1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 void final_putname(struct filename *name) 121 { 122 if (name->separate) { 123 __putname(name->name); 124 kfree(name); 125 } else { 126 __putname(name); 127 } 128 } 129 130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 131 132 static struct filename * 133 getname_flags(const char __user *filename, int flags, int *empty) 134 { 135 struct filename *result, *err; 136 int len; 137 long max; 138 char *kname; 139 140 result = audit_reusename(filename); 141 if (result) 142 return result; 143 144 result = __getname(); 145 if (unlikely(!result)) 146 return ERR_PTR(-ENOMEM); 147 148 /* 149 * First, try to embed the struct filename inside the names_cache 150 * allocation 151 */ 152 kname = (char *)result + sizeof(*result); 153 result->name = kname; 154 result->separate = false; 155 max = EMBEDDED_NAME_MAX; 156 157 recopy: 158 len = strncpy_from_user(kname, filename, max); 159 if (unlikely(len < 0)) { 160 err = ERR_PTR(len); 161 goto error; 162 } 163 164 /* 165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 166 * separate struct filename so we can dedicate the entire 167 * names_cache allocation for the pathname, and re-do the copy from 168 * userland. 169 */ 170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 171 kname = (char *)result; 172 173 result = kzalloc(sizeof(*result), GFP_KERNEL); 174 if (!result) { 175 err = ERR_PTR(-ENOMEM); 176 result = (struct filename *)kname; 177 goto error; 178 } 179 result->name = kname; 180 result->separate = true; 181 max = PATH_MAX; 182 goto recopy; 183 } 184 185 /* The empty path is special. */ 186 if (unlikely(!len)) { 187 if (empty) 188 *empty = 1; 189 err = ERR_PTR(-ENOENT); 190 if (!(flags & LOOKUP_EMPTY)) 191 goto error; 192 } 193 194 err = ERR_PTR(-ENAMETOOLONG); 195 if (unlikely(len >= PATH_MAX)) 196 goto error; 197 198 result->uptr = filename; 199 audit_getname(result); 200 return result; 201 202 error: 203 final_putname(result); 204 return err; 205 } 206 207 struct filename * 208 getname(const char __user * filename) 209 { 210 return getname_flags(filename, 0, NULL); 211 } 212 EXPORT_SYMBOL(getname); 213 214 #ifdef CONFIG_AUDITSYSCALL 215 void putname(struct filename *name) 216 { 217 if (unlikely(!audit_dummy_context())) 218 return audit_putname(name); 219 final_putname(name); 220 } 221 #endif 222 223 static int check_acl(struct inode *inode, int mask) 224 { 225 #ifdef CONFIG_FS_POSIX_ACL 226 struct posix_acl *acl; 227 228 if (mask & MAY_NOT_BLOCK) { 229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 230 if (!acl) 231 return -EAGAIN; 232 /* no ->get_acl() calls in RCU mode... */ 233 if (acl == ACL_NOT_CACHED) 234 return -ECHILD; 235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 236 } 237 238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS); 239 240 /* 241 * A filesystem can force a ACL callback by just never filling the 242 * ACL cache. But normally you'd fill the cache either at inode 243 * instantiation time, or on the first ->get_acl call. 244 * 245 * If the filesystem doesn't have a get_acl() function at all, we'll 246 * just create the negative cache entry. 247 */ 248 if (acl == ACL_NOT_CACHED) { 249 if (inode->i_op->get_acl) { 250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); 251 if (IS_ERR(acl)) 252 return PTR_ERR(acl); 253 } else { 254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); 255 return -EAGAIN; 256 } 257 } 258 259 if (acl) { 260 int error = posix_acl_permission(inode, acl, mask); 261 posix_acl_release(acl); 262 return error; 263 } 264 #endif 265 266 return -EAGAIN; 267 } 268 269 /* 270 * This does the basic permission checking 271 */ 272 static int acl_permission_check(struct inode *inode, int mask) 273 { 274 unsigned int mode = inode->i_mode; 275 276 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 277 mode >>= 6; 278 else { 279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 280 int error = check_acl(inode, mask); 281 if (error != -EAGAIN) 282 return error; 283 } 284 285 if (in_group_p(inode->i_gid)) 286 mode >>= 3; 287 } 288 289 /* 290 * If the DACs are ok we don't need any capability check. 291 */ 292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 293 return 0; 294 return -EACCES; 295 } 296 297 /** 298 * generic_permission - check for access rights on a Posix-like filesystem 299 * @inode: inode to check access rights for 300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 301 * 302 * Used to check for read/write/execute permissions on a file. 303 * We use "fsuid" for this, letting us set arbitrary permissions 304 * for filesystem access without changing the "normal" uids which 305 * are used for other things. 306 * 307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 308 * request cannot be satisfied (eg. requires blocking or too much complexity). 309 * It would then be called again in ref-walk mode. 310 */ 311 int generic_permission(struct inode *inode, int mask) 312 { 313 int ret; 314 315 /* 316 * Do the basic permission checks. 317 */ 318 ret = acl_permission_check(inode, mask); 319 if (ret != -EACCES) 320 return ret; 321 322 if (S_ISDIR(inode->i_mode)) { 323 /* DACs are overridable for directories */ 324 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 325 return 0; 326 if (!(mask & MAY_WRITE)) 327 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 328 return 0; 329 return -EACCES; 330 } 331 /* 332 * Read/write DACs are always overridable. 333 * Executable DACs are overridable when there is 334 * at least one exec bit set. 335 */ 336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 337 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 338 return 0; 339 340 /* 341 * Searching includes executable on directories, else just read. 342 */ 343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 344 if (mask == MAY_READ) 345 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 346 return 0; 347 348 return -EACCES; 349 } 350 351 /* 352 * We _really_ want to just do "generic_permission()" without 353 * even looking at the inode->i_op values. So we keep a cache 354 * flag in inode->i_opflags, that says "this has not special 355 * permission function, use the fast case". 356 */ 357 static inline int do_inode_permission(struct inode *inode, int mask) 358 { 359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 360 if (likely(inode->i_op->permission)) 361 return inode->i_op->permission(inode, mask); 362 363 /* This gets set once for the inode lifetime */ 364 spin_lock(&inode->i_lock); 365 inode->i_opflags |= IOP_FASTPERM; 366 spin_unlock(&inode->i_lock); 367 } 368 return generic_permission(inode, mask); 369 } 370 371 /** 372 * __inode_permission - Check for access rights to a given inode 373 * @inode: Inode to check permission on 374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 375 * 376 * Check for read/write/execute permissions on an inode. 377 * 378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 379 * 380 * This does not check for a read-only file system. You probably want 381 * inode_permission(). 382 */ 383 int __inode_permission(struct inode *inode, int mask) 384 { 385 int retval; 386 387 if (unlikely(mask & MAY_WRITE)) { 388 /* 389 * Nobody gets write access to an immutable file. 390 */ 391 if (IS_IMMUTABLE(inode)) 392 return -EACCES; 393 } 394 395 retval = do_inode_permission(inode, mask); 396 if (retval) 397 return retval; 398 399 retval = devcgroup_inode_permission(inode, mask); 400 if (retval) 401 return retval; 402 403 return security_inode_permission(inode, mask); 404 } 405 406 /** 407 * sb_permission - Check superblock-level permissions 408 * @sb: Superblock of inode to check permission on 409 * @inode: Inode to check permission on 410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 411 * 412 * Separate out file-system wide checks from inode-specific permission checks. 413 */ 414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 415 { 416 if (unlikely(mask & MAY_WRITE)) { 417 umode_t mode = inode->i_mode; 418 419 /* Nobody gets write access to a read-only fs. */ 420 if ((sb->s_flags & MS_RDONLY) && 421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 422 return -EROFS; 423 } 424 return 0; 425 } 426 427 /** 428 * inode_permission - Check for access rights to a given inode 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 433 * this, letting us set arbitrary permissions for filesystem access without 434 * changing the "normal" UIDs which are used for other things. 435 * 436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 437 */ 438 int inode_permission(struct inode *inode, int mask) 439 { 440 int retval; 441 442 retval = sb_permission(inode->i_sb, inode, mask); 443 if (retval) 444 return retval; 445 return __inode_permission(inode, mask); 446 } 447 448 /** 449 * path_get - get a reference to a path 450 * @path: path to get the reference to 451 * 452 * Given a path increment the reference count to the dentry and the vfsmount. 453 */ 454 void path_get(const struct path *path) 455 { 456 mntget(path->mnt); 457 dget(path->dentry); 458 } 459 EXPORT_SYMBOL(path_get); 460 461 /** 462 * path_put - put a reference to a path 463 * @path: path to put the reference to 464 * 465 * Given a path decrement the reference count to the dentry and the vfsmount. 466 */ 467 void path_put(const struct path *path) 468 { 469 dput(path->dentry); 470 mntput(path->mnt); 471 } 472 EXPORT_SYMBOL(path_put); 473 474 /* 475 * Path walking has 2 modes, rcu-walk and ref-walk (see 476 * Documentation/filesystems/path-lookup.txt). In situations when we can't 477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 479 * mode. Refcounts are grabbed at the last known good point before rcu-walk 480 * got stuck, so ref-walk may continue from there. If this is not successful 481 * (eg. a seqcount has changed), then failure is returned and it's up to caller 482 * to restart the path walk from the beginning in ref-walk mode. 483 */ 484 485 /** 486 * unlazy_walk - try to switch to ref-walk mode. 487 * @nd: nameidata pathwalk data 488 * @dentry: child of nd->path.dentry or NULL 489 * Returns: 0 on success, -ECHILD on failure 490 * 491 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 492 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 493 * @nd or NULL. Must be called from rcu-walk context. 494 */ 495 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 496 { 497 struct fs_struct *fs = current->fs; 498 struct dentry *parent = nd->path.dentry; 499 500 BUG_ON(!(nd->flags & LOOKUP_RCU)); 501 502 /* 503 * After legitimizing the bastards, terminate_walk() 504 * will do the right thing for non-RCU mode, and all our 505 * subsequent exit cases should rcu_read_unlock() 506 * before returning. Do vfsmount first; if dentry 507 * can't be legitimized, just set nd->path.dentry to NULL 508 * and rely on dput(NULL) being a no-op. 509 */ 510 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 511 return -ECHILD; 512 nd->flags &= ~LOOKUP_RCU; 513 514 if (!lockref_get_not_dead(&parent->d_lockref)) { 515 nd->path.dentry = NULL; 516 rcu_read_unlock(); 517 return -ECHILD; 518 } 519 520 /* 521 * For a negative lookup, the lookup sequence point is the parents 522 * sequence point, and it only needs to revalidate the parent dentry. 523 * 524 * For a positive lookup, we need to move both the parent and the 525 * dentry from the RCU domain to be properly refcounted. And the 526 * sequence number in the dentry validates *both* dentry counters, 527 * since we checked the sequence number of the parent after we got 528 * the child sequence number. So we know the parent must still 529 * be valid if the child sequence number is still valid. 530 */ 531 if (!dentry) { 532 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 533 goto out; 534 BUG_ON(nd->inode != parent->d_inode); 535 } else { 536 if (!lockref_get_not_dead(&dentry->d_lockref)) 537 goto out; 538 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 539 goto drop_dentry; 540 } 541 542 /* 543 * Sequence counts matched. Now make sure that the root is 544 * still valid and get it if required. 545 */ 546 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 547 spin_lock(&fs->lock); 548 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 549 goto unlock_and_drop_dentry; 550 path_get(&nd->root); 551 spin_unlock(&fs->lock); 552 } 553 554 rcu_read_unlock(); 555 return 0; 556 557 unlock_and_drop_dentry: 558 spin_unlock(&fs->lock); 559 drop_dentry: 560 rcu_read_unlock(); 561 dput(dentry); 562 goto drop_root_mnt; 563 out: 564 rcu_read_unlock(); 565 drop_root_mnt: 566 if (!(nd->flags & LOOKUP_ROOT)) 567 nd->root.mnt = NULL; 568 return -ECHILD; 569 } 570 571 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 572 { 573 return dentry->d_op->d_revalidate(dentry, flags); 574 } 575 576 /** 577 * complete_walk - successful completion of path walk 578 * @nd: pointer nameidata 579 * 580 * If we had been in RCU mode, drop out of it and legitimize nd->path. 581 * Revalidate the final result, unless we'd already done that during 582 * the path walk or the filesystem doesn't ask for it. Return 0 on 583 * success, -error on failure. In case of failure caller does not 584 * need to drop nd->path. 585 */ 586 static int complete_walk(struct nameidata *nd) 587 { 588 struct dentry *dentry = nd->path.dentry; 589 int status; 590 591 if (nd->flags & LOOKUP_RCU) { 592 nd->flags &= ~LOOKUP_RCU; 593 if (!(nd->flags & LOOKUP_ROOT)) 594 nd->root.mnt = NULL; 595 596 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 597 rcu_read_unlock(); 598 return -ECHILD; 599 } 600 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 601 rcu_read_unlock(); 602 mntput(nd->path.mnt); 603 return -ECHILD; 604 } 605 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 606 rcu_read_unlock(); 607 dput(dentry); 608 mntput(nd->path.mnt); 609 return -ECHILD; 610 } 611 rcu_read_unlock(); 612 } 613 614 if (likely(!(nd->flags & LOOKUP_JUMPED))) 615 return 0; 616 617 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 618 return 0; 619 620 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 621 if (status > 0) 622 return 0; 623 624 if (!status) 625 status = -ESTALE; 626 627 path_put(&nd->path); 628 return status; 629 } 630 631 static __always_inline void set_root(struct nameidata *nd) 632 { 633 if (!nd->root.mnt) 634 get_fs_root(current->fs, &nd->root); 635 } 636 637 static int link_path_walk(const char *, struct nameidata *); 638 639 static __always_inline void set_root_rcu(struct nameidata *nd) 640 { 641 if (!nd->root.mnt) { 642 struct fs_struct *fs = current->fs; 643 unsigned seq; 644 645 do { 646 seq = read_seqcount_begin(&fs->seq); 647 nd->root = fs->root; 648 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 649 } while (read_seqcount_retry(&fs->seq, seq)); 650 } 651 } 652 653 static void path_put_conditional(struct path *path, struct nameidata *nd) 654 { 655 dput(path->dentry); 656 if (path->mnt != nd->path.mnt) 657 mntput(path->mnt); 658 } 659 660 static inline void path_to_nameidata(const struct path *path, 661 struct nameidata *nd) 662 { 663 if (!(nd->flags & LOOKUP_RCU)) { 664 dput(nd->path.dentry); 665 if (nd->path.mnt != path->mnt) 666 mntput(nd->path.mnt); 667 } 668 nd->path.mnt = path->mnt; 669 nd->path.dentry = path->dentry; 670 } 671 672 /* 673 * Helper to directly jump to a known parsed path from ->follow_link, 674 * caller must have taken a reference to path beforehand. 675 */ 676 void nd_jump_link(struct nameidata *nd, struct path *path) 677 { 678 path_put(&nd->path); 679 680 nd->path = *path; 681 nd->inode = nd->path.dentry->d_inode; 682 nd->flags |= LOOKUP_JUMPED; 683 } 684 685 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 686 { 687 struct inode *inode = link->dentry->d_inode; 688 if (inode->i_op->put_link) 689 inode->i_op->put_link(link->dentry, nd, cookie); 690 path_put(link); 691 } 692 693 int sysctl_protected_symlinks __read_mostly = 0; 694 int sysctl_protected_hardlinks __read_mostly = 0; 695 696 /** 697 * may_follow_link - Check symlink following for unsafe situations 698 * @link: The path of the symlink 699 * @nd: nameidata pathwalk data 700 * 701 * In the case of the sysctl_protected_symlinks sysctl being enabled, 702 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 703 * in a sticky world-writable directory. This is to protect privileged 704 * processes from failing races against path names that may change out 705 * from under them by way of other users creating malicious symlinks. 706 * It will permit symlinks to be followed only when outside a sticky 707 * world-writable directory, or when the uid of the symlink and follower 708 * match, or when the directory owner matches the symlink's owner. 709 * 710 * Returns 0 if following the symlink is allowed, -ve on error. 711 */ 712 static inline int may_follow_link(struct path *link, struct nameidata *nd) 713 { 714 const struct inode *inode; 715 const struct inode *parent; 716 717 if (!sysctl_protected_symlinks) 718 return 0; 719 720 /* Allowed if owner and follower match. */ 721 inode = link->dentry->d_inode; 722 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 723 return 0; 724 725 /* Allowed if parent directory not sticky and world-writable. */ 726 parent = nd->path.dentry->d_inode; 727 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 728 return 0; 729 730 /* Allowed if parent directory and link owner match. */ 731 if (uid_eq(parent->i_uid, inode->i_uid)) 732 return 0; 733 734 audit_log_link_denied("follow_link", link); 735 path_put_conditional(link, nd); 736 path_put(&nd->path); 737 return -EACCES; 738 } 739 740 /** 741 * safe_hardlink_source - Check for safe hardlink conditions 742 * @inode: the source inode to hardlink from 743 * 744 * Return false if at least one of the following conditions: 745 * - inode is not a regular file 746 * - inode is setuid 747 * - inode is setgid and group-exec 748 * - access failure for read and write 749 * 750 * Otherwise returns true. 751 */ 752 static bool safe_hardlink_source(struct inode *inode) 753 { 754 umode_t mode = inode->i_mode; 755 756 /* Special files should not get pinned to the filesystem. */ 757 if (!S_ISREG(mode)) 758 return false; 759 760 /* Setuid files should not get pinned to the filesystem. */ 761 if (mode & S_ISUID) 762 return false; 763 764 /* Executable setgid files should not get pinned to the filesystem. */ 765 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 766 return false; 767 768 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 769 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 770 return false; 771 772 return true; 773 } 774 775 /** 776 * may_linkat - Check permissions for creating a hardlink 777 * @link: the source to hardlink from 778 * 779 * Block hardlink when all of: 780 * - sysctl_protected_hardlinks enabled 781 * - fsuid does not match inode 782 * - hardlink source is unsafe (see safe_hardlink_source() above) 783 * - not CAP_FOWNER 784 * 785 * Returns 0 if successful, -ve on error. 786 */ 787 static int may_linkat(struct path *link) 788 { 789 const struct cred *cred; 790 struct inode *inode; 791 792 if (!sysctl_protected_hardlinks) 793 return 0; 794 795 cred = current_cred(); 796 inode = link->dentry->d_inode; 797 798 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 799 * otherwise, it must be a safe source. 800 */ 801 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 802 capable(CAP_FOWNER)) 803 return 0; 804 805 audit_log_link_denied("linkat", link); 806 return -EPERM; 807 } 808 809 static __always_inline int 810 follow_link(struct path *link, struct nameidata *nd, void **p) 811 { 812 struct dentry *dentry = link->dentry; 813 int error; 814 char *s; 815 816 BUG_ON(nd->flags & LOOKUP_RCU); 817 818 if (link->mnt == nd->path.mnt) 819 mntget(link->mnt); 820 821 error = -ELOOP; 822 if (unlikely(current->total_link_count >= 40)) 823 goto out_put_nd_path; 824 825 cond_resched(); 826 current->total_link_count++; 827 828 touch_atime(link); 829 nd_set_link(nd, NULL); 830 831 error = security_inode_follow_link(link->dentry, nd); 832 if (error) 833 goto out_put_nd_path; 834 835 nd->last_type = LAST_BIND; 836 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 837 error = PTR_ERR(*p); 838 if (IS_ERR(*p)) 839 goto out_put_nd_path; 840 841 error = 0; 842 s = nd_get_link(nd); 843 if (s) { 844 if (unlikely(IS_ERR(s))) { 845 path_put(&nd->path); 846 put_link(nd, link, *p); 847 return PTR_ERR(s); 848 } 849 if (*s == '/') { 850 set_root(nd); 851 path_put(&nd->path); 852 nd->path = nd->root; 853 path_get(&nd->root); 854 nd->flags |= LOOKUP_JUMPED; 855 } 856 nd->inode = nd->path.dentry->d_inode; 857 error = link_path_walk(s, nd); 858 if (unlikely(error)) 859 put_link(nd, link, *p); 860 } 861 862 return error; 863 864 out_put_nd_path: 865 *p = NULL; 866 path_put(&nd->path); 867 path_put(link); 868 return error; 869 } 870 871 static int follow_up_rcu(struct path *path) 872 { 873 struct mount *mnt = real_mount(path->mnt); 874 struct mount *parent; 875 struct dentry *mountpoint; 876 877 parent = mnt->mnt_parent; 878 if (&parent->mnt == path->mnt) 879 return 0; 880 mountpoint = mnt->mnt_mountpoint; 881 path->dentry = mountpoint; 882 path->mnt = &parent->mnt; 883 return 1; 884 } 885 886 /* 887 * follow_up - Find the mountpoint of path's vfsmount 888 * 889 * Given a path, find the mountpoint of its source file system. 890 * Replace @path with the path of the mountpoint in the parent mount. 891 * Up is towards /. 892 * 893 * Return 1 if we went up a level and 0 if we were already at the 894 * root. 895 */ 896 int follow_up(struct path *path) 897 { 898 struct mount *mnt = real_mount(path->mnt); 899 struct mount *parent; 900 struct dentry *mountpoint; 901 902 read_seqlock_excl(&mount_lock); 903 parent = mnt->mnt_parent; 904 if (parent == mnt) { 905 read_sequnlock_excl(&mount_lock); 906 return 0; 907 } 908 mntget(&parent->mnt); 909 mountpoint = dget(mnt->mnt_mountpoint); 910 read_sequnlock_excl(&mount_lock); 911 dput(path->dentry); 912 path->dentry = mountpoint; 913 mntput(path->mnt); 914 path->mnt = &parent->mnt; 915 return 1; 916 } 917 918 /* 919 * Perform an automount 920 * - return -EISDIR to tell follow_managed() to stop and return the path we 921 * were called with. 922 */ 923 static int follow_automount(struct path *path, unsigned flags, 924 bool *need_mntput) 925 { 926 struct vfsmount *mnt; 927 int err; 928 929 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 930 return -EREMOTE; 931 932 /* We don't want to mount if someone's just doing a stat - 933 * unless they're stat'ing a directory and appended a '/' to 934 * the name. 935 * 936 * We do, however, want to mount if someone wants to open or 937 * create a file of any type under the mountpoint, wants to 938 * traverse through the mountpoint or wants to open the 939 * mounted directory. Also, autofs may mark negative dentries 940 * as being automount points. These will need the attentions 941 * of the daemon to instantiate them before they can be used. 942 */ 943 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 944 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 945 path->dentry->d_inode) 946 return -EISDIR; 947 948 current->total_link_count++; 949 if (current->total_link_count >= 40) 950 return -ELOOP; 951 952 mnt = path->dentry->d_op->d_automount(path); 953 if (IS_ERR(mnt)) { 954 /* 955 * The filesystem is allowed to return -EISDIR here to indicate 956 * it doesn't want to automount. For instance, autofs would do 957 * this so that its userspace daemon can mount on this dentry. 958 * 959 * However, we can only permit this if it's a terminal point in 960 * the path being looked up; if it wasn't then the remainder of 961 * the path is inaccessible and we should say so. 962 */ 963 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 964 return -EREMOTE; 965 return PTR_ERR(mnt); 966 } 967 968 if (!mnt) /* mount collision */ 969 return 0; 970 971 if (!*need_mntput) { 972 /* lock_mount() may release path->mnt on error */ 973 mntget(path->mnt); 974 *need_mntput = true; 975 } 976 err = finish_automount(mnt, path); 977 978 switch (err) { 979 case -EBUSY: 980 /* Someone else made a mount here whilst we were busy */ 981 return 0; 982 case 0: 983 path_put(path); 984 path->mnt = mnt; 985 path->dentry = dget(mnt->mnt_root); 986 return 0; 987 default: 988 return err; 989 } 990 991 } 992 993 /* 994 * Handle a dentry that is managed in some way. 995 * - Flagged for transit management (autofs) 996 * - Flagged as mountpoint 997 * - Flagged as automount point 998 * 999 * This may only be called in refwalk mode. 1000 * 1001 * Serialization is taken care of in namespace.c 1002 */ 1003 static int follow_managed(struct path *path, unsigned flags) 1004 { 1005 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1006 unsigned managed; 1007 bool need_mntput = false; 1008 int ret = 0; 1009 1010 /* Given that we're not holding a lock here, we retain the value in a 1011 * local variable for each dentry as we look at it so that we don't see 1012 * the components of that value change under us */ 1013 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1014 managed &= DCACHE_MANAGED_DENTRY, 1015 unlikely(managed != 0)) { 1016 /* Allow the filesystem to manage the transit without i_mutex 1017 * being held. */ 1018 if (managed & DCACHE_MANAGE_TRANSIT) { 1019 BUG_ON(!path->dentry->d_op); 1020 BUG_ON(!path->dentry->d_op->d_manage); 1021 ret = path->dentry->d_op->d_manage(path->dentry, false); 1022 if (ret < 0) 1023 break; 1024 } 1025 1026 /* Transit to a mounted filesystem. */ 1027 if (managed & DCACHE_MOUNTED) { 1028 struct vfsmount *mounted = lookup_mnt(path); 1029 if (mounted) { 1030 dput(path->dentry); 1031 if (need_mntput) 1032 mntput(path->mnt); 1033 path->mnt = mounted; 1034 path->dentry = dget(mounted->mnt_root); 1035 need_mntput = true; 1036 continue; 1037 } 1038 1039 /* Something is mounted on this dentry in another 1040 * namespace and/or whatever was mounted there in this 1041 * namespace got unmounted before lookup_mnt() could 1042 * get it */ 1043 } 1044 1045 /* Handle an automount point */ 1046 if (managed & DCACHE_NEED_AUTOMOUNT) { 1047 ret = follow_automount(path, flags, &need_mntput); 1048 if (ret < 0) 1049 break; 1050 continue; 1051 } 1052 1053 /* We didn't change the current path point */ 1054 break; 1055 } 1056 1057 if (need_mntput && path->mnt == mnt) 1058 mntput(path->mnt); 1059 if (ret == -EISDIR) 1060 ret = 0; 1061 return ret < 0 ? ret : need_mntput; 1062 } 1063 1064 int follow_down_one(struct path *path) 1065 { 1066 struct vfsmount *mounted; 1067 1068 mounted = lookup_mnt(path); 1069 if (mounted) { 1070 dput(path->dentry); 1071 mntput(path->mnt); 1072 path->mnt = mounted; 1073 path->dentry = dget(mounted->mnt_root); 1074 return 1; 1075 } 1076 return 0; 1077 } 1078 1079 static inline bool managed_dentry_might_block(struct dentry *dentry) 1080 { 1081 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 1082 dentry->d_op->d_manage(dentry, true) < 0); 1083 } 1084 1085 /* 1086 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1087 * we meet a managed dentry that would need blocking. 1088 */ 1089 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1090 struct inode **inode) 1091 { 1092 for (;;) { 1093 struct mount *mounted; 1094 /* 1095 * Don't forget we might have a non-mountpoint managed dentry 1096 * that wants to block transit. 1097 */ 1098 if (unlikely(managed_dentry_might_block(path->dentry))) 1099 return false; 1100 1101 if (!d_mountpoint(path->dentry)) 1102 break; 1103 1104 mounted = __lookup_mnt(path->mnt, path->dentry); 1105 if (!mounted) 1106 break; 1107 path->mnt = &mounted->mnt; 1108 path->dentry = mounted->mnt.mnt_root; 1109 nd->flags |= LOOKUP_JUMPED; 1110 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1111 /* 1112 * Update the inode too. We don't need to re-check the 1113 * dentry sequence number here after this d_inode read, 1114 * because a mount-point is always pinned. 1115 */ 1116 *inode = path->dentry->d_inode; 1117 } 1118 return true; 1119 } 1120 1121 static void follow_mount_rcu(struct nameidata *nd) 1122 { 1123 while (d_mountpoint(nd->path.dentry)) { 1124 struct mount *mounted; 1125 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1126 if (!mounted) 1127 break; 1128 nd->path.mnt = &mounted->mnt; 1129 nd->path.dentry = mounted->mnt.mnt_root; 1130 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1131 } 1132 } 1133 1134 static int follow_dotdot_rcu(struct nameidata *nd) 1135 { 1136 set_root_rcu(nd); 1137 1138 while (1) { 1139 if (nd->path.dentry == nd->root.dentry && 1140 nd->path.mnt == nd->root.mnt) { 1141 break; 1142 } 1143 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1144 struct dentry *old = nd->path.dentry; 1145 struct dentry *parent = old->d_parent; 1146 unsigned seq; 1147 1148 seq = read_seqcount_begin(&parent->d_seq); 1149 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1150 goto failed; 1151 nd->path.dentry = parent; 1152 nd->seq = seq; 1153 break; 1154 } 1155 if (!follow_up_rcu(&nd->path)) 1156 break; 1157 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1158 } 1159 follow_mount_rcu(nd); 1160 nd->inode = nd->path.dentry->d_inode; 1161 return 0; 1162 1163 failed: 1164 nd->flags &= ~LOOKUP_RCU; 1165 if (!(nd->flags & LOOKUP_ROOT)) 1166 nd->root.mnt = NULL; 1167 rcu_read_unlock(); 1168 return -ECHILD; 1169 } 1170 1171 /* 1172 * Follow down to the covering mount currently visible to userspace. At each 1173 * point, the filesystem owning that dentry may be queried as to whether the 1174 * caller is permitted to proceed or not. 1175 */ 1176 int follow_down(struct path *path) 1177 { 1178 unsigned managed; 1179 int ret; 1180 1181 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1182 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1183 /* Allow the filesystem to manage the transit without i_mutex 1184 * being held. 1185 * 1186 * We indicate to the filesystem if someone is trying to mount 1187 * something here. This gives autofs the chance to deny anyone 1188 * other than its daemon the right to mount on its 1189 * superstructure. 1190 * 1191 * The filesystem may sleep at this point. 1192 */ 1193 if (managed & DCACHE_MANAGE_TRANSIT) { 1194 BUG_ON(!path->dentry->d_op); 1195 BUG_ON(!path->dentry->d_op->d_manage); 1196 ret = path->dentry->d_op->d_manage( 1197 path->dentry, false); 1198 if (ret < 0) 1199 return ret == -EISDIR ? 0 : ret; 1200 } 1201 1202 /* Transit to a mounted filesystem. */ 1203 if (managed & DCACHE_MOUNTED) { 1204 struct vfsmount *mounted = lookup_mnt(path); 1205 if (!mounted) 1206 break; 1207 dput(path->dentry); 1208 mntput(path->mnt); 1209 path->mnt = mounted; 1210 path->dentry = dget(mounted->mnt_root); 1211 continue; 1212 } 1213 1214 /* Don't handle automount points here */ 1215 break; 1216 } 1217 return 0; 1218 } 1219 1220 /* 1221 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1222 */ 1223 static void follow_mount(struct path *path) 1224 { 1225 while (d_mountpoint(path->dentry)) { 1226 struct vfsmount *mounted = lookup_mnt(path); 1227 if (!mounted) 1228 break; 1229 dput(path->dentry); 1230 mntput(path->mnt); 1231 path->mnt = mounted; 1232 path->dentry = dget(mounted->mnt_root); 1233 } 1234 } 1235 1236 static void follow_dotdot(struct nameidata *nd) 1237 { 1238 set_root(nd); 1239 1240 while(1) { 1241 struct dentry *old = nd->path.dentry; 1242 1243 if (nd->path.dentry == nd->root.dentry && 1244 nd->path.mnt == nd->root.mnt) { 1245 break; 1246 } 1247 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1248 /* rare case of legitimate dget_parent()... */ 1249 nd->path.dentry = dget_parent(nd->path.dentry); 1250 dput(old); 1251 break; 1252 } 1253 if (!follow_up(&nd->path)) 1254 break; 1255 } 1256 follow_mount(&nd->path); 1257 nd->inode = nd->path.dentry->d_inode; 1258 } 1259 1260 /* 1261 * This looks up the name in dcache, possibly revalidates the old dentry and 1262 * allocates a new one if not found or not valid. In the need_lookup argument 1263 * returns whether i_op->lookup is necessary. 1264 * 1265 * dir->d_inode->i_mutex must be held 1266 */ 1267 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1268 unsigned int flags, bool *need_lookup) 1269 { 1270 struct dentry *dentry; 1271 int error; 1272 1273 *need_lookup = false; 1274 dentry = d_lookup(dir, name); 1275 if (dentry) { 1276 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1277 error = d_revalidate(dentry, flags); 1278 if (unlikely(error <= 0)) { 1279 if (error < 0) { 1280 dput(dentry); 1281 return ERR_PTR(error); 1282 } else if (!d_invalidate(dentry)) { 1283 dput(dentry); 1284 dentry = NULL; 1285 } 1286 } 1287 } 1288 } 1289 1290 if (!dentry) { 1291 dentry = d_alloc(dir, name); 1292 if (unlikely(!dentry)) 1293 return ERR_PTR(-ENOMEM); 1294 1295 *need_lookup = true; 1296 } 1297 return dentry; 1298 } 1299 1300 /* 1301 * Call i_op->lookup on the dentry. The dentry must be negative and 1302 * unhashed. 1303 * 1304 * dir->d_inode->i_mutex must be held 1305 */ 1306 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1307 unsigned int flags) 1308 { 1309 struct dentry *old; 1310 1311 /* Don't create child dentry for a dead directory. */ 1312 if (unlikely(IS_DEADDIR(dir))) { 1313 dput(dentry); 1314 return ERR_PTR(-ENOENT); 1315 } 1316 1317 old = dir->i_op->lookup(dir, dentry, flags); 1318 if (unlikely(old)) { 1319 dput(dentry); 1320 dentry = old; 1321 } 1322 return dentry; 1323 } 1324 1325 static struct dentry *__lookup_hash(struct qstr *name, 1326 struct dentry *base, unsigned int flags) 1327 { 1328 bool need_lookup; 1329 struct dentry *dentry; 1330 1331 dentry = lookup_dcache(name, base, flags, &need_lookup); 1332 if (!need_lookup) 1333 return dentry; 1334 1335 return lookup_real(base->d_inode, dentry, flags); 1336 } 1337 1338 /* 1339 * It's more convoluted than I'd like it to be, but... it's still fairly 1340 * small and for now I'd prefer to have fast path as straight as possible. 1341 * It _is_ time-critical. 1342 */ 1343 static int lookup_fast(struct nameidata *nd, 1344 struct path *path, struct inode **inode) 1345 { 1346 struct vfsmount *mnt = nd->path.mnt; 1347 struct dentry *dentry, *parent = nd->path.dentry; 1348 int need_reval = 1; 1349 int status = 1; 1350 int err; 1351 1352 /* 1353 * Rename seqlock is not required here because in the off chance 1354 * of a false negative due to a concurrent rename, we're going to 1355 * do the non-racy lookup, below. 1356 */ 1357 if (nd->flags & LOOKUP_RCU) { 1358 unsigned seq; 1359 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1360 if (!dentry) 1361 goto unlazy; 1362 1363 /* 1364 * This sequence count validates that the inode matches 1365 * the dentry name information from lookup. 1366 */ 1367 *inode = dentry->d_inode; 1368 if (read_seqcount_retry(&dentry->d_seq, seq)) 1369 return -ECHILD; 1370 1371 /* 1372 * This sequence count validates that the parent had no 1373 * changes while we did the lookup of the dentry above. 1374 * 1375 * The memory barrier in read_seqcount_begin of child is 1376 * enough, we can use __read_seqcount_retry here. 1377 */ 1378 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1379 return -ECHILD; 1380 nd->seq = seq; 1381 1382 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1383 status = d_revalidate(dentry, nd->flags); 1384 if (unlikely(status <= 0)) { 1385 if (status != -ECHILD) 1386 need_reval = 0; 1387 goto unlazy; 1388 } 1389 } 1390 path->mnt = mnt; 1391 path->dentry = dentry; 1392 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1393 goto unlazy; 1394 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1395 goto unlazy; 1396 return 0; 1397 unlazy: 1398 if (unlazy_walk(nd, dentry)) 1399 return -ECHILD; 1400 } else { 1401 dentry = __d_lookup(parent, &nd->last); 1402 } 1403 1404 if (unlikely(!dentry)) 1405 goto need_lookup; 1406 1407 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1408 status = d_revalidate(dentry, nd->flags); 1409 if (unlikely(status <= 0)) { 1410 if (status < 0) { 1411 dput(dentry); 1412 return status; 1413 } 1414 if (!d_invalidate(dentry)) { 1415 dput(dentry); 1416 goto need_lookup; 1417 } 1418 } 1419 1420 path->mnt = mnt; 1421 path->dentry = dentry; 1422 err = follow_managed(path, nd->flags); 1423 if (unlikely(err < 0)) { 1424 path_put_conditional(path, nd); 1425 return err; 1426 } 1427 if (err) 1428 nd->flags |= LOOKUP_JUMPED; 1429 *inode = path->dentry->d_inode; 1430 return 0; 1431 1432 need_lookup: 1433 return 1; 1434 } 1435 1436 /* Fast lookup failed, do it the slow way */ 1437 static int lookup_slow(struct nameidata *nd, struct path *path) 1438 { 1439 struct dentry *dentry, *parent; 1440 int err; 1441 1442 parent = nd->path.dentry; 1443 BUG_ON(nd->inode != parent->d_inode); 1444 1445 mutex_lock(&parent->d_inode->i_mutex); 1446 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1447 mutex_unlock(&parent->d_inode->i_mutex); 1448 if (IS_ERR(dentry)) 1449 return PTR_ERR(dentry); 1450 path->mnt = nd->path.mnt; 1451 path->dentry = dentry; 1452 err = follow_managed(path, nd->flags); 1453 if (unlikely(err < 0)) { 1454 path_put_conditional(path, nd); 1455 return err; 1456 } 1457 if (err) 1458 nd->flags |= LOOKUP_JUMPED; 1459 return 0; 1460 } 1461 1462 static inline int may_lookup(struct nameidata *nd) 1463 { 1464 if (nd->flags & LOOKUP_RCU) { 1465 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1466 if (err != -ECHILD) 1467 return err; 1468 if (unlazy_walk(nd, NULL)) 1469 return -ECHILD; 1470 } 1471 return inode_permission(nd->inode, MAY_EXEC); 1472 } 1473 1474 static inline int handle_dots(struct nameidata *nd, int type) 1475 { 1476 if (type == LAST_DOTDOT) { 1477 if (nd->flags & LOOKUP_RCU) { 1478 if (follow_dotdot_rcu(nd)) 1479 return -ECHILD; 1480 } else 1481 follow_dotdot(nd); 1482 } 1483 return 0; 1484 } 1485 1486 static void terminate_walk(struct nameidata *nd) 1487 { 1488 if (!(nd->flags & LOOKUP_RCU)) { 1489 path_put(&nd->path); 1490 } else { 1491 nd->flags &= ~LOOKUP_RCU; 1492 if (!(nd->flags & LOOKUP_ROOT)) 1493 nd->root.mnt = NULL; 1494 rcu_read_unlock(); 1495 } 1496 } 1497 1498 /* 1499 * Do we need to follow links? We _really_ want to be able 1500 * to do this check without having to look at inode->i_op, 1501 * so we keep a cache of "no, this doesn't need follow_link" 1502 * for the common case. 1503 */ 1504 static inline int should_follow_link(struct dentry *dentry, int follow) 1505 { 1506 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1507 } 1508 1509 static inline int walk_component(struct nameidata *nd, struct path *path, 1510 int follow) 1511 { 1512 struct inode *inode; 1513 int err; 1514 /* 1515 * "." and ".." are special - ".." especially so because it has 1516 * to be able to know about the current root directory and 1517 * parent relationships. 1518 */ 1519 if (unlikely(nd->last_type != LAST_NORM)) 1520 return handle_dots(nd, nd->last_type); 1521 err = lookup_fast(nd, path, &inode); 1522 if (unlikely(err)) { 1523 if (err < 0) 1524 goto out_err; 1525 1526 err = lookup_slow(nd, path); 1527 if (err < 0) 1528 goto out_err; 1529 1530 inode = path->dentry->d_inode; 1531 } 1532 err = -ENOENT; 1533 if (!inode) 1534 goto out_path_put; 1535 1536 if (should_follow_link(path->dentry, follow)) { 1537 if (nd->flags & LOOKUP_RCU) { 1538 if (unlikely(unlazy_walk(nd, path->dentry))) { 1539 err = -ECHILD; 1540 goto out_err; 1541 } 1542 } 1543 BUG_ON(inode != path->dentry->d_inode); 1544 return 1; 1545 } 1546 path_to_nameidata(path, nd); 1547 nd->inode = inode; 1548 return 0; 1549 1550 out_path_put: 1551 path_to_nameidata(path, nd); 1552 out_err: 1553 terminate_walk(nd); 1554 return err; 1555 } 1556 1557 /* 1558 * This limits recursive symlink follows to 8, while 1559 * limiting consecutive symlinks to 40. 1560 * 1561 * Without that kind of total limit, nasty chains of consecutive 1562 * symlinks can cause almost arbitrarily long lookups. 1563 */ 1564 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1565 { 1566 int res; 1567 1568 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1569 path_put_conditional(path, nd); 1570 path_put(&nd->path); 1571 return -ELOOP; 1572 } 1573 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1574 1575 nd->depth++; 1576 current->link_count++; 1577 1578 do { 1579 struct path link = *path; 1580 void *cookie; 1581 1582 res = follow_link(&link, nd, &cookie); 1583 if (res) 1584 break; 1585 res = walk_component(nd, path, LOOKUP_FOLLOW); 1586 put_link(nd, &link, cookie); 1587 } while (res > 0); 1588 1589 current->link_count--; 1590 nd->depth--; 1591 return res; 1592 } 1593 1594 /* 1595 * We can do the critical dentry name comparison and hashing 1596 * operations one word at a time, but we are limited to: 1597 * 1598 * - Architectures with fast unaligned word accesses. We could 1599 * do a "get_unaligned()" if this helps and is sufficiently 1600 * fast. 1601 * 1602 * - Little-endian machines (so that we can generate the mask 1603 * of low bytes efficiently). Again, we *could* do a byte 1604 * swapping load on big-endian architectures if that is not 1605 * expensive enough to make the optimization worthless. 1606 * 1607 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1608 * do not trap on the (extremely unlikely) case of a page 1609 * crossing operation. 1610 * 1611 * - Furthermore, we need an efficient 64-bit compile for the 1612 * 64-bit case in order to generate the "number of bytes in 1613 * the final mask". Again, that could be replaced with a 1614 * efficient population count instruction or similar. 1615 */ 1616 #ifdef CONFIG_DCACHE_WORD_ACCESS 1617 1618 #include <asm/word-at-a-time.h> 1619 1620 #ifdef CONFIG_64BIT 1621 1622 static inline unsigned int fold_hash(unsigned long hash) 1623 { 1624 hash += hash >> (8*sizeof(int)); 1625 return hash; 1626 } 1627 1628 #else /* 32-bit case */ 1629 1630 #define fold_hash(x) (x) 1631 1632 #endif 1633 1634 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1635 { 1636 unsigned long a, mask; 1637 unsigned long hash = 0; 1638 1639 for (;;) { 1640 a = load_unaligned_zeropad(name); 1641 if (len < sizeof(unsigned long)) 1642 break; 1643 hash += a; 1644 hash *= 9; 1645 name += sizeof(unsigned long); 1646 len -= sizeof(unsigned long); 1647 if (!len) 1648 goto done; 1649 } 1650 mask = ~(~0ul << len*8); 1651 hash += mask & a; 1652 done: 1653 return fold_hash(hash); 1654 } 1655 EXPORT_SYMBOL(full_name_hash); 1656 1657 /* 1658 * Calculate the length and hash of the path component, and 1659 * return the length of the component; 1660 */ 1661 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1662 { 1663 unsigned long a, b, adata, bdata, mask, hash, len; 1664 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1665 1666 hash = a = 0; 1667 len = -sizeof(unsigned long); 1668 do { 1669 hash = (hash + a) * 9; 1670 len += sizeof(unsigned long); 1671 a = load_unaligned_zeropad(name+len); 1672 b = a ^ REPEAT_BYTE('/'); 1673 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1674 1675 adata = prep_zero_mask(a, adata, &constants); 1676 bdata = prep_zero_mask(b, bdata, &constants); 1677 1678 mask = create_zero_mask(adata | bdata); 1679 1680 hash += a & zero_bytemask(mask); 1681 *hashp = fold_hash(hash); 1682 1683 return len + find_zero(mask); 1684 } 1685 1686 #else 1687 1688 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1689 { 1690 unsigned long hash = init_name_hash(); 1691 while (len--) 1692 hash = partial_name_hash(*name++, hash); 1693 return end_name_hash(hash); 1694 } 1695 EXPORT_SYMBOL(full_name_hash); 1696 1697 /* 1698 * We know there's a real path component here of at least 1699 * one character. 1700 */ 1701 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1702 { 1703 unsigned long hash = init_name_hash(); 1704 unsigned long len = 0, c; 1705 1706 c = (unsigned char)*name; 1707 do { 1708 len++; 1709 hash = partial_name_hash(c, hash); 1710 c = (unsigned char)name[len]; 1711 } while (c && c != '/'); 1712 *hashp = end_name_hash(hash); 1713 return len; 1714 } 1715 1716 #endif 1717 1718 /* 1719 * Name resolution. 1720 * This is the basic name resolution function, turning a pathname into 1721 * the final dentry. We expect 'base' to be positive and a directory. 1722 * 1723 * Returns 0 and nd will have valid dentry and mnt on success. 1724 * Returns error and drops reference to input namei data on failure. 1725 */ 1726 static int link_path_walk(const char *name, struct nameidata *nd) 1727 { 1728 struct path next; 1729 int err; 1730 1731 while (*name=='/') 1732 name++; 1733 if (!*name) 1734 return 0; 1735 1736 /* At this point we know we have a real path component. */ 1737 for(;;) { 1738 struct qstr this; 1739 long len; 1740 int type; 1741 1742 err = may_lookup(nd); 1743 if (err) 1744 break; 1745 1746 len = hash_name(name, &this.hash); 1747 this.name = name; 1748 this.len = len; 1749 1750 type = LAST_NORM; 1751 if (name[0] == '.') switch (len) { 1752 case 2: 1753 if (name[1] == '.') { 1754 type = LAST_DOTDOT; 1755 nd->flags |= LOOKUP_JUMPED; 1756 } 1757 break; 1758 case 1: 1759 type = LAST_DOT; 1760 } 1761 if (likely(type == LAST_NORM)) { 1762 struct dentry *parent = nd->path.dentry; 1763 nd->flags &= ~LOOKUP_JUMPED; 1764 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1765 err = parent->d_op->d_hash(parent, &this); 1766 if (err < 0) 1767 break; 1768 } 1769 } 1770 1771 nd->last = this; 1772 nd->last_type = type; 1773 1774 if (!name[len]) 1775 return 0; 1776 /* 1777 * If it wasn't NUL, we know it was '/'. Skip that 1778 * slash, and continue until no more slashes. 1779 */ 1780 do { 1781 len++; 1782 } while (unlikely(name[len] == '/')); 1783 if (!name[len]) 1784 return 0; 1785 1786 name += len; 1787 1788 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1789 if (err < 0) 1790 return err; 1791 1792 if (err) { 1793 err = nested_symlink(&next, nd); 1794 if (err) 1795 return err; 1796 } 1797 if (!d_is_directory(nd->path.dentry)) { 1798 err = -ENOTDIR; 1799 break; 1800 } 1801 } 1802 terminate_walk(nd); 1803 return err; 1804 } 1805 1806 static int path_init(int dfd, const char *name, unsigned int flags, 1807 struct nameidata *nd, struct file **fp) 1808 { 1809 int retval = 0; 1810 1811 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1812 nd->flags = flags | LOOKUP_JUMPED; 1813 nd->depth = 0; 1814 if (flags & LOOKUP_ROOT) { 1815 struct dentry *root = nd->root.dentry; 1816 struct inode *inode = root->d_inode; 1817 if (*name) { 1818 if (!d_is_directory(root)) 1819 return -ENOTDIR; 1820 retval = inode_permission(inode, MAY_EXEC); 1821 if (retval) 1822 return retval; 1823 } 1824 nd->path = nd->root; 1825 nd->inode = inode; 1826 if (flags & LOOKUP_RCU) { 1827 rcu_read_lock(); 1828 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1829 nd->m_seq = read_seqbegin(&mount_lock); 1830 } else { 1831 path_get(&nd->path); 1832 } 1833 return 0; 1834 } 1835 1836 nd->root.mnt = NULL; 1837 1838 nd->m_seq = read_seqbegin(&mount_lock); 1839 if (*name=='/') { 1840 if (flags & LOOKUP_RCU) { 1841 rcu_read_lock(); 1842 set_root_rcu(nd); 1843 } else { 1844 set_root(nd); 1845 path_get(&nd->root); 1846 } 1847 nd->path = nd->root; 1848 } else if (dfd == AT_FDCWD) { 1849 if (flags & LOOKUP_RCU) { 1850 struct fs_struct *fs = current->fs; 1851 unsigned seq; 1852 1853 rcu_read_lock(); 1854 1855 do { 1856 seq = read_seqcount_begin(&fs->seq); 1857 nd->path = fs->pwd; 1858 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1859 } while (read_seqcount_retry(&fs->seq, seq)); 1860 } else { 1861 get_fs_pwd(current->fs, &nd->path); 1862 } 1863 } else { 1864 /* Caller must check execute permissions on the starting path component */ 1865 struct fd f = fdget_raw(dfd); 1866 struct dentry *dentry; 1867 1868 if (!f.file) 1869 return -EBADF; 1870 1871 dentry = f.file->f_path.dentry; 1872 1873 if (*name) { 1874 if (!d_is_directory(dentry)) { 1875 fdput(f); 1876 return -ENOTDIR; 1877 } 1878 } 1879 1880 nd->path = f.file->f_path; 1881 if (flags & LOOKUP_RCU) { 1882 if (f.need_put) 1883 *fp = f.file; 1884 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1885 rcu_read_lock(); 1886 } else { 1887 path_get(&nd->path); 1888 fdput(f); 1889 } 1890 } 1891 1892 nd->inode = nd->path.dentry->d_inode; 1893 return 0; 1894 } 1895 1896 static inline int lookup_last(struct nameidata *nd, struct path *path) 1897 { 1898 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1899 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1900 1901 nd->flags &= ~LOOKUP_PARENT; 1902 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1903 } 1904 1905 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1906 static int path_lookupat(int dfd, const char *name, 1907 unsigned int flags, struct nameidata *nd) 1908 { 1909 struct file *base = NULL; 1910 struct path path; 1911 int err; 1912 1913 /* 1914 * Path walking is largely split up into 2 different synchronisation 1915 * schemes, rcu-walk and ref-walk (explained in 1916 * Documentation/filesystems/path-lookup.txt). These share much of the 1917 * path walk code, but some things particularly setup, cleanup, and 1918 * following mounts are sufficiently divergent that functions are 1919 * duplicated. Typically there is a function foo(), and its RCU 1920 * analogue, foo_rcu(). 1921 * 1922 * -ECHILD is the error number of choice (just to avoid clashes) that 1923 * is returned if some aspect of an rcu-walk fails. Such an error must 1924 * be handled by restarting a traditional ref-walk (which will always 1925 * be able to complete). 1926 */ 1927 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1928 1929 if (unlikely(err)) 1930 return err; 1931 1932 current->total_link_count = 0; 1933 err = link_path_walk(name, nd); 1934 1935 if (!err && !(flags & LOOKUP_PARENT)) { 1936 err = lookup_last(nd, &path); 1937 while (err > 0) { 1938 void *cookie; 1939 struct path link = path; 1940 err = may_follow_link(&link, nd); 1941 if (unlikely(err)) 1942 break; 1943 nd->flags |= LOOKUP_PARENT; 1944 err = follow_link(&link, nd, &cookie); 1945 if (err) 1946 break; 1947 err = lookup_last(nd, &path); 1948 put_link(nd, &link, cookie); 1949 } 1950 } 1951 1952 if (!err) 1953 err = complete_walk(nd); 1954 1955 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1956 if (!d_is_directory(nd->path.dentry)) { 1957 path_put(&nd->path); 1958 err = -ENOTDIR; 1959 } 1960 } 1961 1962 if (base) 1963 fput(base); 1964 1965 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1966 path_put(&nd->root); 1967 nd->root.mnt = NULL; 1968 } 1969 return err; 1970 } 1971 1972 static int filename_lookup(int dfd, struct filename *name, 1973 unsigned int flags, struct nameidata *nd) 1974 { 1975 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 1976 if (unlikely(retval == -ECHILD)) 1977 retval = path_lookupat(dfd, name->name, flags, nd); 1978 if (unlikely(retval == -ESTALE)) 1979 retval = path_lookupat(dfd, name->name, 1980 flags | LOOKUP_REVAL, nd); 1981 1982 if (likely(!retval)) 1983 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 1984 return retval; 1985 } 1986 1987 static int do_path_lookup(int dfd, const char *name, 1988 unsigned int flags, struct nameidata *nd) 1989 { 1990 struct filename filename = { .name = name }; 1991 1992 return filename_lookup(dfd, &filename, flags, nd); 1993 } 1994 1995 /* does lookup, returns the object with parent locked */ 1996 struct dentry *kern_path_locked(const char *name, struct path *path) 1997 { 1998 struct nameidata nd; 1999 struct dentry *d; 2000 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 2001 if (err) 2002 return ERR_PTR(err); 2003 if (nd.last_type != LAST_NORM) { 2004 path_put(&nd.path); 2005 return ERR_PTR(-EINVAL); 2006 } 2007 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2008 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2009 if (IS_ERR(d)) { 2010 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2011 path_put(&nd.path); 2012 return d; 2013 } 2014 *path = nd.path; 2015 return d; 2016 } 2017 2018 int kern_path(const char *name, unsigned int flags, struct path *path) 2019 { 2020 struct nameidata nd; 2021 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2022 if (!res) 2023 *path = nd.path; 2024 return res; 2025 } 2026 2027 /** 2028 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2029 * @dentry: pointer to dentry of the base directory 2030 * @mnt: pointer to vfs mount of the base directory 2031 * @name: pointer to file name 2032 * @flags: lookup flags 2033 * @path: pointer to struct path to fill 2034 */ 2035 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2036 const char *name, unsigned int flags, 2037 struct path *path) 2038 { 2039 struct nameidata nd; 2040 int err; 2041 nd.root.dentry = dentry; 2042 nd.root.mnt = mnt; 2043 BUG_ON(flags & LOOKUP_PARENT); 2044 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2045 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2046 if (!err) 2047 *path = nd.path; 2048 return err; 2049 } 2050 2051 /* 2052 * Restricted form of lookup. Doesn't follow links, single-component only, 2053 * needs parent already locked. Doesn't follow mounts. 2054 * SMP-safe. 2055 */ 2056 static struct dentry *lookup_hash(struct nameidata *nd) 2057 { 2058 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2059 } 2060 2061 /** 2062 * lookup_one_len - filesystem helper to lookup single pathname component 2063 * @name: pathname component to lookup 2064 * @base: base directory to lookup from 2065 * @len: maximum length @len should be interpreted to 2066 * 2067 * Note that this routine is purely a helper for filesystem usage and should 2068 * not be called by generic code. Also note that by using this function the 2069 * nameidata argument is passed to the filesystem methods and a filesystem 2070 * using this helper needs to be prepared for that. 2071 */ 2072 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2073 { 2074 struct qstr this; 2075 unsigned int c; 2076 int err; 2077 2078 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2079 2080 this.name = name; 2081 this.len = len; 2082 this.hash = full_name_hash(name, len); 2083 if (!len) 2084 return ERR_PTR(-EACCES); 2085 2086 if (unlikely(name[0] == '.')) { 2087 if (len < 2 || (len == 2 && name[1] == '.')) 2088 return ERR_PTR(-EACCES); 2089 } 2090 2091 while (len--) { 2092 c = *(const unsigned char *)name++; 2093 if (c == '/' || c == '\0') 2094 return ERR_PTR(-EACCES); 2095 } 2096 /* 2097 * See if the low-level filesystem might want 2098 * to use its own hash.. 2099 */ 2100 if (base->d_flags & DCACHE_OP_HASH) { 2101 int err = base->d_op->d_hash(base, &this); 2102 if (err < 0) 2103 return ERR_PTR(err); 2104 } 2105 2106 err = inode_permission(base->d_inode, MAY_EXEC); 2107 if (err) 2108 return ERR_PTR(err); 2109 2110 return __lookup_hash(&this, base, 0); 2111 } 2112 2113 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2114 struct path *path, int *empty) 2115 { 2116 struct nameidata nd; 2117 struct filename *tmp = getname_flags(name, flags, empty); 2118 int err = PTR_ERR(tmp); 2119 if (!IS_ERR(tmp)) { 2120 2121 BUG_ON(flags & LOOKUP_PARENT); 2122 2123 err = filename_lookup(dfd, tmp, flags, &nd); 2124 putname(tmp); 2125 if (!err) 2126 *path = nd.path; 2127 } 2128 return err; 2129 } 2130 2131 int user_path_at(int dfd, const char __user *name, unsigned flags, 2132 struct path *path) 2133 { 2134 return user_path_at_empty(dfd, name, flags, path, NULL); 2135 } 2136 2137 /* 2138 * NB: most callers don't do anything directly with the reference to the 2139 * to struct filename, but the nd->last pointer points into the name string 2140 * allocated by getname. So we must hold the reference to it until all 2141 * path-walking is complete. 2142 */ 2143 static struct filename * 2144 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2145 unsigned int flags) 2146 { 2147 struct filename *s = getname(path); 2148 int error; 2149 2150 /* only LOOKUP_REVAL is allowed in extra flags */ 2151 flags &= LOOKUP_REVAL; 2152 2153 if (IS_ERR(s)) 2154 return s; 2155 2156 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2157 if (error) { 2158 putname(s); 2159 return ERR_PTR(error); 2160 } 2161 2162 return s; 2163 } 2164 2165 /** 2166 * mountpoint_last - look up last component for umount 2167 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2168 * @path: pointer to container for result 2169 * 2170 * This is a special lookup_last function just for umount. In this case, we 2171 * need to resolve the path without doing any revalidation. 2172 * 2173 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2174 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2175 * in almost all cases, this lookup will be served out of the dcache. The only 2176 * cases where it won't are if nd->last refers to a symlink or the path is 2177 * bogus and it doesn't exist. 2178 * 2179 * Returns: 2180 * -error: if there was an error during lookup. This includes -ENOENT if the 2181 * lookup found a negative dentry. The nd->path reference will also be 2182 * put in this case. 2183 * 2184 * 0: if we successfully resolved nd->path and found it to not to be a 2185 * symlink that needs to be followed. "path" will also be populated. 2186 * The nd->path reference will also be put. 2187 * 2188 * 1: if we successfully resolved nd->last and found it to be a symlink 2189 * that needs to be followed. "path" will be populated with the path 2190 * to the link, and nd->path will *not* be put. 2191 */ 2192 static int 2193 mountpoint_last(struct nameidata *nd, struct path *path) 2194 { 2195 int error = 0; 2196 struct dentry *dentry; 2197 struct dentry *dir = nd->path.dentry; 2198 2199 /* If we're in rcuwalk, drop out of it to handle last component */ 2200 if (nd->flags & LOOKUP_RCU) { 2201 if (unlazy_walk(nd, NULL)) { 2202 error = -ECHILD; 2203 goto out; 2204 } 2205 } 2206 2207 nd->flags &= ~LOOKUP_PARENT; 2208 2209 if (unlikely(nd->last_type != LAST_NORM)) { 2210 error = handle_dots(nd, nd->last_type); 2211 if (error) 2212 goto out; 2213 dentry = dget(nd->path.dentry); 2214 goto done; 2215 } 2216 2217 mutex_lock(&dir->d_inode->i_mutex); 2218 dentry = d_lookup(dir, &nd->last); 2219 if (!dentry) { 2220 /* 2221 * No cached dentry. Mounted dentries are pinned in the cache, 2222 * so that means that this dentry is probably a symlink or the 2223 * path doesn't actually point to a mounted dentry. 2224 */ 2225 dentry = d_alloc(dir, &nd->last); 2226 if (!dentry) { 2227 error = -ENOMEM; 2228 mutex_unlock(&dir->d_inode->i_mutex); 2229 goto out; 2230 } 2231 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2232 error = PTR_ERR(dentry); 2233 if (IS_ERR(dentry)) { 2234 mutex_unlock(&dir->d_inode->i_mutex); 2235 goto out; 2236 } 2237 } 2238 mutex_unlock(&dir->d_inode->i_mutex); 2239 2240 done: 2241 if (!dentry->d_inode) { 2242 error = -ENOENT; 2243 dput(dentry); 2244 goto out; 2245 } 2246 path->dentry = dentry; 2247 path->mnt = mntget(nd->path.mnt); 2248 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2249 return 1; 2250 follow_mount(path); 2251 error = 0; 2252 out: 2253 terminate_walk(nd); 2254 return error; 2255 } 2256 2257 /** 2258 * path_mountpoint - look up a path to be umounted 2259 * @dfd: directory file descriptor to start walk from 2260 * @name: full pathname to walk 2261 * @path: pointer to container for result 2262 * @flags: lookup flags 2263 * 2264 * Look up the given name, but don't attempt to revalidate the last component. 2265 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2266 */ 2267 static int 2268 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2269 { 2270 struct file *base = NULL; 2271 struct nameidata nd; 2272 int err; 2273 2274 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base); 2275 if (unlikely(err)) 2276 return err; 2277 2278 current->total_link_count = 0; 2279 err = link_path_walk(name, &nd); 2280 if (err) 2281 goto out; 2282 2283 err = mountpoint_last(&nd, path); 2284 while (err > 0) { 2285 void *cookie; 2286 struct path link = *path; 2287 err = may_follow_link(&link, &nd); 2288 if (unlikely(err)) 2289 break; 2290 nd.flags |= LOOKUP_PARENT; 2291 err = follow_link(&link, &nd, &cookie); 2292 if (err) 2293 break; 2294 err = mountpoint_last(&nd, path); 2295 put_link(&nd, &link, cookie); 2296 } 2297 out: 2298 if (base) 2299 fput(base); 2300 2301 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT)) 2302 path_put(&nd.root); 2303 2304 return err; 2305 } 2306 2307 static int 2308 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2309 unsigned int flags) 2310 { 2311 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2312 if (unlikely(error == -ECHILD)) 2313 error = path_mountpoint(dfd, s->name, path, flags); 2314 if (unlikely(error == -ESTALE)) 2315 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2316 if (likely(!error)) 2317 audit_inode(s, path->dentry, 0); 2318 return error; 2319 } 2320 2321 /** 2322 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2323 * @dfd: directory file descriptor 2324 * @name: pathname from userland 2325 * @flags: lookup flags 2326 * @path: pointer to container to hold result 2327 * 2328 * A umount is a special case for path walking. We're not actually interested 2329 * in the inode in this situation, and ESTALE errors can be a problem. We 2330 * simply want track down the dentry and vfsmount attached at the mountpoint 2331 * and avoid revalidating the last component. 2332 * 2333 * Returns 0 and populates "path" on success. 2334 */ 2335 int 2336 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2337 struct path *path) 2338 { 2339 struct filename *s = getname(name); 2340 int error; 2341 if (IS_ERR(s)) 2342 return PTR_ERR(s); 2343 error = filename_mountpoint(dfd, s, path, flags); 2344 putname(s); 2345 return error; 2346 } 2347 2348 int 2349 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2350 unsigned int flags) 2351 { 2352 struct filename s = {.name = name}; 2353 return filename_mountpoint(dfd, &s, path, flags); 2354 } 2355 EXPORT_SYMBOL(kern_path_mountpoint); 2356 2357 /* 2358 * It's inline, so penalty for filesystems that don't use sticky bit is 2359 * minimal. 2360 */ 2361 static inline int check_sticky(struct inode *dir, struct inode *inode) 2362 { 2363 kuid_t fsuid = current_fsuid(); 2364 2365 if (!(dir->i_mode & S_ISVTX)) 2366 return 0; 2367 if (uid_eq(inode->i_uid, fsuid)) 2368 return 0; 2369 if (uid_eq(dir->i_uid, fsuid)) 2370 return 0; 2371 return !inode_capable(inode, CAP_FOWNER); 2372 } 2373 2374 /* 2375 * Check whether we can remove a link victim from directory dir, check 2376 * whether the type of victim is right. 2377 * 1. We can't do it if dir is read-only (done in permission()) 2378 * 2. We should have write and exec permissions on dir 2379 * 3. We can't remove anything from append-only dir 2380 * 4. We can't do anything with immutable dir (done in permission()) 2381 * 5. If the sticky bit on dir is set we should either 2382 * a. be owner of dir, or 2383 * b. be owner of victim, or 2384 * c. have CAP_FOWNER capability 2385 * 6. If the victim is append-only or immutable we can't do antyhing with 2386 * links pointing to it. 2387 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2388 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2389 * 9. We can't remove a root or mountpoint. 2390 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2391 * nfs_async_unlink(). 2392 */ 2393 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2394 { 2395 struct inode *inode = victim->d_inode; 2396 int error; 2397 2398 if (d_is_negative(victim)) 2399 return -ENOENT; 2400 BUG_ON(!inode); 2401 2402 BUG_ON(victim->d_parent->d_inode != dir); 2403 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2404 2405 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2406 if (error) 2407 return error; 2408 if (IS_APPEND(dir)) 2409 return -EPERM; 2410 2411 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2412 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2413 return -EPERM; 2414 if (isdir) { 2415 if (!d_is_directory(victim) && !d_is_autodir(victim)) 2416 return -ENOTDIR; 2417 if (IS_ROOT(victim)) 2418 return -EBUSY; 2419 } else if (d_is_directory(victim) || d_is_autodir(victim)) 2420 return -EISDIR; 2421 if (IS_DEADDIR(dir)) 2422 return -ENOENT; 2423 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2424 return -EBUSY; 2425 return 0; 2426 } 2427 2428 /* Check whether we can create an object with dentry child in directory 2429 * dir. 2430 * 1. We can't do it if child already exists (open has special treatment for 2431 * this case, but since we are inlined it's OK) 2432 * 2. We can't do it if dir is read-only (done in permission()) 2433 * 3. We should have write and exec permissions on dir 2434 * 4. We can't do it if dir is immutable (done in permission()) 2435 */ 2436 static inline int may_create(struct inode *dir, struct dentry *child) 2437 { 2438 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2439 if (child->d_inode) 2440 return -EEXIST; 2441 if (IS_DEADDIR(dir)) 2442 return -ENOENT; 2443 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2444 } 2445 2446 /* 2447 * p1 and p2 should be directories on the same fs. 2448 */ 2449 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2450 { 2451 struct dentry *p; 2452 2453 if (p1 == p2) { 2454 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2455 return NULL; 2456 } 2457 2458 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2459 2460 p = d_ancestor(p2, p1); 2461 if (p) { 2462 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2463 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2464 return p; 2465 } 2466 2467 p = d_ancestor(p1, p2); 2468 if (p) { 2469 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2470 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2471 return p; 2472 } 2473 2474 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2475 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2476 return NULL; 2477 } 2478 2479 void unlock_rename(struct dentry *p1, struct dentry *p2) 2480 { 2481 mutex_unlock(&p1->d_inode->i_mutex); 2482 if (p1 != p2) { 2483 mutex_unlock(&p2->d_inode->i_mutex); 2484 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2485 } 2486 } 2487 2488 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2489 bool want_excl) 2490 { 2491 int error = may_create(dir, dentry); 2492 if (error) 2493 return error; 2494 2495 if (!dir->i_op->create) 2496 return -EACCES; /* shouldn't it be ENOSYS? */ 2497 mode &= S_IALLUGO; 2498 mode |= S_IFREG; 2499 error = security_inode_create(dir, dentry, mode); 2500 if (error) 2501 return error; 2502 error = dir->i_op->create(dir, dentry, mode, want_excl); 2503 if (!error) 2504 fsnotify_create(dir, dentry); 2505 return error; 2506 } 2507 2508 static int may_open(struct path *path, int acc_mode, int flag) 2509 { 2510 struct dentry *dentry = path->dentry; 2511 struct inode *inode = dentry->d_inode; 2512 int error; 2513 2514 /* O_PATH? */ 2515 if (!acc_mode) 2516 return 0; 2517 2518 if (!inode) 2519 return -ENOENT; 2520 2521 switch (inode->i_mode & S_IFMT) { 2522 case S_IFLNK: 2523 return -ELOOP; 2524 case S_IFDIR: 2525 if (acc_mode & MAY_WRITE) 2526 return -EISDIR; 2527 break; 2528 case S_IFBLK: 2529 case S_IFCHR: 2530 if (path->mnt->mnt_flags & MNT_NODEV) 2531 return -EACCES; 2532 /*FALLTHRU*/ 2533 case S_IFIFO: 2534 case S_IFSOCK: 2535 flag &= ~O_TRUNC; 2536 break; 2537 } 2538 2539 error = inode_permission(inode, acc_mode); 2540 if (error) 2541 return error; 2542 2543 /* 2544 * An append-only file must be opened in append mode for writing. 2545 */ 2546 if (IS_APPEND(inode)) { 2547 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2548 return -EPERM; 2549 if (flag & O_TRUNC) 2550 return -EPERM; 2551 } 2552 2553 /* O_NOATIME can only be set by the owner or superuser */ 2554 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2555 return -EPERM; 2556 2557 return 0; 2558 } 2559 2560 static int handle_truncate(struct file *filp) 2561 { 2562 struct path *path = &filp->f_path; 2563 struct inode *inode = path->dentry->d_inode; 2564 int error = get_write_access(inode); 2565 if (error) 2566 return error; 2567 /* 2568 * Refuse to truncate files with mandatory locks held on them. 2569 */ 2570 error = locks_verify_locked(inode); 2571 if (!error) 2572 error = security_path_truncate(path); 2573 if (!error) { 2574 error = do_truncate(path->dentry, 0, 2575 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2576 filp); 2577 } 2578 put_write_access(inode); 2579 return error; 2580 } 2581 2582 static inline int open_to_namei_flags(int flag) 2583 { 2584 if ((flag & O_ACCMODE) == 3) 2585 flag--; 2586 return flag; 2587 } 2588 2589 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2590 { 2591 int error = security_path_mknod(dir, dentry, mode, 0); 2592 if (error) 2593 return error; 2594 2595 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2596 if (error) 2597 return error; 2598 2599 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2600 } 2601 2602 /* 2603 * Attempt to atomically look up, create and open a file from a negative 2604 * dentry. 2605 * 2606 * Returns 0 if successful. The file will have been created and attached to 2607 * @file by the filesystem calling finish_open(). 2608 * 2609 * Returns 1 if the file was looked up only or didn't need creating. The 2610 * caller will need to perform the open themselves. @path will have been 2611 * updated to point to the new dentry. This may be negative. 2612 * 2613 * Returns an error code otherwise. 2614 */ 2615 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2616 struct path *path, struct file *file, 2617 const struct open_flags *op, 2618 bool got_write, bool need_lookup, 2619 int *opened) 2620 { 2621 struct inode *dir = nd->path.dentry->d_inode; 2622 unsigned open_flag = open_to_namei_flags(op->open_flag); 2623 umode_t mode; 2624 int error; 2625 int acc_mode; 2626 int create_error = 0; 2627 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2628 bool excl; 2629 2630 BUG_ON(dentry->d_inode); 2631 2632 /* Don't create child dentry for a dead directory. */ 2633 if (unlikely(IS_DEADDIR(dir))) { 2634 error = -ENOENT; 2635 goto out; 2636 } 2637 2638 mode = op->mode; 2639 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2640 mode &= ~current_umask(); 2641 2642 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2643 if (excl) 2644 open_flag &= ~O_TRUNC; 2645 2646 /* 2647 * Checking write permission is tricky, bacuse we don't know if we are 2648 * going to actually need it: O_CREAT opens should work as long as the 2649 * file exists. But checking existence breaks atomicity. The trick is 2650 * to check access and if not granted clear O_CREAT from the flags. 2651 * 2652 * Another problem is returing the "right" error value (e.g. for an 2653 * O_EXCL open we want to return EEXIST not EROFS). 2654 */ 2655 if (((open_flag & (O_CREAT | O_TRUNC)) || 2656 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2657 if (!(open_flag & O_CREAT)) { 2658 /* 2659 * No O_CREATE -> atomicity not a requirement -> fall 2660 * back to lookup + open 2661 */ 2662 goto no_open; 2663 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2664 /* Fall back and fail with the right error */ 2665 create_error = -EROFS; 2666 goto no_open; 2667 } else { 2668 /* No side effects, safe to clear O_CREAT */ 2669 create_error = -EROFS; 2670 open_flag &= ~O_CREAT; 2671 } 2672 } 2673 2674 if (open_flag & O_CREAT) { 2675 error = may_o_create(&nd->path, dentry, mode); 2676 if (error) { 2677 create_error = error; 2678 if (open_flag & O_EXCL) 2679 goto no_open; 2680 open_flag &= ~O_CREAT; 2681 } 2682 } 2683 2684 if (nd->flags & LOOKUP_DIRECTORY) 2685 open_flag |= O_DIRECTORY; 2686 2687 file->f_path.dentry = DENTRY_NOT_SET; 2688 file->f_path.mnt = nd->path.mnt; 2689 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2690 opened); 2691 if (error < 0) { 2692 if (create_error && error == -ENOENT) 2693 error = create_error; 2694 goto out; 2695 } 2696 2697 if (error) { /* returned 1, that is */ 2698 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2699 error = -EIO; 2700 goto out; 2701 } 2702 if (file->f_path.dentry) { 2703 dput(dentry); 2704 dentry = file->f_path.dentry; 2705 } 2706 if (*opened & FILE_CREATED) 2707 fsnotify_create(dir, dentry); 2708 if (!dentry->d_inode) { 2709 WARN_ON(*opened & FILE_CREATED); 2710 if (create_error) { 2711 error = create_error; 2712 goto out; 2713 } 2714 } else { 2715 if (excl && !(*opened & FILE_CREATED)) { 2716 error = -EEXIST; 2717 goto out; 2718 } 2719 } 2720 goto looked_up; 2721 } 2722 2723 /* 2724 * We didn't have the inode before the open, so check open permission 2725 * here. 2726 */ 2727 acc_mode = op->acc_mode; 2728 if (*opened & FILE_CREATED) { 2729 WARN_ON(!(open_flag & O_CREAT)); 2730 fsnotify_create(dir, dentry); 2731 acc_mode = MAY_OPEN; 2732 } 2733 error = may_open(&file->f_path, acc_mode, open_flag); 2734 if (error) 2735 fput(file); 2736 2737 out: 2738 dput(dentry); 2739 return error; 2740 2741 no_open: 2742 if (need_lookup) { 2743 dentry = lookup_real(dir, dentry, nd->flags); 2744 if (IS_ERR(dentry)) 2745 return PTR_ERR(dentry); 2746 2747 if (create_error) { 2748 int open_flag = op->open_flag; 2749 2750 error = create_error; 2751 if ((open_flag & O_EXCL)) { 2752 if (!dentry->d_inode) 2753 goto out; 2754 } else if (!dentry->d_inode) { 2755 goto out; 2756 } else if ((open_flag & O_TRUNC) && 2757 S_ISREG(dentry->d_inode->i_mode)) { 2758 goto out; 2759 } 2760 /* will fail later, go on to get the right error */ 2761 } 2762 } 2763 looked_up: 2764 path->dentry = dentry; 2765 path->mnt = nd->path.mnt; 2766 return 1; 2767 } 2768 2769 /* 2770 * Look up and maybe create and open the last component. 2771 * 2772 * Must be called with i_mutex held on parent. 2773 * 2774 * Returns 0 if the file was successfully atomically created (if necessary) and 2775 * opened. In this case the file will be returned attached to @file. 2776 * 2777 * Returns 1 if the file was not completely opened at this time, though lookups 2778 * and creations will have been performed and the dentry returned in @path will 2779 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2780 * specified then a negative dentry may be returned. 2781 * 2782 * An error code is returned otherwise. 2783 * 2784 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2785 * cleared otherwise prior to returning. 2786 */ 2787 static int lookup_open(struct nameidata *nd, struct path *path, 2788 struct file *file, 2789 const struct open_flags *op, 2790 bool got_write, int *opened) 2791 { 2792 struct dentry *dir = nd->path.dentry; 2793 struct inode *dir_inode = dir->d_inode; 2794 struct dentry *dentry; 2795 int error; 2796 bool need_lookup; 2797 2798 *opened &= ~FILE_CREATED; 2799 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2800 if (IS_ERR(dentry)) 2801 return PTR_ERR(dentry); 2802 2803 /* Cached positive dentry: will open in f_op->open */ 2804 if (!need_lookup && dentry->d_inode) 2805 goto out_no_open; 2806 2807 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2808 return atomic_open(nd, dentry, path, file, op, got_write, 2809 need_lookup, opened); 2810 } 2811 2812 if (need_lookup) { 2813 BUG_ON(dentry->d_inode); 2814 2815 dentry = lookup_real(dir_inode, dentry, nd->flags); 2816 if (IS_ERR(dentry)) 2817 return PTR_ERR(dentry); 2818 } 2819 2820 /* Negative dentry, just create the file */ 2821 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2822 umode_t mode = op->mode; 2823 if (!IS_POSIXACL(dir->d_inode)) 2824 mode &= ~current_umask(); 2825 /* 2826 * This write is needed to ensure that a 2827 * rw->ro transition does not occur between 2828 * the time when the file is created and when 2829 * a permanent write count is taken through 2830 * the 'struct file' in finish_open(). 2831 */ 2832 if (!got_write) { 2833 error = -EROFS; 2834 goto out_dput; 2835 } 2836 *opened |= FILE_CREATED; 2837 error = security_path_mknod(&nd->path, dentry, mode, 0); 2838 if (error) 2839 goto out_dput; 2840 error = vfs_create(dir->d_inode, dentry, mode, 2841 nd->flags & LOOKUP_EXCL); 2842 if (error) 2843 goto out_dput; 2844 } 2845 out_no_open: 2846 path->dentry = dentry; 2847 path->mnt = nd->path.mnt; 2848 return 1; 2849 2850 out_dput: 2851 dput(dentry); 2852 return error; 2853 } 2854 2855 /* 2856 * Handle the last step of open() 2857 */ 2858 static int do_last(struct nameidata *nd, struct path *path, 2859 struct file *file, const struct open_flags *op, 2860 int *opened, struct filename *name) 2861 { 2862 struct dentry *dir = nd->path.dentry; 2863 int open_flag = op->open_flag; 2864 bool will_truncate = (open_flag & O_TRUNC) != 0; 2865 bool got_write = false; 2866 int acc_mode = op->acc_mode; 2867 struct inode *inode; 2868 bool symlink_ok = false; 2869 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2870 bool retried = false; 2871 int error; 2872 2873 nd->flags &= ~LOOKUP_PARENT; 2874 nd->flags |= op->intent; 2875 2876 if (nd->last_type != LAST_NORM) { 2877 error = handle_dots(nd, nd->last_type); 2878 if (error) 2879 return error; 2880 goto finish_open; 2881 } 2882 2883 if (!(open_flag & O_CREAT)) { 2884 if (nd->last.name[nd->last.len]) 2885 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2886 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2887 symlink_ok = true; 2888 /* we _can_ be in RCU mode here */ 2889 error = lookup_fast(nd, path, &inode); 2890 if (likely(!error)) 2891 goto finish_lookup; 2892 2893 if (error < 0) 2894 goto out; 2895 2896 BUG_ON(nd->inode != dir->d_inode); 2897 } else { 2898 /* create side of things */ 2899 /* 2900 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2901 * has been cleared when we got to the last component we are 2902 * about to look up 2903 */ 2904 error = complete_walk(nd); 2905 if (error) 2906 return error; 2907 2908 audit_inode(name, dir, LOOKUP_PARENT); 2909 error = -EISDIR; 2910 /* trailing slashes? */ 2911 if (nd->last.name[nd->last.len]) 2912 goto out; 2913 } 2914 2915 retry_lookup: 2916 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2917 error = mnt_want_write(nd->path.mnt); 2918 if (!error) 2919 got_write = true; 2920 /* 2921 * do _not_ fail yet - we might not need that or fail with 2922 * a different error; let lookup_open() decide; we'll be 2923 * dropping this one anyway. 2924 */ 2925 } 2926 mutex_lock(&dir->d_inode->i_mutex); 2927 error = lookup_open(nd, path, file, op, got_write, opened); 2928 mutex_unlock(&dir->d_inode->i_mutex); 2929 2930 if (error <= 0) { 2931 if (error) 2932 goto out; 2933 2934 if ((*opened & FILE_CREATED) || 2935 !S_ISREG(file_inode(file)->i_mode)) 2936 will_truncate = false; 2937 2938 audit_inode(name, file->f_path.dentry, 0); 2939 goto opened; 2940 } 2941 2942 if (*opened & FILE_CREATED) { 2943 /* Don't check for write permission, don't truncate */ 2944 open_flag &= ~O_TRUNC; 2945 will_truncate = false; 2946 acc_mode = MAY_OPEN; 2947 path_to_nameidata(path, nd); 2948 goto finish_open_created; 2949 } 2950 2951 /* 2952 * create/update audit record if it already exists. 2953 */ 2954 if (d_is_positive(path->dentry)) 2955 audit_inode(name, path->dentry, 0); 2956 2957 /* 2958 * If atomic_open() acquired write access it is dropped now due to 2959 * possible mount and symlink following (this might be optimized away if 2960 * necessary...) 2961 */ 2962 if (got_write) { 2963 mnt_drop_write(nd->path.mnt); 2964 got_write = false; 2965 } 2966 2967 error = -EEXIST; 2968 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 2969 goto exit_dput; 2970 2971 error = follow_managed(path, nd->flags); 2972 if (error < 0) 2973 goto exit_dput; 2974 2975 if (error) 2976 nd->flags |= LOOKUP_JUMPED; 2977 2978 BUG_ON(nd->flags & LOOKUP_RCU); 2979 inode = path->dentry->d_inode; 2980 finish_lookup: 2981 /* we _can_ be in RCU mode here */ 2982 error = -ENOENT; 2983 if (d_is_negative(path->dentry)) { 2984 path_to_nameidata(path, nd); 2985 goto out; 2986 } 2987 2988 if (should_follow_link(path->dentry, !symlink_ok)) { 2989 if (nd->flags & LOOKUP_RCU) { 2990 if (unlikely(unlazy_walk(nd, path->dentry))) { 2991 error = -ECHILD; 2992 goto out; 2993 } 2994 } 2995 BUG_ON(inode != path->dentry->d_inode); 2996 return 1; 2997 } 2998 2999 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3000 path_to_nameidata(path, nd); 3001 } else { 3002 save_parent.dentry = nd->path.dentry; 3003 save_parent.mnt = mntget(path->mnt); 3004 nd->path.dentry = path->dentry; 3005 3006 } 3007 nd->inode = inode; 3008 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3009 finish_open: 3010 error = complete_walk(nd); 3011 if (error) { 3012 path_put(&save_parent); 3013 return error; 3014 } 3015 audit_inode(name, nd->path.dentry, 0); 3016 error = -EISDIR; 3017 if ((open_flag & O_CREAT) && 3018 (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry))) 3019 goto out; 3020 error = -ENOTDIR; 3021 if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry)) 3022 goto out; 3023 if (!S_ISREG(nd->inode->i_mode)) 3024 will_truncate = false; 3025 3026 if (will_truncate) { 3027 error = mnt_want_write(nd->path.mnt); 3028 if (error) 3029 goto out; 3030 got_write = true; 3031 } 3032 finish_open_created: 3033 error = may_open(&nd->path, acc_mode, open_flag); 3034 if (error) 3035 goto out; 3036 file->f_path.mnt = nd->path.mnt; 3037 error = finish_open(file, nd->path.dentry, NULL, opened); 3038 if (error) { 3039 if (error == -EOPENSTALE) 3040 goto stale_open; 3041 goto out; 3042 } 3043 opened: 3044 error = open_check_o_direct(file); 3045 if (error) 3046 goto exit_fput; 3047 error = ima_file_check(file, op->acc_mode); 3048 if (error) 3049 goto exit_fput; 3050 3051 if (will_truncate) { 3052 error = handle_truncate(file); 3053 if (error) 3054 goto exit_fput; 3055 } 3056 out: 3057 if (got_write) 3058 mnt_drop_write(nd->path.mnt); 3059 path_put(&save_parent); 3060 terminate_walk(nd); 3061 return error; 3062 3063 exit_dput: 3064 path_put_conditional(path, nd); 3065 goto out; 3066 exit_fput: 3067 fput(file); 3068 goto out; 3069 3070 stale_open: 3071 /* If no saved parent or already retried then can't retry */ 3072 if (!save_parent.dentry || retried) 3073 goto out; 3074 3075 BUG_ON(save_parent.dentry != dir); 3076 path_put(&nd->path); 3077 nd->path = save_parent; 3078 nd->inode = dir->d_inode; 3079 save_parent.mnt = NULL; 3080 save_parent.dentry = NULL; 3081 if (got_write) { 3082 mnt_drop_write(nd->path.mnt); 3083 got_write = false; 3084 } 3085 retried = true; 3086 goto retry_lookup; 3087 } 3088 3089 static int do_tmpfile(int dfd, struct filename *pathname, 3090 struct nameidata *nd, int flags, 3091 const struct open_flags *op, 3092 struct file *file, int *opened) 3093 { 3094 static const struct qstr name = QSTR_INIT("/", 1); 3095 struct dentry *dentry, *child; 3096 struct inode *dir; 3097 int error = path_lookupat(dfd, pathname->name, 3098 flags | LOOKUP_DIRECTORY, nd); 3099 if (unlikely(error)) 3100 return error; 3101 error = mnt_want_write(nd->path.mnt); 3102 if (unlikely(error)) 3103 goto out; 3104 /* we want directory to be writable */ 3105 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3106 if (error) 3107 goto out2; 3108 dentry = nd->path.dentry; 3109 dir = dentry->d_inode; 3110 if (!dir->i_op->tmpfile) { 3111 error = -EOPNOTSUPP; 3112 goto out2; 3113 } 3114 child = d_alloc(dentry, &name); 3115 if (unlikely(!child)) { 3116 error = -ENOMEM; 3117 goto out2; 3118 } 3119 nd->flags &= ~LOOKUP_DIRECTORY; 3120 nd->flags |= op->intent; 3121 dput(nd->path.dentry); 3122 nd->path.dentry = child; 3123 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3124 if (error) 3125 goto out2; 3126 audit_inode(pathname, nd->path.dentry, 0); 3127 error = may_open(&nd->path, op->acc_mode, op->open_flag); 3128 if (error) 3129 goto out2; 3130 file->f_path.mnt = nd->path.mnt; 3131 error = finish_open(file, nd->path.dentry, NULL, opened); 3132 if (error) 3133 goto out2; 3134 error = open_check_o_direct(file); 3135 if (error) { 3136 fput(file); 3137 } else if (!(op->open_flag & O_EXCL)) { 3138 struct inode *inode = file_inode(file); 3139 spin_lock(&inode->i_lock); 3140 inode->i_state |= I_LINKABLE; 3141 spin_unlock(&inode->i_lock); 3142 } 3143 out2: 3144 mnt_drop_write(nd->path.mnt); 3145 out: 3146 path_put(&nd->path); 3147 return error; 3148 } 3149 3150 static struct file *path_openat(int dfd, struct filename *pathname, 3151 struct nameidata *nd, const struct open_flags *op, int flags) 3152 { 3153 struct file *base = NULL; 3154 struct file *file; 3155 struct path path; 3156 int opened = 0; 3157 int error; 3158 3159 file = get_empty_filp(); 3160 if (IS_ERR(file)) 3161 return file; 3162 3163 file->f_flags = op->open_flag; 3164 3165 if (unlikely(file->f_flags & __O_TMPFILE)) { 3166 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3167 goto out; 3168 } 3169 3170 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 3171 if (unlikely(error)) 3172 goto out; 3173 3174 current->total_link_count = 0; 3175 error = link_path_walk(pathname->name, nd); 3176 if (unlikely(error)) 3177 goto out; 3178 3179 error = do_last(nd, &path, file, op, &opened, pathname); 3180 while (unlikely(error > 0)) { /* trailing symlink */ 3181 struct path link = path; 3182 void *cookie; 3183 if (!(nd->flags & LOOKUP_FOLLOW)) { 3184 path_put_conditional(&path, nd); 3185 path_put(&nd->path); 3186 error = -ELOOP; 3187 break; 3188 } 3189 error = may_follow_link(&link, nd); 3190 if (unlikely(error)) 3191 break; 3192 nd->flags |= LOOKUP_PARENT; 3193 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3194 error = follow_link(&link, nd, &cookie); 3195 if (unlikely(error)) 3196 break; 3197 error = do_last(nd, &path, file, op, &opened, pathname); 3198 put_link(nd, &link, cookie); 3199 } 3200 out: 3201 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 3202 path_put(&nd->root); 3203 if (base) 3204 fput(base); 3205 if (!(opened & FILE_OPENED)) { 3206 BUG_ON(!error); 3207 put_filp(file); 3208 } 3209 if (unlikely(error)) { 3210 if (error == -EOPENSTALE) { 3211 if (flags & LOOKUP_RCU) 3212 error = -ECHILD; 3213 else 3214 error = -ESTALE; 3215 } 3216 file = ERR_PTR(error); 3217 } 3218 return file; 3219 } 3220 3221 struct file *do_filp_open(int dfd, struct filename *pathname, 3222 const struct open_flags *op) 3223 { 3224 struct nameidata nd; 3225 int flags = op->lookup_flags; 3226 struct file *filp; 3227 3228 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3229 if (unlikely(filp == ERR_PTR(-ECHILD))) 3230 filp = path_openat(dfd, pathname, &nd, op, flags); 3231 if (unlikely(filp == ERR_PTR(-ESTALE))) 3232 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3233 return filp; 3234 } 3235 3236 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3237 const char *name, const struct open_flags *op) 3238 { 3239 struct nameidata nd; 3240 struct file *file; 3241 struct filename filename = { .name = name }; 3242 int flags = op->lookup_flags | LOOKUP_ROOT; 3243 3244 nd.root.mnt = mnt; 3245 nd.root.dentry = dentry; 3246 3247 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3248 return ERR_PTR(-ELOOP); 3249 3250 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3251 if (unlikely(file == ERR_PTR(-ECHILD))) 3252 file = path_openat(-1, &filename, &nd, op, flags); 3253 if (unlikely(file == ERR_PTR(-ESTALE))) 3254 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3255 return file; 3256 } 3257 3258 struct dentry *kern_path_create(int dfd, const char *pathname, 3259 struct path *path, unsigned int lookup_flags) 3260 { 3261 struct dentry *dentry = ERR_PTR(-EEXIST); 3262 struct nameidata nd; 3263 int err2; 3264 int error; 3265 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3266 3267 /* 3268 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3269 * other flags passed in are ignored! 3270 */ 3271 lookup_flags &= LOOKUP_REVAL; 3272 3273 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3274 if (error) 3275 return ERR_PTR(error); 3276 3277 /* 3278 * Yucky last component or no last component at all? 3279 * (foo/., foo/.., /////) 3280 */ 3281 if (nd.last_type != LAST_NORM) 3282 goto out; 3283 nd.flags &= ~LOOKUP_PARENT; 3284 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3285 3286 /* don't fail immediately if it's r/o, at least try to report other errors */ 3287 err2 = mnt_want_write(nd.path.mnt); 3288 /* 3289 * Do the final lookup. 3290 */ 3291 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3292 dentry = lookup_hash(&nd); 3293 if (IS_ERR(dentry)) 3294 goto unlock; 3295 3296 error = -EEXIST; 3297 if (d_is_positive(dentry)) 3298 goto fail; 3299 3300 /* 3301 * Special case - lookup gave negative, but... we had foo/bar/ 3302 * From the vfs_mknod() POV we just have a negative dentry - 3303 * all is fine. Let's be bastards - you had / on the end, you've 3304 * been asking for (non-existent) directory. -ENOENT for you. 3305 */ 3306 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3307 error = -ENOENT; 3308 goto fail; 3309 } 3310 if (unlikely(err2)) { 3311 error = err2; 3312 goto fail; 3313 } 3314 *path = nd.path; 3315 return dentry; 3316 fail: 3317 dput(dentry); 3318 dentry = ERR_PTR(error); 3319 unlock: 3320 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3321 if (!err2) 3322 mnt_drop_write(nd.path.mnt); 3323 out: 3324 path_put(&nd.path); 3325 return dentry; 3326 } 3327 EXPORT_SYMBOL(kern_path_create); 3328 3329 void done_path_create(struct path *path, struct dentry *dentry) 3330 { 3331 dput(dentry); 3332 mutex_unlock(&path->dentry->d_inode->i_mutex); 3333 mnt_drop_write(path->mnt); 3334 path_put(path); 3335 } 3336 EXPORT_SYMBOL(done_path_create); 3337 3338 struct dentry *user_path_create(int dfd, const char __user *pathname, 3339 struct path *path, unsigned int lookup_flags) 3340 { 3341 struct filename *tmp = getname(pathname); 3342 struct dentry *res; 3343 if (IS_ERR(tmp)) 3344 return ERR_CAST(tmp); 3345 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3346 putname(tmp); 3347 return res; 3348 } 3349 EXPORT_SYMBOL(user_path_create); 3350 3351 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3352 { 3353 int error = may_create(dir, dentry); 3354 3355 if (error) 3356 return error; 3357 3358 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3359 return -EPERM; 3360 3361 if (!dir->i_op->mknod) 3362 return -EPERM; 3363 3364 error = devcgroup_inode_mknod(mode, dev); 3365 if (error) 3366 return error; 3367 3368 error = security_inode_mknod(dir, dentry, mode, dev); 3369 if (error) 3370 return error; 3371 3372 error = dir->i_op->mknod(dir, dentry, mode, dev); 3373 if (!error) 3374 fsnotify_create(dir, dentry); 3375 return error; 3376 } 3377 3378 static int may_mknod(umode_t mode) 3379 { 3380 switch (mode & S_IFMT) { 3381 case S_IFREG: 3382 case S_IFCHR: 3383 case S_IFBLK: 3384 case S_IFIFO: 3385 case S_IFSOCK: 3386 case 0: /* zero mode translates to S_IFREG */ 3387 return 0; 3388 case S_IFDIR: 3389 return -EPERM; 3390 default: 3391 return -EINVAL; 3392 } 3393 } 3394 3395 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3396 unsigned, dev) 3397 { 3398 struct dentry *dentry; 3399 struct path path; 3400 int error; 3401 unsigned int lookup_flags = 0; 3402 3403 error = may_mknod(mode); 3404 if (error) 3405 return error; 3406 retry: 3407 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3408 if (IS_ERR(dentry)) 3409 return PTR_ERR(dentry); 3410 3411 if (!IS_POSIXACL(path.dentry->d_inode)) 3412 mode &= ~current_umask(); 3413 error = security_path_mknod(&path, dentry, mode, dev); 3414 if (error) 3415 goto out; 3416 switch (mode & S_IFMT) { 3417 case 0: case S_IFREG: 3418 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3419 break; 3420 case S_IFCHR: case S_IFBLK: 3421 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3422 new_decode_dev(dev)); 3423 break; 3424 case S_IFIFO: case S_IFSOCK: 3425 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3426 break; 3427 } 3428 out: 3429 done_path_create(&path, dentry); 3430 if (retry_estale(error, lookup_flags)) { 3431 lookup_flags |= LOOKUP_REVAL; 3432 goto retry; 3433 } 3434 return error; 3435 } 3436 3437 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3438 { 3439 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3440 } 3441 3442 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3443 { 3444 int error = may_create(dir, dentry); 3445 unsigned max_links = dir->i_sb->s_max_links; 3446 3447 if (error) 3448 return error; 3449 3450 if (!dir->i_op->mkdir) 3451 return -EPERM; 3452 3453 mode &= (S_IRWXUGO|S_ISVTX); 3454 error = security_inode_mkdir(dir, dentry, mode); 3455 if (error) 3456 return error; 3457 3458 if (max_links && dir->i_nlink >= max_links) 3459 return -EMLINK; 3460 3461 error = dir->i_op->mkdir(dir, dentry, mode); 3462 if (!error) 3463 fsnotify_mkdir(dir, dentry); 3464 return error; 3465 } 3466 3467 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3468 { 3469 struct dentry *dentry; 3470 struct path path; 3471 int error; 3472 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3473 3474 retry: 3475 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3476 if (IS_ERR(dentry)) 3477 return PTR_ERR(dentry); 3478 3479 if (!IS_POSIXACL(path.dentry->d_inode)) 3480 mode &= ~current_umask(); 3481 error = security_path_mkdir(&path, dentry, mode); 3482 if (!error) 3483 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3484 done_path_create(&path, dentry); 3485 if (retry_estale(error, lookup_flags)) { 3486 lookup_flags |= LOOKUP_REVAL; 3487 goto retry; 3488 } 3489 return error; 3490 } 3491 3492 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3493 { 3494 return sys_mkdirat(AT_FDCWD, pathname, mode); 3495 } 3496 3497 /* 3498 * The dentry_unhash() helper will try to drop the dentry early: we 3499 * should have a usage count of 1 if we're the only user of this 3500 * dentry, and if that is true (possibly after pruning the dcache), 3501 * then we drop the dentry now. 3502 * 3503 * A low-level filesystem can, if it choses, legally 3504 * do a 3505 * 3506 * if (!d_unhashed(dentry)) 3507 * return -EBUSY; 3508 * 3509 * if it cannot handle the case of removing a directory 3510 * that is still in use by something else.. 3511 */ 3512 void dentry_unhash(struct dentry *dentry) 3513 { 3514 shrink_dcache_parent(dentry); 3515 spin_lock(&dentry->d_lock); 3516 if (dentry->d_lockref.count == 1) 3517 __d_drop(dentry); 3518 spin_unlock(&dentry->d_lock); 3519 } 3520 3521 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3522 { 3523 int error = may_delete(dir, dentry, 1); 3524 3525 if (error) 3526 return error; 3527 3528 if (!dir->i_op->rmdir) 3529 return -EPERM; 3530 3531 dget(dentry); 3532 mutex_lock(&dentry->d_inode->i_mutex); 3533 3534 error = -EBUSY; 3535 if (d_mountpoint(dentry)) 3536 goto out; 3537 3538 error = security_inode_rmdir(dir, dentry); 3539 if (error) 3540 goto out; 3541 3542 shrink_dcache_parent(dentry); 3543 error = dir->i_op->rmdir(dir, dentry); 3544 if (error) 3545 goto out; 3546 3547 dentry->d_inode->i_flags |= S_DEAD; 3548 dont_mount(dentry); 3549 3550 out: 3551 mutex_unlock(&dentry->d_inode->i_mutex); 3552 dput(dentry); 3553 if (!error) 3554 d_delete(dentry); 3555 return error; 3556 } 3557 3558 static long do_rmdir(int dfd, const char __user *pathname) 3559 { 3560 int error = 0; 3561 struct filename *name; 3562 struct dentry *dentry; 3563 struct nameidata nd; 3564 unsigned int lookup_flags = 0; 3565 retry: 3566 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3567 if (IS_ERR(name)) 3568 return PTR_ERR(name); 3569 3570 switch(nd.last_type) { 3571 case LAST_DOTDOT: 3572 error = -ENOTEMPTY; 3573 goto exit1; 3574 case LAST_DOT: 3575 error = -EINVAL; 3576 goto exit1; 3577 case LAST_ROOT: 3578 error = -EBUSY; 3579 goto exit1; 3580 } 3581 3582 nd.flags &= ~LOOKUP_PARENT; 3583 error = mnt_want_write(nd.path.mnt); 3584 if (error) 3585 goto exit1; 3586 3587 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3588 dentry = lookup_hash(&nd); 3589 error = PTR_ERR(dentry); 3590 if (IS_ERR(dentry)) 3591 goto exit2; 3592 if (!dentry->d_inode) { 3593 error = -ENOENT; 3594 goto exit3; 3595 } 3596 error = security_path_rmdir(&nd.path, dentry); 3597 if (error) 3598 goto exit3; 3599 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3600 exit3: 3601 dput(dentry); 3602 exit2: 3603 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3604 mnt_drop_write(nd.path.mnt); 3605 exit1: 3606 path_put(&nd.path); 3607 putname(name); 3608 if (retry_estale(error, lookup_flags)) { 3609 lookup_flags |= LOOKUP_REVAL; 3610 goto retry; 3611 } 3612 return error; 3613 } 3614 3615 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3616 { 3617 return do_rmdir(AT_FDCWD, pathname); 3618 } 3619 3620 /** 3621 * vfs_unlink - unlink a filesystem object 3622 * @dir: parent directory 3623 * @dentry: victim 3624 * @delegated_inode: returns victim inode, if the inode is delegated. 3625 * 3626 * The caller must hold dir->i_mutex. 3627 * 3628 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3629 * return a reference to the inode in delegated_inode. The caller 3630 * should then break the delegation on that inode and retry. Because 3631 * breaking a delegation may take a long time, the caller should drop 3632 * dir->i_mutex before doing so. 3633 * 3634 * Alternatively, a caller may pass NULL for delegated_inode. This may 3635 * be appropriate for callers that expect the underlying filesystem not 3636 * to be NFS exported. 3637 */ 3638 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3639 { 3640 struct inode *target = dentry->d_inode; 3641 int error = may_delete(dir, dentry, 0); 3642 3643 if (error) 3644 return error; 3645 3646 if (!dir->i_op->unlink) 3647 return -EPERM; 3648 3649 mutex_lock(&target->i_mutex); 3650 if (d_mountpoint(dentry)) 3651 error = -EBUSY; 3652 else { 3653 error = security_inode_unlink(dir, dentry); 3654 if (!error) { 3655 error = try_break_deleg(target, delegated_inode); 3656 if (error) 3657 goto out; 3658 error = dir->i_op->unlink(dir, dentry); 3659 if (!error) 3660 dont_mount(dentry); 3661 } 3662 } 3663 out: 3664 mutex_unlock(&target->i_mutex); 3665 3666 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3667 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3668 fsnotify_link_count(target); 3669 d_delete(dentry); 3670 } 3671 3672 return error; 3673 } 3674 3675 /* 3676 * Make sure that the actual truncation of the file will occur outside its 3677 * directory's i_mutex. Truncate can take a long time if there is a lot of 3678 * writeout happening, and we don't want to prevent access to the directory 3679 * while waiting on the I/O. 3680 */ 3681 static long do_unlinkat(int dfd, const char __user *pathname) 3682 { 3683 int error; 3684 struct filename *name; 3685 struct dentry *dentry; 3686 struct nameidata nd; 3687 struct inode *inode = NULL; 3688 struct inode *delegated_inode = NULL; 3689 unsigned int lookup_flags = 0; 3690 retry: 3691 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3692 if (IS_ERR(name)) 3693 return PTR_ERR(name); 3694 3695 error = -EISDIR; 3696 if (nd.last_type != LAST_NORM) 3697 goto exit1; 3698 3699 nd.flags &= ~LOOKUP_PARENT; 3700 error = mnt_want_write(nd.path.mnt); 3701 if (error) 3702 goto exit1; 3703 retry_deleg: 3704 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3705 dentry = lookup_hash(&nd); 3706 error = PTR_ERR(dentry); 3707 if (!IS_ERR(dentry)) { 3708 /* Why not before? Because we want correct error value */ 3709 if (nd.last.name[nd.last.len]) 3710 goto slashes; 3711 inode = dentry->d_inode; 3712 if (d_is_negative(dentry)) 3713 goto slashes; 3714 ihold(inode); 3715 error = security_path_unlink(&nd.path, dentry); 3716 if (error) 3717 goto exit2; 3718 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3719 exit2: 3720 dput(dentry); 3721 } 3722 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3723 if (inode) 3724 iput(inode); /* truncate the inode here */ 3725 inode = NULL; 3726 if (delegated_inode) { 3727 error = break_deleg_wait(&delegated_inode); 3728 if (!error) 3729 goto retry_deleg; 3730 } 3731 mnt_drop_write(nd.path.mnt); 3732 exit1: 3733 path_put(&nd.path); 3734 putname(name); 3735 if (retry_estale(error, lookup_flags)) { 3736 lookup_flags |= LOOKUP_REVAL; 3737 inode = NULL; 3738 goto retry; 3739 } 3740 return error; 3741 3742 slashes: 3743 if (d_is_negative(dentry)) 3744 error = -ENOENT; 3745 else if (d_is_directory(dentry) || d_is_autodir(dentry)) 3746 error = -EISDIR; 3747 else 3748 error = -ENOTDIR; 3749 goto exit2; 3750 } 3751 3752 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3753 { 3754 if ((flag & ~AT_REMOVEDIR) != 0) 3755 return -EINVAL; 3756 3757 if (flag & AT_REMOVEDIR) 3758 return do_rmdir(dfd, pathname); 3759 3760 return do_unlinkat(dfd, pathname); 3761 } 3762 3763 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3764 { 3765 return do_unlinkat(AT_FDCWD, pathname); 3766 } 3767 3768 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3769 { 3770 int error = may_create(dir, dentry); 3771 3772 if (error) 3773 return error; 3774 3775 if (!dir->i_op->symlink) 3776 return -EPERM; 3777 3778 error = security_inode_symlink(dir, dentry, oldname); 3779 if (error) 3780 return error; 3781 3782 error = dir->i_op->symlink(dir, dentry, oldname); 3783 if (!error) 3784 fsnotify_create(dir, dentry); 3785 return error; 3786 } 3787 3788 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3789 int, newdfd, const char __user *, newname) 3790 { 3791 int error; 3792 struct filename *from; 3793 struct dentry *dentry; 3794 struct path path; 3795 unsigned int lookup_flags = 0; 3796 3797 from = getname(oldname); 3798 if (IS_ERR(from)) 3799 return PTR_ERR(from); 3800 retry: 3801 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3802 error = PTR_ERR(dentry); 3803 if (IS_ERR(dentry)) 3804 goto out_putname; 3805 3806 error = security_path_symlink(&path, dentry, from->name); 3807 if (!error) 3808 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3809 done_path_create(&path, dentry); 3810 if (retry_estale(error, lookup_flags)) { 3811 lookup_flags |= LOOKUP_REVAL; 3812 goto retry; 3813 } 3814 out_putname: 3815 putname(from); 3816 return error; 3817 } 3818 3819 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3820 { 3821 return sys_symlinkat(oldname, AT_FDCWD, newname); 3822 } 3823 3824 /** 3825 * vfs_link - create a new link 3826 * @old_dentry: object to be linked 3827 * @dir: new parent 3828 * @new_dentry: where to create the new link 3829 * @delegated_inode: returns inode needing a delegation break 3830 * 3831 * The caller must hold dir->i_mutex 3832 * 3833 * If vfs_link discovers a delegation on the to-be-linked file in need 3834 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3835 * inode in delegated_inode. The caller should then break the delegation 3836 * and retry. Because breaking a delegation may take a long time, the 3837 * caller should drop the i_mutex before doing so. 3838 * 3839 * Alternatively, a caller may pass NULL for delegated_inode. This may 3840 * be appropriate for callers that expect the underlying filesystem not 3841 * to be NFS exported. 3842 */ 3843 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3844 { 3845 struct inode *inode = old_dentry->d_inode; 3846 unsigned max_links = dir->i_sb->s_max_links; 3847 int error; 3848 3849 if (!inode) 3850 return -ENOENT; 3851 3852 error = may_create(dir, new_dentry); 3853 if (error) 3854 return error; 3855 3856 if (dir->i_sb != inode->i_sb) 3857 return -EXDEV; 3858 3859 /* 3860 * A link to an append-only or immutable file cannot be created. 3861 */ 3862 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3863 return -EPERM; 3864 if (!dir->i_op->link) 3865 return -EPERM; 3866 if (S_ISDIR(inode->i_mode)) 3867 return -EPERM; 3868 3869 error = security_inode_link(old_dentry, dir, new_dentry); 3870 if (error) 3871 return error; 3872 3873 mutex_lock(&inode->i_mutex); 3874 /* Make sure we don't allow creating hardlink to an unlinked file */ 3875 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3876 error = -ENOENT; 3877 else if (max_links && inode->i_nlink >= max_links) 3878 error = -EMLINK; 3879 else { 3880 error = try_break_deleg(inode, delegated_inode); 3881 if (!error) 3882 error = dir->i_op->link(old_dentry, dir, new_dentry); 3883 } 3884 3885 if (!error && (inode->i_state & I_LINKABLE)) { 3886 spin_lock(&inode->i_lock); 3887 inode->i_state &= ~I_LINKABLE; 3888 spin_unlock(&inode->i_lock); 3889 } 3890 mutex_unlock(&inode->i_mutex); 3891 if (!error) 3892 fsnotify_link(dir, inode, new_dentry); 3893 return error; 3894 } 3895 3896 /* 3897 * Hardlinks are often used in delicate situations. We avoid 3898 * security-related surprises by not following symlinks on the 3899 * newname. --KAB 3900 * 3901 * We don't follow them on the oldname either to be compatible 3902 * with linux 2.0, and to avoid hard-linking to directories 3903 * and other special files. --ADM 3904 */ 3905 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3906 int, newdfd, const char __user *, newname, int, flags) 3907 { 3908 struct dentry *new_dentry; 3909 struct path old_path, new_path; 3910 struct inode *delegated_inode = NULL; 3911 int how = 0; 3912 int error; 3913 3914 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3915 return -EINVAL; 3916 /* 3917 * To use null names we require CAP_DAC_READ_SEARCH 3918 * This ensures that not everyone will be able to create 3919 * handlink using the passed filedescriptor. 3920 */ 3921 if (flags & AT_EMPTY_PATH) { 3922 if (!capable(CAP_DAC_READ_SEARCH)) 3923 return -ENOENT; 3924 how = LOOKUP_EMPTY; 3925 } 3926 3927 if (flags & AT_SYMLINK_FOLLOW) 3928 how |= LOOKUP_FOLLOW; 3929 retry: 3930 error = user_path_at(olddfd, oldname, how, &old_path); 3931 if (error) 3932 return error; 3933 3934 new_dentry = user_path_create(newdfd, newname, &new_path, 3935 (how & LOOKUP_REVAL)); 3936 error = PTR_ERR(new_dentry); 3937 if (IS_ERR(new_dentry)) 3938 goto out; 3939 3940 error = -EXDEV; 3941 if (old_path.mnt != new_path.mnt) 3942 goto out_dput; 3943 error = may_linkat(&old_path); 3944 if (unlikely(error)) 3945 goto out_dput; 3946 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3947 if (error) 3948 goto out_dput; 3949 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 3950 out_dput: 3951 done_path_create(&new_path, new_dentry); 3952 if (delegated_inode) { 3953 error = break_deleg_wait(&delegated_inode); 3954 if (!error) 3955 goto retry; 3956 } 3957 if (retry_estale(error, how)) { 3958 how |= LOOKUP_REVAL; 3959 goto retry; 3960 } 3961 out: 3962 path_put(&old_path); 3963 3964 return error; 3965 } 3966 3967 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3968 { 3969 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3970 } 3971 3972 /* 3973 * The worst of all namespace operations - renaming directory. "Perverted" 3974 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3975 * Problems: 3976 * a) we can get into loop creation. Check is done in is_subdir(). 3977 * b) race potential - two innocent renames can create a loop together. 3978 * That's where 4.4 screws up. Current fix: serialization on 3979 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3980 * story. 3981 * c) we have to lock _four_ objects - parents and victim (if it exists), 3982 * and source (if it is not a directory). 3983 * And that - after we got ->i_mutex on parents (until then we don't know 3984 * whether the target exists). Solution: try to be smart with locking 3985 * order for inodes. We rely on the fact that tree topology may change 3986 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3987 * move will be locked. Thus we can rank directories by the tree 3988 * (ancestors first) and rank all non-directories after them. 3989 * That works since everybody except rename does "lock parent, lookup, 3990 * lock child" and rename is under ->s_vfs_rename_mutex. 3991 * HOWEVER, it relies on the assumption that any object with ->lookup() 3992 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3993 * we'd better make sure that there's no link(2) for them. 3994 * d) conversion from fhandle to dentry may come in the wrong moment - when 3995 * we are removing the target. Solution: we will have to grab ->i_mutex 3996 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3997 * ->i_mutex on parents, which works but leads to some truly excessive 3998 * locking]. 3999 */ 4000 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 4001 struct inode *new_dir, struct dentry *new_dentry) 4002 { 4003 int error = 0; 4004 struct inode *target = new_dentry->d_inode; 4005 unsigned max_links = new_dir->i_sb->s_max_links; 4006 4007 /* 4008 * If we are going to change the parent - check write permissions, 4009 * we'll need to flip '..'. 4010 */ 4011 if (new_dir != old_dir) { 4012 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 4013 if (error) 4014 return error; 4015 } 4016 4017 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 4018 if (error) 4019 return error; 4020 4021 dget(new_dentry); 4022 if (target) 4023 mutex_lock(&target->i_mutex); 4024 4025 error = -EBUSY; 4026 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 4027 goto out; 4028 4029 error = -EMLINK; 4030 if (max_links && !target && new_dir != old_dir && 4031 new_dir->i_nlink >= max_links) 4032 goto out; 4033 4034 if (target) 4035 shrink_dcache_parent(new_dentry); 4036 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 4037 if (error) 4038 goto out; 4039 4040 if (target) { 4041 target->i_flags |= S_DEAD; 4042 dont_mount(new_dentry); 4043 } 4044 out: 4045 if (target) 4046 mutex_unlock(&target->i_mutex); 4047 dput(new_dentry); 4048 if (!error) 4049 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 4050 d_move(old_dentry,new_dentry); 4051 return error; 4052 } 4053 4054 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 4055 struct inode *new_dir, struct dentry *new_dentry, 4056 struct inode **delegated_inode) 4057 { 4058 struct inode *target = new_dentry->d_inode; 4059 struct inode *source = old_dentry->d_inode; 4060 int error; 4061 4062 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 4063 if (error) 4064 return error; 4065 4066 dget(new_dentry); 4067 lock_two_nondirectories(source, target); 4068 4069 error = -EBUSY; 4070 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 4071 goto out; 4072 4073 error = try_break_deleg(source, delegated_inode); 4074 if (error) 4075 goto out; 4076 if (target) { 4077 error = try_break_deleg(target, delegated_inode); 4078 if (error) 4079 goto out; 4080 } 4081 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 4082 if (error) 4083 goto out; 4084 4085 if (target) 4086 dont_mount(new_dentry); 4087 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 4088 d_move(old_dentry, new_dentry); 4089 out: 4090 unlock_two_nondirectories(source, target); 4091 dput(new_dentry); 4092 return error; 4093 } 4094 4095 /** 4096 * vfs_rename - rename a filesystem object 4097 * @old_dir: parent of source 4098 * @old_dentry: source 4099 * @new_dir: parent of destination 4100 * @new_dentry: destination 4101 * @delegated_inode: returns an inode needing a delegation break 4102 * 4103 * The caller must hold multiple mutexes--see lock_rename()). 4104 * 4105 * If vfs_rename discovers a delegation in need of breaking at either 4106 * the source or destination, it will return -EWOULDBLOCK and return a 4107 * reference to the inode in delegated_inode. The caller should then 4108 * break the delegation and retry. Because breaking a delegation may 4109 * take a long time, the caller should drop all locks before doing 4110 * so. 4111 * 4112 * Alternatively, a caller may pass NULL for delegated_inode. This may 4113 * be appropriate for callers that expect the underlying filesystem not 4114 * to be NFS exported. 4115 */ 4116 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4117 struct inode *new_dir, struct dentry *new_dentry, 4118 struct inode **delegated_inode) 4119 { 4120 int error; 4121 int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry); 4122 const unsigned char *old_name; 4123 4124 if (old_dentry->d_inode == new_dentry->d_inode) 4125 return 0; 4126 4127 error = may_delete(old_dir, old_dentry, is_dir); 4128 if (error) 4129 return error; 4130 4131 if (!new_dentry->d_inode) 4132 error = may_create(new_dir, new_dentry); 4133 else 4134 error = may_delete(new_dir, new_dentry, is_dir); 4135 if (error) 4136 return error; 4137 4138 if (!old_dir->i_op->rename) 4139 return -EPERM; 4140 4141 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4142 4143 if (is_dir) 4144 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 4145 else 4146 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode); 4147 if (!error) 4148 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4149 new_dentry->d_inode, old_dentry); 4150 fsnotify_oldname_free(old_name); 4151 4152 return error; 4153 } 4154 4155 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4156 int, newdfd, const char __user *, newname) 4157 { 4158 struct dentry *old_dir, *new_dir; 4159 struct dentry *old_dentry, *new_dentry; 4160 struct dentry *trap; 4161 struct nameidata oldnd, newnd; 4162 struct inode *delegated_inode = NULL; 4163 struct filename *from; 4164 struct filename *to; 4165 unsigned int lookup_flags = 0; 4166 bool should_retry = false; 4167 int error; 4168 retry: 4169 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4170 if (IS_ERR(from)) { 4171 error = PTR_ERR(from); 4172 goto exit; 4173 } 4174 4175 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4176 if (IS_ERR(to)) { 4177 error = PTR_ERR(to); 4178 goto exit1; 4179 } 4180 4181 error = -EXDEV; 4182 if (oldnd.path.mnt != newnd.path.mnt) 4183 goto exit2; 4184 4185 old_dir = oldnd.path.dentry; 4186 error = -EBUSY; 4187 if (oldnd.last_type != LAST_NORM) 4188 goto exit2; 4189 4190 new_dir = newnd.path.dentry; 4191 if (newnd.last_type != LAST_NORM) 4192 goto exit2; 4193 4194 error = mnt_want_write(oldnd.path.mnt); 4195 if (error) 4196 goto exit2; 4197 4198 oldnd.flags &= ~LOOKUP_PARENT; 4199 newnd.flags &= ~LOOKUP_PARENT; 4200 newnd.flags |= LOOKUP_RENAME_TARGET; 4201 4202 retry_deleg: 4203 trap = lock_rename(new_dir, old_dir); 4204 4205 old_dentry = lookup_hash(&oldnd); 4206 error = PTR_ERR(old_dentry); 4207 if (IS_ERR(old_dentry)) 4208 goto exit3; 4209 /* source must exist */ 4210 error = -ENOENT; 4211 if (d_is_negative(old_dentry)) 4212 goto exit4; 4213 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4214 if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) { 4215 error = -ENOTDIR; 4216 if (oldnd.last.name[oldnd.last.len]) 4217 goto exit4; 4218 if (newnd.last.name[newnd.last.len]) 4219 goto exit4; 4220 } 4221 /* source should not be ancestor of target */ 4222 error = -EINVAL; 4223 if (old_dentry == trap) 4224 goto exit4; 4225 new_dentry = lookup_hash(&newnd); 4226 error = PTR_ERR(new_dentry); 4227 if (IS_ERR(new_dentry)) 4228 goto exit4; 4229 /* target should not be an ancestor of source */ 4230 error = -ENOTEMPTY; 4231 if (new_dentry == trap) 4232 goto exit5; 4233 4234 error = security_path_rename(&oldnd.path, old_dentry, 4235 &newnd.path, new_dentry); 4236 if (error) 4237 goto exit5; 4238 error = vfs_rename(old_dir->d_inode, old_dentry, 4239 new_dir->d_inode, new_dentry, 4240 &delegated_inode); 4241 exit5: 4242 dput(new_dentry); 4243 exit4: 4244 dput(old_dentry); 4245 exit3: 4246 unlock_rename(new_dir, old_dir); 4247 if (delegated_inode) { 4248 error = break_deleg_wait(&delegated_inode); 4249 if (!error) 4250 goto retry_deleg; 4251 } 4252 mnt_drop_write(oldnd.path.mnt); 4253 exit2: 4254 if (retry_estale(error, lookup_flags)) 4255 should_retry = true; 4256 path_put(&newnd.path); 4257 putname(to); 4258 exit1: 4259 path_put(&oldnd.path); 4260 putname(from); 4261 if (should_retry) { 4262 should_retry = false; 4263 lookup_flags |= LOOKUP_REVAL; 4264 goto retry; 4265 } 4266 exit: 4267 return error; 4268 } 4269 4270 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4271 { 4272 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 4273 } 4274 4275 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 4276 { 4277 int len; 4278 4279 len = PTR_ERR(link); 4280 if (IS_ERR(link)) 4281 goto out; 4282 4283 len = strlen(link); 4284 if (len > (unsigned) buflen) 4285 len = buflen; 4286 if (copy_to_user(buffer, link, len)) 4287 len = -EFAULT; 4288 out: 4289 return len; 4290 } 4291 4292 /* 4293 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4294 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4295 * using) it for any given inode is up to filesystem. 4296 */ 4297 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4298 { 4299 struct nameidata nd; 4300 void *cookie; 4301 int res; 4302 4303 nd.depth = 0; 4304 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4305 if (IS_ERR(cookie)) 4306 return PTR_ERR(cookie); 4307 4308 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 4309 if (dentry->d_inode->i_op->put_link) 4310 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4311 return res; 4312 } 4313 4314 /* get the link contents into pagecache */ 4315 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4316 { 4317 char *kaddr; 4318 struct page *page; 4319 struct address_space *mapping = dentry->d_inode->i_mapping; 4320 page = read_mapping_page(mapping, 0, NULL); 4321 if (IS_ERR(page)) 4322 return (char*)page; 4323 *ppage = page; 4324 kaddr = kmap(page); 4325 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4326 return kaddr; 4327 } 4328 4329 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4330 { 4331 struct page *page = NULL; 4332 char *s = page_getlink(dentry, &page); 4333 int res = vfs_readlink(dentry,buffer,buflen,s); 4334 if (page) { 4335 kunmap(page); 4336 page_cache_release(page); 4337 } 4338 return res; 4339 } 4340 4341 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4342 { 4343 struct page *page = NULL; 4344 nd_set_link(nd, page_getlink(dentry, &page)); 4345 return page; 4346 } 4347 4348 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4349 { 4350 struct page *page = cookie; 4351 4352 if (page) { 4353 kunmap(page); 4354 page_cache_release(page); 4355 } 4356 } 4357 4358 /* 4359 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4360 */ 4361 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4362 { 4363 struct address_space *mapping = inode->i_mapping; 4364 struct page *page; 4365 void *fsdata; 4366 int err; 4367 char *kaddr; 4368 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4369 if (nofs) 4370 flags |= AOP_FLAG_NOFS; 4371 4372 retry: 4373 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4374 flags, &page, &fsdata); 4375 if (err) 4376 goto fail; 4377 4378 kaddr = kmap_atomic(page); 4379 memcpy(kaddr, symname, len-1); 4380 kunmap_atomic(kaddr); 4381 4382 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4383 page, fsdata); 4384 if (err < 0) 4385 goto fail; 4386 if (err < len-1) 4387 goto retry; 4388 4389 mark_inode_dirty(inode); 4390 return 0; 4391 fail: 4392 return err; 4393 } 4394 4395 int page_symlink(struct inode *inode, const char *symname, int len) 4396 { 4397 return __page_symlink(inode, symname, len, 4398 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4399 } 4400 4401 const struct inode_operations page_symlink_inode_operations = { 4402 .readlink = generic_readlink, 4403 .follow_link = page_follow_link_light, 4404 .put_link = page_put_link, 4405 }; 4406 4407 EXPORT_SYMBOL(user_path_at); 4408 EXPORT_SYMBOL(follow_down_one); 4409 EXPORT_SYMBOL(follow_down); 4410 EXPORT_SYMBOL(follow_up); 4411 EXPORT_SYMBOL(get_write_access); /* nfsd */ 4412 EXPORT_SYMBOL(lock_rename); 4413 EXPORT_SYMBOL(lookup_one_len); 4414 EXPORT_SYMBOL(page_follow_link_light); 4415 EXPORT_SYMBOL(page_put_link); 4416 EXPORT_SYMBOL(page_readlink); 4417 EXPORT_SYMBOL(__page_symlink); 4418 EXPORT_SYMBOL(page_symlink); 4419 EXPORT_SYMBOL(page_symlink_inode_operations); 4420 EXPORT_SYMBOL(kern_path); 4421 EXPORT_SYMBOL(vfs_path_lookup); 4422 EXPORT_SYMBOL(inode_permission); 4423 EXPORT_SYMBOL(unlock_rename); 4424 EXPORT_SYMBOL(vfs_create); 4425 EXPORT_SYMBOL(vfs_link); 4426 EXPORT_SYMBOL(vfs_mkdir); 4427 EXPORT_SYMBOL(vfs_mknod); 4428 EXPORT_SYMBOL(generic_permission); 4429 EXPORT_SYMBOL(vfs_readlink); 4430 EXPORT_SYMBOL(vfs_rename); 4431 EXPORT_SYMBOL(vfs_rmdir); 4432 EXPORT_SYMBOL(vfs_symlink); 4433 EXPORT_SYMBOL(vfs_unlink); 4434 EXPORT_SYMBOL(dentry_unhash); 4435 EXPORT_SYMBOL(generic_readlink); 4436