_walk(nd);
1828 	return err;
1829 }
1830 
1831 static int path_init(int dfd, const char *name, unsigned int flags,
1832 		     struct nameidata *nd, struct file **fp)
1833 {
1834 	int retval = 0;
1835 
1836 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1837 	nd->flags = flags | LOOKUP_JUMPED;
1838 	nd->depth = 0;
1839 	if (flags & LOOKUP_ROOT) {
1840 		struct inode *inode = nd->root.dentry->d_inode;
1841 		if (*name) {
1842 			if (!can_lookup(inode))
1843 				return -ENOTDIR;
1844 			retval = inode_permission(inode, MAY_EXEC);
1845 			if (retval)
1846 				return retval;
1847 		}
1848 		nd->path = nd->root;
1849 		nd->inode = inode;
1850 		if (flags & LOOKUP_RCU) {
1851 			lock_rcu_walk();
1852 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1853 		} else {
1854 			path_get(&nd->path);
1855 		}
1856 		return 0;
1857 	}
1858 
1859 	nd->root.mnt = NULL;
1860 
1861 	if (*name=='/') {
1862 		if (flags & LOOKUP_RCU) {
1863 			lock_rcu_walk();
1864 			set_root_rcu(nd);
1865 		} else {
1866 			set_root(nd);
1867 			path_get(&nd->root);
1868 		}
1869 		nd->path = nd->root;
1870 	} else if (dfd == AT_FDCWD) {
1871 		if (flags & LOOKUP_RCU) {
1872 			struct fs_struct *fs = current->fs;
1873 			unsigned seq;
1874 
1875 			lock_rcu_walk();
1876 
1877 			do {
1878 				seq = read_seqcount_begin(&fs->seq);
1879 				nd->path = fs->pwd;
1880 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1881 			} while (read_seqcount_retry(&fs->seq, seq));
1882 		} else {
1883 			get_fs_pwd(current->fs, &nd->path);
1884 		}
1885 	} else {
1886 		/* Caller must check execute permissions on the starting path component */
1887 		struct fd f = fdget_raw(dfd);
1888 		struct dentry *dentry;
1889 
1890 		if (!f.file)
1891 			return -EBADF;
1892 
1893 		dentry = f.file->f_path.dentry;
1894 
1895 		if (*name) {
1896 			if (!can_lookup(dentry->d_inode)) {
1897 				fdput(f);
1898 				return -ENOTDIR;
1899 			}
1900 		}
1901 
1902 		nd->path = f.file->f_path;
1903 		if (flags & LOOKUP_RCU) {
1904 			if (f.need_put)
1905 				*fp = f.file;
1906 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1907 			lock_rcu_walk();
1908 		} else {
1909 			path_get(&nd->path);
1910 			fdput(f);
1911 		}
1912 	}
1913 
1914 	nd->inode = nd->path.dentry->d_inode;
1915 	return 0;
1916 }
1917 
1918 static inline int lookup_last(struct nameidata *nd, struct path *path)
1919 {
1920 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1921 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1922 
1923 	nd->flags &= ~LOOKUP_PARENT;
1924 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1925 }
1926 
1927 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1928 static int path_lookupat(int dfd, const char *name,
1929 				unsigned int flags, struct nameidata *nd)
1930 {
1931 	struct file *base = NULL;
1932 	struct path path;
1933 	int err;
1934 
1935 	/*
1936 	 * Path walking is largely split up into 2 different synchronisation
1937 	 * schemes, rcu-walk and ref-walk (explained in
1938 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1939 	 * path walk code, but some things particularly setup, cleanup, and
1940 	 * following mounts are sufficiently divergent that functions are
1941 	 * duplicated. Typically there is a function foo(), and its RCU
1942 	 * analogue, foo_rcu().
1943 	 *
1944 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1945 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1946 	 * be handled by restarting a traditional ref-walk (which will always
1947 	 * be able to complete).
1948 	 */
1949 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1950 
1951 	if (unlikely(err))
1952 		return err;
1953 
1954 	current->total_link_count = 0;
1955 	err = link_path_walk(name, nd);
1956 
1957 	if (!err && !(flags & LOOKUP_PARENT)) {
1958 		err = lookup_last(nd, &path);
1959 		while (err > 0) {
1960 			void *cookie;
1961 			struct path link = path;
1962 			err = may_follow_link(&link, nd);
1963 			if (unlikely(err))
1964 				break;
1965 			nd->flags |= LOOKUP_PARENT;
1966 			err = follow_link(&link, nd, &cookie);
1967 			if (err)
1968 				break;
1969 			err = lookup_last(nd, &path);
1970 			put_link(nd, &link, cookie);
1971 		}
1972 	}
1973 
1974 	if (!err)
1975 		err = complete_walk(nd);
1976 
1977 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1978 		if (!can_lookup(nd->inode)) {
1979 			path_put(&nd->path);
1980 			err = -ENOTDIR;
1981 		}
1982 	}
1983 
1984 	if (base)
1985 		fput(base);
1986 
1987 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1988 		path_put(&nd->root);
1989 		nd->root.mnt = NULL;
1990 	}
1991 	return err;
1992 }
1993 
1994 static int filename_lookup(int dfd, struct filename *name,
1995 				unsigned int flags, struct nameidata *nd)
1996 {
1997 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1998 	if (unlikely(retval == -ECHILD))
1999 		retval = path_lookupat(dfd, name->name, flags, nd);
2000 	if (unlikely(retval == -ESTALE))
2001 		retval = path_lookupat(dfd, name->name,
2002 						flags | LOOKUP_REVAL, nd);
2003 
2004 	if (likely(!retval))
2005 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2006 	return retval;
2007 }
2008 
2009 static int do_path_lookup(int dfd, const char *name,
2010 				unsigned int flags, struct nameidata *nd)
2011 {
2012 	struct filename filename = { .name = name };
2013 
2014 	return filename_lookup(dfd, &filename, flags, nd);
2015 }
2016 
2017 /* does lookup, returns the object with parent locked */
2018 struct dentry *kern_path_locked(const char *name, struct path *path)
2019 {
2020 	struct nameidata nd;
2021 	struct dentry *d;
2022 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2023 	if (err)
2024 		return ERR_PTR(err);
2025 	if (nd.last_type != LAST_NORM) {
2026 		path_put(&nd.path);
2027 		return ERR_PTR(-EINVAL);
2028 	}
2029 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2030 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2031 	if (IS_ERR(d)) {
2032 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2033 		path_put(&nd.path);
2034 		return d;
2035 	}
2036 	*path = nd.path;
2037 	return d;
2038 }
2039 
2040 int kern_path(const char *name, unsigned int flags, struct path *path)
2041 {
2042 	struct nameidata nd;
2043 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2044 	if (!res)
2045 		*path = nd.path;
2046 	return res;
2047 }
2048 
2049 /**
2050  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2051  * @dentry:  pointer to dentry of the base directory
2052  * @mnt: pointer to vfs mount of the base directory
2053  * @name: pointer to file name
2054  * @flags: lookup flags
2055  * @path: pointer to struct path to fill
2056  */
2057 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2058 		    const char *name, unsigned int flags,
2059 		    struct path *path)
2060 {
2061 	struct nameidata nd;
2062 	int err;
2063 	nd.root.dentry = dentry;
2064 	nd.root.mnt = mnt;
2065 	BUG_ON(flags & LOOKUP_PARENT);
2066 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2067 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2068 	if (!err)
2069 		*path = nd.path;
2070 	return err;
2071 }
2072 
2073 /*
2074  * Restricted form of lookup. Doesn't follow links, single-component only,
2075  * needs parent already locked. Doesn't follow mounts.
2076  * SMP-safe.
2077  */
2078 static struct dentry *lookup_hash(struct nameidata *nd)
2079 {
2080 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2081 }
2082 
2083 /**
2084  * lookup_one_len - filesystem helper to lookup single pathname component
2085  * @name:	pathname component to lookup
2086  * @base:	base directory to lookup from
2087  * @len:	maximum length @len should be interpreted to
2088  *
2089  * Note that this routine is purely a helper for filesystem usage and should
2090  * not be called by generic code.  Also note that by using this function the
2091  * nameidata argument is passed to the filesystem methods and a filesystem
2092  * using this helper needs to be prepared for that.
2093  */
2094 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2095 {
2096 	struct qstr this;
2097 	unsigned int c;
2098 	int err;
2099 
2100 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2101 
2102 	this.name = name;
2103 	this.len = len;
2104 	this.hash = full_name_hash(name, len);
2105 	if (!len)
2106 		return ERR_PTR(-EACCES);
2107 
2108 	if (unlikely(name[0] == '.')) {
2109 		if (len < 2 || (len == 2 && name[1] == '.'))
2110 			return ERR_PTR(-EACCES);
2111 	}
2112 
2113 	while (len--) {
2114 		c = *(const unsigned char *)name++;
2115 		if (c == '/' || c == '\0')
2116 			return ERR_PTR(-EACCES);
2117 	}
2118 	/*
2119 	 * See if the low-level filesystem might want
2120 	 * to use its own hash..
2121 	 */
2122 	if (base->d_flags & DCACHE_OP_HASH) {
2123 		int err = base->d_op->d_hash(base, &this);
2124 		if (err < 0)
2125 			return ERR_PTR(err);
2126 	}
2127 
2128 	err = inode_permission(base->d_inode, MAY_EXEC);
2129 	if (err)
2130 		return ERR_PTR(err);
2131 
2132 	return __lookup_hash(&this, base, 0);
2133 }
2134 
2135 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2136 		 struct path *path, int *empty)
2137 {
2138 	struct nameidata nd;
2139 	struct filename *tmp = getname_flags(name, flags, empty);
2140 	int err = PTR_ERR(tmp);
2141 	if (!IS_ERR(tmp)) {
2142 
2143 		BUG_ON(flags & LOOKUP_PARENT);
2144 
2145 		err = filename_lookup(dfd, tmp, flags, &nd);
2146 		putname(tmp);
2147 		if (!err)
2148 			*path = nd.path;
2149 	}
2150 	return err;
2151 }
2152 
2153 int user_path_at(int dfd, const char __user *name, unsigned flags,
2154 		 struct path *path)
2155 {
2156 	return user_path_at_empty(dfd, name, flags, path, NULL);
2157 }
2158 
2159 /*
2160  * NB: most callers don't do anything directly with the reference to the
2161  *     to struct filename, but the nd->last pointer points into the name string
2162  *     allocated by getname. So we must hold the reference to it until all
2163  *     path-walking is complete.
2164  */
2165 static struct filename *
2166 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2167 		 unsigned int flags)
2168 {
2169 	struct filename *s = getname(path);
2170 	int error;
2171 
2172 	/* only LOOKUP_REVAL is allowed in extra flags */
2173 	flags &= LOOKUP_REVAL;
2174 
2175 	if (IS_ERR(s))
2176 		return s;
2177 
2178 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2179 	if (error) {
2180 		putname(s);
2181 		return ERR_PTR(error);
2182 	}
2183 
2184 	return s;
2185 }
2186 
2187 /*
2188  * It's inline, so penalty for filesystems that don't use sticky bit is
2189  * minimal.
2190  */
2191 static inline int check_sticky(struct inode *dir, struct inode *inode)
2192 {
2193 	kuid_t fsuid = current_fsuid();
2194 
2195 	if (!(dir->i_mode & S_ISVTX))
2196 		return 0;
2197 	if (uid_eq(inode->i_uid, fsuid))
2198 		return 0;
2199 	if (uid_eq(dir->i_uid, fsuid))
2200 		return 0;
2201 	return !inode_capable(inode, CAP_FOWNER);
2202 }
2203 
2204 /*
2205  *	Check whether we can remove a link victim from directory dir, check
2206  *  whether the type of victim is right.
2207  *  1. We can't do it if dir is read-only (done in permission())
2208  *  2. We should have write and exec permissions on dir
2209  *  3. We can't remove anything from append-only dir
2210  *  4. We can't do anything with immutable dir (done in permission())
2211  *  5. If the sticky bit on dir is set we should either
2212  *	a. be owner of dir, or
2213  *	b. be owner of victim, or
2214  *	c. have CAP_FOWNER capability
2215  *  6. If the victim is append-only or immutable we can't do antyhing with
2216  *     links pointing to it.
2217  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2218  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2219  *  9. We can't remove a root or mountpoint.
2220  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2221  *     nfs_async_unlink().
2222  */
2223 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2224 {
2225 	int error;
2226 
2227 	if (!victim->d_inode)
2228 		return -ENOENT;
2229 
2230 	BUG_ON(victim->d_parent->d_inode != dir);
2231 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2232 
2233 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2234 	if (error)
2235 		return error;
2236 	if (IS_APPEND(dir))
2237 		return -EPERM;
2238 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2239 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2240 		return -EPERM;
2241 	if (isdir) {
2242 		if (!S_ISDIR(victim->d_inode->i_mode))
2243 			return -ENOTDIR;
2244 		if (IS_ROOT(victim))
2245 			return -EBUSY;
2246 	} else if (S_ISDIR(victim->d_inode->i_mode))
2247 		return -EISDIR;
2248 	if (IS_DEADDIR(dir))
2249 		return -ENOENT;
2250 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2251 		return -EBUSY;
2252 	return 0;
2253 }
2254 
2255 /*	Check whether we can create an object with dentry child in directory
2256  *  dir.
2257  *  1. We can't do it if child already exists (open has special treatment for
2258  *     this case, but since we are inlined it's OK)
2259  *  2. We can't do it if dir is read-only (done in permission())
2260  *  3. We should have write and exec permissions on dir
2261  *  4. We can't do it if dir is immutable (done in permission())
2262  */
2263 static inline int may_create(struct inode *dir, struct dentry *child)
2264 {
2265 	if (child->d_inode)
2266 		return -EEXIST;
2267 	if (IS_DEADDIR(dir))
2268 		return -ENOENT;
2269 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2270 }
2271 
2272 /*
2273  * p1 and p2 should be directories on the same fs.
2274  */
2275 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2276 {
2277 	struct dentry *p;
2278 
2279 	if (p1 == p2) {
2280 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2281 		return NULL;
2282 	}
2283 
2284 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2285 
2286 	p = d_ancestor(p2, p1);
2287 	if (p) {
2288 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2289 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2290 		return p;
2291 	}
2292 
2293 	p = d_ancestor(p1, p2);
2294 	if (p) {
2295 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2296 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2297 		return p;
2298 	}
2299 
2300 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2301 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2302 	return NULL;
2303 }
2304 
2305 void unlock_rename(struct dentry *p1, struct dentry *p2)
2306 {
2307 	mutex_unlock(&p1->d_inode->i_mutex);
2308 	if (p1 != p2) {
2309 		mutex_unlock(&p2->d_inode->i_mutex);
2310 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2311 	}
2312 }
2313 
2314 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2315 		bool want_excl)
2316 {
2317 	int error = may_create(dir, dentry);
2318 	if (error)
2319 		return error;
2320 
2321 	if (!dir->i_op->create)
2322 		return -EACCES;	/* shouldn't it be ENOSYS? */
2323 	mode &= S_IALLUGO;
2324 	mode |= S_IFREG;
2325 	error = security_inode_create(dir, dentry, mode);
2326 	if (error)
2327 		return error;
2328 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2329 	if (!error)
2330 		fsnotify_create(dir, dentry);
2331 	return error;
2332 }
2333 
2334 static int may_open(struct path *path, int acc_mode, int flag)
2335 {
2336 	struct dentry *dentry = path->dentry;
2337 	struct inode *inode = dentry->d_inode;
2338 	int error;
2339 
2340 	/* O_PATH? */
2341 	if (!acc_mode)
2342 		return 0;
2343 
2344 	if (!inode)
2345 		return -ENOENT;
2346 
2347 	switch (inode->i_mode & S_IFMT) {
2348 	case S_IFLNK:
2349 		return -ELOOP;
2350 	case S_IFDIR:
2351 		if (acc_mode & MAY_WRITE)
2352 			return -EISDIR;
2353 		break;
2354 	case S_IFBLK:
2355 	case S_IFCHR:
2356 		if (path->mnt->mnt_flags & MNT_NODEV)
2357 			return -EACCES;
2358 		/*FALLTHRU*/
2359 	case S_IFIFO:
2360 	case S_IFSOCK:
2361 		flag &= ~O_TRUNC;
2362 		break;
2363 	}
2364 
2365 	error = inode_permission(inode, acc_mode);
2366 	if (error)
2367 		return error;
2368 
2369 	/*
2370 	 * An append-only file must be opened in append mode for writing.
2371 	 */
2372 	if (IS_APPEND(inode)) {
2373 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2374 			return -EPERM;
2375 		if (flag & O_TRUNC)
2376 			return -EPERM;
2377 	}
2378 
2379 	/* O_NOATIME can only be set by the owner or superuser */
2380 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2381 		return -EPERM;
2382 
2383 	return 0;
2384 }
2385 
2386 static int handle_truncate(struct file *filp)
2387 {
2388 	struct path *path = &filp->f_path;
2389 	struct inode *inode = path->dentry->d_inode;
2390 	int error = get_write_access(inode);
2391 	if (error)
2392 		return error;
2393 	/*
2394 	 * Refuse to truncate files with mandatory locks held on them.
2395 	 */
2396 	error = locks_verify_locked(inode);
2397 	if (!error)
2398 		error = security_path_truncate(path);
2399 	if (!error) {
2400 		error = do_truncate(path->dentry, 0,
2401 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2402 				    filp);
2403 	}
2404 	put_write_access(inode);
2405 	return error;
2406 }
2407 
2408 static inline int open_to_namei_flags(int flag)
2409 {
2410 	if ((flag & O_ACCMODE) == 3)
2411 		flag--;
2412 	return flag;
2413 }
2414 
2415 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2416 {
2417 	int error = security_path_mknod(dir, dentry, mode, 0);
2418 	if (error)
2419 		return error;
2420 
2421 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2422 	if (error)
2423 		return error;
2424 
2425 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2426 }
2427 
2428 /*
2429  * Attempt to atomically look up, create and open a file from a negative
2430  * dentry.
2431  *
2432  * Returns 0 if successful.  The file will have been created and attached to
2433  * @file by the filesystem calling finish_open().
2434  *
2435  * Returns 1 if the file was looked up only or didn't need creating.  The
2436  * caller will need to perform the open themselves.  @path will have been
2437  * updated to point to the new dentry.  This may be negative.
2438  *
2439  * Returns an error code otherwise.
2440  */
2441 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2442 			struct path *path, struct file *file,
2443 			const struct open_flags *op,
2444 			bool got_write, bool need_lookup,
2445 			int *opened)
2446 {
2447 	struct inode *dir =  nd->path.dentry->d_inode;
2448 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2449 	umode_t mode;
2450 	int error;
2451 	int acc_mode;
2452 	int create_error = 0;
2453 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2454 
2455 	BUG_ON(dentry->d_inode);
2456 
2457 	/* Don't create child dentry for a dead directory. */
2458 	if (unlikely(IS_DEADDIR(dir))) {
2459 		error = -ENOENT;
2460 		goto out;
2461 	}
2462 
2463 	mode = op->mode;
2464 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2465 		mode &= ~current_umask();
2466 
2467 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2468 		open_flag &= ~O_TRUNC;
2469 		*opened |= FILE_CREATED;
2470 	}
2471 
2472 	/*
2473 	 * Checking write permission is tricky, bacuse we don't know if we are
2474 	 * going to actually need it: O_CREAT opens should work as long as the
2475 	 * file exists.  But checking existence breaks atomicity.  The trick is
2476 	 * to check access and if not granted clear O_CREAT from the flags.
2477 	 *
2478 	 * Another problem is returing the "right" error value (e.g. for an
2479 	 * O_EXCL open we want to return EEXIST not EROFS).
2480 	 */
2481 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2482 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2483 		if (!(open_flag & O_CREAT)) {
2484 			/*
2485 			 * No O_CREATE -> atomicity not a requirement -> fall
2486 			 * back to lookup + open
2487 			 */
2488 			goto no_open;
2489 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2490 			/* Fall back and fail with the right error */
2491 			create_error = -EROFS;
2492 			goto no_open;
2493 		} else {
2494 			/* No side effects, safe to clear O_CREAT */
2495 			create_error = -EROFS;
2496 			open_flag &= ~O_CREAT;
2497 		}
2498 	}
2499 
2500 	if (open_flag & O_CREAT) {
2501 		error = may_o_create(&nd->path, dentry, mode);
2502 		if (error) {
2503 			create_error = error;
2504 			if (open_flag & O_EXCL)
2505 				goto no_open;
2506 			open_flag &= ~O_CREAT;
2507 		}
2508 	}
2509 
2510 	if (nd->flags & LOOKUP_DIRECTORY)
2511 		open_flag |= O_DIRECTORY;
2512 
2513 	file->f_path.dentry = DENTRY_NOT_SET;
2514 	file->f_path.mnt = nd->path.mnt;
2515 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2516 				      opened);
2517 	if (error < 0) {
2518 		if (create_error && error == -ENOENT)
2519 			error = create_error;
2520 		goto out;
2521 	}
2522 
2523 	acc_mode = op->acc_mode;
2524 	if (*opened & FILE_CREATED) {
2525 		fsnotify_create(dir, dentry);
2526 		acc_mode = MAY_OPEN;
2527 	}
2528 
2529 	if (error) {	/* returned 1, that is */
2530 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2531 			error = -EIO;
2532 			goto out;
2533 		}
2534 		if (file->f_path.dentry) {
2535 			dput(dentry);
2536 			dentry = file->f_path.dentry;
2537 		}
2538 		if (create_error && dentry->d_inode == NULL) {
2539 			error = create_error;
2540 			goto out;
2541 		}
2542 		goto looked_up;
2543 	}
2544 
2545 	/*
2546 	 * We didn't have the inode before the open, so check open permission
2547 	 * here.
2548 	 */
2549 	error = may_open(&file->f_path, acc_mode, open_flag);
2550 	if (error)
2551 		fput(file);
2552 
2553 out:
2554 	dput(dentry);
2555 	return error;
2556 
2557 no_open:
2558 	if (need_lookup) {
2559 		dentry = lookup_real(dir, dentry, nd->flags);
2560 		if (IS_ERR(dentry))
2561 			return PTR_ERR(dentry);
2562 
2563 		if (create_error) {
2564 			int open_flag = op->open_flag;
2565 
2566 			error = create_error;
2567 			if ((open_flag & O_EXCL)) {
2568 				if (!dentry->d_inode)
2569 					goto out;
2570 			} else if (!dentry->d_inode) {
2571 				goto out;
2572 			} else if ((open_flag & O_TRUNC) &&
2573 				   S_ISREG(dentry->d_inode->i_mode)) {
2574 				goto out;
2575 			}
2576 			/* will fail later, go on to get the right error */
2577 		}
2578 	}
2579 looked_up:
2580 	path->dentry = dentry;
2581 	path->mnt = nd->path.mnt;
2582 	return 1;
2583 }
2584 
2585 /*
2586  * Look up and maybe create and open the last component.
2587  *
2588  * Must be called with i_mutex held on parent.
2589  *
2590  * Returns 0 if the file was successfully atomically created (if necessary) and
2591  * opened.  In this case the file will be returned attached to @file.
2592  *
2593  * Returns 1 if the file was not completely opened at this time, though lookups
2594  * and creations will have been performed and the dentry returned in @path will
2595  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2596  * specified then a negative dentry may be returned.
2597  *
2598  * An error code is returned otherwise.
2599  *
2600  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2601  * cleared otherwise prior to returning.
2602  */
2603 static int lookup_open(struct nameidata *nd, struct path *path,
2604 			struct file *file,
2605 			const struct open_flags *op,
2606 			bool got_write, int *opened)
2607 {
2608 	struct dentry *dir = nd->path.dentry;
2609 	struct inode *dir_inode = dir->d_inode;
2610 	struct dentry *dentry;
2611 	int error;
2612 	bool need_lookup;
2613 
2614 	*opened &= ~FILE_CREATED;
2615 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2616 	if (IS_ERR(dentry))
2617 		return PTR_ERR(dentry);
2618 
2619 	/* Cached positive dentry: will open in f_op->open */
2620 	if (!need_lookup && dentry->d_inode)
2621 		goto out_no_open;
2622 
2623 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2624 		return atomic_open(nd, dentry, path, file, op, got_write,
2625 				   need_lookup, opened);
2626 	}
2627 
2628 	if (need_lookup) {
2629 		BUG_ON(dentry->d_inode);
2630 
2631 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2632 		if (IS_ERR(dentry))
2633 			return PTR_ERR(dentry);
2634 	}
2635 
2636 	/* Negative dentry, just create the file */
2637 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2638 		umode_t mode = op->mode;
2639 		if (!IS_POSIXACL(dir->d_inode))
2640 			mode &= ~current_umask();
2641 		/*
2642 		 * This write is needed to ensure that a
2643 		 * rw->ro transition does not occur between
2644 		 * the time when the file is created and when
2645 		 * a permanent write count is taken through
2646 		 * the 'struct file' in finish_open().
2647 		 */
2648 		if (!got_write) {
2649 			error = -EROFS;
2650 			goto out_dput;
2651 		}
2652 		*opened |= FILE_CREATED;
2653 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2654 		if (error)
2655 			goto out_dput;
2656 		error = vfs_create(dir->d_inode, dentry, mode,
2657 				   nd->flags & LOOKUP_EXCL);
2658 		if (error)
2659 			goto out_dput;
2660 	}
2661 out_no_open:
2662 	path->dentry = dentry;
2663 	path->mnt = nd->path.mnt;
2664 	return 1;
2665 
2666 out_dput:
2667 	dput(dentry);
2668 	return error;
2669 }
2670 
2671 /*
2672  * Handle the last step of open()
2673  */
2674 static int do_last(struct nameidata *nd, struct path *path,
2675 		   struct file *file, const struct open_flags *op,
2676 		   int *opened, struct filename *name)
2677 {
2678 	struct dentry *dir = nd->path.dentry;
2679 	int open_flag = op->open_flag;
2680 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2681 	bool got_write = false;
2682 	int acc_mode = op->acc_mode;
2683 	struct inode *inode;
2684 	bool symlink_ok = false;
2685 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2686 	bool retried = false;
2687 	int error;
2688 
2689 	nd->flags &= ~LOOKUP_PARENT;
2690 	nd->flags |= op->intent;
2691 
2692 	if (nd->last_type != LAST_NORM) {
2693 		error = handle_dots(nd, nd->last_type);
2694 		if (error)
2695 			return error;
2696 		goto finish_open;
2697 	}
2698 
2699 	if (!(open_flag & O_CREAT)) {
2700 		if (nd->last.name[nd->last.len])
2701 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2702 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2703 			symlink_ok = true;
2704 		/* we _can_ be in RCU mode here */
2705 		error = lookup_fast(nd, path, &inode);
2706 		if (likely(!error))
2707 			goto finish_lookup;
2708 
2709 		if (error < 0)
2710 			goto out;
2711 
2712 		BUG_ON(nd->inode != dir->d_inode);
2713 	} else {
2714 		/* create side of things */
2715 		/*
2716 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2717 		 * has been cleared when we got to the last component we are
2718 		 * about to look up
2719 		 */
2720 		error = complete_walk(nd);
2721 		if (error)
2722 			return error;
2723 
2724 		audit_inode(name, dir, LOOKUP_PARENT);
2725 		error = -EISDIR;
2726 		/* trailing slashes? */
2727 		if (nd->last.name[nd->last.len])
2728 			goto out;
2729 	}
2730 
2731 retry_lookup:
2732 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2733 		error = mnt_want_write(nd->path.mnt);
2734 		if (!error)
2735 			got_write = true;
2736 		/*
2737 		 * do _not_ fail yet - we might not need that or fail with
2738 		 * a different error; let lookup_open() decide; we'll be
2739 		 * dropping this one anyway.
2740 		 */
2741 	}
2742 	mutex_lock(&dir->d_inode->i_mutex);
2743 	error = lookup_open(nd, path, file, op, got_write, opened);
2744 	mutex_unlock(&dir->d_inode->i_mutex);
2745 
2746 	if (error <= 0) {
2747 		if (error)
2748 			goto out;
2749 
2750 		if ((*opened & FILE_CREATED) ||
2751 		    !S_ISREG(file_inode(file)->i_mode))
2752 			will_truncate = false;
2753 
2754 		audit_inode(name, file->f_path.dentry, 0);
2755 		goto opened;
2756 	}
2757 
2758 	if (*opened & FILE_CREATED) {
2759 		/* Don't check for write permission, don't truncate */
2760 		open_flag &= ~O_TRUNC;
2761 		will_truncate = false;
2762 		acc_mode = MAY_OPEN;
2763 		path_to_nameidata(path, nd);
2764 		goto finish_open_created;
2765 	}
2766 
2767 	/*
2768 	 * create/update audit record if it already exists.
2769 	 */
2770 	if (path->dentry->d_inode)
2771 		audit_inode(name, path->dentry, 0);
2772 
2773 	/*
2774 	 * If atomic_open() acquired write access it is dropped now due to
2775 	 * possible mount and symlink following (this might be optimized away if
2776 	 * necessary...)
2777 	 */
2778 	if (got_write) {
2779 		mnt_drop_write(nd->path.mnt);
2780 		got_write = false;
2781 	}
2782 
2783 	error = -EEXIST;
2784 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2785 		goto exit_dput;
2786 
2787 	error = follow_managed(path, nd->flags);
2788 	if (error < 0)
2789 		goto exit_dput;
2790 
2791 	if (error)
2792 		nd->flags |= LOOKUP_JUMPED;
2793 
2794 	BUG_ON(nd->flags & LOOKUP_RCU);
2795 	inode = path->dentry->d_inode;
2796 finish_lookup:
2797 	/* we _can_ be in RCU mode here */
2798 	error = -ENOENT;
2799 	if (!inode) {
2800 		path_to_nameidata(path, nd);
2801 		goto out;
2802 	}
2803 
2804 	if (should_follow_link(inode, !symlink_ok)) {
2805 		if (nd->flags & LOOKUP_RCU) {
2806 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2807 				error = -ECHILD;
2808 				goto out;
2809 			}
2810 		}
2811 		BUG_ON(inode != path->dentry->d_inode);
2812 		return 1;
2813 	}
2814 
2815 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2816 		path_to_nameidata(path, nd);
2817 	} else {
2818 		save_parent.dentry = nd->path.dentry;
2819 		save_parent.mnt = mntget(path->mnt);
2820 		nd->path.dentry = path->dentry;
2821 
2822 	}
2823 	nd->inode = inode;
2824 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2825 finish_open:
2826 	error = complete_walk(nd);
2827 	if (error) {
2828 		path_put(&save_parent);
2829 		return error;
2830 	}
2831 	audit_inode(name, nd->path.dentry, 0);
2832 	error = -EISDIR;
2833 	if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2834 		goto out;
2835 	error = -ENOTDIR;
2836 	if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
2837 		goto out;
2838 	if (!S_ISREG(nd->inode->i_mode))
2839 		will_truncate = false;
2840 
2841 	if (will_truncate) {
2842 		error = mnt_want_write(nd->path.mnt);
2843 		if (error)
2844 			goto out;
2845 		got_write = true;
2846 	}
2847 finish_open_created:
2848 	error = may_open(&nd->path, acc_mode, open_flag);
2849 	if (error)
2850 		goto out;
2851 	file->f_path.mnt = nd->path.mnt;
2852 	error = finish_open(file, nd->path.dentry, NULL, opened);
2853 	if (error) {
2854 		if (error == -EOPENSTALE)
2855 			goto stale_open;
2856 		goto out;
2857 	}
2858 opened:
2859 	error = open_check_o_direct(file);
2860 	if (error)
2861 		goto exit_fput;
2862 	error = ima_file_check(file, op->acc_mode);
2863 	if (error)
2864 		goto exit_fput;
2865 
2866 	if (will_truncate) {
2867 		error = handle_truncate(file);
2868 		if (error)
2869 			goto exit_fput;
2870 	}
2871 out:
2872 	if (got_write)
2873 		mnt_drop_write(nd->path.mnt);
2874 	path_put(&save_parent);
2875 	terminate_walk(nd);
2876 	return error;
2877 
2878 exit_dput:
2879 	path_put_conditional(path, nd);
2880 	goto out;
2881 exit_fput:
2882 	fput(file);
2883 	goto out;
2884 
2885 stale_open:
2886 	/* If no saved parent or already retried then can't retry */
2887 	if (!save_parent.dentry || retried)
2888 		goto out;
2889 
2890 	BUG_ON(save_parent.dentry != dir);
2891 	path_put(&nd->path);
2892 	nd->path = save_parent;
2893 	nd->inode = dir->d_inode;
2894 	save_parent.mnt = NULL;
2895 	save_parent.dentry = NULL;
2896 	if (got_write) {
2897 		mnt_drop_write(nd->path.mnt);
2898 		got_write = false;
2899 	}
2900 	retried = true;
2901 	goto retry_lookup;
2902 }
2903 
2904 static int do_tmpfile(int dfd, struct filename *pathname,
2905 		struct nameidata *nd, int flags,
2906 		const struct open_flags *op,
2907 		struct file *file, int *opened)
2908 {
2909 	static const struct qstr name = QSTR_INIT("/", 1);
2910 	struct dentry *dentry, *child;
2911 	struct inode *dir;
2912 	int error = path_lookupat(dfd, pathname->name,
2913 				  flags | LOOKUP_DIRECTORY, nd);
2914 	if (unlikely(error))
2915 		return error;
2916 	error = mnt_want_write(nd->path.mnt);
2917 	if (unlikely(error))
2918 		goto out;
2919 	/* we want directory to be writable */
2920 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
2921 	if (error)
2922 		goto out2;
2923 	dentry = nd->path.dentry;
2924 	dir = dentry->d_inode;
2925 	if (!dir->i_op->tmpfile) {
2926 		error = -EOPNOTSUPP;
2927 		goto out2;
2928 	}
2929 	child = d_alloc(dentry, &name);
2930 	if (unlikely(!child)) {
2931 		error = -ENOMEM;
2932 		goto out2;
2933 	}
2934 	nd->flags &= ~LOOKUP_DIRECTORY;
2935 	nd->flags |= op->intent;
2936 	dput(nd->path.dentry);
2937 	nd->path.dentry = child;
2938 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
2939 	if (error)
2940 		goto out2;
2941 	audit_inode(pathname, nd->path.dentry, 0);
2942 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
2943 	if (error)
2944 		goto out2;
2945 	file->f_path.mnt = nd->path.mnt;
2946 	error = finish_open(file, nd->path.dentry, NULL, opened);
2947 	if (error)
2948 		goto out2;
2949 	error = open_check_o_direct(file);
2950 	if (error) {
2951 		fput(file);
2952 	} else if (!(op->open_flag & O_EXCL)) {
2953 		struct inode *inode = file_inode(file);
2954 		spin_lock(&inode->i_lock);
2955 		inode->i_state |= I_LINKABLE;
2956 		spin_unlock(&inode->i_lock);
2957 	}
2958 out2:
2959 	mnt_drop_write(nd->path.mnt);
2960 out:
2961 	path_put(&nd->path);
2962 	return error;
2963 }
2964 
2965 static struct file *path_openat(int dfd, struct filename *pathname,
2966 		struct nameidata *nd, const struct open_flags *op, int flags)
2967 {
2968 	struct file *base = NULL;
2969 	struct file *file;
2970 	struct path path;
2971 	int opened = 0;
2972 	int error;
2973 
2974 	file = get_empty_filp();
2975 	if (IS_ERR(file))
2976 		return file;
2977 
2978 	file->f_flags = op->open_flag;
2979 
2980 	if (unlikely(file->f_flags & O_TMPFILE)) {
2981 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
2982 		goto out;
2983 	}
2984 
2985 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
2986 	if (unlikely(error))
2987 		goto out;
2988 
2989 	current->total_link_count = 0;
2990 	error = link_path_walk(pathname->name, nd);
2991 	if (unlikely(error))
2992 		goto out;
2993 
2994 	error = do_last(nd, &path, file, op, &opened, pathname);
2995 	while (unlikely(error > 0)) { /* trailing symlink */
2996 		struct path link = path;
2997 		void *cookie;
2998 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2999 			path_put_conditional(&path, nd);
3000 			path_put(&nd->path);
3001 			error = -ELOOP;
3002 			break;
3003 		}
3004 		error = may_follow_link(&link, nd);
3005 		if (unlikely(error))
3006 			break;
3007 		nd->flags |= LOOKUP_PARENT;
3008 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3009 		error = follow_link(&link, nd, &cookie);
3010 		if (unlikely(error))
3011 			break;
3012 		error = do_last(nd, &path, file, op, &opened, pathname);
3013 		put_link(nd, &link, cookie);
3014 	}
3015 out:
3016 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3017 		path_put(&nd->root);
3018 	if (base)
3019 		fput(base);
3020 	if (!(opened & FILE_OPENED)) {
3021 		BUG_ON(!error);
3022 		put_filp(file);
3023 	}
3024 	if (unlikely(error)) {
3025 		if (error == -EOPENSTALE) {
3026 			if (flags & LOOKUP_RCU)
3027 				error = -ECHILD;
3028 			else
3029 				error = -ESTALE;
3030 		}
3031 		file = ERR_PTR(error);
3032 	}
3033 	return file;
3034 }
3035 
3036 struct file *do_filp_open(int dfd, struct filename *pathname,
3037 		const struct open_flags *op)
3038 {
3039 	struct nameidata nd;
3040 	int flags = op->lookup_flags;
3041 	struct file *filp;
3042 
3043 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3044 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3045 		filp = path_openat(dfd, pathname, &nd, op, flags);
3046 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3047 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3048 	return filp;
3049 }
3050 
3051 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3052 		const char *name, const struct open_flags *op)
3053 {
3054 	struct nameidata nd;
3055 	struct file *file;
3056 	struct filename filename = { .name = name };
3057 	int flags = op->lookup_flags | LOOKUP_ROOT;
3058 
3059 	nd.root.mnt = mnt;
3060 	nd.root.dentry = dentry;
3061 
3062 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3063 		return ERR_PTR(-ELOOP);
3064 
3065 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3066 	if (unlikely(file == ERR_PTR(-ECHILD)))
3067 		file = path_openat(-1, &filename, &nd, op, flags);
3068 	if (unlikely(file == ERR_PTR(-ESTALE)))
3069 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3070 	return file;
3071 }
3072 
3073 struct dentry *kern_path_create(int dfd, const char *pathname,
3074 				struct path *path, unsigned int lookup_flags)
3075 {
3076 	struct dentry *dentry = ERR_PTR(-EEXIST);
3077 	struct nameidata nd;
3078 	int err2;
3079 	int error;
3080 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3081 
3082 	/*
3083 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3084 	 * other flags passed in are ignored!
3085 	 */
3086 	lookup_flags &= LOOKUP_REVAL;
3087 
3088 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3089 	if (error)
3090 		return ERR_PTR(error);
3091 
3092 	/*
3093 	 * Yucky last component or no last component at all?
3094 	 * (foo/., foo/.., /////)
3095 	 */
3096 	if (nd.last_type != LAST_NORM)
3097 		goto out;
3098 	nd.flags &= ~LOOKUP_PARENT;
3099 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3100 
3101 	/* don't fail immediately if it's r/o, at least try to report other errors */
3102 	err2 = mnt_want_write(nd.path.mnt);
3103 	/*
3104 	 * Do the final lookup.
3105 	 */
3106 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3107 	dentry = lookup_hash(&nd);
3108 	if (IS_ERR(dentry))
3109 		goto unlock;
3110 
3111 	error = -EEXIST;
3112 	if (dentry->d_inode)
3113 		goto fail;
3114 	/*
3115 	 * Special case - lookup gave negative, but... we had foo/bar/
3116 	 * From the vfs_mknod() POV we just have a negative dentry -
3117 	 * all is fine. Let's be bastards - you had / on the end, you've
3118 	 * been asking for (non-existent) directory. -ENOENT for you.
3119 	 */
3120 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3121 		error = -ENOENT;
3122 		goto fail;
3123 	}
3124 	if (unlikely(err2)) {
3125 		error = err2;
3126 		goto fail;
3127 	}
3128 	*path = nd.path;
3129 	return dentry;
3130 fail:
3131 	dput(dentry);
3132 	dentry = ERR_PTR(error);
3133 unlock:
3134 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3135 	if (!err2)
3136 		mnt_drop_write(nd.path.mnt);
3137 out:
3138 	path_put(&nd.path);
3139 	return dentry;
3140 }
3141 EXPORT_SYMBOL(kern_path_create);
3142 
3143 void done_path_create(struct path *path, struct dentry *dentry)
3144 {
3145 	dput(dentry);
3146 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3147 	mnt_drop_write(path->mnt);
3148 	path_put(path);
3149 }
3150 EXPORT_SYMBOL(done_path_create);
3151 
3152 struct dentry *user_path_create(int dfd, const char __user *pathname,
3153 				struct path *path, unsigned int lookup_flags)
3154 {
3155 	struct filename *tmp = getname(pathname);
3156 	struct dentry *res;
3157 	if (IS_ERR(tmp))
3158 		return ERR_CAST(tmp);
3159 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3160 	putname(tmp);
3161 	return res;
3162 }
3163 EXPORT_SYMBOL(user_path_create);
3164 
3165 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3166 {
3167 	int error = may_create(dir, dentry);
3168 
3169 	if (error)
3170 		return error;
3171 
3172 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3173 		return -EPERM;
3174 
3175 	if (!dir->i_op->mknod)
3176 		return -EPERM;
3177 
3178 	error = devcgroup_inode_mknod(mode, dev);
3179 	if (error)
3180 		return error;
3181 
3182 	error = security_inode_mknod(dir, dentry, mode, dev);
3183 	if (error)
3184 		return error;
3185 
3186 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3187 	if (!error)
3188 		fsnotify_create(dir, dentry);
3189 	return error;
3190 }
3191 
3192 static int may_mknod(umode_t mode)
3193 {
3194 	switch (mode & S_IFMT) {
3195 	case S_IFREG:
3196 	case S_IFCHR:
3197 	case S_IFBLK:
3198 	case S_IFIFO:
3199 	case S_IFSOCK:
3200 	case 0: /* zero mode translates to S_IFREG */
3201 		return 0;
3202 	case S_IFDIR:
3203 		return -EPERM;
3204 	default:
3205 		return -EINVAL;
3206 	}
3207 }
3208 
3209 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3210 		unsigned, dev)
3211 {
3212 	struct dentry *dentry;
3213 	struct path path;
3214 	int error;
3215 	unsigned int lookup_flags = 0;
3216 
3217 	error = may_mknod(mode);
3218 	if (error)
3219 		return error;
3220 retry:
3221 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3222 	if (IS_ERR(dentry))
3223 		return PTR_ERR(dentry);
3224 
3225 	if (!IS_POSIXACL(path.dentry->d_inode))
3226 		mode &= ~current_umask();
3227 	error = security_path_mknod(&path, dentry, mode, dev);
3228 	if (error)
3229 		goto out;
3230 	switch (mode & S_IFMT) {
3231 		case 0: case S_IFREG:
3232 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3233 			break;
3234 		case S_IFCHR: case S_IFBLK:
3235 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3236 					new_decode_dev(dev));
3237 			break;
3238 		case S_IFIFO: case S_IFSOCK:
3239 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3240 			break;
3241 	}
3242 out:
3243 	done_path_create(&path, dentry);
3244 	if (retry_estale(error, lookup_flags)) {
3245 		lookup_flags |= LOOKUP_REVAL;
3246 		goto retry;
3247 	}
3248 	return error;
3249 }
3250 
3251 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3252 {
3253 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3254 }
3255 
3256 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3257 {
3258 	int error = may_create(dir, dentry);
3259 	unsigned max_links = dir->i_sb->s_max_links;
3260 
3261 	if (error)
3262 		return error;
3263 
3264 	if (!dir->i_op->mkdir)
3265 		return -EPERM;
3266 
3267 	mode &= (S_IRWXUGO|S_ISVTX);
3268 	error = security_inode_mkdir(dir, dentry, mode);
3269 	if (error)
3270 		return error;
3271 
3272 	if (max_links && dir->i_nlink >= max_links)
3273 		return -EMLINK;
3274 
3275 	error = dir->i_op->mkdir(dir, dentry, mode);
3276 	if (!error)
3277 		fsnotify_mkdir(dir, dentry);
3278 	return error;
3279 }
3280 
3281 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3282 {
3283 	struct dentry *dentry;
3284 	struct path path;
3285 	int error;
3286 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3287 
3288 retry:
3289 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3290 	if (IS_ERR(dentry))
3291 		return PTR_ERR(dentry);
3292 
3293 	if (!IS_POSIXACL(path.dentry->d_inode))
3294 		mode &= ~current_umask();
3295 	error = security_path_mkdir(&path, dentry, mode);
3296 	if (!error)
3297 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3298 	done_path_create(&path, dentry);
3299 	if (retry_estale(error, lookup_flags)) {
3300 		lookup_flags |= LOOKUP_REVAL;
3301 		goto retry;
3302 	}
3303 	return error;
3304 }
3305 
3306 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3307 {
3308 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3309 }
3310 
3311 /*
3312  * The dentry_unhash() helper will try to drop the dentry early: we
3313  * should have a usage count of 1 if we're the only user of this
3314  * dentry, and if that is true (possibly after pruning the dcache),
3315  * then we drop the dentry now.
3316  *
3317  * A low-level filesystem can, if it choses, legally
3318  * do a
3319  *
3320  *	if (!d_unhashed(dentry))
3321  *		return -EBUSY;
3322  *
3323  * if it cannot handle the case of removing a directory
3324  * that is still in use by something else..
3325  */
3326 void dentry_unhash(struct dentry *dentry)
3327 {
3328 	shrink_dcache_parent(dentry);
3329 	spin_lock(&dentry->d_lock);
3330 	if (dentry->d_count == 1)
3331 		__d_drop(dentry);
3332 	spin_unlock(&dentry->d_lock);
3333 }
3334 
3335 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3336 {
3337 	int error = may_delete(dir, dentry, 1);
3338 
3339 	if (error)
3340 		return error;
3341 
3342 	if (!dir->i_op->rmdir)
3343 		return -EPERM;
3344 
3345 	dget(dentry);
3346 	mutex_lock(&dentry->d_inode->i_mutex);
3347 
3348 	error = -EBUSY;
3349 	if (d_mountpoint(dentry))
3350 		goto out;
3351 
3352 	error = security_inode_rmdir(dir, dentry);
3353 	if (error)
3354 		goto out;
3355 
3356 	shrink_dcache_parent(dentry);
3357 	error = dir->i_op->rmdir(dir, dentry);
3358 	if (error)
3359 		goto out;
3360 
3361 	dentry->d_inode->i_flags |= S_DEAD;
3362 	dont_mount(dentry);
3363 
3364 out:
3365 	mutex_unlock(&dentry->d_inode->i_mutex);
3366 	dput(dentry);
3367 	if (!error)
3368 		d_delete(dentry);
3369 	return error;
3370 }
3371 
3372 static long do_rmdir(int dfd, const char __user *pathname)
3373 {
3374 	int error = 0;
3375 	struct filename *name;
3376 	struct dentry *dentry;
3377 	struct nameidata nd;
3378 	unsigned int lookup_flags = 0;
3379 retry:
3380 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3381 	if (IS_ERR(name))
3382 		return PTR_ERR(name);
3383 
3384 	switch(nd.last_type) {
3385 	case LAST_DOTDOT:
3386 		error = -ENOTEMPTY;
3387 		goto exit1;
3388 	case LAST_DOT:
3389 		error = -EINVAL;
3390 		goto exit1;
3391 	case LAST_ROOT:
3392 		error = -EBUSY;
3393 		goto exit1;
3394 	}
3395 
3396 	nd.flags &= ~LOOKUP_PARENT;
3397 	error = mnt_want_write(nd.path.mnt);
3398 	if (error)
3399 		goto exit1;
3400 
3401 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3402 	dentry = lookup_hash(&nd);
3403 	error = PTR_ERR(dentry);
3404 	if (IS_ERR(dentry))
3405 		goto exit2;
3406 	if (!dentry->d_inode) {
3407 		error = -ENOENT;
3408 		goto exit3;
3409 	}
3410 	error = security_path_rmdir(&nd.path, dentry);
3411 	if (error)
3412 		goto exit3;
3413 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3414 exit3:
3415 	dput(dentry);
3416 exit2:
3417 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3418 	mnt_drop_write(nd.path.mnt);
3419 exit1:
3420 	path_put(&nd.path);
3421 	putname(name);
3422 	if (retry_estale(error, lookup_flags)) {
3423 		lookup_flags |= LOOKUP_REVAL;
3424 		goto retry;
3425 	}
3426 	return error;
3427 }
3428 
3429 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3430 {
3431 	return do_rmdir(AT_FDCWD, pathname);
3432 }
3433 
3434 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3435 {
3436 	int error = may_delete(dir, dentry, 0);
3437 
3438 	if (error)
3439 		return error;
3440 
3441 	if (!dir->i_op->unlink)
3442 		return -EPERM;
3443 
3444 	mutex_lock(&dentry->d_inode->i_mutex);
3445 	if (d_mountpoint(dentry))
3446 		error = -EBUSY;
3447 	else {
3448 		error = security_inode_unlink(dir, dentry);
3449 		if (!error) {
3450 			error = dir->i_op->unlink(dir, dentry);
3451 			if (!error)
3452 				dont_mount(dentry);
3453 		}
3454 	}
3455 	mutex_unlock(&dentry->d_inode->i_mutex);
3456 
3457 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3458 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3459 		fsnotify_link_count(dentry->d_inode);
3460 		d_delete(dentry);
3461 	}
3462 
3463 	return error;
3464 }
3465 
3466 /*
3467  * Make sure that the actual truncation of the file will occur outside its
3468  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3469  * writeout happening, and we don't want to prevent access to the directory
3470  * while waiting on the I/O.
3471  */
3472 static long do_unlinkat(int dfd, const char __user *pathname)
3473 {
3474 	int error;
3475 	struct filename *name;
3476 	struct dentry *dentry;
3477 	struct nameidata nd;
3478 	struct inode *inode = NULL;
3479 	unsigned int lookup_flags = 0;
3480 retry:
3481 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3482 	if (IS_ERR(name))
3483 		return PTR_ERR(name);
3484 
3485 	error = -EISDIR;
3486 	if (nd.last_type != LAST_NORM)
3487 		goto exit1;
3488 
3489 	nd.flags &= ~LOOKUP_PARENT;
3490 	error = mnt_want_write(nd.path.mnt);
3491 	if (error)
3492 		goto exit1;
3493 
3494 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3495 	dentry = lookup_hash(&nd);
3496 	error = PTR_ERR(dentry);
3497 	if (!IS_ERR(dentry)) {
3498 		/* Why not before? Because we want correct error value */
3499 		if (nd.last.name[nd.last.len])
3500 			goto slashes;
3501 		inode = dentry->d_inode;
3502 		if (!inode)
3503 			goto slashes;
3504 		ihold(inode);
3505 		error = security_path_unlink(&nd.path, dentry);
3506 		if (error)
3507 			goto exit2;
3508 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3509 exit2:
3510 		dput(dentry);
3511 	}
3512 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3513 	if (inode)
3514 		iput(inode);	/* truncate the inode here */
3515 	mnt_drop_write(nd.path.mnt);
3516 exit1:
3517 	path_put(&nd.path);
3518 	putname(name);
3519 	if (retry_estale(error, lookup_flags)) {
3520 		lookup_flags |= LOOKUP_REVAL;
3521 		inode = NULL;
3522 		goto retry;
3523 	}
3524 	return error;
3525 
3526 slashes:
3527 	error = !dentry->d_inode ? -ENOENT :
3528 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3529 	goto exit2;
3530 }
3531 
3532 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3533 {
3534 	if ((flag & ~AT_REMOVEDIR) != 0)
3535 		return -EINVAL;
3536 
3537 	if (flag & AT_REMOVEDIR)
3538 		return do_rmdir(dfd, pathname);
3539 
3540 	return do_unlinkat(dfd, pathname);
3541 }
3542 
3543 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3544 {
3545 	return do_unlinkat(AT_FDCWD, pathname);
3546 }
3547 
3548 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3549 {
3550 	int error = may_create(dir, dentry);
3551 
3552 	if (error)
3553 		return error;
3554 
3555 	if (!dir->i_op->symlink)
3556 		return -EPERM;
3557 
3558 	error = security_inode_symlink(dir, dentry, oldname);
3559 	if (error)
3560 		return error;
3561 
3562 	error = dir->i_op->symlink(dir, dentry, oldname);
3563 	if (!error)
3564 		fsnotify_create(dir, dentry);
3565 	return error;
3566 }
3567 
3568 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3569 		int, newdfd, const char __user *, newname)
3570 {
3571 	int error;
3572 	struct filename *from;
3573 	struct dentry *dentry;
3574 	struct path path;
3575 	unsigned int lookup_flags = 0;
3576 
3577 	from = getname(oldname);
3578 	if (IS_ERR(from))
3579 		return PTR_ERR(from);
3580 retry:
3581 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3582 	error = PTR_ERR(dentry);
3583 	if (IS_ERR(dentry))
3584 		goto out_putname;
3585 
3586 	error = security_path_symlink(&path, dentry, from->name);
3587 	if (!error)
3588 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3589 	done_path_create(&path, dentry);
3590 	if (retry_estale(error, lookup_flags)) {
3591 		lookup_flags |= LOOKUP_REVAL;
3592 		goto retry;
3593 	}
3594 out_putname:
3595 	putname(from);
3596 	return error;
3597 }
3598 
3599 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3600 {
3601 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3602 }
3603 
3604 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3605 {
3606 	struct inode *inode = old_dentry->d_inode;
3607 	unsigned max_links = dir->i_sb->s_max_links;
3608 	int error;
3609 
3610 	if (!inode)
3611 		return -ENOENT;
3612 
3613 	error = may_create(dir, new_dentry);
3614 	if (error)
3615 		return error;
3616 
3617 	if (dir->i_sb != inode->i_sb)
3618 		return -EXDEV;
3619 
3620 	/*
3621 	 * A link to an append-only or immutable file cannot be created.
3622 	 */
3623 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3624 		return -EPERM;
3625 	if (!dir->i_op->link)
3626 		return -EPERM;
3627 	if (S_ISDIR(inode->i_mode))
3628 		return -EPERM;
3629 
3630 	error = security_inode_link(old_dentry, dir, new_dentry);
3631 	if (error)
3632 		return error;
3633 
3634 	mutex_lock(&inode->i_mutex);
3635 	/* Make sure we don't allow creating hardlink to an unlinked file */
3636 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3637 		error =  -ENOENT;
3638 	else if (max_links && inode->i_nlink >= max_links)
3639 		error = -EMLINK;
3640 	else
3641 		error = dir->i_op->link(old_dentry, dir, new_dentry);
3642 
3643 	if (!error && (inode->i_state & I_LINKABLE)) {
3644 		spin_lock(&inode->i_lock);
3645 		inode->i_state &= ~I_LINKABLE;
3646 		spin_unlock(&inode->i_lock);
3647 	}
3648 	mutex_unlock(&inode->i_mutex);
3649 	if (!error)
3650 		fsnotify_link(dir, inode, new_dentry);
3651 	return error;
3652 }
3653 
3654 /*
3655  * Hardlinks are often used in delicate situations.  We avoid
3656  * security-related surprises by not following symlinks on the
3657  * newname.  --KAB
3658  *
3659  * We don't follow them on the oldname either to be compatible
3660  * with linux 2.0, and to avoid hard-linking to directories
3661  * and other special files.  --ADM
3662  */
3663 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3664 		int, newdfd, const char __user *, newname, int, flags)
3665 {
3666 	struct dentry *new_dentry;
3667 	struct path old_path, new_path;
3668 	int how = 0;
3669 	int error;
3670 
3671 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3672 		return -EINVAL;
3673 	/*
3674 	 * To use null names we require CAP_DAC_READ_SEARCH
3675 	 * This ensures that not everyone will be able to create
3676 	 * handlink using the passed filedescriptor.
3677 	 */
3678 	if (flags & AT_EMPTY_PATH) {
3679 		if (!capable(CAP_DAC_READ_SEARCH))
3680 			return -ENOENT;
3681 		how = LOOKUP_EMPTY;
3682 	}
3683 
3684 	if (flags & AT_SYMLINK_FOLLOW)
3685 		how |= LOOKUP_FOLLOW;
3686 retry:
3687 	error = user_path_at(olddfd, oldname, how, &old_path);
3688 	if (error)
3689 		return error;
3690 
3691 	new_dentry = user_path_create(newdfd, newname, &new_path,
3692 					(how & LOOKUP_REVAL));
3693 	error = PTR_ERR(new_dentry);
3694 	if (IS_ERR(new_dentry))
3695 		goto out;
3696 
3697 	error = -EXDEV;
3698 	if (old_path.mnt != new_path.mnt)
3699 		goto out_dput;
3700 	error = may_linkat(&old_path);
3701 	if (unlikely(error))
3702 		goto out_dput;
3703 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3704 	if (error)
3705 		goto out_dput;
3706 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3707 out_dput:
3708 	done_path_create(&new_path, new_dentry);
3709 	if (retry_estale(error, how)) {
3710 		how |= LOOKUP_REVAL;
3711 		goto retry;
3712 	}
3713 out:
3714 	path_put(&old_path);
3715 
3716 	return error;
3717 }
3718 
3719 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3720 {
3721 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3722 }
3723 
3724 /*
3725  * The worst of all namespace operations - renaming directory. "Perverted"
3726  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3727  * Problems:
3728  *	a) we can get into loop creation. Check is done in is_subdir().
3729  *	b) race potential - two innocent renames can create a loop together.
3730  *	   That's where 4.4 screws up. Current fix: serialization on
3731  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3732  *	   story.
3733  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3734  *	   And that - after we got ->i_mutex on parents (until then we don't know
3735  *	   whether the target exists).  Solution: try to be smart with locking
3736  *	   order for inodes.  We rely on the fact that tree topology may change
3737  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3738  *	   move will be locked.  Thus we can rank directories by the tree
3739  *	   (ancestors first) and rank all non-directories after them.
3740  *	   That works since everybody except rename does "lock parent, lookup,
3741  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3742  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3743  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3744  *	   we'd better make sure that there's no link(2) for them.
3745  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3746  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3747  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3748  *	   ->i_mutex on parents, which works but leads to some truly excessive
3749  *	   locking].
3750  */
3751 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3752 			  struct inode *new_dir, struct dentry *new_dentry)
3753 {
3754 	int error = 0;
3755 	struct inode *target = new_dentry->d_inode;
3756 	unsigned max_links = new_dir->i_sb->s_max_links;
3757 
3758 	/*
3759 	 * If we are going to change the parent - check write permissions,
3760 	 * we'll need to flip '..'.
3761 	 */
3762 	if (new_dir != old_dir) {
3763 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3764 		if (error)
3765 			return error;
3766 	}
3767 
3768 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3769 	if (error)
3770 		return error;
3771 
3772 	dget(new_dentry);
3773 	if (target)
3774 		mutex_lock(&target->i_mutex);
3775 
3776 	error = -EBUSY;
3777 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3778 		goto out;
3779 
3780 	error = -EMLINK;
3781 	if (max_links && !target && new_dir != old_dir &&
3782 	    new_dir->i_nlink >= max_links)
3783 		goto out;
3784 
3785 	if (target)
3786 		shrink_dcache_parent(new_dentry);
3787 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3788 	if (error)
3789 		goto out;
3790 
3791 	if (target) {
3792 		target->i_flags |= S_DEAD;
3793 		dont_mount(new_dentry);
3794 	}
3795 out:
3796 	if (target)
3797 		mutex_unlock(&target->i_mutex);
3798 	dput(new_dentry);
3799 	if (!error)
3800 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3801 			d_move(old_dentry,new_dentry);
3802 	return error;
3803 }
3804 
3805 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3806 			    struct inode *new_dir, struct dentry *new_dentry)
3807 {
3808 	struct inode *target = new_dentry->d_inode;
3809 	int error;
3810 
3811 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3812 	if (error)
3813 		return error;
3814 
3815 	dget(new_dentry);
3816 	if (target)
3817 		mutex_lock(&target->i_mutex);
3818 
3819 	error = -EBUSY;
3820 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3821 		goto out;
3822 
3823 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3824 	if (error)
3825 		goto out;
3826 
3827 	if (target)
3828 		dont_mount(new_dentry);
3829 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3830 		d_move(old_dentry, new_dentry);
3831 out:
3832 	if (target)
3833 		mutex_unlock(&target->i_mutex);
3834 	dput(new_dentry);
3835 	return error;
3836 }
3837 
3838 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3839 	       struct inode *new_dir, struct dentry *new_dentry)
3840 {
3841 	int error;
3842 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3843 	const unsigned char *old_name;
3844 
3845 	if (old_dentry->d_inode == new_dentry->d_inode)
3846  		return 0;
3847 
3848 	error = may_delete(old_dir, old_dentry, is_dir);
3849 	if (error)
3850 		return error;
3851 
3852 	if (!new_dentry->d_inode)
3853 		error = may_create(new_dir, new_dentry);
3854 	else
3855 		error = may_delete(new_dir, new_dentry, is_dir);
3856 	if (error)
3857 		return error;
3858 
3859 	if (!old_dir->i_op->rename)
3860 		return -EPERM;
3861 
3862 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3863 
3864 	if (is_dir)
3865 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3866 	else
3867 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3868 	if (!error)
3869 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3870 			      new_dentry->d_inode, old_dentry);
3871 	fsnotify_oldname_free(old_name);
3872 
3873 	return error;
3874 }
3875 
3876 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3877 		int, newdfd, const char __user *, newname)
3878 {
3879 	struct dentry *old_dir, *new_dir;
3880 	struct dentry *old_dentry, *new_dentry;
3881 	struct dentry *trap;
3882 	struct nameidata oldnd, newnd;
3883 	struct filename *from;
3884 	struct filename *to;
3885 	unsigned int lookup_flags = 0;
3886 	bool should_retry = false;
3887 	int error;
3888 retry:
3889 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
3890 	if (IS_ERR(from)) {
3891 		error = PTR_ERR(from);
3892 		goto exit;
3893 	}
3894 
3895 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
3896 	if (IS_ERR(to)) {
3897 		error = PTR_ERR(to);
3898 		goto exit1;
3899 	}
3900 
3901 	error = -EXDEV;
3902 	if (oldnd.path.mnt != newnd.path.mnt)
3903 		goto exit2;
3904 
3905 	old_dir = oldnd.path.dentry;
3906 	error = -EBUSY;
3907 	if (oldnd.last_type != LAST_NORM)
3908 		goto exit2;
3909 
3910 	new_dir = newnd.path.dentry;
3911 	if (newnd.last_type != LAST_NORM)
3912 		goto exit2;
3913 
3914 	error = mnt_want_write(oldnd.path.mnt);
3915 	if (error)
3916 		goto exit2;
3917 
3918 	oldnd.flags &= ~LOOKUP_PARENT;
3919 	newnd.flags &= ~LOOKUP_PARENT;
3920 	newnd.flags |= LOOKUP_RENAME_TARGET;
3921 
3922 	trap = lock_rename(new_dir, old_dir);
3923 
3924 	old_dentry = lookup_hash(&oldnd);
3925 	error = PTR_ERR(old_dentry);
3926 	if (IS_ERR(old_dentry))
3927 		goto exit3;
3928 	/* source must exist */
3929 	error = -ENOENT;
3930 	if (!old_dentry->d_inode)
3931 		goto exit4;
3932 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3933 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3934 		error = -ENOTDIR;
3935 		if (oldnd.last.name[oldnd.last.len])
3936 			goto exit4;
3937 		if (newnd.last.name[newnd.last.len])
3938 			goto exit4;
3939 	}
3940 	/* source should not be ancestor of target */
3941 	error = -EINVAL;
3942 	if (old_dentry == trap)
3943 		goto exit4;
3944 	new_dentry = lookup_hash(&newnd);
3945 	error = PTR_ERR(new_dentry);
3946 	if (IS_ERR(new_dentry))
3947 		goto exit4;
3948 	/* target should not be an ancestor of source */
3949 	error = -ENOTEMPTY;
3950 	if (new_dentry == trap)
3951 		goto exit5;
3952 
3953 	error = security_path_rename(&oldnd.path, old_dentry,
3954 				     &newnd.path, new_dentry);
3955 	if (error)
3956 		goto exit5;
3957 	error = vfs_rename(old_dir->d_inode, old_dentry,
3958 				   new_dir->d_inode, new_dentry);
3959 exit5:
3960 	dput(new_dentry);
3961 exit4:
3962 	dput(old_dentry);
3963 exit3:
3964 	unlock_rename(new_dir, old_dir);
3965 	mnt_drop_write(oldnd.path.mnt);
3966 exit2:
3967 	if (retry_estale(error, lookup_flags))
3968 		should_retry = true;
3969 	path_put(&newnd.path);
3970 	putname(to);
3971 exit1:
3972 	path_put(&oldnd.path);
3973 	putname(from);
3974 	if (should_retry) {
3975 		should_retry = false;
3976 		lookup_flags |= LOOKUP_REVAL;
3977 		goto retry;
3978 	}
3979 exit:
3980 	return error;
3981 }
3982 
3983 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3984 {
3985 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3986 }
3987 
3988 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3989 {
3990 	int len;
3991 
3992 	len = PTR_ERR(link);
3993 	if (IS_ERR(link))
3994 		goto out;
3995 
3996 	len = strlen(link);
3997 	if (len > (unsigned) buflen)
3998 		len = buflen;
3999 	if (copy_to_user(buffer, link, len))
4000 		len = -EFAULT;
4001 out:
4002 	return len;
4003 }
4004 
4005 /*
4006  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4007  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4008  * using) it for any given inode is up to filesystem.
4009  */
4010 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4011 {
4012 	struct nameidata nd;
4013 	void *cookie;
4014 	int res;
4015 
4016 	nd.depth = 0;
4017 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4018 	if (IS_ERR(cookie))
4019 		return PTR_ERR(cookie);
4020 
4021 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4022 	if (dentry->d_inode->i_op->put_link)
4023 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4024 	return res;
4025 }
4026 
4027 int vfs_follow_link(struct nameidata *nd, const char *link)
4028 {
4029 	return __vfs_follow_link(nd, link);
4030 }
4031 
4032 /* get the link contents into pagecache */
4033 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4034 {
4035 	char *kaddr;
4036 	struct page *page;
4037 	struct address_space *mapping = dentry->d_inode->i_mapping;
4038 	page = read_mapping_page(mapping, 0, NULL);
4039 	if (IS_ERR(page))
4040 		return (char*)page;
4041 	*ppage = page;
4042 	kaddr = kmap(page);
4043 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4044 	return kaddr;
4045 }
4046 
4047 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4048 {
4049 	struct page *page = NULL;
4050 	char *s = page_getlink(dentry, &page);
4051 	int res = vfs_readlink(dentry,buffer,buflen,s);
4052 	if (page) {
4053 		kunmap(page);
4054 		page_cache_release(page);
4055 	}
4056 	return res;
4057 }
4058 
4059 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4060 {
4061 	struct page *page = NULL;
4062 	nd_set_link(nd, page_getlink(dentry, &page));
4063 	return page;
4064 }
4065 
4066 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4067 {
4068 	struct page *page = cookie;
4069 
4070 	if (page) {
4071 		kunmap(page);
4072 		page_cache_release(page);
4073 	}
4074 }
4075 
4076 /*
4077  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4078  */
4079 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4080 {
4081 	struct address_space *mapping = inode->i_mapping;
4082 	struct page *page;
4083 	void *fsdata;
4084 	int err;
4085 	char *kaddr;
4086 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4087 	if (nofs)
4088 		flags |= AOP_FLAG_NOFS;
4089 
4090 retry:
4091 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4092 				flags, &page, &fsdata);
4093 	if (err)
4094 		goto fail;
4095 
4096 	kaddr = kmap_atomic(page);
4097 	memcpy(kaddr, symname, len-1);
4098 	kunmap_atomic(kaddr);
4099 
4100 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4101 							page, fsdata);
4102 	if (err < 0)
4103 		goto fail;
4104 	if (err < len-1)
4105 		goto retry;
4106 
4107 	mark_inode_dirty(inode);
4108 	return 0;
4109 fail:
4110 	return err;
4111 }
4112 
4113 int page_symlink(struct inode *inode, const char *symname, int len)
4114 {
4115 	return __page_symlink(inode, symname, len,
4116 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4117 }
4118 
4119 const struct inode_operations page_symlink_inode_operations = {
4120 	.readlink	= generic_readlink,
4121 	.follow_link	= page_follow_link_light,
4122 	.put_link	= page_put_link,
4123 };
4124 
4125 EXPORT_SYMBOL(user_path_at);
4126 EXPORT_SYMBOL(follow_down_one);
4127 EXPORT_SYMBOL(follow_down);
4128 EXPORT_SYMBOL(follow_up);
4129 EXPORT_SYMBOL(get_write_access); /* nfsd */
4130 EXPORT_SYMBOL(lock_rename);
4131 EXPORT_SYMBOL(lookup_one_len);
4132 EXPORT_SYMBOL(page_follow_link_light);
4133 EXPORT_SYMBOL(page_put_link);
4134 EXPORT_SYMBOL(page_readlink);
4135 EXPORT_SYMBOL(__page_symlink);
4136 EXPORT_SYMBOL(page_symlink);
4137 EXPORT_SYMBOL(page_symlink_inode_operations);
4138 EXPORT_SYMBOL(kern_path);
4139 EXPORT_SYMBOL(vfs_path_lookup);
4140 EXPORT_SYMBOL(inode_permission);
4141 EXPORT_SYMBOL(unlock_rename);
4142 EXPORT_SYMBOL(vfs_create);
4143 EXPORT_SYMBOL(vfs_follow_link);
4144 EXPORT_SYMBOL(vfs_link);
4145 EXPORT_SYMBOL(vfs_mkdir);
4146 EXPORT_SYMBOL(vfs_mknod);
4147 EXPORT_SYMBOL(generic_permission);
4148 EXPORT_SYMBOL(vfs_readlink);
4149 EXPORT_SYMBOL(vfs_rename);
4150 EXPORT_SYMBOL(vfs_rmdir);
4151 EXPORT_SYMBOL(vfs_symlink);
4152 EXPORT_SYMBOL(vfs_unlink);
4153 EXPORT_SYMBOL(dentry_unhash);
4154 EXPORT_SYMBOL(generic_readlink);
4155