xref: /openbmc/linux/fs/namei.c (revision 79f08d9e)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	audit_getname(result);
200 	return result;
201 
202 error:
203 	final_putname(result);
204 	return err;
205 }
206 
207 struct filename *
208 getname(const char __user * filename)
209 {
210 	return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213 
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 	if (unlikely(!audit_dummy_context()))
218 		return audit_putname(name);
219 	final_putname(name);
220 }
221 #endif
222 
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 	struct posix_acl *acl;
227 
228 	if (mask & MAY_NOT_BLOCK) {
229 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 	        if (!acl)
231 	                return -EAGAIN;
232 		/* no ->get_acl() calls in RCU mode... */
233 		if (acl == ACL_NOT_CACHED)
234 			return -ECHILD;
235 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 	}
237 
238 	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239 
240 	/*
241 	 * A filesystem can force a ACL callback by just never filling the
242 	 * ACL cache. But normally you'd fill the cache either at inode
243 	 * instantiation time, or on the first ->get_acl call.
244 	 *
245 	 * If the filesystem doesn't have a get_acl() function at all, we'll
246 	 * just create the negative cache entry.
247 	 */
248 	if (acl == ACL_NOT_CACHED) {
249 	        if (inode->i_op->get_acl) {
250 			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 			if (IS_ERR(acl))
252 				return PTR_ERR(acl);
253 		} else {
254 		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 		        return -EAGAIN;
256 		}
257 	}
258 
259 	if (acl) {
260 	        int error = posix_acl_permission(inode, acl, mask);
261 	        posix_acl_release(acl);
262 	        return error;
263 	}
264 #endif
265 
266 	return -EAGAIN;
267 }
268 
269 /*
270  * This does the basic permission checking
271  */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 	unsigned int mode = inode->i_mode;
275 
276 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 		mode >>= 6;
278 	else {
279 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 			int error = check_acl(inode, mask);
281 			if (error != -EAGAIN)
282 				return error;
283 		}
284 
285 		if (in_group_p(inode->i_gid))
286 			mode >>= 3;
287 	}
288 
289 	/*
290 	 * If the DACs are ok we don't need any capability check.
291 	 */
292 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 		return 0;
294 	return -EACCES;
295 }
296 
297 /**
298  * generic_permission -  check for access rights on a Posix-like filesystem
299  * @inode:	inode to check access rights for
300  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301  *
302  * Used to check for read/write/execute permissions on a file.
303  * We use "fsuid" for this, letting us set arbitrary permissions
304  * for filesystem access without changing the "normal" uids which
305  * are used for other things.
306  *
307  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308  * request cannot be satisfied (eg. requires blocking or too much complexity).
309  * It would then be called again in ref-walk mode.
310  */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 	int ret;
314 
315 	/*
316 	 * Do the basic permission checks.
317 	 */
318 	ret = acl_permission_check(inode, mask);
319 	if (ret != -EACCES)
320 		return ret;
321 
322 	if (S_ISDIR(inode->i_mode)) {
323 		/* DACs are overridable for directories */
324 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 			return 0;
326 		if (!(mask & MAY_WRITE))
327 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 				return 0;
329 		return -EACCES;
330 	}
331 	/*
332 	 * Read/write DACs are always overridable.
333 	 * Executable DACs are overridable when there is
334 	 * at least one exec bit set.
335 	 */
336 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 			return 0;
339 
340 	/*
341 	 * Searching includes executable on directories, else just read.
342 	 */
343 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 	if (mask == MAY_READ)
345 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 			return 0;
347 
348 	return -EACCES;
349 }
350 
351 /*
352  * We _really_ want to just do "generic_permission()" without
353  * even looking at the inode->i_op values. So we keep a cache
354  * flag in inode->i_opflags, that says "this has not special
355  * permission function, use the fast case".
356  */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 		if (likely(inode->i_op->permission))
361 			return inode->i_op->permission(inode, mask);
362 
363 		/* This gets set once for the inode lifetime */
364 		spin_lock(&inode->i_lock);
365 		inode->i_opflags |= IOP_FASTPERM;
366 		spin_unlock(&inode->i_lock);
367 	}
368 	return generic_permission(inode, mask);
369 }
370 
371 /**
372  * __inode_permission - Check for access rights to a given inode
373  * @inode: Inode to check permission on
374  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375  *
376  * Check for read/write/execute permissions on an inode.
377  *
378  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379  *
380  * This does not check for a read-only file system.  You probably want
381  * inode_permission().
382  */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 	int retval;
386 
387 	if (unlikely(mask & MAY_WRITE)) {
388 		/*
389 		 * Nobody gets write access to an immutable file.
390 		 */
391 		if (IS_IMMUTABLE(inode))
392 			return -EACCES;
393 	}
394 
395 	retval = do_inode_permission(inode, mask);
396 	if (retval)
397 		return retval;
398 
399 	retval = devcgroup_inode_permission(inode, mask);
400 	if (retval)
401 		return retval;
402 
403 	return security_inode_permission(inode, mask);
404 }
405 
406 /**
407  * sb_permission - Check superblock-level permissions
408  * @sb: Superblock of inode to check permission on
409  * @inode: Inode to check permission on
410  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411  *
412  * Separate out file-system wide checks from inode-specific permission checks.
413  */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 	if (unlikely(mask & MAY_WRITE)) {
417 		umode_t mode = inode->i_mode;
418 
419 		/* Nobody gets write access to a read-only fs. */
420 		if ((sb->s_flags & MS_RDONLY) &&
421 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 			return -EROFS;
423 	}
424 	return 0;
425 }
426 
427 /**
428  * inode_permission - Check for access rights to a given inode
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
433  * this, letting us set arbitrary permissions for filesystem access without
434  * changing the "normal" UIDs which are used for other things.
435  *
436  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437  */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 	int retval;
441 
442 	retval = sb_permission(inode->i_sb, inode, mask);
443 	if (retval)
444 		return retval;
445 	return __inode_permission(inode, mask);
446 }
447 
448 /**
449  * path_get - get a reference to a path
450  * @path: path to get the reference to
451  *
452  * Given a path increment the reference count to the dentry and the vfsmount.
453  */
454 void path_get(const struct path *path)
455 {
456 	mntget(path->mnt);
457 	dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460 
461 /**
462  * path_put - put a reference to a path
463  * @path: path to put the reference to
464  *
465  * Given a path decrement the reference count to the dentry and the vfsmount.
466  */
467 void path_put(const struct path *path)
468 {
469 	dput(path->dentry);
470 	mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473 
474 /*
475  * Path walking has 2 modes, rcu-walk and ref-walk (see
476  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
477  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
480  * got stuck, so ref-walk may continue from there. If this is not successful
481  * (eg. a seqcount has changed), then failure is returned and it's up to caller
482  * to restart the path walk from the beginning in ref-walk mode.
483  */
484 
485 /**
486  * unlazy_walk - try to switch to ref-walk mode.
487  * @nd: nameidata pathwalk data
488  * @dentry: child of nd->path.dentry or NULL
489  * Returns: 0 on success, -ECHILD on failure
490  *
491  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
492  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
493  * @nd or NULL.  Must be called from rcu-walk context.
494  */
495 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
496 {
497 	struct fs_struct *fs = current->fs;
498 	struct dentry *parent = nd->path.dentry;
499 
500 	BUG_ON(!(nd->flags & LOOKUP_RCU));
501 
502 	/*
503 	 * After legitimizing the bastards, terminate_walk()
504 	 * will do the right thing for non-RCU mode, and all our
505 	 * subsequent exit cases should rcu_read_unlock()
506 	 * before returning.  Do vfsmount first; if dentry
507 	 * can't be legitimized, just set nd->path.dentry to NULL
508 	 * and rely on dput(NULL) being a no-op.
509 	 */
510 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
511 		return -ECHILD;
512 	nd->flags &= ~LOOKUP_RCU;
513 
514 	if (!lockref_get_not_dead(&parent->d_lockref)) {
515 		nd->path.dentry = NULL;
516 		rcu_read_unlock();
517 		return -ECHILD;
518 	}
519 
520 	/*
521 	 * For a negative lookup, the lookup sequence point is the parents
522 	 * sequence point, and it only needs to revalidate the parent dentry.
523 	 *
524 	 * For a positive lookup, we need to move both the parent and the
525 	 * dentry from the RCU domain to be properly refcounted. And the
526 	 * sequence number in the dentry validates *both* dentry counters,
527 	 * since we checked the sequence number of the parent after we got
528 	 * the child sequence number. So we know the parent must still
529 	 * be valid if the child sequence number is still valid.
530 	 */
531 	if (!dentry) {
532 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
533 			goto out;
534 		BUG_ON(nd->inode != parent->d_inode);
535 	} else {
536 		if (!lockref_get_not_dead(&dentry->d_lockref))
537 			goto out;
538 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
539 			goto drop_dentry;
540 	}
541 
542 	/*
543 	 * Sequence counts matched. Now make sure that the root is
544 	 * still valid and get it if required.
545 	 */
546 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
547 		spin_lock(&fs->lock);
548 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
549 			goto unlock_and_drop_dentry;
550 		path_get(&nd->root);
551 		spin_unlock(&fs->lock);
552 	}
553 
554 	rcu_read_unlock();
555 	return 0;
556 
557 unlock_and_drop_dentry:
558 	spin_unlock(&fs->lock);
559 drop_dentry:
560 	rcu_read_unlock();
561 	dput(dentry);
562 	goto drop_root_mnt;
563 out:
564 	rcu_read_unlock();
565 drop_root_mnt:
566 	if (!(nd->flags & LOOKUP_ROOT))
567 		nd->root.mnt = NULL;
568 	return -ECHILD;
569 }
570 
571 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
572 {
573 	return dentry->d_op->d_revalidate(dentry, flags);
574 }
575 
576 /**
577  * complete_walk - successful completion of path walk
578  * @nd:  pointer nameidata
579  *
580  * If we had been in RCU mode, drop out of it and legitimize nd->path.
581  * Revalidate the final result, unless we'd already done that during
582  * the path walk or the filesystem doesn't ask for it.  Return 0 on
583  * success, -error on failure.  In case of failure caller does not
584  * need to drop nd->path.
585  */
586 static int complete_walk(struct nameidata *nd)
587 {
588 	struct dentry *dentry = nd->path.dentry;
589 	int status;
590 
591 	if (nd->flags & LOOKUP_RCU) {
592 		nd->flags &= ~LOOKUP_RCU;
593 		if (!(nd->flags & LOOKUP_ROOT))
594 			nd->root.mnt = NULL;
595 
596 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
597 			rcu_read_unlock();
598 			return -ECHILD;
599 		}
600 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
601 			rcu_read_unlock();
602 			mntput(nd->path.mnt);
603 			return -ECHILD;
604 		}
605 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
606 			rcu_read_unlock();
607 			dput(dentry);
608 			mntput(nd->path.mnt);
609 			return -ECHILD;
610 		}
611 		rcu_read_unlock();
612 	}
613 
614 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
615 		return 0;
616 
617 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
618 		return 0;
619 
620 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
621 	if (status > 0)
622 		return 0;
623 
624 	if (!status)
625 		status = -ESTALE;
626 
627 	path_put(&nd->path);
628 	return status;
629 }
630 
631 static __always_inline void set_root(struct nameidata *nd)
632 {
633 	if (!nd->root.mnt)
634 		get_fs_root(current->fs, &nd->root);
635 }
636 
637 static int link_path_walk(const char *, struct nameidata *);
638 
639 static __always_inline void set_root_rcu(struct nameidata *nd)
640 {
641 	if (!nd->root.mnt) {
642 		struct fs_struct *fs = current->fs;
643 		unsigned seq;
644 
645 		do {
646 			seq = read_seqcount_begin(&fs->seq);
647 			nd->root = fs->root;
648 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
649 		} while (read_seqcount_retry(&fs->seq, seq));
650 	}
651 }
652 
653 static void path_put_conditional(struct path *path, struct nameidata *nd)
654 {
655 	dput(path->dentry);
656 	if (path->mnt != nd->path.mnt)
657 		mntput(path->mnt);
658 }
659 
660 static inline void path_to_nameidata(const struct path *path,
661 					struct nameidata *nd)
662 {
663 	if (!(nd->flags & LOOKUP_RCU)) {
664 		dput(nd->path.dentry);
665 		if (nd->path.mnt != path->mnt)
666 			mntput(nd->path.mnt);
667 	}
668 	nd->path.mnt = path->mnt;
669 	nd->path.dentry = path->dentry;
670 }
671 
672 /*
673  * Helper to directly jump to a known parsed path from ->follow_link,
674  * caller must have taken a reference to path beforehand.
675  */
676 void nd_jump_link(struct nameidata *nd, struct path *path)
677 {
678 	path_put(&nd->path);
679 
680 	nd->path = *path;
681 	nd->inode = nd->path.dentry->d_inode;
682 	nd->flags |= LOOKUP_JUMPED;
683 }
684 
685 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
686 {
687 	struct inode *inode = link->dentry->d_inode;
688 	if (inode->i_op->put_link)
689 		inode->i_op->put_link(link->dentry, nd, cookie);
690 	path_put(link);
691 }
692 
693 int sysctl_protected_symlinks __read_mostly = 0;
694 int sysctl_protected_hardlinks __read_mostly = 0;
695 
696 /**
697  * may_follow_link - Check symlink following for unsafe situations
698  * @link: The path of the symlink
699  * @nd: nameidata pathwalk data
700  *
701  * In the case of the sysctl_protected_symlinks sysctl being enabled,
702  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
703  * in a sticky world-writable directory. This is to protect privileged
704  * processes from failing races against path names that may change out
705  * from under them by way of other users creating malicious symlinks.
706  * It will permit symlinks to be followed only when outside a sticky
707  * world-writable directory, or when the uid of the symlink and follower
708  * match, or when the directory owner matches the symlink's owner.
709  *
710  * Returns 0 if following the symlink is allowed, -ve on error.
711  */
712 static inline int may_follow_link(struct path *link, struct nameidata *nd)
713 {
714 	const struct inode *inode;
715 	const struct inode *parent;
716 
717 	if (!sysctl_protected_symlinks)
718 		return 0;
719 
720 	/* Allowed if owner and follower match. */
721 	inode = link->dentry->d_inode;
722 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
723 		return 0;
724 
725 	/* Allowed if parent directory not sticky and world-writable. */
726 	parent = nd->path.dentry->d_inode;
727 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
728 		return 0;
729 
730 	/* Allowed if parent directory and link owner match. */
731 	if (uid_eq(parent->i_uid, inode->i_uid))
732 		return 0;
733 
734 	audit_log_link_denied("follow_link", link);
735 	path_put_conditional(link, nd);
736 	path_put(&nd->path);
737 	return -EACCES;
738 }
739 
740 /**
741  * safe_hardlink_source - Check for safe hardlink conditions
742  * @inode: the source inode to hardlink from
743  *
744  * Return false if at least one of the following conditions:
745  *    - inode is not a regular file
746  *    - inode is setuid
747  *    - inode is setgid and group-exec
748  *    - access failure for read and write
749  *
750  * Otherwise returns true.
751  */
752 static bool safe_hardlink_source(struct inode *inode)
753 {
754 	umode_t mode = inode->i_mode;
755 
756 	/* Special files should not get pinned to the filesystem. */
757 	if (!S_ISREG(mode))
758 		return false;
759 
760 	/* Setuid files should not get pinned to the filesystem. */
761 	if (mode & S_ISUID)
762 		return false;
763 
764 	/* Executable setgid files should not get pinned to the filesystem. */
765 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
766 		return false;
767 
768 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
769 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
770 		return false;
771 
772 	return true;
773 }
774 
775 /**
776  * may_linkat - Check permissions for creating a hardlink
777  * @link: the source to hardlink from
778  *
779  * Block hardlink when all of:
780  *  - sysctl_protected_hardlinks enabled
781  *  - fsuid does not match inode
782  *  - hardlink source is unsafe (see safe_hardlink_source() above)
783  *  - not CAP_FOWNER
784  *
785  * Returns 0 if successful, -ve on error.
786  */
787 static int may_linkat(struct path *link)
788 {
789 	const struct cred *cred;
790 	struct inode *inode;
791 
792 	if (!sysctl_protected_hardlinks)
793 		return 0;
794 
795 	cred = current_cred();
796 	inode = link->dentry->d_inode;
797 
798 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
799 	 * otherwise, it must be a safe source.
800 	 */
801 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
802 	    capable(CAP_FOWNER))
803 		return 0;
804 
805 	audit_log_link_denied("linkat", link);
806 	return -EPERM;
807 }
808 
809 static __always_inline int
810 follow_link(struct path *link, struct nameidata *nd, void **p)
811 {
812 	struct dentry *dentry = link->dentry;
813 	int error;
814 	char *s;
815 
816 	BUG_ON(nd->flags & LOOKUP_RCU);
817 
818 	if (link->mnt == nd->path.mnt)
819 		mntget(link->mnt);
820 
821 	error = -ELOOP;
822 	if (unlikely(current->total_link_count >= 40))
823 		goto out_put_nd_path;
824 
825 	cond_resched();
826 	current->total_link_count++;
827 
828 	touch_atime(link);
829 	nd_set_link(nd, NULL);
830 
831 	error = security_inode_follow_link(link->dentry, nd);
832 	if (error)
833 		goto out_put_nd_path;
834 
835 	nd->last_type = LAST_BIND;
836 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
837 	error = PTR_ERR(*p);
838 	if (IS_ERR(*p))
839 		goto out_put_nd_path;
840 
841 	error = 0;
842 	s = nd_get_link(nd);
843 	if (s) {
844 		if (unlikely(IS_ERR(s))) {
845 			path_put(&nd->path);
846 			put_link(nd, link, *p);
847 			return PTR_ERR(s);
848 		}
849 		if (*s == '/') {
850 			set_root(nd);
851 			path_put(&nd->path);
852 			nd->path = nd->root;
853 			path_get(&nd->root);
854 			nd->flags |= LOOKUP_JUMPED;
855 		}
856 		nd->inode = nd->path.dentry->d_inode;
857 		error = link_path_walk(s, nd);
858 		if (unlikely(error))
859 			put_link(nd, link, *p);
860 	}
861 
862 	return error;
863 
864 out_put_nd_path:
865 	*p = NULL;
866 	path_put(&nd->path);
867 	path_put(link);
868 	return error;
869 }
870 
871 static int follow_up_rcu(struct path *path)
872 {
873 	struct mount *mnt = real_mount(path->mnt);
874 	struct mount *parent;
875 	struct dentry *mountpoint;
876 
877 	parent = mnt->mnt_parent;
878 	if (&parent->mnt == path->mnt)
879 		return 0;
880 	mountpoint = mnt->mnt_mountpoint;
881 	path->dentry = mountpoint;
882 	path->mnt = &parent->mnt;
883 	return 1;
884 }
885 
886 /*
887  * follow_up - Find the mountpoint of path's vfsmount
888  *
889  * Given a path, find the mountpoint of its source file system.
890  * Replace @path with the path of the mountpoint in the parent mount.
891  * Up is towards /.
892  *
893  * Return 1 if we went up a level and 0 if we were already at the
894  * root.
895  */
896 int follow_up(struct path *path)
897 {
898 	struct mount *mnt = real_mount(path->mnt);
899 	struct mount *parent;
900 	struct dentry *mountpoint;
901 
902 	read_seqlock_excl(&mount_lock);
903 	parent = mnt->mnt_parent;
904 	if (parent == mnt) {
905 		read_sequnlock_excl(&mount_lock);
906 		return 0;
907 	}
908 	mntget(&parent->mnt);
909 	mountpoint = dget(mnt->mnt_mountpoint);
910 	read_sequnlock_excl(&mount_lock);
911 	dput(path->dentry);
912 	path->dentry = mountpoint;
913 	mntput(path->mnt);
914 	path->mnt = &parent->mnt;
915 	return 1;
916 }
917 
918 /*
919  * Perform an automount
920  * - return -EISDIR to tell follow_managed() to stop and return the path we
921  *   were called with.
922  */
923 static int follow_automount(struct path *path, unsigned flags,
924 			    bool *need_mntput)
925 {
926 	struct vfsmount *mnt;
927 	int err;
928 
929 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
930 		return -EREMOTE;
931 
932 	/* We don't want to mount if someone's just doing a stat -
933 	 * unless they're stat'ing a directory and appended a '/' to
934 	 * the name.
935 	 *
936 	 * We do, however, want to mount if someone wants to open or
937 	 * create a file of any type under the mountpoint, wants to
938 	 * traverse through the mountpoint or wants to open the
939 	 * mounted directory.  Also, autofs may mark negative dentries
940 	 * as being automount points.  These will need the attentions
941 	 * of the daemon to instantiate them before they can be used.
942 	 */
943 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
944 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
945 	    path->dentry->d_inode)
946 		return -EISDIR;
947 
948 	current->total_link_count++;
949 	if (current->total_link_count >= 40)
950 		return -ELOOP;
951 
952 	mnt = path->dentry->d_op->d_automount(path);
953 	if (IS_ERR(mnt)) {
954 		/*
955 		 * The filesystem is allowed to return -EISDIR here to indicate
956 		 * it doesn't want to automount.  For instance, autofs would do
957 		 * this so that its userspace daemon can mount on this dentry.
958 		 *
959 		 * However, we can only permit this if it's a terminal point in
960 		 * the path being looked up; if it wasn't then the remainder of
961 		 * the path is inaccessible and we should say so.
962 		 */
963 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
964 			return -EREMOTE;
965 		return PTR_ERR(mnt);
966 	}
967 
968 	if (!mnt) /* mount collision */
969 		return 0;
970 
971 	if (!*need_mntput) {
972 		/* lock_mount() may release path->mnt on error */
973 		mntget(path->mnt);
974 		*need_mntput = true;
975 	}
976 	err = finish_automount(mnt, path);
977 
978 	switch (err) {
979 	case -EBUSY:
980 		/* Someone else made a mount here whilst we were busy */
981 		return 0;
982 	case 0:
983 		path_put(path);
984 		path->mnt = mnt;
985 		path->dentry = dget(mnt->mnt_root);
986 		return 0;
987 	default:
988 		return err;
989 	}
990 
991 }
992 
993 /*
994  * Handle a dentry that is managed in some way.
995  * - Flagged for transit management (autofs)
996  * - Flagged as mountpoint
997  * - Flagged as automount point
998  *
999  * This may only be called in refwalk mode.
1000  *
1001  * Serialization is taken care of in namespace.c
1002  */
1003 static int follow_managed(struct path *path, unsigned flags)
1004 {
1005 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1006 	unsigned managed;
1007 	bool need_mntput = false;
1008 	int ret = 0;
1009 
1010 	/* Given that we're not holding a lock here, we retain the value in a
1011 	 * local variable for each dentry as we look at it so that we don't see
1012 	 * the components of that value change under us */
1013 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1014 	       managed &= DCACHE_MANAGED_DENTRY,
1015 	       unlikely(managed != 0)) {
1016 		/* Allow the filesystem to manage the transit without i_mutex
1017 		 * being held. */
1018 		if (managed & DCACHE_MANAGE_TRANSIT) {
1019 			BUG_ON(!path->dentry->d_op);
1020 			BUG_ON(!path->dentry->d_op->d_manage);
1021 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1022 			if (ret < 0)
1023 				break;
1024 		}
1025 
1026 		/* Transit to a mounted filesystem. */
1027 		if (managed & DCACHE_MOUNTED) {
1028 			struct vfsmount *mounted = lookup_mnt(path);
1029 			if (mounted) {
1030 				dput(path->dentry);
1031 				if (need_mntput)
1032 					mntput(path->mnt);
1033 				path->mnt = mounted;
1034 				path->dentry = dget(mounted->mnt_root);
1035 				need_mntput = true;
1036 				continue;
1037 			}
1038 
1039 			/* Something is mounted on this dentry in another
1040 			 * namespace and/or whatever was mounted there in this
1041 			 * namespace got unmounted before lookup_mnt() could
1042 			 * get it */
1043 		}
1044 
1045 		/* Handle an automount point */
1046 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1047 			ret = follow_automount(path, flags, &need_mntput);
1048 			if (ret < 0)
1049 				break;
1050 			continue;
1051 		}
1052 
1053 		/* We didn't change the current path point */
1054 		break;
1055 	}
1056 
1057 	if (need_mntput && path->mnt == mnt)
1058 		mntput(path->mnt);
1059 	if (ret == -EISDIR)
1060 		ret = 0;
1061 	return ret < 0 ? ret : need_mntput;
1062 }
1063 
1064 int follow_down_one(struct path *path)
1065 {
1066 	struct vfsmount *mounted;
1067 
1068 	mounted = lookup_mnt(path);
1069 	if (mounted) {
1070 		dput(path->dentry);
1071 		mntput(path->mnt);
1072 		path->mnt = mounted;
1073 		path->dentry = dget(mounted->mnt_root);
1074 		return 1;
1075 	}
1076 	return 0;
1077 }
1078 
1079 static inline bool managed_dentry_might_block(struct dentry *dentry)
1080 {
1081 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1082 		dentry->d_op->d_manage(dentry, true) < 0);
1083 }
1084 
1085 /*
1086  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1087  * we meet a managed dentry that would need blocking.
1088  */
1089 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1090 			       struct inode **inode)
1091 {
1092 	for (;;) {
1093 		struct mount *mounted;
1094 		/*
1095 		 * Don't forget we might have a non-mountpoint managed dentry
1096 		 * that wants to block transit.
1097 		 */
1098 		if (unlikely(managed_dentry_might_block(path->dentry)))
1099 			return false;
1100 
1101 		if (!d_mountpoint(path->dentry))
1102 			break;
1103 
1104 		mounted = __lookup_mnt(path->mnt, path->dentry);
1105 		if (!mounted)
1106 			break;
1107 		path->mnt = &mounted->mnt;
1108 		path->dentry = mounted->mnt.mnt_root;
1109 		nd->flags |= LOOKUP_JUMPED;
1110 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1111 		/*
1112 		 * Update the inode too. We don't need to re-check the
1113 		 * dentry sequence number here after this d_inode read,
1114 		 * because a mount-point is always pinned.
1115 		 */
1116 		*inode = path->dentry->d_inode;
1117 	}
1118 	return true;
1119 }
1120 
1121 static void follow_mount_rcu(struct nameidata *nd)
1122 {
1123 	while (d_mountpoint(nd->path.dentry)) {
1124 		struct mount *mounted;
1125 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1126 		if (!mounted)
1127 			break;
1128 		nd->path.mnt = &mounted->mnt;
1129 		nd->path.dentry = mounted->mnt.mnt_root;
1130 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1131 	}
1132 }
1133 
1134 static int follow_dotdot_rcu(struct nameidata *nd)
1135 {
1136 	set_root_rcu(nd);
1137 
1138 	while (1) {
1139 		if (nd->path.dentry == nd->root.dentry &&
1140 		    nd->path.mnt == nd->root.mnt) {
1141 			break;
1142 		}
1143 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1144 			struct dentry *old = nd->path.dentry;
1145 			struct dentry *parent = old->d_parent;
1146 			unsigned seq;
1147 
1148 			seq = read_seqcount_begin(&parent->d_seq);
1149 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1150 				goto failed;
1151 			nd->path.dentry = parent;
1152 			nd->seq = seq;
1153 			break;
1154 		}
1155 		if (!follow_up_rcu(&nd->path))
1156 			break;
1157 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1158 	}
1159 	follow_mount_rcu(nd);
1160 	nd->inode = nd->path.dentry->d_inode;
1161 	return 0;
1162 
1163 failed:
1164 	nd->flags &= ~LOOKUP_RCU;
1165 	if (!(nd->flags & LOOKUP_ROOT))
1166 		nd->root.mnt = NULL;
1167 	rcu_read_unlock();
1168 	return -ECHILD;
1169 }
1170 
1171 /*
1172  * Follow down to the covering mount currently visible to userspace.  At each
1173  * point, the filesystem owning that dentry may be queried as to whether the
1174  * caller is permitted to proceed or not.
1175  */
1176 int follow_down(struct path *path)
1177 {
1178 	unsigned managed;
1179 	int ret;
1180 
1181 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1182 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1183 		/* Allow the filesystem to manage the transit without i_mutex
1184 		 * being held.
1185 		 *
1186 		 * We indicate to the filesystem if someone is trying to mount
1187 		 * something here.  This gives autofs the chance to deny anyone
1188 		 * other than its daemon the right to mount on its
1189 		 * superstructure.
1190 		 *
1191 		 * The filesystem may sleep at this point.
1192 		 */
1193 		if (managed & DCACHE_MANAGE_TRANSIT) {
1194 			BUG_ON(!path->dentry->d_op);
1195 			BUG_ON(!path->dentry->d_op->d_manage);
1196 			ret = path->dentry->d_op->d_manage(
1197 				path->dentry, false);
1198 			if (ret < 0)
1199 				return ret == -EISDIR ? 0 : ret;
1200 		}
1201 
1202 		/* Transit to a mounted filesystem. */
1203 		if (managed & DCACHE_MOUNTED) {
1204 			struct vfsmount *mounted = lookup_mnt(path);
1205 			if (!mounted)
1206 				break;
1207 			dput(path->dentry);
1208 			mntput(path->mnt);
1209 			path->mnt = mounted;
1210 			path->dentry = dget(mounted->mnt_root);
1211 			continue;
1212 		}
1213 
1214 		/* Don't handle automount points here */
1215 		break;
1216 	}
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1222  */
1223 static void follow_mount(struct path *path)
1224 {
1225 	while (d_mountpoint(path->dentry)) {
1226 		struct vfsmount *mounted = lookup_mnt(path);
1227 		if (!mounted)
1228 			break;
1229 		dput(path->dentry);
1230 		mntput(path->mnt);
1231 		path->mnt = mounted;
1232 		path->dentry = dget(mounted->mnt_root);
1233 	}
1234 }
1235 
1236 static void follow_dotdot(struct nameidata *nd)
1237 {
1238 	set_root(nd);
1239 
1240 	while(1) {
1241 		struct dentry *old = nd->path.dentry;
1242 
1243 		if (nd->path.dentry == nd->root.dentry &&
1244 		    nd->path.mnt == nd->root.mnt) {
1245 			break;
1246 		}
1247 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1248 			/* rare case of legitimate dget_parent()... */
1249 			nd->path.dentry = dget_parent(nd->path.dentry);
1250 			dput(old);
1251 			break;
1252 		}
1253 		if (!follow_up(&nd->path))
1254 			break;
1255 	}
1256 	follow_mount(&nd->path);
1257 	nd->inode = nd->path.dentry->d_inode;
1258 }
1259 
1260 /*
1261  * This looks up the name in dcache, possibly revalidates the old dentry and
1262  * allocates a new one if not found or not valid.  In the need_lookup argument
1263  * returns whether i_op->lookup is necessary.
1264  *
1265  * dir->d_inode->i_mutex must be held
1266  */
1267 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1268 				    unsigned int flags, bool *need_lookup)
1269 {
1270 	struct dentry *dentry;
1271 	int error;
1272 
1273 	*need_lookup = false;
1274 	dentry = d_lookup(dir, name);
1275 	if (dentry) {
1276 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1277 			error = d_revalidate(dentry, flags);
1278 			if (unlikely(error <= 0)) {
1279 				if (error < 0) {
1280 					dput(dentry);
1281 					return ERR_PTR(error);
1282 				} else if (!d_invalidate(dentry)) {
1283 					dput(dentry);
1284 					dentry = NULL;
1285 				}
1286 			}
1287 		}
1288 	}
1289 
1290 	if (!dentry) {
1291 		dentry = d_alloc(dir, name);
1292 		if (unlikely(!dentry))
1293 			return ERR_PTR(-ENOMEM);
1294 
1295 		*need_lookup = true;
1296 	}
1297 	return dentry;
1298 }
1299 
1300 /*
1301  * Call i_op->lookup on the dentry.  The dentry must be negative and
1302  * unhashed.
1303  *
1304  * dir->d_inode->i_mutex must be held
1305  */
1306 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1307 				  unsigned int flags)
1308 {
1309 	struct dentry *old;
1310 
1311 	/* Don't create child dentry for a dead directory. */
1312 	if (unlikely(IS_DEADDIR(dir))) {
1313 		dput(dentry);
1314 		return ERR_PTR(-ENOENT);
1315 	}
1316 
1317 	old = dir->i_op->lookup(dir, dentry, flags);
1318 	if (unlikely(old)) {
1319 		dput(dentry);
1320 		dentry = old;
1321 	}
1322 	return dentry;
1323 }
1324 
1325 static struct dentry *__lookup_hash(struct qstr *name,
1326 		struct dentry *base, unsigned int flags)
1327 {
1328 	bool need_lookup;
1329 	struct dentry *dentry;
1330 
1331 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1332 	if (!need_lookup)
1333 		return dentry;
1334 
1335 	return lookup_real(base->d_inode, dentry, flags);
1336 }
1337 
1338 /*
1339  *  It's more convoluted than I'd like it to be, but... it's still fairly
1340  *  small and for now I'd prefer to have fast path as straight as possible.
1341  *  It _is_ time-critical.
1342  */
1343 static int lookup_fast(struct nameidata *nd,
1344 		       struct path *path, struct inode **inode)
1345 {
1346 	struct vfsmount *mnt = nd->path.mnt;
1347 	struct dentry *dentry, *parent = nd->path.dentry;
1348 	int need_reval = 1;
1349 	int status = 1;
1350 	int err;
1351 
1352 	/*
1353 	 * Rename seqlock is not required here because in the off chance
1354 	 * of a false negative due to a concurrent rename, we're going to
1355 	 * do the non-racy lookup, below.
1356 	 */
1357 	if (nd->flags & LOOKUP_RCU) {
1358 		unsigned seq;
1359 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1360 		if (!dentry)
1361 			goto unlazy;
1362 
1363 		/*
1364 		 * This sequence count validates that the inode matches
1365 		 * the dentry name information from lookup.
1366 		 */
1367 		*inode = dentry->d_inode;
1368 		if (read_seqcount_retry(&dentry->d_seq, seq))
1369 			return -ECHILD;
1370 
1371 		/*
1372 		 * This sequence count validates that the parent had no
1373 		 * changes while we did the lookup of the dentry above.
1374 		 *
1375 		 * The memory barrier in read_seqcount_begin of child is
1376 		 *  enough, we can use __read_seqcount_retry here.
1377 		 */
1378 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1379 			return -ECHILD;
1380 		nd->seq = seq;
1381 
1382 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1383 			status = d_revalidate(dentry, nd->flags);
1384 			if (unlikely(status <= 0)) {
1385 				if (status != -ECHILD)
1386 					need_reval = 0;
1387 				goto unlazy;
1388 			}
1389 		}
1390 		path->mnt = mnt;
1391 		path->dentry = dentry;
1392 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1393 			goto unlazy;
1394 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1395 			goto unlazy;
1396 		return 0;
1397 unlazy:
1398 		if (unlazy_walk(nd, dentry))
1399 			return -ECHILD;
1400 	} else {
1401 		dentry = __d_lookup(parent, &nd->last);
1402 	}
1403 
1404 	if (unlikely(!dentry))
1405 		goto need_lookup;
1406 
1407 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1408 		status = d_revalidate(dentry, nd->flags);
1409 	if (unlikely(status <= 0)) {
1410 		if (status < 0) {
1411 			dput(dentry);
1412 			return status;
1413 		}
1414 		if (!d_invalidate(dentry)) {
1415 			dput(dentry);
1416 			goto need_lookup;
1417 		}
1418 	}
1419 
1420 	path->mnt = mnt;
1421 	path->dentry = dentry;
1422 	err = follow_managed(path, nd->flags);
1423 	if (unlikely(err < 0)) {
1424 		path_put_conditional(path, nd);
1425 		return err;
1426 	}
1427 	if (err)
1428 		nd->flags |= LOOKUP_JUMPED;
1429 	*inode = path->dentry->d_inode;
1430 	return 0;
1431 
1432 need_lookup:
1433 	return 1;
1434 }
1435 
1436 /* Fast lookup failed, do it the slow way */
1437 static int lookup_slow(struct nameidata *nd, struct path *path)
1438 {
1439 	struct dentry *dentry, *parent;
1440 	int err;
1441 
1442 	parent = nd->path.dentry;
1443 	BUG_ON(nd->inode != parent->d_inode);
1444 
1445 	mutex_lock(&parent->d_inode->i_mutex);
1446 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1447 	mutex_unlock(&parent->d_inode->i_mutex);
1448 	if (IS_ERR(dentry))
1449 		return PTR_ERR(dentry);
1450 	path->mnt = nd->path.mnt;
1451 	path->dentry = dentry;
1452 	err = follow_managed(path, nd->flags);
1453 	if (unlikely(err < 0)) {
1454 		path_put_conditional(path, nd);
1455 		return err;
1456 	}
1457 	if (err)
1458 		nd->flags |= LOOKUP_JUMPED;
1459 	return 0;
1460 }
1461 
1462 static inline int may_lookup(struct nameidata *nd)
1463 {
1464 	if (nd->flags & LOOKUP_RCU) {
1465 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1466 		if (err != -ECHILD)
1467 			return err;
1468 		if (unlazy_walk(nd, NULL))
1469 			return -ECHILD;
1470 	}
1471 	return inode_permission(nd->inode, MAY_EXEC);
1472 }
1473 
1474 static inline int handle_dots(struct nameidata *nd, int type)
1475 {
1476 	if (type == LAST_DOTDOT) {
1477 		if (nd->flags & LOOKUP_RCU) {
1478 			if (follow_dotdot_rcu(nd))
1479 				return -ECHILD;
1480 		} else
1481 			follow_dotdot(nd);
1482 	}
1483 	return 0;
1484 }
1485 
1486 static void terminate_walk(struct nameidata *nd)
1487 {
1488 	if (!(nd->flags & LOOKUP_RCU)) {
1489 		path_put(&nd->path);
1490 	} else {
1491 		nd->flags &= ~LOOKUP_RCU;
1492 		if (!(nd->flags & LOOKUP_ROOT))
1493 			nd->root.mnt = NULL;
1494 		rcu_read_unlock();
1495 	}
1496 }
1497 
1498 /*
1499  * Do we need to follow links? We _really_ want to be able
1500  * to do this check without having to look at inode->i_op,
1501  * so we keep a cache of "no, this doesn't need follow_link"
1502  * for the common case.
1503  */
1504 static inline int should_follow_link(struct dentry *dentry, int follow)
1505 {
1506 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1507 }
1508 
1509 static inline int walk_component(struct nameidata *nd, struct path *path,
1510 		int follow)
1511 {
1512 	struct inode *inode;
1513 	int err;
1514 	/*
1515 	 * "." and ".." are special - ".." especially so because it has
1516 	 * to be able to know about the current root directory and
1517 	 * parent relationships.
1518 	 */
1519 	if (unlikely(nd->last_type != LAST_NORM))
1520 		return handle_dots(nd, nd->last_type);
1521 	err = lookup_fast(nd, path, &inode);
1522 	if (unlikely(err)) {
1523 		if (err < 0)
1524 			goto out_err;
1525 
1526 		err = lookup_slow(nd, path);
1527 		if (err < 0)
1528 			goto out_err;
1529 
1530 		inode = path->dentry->d_inode;
1531 	}
1532 	err = -ENOENT;
1533 	if (!inode)
1534 		goto out_path_put;
1535 
1536 	if (should_follow_link(path->dentry, follow)) {
1537 		if (nd->flags & LOOKUP_RCU) {
1538 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1539 				err = -ECHILD;
1540 				goto out_err;
1541 			}
1542 		}
1543 		BUG_ON(inode != path->dentry->d_inode);
1544 		return 1;
1545 	}
1546 	path_to_nameidata(path, nd);
1547 	nd->inode = inode;
1548 	return 0;
1549 
1550 out_path_put:
1551 	path_to_nameidata(path, nd);
1552 out_err:
1553 	terminate_walk(nd);
1554 	return err;
1555 }
1556 
1557 /*
1558  * This limits recursive symlink follows to 8, while
1559  * limiting consecutive symlinks to 40.
1560  *
1561  * Without that kind of total limit, nasty chains of consecutive
1562  * symlinks can cause almost arbitrarily long lookups.
1563  */
1564 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1565 {
1566 	int res;
1567 
1568 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1569 		path_put_conditional(path, nd);
1570 		path_put(&nd->path);
1571 		return -ELOOP;
1572 	}
1573 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1574 
1575 	nd->depth++;
1576 	current->link_count++;
1577 
1578 	do {
1579 		struct path link = *path;
1580 		void *cookie;
1581 
1582 		res = follow_link(&link, nd, &cookie);
1583 		if (res)
1584 			break;
1585 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1586 		put_link(nd, &link, cookie);
1587 	} while (res > 0);
1588 
1589 	current->link_count--;
1590 	nd->depth--;
1591 	return res;
1592 }
1593 
1594 /*
1595  * We can do the critical dentry name comparison and hashing
1596  * operations one word at a time, but we are limited to:
1597  *
1598  * - Architectures with fast unaligned word accesses. We could
1599  *   do a "get_unaligned()" if this helps and is sufficiently
1600  *   fast.
1601  *
1602  * - Little-endian machines (so that we can generate the mask
1603  *   of low bytes efficiently). Again, we *could* do a byte
1604  *   swapping load on big-endian architectures if that is not
1605  *   expensive enough to make the optimization worthless.
1606  *
1607  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1608  *   do not trap on the (extremely unlikely) case of a page
1609  *   crossing operation.
1610  *
1611  * - Furthermore, we need an efficient 64-bit compile for the
1612  *   64-bit case in order to generate the "number of bytes in
1613  *   the final mask". Again, that could be replaced with a
1614  *   efficient population count instruction or similar.
1615  */
1616 #ifdef CONFIG_DCACHE_WORD_ACCESS
1617 
1618 #include <asm/word-at-a-time.h>
1619 
1620 #ifdef CONFIG_64BIT
1621 
1622 static inline unsigned int fold_hash(unsigned long hash)
1623 {
1624 	hash += hash >> (8*sizeof(int));
1625 	return hash;
1626 }
1627 
1628 #else	/* 32-bit case */
1629 
1630 #define fold_hash(x) (x)
1631 
1632 #endif
1633 
1634 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1635 {
1636 	unsigned long a, mask;
1637 	unsigned long hash = 0;
1638 
1639 	for (;;) {
1640 		a = load_unaligned_zeropad(name);
1641 		if (len < sizeof(unsigned long))
1642 			break;
1643 		hash += a;
1644 		hash *= 9;
1645 		name += sizeof(unsigned long);
1646 		len -= sizeof(unsigned long);
1647 		if (!len)
1648 			goto done;
1649 	}
1650 	mask = ~(~0ul << len*8);
1651 	hash += mask & a;
1652 done:
1653 	return fold_hash(hash);
1654 }
1655 EXPORT_SYMBOL(full_name_hash);
1656 
1657 /*
1658  * Calculate the length and hash of the path component, and
1659  * return the length of the component;
1660  */
1661 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1662 {
1663 	unsigned long a, b, adata, bdata, mask, hash, len;
1664 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1665 
1666 	hash = a = 0;
1667 	len = -sizeof(unsigned long);
1668 	do {
1669 		hash = (hash + a) * 9;
1670 		len += sizeof(unsigned long);
1671 		a = load_unaligned_zeropad(name+len);
1672 		b = a ^ REPEAT_BYTE('/');
1673 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1674 
1675 	adata = prep_zero_mask(a, adata, &constants);
1676 	bdata = prep_zero_mask(b, bdata, &constants);
1677 
1678 	mask = create_zero_mask(adata | bdata);
1679 
1680 	hash += a & zero_bytemask(mask);
1681 	*hashp = fold_hash(hash);
1682 
1683 	return len + find_zero(mask);
1684 }
1685 
1686 #else
1687 
1688 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1689 {
1690 	unsigned long hash = init_name_hash();
1691 	while (len--)
1692 		hash = partial_name_hash(*name++, hash);
1693 	return end_name_hash(hash);
1694 }
1695 EXPORT_SYMBOL(full_name_hash);
1696 
1697 /*
1698  * We know there's a real path component here of at least
1699  * one character.
1700  */
1701 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1702 {
1703 	unsigned long hash = init_name_hash();
1704 	unsigned long len = 0, c;
1705 
1706 	c = (unsigned char)*name;
1707 	do {
1708 		len++;
1709 		hash = partial_name_hash(c, hash);
1710 		c = (unsigned char)name[len];
1711 	} while (c && c != '/');
1712 	*hashp = end_name_hash(hash);
1713 	return len;
1714 }
1715 
1716 #endif
1717 
1718 /*
1719  * Name resolution.
1720  * This is the basic name resolution function, turning a pathname into
1721  * the final dentry. We expect 'base' to be positive and a directory.
1722  *
1723  * Returns 0 and nd will have valid dentry and mnt on success.
1724  * Returns error and drops reference to input namei data on failure.
1725  */
1726 static int link_path_walk(const char *name, struct nameidata *nd)
1727 {
1728 	struct path next;
1729 	int err;
1730 
1731 	while (*name=='/')
1732 		name++;
1733 	if (!*name)
1734 		return 0;
1735 
1736 	/* At this point we know we have a real path component. */
1737 	for(;;) {
1738 		struct qstr this;
1739 		long len;
1740 		int type;
1741 
1742 		err = may_lookup(nd);
1743  		if (err)
1744 			break;
1745 
1746 		len = hash_name(name, &this.hash);
1747 		this.name = name;
1748 		this.len = len;
1749 
1750 		type = LAST_NORM;
1751 		if (name[0] == '.') switch (len) {
1752 			case 2:
1753 				if (name[1] == '.') {
1754 					type = LAST_DOTDOT;
1755 					nd->flags |= LOOKUP_JUMPED;
1756 				}
1757 				break;
1758 			case 1:
1759 				type = LAST_DOT;
1760 		}
1761 		if (likely(type == LAST_NORM)) {
1762 			struct dentry *parent = nd->path.dentry;
1763 			nd->flags &= ~LOOKUP_JUMPED;
1764 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1765 				err = parent->d_op->d_hash(parent, &this);
1766 				if (err < 0)
1767 					break;
1768 			}
1769 		}
1770 
1771 		nd->last = this;
1772 		nd->last_type = type;
1773 
1774 		if (!name[len])
1775 			return 0;
1776 		/*
1777 		 * If it wasn't NUL, we know it was '/'. Skip that
1778 		 * slash, and continue until no more slashes.
1779 		 */
1780 		do {
1781 			len++;
1782 		} while (unlikely(name[len] == '/'));
1783 		if (!name[len])
1784 			return 0;
1785 
1786 		name += len;
1787 
1788 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1789 		if (err < 0)
1790 			return err;
1791 
1792 		if (err) {
1793 			err = nested_symlink(&next, nd);
1794 			if (err)
1795 				return err;
1796 		}
1797 		if (!d_is_directory(nd->path.dentry)) {
1798 			err = -ENOTDIR;
1799 			break;
1800 		}
1801 	}
1802 	terminate_walk(nd);
1803 	return err;
1804 }
1805 
1806 static int path_init(int dfd, const char *name, unsigned int flags,
1807 		     struct nameidata *nd, struct file **fp)
1808 {
1809 	int retval = 0;
1810 
1811 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1812 	nd->flags = flags | LOOKUP_JUMPED;
1813 	nd->depth = 0;
1814 	if (flags & LOOKUP_ROOT) {
1815 		struct dentry *root = nd->root.dentry;
1816 		struct inode *inode = root->d_inode;
1817 		if (*name) {
1818 			if (!d_is_directory(root))
1819 				return -ENOTDIR;
1820 			retval = inode_permission(inode, MAY_EXEC);
1821 			if (retval)
1822 				return retval;
1823 		}
1824 		nd->path = nd->root;
1825 		nd->inode = inode;
1826 		if (flags & LOOKUP_RCU) {
1827 			rcu_read_lock();
1828 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1829 			nd->m_seq = read_seqbegin(&mount_lock);
1830 		} else {
1831 			path_get(&nd->path);
1832 		}
1833 		return 0;
1834 	}
1835 
1836 	nd->root.mnt = NULL;
1837 
1838 	nd->m_seq = read_seqbegin(&mount_lock);
1839 	if (*name=='/') {
1840 		if (flags & LOOKUP_RCU) {
1841 			rcu_read_lock();
1842 			set_root_rcu(nd);
1843 		} else {
1844 			set_root(nd);
1845 			path_get(&nd->root);
1846 		}
1847 		nd->path = nd->root;
1848 	} else if (dfd == AT_FDCWD) {
1849 		if (flags & LOOKUP_RCU) {
1850 			struct fs_struct *fs = current->fs;
1851 			unsigned seq;
1852 
1853 			rcu_read_lock();
1854 
1855 			do {
1856 				seq = read_seqcount_begin(&fs->seq);
1857 				nd->path = fs->pwd;
1858 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1859 			} while (read_seqcount_retry(&fs->seq, seq));
1860 		} else {
1861 			get_fs_pwd(current->fs, &nd->path);
1862 		}
1863 	} else {
1864 		/* Caller must check execute permissions on the starting path component */
1865 		struct fd f = fdget_raw(dfd);
1866 		struct dentry *dentry;
1867 
1868 		if (!f.file)
1869 			return -EBADF;
1870 
1871 		dentry = f.file->f_path.dentry;
1872 
1873 		if (*name) {
1874 			if (!d_is_directory(dentry)) {
1875 				fdput(f);
1876 				return -ENOTDIR;
1877 			}
1878 		}
1879 
1880 		nd->path = f.file->f_path;
1881 		if (flags & LOOKUP_RCU) {
1882 			if (f.need_put)
1883 				*fp = f.file;
1884 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1885 			rcu_read_lock();
1886 		} else {
1887 			path_get(&nd->path);
1888 			fdput(f);
1889 		}
1890 	}
1891 
1892 	nd->inode = nd->path.dentry->d_inode;
1893 	return 0;
1894 }
1895 
1896 static inline int lookup_last(struct nameidata *nd, struct path *path)
1897 {
1898 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1899 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1900 
1901 	nd->flags &= ~LOOKUP_PARENT;
1902 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1903 }
1904 
1905 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1906 static int path_lookupat(int dfd, const char *name,
1907 				unsigned int flags, struct nameidata *nd)
1908 {
1909 	struct file *base = NULL;
1910 	struct path path;
1911 	int err;
1912 
1913 	/*
1914 	 * Path walking is largely split up into 2 different synchronisation
1915 	 * schemes, rcu-walk and ref-walk (explained in
1916 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1917 	 * path walk code, but some things particularly setup, cleanup, and
1918 	 * following mounts are sufficiently divergent that functions are
1919 	 * duplicated. Typically there is a function foo(), and its RCU
1920 	 * analogue, foo_rcu().
1921 	 *
1922 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1923 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1924 	 * be handled by restarting a traditional ref-walk (which will always
1925 	 * be able to complete).
1926 	 */
1927 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1928 
1929 	if (unlikely(err))
1930 		return err;
1931 
1932 	current->total_link_count = 0;
1933 	err = link_path_walk(name, nd);
1934 
1935 	if (!err && !(flags & LOOKUP_PARENT)) {
1936 		err = lookup_last(nd, &path);
1937 		while (err > 0) {
1938 			void *cookie;
1939 			struct path link = path;
1940 			err = may_follow_link(&link, nd);
1941 			if (unlikely(err))
1942 				break;
1943 			nd->flags |= LOOKUP_PARENT;
1944 			err = follow_link(&link, nd, &cookie);
1945 			if (err)
1946 				break;
1947 			err = lookup_last(nd, &path);
1948 			put_link(nd, &link, cookie);
1949 		}
1950 	}
1951 
1952 	if (!err)
1953 		err = complete_walk(nd);
1954 
1955 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1956 		if (!d_is_directory(nd->path.dentry)) {
1957 			path_put(&nd->path);
1958 			err = -ENOTDIR;
1959 		}
1960 	}
1961 
1962 	if (base)
1963 		fput(base);
1964 
1965 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1966 		path_put(&nd->root);
1967 		nd->root.mnt = NULL;
1968 	}
1969 	return err;
1970 }
1971 
1972 static int filename_lookup(int dfd, struct filename *name,
1973 				unsigned int flags, struct nameidata *nd)
1974 {
1975 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1976 	if (unlikely(retval == -ECHILD))
1977 		retval = path_lookupat(dfd, name->name, flags, nd);
1978 	if (unlikely(retval == -ESTALE))
1979 		retval = path_lookupat(dfd, name->name,
1980 						flags | LOOKUP_REVAL, nd);
1981 
1982 	if (likely(!retval))
1983 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1984 	return retval;
1985 }
1986 
1987 static int do_path_lookup(int dfd, const char *name,
1988 				unsigned int flags, struct nameidata *nd)
1989 {
1990 	struct filename filename = { .name = name };
1991 
1992 	return filename_lookup(dfd, &filename, flags, nd);
1993 }
1994 
1995 /* does lookup, returns the object with parent locked */
1996 struct dentry *kern_path_locked(const char *name, struct path *path)
1997 {
1998 	struct nameidata nd;
1999 	struct dentry *d;
2000 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2001 	if (err)
2002 		return ERR_PTR(err);
2003 	if (nd.last_type != LAST_NORM) {
2004 		path_put(&nd.path);
2005 		return ERR_PTR(-EINVAL);
2006 	}
2007 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2008 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2009 	if (IS_ERR(d)) {
2010 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2011 		path_put(&nd.path);
2012 		return d;
2013 	}
2014 	*path = nd.path;
2015 	return d;
2016 }
2017 
2018 int kern_path(const char *name, unsigned int flags, struct path *path)
2019 {
2020 	struct nameidata nd;
2021 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2022 	if (!res)
2023 		*path = nd.path;
2024 	return res;
2025 }
2026 
2027 /**
2028  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2029  * @dentry:  pointer to dentry of the base directory
2030  * @mnt: pointer to vfs mount of the base directory
2031  * @name: pointer to file name
2032  * @flags: lookup flags
2033  * @path: pointer to struct path to fill
2034  */
2035 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2036 		    const char *name, unsigned int flags,
2037 		    struct path *path)
2038 {
2039 	struct nameidata nd;
2040 	int err;
2041 	nd.root.dentry = dentry;
2042 	nd.root.mnt = mnt;
2043 	BUG_ON(flags & LOOKUP_PARENT);
2044 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2045 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2046 	if (!err)
2047 		*path = nd.path;
2048 	return err;
2049 }
2050 
2051 /*
2052  * Restricted form of lookup. Doesn't follow links, single-component only,
2053  * needs parent already locked. Doesn't follow mounts.
2054  * SMP-safe.
2055  */
2056 static struct dentry *lookup_hash(struct nameidata *nd)
2057 {
2058 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2059 }
2060 
2061 /**
2062  * lookup_one_len - filesystem helper to lookup single pathname component
2063  * @name:	pathname component to lookup
2064  * @base:	base directory to lookup from
2065  * @len:	maximum length @len should be interpreted to
2066  *
2067  * Note that this routine is purely a helper for filesystem usage and should
2068  * not be called by generic code.  Also note that by using this function the
2069  * nameidata argument is passed to the filesystem methods and a filesystem
2070  * using this helper needs to be prepared for that.
2071  */
2072 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2073 {
2074 	struct qstr this;
2075 	unsigned int c;
2076 	int err;
2077 
2078 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2079 
2080 	this.name = name;
2081 	this.len = len;
2082 	this.hash = full_name_hash(name, len);
2083 	if (!len)
2084 		return ERR_PTR(-EACCES);
2085 
2086 	if (unlikely(name[0] == '.')) {
2087 		if (len < 2 || (len == 2 && name[1] == '.'))
2088 			return ERR_PTR(-EACCES);
2089 	}
2090 
2091 	while (len--) {
2092 		c = *(const unsigned char *)name++;
2093 		if (c == '/' || c == '\0')
2094 			return ERR_PTR(-EACCES);
2095 	}
2096 	/*
2097 	 * See if the low-level filesystem might want
2098 	 * to use its own hash..
2099 	 */
2100 	if (base->d_flags & DCACHE_OP_HASH) {
2101 		int err = base->d_op->d_hash(base, &this);
2102 		if (err < 0)
2103 			return ERR_PTR(err);
2104 	}
2105 
2106 	err = inode_permission(base->d_inode, MAY_EXEC);
2107 	if (err)
2108 		return ERR_PTR(err);
2109 
2110 	return __lookup_hash(&this, base, 0);
2111 }
2112 
2113 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2114 		 struct path *path, int *empty)
2115 {
2116 	struct nameidata nd;
2117 	struct filename *tmp = getname_flags(name, flags, empty);
2118 	int err = PTR_ERR(tmp);
2119 	if (!IS_ERR(tmp)) {
2120 
2121 		BUG_ON(flags & LOOKUP_PARENT);
2122 
2123 		err = filename_lookup(dfd, tmp, flags, &nd);
2124 		putname(tmp);
2125 		if (!err)
2126 			*path = nd.path;
2127 	}
2128 	return err;
2129 }
2130 
2131 int user_path_at(int dfd, const char __user *name, unsigned flags,
2132 		 struct path *path)
2133 {
2134 	return user_path_at_empty(dfd, name, flags, path, NULL);
2135 }
2136 
2137 /*
2138  * NB: most callers don't do anything directly with the reference to the
2139  *     to struct filename, but the nd->last pointer points into the name string
2140  *     allocated by getname. So we must hold the reference to it until all
2141  *     path-walking is complete.
2142  */
2143 static struct filename *
2144 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2145 		 unsigned int flags)
2146 {
2147 	struct filename *s = getname(path);
2148 	int error;
2149 
2150 	/* only LOOKUP_REVAL is allowed in extra flags */
2151 	flags &= LOOKUP_REVAL;
2152 
2153 	if (IS_ERR(s))
2154 		return s;
2155 
2156 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2157 	if (error) {
2158 		putname(s);
2159 		return ERR_PTR(error);
2160 	}
2161 
2162 	return s;
2163 }
2164 
2165 /**
2166  * mountpoint_last - look up last component for umount
2167  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2168  * @path: pointer to container for result
2169  *
2170  * This is a special lookup_last function just for umount. In this case, we
2171  * need to resolve the path without doing any revalidation.
2172  *
2173  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2174  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2175  * in almost all cases, this lookup will be served out of the dcache. The only
2176  * cases where it won't are if nd->last refers to a symlink or the path is
2177  * bogus and it doesn't exist.
2178  *
2179  * Returns:
2180  * -error: if there was an error during lookup. This includes -ENOENT if the
2181  *         lookup found a negative dentry. The nd->path reference will also be
2182  *         put in this case.
2183  *
2184  * 0:      if we successfully resolved nd->path and found it to not to be a
2185  *         symlink that needs to be followed. "path" will also be populated.
2186  *         The nd->path reference will also be put.
2187  *
2188  * 1:      if we successfully resolved nd->last and found it to be a symlink
2189  *         that needs to be followed. "path" will be populated with the path
2190  *         to the link, and nd->path will *not* be put.
2191  */
2192 static int
2193 mountpoint_last(struct nameidata *nd, struct path *path)
2194 {
2195 	int error = 0;
2196 	struct dentry *dentry;
2197 	struct dentry *dir = nd->path.dentry;
2198 
2199 	/* If we're in rcuwalk, drop out of it to handle last component */
2200 	if (nd->flags & LOOKUP_RCU) {
2201 		if (unlazy_walk(nd, NULL)) {
2202 			error = -ECHILD;
2203 			goto out;
2204 		}
2205 	}
2206 
2207 	nd->flags &= ~LOOKUP_PARENT;
2208 
2209 	if (unlikely(nd->last_type != LAST_NORM)) {
2210 		error = handle_dots(nd, nd->last_type);
2211 		if (error)
2212 			goto out;
2213 		dentry = dget(nd->path.dentry);
2214 		goto done;
2215 	}
2216 
2217 	mutex_lock(&dir->d_inode->i_mutex);
2218 	dentry = d_lookup(dir, &nd->last);
2219 	if (!dentry) {
2220 		/*
2221 		 * No cached dentry. Mounted dentries are pinned in the cache,
2222 		 * so that means that this dentry is probably a symlink or the
2223 		 * path doesn't actually point to a mounted dentry.
2224 		 */
2225 		dentry = d_alloc(dir, &nd->last);
2226 		if (!dentry) {
2227 			error = -ENOMEM;
2228 			mutex_unlock(&dir->d_inode->i_mutex);
2229 			goto out;
2230 		}
2231 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2232 		error = PTR_ERR(dentry);
2233 		if (IS_ERR(dentry)) {
2234 			mutex_unlock(&dir->d_inode->i_mutex);
2235 			goto out;
2236 		}
2237 	}
2238 	mutex_unlock(&dir->d_inode->i_mutex);
2239 
2240 done:
2241 	if (!dentry->d_inode) {
2242 		error = -ENOENT;
2243 		dput(dentry);
2244 		goto out;
2245 	}
2246 	path->dentry = dentry;
2247 	path->mnt = mntget(nd->path.mnt);
2248 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2249 		return 1;
2250 	follow_mount(path);
2251 	error = 0;
2252 out:
2253 	terminate_walk(nd);
2254 	return error;
2255 }
2256 
2257 /**
2258  * path_mountpoint - look up a path to be umounted
2259  * @dfd:	directory file descriptor to start walk from
2260  * @name:	full pathname to walk
2261  * @path:	pointer to container for result
2262  * @flags:	lookup flags
2263  *
2264  * Look up the given name, but don't attempt to revalidate the last component.
2265  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2266  */
2267 static int
2268 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2269 {
2270 	struct file *base = NULL;
2271 	struct nameidata nd;
2272 	int err;
2273 
2274 	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2275 	if (unlikely(err))
2276 		return err;
2277 
2278 	current->total_link_count = 0;
2279 	err = link_path_walk(name, &nd);
2280 	if (err)
2281 		goto out;
2282 
2283 	err = mountpoint_last(&nd, path);
2284 	while (err > 0) {
2285 		void *cookie;
2286 		struct path link = *path;
2287 		err = may_follow_link(&link, &nd);
2288 		if (unlikely(err))
2289 			break;
2290 		nd.flags |= LOOKUP_PARENT;
2291 		err = follow_link(&link, &nd, &cookie);
2292 		if (err)
2293 			break;
2294 		err = mountpoint_last(&nd, path);
2295 		put_link(&nd, &link, cookie);
2296 	}
2297 out:
2298 	if (base)
2299 		fput(base);
2300 
2301 	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2302 		path_put(&nd.root);
2303 
2304 	return err;
2305 }
2306 
2307 static int
2308 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2309 			unsigned int flags)
2310 {
2311 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2312 	if (unlikely(error == -ECHILD))
2313 		error = path_mountpoint(dfd, s->name, path, flags);
2314 	if (unlikely(error == -ESTALE))
2315 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2316 	if (likely(!error))
2317 		audit_inode(s, path->dentry, 0);
2318 	return error;
2319 }
2320 
2321 /**
2322  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2323  * @dfd:	directory file descriptor
2324  * @name:	pathname from userland
2325  * @flags:	lookup flags
2326  * @path:	pointer to container to hold result
2327  *
2328  * A umount is a special case for path walking. We're not actually interested
2329  * in the inode in this situation, and ESTALE errors can be a problem. We
2330  * simply want track down the dentry and vfsmount attached at the mountpoint
2331  * and avoid revalidating the last component.
2332  *
2333  * Returns 0 and populates "path" on success.
2334  */
2335 int
2336 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2337 			struct path *path)
2338 {
2339 	struct filename *s = getname(name);
2340 	int error;
2341 	if (IS_ERR(s))
2342 		return PTR_ERR(s);
2343 	error = filename_mountpoint(dfd, s, path, flags);
2344 	putname(s);
2345 	return error;
2346 }
2347 
2348 int
2349 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2350 			unsigned int flags)
2351 {
2352 	struct filename s = {.name = name};
2353 	return filename_mountpoint(dfd, &s, path, flags);
2354 }
2355 EXPORT_SYMBOL(kern_path_mountpoint);
2356 
2357 /*
2358  * It's inline, so penalty for filesystems that don't use sticky bit is
2359  * minimal.
2360  */
2361 static inline int check_sticky(struct inode *dir, struct inode *inode)
2362 {
2363 	kuid_t fsuid = current_fsuid();
2364 
2365 	if (!(dir->i_mode & S_ISVTX))
2366 		return 0;
2367 	if (uid_eq(inode->i_uid, fsuid))
2368 		return 0;
2369 	if (uid_eq(dir->i_uid, fsuid))
2370 		return 0;
2371 	return !inode_capable(inode, CAP_FOWNER);
2372 }
2373 
2374 /*
2375  *	Check whether we can remove a link victim from directory dir, check
2376  *  whether the type of victim is right.
2377  *  1. We can't do it if dir is read-only (done in permission())
2378  *  2. We should have write and exec permissions on dir
2379  *  3. We can't remove anything from append-only dir
2380  *  4. We can't do anything with immutable dir (done in permission())
2381  *  5. If the sticky bit on dir is set we should either
2382  *	a. be owner of dir, or
2383  *	b. be owner of victim, or
2384  *	c. have CAP_FOWNER capability
2385  *  6. If the victim is append-only or immutable we can't do antyhing with
2386  *     links pointing to it.
2387  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2388  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2389  *  9. We can't remove a root or mountpoint.
2390  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2391  *     nfs_async_unlink().
2392  */
2393 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2394 {
2395 	struct inode *inode = victim->d_inode;
2396 	int error;
2397 
2398 	if (d_is_negative(victim))
2399 		return -ENOENT;
2400 	BUG_ON(!inode);
2401 
2402 	BUG_ON(victim->d_parent->d_inode != dir);
2403 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2404 
2405 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2406 	if (error)
2407 		return error;
2408 	if (IS_APPEND(dir))
2409 		return -EPERM;
2410 
2411 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2412 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2413 		return -EPERM;
2414 	if (isdir) {
2415 		if (!d_is_directory(victim) && !d_is_autodir(victim))
2416 			return -ENOTDIR;
2417 		if (IS_ROOT(victim))
2418 			return -EBUSY;
2419 	} else if (d_is_directory(victim) || d_is_autodir(victim))
2420 		return -EISDIR;
2421 	if (IS_DEADDIR(dir))
2422 		return -ENOENT;
2423 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2424 		return -EBUSY;
2425 	return 0;
2426 }
2427 
2428 /*	Check whether we can create an object with dentry child in directory
2429  *  dir.
2430  *  1. We can't do it if child already exists (open has special treatment for
2431  *     this case, but since we are inlined it's OK)
2432  *  2. We can't do it if dir is read-only (done in permission())
2433  *  3. We should have write and exec permissions on dir
2434  *  4. We can't do it if dir is immutable (done in permission())
2435  */
2436 static inline int may_create(struct inode *dir, struct dentry *child)
2437 {
2438 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2439 	if (child->d_inode)
2440 		return -EEXIST;
2441 	if (IS_DEADDIR(dir))
2442 		return -ENOENT;
2443 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2444 }
2445 
2446 /*
2447  * p1 and p2 should be directories on the same fs.
2448  */
2449 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2450 {
2451 	struct dentry *p;
2452 
2453 	if (p1 == p2) {
2454 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2455 		return NULL;
2456 	}
2457 
2458 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2459 
2460 	p = d_ancestor(p2, p1);
2461 	if (p) {
2462 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2463 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2464 		return p;
2465 	}
2466 
2467 	p = d_ancestor(p1, p2);
2468 	if (p) {
2469 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2470 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2471 		return p;
2472 	}
2473 
2474 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2475 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2476 	return NULL;
2477 }
2478 
2479 void unlock_rename(struct dentry *p1, struct dentry *p2)
2480 {
2481 	mutex_unlock(&p1->d_inode->i_mutex);
2482 	if (p1 != p2) {
2483 		mutex_unlock(&p2->d_inode->i_mutex);
2484 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2485 	}
2486 }
2487 
2488 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2489 		bool want_excl)
2490 {
2491 	int error = may_create(dir, dentry);
2492 	if (error)
2493 		return error;
2494 
2495 	if (!dir->i_op->create)
2496 		return -EACCES;	/* shouldn't it be ENOSYS? */
2497 	mode &= S_IALLUGO;
2498 	mode |= S_IFREG;
2499 	error = security_inode_create(dir, dentry, mode);
2500 	if (error)
2501 		return error;
2502 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2503 	if (!error)
2504 		fsnotify_create(dir, dentry);
2505 	return error;
2506 }
2507 
2508 static int may_open(struct path *path, int acc_mode, int flag)
2509 {
2510 	struct dentry *dentry = path->dentry;
2511 	struct inode *inode = dentry->d_inode;
2512 	int error;
2513 
2514 	/* O_PATH? */
2515 	if (!acc_mode)
2516 		return 0;
2517 
2518 	if (!inode)
2519 		return -ENOENT;
2520 
2521 	switch (inode->i_mode & S_IFMT) {
2522 	case S_IFLNK:
2523 		return -ELOOP;
2524 	case S_IFDIR:
2525 		if (acc_mode & MAY_WRITE)
2526 			return -EISDIR;
2527 		break;
2528 	case S_IFBLK:
2529 	case S_IFCHR:
2530 		if (path->mnt->mnt_flags & MNT_NODEV)
2531 			return -EACCES;
2532 		/*FALLTHRU*/
2533 	case S_IFIFO:
2534 	case S_IFSOCK:
2535 		flag &= ~O_TRUNC;
2536 		break;
2537 	}
2538 
2539 	error = inode_permission(inode, acc_mode);
2540 	if (error)
2541 		return error;
2542 
2543 	/*
2544 	 * An append-only file must be opened in append mode for writing.
2545 	 */
2546 	if (IS_APPEND(inode)) {
2547 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2548 			return -EPERM;
2549 		if (flag & O_TRUNC)
2550 			return -EPERM;
2551 	}
2552 
2553 	/* O_NOATIME can only be set by the owner or superuser */
2554 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2555 		return -EPERM;
2556 
2557 	return 0;
2558 }
2559 
2560 static int handle_truncate(struct file *filp)
2561 {
2562 	struct path *path = &filp->f_path;
2563 	struct inode *inode = path->dentry->d_inode;
2564 	int error = get_write_access(inode);
2565 	if (error)
2566 		return error;
2567 	/*
2568 	 * Refuse to truncate files with mandatory locks held on them.
2569 	 */
2570 	error = locks_verify_locked(inode);
2571 	if (!error)
2572 		error = security_path_truncate(path);
2573 	if (!error) {
2574 		error = do_truncate(path->dentry, 0,
2575 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2576 				    filp);
2577 	}
2578 	put_write_access(inode);
2579 	return error;
2580 }
2581 
2582 static inline int open_to_namei_flags(int flag)
2583 {
2584 	if ((flag & O_ACCMODE) == 3)
2585 		flag--;
2586 	return flag;
2587 }
2588 
2589 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2590 {
2591 	int error = security_path_mknod(dir, dentry, mode, 0);
2592 	if (error)
2593 		return error;
2594 
2595 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2596 	if (error)
2597 		return error;
2598 
2599 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2600 }
2601 
2602 /*
2603  * Attempt to atomically look up, create and open a file from a negative
2604  * dentry.
2605  *
2606  * Returns 0 if successful.  The file will have been created and attached to
2607  * @file by the filesystem calling finish_open().
2608  *
2609  * Returns 1 if the file was looked up only or didn't need creating.  The
2610  * caller will need to perform the open themselves.  @path will have been
2611  * updated to point to the new dentry.  This may be negative.
2612  *
2613  * Returns an error code otherwise.
2614  */
2615 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2616 			struct path *path, struct file *file,
2617 			const struct open_flags *op,
2618 			bool got_write, bool need_lookup,
2619 			int *opened)
2620 {
2621 	struct inode *dir =  nd->path.dentry->d_inode;
2622 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2623 	umode_t mode;
2624 	int error;
2625 	int acc_mode;
2626 	int create_error = 0;
2627 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2628 	bool excl;
2629 
2630 	BUG_ON(dentry->d_inode);
2631 
2632 	/* Don't create child dentry for a dead directory. */
2633 	if (unlikely(IS_DEADDIR(dir))) {
2634 		error = -ENOENT;
2635 		goto out;
2636 	}
2637 
2638 	mode = op->mode;
2639 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2640 		mode &= ~current_umask();
2641 
2642 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2643 	if (excl)
2644 		open_flag &= ~O_TRUNC;
2645 
2646 	/*
2647 	 * Checking write permission is tricky, bacuse we don't know if we are
2648 	 * going to actually need it: O_CREAT opens should work as long as the
2649 	 * file exists.  But checking existence breaks atomicity.  The trick is
2650 	 * to check access and if not granted clear O_CREAT from the flags.
2651 	 *
2652 	 * Another problem is returing the "right" error value (e.g. for an
2653 	 * O_EXCL open we want to return EEXIST not EROFS).
2654 	 */
2655 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2656 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2657 		if (!(open_flag & O_CREAT)) {
2658 			/*
2659 			 * No O_CREATE -> atomicity not a requirement -> fall
2660 			 * back to lookup + open
2661 			 */
2662 			goto no_open;
2663 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2664 			/* Fall back and fail with the right error */
2665 			create_error = -EROFS;
2666 			goto no_open;
2667 		} else {
2668 			/* No side effects, safe to clear O_CREAT */
2669 			create_error = -EROFS;
2670 			open_flag &= ~O_CREAT;
2671 		}
2672 	}
2673 
2674 	if (open_flag & O_CREAT) {
2675 		error = may_o_create(&nd->path, dentry, mode);
2676 		if (error) {
2677 			create_error = error;
2678 			if (open_flag & O_EXCL)
2679 				goto no_open;
2680 			open_flag &= ~O_CREAT;
2681 		}
2682 	}
2683 
2684 	if (nd->flags & LOOKUP_DIRECTORY)
2685 		open_flag |= O_DIRECTORY;
2686 
2687 	file->f_path.dentry = DENTRY_NOT_SET;
2688 	file->f_path.mnt = nd->path.mnt;
2689 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2690 				      opened);
2691 	if (error < 0) {
2692 		if (create_error && error == -ENOENT)
2693 			error = create_error;
2694 		goto out;
2695 	}
2696 
2697 	if (error) {	/* returned 1, that is */
2698 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2699 			error = -EIO;
2700 			goto out;
2701 		}
2702 		if (file->f_path.dentry) {
2703 			dput(dentry);
2704 			dentry = file->f_path.dentry;
2705 		}
2706 		if (*opened & FILE_CREATED)
2707 			fsnotify_create(dir, dentry);
2708 		if (!dentry->d_inode) {
2709 			WARN_ON(*opened & FILE_CREATED);
2710 			if (create_error) {
2711 				error = create_error;
2712 				goto out;
2713 			}
2714 		} else {
2715 			if (excl && !(*opened & FILE_CREATED)) {
2716 				error = -EEXIST;
2717 				goto out;
2718 			}
2719 		}
2720 		goto looked_up;
2721 	}
2722 
2723 	/*
2724 	 * We didn't have the inode before the open, so check open permission
2725 	 * here.
2726 	 */
2727 	acc_mode = op->acc_mode;
2728 	if (*opened & FILE_CREATED) {
2729 		WARN_ON(!(open_flag & O_CREAT));
2730 		fsnotify_create(dir, dentry);
2731 		acc_mode = MAY_OPEN;
2732 	}
2733 	error = may_open(&file->f_path, acc_mode, open_flag);
2734 	if (error)
2735 		fput(file);
2736 
2737 out:
2738 	dput(dentry);
2739 	return error;
2740 
2741 no_open:
2742 	if (need_lookup) {
2743 		dentry = lookup_real(dir, dentry, nd->flags);
2744 		if (IS_ERR(dentry))
2745 			return PTR_ERR(dentry);
2746 
2747 		if (create_error) {
2748 			int open_flag = op->open_flag;
2749 
2750 			error = create_error;
2751 			if ((open_flag & O_EXCL)) {
2752 				if (!dentry->d_inode)
2753 					goto out;
2754 			} else if (!dentry->d_inode) {
2755 				goto out;
2756 			} else if ((open_flag & O_TRUNC) &&
2757 				   S_ISREG(dentry->d_inode->i_mode)) {
2758 				goto out;
2759 			}
2760 			/* will fail later, go on to get the right error */
2761 		}
2762 	}
2763 looked_up:
2764 	path->dentry = dentry;
2765 	path->mnt = nd->path.mnt;
2766 	return 1;
2767 }
2768 
2769 /*
2770  * Look up and maybe create and open the last component.
2771  *
2772  * Must be called with i_mutex held on parent.
2773  *
2774  * Returns 0 if the file was successfully atomically created (if necessary) and
2775  * opened.  In this case the file will be returned attached to @file.
2776  *
2777  * Returns 1 if the file was not completely opened at this time, though lookups
2778  * and creations will have been performed and the dentry returned in @path will
2779  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2780  * specified then a negative dentry may be returned.
2781  *
2782  * An error code is returned otherwise.
2783  *
2784  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2785  * cleared otherwise prior to returning.
2786  */
2787 static int lookup_open(struct nameidata *nd, struct path *path,
2788 			struct file *file,
2789 			const struct open_flags *op,
2790 			bool got_write, int *opened)
2791 {
2792 	struct dentry *dir = nd->path.dentry;
2793 	struct inode *dir_inode = dir->d_inode;
2794 	struct dentry *dentry;
2795 	int error;
2796 	bool need_lookup;
2797 
2798 	*opened &= ~FILE_CREATED;
2799 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2800 	if (IS_ERR(dentry))
2801 		return PTR_ERR(dentry);
2802 
2803 	/* Cached positive dentry: will open in f_op->open */
2804 	if (!need_lookup && dentry->d_inode)
2805 		goto out_no_open;
2806 
2807 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2808 		return atomic_open(nd, dentry, path, file, op, got_write,
2809 				   need_lookup, opened);
2810 	}
2811 
2812 	if (need_lookup) {
2813 		BUG_ON(dentry->d_inode);
2814 
2815 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2816 		if (IS_ERR(dentry))
2817 			return PTR_ERR(dentry);
2818 	}
2819 
2820 	/* Negative dentry, just create the file */
2821 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2822 		umode_t mode = op->mode;
2823 		if (!IS_POSIXACL(dir->d_inode))
2824 			mode &= ~current_umask();
2825 		/*
2826 		 * This write is needed to ensure that a
2827 		 * rw->ro transition does not occur between
2828 		 * the time when the file is created and when
2829 		 * a permanent write count is taken through
2830 		 * the 'struct file' in finish_open().
2831 		 */
2832 		if (!got_write) {
2833 			error = -EROFS;
2834 			goto out_dput;
2835 		}
2836 		*opened |= FILE_CREATED;
2837 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2838 		if (error)
2839 			goto out_dput;
2840 		error = vfs_create(dir->d_inode, dentry, mode,
2841 				   nd->flags & LOOKUP_EXCL);
2842 		if (error)
2843 			goto out_dput;
2844 	}
2845 out_no_open:
2846 	path->dentry = dentry;
2847 	path->mnt = nd->path.mnt;
2848 	return 1;
2849 
2850 out_dput:
2851 	dput(dentry);
2852 	return error;
2853 }
2854 
2855 /*
2856  * Handle the last step of open()
2857  */
2858 static int do_last(struct nameidata *nd, struct path *path,
2859 		   struct file *file, const struct open_flags *op,
2860 		   int *opened, struct filename *name)
2861 {
2862 	struct dentry *dir = nd->path.dentry;
2863 	int open_flag = op->open_flag;
2864 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2865 	bool got_write = false;
2866 	int acc_mode = op->acc_mode;
2867 	struct inode *inode;
2868 	bool symlink_ok = false;
2869 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2870 	bool retried = false;
2871 	int error;
2872 
2873 	nd->flags &= ~LOOKUP_PARENT;
2874 	nd->flags |= op->intent;
2875 
2876 	if (nd->last_type != LAST_NORM) {
2877 		error = handle_dots(nd, nd->last_type);
2878 		if (error)
2879 			return error;
2880 		goto finish_open;
2881 	}
2882 
2883 	if (!(open_flag & O_CREAT)) {
2884 		if (nd->last.name[nd->last.len])
2885 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2886 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2887 			symlink_ok = true;
2888 		/* we _can_ be in RCU mode here */
2889 		error = lookup_fast(nd, path, &inode);
2890 		if (likely(!error))
2891 			goto finish_lookup;
2892 
2893 		if (error < 0)
2894 			goto out;
2895 
2896 		BUG_ON(nd->inode != dir->d_inode);
2897 	} else {
2898 		/* create side of things */
2899 		/*
2900 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2901 		 * has been cleared when we got to the last component we are
2902 		 * about to look up
2903 		 */
2904 		error = complete_walk(nd);
2905 		if (error)
2906 			return error;
2907 
2908 		audit_inode(name, dir, LOOKUP_PARENT);
2909 		error = -EISDIR;
2910 		/* trailing slashes? */
2911 		if (nd->last.name[nd->last.len])
2912 			goto out;
2913 	}
2914 
2915 retry_lookup:
2916 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2917 		error = mnt_want_write(nd->path.mnt);
2918 		if (!error)
2919 			got_write = true;
2920 		/*
2921 		 * do _not_ fail yet - we might not need that or fail with
2922 		 * a different error; let lookup_open() decide; we'll be
2923 		 * dropping this one anyway.
2924 		 */
2925 	}
2926 	mutex_lock(&dir->d_inode->i_mutex);
2927 	error = lookup_open(nd, path, file, op, got_write, opened);
2928 	mutex_unlock(&dir->d_inode->i_mutex);
2929 
2930 	if (error <= 0) {
2931 		if (error)
2932 			goto out;
2933 
2934 		if ((*opened & FILE_CREATED) ||
2935 		    !S_ISREG(file_inode(file)->i_mode))
2936 			will_truncate = false;
2937 
2938 		audit_inode(name, file->f_path.dentry, 0);
2939 		goto opened;
2940 	}
2941 
2942 	if (*opened & FILE_CREATED) {
2943 		/* Don't check for write permission, don't truncate */
2944 		open_flag &= ~O_TRUNC;
2945 		will_truncate = false;
2946 		acc_mode = MAY_OPEN;
2947 		path_to_nameidata(path, nd);
2948 		goto finish_open_created;
2949 	}
2950 
2951 	/*
2952 	 * create/update audit record if it already exists.
2953 	 */
2954 	if (d_is_positive(path->dentry))
2955 		audit_inode(name, path->dentry, 0);
2956 
2957 	/*
2958 	 * If atomic_open() acquired write access it is dropped now due to
2959 	 * possible mount and symlink following (this might be optimized away if
2960 	 * necessary...)
2961 	 */
2962 	if (got_write) {
2963 		mnt_drop_write(nd->path.mnt);
2964 		got_write = false;
2965 	}
2966 
2967 	error = -EEXIST;
2968 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2969 		goto exit_dput;
2970 
2971 	error = follow_managed(path, nd->flags);
2972 	if (error < 0)
2973 		goto exit_dput;
2974 
2975 	if (error)
2976 		nd->flags |= LOOKUP_JUMPED;
2977 
2978 	BUG_ON(nd->flags & LOOKUP_RCU);
2979 	inode = path->dentry->d_inode;
2980 finish_lookup:
2981 	/* we _can_ be in RCU mode here */
2982 	error = -ENOENT;
2983 	if (d_is_negative(path->dentry)) {
2984 		path_to_nameidata(path, nd);
2985 		goto out;
2986 	}
2987 
2988 	if (should_follow_link(path->dentry, !symlink_ok)) {
2989 		if (nd->flags & LOOKUP_RCU) {
2990 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2991 				error = -ECHILD;
2992 				goto out;
2993 			}
2994 		}
2995 		BUG_ON(inode != path->dentry->d_inode);
2996 		return 1;
2997 	}
2998 
2999 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3000 		path_to_nameidata(path, nd);
3001 	} else {
3002 		save_parent.dentry = nd->path.dentry;
3003 		save_parent.mnt = mntget(path->mnt);
3004 		nd->path.dentry = path->dentry;
3005 
3006 	}
3007 	nd->inode = inode;
3008 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3009 finish_open:
3010 	error = complete_walk(nd);
3011 	if (error) {
3012 		path_put(&save_parent);
3013 		return error;
3014 	}
3015 	audit_inode(name, nd->path.dentry, 0);
3016 	error = -EISDIR;
3017 	if ((open_flag & O_CREAT) &&
3018 	    (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry)))
3019 		goto out;
3020 	error = -ENOTDIR;
3021 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry))
3022 		goto out;
3023 	if (!S_ISREG(nd->inode->i_mode))
3024 		will_truncate = false;
3025 
3026 	if (will_truncate) {
3027 		error = mnt_want_write(nd->path.mnt);
3028 		if (error)
3029 			goto out;
3030 		got_write = true;
3031 	}
3032 finish_open_created:
3033 	error = may_open(&nd->path, acc_mode, open_flag);
3034 	if (error)
3035 		goto out;
3036 	file->f_path.mnt = nd->path.mnt;
3037 	error = finish_open(file, nd->path.dentry, NULL, opened);
3038 	if (error) {
3039 		if (error == -EOPENSTALE)
3040 			goto stale_open;
3041 		goto out;
3042 	}
3043 opened:
3044 	error = open_check_o_direct(file);
3045 	if (error)
3046 		goto exit_fput;
3047 	error = ima_file_check(file, op->acc_mode);
3048 	if (error)
3049 		goto exit_fput;
3050 
3051 	if (will_truncate) {
3052 		error = handle_truncate(file);
3053 		if (error)
3054 			goto exit_fput;
3055 	}
3056 out:
3057 	if (got_write)
3058 		mnt_drop_write(nd->path.mnt);
3059 	path_put(&save_parent);
3060 	terminate_walk(nd);
3061 	return error;
3062 
3063 exit_dput:
3064 	path_put_conditional(path, nd);
3065 	goto out;
3066 exit_fput:
3067 	fput(file);
3068 	goto out;
3069 
3070 stale_open:
3071 	/* If no saved parent or already retried then can't retry */
3072 	if (!save_parent.dentry || retried)
3073 		goto out;
3074 
3075 	BUG_ON(save_parent.dentry != dir);
3076 	path_put(&nd->path);
3077 	nd->path = save_parent;
3078 	nd->inode = dir->d_inode;
3079 	save_parent.mnt = NULL;
3080 	save_parent.dentry = NULL;
3081 	if (got_write) {
3082 		mnt_drop_write(nd->path.mnt);
3083 		got_write = false;
3084 	}
3085 	retried = true;
3086 	goto retry_lookup;
3087 }
3088 
3089 static int do_tmpfile(int dfd, struct filename *pathname,
3090 		struct nameidata *nd, int flags,
3091 		const struct open_flags *op,
3092 		struct file *file, int *opened)
3093 {
3094 	static const struct qstr name = QSTR_INIT("/", 1);
3095 	struct dentry *dentry, *child;
3096 	struct inode *dir;
3097 	int error = path_lookupat(dfd, pathname->name,
3098 				  flags | LOOKUP_DIRECTORY, nd);
3099 	if (unlikely(error))
3100 		return error;
3101 	error = mnt_want_write(nd->path.mnt);
3102 	if (unlikely(error))
3103 		goto out;
3104 	/* we want directory to be writable */
3105 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3106 	if (error)
3107 		goto out2;
3108 	dentry = nd->path.dentry;
3109 	dir = dentry->d_inode;
3110 	if (!dir->i_op->tmpfile) {
3111 		error = -EOPNOTSUPP;
3112 		goto out2;
3113 	}
3114 	child = d_alloc(dentry, &name);
3115 	if (unlikely(!child)) {
3116 		error = -ENOMEM;
3117 		goto out2;
3118 	}
3119 	nd->flags &= ~LOOKUP_DIRECTORY;
3120 	nd->flags |= op->intent;
3121 	dput(nd->path.dentry);
3122 	nd->path.dentry = child;
3123 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3124 	if (error)
3125 		goto out2;
3126 	audit_inode(pathname, nd->path.dentry, 0);
3127 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
3128 	if (error)
3129 		goto out2;
3130 	file->f_path.mnt = nd->path.mnt;
3131 	error = finish_open(file, nd->path.dentry, NULL, opened);
3132 	if (error)
3133 		goto out2;
3134 	error = open_check_o_direct(file);
3135 	if (error) {
3136 		fput(file);
3137 	} else if (!(op->open_flag & O_EXCL)) {
3138 		struct inode *inode = file_inode(file);
3139 		spin_lock(&inode->i_lock);
3140 		inode->i_state |= I_LINKABLE;
3141 		spin_unlock(&inode->i_lock);
3142 	}
3143 out2:
3144 	mnt_drop_write(nd->path.mnt);
3145 out:
3146 	path_put(&nd->path);
3147 	return error;
3148 }
3149 
3150 static struct file *path_openat(int dfd, struct filename *pathname,
3151 		struct nameidata *nd, const struct open_flags *op, int flags)
3152 {
3153 	struct file *base = NULL;
3154 	struct file *file;
3155 	struct path path;
3156 	int opened = 0;
3157 	int error;
3158 
3159 	file = get_empty_filp();
3160 	if (IS_ERR(file))
3161 		return file;
3162 
3163 	file->f_flags = op->open_flag;
3164 
3165 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3166 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3167 		goto out;
3168 	}
3169 
3170 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3171 	if (unlikely(error))
3172 		goto out;
3173 
3174 	current->total_link_count = 0;
3175 	error = link_path_walk(pathname->name, nd);
3176 	if (unlikely(error))
3177 		goto out;
3178 
3179 	error = do_last(nd, &path, file, op, &opened, pathname);
3180 	while (unlikely(error > 0)) { /* trailing symlink */
3181 		struct path link = path;
3182 		void *cookie;
3183 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3184 			path_put_conditional(&path, nd);
3185 			path_put(&nd->path);
3186 			error = -ELOOP;
3187 			break;
3188 		}
3189 		error = may_follow_link(&link, nd);
3190 		if (unlikely(error))
3191 			break;
3192 		nd->flags |= LOOKUP_PARENT;
3193 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3194 		error = follow_link(&link, nd, &cookie);
3195 		if (unlikely(error))
3196 			break;
3197 		error = do_last(nd, &path, file, op, &opened, pathname);
3198 		put_link(nd, &link, cookie);
3199 	}
3200 out:
3201 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3202 		path_put(&nd->root);
3203 	if (base)
3204 		fput(base);
3205 	if (!(opened & FILE_OPENED)) {
3206 		BUG_ON(!error);
3207 		put_filp(file);
3208 	}
3209 	if (unlikely(error)) {
3210 		if (error == -EOPENSTALE) {
3211 			if (flags & LOOKUP_RCU)
3212 				error = -ECHILD;
3213 			else
3214 				error = -ESTALE;
3215 		}
3216 		file = ERR_PTR(error);
3217 	}
3218 	return file;
3219 }
3220 
3221 struct file *do_filp_open(int dfd, struct filename *pathname,
3222 		const struct open_flags *op)
3223 {
3224 	struct nameidata nd;
3225 	int flags = op->lookup_flags;
3226 	struct file *filp;
3227 
3228 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3229 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3230 		filp = path_openat(dfd, pathname, &nd, op, flags);
3231 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3232 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3233 	return filp;
3234 }
3235 
3236 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3237 		const char *name, const struct open_flags *op)
3238 {
3239 	struct nameidata nd;
3240 	struct file *file;
3241 	struct filename filename = { .name = name };
3242 	int flags = op->lookup_flags | LOOKUP_ROOT;
3243 
3244 	nd.root.mnt = mnt;
3245 	nd.root.dentry = dentry;
3246 
3247 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3248 		return ERR_PTR(-ELOOP);
3249 
3250 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3251 	if (unlikely(file == ERR_PTR(-ECHILD)))
3252 		file = path_openat(-1, &filename, &nd, op, flags);
3253 	if (unlikely(file == ERR_PTR(-ESTALE)))
3254 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3255 	return file;
3256 }
3257 
3258 struct dentry *kern_path_create(int dfd, const char *pathname,
3259 				struct path *path, unsigned int lookup_flags)
3260 {
3261 	struct dentry *dentry = ERR_PTR(-EEXIST);
3262 	struct nameidata nd;
3263 	int err2;
3264 	int error;
3265 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3266 
3267 	/*
3268 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3269 	 * other flags passed in are ignored!
3270 	 */
3271 	lookup_flags &= LOOKUP_REVAL;
3272 
3273 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3274 	if (error)
3275 		return ERR_PTR(error);
3276 
3277 	/*
3278 	 * Yucky last component or no last component at all?
3279 	 * (foo/., foo/.., /////)
3280 	 */
3281 	if (nd.last_type != LAST_NORM)
3282 		goto out;
3283 	nd.flags &= ~LOOKUP_PARENT;
3284 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3285 
3286 	/* don't fail immediately if it's r/o, at least try to report other errors */
3287 	err2 = mnt_want_write(nd.path.mnt);
3288 	/*
3289 	 * Do the final lookup.
3290 	 */
3291 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3292 	dentry = lookup_hash(&nd);
3293 	if (IS_ERR(dentry))
3294 		goto unlock;
3295 
3296 	error = -EEXIST;
3297 	if (d_is_positive(dentry))
3298 		goto fail;
3299 
3300 	/*
3301 	 * Special case - lookup gave negative, but... we had foo/bar/
3302 	 * From the vfs_mknod() POV we just have a negative dentry -
3303 	 * all is fine. Let's be bastards - you had / on the end, you've
3304 	 * been asking for (non-existent) directory. -ENOENT for you.
3305 	 */
3306 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3307 		error = -ENOENT;
3308 		goto fail;
3309 	}
3310 	if (unlikely(err2)) {
3311 		error = err2;
3312 		goto fail;
3313 	}
3314 	*path = nd.path;
3315 	return dentry;
3316 fail:
3317 	dput(dentry);
3318 	dentry = ERR_PTR(error);
3319 unlock:
3320 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3321 	if (!err2)
3322 		mnt_drop_write(nd.path.mnt);
3323 out:
3324 	path_put(&nd.path);
3325 	return dentry;
3326 }
3327 EXPORT_SYMBOL(kern_path_create);
3328 
3329 void done_path_create(struct path *path, struct dentry *dentry)
3330 {
3331 	dput(dentry);
3332 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3333 	mnt_drop_write(path->mnt);
3334 	path_put(path);
3335 }
3336 EXPORT_SYMBOL(done_path_create);
3337 
3338 struct dentry *user_path_create(int dfd, const char __user *pathname,
3339 				struct path *path, unsigned int lookup_flags)
3340 {
3341 	struct filename *tmp = getname(pathname);
3342 	struct dentry *res;
3343 	if (IS_ERR(tmp))
3344 		return ERR_CAST(tmp);
3345 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3346 	putname(tmp);
3347 	return res;
3348 }
3349 EXPORT_SYMBOL(user_path_create);
3350 
3351 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3352 {
3353 	int error = may_create(dir, dentry);
3354 
3355 	if (error)
3356 		return error;
3357 
3358 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3359 		return -EPERM;
3360 
3361 	if (!dir->i_op->mknod)
3362 		return -EPERM;
3363 
3364 	error = devcgroup_inode_mknod(mode, dev);
3365 	if (error)
3366 		return error;
3367 
3368 	error = security_inode_mknod(dir, dentry, mode, dev);
3369 	if (error)
3370 		return error;
3371 
3372 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3373 	if (!error)
3374 		fsnotify_create(dir, dentry);
3375 	return error;
3376 }
3377 
3378 static int may_mknod(umode_t mode)
3379 {
3380 	switch (mode & S_IFMT) {
3381 	case S_IFREG:
3382 	case S_IFCHR:
3383 	case S_IFBLK:
3384 	case S_IFIFO:
3385 	case S_IFSOCK:
3386 	case 0: /* zero mode translates to S_IFREG */
3387 		return 0;
3388 	case S_IFDIR:
3389 		return -EPERM;
3390 	default:
3391 		return -EINVAL;
3392 	}
3393 }
3394 
3395 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3396 		unsigned, dev)
3397 {
3398 	struct dentry *dentry;
3399 	struct path path;
3400 	int error;
3401 	unsigned int lookup_flags = 0;
3402 
3403 	error = may_mknod(mode);
3404 	if (error)
3405 		return error;
3406 retry:
3407 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3408 	if (IS_ERR(dentry))
3409 		return PTR_ERR(dentry);
3410 
3411 	if (!IS_POSIXACL(path.dentry->d_inode))
3412 		mode &= ~current_umask();
3413 	error = security_path_mknod(&path, dentry, mode, dev);
3414 	if (error)
3415 		goto out;
3416 	switch (mode & S_IFMT) {
3417 		case 0: case S_IFREG:
3418 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3419 			break;
3420 		case S_IFCHR: case S_IFBLK:
3421 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3422 					new_decode_dev(dev));
3423 			break;
3424 		case S_IFIFO: case S_IFSOCK:
3425 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3426 			break;
3427 	}
3428 out:
3429 	done_path_create(&path, dentry);
3430 	if (retry_estale(error, lookup_flags)) {
3431 		lookup_flags |= LOOKUP_REVAL;
3432 		goto retry;
3433 	}
3434 	return error;
3435 }
3436 
3437 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3438 {
3439 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3440 }
3441 
3442 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3443 {
3444 	int error = may_create(dir, dentry);
3445 	unsigned max_links = dir->i_sb->s_max_links;
3446 
3447 	if (error)
3448 		return error;
3449 
3450 	if (!dir->i_op->mkdir)
3451 		return -EPERM;
3452 
3453 	mode &= (S_IRWXUGO|S_ISVTX);
3454 	error = security_inode_mkdir(dir, dentry, mode);
3455 	if (error)
3456 		return error;
3457 
3458 	if (max_links && dir->i_nlink >= max_links)
3459 		return -EMLINK;
3460 
3461 	error = dir->i_op->mkdir(dir, dentry, mode);
3462 	if (!error)
3463 		fsnotify_mkdir(dir, dentry);
3464 	return error;
3465 }
3466 
3467 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3468 {
3469 	struct dentry *dentry;
3470 	struct path path;
3471 	int error;
3472 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3473 
3474 retry:
3475 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3476 	if (IS_ERR(dentry))
3477 		return PTR_ERR(dentry);
3478 
3479 	if (!IS_POSIXACL(path.dentry->d_inode))
3480 		mode &= ~current_umask();
3481 	error = security_path_mkdir(&path, dentry, mode);
3482 	if (!error)
3483 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3484 	done_path_create(&path, dentry);
3485 	if (retry_estale(error, lookup_flags)) {
3486 		lookup_flags |= LOOKUP_REVAL;
3487 		goto retry;
3488 	}
3489 	return error;
3490 }
3491 
3492 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3493 {
3494 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3495 }
3496 
3497 /*
3498  * The dentry_unhash() helper will try to drop the dentry early: we
3499  * should have a usage count of 1 if we're the only user of this
3500  * dentry, and if that is true (possibly after pruning the dcache),
3501  * then we drop the dentry now.
3502  *
3503  * A low-level filesystem can, if it choses, legally
3504  * do a
3505  *
3506  *	if (!d_unhashed(dentry))
3507  *		return -EBUSY;
3508  *
3509  * if it cannot handle the case of removing a directory
3510  * that is still in use by something else..
3511  */
3512 void dentry_unhash(struct dentry *dentry)
3513 {
3514 	shrink_dcache_parent(dentry);
3515 	spin_lock(&dentry->d_lock);
3516 	if (dentry->d_lockref.count == 1)
3517 		__d_drop(dentry);
3518 	spin_unlock(&dentry->d_lock);
3519 }
3520 
3521 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3522 {
3523 	int error = may_delete(dir, dentry, 1);
3524 
3525 	if (error)
3526 		return error;
3527 
3528 	if (!dir->i_op->rmdir)
3529 		return -EPERM;
3530 
3531 	dget(dentry);
3532 	mutex_lock(&dentry->d_inode->i_mutex);
3533 
3534 	error = -EBUSY;
3535 	if (d_mountpoint(dentry))
3536 		goto out;
3537 
3538 	error = security_inode_rmdir(dir, dentry);
3539 	if (error)
3540 		goto out;
3541 
3542 	shrink_dcache_parent(dentry);
3543 	error = dir->i_op->rmdir(dir, dentry);
3544 	if (error)
3545 		goto out;
3546 
3547 	dentry->d_inode->i_flags |= S_DEAD;
3548 	dont_mount(dentry);
3549 
3550 out:
3551 	mutex_unlock(&dentry->d_inode->i_mutex);
3552 	dput(dentry);
3553 	if (!error)
3554 		d_delete(dentry);
3555 	return error;
3556 }
3557 
3558 static long do_rmdir(int dfd, const char __user *pathname)
3559 {
3560 	int error = 0;
3561 	struct filename *name;
3562 	struct dentry *dentry;
3563 	struct nameidata nd;
3564 	unsigned int lookup_flags = 0;
3565 retry:
3566 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3567 	if (IS_ERR(name))
3568 		return PTR_ERR(name);
3569 
3570 	switch(nd.last_type) {
3571 	case LAST_DOTDOT:
3572 		error = -ENOTEMPTY;
3573 		goto exit1;
3574 	case LAST_DOT:
3575 		error = -EINVAL;
3576 		goto exit1;
3577 	case LAST_ROOT:
3578 		error = -EBUSY;
3579 		goto exit1;
3580 	}
3581 
3582 	nd.flags &= ~LOOKUP_PARENT;
3583 	error = mnt_want_write(nd.path.mnt);
3584 	if (error)
3585 		goto exit1;
3586 
3587 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3588 	dentry = lookup_hash(&nd);
3589 	error = PTR_ERR(dentry);
3590 	if (IS_ERR(dentry))
3591 		goto exit2;
3592 	if (!dentry->d_inode) {
3593 		error = -ENOENT;
3594 		goto exit3;
3595 	}
3596 	error = security_path_rmdir(&nd.path, dentry);
3597 	if (error)
3598 		goto exit3;
3599 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3600 exit3:
3601 	dput(dentry);
3602 exit2:
3603 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3604 	mnt_drop_write(nd.path.mnt);
3605 exit1:
3606 	path_put(&nd.path);
3607 	putname(name);
3608 	if (retry_estale(error, lookup_flags)) {
3609 		lookup_flags |= LOOKUP_REVAL;
3610 		goto retry;
3611 	}
3612 	return error;
3613 }
3614 
3615 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3616 {
3617 	return do_rmdir(AT_FDCWD, pathname);
3618 }
3619 
3620 /**
3621  * vfs_unlink - unlink a filesystem object
3622  * @dir:	parent directory
3623  * @dentry:	victim
3624  * @delegated_inode: returns victim inode, if the inode is delegated.
3625  *
3626  * The caller must hold dir->i_mutex.
3627  *
3628  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3629  * return a reference to the inode in delegated_inode.  The caller
3630  * should then break the delegation on that inode and retry.  Because
3631  * breaking a delegation may take a long time, the caller should drop
3632  * dir->i_mutex before doing so.
3633  *
3634  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3635  * be appropriate for callers that expect the underlying filesystem not
3636  * to be NFS exported.
3637  */
3638 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3639 {
3640 	struct inode *target = dentry->d_inode;
3641 	int error = may_delete(dir, dentry, 0);
3642 
3643 	if (error)
3644 		return error;
3645 
3646 	if (!dir->i_op->unlink)
3647 		return -EPERM;
3648 
3649 	mutex_lock(&target->i_mutex);
3650 	if (d_mountpoint(dentry))
3651 		error = -EBUSY;
3652 	else {
3653 		error = security_inode_unlink(dir, dentry);
3654 		if (!error) {
3655 			error = try_break_deleg(target, delegated_inode);
3656 			if (error)
3657 				goto out;
3658 			error = dir->i_op->unlink(dir, dentry);
3659 			if (!error)
3660 				dont_mount(dentry);
3661 		}
3662 	}
3663 out:
3664 	mutex_unlock(&target->i_mutex);
3665 
3666 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3667 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3668 		fsnotify_link_count(target);
3669 		d_delete(dentry);
3670 	}
3671 
3672 	return error;
3673 }
3674 
3675 /*
3676  * Make sure that the actual truncation of the file will occur outside its
3677  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3678  * writeout happening, and we don't want to prevent access to the directory
3679  * while waiting on the I/O.
3680  */
3681 static long do_unlinkat(int dfd, const char __user *pathname)
3682 {
3683 	int error;
3684 	struct filename *name;
3685 	struct dentry *dentry;
3686 	struct nameidata nd;
3687 	struct inode *inode = NULL;
3688 	struct inode *delegated_inode = NULL;
3689 	unsigned int lookup_flags = 0;
3690 retry:
3691 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3692 	if (IS_ERR(name))
3693 		return PTR_ERR(name);
3694 
3695 	error = -EISDIR;
3696 	if (nd.last_type != LAST_NORM)
3697 		goto exit1;
3698 
3699 	nd.flags &= ~LOOKUP_PARENT;
3700 	error = mnt_want_write(nd.path.mnt);
3701 	if (error)
3702 		goto exit1;
3703 retry_deleg:
3704 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3705 	dentry = lookup_hash(&nd);
3706 	error = PTR_ERR(dentry);
3707 	if (!IS_ERR(dentry)) {
3708 		/* Why not before? Because we want correct error value */
3709 		if (nd.last.name[nd.last.len])
3710 			goto slashes;
3711 		inode = dentry->d_inode;
3712 		if (d_is_negative(dentry))
3713 			goto slashes;
3714 		ihold(inode);
3715 		error = security_path_unlink(&nd.path, dentry);
3716 		if (error)
3717 			goto exit2;
3718 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3719 exit2:
3720 		dput(dentry);
3721 	}
3722 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3723 	if (inode)
3724 		iput(inode);	/* truncate the inode here */
3725 	inode = NULL;
3726 	if (delegated_inode) {
3727 		error = break_deleg_wait(&delegated_inode);
3728 		if (!error)
3729 			goto retry_deleg;
3730 	}
3731 	mnt_drop_write(nd.path.mnt);
3732 exit1:
3733 	path_put(&nd.path);
3734 	putname(name);
3735 	if (retry_estale(error, lookup_flags)) {
3736 		lookup_flags |= LOOKUP_REVAL;
3737 		inode = NULL;
3738 		goto retry;
3739 	}
3740 	return error;
3741 
3742 slashes:
3743 	if (d_is_negative(dentry))
3744 		error = -ENOENT;
3745 	else if (d_is_directory(dentry) || d_is_autodir(dentry))
3746 		error = -EISDIR;
3747 	else
3748 		error = -ENOTDIR;
3749 	goto exit2;
3750 }
3751 
3752 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3753 {
3754 	if ((flag & ~AT_REMOVEDIR) != 0)
3755 		return -EINVAL;
3756 
3757 	if (flag & AT_REMOVEDIR)
3758 		return do_rmdir(dfd, pathname);
3759 
3760 	return do_unlinkat(dfd, pathname);
3761 }
3762 
3763 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3764 {
3765 	return do_unlinkat(AT_FDCWD, pathname);
3766 }
3767 
3768 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3769 {
3770 	int error = may_create(dir, dentry);
3771 
3772 	if (error)
3773 		return error;
3774 
3775 	if (!dir->i_op->symlink)
3776 		return -EPERM;
3777 
3778 	error = security_inode_symlink(dir, dentry, oldname);
3779 	if (error)
3780 		return error;
3781 
3782 	error = dir->i_op->symlink(dir, dentry, oldname);
3783 	if (!error)
3784 		fsnotify_create(dir, dentry);
3785 	return error;
3786 }
3787 
3788 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3789 		int, newdfd, const char __user *, newname)
3790 {
3791 	int error;
3792 	struct filename *from;
3793 	struct dentry *dentry;
3794 	struct path path;
3795 	unsigned int lookup_flags = 0;
3796 
3797 	from = getname(oldname);
3798 	if (IS_ERR(from))
3799 		return PTR_ERR(from);
3800 retry:
3801 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3802 	error = PTR_ERR(dentry);
3803 	if (IS_ERR(dentry))
3804 		goto out_putname;
3805 
3806 	error = security_path_symlink(&path, dentry, from->name);
3807 	if (!error)
3808 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3809 	done_path_create(&path, dentry);
3810 	if (retry_estale(error, lookup_flags)) {
3811 		lookup_flags |= LOOKUP_REVAL;
3812 		goto retry;
3813 	}
3814 out_putname:
3815 	putname(from);
3816 	return error;
3817 }
3818 
3819 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3820 {
3821 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3822 }
3823 
3824 /**
3825  * vfs_link - create a new link
3826  * @old_dentry:	object to be linked
3827  * @dir:	new parent
3828  * @new_dentry:	where to create the new link
3829  * @delegated_inode: returns inode needing a delegation break
3830  *
3831  * The caller must hold dir->i_mutex
3832  *
3833  * If vfs_link discovers a delegation on the to-be-linked file in need
3834  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3835  * inode in delegated_inode.  The caller should then break the delegation
3836  * and retry.  Because breaking a delegation may take a long time, the
3837  * caller should drop the i_mutex before doing so.
3838  *
3839  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3840  * be appropriate for callers that expect the underlying filesystem not
3841  * to be NFS exported.
3842  */
3843 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3844 {
3845 	struct inode *inode = old_dentry->d_inode;
3846 	unsigned max_links = dir->i_sb->s_max_links;
3847 	int error;
3848 
3849 	if (!inode)
3850 		return -ENOENT;
3851 
3852 	error = may_create(dir, new_dentry);
3853 	if (error)
3854 		return error;
3855 
3856 	if (dir->i_sb != inode->i_sb)
3857 		return -EXDEV;
3858 
3859 	/*
3860 	 * A link to an append-only or immutable file cannot be created.
3861 	 */
3862 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3863 		return -EPERM;
3864 	if (!dir->i_op->link)
3865 		return -EPERM;
3866 	if (S_ISDIR(inode->i_mode))
3867 		return -EPERM;
3868 
3869 	error = security_inode_link(old_dentry, dir, new_dentry);
3870 	if (error)
3871 		return error;
3872 
3873 	mutex_lock(&inode->i_mutex);
3874 	/* Make sure we don't allow creating hardlink to an unlinked file */
3875 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3876 		error =  -ENOENT;
3877 	else if (max_links && inode->i_nlink >= max_links)
3878 		error = -EMLINK;
3879 	else {
3880 		error = try_break_deleg(inode, delegated_inode);
3881 		if (!error)
3882 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3883 	}
3884 
3885 	if (!error && (inode->i_state & I_LINKABLE)) {
3886 		spin_lock(&inode->i_lock);
3887 		inode->i_state &= ~I_LINKABLE;
3888 		spin_unlock(&inode->i_lock);
3889 	}
3890 	mutex_unlock(&inode->i_mutex);
3891 	if (!error)
3892 		fsnotify_link(dir, inode, new_dentry);
3893 	return error;
3894 }
3895 
3896 /*
3897  * Hardlinks are often used in delicate situations.  We avoid
3898  * security-related surprises by not following symlinks on the
3899  * newname.  --KAB
3900  *
3901  * We don't follow them on the oldname either to be compatible
3902  * with linux 2.0, and to avoid hard-linking to directories
3903  * and other special files.  --ADM
3904  */
3905 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3906 		int, newdfd, const char __user *, newname, int, flags)
3907 {
3908 	struct dentry *new_dentry;
3909 	struct path old_path, new_path;
3910 	struct inode *delegated_inode = NULL;
3911 	int how = 0;
3912 	int error;
3913 
3914 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3915 		return -EINVAL;
3916 	/*
3917 	 * To use null names we require CAP_DAC_READ_SEARCH
3918 	 * This ensures that not everyone will be able to create
3919 	 * handlink using the passed filedescriptor.
3920 	 */
3921 	if (flags & AT_EMPTY_PATH) {
3922 		if (!capable(CAP_DAC_READ_SEARCH))
3923 			return -ENOENT;
3924 		how = LOOKUP_EMPTY;
3925 	}
3926 
3927 	if (flags & AT_SYMLINK_FOLLOW)
3928 		how |= LOOKUP_FOLLOW;
3929 retry:
3930 	error = user_path_at(olddfd, oldname, how, &old_path);
3931 	if (error)
3932 		return error;
3933 
3934 	new_dentry = user_path_create(newdfd, newname, &new_path,
3935 					(how & LOOKUP_REVAL));
3936 	error = PTR_ERR(new_dentry);
3937 	if (IS_ERR(new_dentry))
3938 		goto out;
3939 
3940 	error = -EXDEV;
3941 	if (old_path.mnt != new_path.mnt)
3942 		goto out_dput;
3943 	error = may_linkat(&old_path);
3944 	if (unlikely(error))
3945 		goto out_dput;
3946 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3947 	if (error)
3948 		goto out_dput;
3949 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3950 out_dput:
3951 	done_path_create(&new_path, new_dentry);
3952 	if (delegated_inode) {
3953 		error = break_deleg_wait(&delegated_inode);
3954 		if (!error)
3955 			goto retry;
3956 	}
3957 	if (retry_estale(error, how)) {
3958 		how |= LOOKUP_REVAL;
3959 		goto retry;
3960 	}
3961 out:
3962 	path_put(&old_path);
3963 
3964 	return error;
3965 }
3966 
3967 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3968 {
3969 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3970 }
3971 
3972 /*
3973  * The worst of all namespace operations - renaming directory. "Perverted"
3974  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3975  * Problems:
3976  *	a) we can get into loop creation. Check is done in is_subdir().
3977  *	b) race potential - two innocent renames can create a loop together.
3978  *	   That's where 4.4 screws up. Current fix: serialization on
3979  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3980  *	   story.
3981  *	c) we have to lock _four_ objects - parents and victim (if it exists),
3982  *	   and source (if it is not a directory).
3983  *	   And that - after we got ->i_mutex on parents (until then we don't know
3984  *	   whether the target exists).  Solution: try to be smart with locking
3985  *	   order for inodes.  We rely on the fact that tree topology may change
3986  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3987  *	   move will be locked.  Thus we can rank directories by the tree
3988  *	   (ancestors first) and rank all non-directories after them.
3989  *	   That works since everybody except rename does "lock parent, lookup,
3990  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3991  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3992  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3993  *	   we'd better make sure that there's no link(2) for them.
3994  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3995  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3996  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3997  *	   ->i_mutex on parents, which works but leads to some truly excessive
3998  *	   locking].
3999  */
4000 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
4001 			  struct inode *new_dir, struct dentry *new_dentry)
4002 {
4003 	int error = 0;
4004 	struct inode *target = new_dentry->d_inode;
4005 	unsigned max_links = new_dir->i_sb->s_max_links;
4006 
4007 	/*
4008 	 * If we are going to change the parent - check write permissions,
4009 	 * we'll need to flip '..'.
4010 	 */
4011 	if (new_dir != old_dir) {
4012 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
4013 		if (error)
4014 			return error;
4015 	}
4016 
4017 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4018 	if (error)
4019 		return error;
4020 
4021 	dget(new_dentry);
4022 	if (target)
4023 		mutex_lock(&target->i_mutex);
4024 
4025 	error = -EBUSY;
4026 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4027 		goto out;
4028 
4029 	error = -EMLINK;
4030 	if (max_links && !target && new_dir != old_dir &&
4031 	    new_dir->i_nlink >= max_links)
4032 		goto out;
4033 
4034 	if (target)
4035 		shrink_dcache_parent(new_dentry);
4036 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4037 	if (error)
4038 		goto out;
4039 
4040 	if (target) {
4041 		target->i_flags |= S_DEAD;
4042 		dont_mount(new_dentry);
4043 	}
4044 out:
4045 	if (target)
4046 		mutex_unlock(&target->i_mutex);
4047 	dput(new_dentry);
4048 	if (!error)
4049 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4050 			d_move(old_dentry,new_dentry);
4051 	return error;
4052 }
4053 
4054 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4055 			    struct inode *new_dir, struct dentry *new_dentry,
4056 			    struct inode **delegated_inode)
4057 {
4058 	struct inode *target = new_dentry->d_inode;
4059 	struct inode *source = old_dentry->d_inode;
4060 	int error;
4061 
4062 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4063 	if (error)
4064 		return error;
4065 
4066 	dget(new_dentry);
4067 	lock_two_nondirectories(source, target);
4068 
4069 	error = -EBUSY;
4070 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4071 		goto out;
4072 
4073 	error = try_break_deleg(source, delegated_inode);
4074 	if (error)
4075 		goto out;
4076 	if (target) {
4077 		error = try_break_deleg(target, delegated_inode);
4078 		if (error)
4079 			goto out;
4080 	}
4081 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4082 	if (error)
4083 		goto out;
4084 
4085 	if (target)
4086 		dont_mount(new_dentry);
4087 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4088 		d_move(old_dentry, new_dentry);
4089 out:
4090 	unlock_two_nondirectories(source, target);
4091 	dput(new_dentry);
4092 	return error;
4093 }
4094 
4095 /**
4096  * vfs_rename - rename a filesystem object
4097  * @old_dir:	parent of source
4098  * @old_dentry:	source
4099  * @new_dir:	parent of destination
4100  * @new_dentry:	destination
4101  * @delegated_inode: returns an inode needing a delegation break
4102  *
4103  * The caller must hold multiple mutexes--see lock_rename()).
4104  *
4105  * If vfs_rename discovers a delegation in need of breaking at either
4106  * the source or destination, it will return -EWOULDBLOCK and return a
4107  * reference to the inode in delegated_inode.  The caller should then
4108  * break the delegation and retry.  Because breaking a delegation may
4109  * take a long time, the caller should drop all locks before doing
4110  * so.
4111  *
4112  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4113  * be appropriate for callers that expect the underlying filesystem not
4114  * to be NFS exported.
4115  */
4116 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4117 	       struct inode *new_dir, struct dentry *new_dentry,
4118 	       struct inode **delegated_inode)
4119 {
4120 	int error;
4121 	int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry);
4122 	const unsigned char *old_name;
4123 
4124 	if (old_dentry->d_inode == new_dentry->d_inode)
4125  		return 0;
4126 
4127 	error = may_delete(old_dir, old_dentry, is_dir);
4128 	if (error)
4129 		return error;
4130 
4131 	if (!new_dentry->d_inode)
4132 		error = may_create(new_dir, new_dentry);
4133 	else
4134 		error = may_delete(new_dir, new_dentry, is_dir);
4135 	if (error)
4136 		return error;
4137 
4138 	if (!old_dir->i_op->rename)
4139 		return -EPERM;
4140 
4141 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4142 
4143 	if (is_dir)
4144 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4145 	else
4146 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode);
4147 	if (!error)
4148 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4149 			      new_dentry->d_inode, old_dentry);
4150 	fsnotify_oldname_free(old_name);
4151 
4152 	return error;
4153 }
4154 
4155 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4156 		int, newdfd, const char __user *, newname)
4157 {
4158 	struct dentry *old_dir, *new_dir;
4159 	struct dentry *old_dentry, *new_dentry;
4160 	struct dentry *trap;
4161 	struct nameidata oldnd, newnd;
4162 	struct inode *delegated_inode = NULL;
4163 	struct filename *from;
4164 	struct filename *to;
4165 	unsigned int lookup_flags = 0;
4166 	bool should_retry = false;
4167 	int error;
4168 retry:
4169 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4170 	if (IS_ERR(from)) {
4171 		error = PTR_ERR(from);
4172 		goto exit;
4173 	}
4174 
4175 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4176 	if (IS_ERR(to)) {
4177 		error = PTR_ERR(to);
4178 		goto exit1;
4179 	}
4180 
4181 	error = -EXDEV;
4182 	if (oldnd.path.mnt != newnd.path.mnt)
4183 		goto exit2;
4184 
4185 	old_dir = oldnd.path.dentry;
4186 	error = -EBUSY;
4187 	if (oldnd.last_type != LAST_NORM)
4188 		goto exit2;
4189 
4190 	new_dir = newnd.path.dentry;
4191 	if (newnd.last_type != LAST_NORM)
4192 		goto exit2;
4193 
4194 	error = mnt_want_write(oldnd.path.mnt);
4195 	if (error)
4196 		goto exit2;
4197 
4198 	oldnd.flags &= ~LOOKUP_PARENT;
4199 	newnd.flags &= ~LOOKUP_PARENT;
4200 	newnd.flags |= LOOKUP_RENAME_TARGET;
4201 
4202 retry_deleg:
4203 	trap = lock_rename(new_dir, old_dir);
4204 
4205 	old_dentry = lookup_hash(&oldnd);
4206 	error = PTR_ERR(old_dentry);
4207 	if (IS_ERR(old_dentry))
4208 		goto exit3;
4209 	/* source must exist */
4210 	error = -ENOENT;
4211 	if (d_is_negative(old_dentry))
4212 		goto exit4;
4213 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4214 	if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) {
4215 		error = -ENOTDIR;
4216 		if (oldnd.last.name[oldnd.last.len])
4217 			goto exit4;
4218 		if (newnd.last.name[newnd.last.len])
4219 			goto exit4;
4220 	}
4221 	/* source should not be ancestor of target */
4222 	error = -EINVAL;
4223 	if (old_dentry == trap)
4224 		goto exit4;
4225 	new_dentry = lookup_hash(&newnd);
4226 	error = PTR_ERR(new_dentry);
4227 	if (IS_ERR(new_dentry))
4228 		goto exit4;
4229 	/* target should not be an ancestor of source */
4230 	error = -ENOTEMPTY;
4231 	if (new_dentry == trap)
4232 		goto exit5;
4233 
4234 	error = security_path_rename(&oldnd.path, old_dentry,
4235 				     &newnd.path, new_dentry);
4236 	if (error)
4237 		goto exit5;
4238 	error = vfs_rename(old_dir->d_inode, old_dentry,
4239 				   new_dir->d_inode, new_dentry,
4240 				   &delegated_inode);
4241 exit5:
4242 	dput(new_dentry);
4243 exit4:
4244 	dput(old_dentry);
4245 exit3:
4246 	unlock_rename(new_dir, old_dir);
4247 	if (delegated_inode) {
4248 		error = break_deleg_wait(&delegated_inode);
4249 		if (!error)
4250 			goto retry_deleg;
4251 	}
4252 	mnt_drop_write(oldnd.path.mnt);
4253 exit2:
4254 	if (retry_estale(error, lookup_flags))
4255 		should_retry = true;
4256 	path_put(&newnd.path);
4257 	putname(to);
4258 exit1:
4259 	path_put(&oldnd.path);
4260 	putname(from);
4261 	if (should_retry) {
4262 		should_retry = false;
4263 		lookup_flags |= LOOKUP_REVAL;
4264 		goto retry;
4265 	}
4266 exit:
4267 	return error;
4268 }
4269 
4270 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4271 {
4272 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4273 }
4274 
4275 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4276 {
4277 	int len;
4278 
4279 	len = PTR_ERR(link);
4280 	if (IS_ERR(link))
4281 		goto out;
4282 
4283 	len = strlen(link);
4284 	if (len > (unsigned) buflen)
4285 		len = buflen;
4286 	if (copy_to_user(buffer, link, len))
4287 		len = -EFAULT;
4288 out:
4289 	return len;
4290 }
4291 
4292 /*
4293  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4294  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4295  * using) it for any given inode is up to filesystem.
4296  */
4297 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4298 {
4299 	struct nameidata nd;
4300 	void *cookie;
4301 	int res;
4302 
4303 	nd.depth = 0;
4304 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4305 	if (IS_ERR(cookie))
4306 		return PTR_ERR(cookie);
4307 
4308 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4309 	if (dentry->d_inode->i_op->put_link)
4310 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4311 	return res;
4312 }
4313 
4314 /* get the link contents into pagecache */
4315 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4316 {
4317 	char *kaddr;
4318 	struct page *page;
4319 	struct address_space *mapping = dentry->d_inode->i_mapping;
4320 	page = read_mapping_page(mapping, 0, NULL);
4321 	if (IS_ERR(page))
4322 		return (char*)page;
4323 	*ppage = page;
4324 	kaddr = kmap(page);
4325 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4326 	return kaddr;
4327 }
4328 
4329 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4330 {
4331 	struct page *page = NULL;
4332 	char *s = page_getlink(dentry, &page);
4333 	int res = vfs_readlink(dentry,buffer,buflen,s);
4334 	if (page) {
4335 		kunmap(page);
4336 		page_cache_release(page);
4337 	}
4338 	return res;
4339 }
4340 
4341 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4342 {
4343 	struct page *page = NULL;
4344 	nd_set_link(nd, page_getlink(dentry, &page));
4345 	return page;
4346 }
4347 
4348 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4349 {
4350 	struct page *page = cookie;
4351 
4352 	if (page) {
4353 		kunmap(page);
4354 		page_cache_release(page);
4355 	}
4356 }
4357 
4358 /*
4359  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4360  */
4361 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4362 {
4363 	struct address_space *mapping = inode->i_mapping;
4364 	struct page *page;
4365 	void *fsdata;
4366 	int err;
4367 	char *kaddr;
4368 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4369 	if (nofs)
4370 		flags |= AOP_FLAG_NOFS;
4371 
4372 retry:
4373 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4374 				flags, &page, &fsdata);
4375 	if (err)
4376 		goto fail;
4377 
4378 	kaddr = kmap_atomic(page);
4379 	memcpy(kaddr, symname, len-1);
4380 	kunmap_atomic(kaddr);
4381 
4382 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4383 							page, fsdata);
4384 	if (err < 0)
4385 		goto fail;
4386 	if (err < len-1)
4387 		goto retry;
4388 
4389 	mark_inode_dirty(inode);
4390 	return 0;
4391 fail:
4392 	return err;
4393 }
4394 
4395 int page_symlink(struct inode *inode, const char *symname, int len)
4396 {
4397 	return __page_symlink(inode, symname, len,
4398 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4399 }
4400 
4401 const struct inode_operations page_symlink_inode_operations = {
4402 	.readlink	= generic_readlink,
4403 	.follow_link	= page_follow_link_light,
4404 	.put_link	= page_put_link,
4405 };
4406 
4407 EXPORT_SYMBOL(user_path_at);
4408 EXPORT_SYMBOL(follow_down_one);
4409 EXPORT_SYMBOL(follow_down);
4410 EXPORT_SYMBOL(follow_up);
4411 EXPORT_SYMBOL(get_write_access); /* nfsd */
4412 EXPORT_SYMBOL(lock_rename);
4413 EXPORT_SYMBOL(lookup_one_len);
4414 EXPORT_SYMBOL(page_follow_link_light);
4415 EXPORT_SYMBOL(page_put_link);
4416 EXPORT_SYMBOL(page_readlink);
4417 EXPORT_SYMBOL(__page_symlink);
4418 EXPORT_SYMBOL(page_symlink);
4419 EXPORT_SYMBOL(page_symlink_inode_operations);
4420 EXPORT_SYMBOL(kern_path);
4421 EXPORT_SYMBOL(vfs_path_lookup);
4422 EXPORT_SYMBOL(inode_permission);
4423 EXPORT_SYMBOL(unlock_rename);
4424 EXPORT_SYMBOL(vfs_create);
4425 EXPORT_SYMBOL(vfs_link);
4426 EXPORT_SYMBOL(vfs_mkdir);
4427 EXPORT_SYMBOL(vfs_mknod);
4428 EXPORT_SYMBOL(generic_permission);
4429 EXPORT_SYMBOL(vfs_readlink);
4430 EXPORT_SYMBOL(vfs_rename);
4431 EXPORT_SYMBOL(vfs_rmdir);
4432 EXPORT_SYMBOL(vfs_symlink);
4433 EXPORT_SYMBOL(vfs_unlink);
4434 EXPORT_SYMBOL(dentry_unhash);
4435 EXPORT_SYMBOL(generic_readlink);
4436