1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic permission checking 292 */ 293 static int acl_permission_check(struct inode *inode, int mask) 294 { 295 unsigned int mode = inode->i_mode; 296 297 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 298 mode >>= 6; 299 else { 300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 301 int error = check_acl(inode, mask); 302 if (error != -EAGAIN) 303 return error; 304 } 305 306 if (in_group_p(inode->i_gid)) 307 mode >>= 3; 308 } 309 310 /* 311 * If the DACs are ok we don't need any capability check. 312 */ 313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 314 return 0; 315 return -EACCES; 316 } 317 318 /** 319 * generic_permission - check for access rights on a Posix-like filesystem 320 * @inode: inode to check access rights for 321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 322 * 323 * Used to check for read/write/execute permissions on a file. 324 * We use "fsuid" for this, letting us set arbitrary permissions 325 * for filesystem access without changing the "normal" uids which 326 * are used for other things. 327 * 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 329 * request cannot be satisfied (eg. requires blocking or too much complexity). 330 * It would then be called again in ref-walk mode. 331 */ 332 int generic_permission(struct inode *inode, int mask) 333 { 334 int ret; 335 336 /* 337 * Do the basic permission checks. 338 */ 339 ret = acl_permission_check(inode, mask); 340 if (ret != -EACCES) 341 return ret; 342 343 if (S_ISDIR(inode->i_mode)) { 344 /* DACs are overridable for directories */ 345 if (!(mask & MAY_WRITE)) 346 if (capable_wrt_inode_uidgid(inode, 347 CAP_DAC_READ_SEARCH)) 348 return 0; 349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 350 return 0; 351 return -EACCES; 352 } 353 354 /* 355 * Searching includes executable on directories, else just read. 356 */ 357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 358 if (mask == MAY_READ) 359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 360 return 0; 361 /* 362 * Read/write DACs are always overridable. 363 * Executable DACs are overridable when there is 364 * at least one exec bit set. 365 */ 366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 368 return 0; 369 370 return -EACCES; 371 } 372 EXPORT_SYMBOL(generic_permission); 373 374 /* 375 * We _really_ want to just do "generic_permission()" without 376 * even looking at the inode->i_op values. So we keep a cache 377 * flag in inode->i_opflags, that says "this has not special 378 * permission function, use the fast case". 379 */ 380 static inline int do_inode_permission(struct inode *inode, int mask) 381 { 382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 383 if (likely(inode->i_op->permission)) 384 return inode->i_op->permission(inode, mask); 385 386 /* This gets set once for the inode lifetime */ 387 spin_lock(&inode->i_lock); 388 inode->i_opflags |= IOP_FASTPERM; 389 spin_unlock(&inode->i_lock); 390 } 391 return generic_permission(inode, mask); 392 } 393 394 /** 395 * sb_permission - Check superblock-level permissions 396 * @sb: Superblock of inode to check permission on 397 * @inode: Inode to check permission on 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 399 * 400 * Separate out file-system wide checks from inode-specific permission checks. 401 */ 402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 403 { 404 if (unlikely(mask & MAY_WRITE)) { 405 umode_t mode = inode->i_mode; 406 407 /* Nobody gets write access to a read-only fs. */ 408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 409 return -EROFS; 410 } 411 return 0; 412 } 413 414 /** 415 * inode_permission - Check for access rights to a given inode 416 * @inode: Inode to check permission on 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 418 * 419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 420 * this, letting us set arbitrary permissions for filesystem access without 421 * changing the "normal" UIDs which are used for other things. 422 * 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 424 */ 425 int inode_permission(struct inode *inode, int mask) 426 { 427 int retval; 428 429 retval = sb_permission(inode->i_sb, inode, mask); 430 if (retval) 431 return retval; 432 433 if (unlikely(mask & MAY_WRITE)) { 434 /* 435 * Nobody gets write access to an immutable file. 436 */ 437 if (IS_IMMUTABLE(inode)) 438 return -EPERM; 439 440 /* 441 * Updating mtime will likely cause i_uid and i_gid to be 442 * written back improperly if their true value is unknown 443 * to the vfs. 444 */ 445 if (HAS_UNMAPPED_ID(inode)) 446 return -EACCES; 447 } 448 449 retval = do_inode_permission(inode, mask); 450 if (retval) 451 return retval; 452 453 retval = devcgroup_inode_permission(inode, mask); 454 if (retval) 455 return retval; 456 457 return security_inode_permission(inode, mask); 458 } 459 EXPORT_SYMBOL(inode_permission); 460 461 /** 462 * path_get - get a reference to a path 463 * @path: path to get the reference to 464 * 465 * Given a path increment the reference count to the dentry and the vfsmount. 466 */ 467 void path_get(const struct path *path) 468 { 469 mntget(path->mnt); 470 dget(path->dentry); 471 } 472 EXPORT_SYMBOL(path_get); 473 474 /** 475 * path_put - put a reference to a path 476 * @path: path to put the reference to 477 * 478 * Given a path decrement the reference count to the dentry and the vfsmount. 479 */ 480 void path_put(const struct path *path) 481 { 482 dput(path->dentry); 483 mntput(path->mnt); 484 } 485 EXPORT_SYMBOL(path_put); 486 487 #define EMBEDDED_LEVELS 2 488 struct nameidata { 489 struct path path; 490 struct qstr last; 491 struct path root; 492 struct inode *inode; /* path.dentry.d_inode */ 493 unsigned int flags; 494 unsigned seq, m_seq; 495 int last_type; 496 unsigned depth; 497 int total_link_count; 498 struct saved { 499 struct path link; 500 struct delayed_call done; 501 const char *name; 502 unsigned seq; 503 } *stack, internal[EMBEDDED_LEVELS]; 504 struct filename *name; 505 struct nameidata *saved; 506 struct inode *link_inode; 507 unsigned root_seq; 508 int dfd; 509 } __randomize_layout; 510 511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 512 { 513 struct nameidata *old = current->nameidata; 514 p->stack = p->internal; 515 p->dfd = dfd; 516 p->name = name; 517 p->total_link_count = old ? old->total_link_count : 0; 518 p->saved = old; 519 current->nameidata = p; 520 } 521 522 static void restore_nameidata(void) 523 { 524 struct nameidata *now = current->nameidata, *old = now->saved; 525 526 current->nameidata = old; 527 if (old) 528 old->total_link_count = now->total_link_count; 529 if (now->stack != now->internal) 530 kfree(now->stack); 531 } 532 533 static int __nd_alloc_stack(struct nameidata *nd) 534 { 535 struct saved *p; 536 537 if (nd->flags & LOOKUP_RCU) { 538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 539 GFP_ATOMIC); 540 if (unlikely(!p)) 541 return -ECHILD; 542 } else { 543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 544 GFP_KERNEL); 545 if (unlikely(!p)) 546 return -ENOMEM; 547 } 548 memcpy(p, nd->internal, sizeof(nd->internal)); 549 nd->stack = p; 550 return 0; 551 } 552 553 /** 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 555 * @path: nameidate to verify 556 * 557 * Rename can sometimes move a file or directory outside of a bind 558 * mount, path_connected allows those cases to be detected. 559 */ 560 static bool path_connected(const struct path *path) 561 { 562 struct vfsmount *mnt = path->mnt; 563 struct super_block *sb = mnt->mnt_sb; 564 565 /* Bind mounts and multi-root filesystems can have disconnected paths */ 566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 567 return true; 568 569 return is_subdir(path->dentry, mnt->mnt_root); 570 } 571 572 static inline int nd_alloc_stack(struct nameidata *nd) 573 { 574 if (likely(nd->depth != EMBEDDED_LEVELS)) 575 return 0; 576 if (likely(nd->stack != nd->internal)) 577 return 0; 578 return __nd_alloc_stack(nd); 579 } 580 581 static void drop_links(struct nameidata *nd) 582 { 583 int i = nd->depth; 584 while (i--) { 585 struct saved *last = nd->stack + i; 586 do_delayed_call(&last->done); 587 clear_delayed_call(&last->done); 588 } 589 } 590 591 static void terminate_walk(struct nameidata *nd) 592 { 593 drop_links(nd); 594 if (!(nd->flags & LOOKUP_RCU)) { 595 int i; 596 path_put(&nd->path); 597 for (i = 0; i < nd->depth; i++) 598 path_put(&nd->stack[i].link); 599 if (nd->flags & LOOKUP_ROOT_GRABBED) { 600 path_put(&nd->root); 601 nd->flags &= ~LOOKUP_ROOT_GRABBED; 602 } 603 } else { 604 nd->flags &= ~LOOKUP_RCU; 605 rcu_read_unlock(); 606 } 607 nd->depth = 0; 608 } 609 610 /* path_put is needed afterwards regardless of success or failure */ 611 static bool legitimize_path(struct nameidata *nd, 612 struct path *path, unsigned seq) 613 { 614 int res = __legitimize_mnt(path->mnt, nd->m_seq); 615 if (unlikely(res)) { 616 if (res > 0) 617 path->mnt = NULL; 618 path->dentry = NULL; 619 return false; 620 } 621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 622 path->dentry = NULL; 623 return false; 624 } 625 return !read_seqcount_retry(&path->dentry->d_seq, seq); 626 } 627 628 static bool legitimize_links(struct nameidata *nd) 629 { 630 int i; 631 for (i = 0; i < nd->depth; i++) { 632 struct saved *last = nd->stack + i; 633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 634 drop_links(nd); 635 nd->depth = i + 1; 636 return false; 637 } 638 } 639 return true; 640 } 641 642 static bool legitimize_root(struct nameidata *nd) 643 { 644 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 645 return true; 646 nd->flags |= LOOKUP_ROOT_GRABBED; 647 return legitimize_path(nd, &nd->root, nd->root_seq); 648 } 649 650 /* 651 * Path walking has 2 modes, rcu-walk and ref-walk (see 652 * Documentation/filesystems/path-lookup.txt). In situations when we can't 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk 655 * mode. Refcounts are grabbed at the last known good point before rcu-walk 656 * got stuck, so ref-walk may continue from there. If this is not successful 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller 658 * to restart the path walk from the beginning in ref-walk mode. 659 */ 660 661 /** 662 * unlazy_walk - try to switch to ref-walk mode. 663 * @nd: nameidata pathwalk data 664 * Returns: 0 on success, -ECHILD on failure 665 * 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root 667 * for ref-walk mode. 668 * Must be called from rcu-walk context. 669 * Nothing should touch nameidata between unlazy_walk() failure and 670 * terminate_walk(). 671 */ 672 static int unlazy_walk(struct nameidata *nd) 673 { 674 struct dentry *parent = nd->path.dentry; 675 676 BUG_ON(!(nd->flags & LOOKUP_RCU)); 677 678 nd->flags &= ~LOOKUP_RCU; 679 if (unlikely(!legitimize_links(nd))) 680 goto out1; 681 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 682 goto out; 683 if (unlikely(!legitimize_root(nd))) 684 goto out; 685 rcu_read_unlock(); 686 BUG_ON(nd->inode != parent->d_inode); 687 return 0; 688 689 out1: 690 nd->path.mnt = NULL; 691 nd->path.dentry = NULL; 692 out: 693 rcu_read_unlock(); 694 return -ECHILD; 695 } 696 697 /** 698 * unlazy_child - try to switch to ref-walk mode. 699 * @nd: nameidata pathwalk data 700 * @dentry: child of nd->path.dentry 701 * @seq: seq number to check dentry against 702 * Returns: 0 on success, -ECHILD on failure 703 * 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 705 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 706 * @nd. Must be called from rcu-walk context. 707 * Nothing should touch nameidata between unlazy_child() failure and 708 * terminate_walk(). 709 */ 710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 711 { 712 BUG_ON(!(nd->flags & LOOKUP_RCU)); 713 714 nd->flags &= ~LOOKUP_RCU; 715 if (unlikely(!legitimize_links(nd))) 716 goto out2; 717 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 718 goto out2; 719 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 720 goto out1; 721 722 /* 723 * We need to move both the parent and the dentry from the RCU domain 724 * to be properly refcounted. And the sequence number in the dentry 725 * validates *both* dentry counters, since we checked the sequence 726 * number of the parent after we got the child sequence number. So we 727 * know the parent must still be valid if the child sequence number is 728 */ 729 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 730 goto out; 731 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 732 goto out_dput; 733 /* 734 * Sequence counts matched. Now make sure that the root is 735 * still valid and get it if required. 736 */ 737 if (unlikely(!legitimize_root(nd))) 738 goto out_dput; 739 rcu_read_unlock(); 740 return 0; 741 742 out2: 743 nd->path.mnt = NULL; 744 out1: 745 nd->path.dentry = NULL; 746 out: 747 rcu_read_unlock(); 748 return -ECHILD; 749 out_dput: 750 rcu_read_unlock(); 751 dput(dentry); 752 return -ECHILD; 753 } 754 755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 756 { 757 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 758 return dentry->d_op->d_revalidate(dentry, flags); 759 else 760 return 1; 761 } 762 763 /** 764 * complete_walk - successful completion of path walk 765 * @nd: pointer nameidata 766 * 767 * If we had been in RCU mode, drop out of it and legitimize nd->path. 768 * Revalidate the final result, unless we'd already done that during 769 * the path walk or the filesystem doesn't ask for it. Return 0 on 770 * success, -error on failure. In case of failure caller does not 771 * need to drop nd->path. 772 */ 773 static int complete_walk(struct nameidata *nd) 774 { 775 struct dentry *dentry = nd->path.dentry; 776 int status; 777 778 if (nd->flags & LOOKUP_RCU) { 779 if (!(nd->flags & LOOKUP_ROOT)) 780 nd->root.mnt = NULL; 781 if (unlikely(unlazy_walk(nd))) 782 return -ECHILD; 783 } 784 785 if (likely(!(nd->flags & LOOKUP_JUMPED))) 786 return 0; 787 788 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 789 return 0; 790 791 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 792 if (status > 0) 793 return 0; 794 795 if (!status) 796 status = -ESTALE; 797 798 return status; 799 } 800 801 static void set_root(struct nameidata *nd) 802 { 803 struct fs_struct *fs = current->fs; 804 805 if (nd->flags & LOOKUP_RCU) { 806 unsigned seq; 807 808 do { 809 seq = read_seqcount_begin(&fs->seq); 810 nd->root = fs->root; 811 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 812 } while (read_seqcount_retry(&fs->seq, seq)); 813 } else { 814 get_fs_root(fs, &nd->root); 815 nd->flags |= LOOKUP_ROOT_GRABBED; 816 } 817 } 818 819 static void path_put_conditional(struct path *path, struct nameidata *nd) 820 { 821 dput(path->dentry); 822 if (path->mnt != nd->path.mnt) 823 mntput(path->mnt); 824 } 825 826 static inline void path_to_nameidata(const struct path *path, 827 struct nameidata *nd) 828 { 829 if (!(nd->flags & LOOKUP_RCU)) { 830 dput(nd->path.dentry); 831 if (nd->path.mnt != path->mnt) 832 mntput(nd->path.mnt); 833 } 834 nd->path.mnt = path->mnt; 835 nd->path.dentry = path->dentry; 836 } 837 838 static int nd_jump_root(struct nameidata *nd) 839 { 840 if (nd->flags & LOOKUP_RCU) { 841 struct dentry *d; 842 nd->path = nd->root; 843 d = nd->path.dentry; 844 nd->inode = d->d_inode; 845 nd->seq = nd->root_seq; 846 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 847 return -ECHILD; 848 } else { 849 path_put(&nd->path); 850 nd->path = nd->root; 851 path_get(&nd->path); 852 nd->inode = nd->path.dentry->d_inode; 853 } 854 nd->flags |= LOOKUP_JUMPED; 855 return 0; 856 } 857 858 /* 859 * Helper to directly jump to a known parsed path from ->get_link, 860 * caller must have taken a reference to path beforehand. 861 */ 862 void nd_jump_link(struct path *path) 863 { 864 struct nameidata *nd = current->nameidata; 865 path_put(&nd->path); 866 867 nd->path = *path; 868 nd->inode = nd->path.dentry->d_inode; 869 nd->flags |= LOOKUP_JUMPED; 870 } 871 872 static inline void put_link(struct nameidata *nd) 873 { 874 struct saved *last = nd->stack + --nd->depth; 875 do_delayed_call(&last->done); 876 if (!(nd->flags & LOOKUP_RCU)) 877 path_put(&last->link); 878 } 879 880 int sysctl_protected_symlinks __read_mostly = 0; 881 int sysctl_protected_hardlinks __read_mostly = 0; 882 int sysctl_protected_fifos __read_mostly; 883 int sysctl_protected_regular __read_mostly; 884 885 /** 886 * may_follow_link - Check symlink following for unsafe situations 887 * @nd: nameidata pathwalk data 888 * 889 * In the case of the sysctl_protected_symlinks sysctl being enabled, 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 891 * in a sticky world-writable directory. This is to protect privileged 892 * processes from failing races against path names that may change out 893 * from under them by way of other users creating malicious symlinks. 894 * It will permit symlinks to be followed only when outside a sticky 895 * world-writable directory, or when the uid of the symlink and follower 896 * match, or when the directory owner matches the symlink's owner. 897 * 898 * Returns 0 if following the symlink is allowed, -ve on error. 899 */ 900 static inline int may_follow_link(struct nameidata *nd) 901 { 902 const struct inode *inode; 903 const struct inode *parent; 904 kuid_t puid; 905 906 if (!sysctl_protected_symlinks) 907 return 0; 908 909 /* Allowed if owner and follower match. */ 910 inode = nd->link_inode; 911 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 912 return 0; 913 914 /* Allowed if parent directory not sticky and world-writable. */ 915 parent = nd->inode; 916 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 917 return 0; 918 919 /* Allowed if parent directory and link owner match. */ 920 puid = parent->i_uid; 921 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 922 return 0; 923 924 if (nd->flags & LOOKUP_RCU) 925 return -ECHILD; 926 927 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 928 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 929 return -EACCES; 930 } 931 932 /** 933 * safe_hardlink_source - Check for safe hardlink conditions 934 * @inode: the source inode to hardlink from 935 * 936 * Return false if at least one of the following conditions: 937 * - inode is not a regular file 938 * - inode is setuid 939 * - inode is setgid and group-exec 940 * - access failure for read and write 941 * 942 * Otherwise returns true. 943 */ 944 static bool safe_hardlink_source(struct inode *inode) 945 { 946 umode_t mode = inode->i_mode; 947 948 /* Special files should not get pinned to the filesystem. */ 949 if (!S_ISREG(mode)) 950 return false; 951 952 /* Setuid files should not get pinned to the filesystem. */ 953 if (mode & S_ISUID) 954 return false; 955 956 /* Executable setgid files should not get pinned to the filesystem. */ 957 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 958 return false; 959 960 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 961 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 962 return false; 963 964 return true; 965 } 966 967 /** 968 * may_linkat - Check permissions for creating a hardlink 969 * @link: the source to hardlink from 970 * 971 * Block hardlink when all of: 972 * - sysctl_protected_hardlinks enabled 973 * - fsuid does not match inode 974 * - hardlink source is unsafe (see safe_hardlink_source() above) 975 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 976 * 977 * Returns 0 if successful, -ve on error. 978 */ 979 static int may_linkat(struct path *link) 980 { 981 struct inode *inode = link->dentry->d_inode; 982 983 /* Inode writeback is not safe when the uid or gid are invalid. */ 984 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 985 return -EOVERFLOW; 986 987 if (!sysctl_protected_hardlinks) 988 return 0; 989 990 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 991 * otherwise, it must be a safe source. 992 */ 993 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 994 return 0; 995 996 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 997 return -EPERM; 998 } 999 1000 /** 1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1002 * should be allowed, or not, on files that already 1003 * exist. 1004 * @dir: the sticky parent directory 1005 * @inode: the inode of the file to open 1006 * 1007 * Block an O_CREAT open of a FIFO (or a regular file) when: 1008 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1009 * - the file already exists 1010 * - we are in a sticky directory 1011 * - we don't own the file 1012 * - the owner of the directory doesn't own the file 1013 * - the directory is world writable 1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1015 * the directory doesn't have to be world writable: being group writable will 1016 * be enough. 1017 * 1018 * Returns 0 if the open is allowed, -ve on error. 1019 */ 1020 static int may_create_in_sticky(struct dentry * const dir, 1021 struct inode * const inode) 1022 { 1023 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1024 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1025 likely(!(dir->d_inode->i_mode & S_ISVTX)) || 1026 uid_eq(inode->i_uid, dir->d_inode->i_uid) || 1027 uid_eq(current_fsuid(), inode->i_uid)) 1028 return 0; 1029 1030 if (likely(dir->d_inode->i_mode & 0002) || 1031 (dir->d_inode->i_mode & 0020 && 1032 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1033 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1034 const char *operation = S_ISFIFO(inode->i_mode) ? 1035 "sticky_create_fifo" : 1036 "sticky_create_regular"; 1037 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1038 return -EACCES; 1039 } 1040 return 0; 1041 } 1042 1043 static __always_inline 1044 const char *get_link(struct nameidata *nd) 1045 { 1046 struct saved *last = nd->stack + nd->depth - 1; 1047 struct dentry *dentry = last->link.dentry; 1048 struct inode *inode = nd->link_inode; 1049 int error; 1050 const char *res; 1051 1052 if (!(nd->flags & LOOKUP_RCU)) { 1053 touch_atime(&last->link); 1054 cond_resched(); 1055 } else if (atime_needs_update(&last->link, inode)) { 1056 if (unlikely(unlazy_walk(nd))) 1057 return ERR_PTR(-ECHILD); 1058 touch_atime(&last->link); 1059 } 1060 1061 error = security_inode_follow_link(dentry, inode, 1062 nd->flags & LOOKUP_RCU); 1063 if (unlikely(error)) 1064 return ERR_PTR(error); 1065 1066 nd->last_type = LAST_BIND; 1067 res = READ_ONCE(inode->i_link); 1068 if (!res) { 1069 const char * (*get)(struct dentry *, struct inode *, 1070 struct delayed_call *); 1071 get = inode->i_op->get_link; 1072 if (nd->flags & LOOKUP_RCU) { 1073 res = get(NULL, inode, &last->done); 1074 if (res == ERR_PTR(-ECHILD)) { 1075 if (unlikely(unlazy_walk(nd))) 1076 return ERR_PTR(-ECHILD); 1077 res = get(dentry, inode, &last->done); 1078 } 1079 } else { 1080 res = get(dentry, inode, &last->done); 1081 } 1082 if (IS_ERR_OR_NULL(res)) 1083 return res; 1084 } 1085 if (*res == '/') { 1086 if (!nd->root.mnt) 1087 set_root(nd); 1088 if (unlikely(nd_jump_root(nd))) 1089 return ERR_PTR(-ECHILD); 1090 while (unlikely(*++res == '/')) 1091 ; 1092 } 1093 if (!*res) 1094 res = NULL; 1095 return res; 1096 } 1097 1098 /* 1099 * follow_up - Find the mountpoint of path's vfsmount 1100 * 1101 * Given a path, find the mountpoint of its source file system. 1102 * Replace @path with the path of the mountpoint in the parent mount. 1103 * Up is towards /. 1104 * 1105 * Return 1 if we went up a level and 0 if we were already at the 1106 * root. 1107 */ 1108 int follow_up(struct path *path) 1109 { 1110 struct mount *mnt = real_mount(path->mnt); 1111 struct mount *parent; 1112 struct dentry *mountpoint; 1113 1114 read_seqlock_excl(&mount_lock); 1115 parent = mnt->mnt_parent; 1116 if (parent == mnt) { 1117 read_sequnlock_excl(&mount_lock); 1118 return 0; 1119 } 1120 mntget(&parent->mnt); 1121 mountpoint = dget(mnt->mnt_mountpoint); 1122 read_sequnlock_excl(&mount_lock); 1123 dput(path->dentry); 1124 path->dentry = mountpoint; 1125 mntput(path->mnt); 1126 path->mnt = &parent->mnt; 1127 return 1; 1128 } 1129 EXPORT_SYMBOL(follow_up); 1130 1131 /* 1132 * Perform an automount 1133 * - return -EISDIR to tell follow_managed() to stop and return the path we 1134 * were called with. 1135 */ 1136 static int follow_automount(struct path *path, struct nameidata *nd, 1137 bool *need_mntput) 1138 { 1139 struct vfsmount *mnt; 1140 int err; 1141 1142 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1143 return -EREMOTE; 1144 1145 /* We don't want to mount if someone's just doing a stat - 1146 * unless they're stat'ing a directory and appended a '/' to 1147 * the name. 1148 * 1149 * We do, however, want to mount if someone wants to open or 1150 * create a file of any type under the mountpoint, wants to 1151 * traverse through the mountpoint or wants to open the 1152 * mounted directory. Also, autofs may mark negative dentries 1153 * as being automount points. These will need the attentions 1154 * of the daemon to instantiate them before they can be used. 1155 */ 1156 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1157 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1158 path->dentry->d_inode) 1159 return -EISDIR; 1160 1161 nd->total_link_count++; 1162 if (nd->total_link_count >= 40) 1163 return -ELOOP; 1164 1165 mnt = path->dentry->d_op->d_automount(path); 1166 if (IS_ERR(mnt)) { 1167 /* 1168 * The filesystem is allowed to return -EISDIR here to indicate 1169 * it doesn't want to automount. For instance, autofs would do 1170 * this so that its userspace daemon can mount on this dentry. 1171 * 1172 * However, we can only permit this if it's a terminal point in 1173 * the path being looked up; if it wasn't then the remainder of 1174 * the path is inaccessible and we should say so. 1175 */ 1176 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1177 return -EREMOTE; 1178 return PTR_ERR(mnt); 1179 } 1180 1181 if (!mnt) /* mount collision */ 1182 return 0; 1183 1184 if (!*need_mntput) { 1185 /* lock_mount() may release path->mnt on error */ 1186 mntget(path->mnt); 1187 *need_mntput = true; 1188 } 1189 err = finish_automount(mnt, path); 1190 1191 switch (err) { 1192 case -EBUSY: 1193 /* Someone else made a mount here whilst we were busy */ 1194 return 0; 1195 case 0: 1196 path_put(path); 1197 path->mnt = mnt; 1198 path->dentry = dget(mnt->mnt_root); 1199 return 0; 1200 default: 1201 return err; 1202 } 1203 1204 } 1205 1206 /* 1207 * Handle a dentry that is managed in some way. 1208 * - Flagged for transit management (autofs) 1209 * - Flagged as mountpoint 1210 * - Flagged as automount point 1211 * 1212 * This may only be called in refwalk mode. 1213 * On success path->dentry is known positive. 1214 * 1215 * Serialization is taken care of in namespace.c 1216 */ 1217 static int follow_managed(struct path *path, struct nameidata *nd) 1218 { 1219 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1220 unsigned flags; 1221 bool need_mntput = false; 1222 int ret = 0; 1223 1224 /* Given that we're not holding a lock here, we retain the value in a 1225 * local variable for each dentry as we look at it so that we don't see 1226 * the components of that value change under us */ 1227 while (flags = smp_load_acquire(&path->dentry->d_flags), 1228 unlikely(flags & DCACHE_MANAGED_DENTRY)) { 1229 /* Allow the filesystem to manage the transit without i_mutex 1230 * being held. */ 1231 if (flags & DCACHE_MANAGE_TRANSIT) { 1232 BUG_ON(!path->dentry->d_op); 1233 BUG_ON(!path->dentry->d_op->d_manage); 1234 ret = path->dentry->d_op->d_manage(path, false); 1235 if (ret < 0) 1236 break; 1237 } 1238 1239 /* Transit to a mounted filesystem. */ 1240 if (flags & DCACHE_MOUNTED) { 1241 struct vfsmount *mounted = lookup_mnt(path); 1242 if (mounted) { 1243 dput(path->dentry); 1244 if (need_mntput) 1245 mntput(path->mnt); 1246 path->mnt = mounted; 1247 path->dentry = dget(mounted->mnt_root); 1248 need_mntput = true; 1249 continue; 1250 } 1251 1252 /* Something is mounted on this dentry in another 1253 * namespace and/or whatever was mounted there in this 1254 * namespace got unmounted before lookup_mnt() could 1255 * get it */ 1256 } 1257 1258 /* Handle an automount point */ 1259 if (flags & DCACHE_NEED_AUTOMOUNT) { 1260 ret = follow_automount(path, nd, &need_mntput); 1261 if (ret < 0) 1262 break; 1263 continue; 1264 } 1265 1266 /* We didn't change the current path point */ 1267 break; 1268 } 1269 1270 if (need_mntput && path->mnt == mnt) 1271 mntput(path->mnt); 1272 if (need_mntput) 1273 nd->flags |= LOOKUP_JUMPED; 1274 if (ret == -EISDIR || !ret) 1275 ret = 1; 1276 if (ret > 0 && unlikely(d_flags_negative(flags))) 1277 ret = -ENOENT; 1278 if (unlikely(ret < 0)) 1279 path_put_conditional(path, nd); 1280 return ret; 1281 } 1282 1283 int follow_down_one(struct path *path) 1284 { 1285 struct vfsmount *mounted; 1286 1287 mounted = lookup_mnt(path); 1288 if (mounted) { 1289 dput(path->dentry); 1290 mntput(path->mnt); 1291 path->mnt = mounted; 1292 path->dentry = dget(mounted->mnt_root); 1293 return 1; 1294 } 1295 return 0; 1296 } 1297 EXPORT_SYMBOL(follow_down_one); 1298 1299 static inline int managed_dentry_rcu(const struct path *path) 1300 { 1301 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1302 path->dentry->d_op->d_manage(path, true) : 0; 1303 } 1304 1305 /* 1306 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1307 * we meet a managed dentry that would need blocking. 1308 */ 1309 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1310 struct inode **inode, unsigned *seqp) 1311 { 1312 for (;;) { 1313 struct mount *mounted; 1314 /* 1315 * Don't forget we might have a non-mountpoint managed dentry 1316 * that wants to block transit. 1317 */ 1318 switch (managed_dentry_rcu(path)) { 1319 case -ECHILD: 1320 default: 1321 return false; 1322 case -EISDIR: 1323 return true; 1324 case 0: 1325 break; 1326 } 1327 1328 if (!d_mountpoint(path->dentry)) 1329 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1330 1331 mounted = __lookup_mnt(path->mnt, path->dentry); 1332 if (!mounted) 1333 break; 1334 path->mnt = &mounted->mnt; 1335 path->dentry = mounted->mnt.mnt_root; 1336 nd->flags |= LOOKUP_JUMPED; 1337 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1338 /* 1339 * Update the inode too. We don't need to re-check the 1340 * dentry sequence number here after this d_inode read, 1341 * because a mount-point is always pinned. 1342 */ 1343 *inode = path->dentry->d_inode; 1344 } 1345 return !read_seqretry(&mount_lock, nd->m_seq) && 1346 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1347 } 1348 1349 static int follow_dotdot_rcu(struct nameidata *nd) 1350 { 1351 struct inode *inode = nd->inode; 1352 1353 while (1) { 1354 if (path_equal(&nd->path, &nd->root)) 1355 break; 1356 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1357 struct dentry *old = nd->path.dentry; 1358 struct dentry *parent = old->d_parent; 1359 unsigned seq; 1360 1361 inode = parent->d_inode; 1362 seq = read_seqcount_begin(&parent->d_seq); 1363 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1364 return -ECHILD; 1365 nd->path.dentry = parent; 1366 nd->seq = seq; 1367 if (unlikely(!path_connected(&nd->path))) 1368 return -ENOENT; 1369 break; 1370 } else { 1371 struct mount *mnt = real_mount(nd->path.mnt); 1372 struct mount *mparent = mnt->mnt_parent; 1373 struct dentry *mountpoint = mnt->mnt_mountpoint; 1374 struct inode *inode2 = mountpoint->d_inode; 1375 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1376 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1377 return -ECHILD; 1378 if (&mparent->mnt == nd->path.mnt) 1379 break; 1380 /* we know that mountpoint was pinned */ 1381 nd->path.dentry = mountpoint; 1382 nd->path.mnt = &mparent->mnt; 1383 inode = inode2; 1384 nd->seq = seq; 1385 } 1386 } 1387 while (unlikely(d_mountpoint(nd->path.dentry))) { 1388 struct mount *mounted; 1389 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1390 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1391 return -ECHILD; 1392 if (!mounted) 1393 break; 1394 nd->path.mnt = &mounted->mnt; 1395 nd->path.dentry = mounted->mnt.mnt_root; 1396 inode = nd->path.dentry->d_inode; 1397 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1398 } 1399 nd->inode = inode; 1400 return 0; 1401 } 1402 1403 /* 1404 * Follow down to the covering mount currently visible to userspace. At each 1405 * point, the filesystem owning that dentry may be queried as to whether the 1406 * caller is permitted to proceed or not. 1407 */ 1408 int follow_down(struct path *path) 1409 { 1410 unsigned managed; 1411 int ret; 1412 1413 while (managed = READ_ONCE(path->dentry->d_flags), 1414 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1415 /* Allow the filesystem to manage the transit without i_mutex 1416 * being held. 1417 * 1418 * We indicate to the filesystem if someone is trying to mount 1419 * something here. This gives autofs the chance to deny anyone 1420 * other than its daemon the right to mount on its 1421 * superstructure. 1422 * 1423 * The filesystem may sleep at this point. 1424 */ 1425 if (managed & DCACHE_MANAGE_TRANSIT) { 1426 BUG_ON(!path->dentry->d_op); 1427 BUG_ON(!path->dentry->d_op->d_manage); 1428 ret = path->dentry->d_op->d_manage(path, false); 1429 if (ret < 0) 1430 return ret == -EISDIR ? 0 : ret; 1431 } 1432 1433 /* Transit to a mounted filesystem. */ 1434 if (managed & DCACHE_MOUNTED) { 1435 struct vfsmount *mounted = lookup_mnt(path); 1436 if (!mounted) 1437 break; 1438 dput(path->dentry); 1439 mntput(path->mnt); 1440 path->mnt = mounted; 1441 path->dentry = dget(mounted->mnt_root); 1442 continue; 1443 } 1444 1445 /* Don't handle automount points here */ 1446 break; 1447 } 1448 return 0; 1449 } 1450 EXPORT_SYMBOL(follow_down); 1451 1452 /* 1453 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1454 */ 1455 static void follow_mount(struct path *path) 1456 { 1457 while (d_mountpoint(path->dentry)) { 1458 struct vfsmount *mounted = lookup_mnt(path); 1459 if (!mounted) 1460 break; 1461 dput(path->dentry); 1462 mntput(path->mnt); 1463 path->mnt = mounted; 1464 path->dentry = dget(mounted->mnt_root); 1465 } 1466 } 1467 1468 static int path_parent_directory(struct path *path) 1469 { 1470 struct dentry *old = path->dentry; 1471 /* rare case of legitimate dget_parent()... */ 1472 path->dentry = dget_parent(path->dentry); 1473 dput(old); 1474 if (unlikely(!path_connected(path))) 1475 return -ENOENT; 1476 return 0; 1477 } 1478 1479 static int follow_dotdot(struct nameidata *nd) 1480 { 1481 while(1) { 1482 if (path_equal(&nd->path, &nd->root)) 1483 break; 1484 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1485 int ret = path_parent_directory(&nd->path); 1486 if (ret) 1487 return ret; 1488 break; 1489 } 1490 if (!follow_up(&nd->path)) 1491 break; 1492 } 1493 follow_mount(&nd->path); 1494 nd->inode = nd->path.dentry->d_inode; 1495 return 0; 1496 } 1497 1498 /* 1499 * This looks up the name in dcache and possibly revalidates the found dentry. 1500 * NULL is returned if the dentry does not exist in the cache. 1501 */ 1502 static struct dentry *lookup_dcache(const struct qstr *name, 1503 struct dentry *dir, 1504 unsigned int flags) 1505 { 1506 struct dentry *dentry = d_lookup(dir, name); 1507 if (dentry) { 1508 int error = d_revalidate(dentry, flags); 1509 if (unlikely(error <= 0)) { 1510 if (!error) 1511 d_invalidate(dentry); 1512 dput(dentry); 1513 return ERR_PTR(error); 1514 } 1515 } 1516 return dentry; 1517 } 1518 1519 /* 1520 * Parent directory has inode locked exclusive. This is one 1521 * and only case when ->lookup() gets called on non in-lookup 1522 * dentries - as the matter of fact, this only gets called 1523 * when directory is guaranteed to have no in-lookup children 1524 * at all. 1525 */ 1526 static struct dentry *__lookup_hash(const struct qstr *name, 1527 struct dentry *base, unsigned int flags) 1528 { 1529 struct dentry *dentry = lookup_dcache(name, base, flags); 1530 struct dentry *old; 1531 struct inode *dir = base->d_inode; 1532 1533 if (dentry) 1534 return dentry; 1535 1536 /* Don't create child dentry for a dead directory. */ 1537 if (unlikely(IS_DEADDIR(dir))) 1538 return ERR_PTR(-ENOENT); 1539 1540 dentry = d_alloc(base, name); 1541 if (unlikely(!dentry)) 1542 return ERR_PTR(-ENOMEM); 1543 1544 old = dir->i_op->lookup(dir, dentry, flags); 1545 if (unlikely(old)) { 1546 dput(dentry); 1547 dentry = old; 1548 } 1549 return dentry; 1550 } 1551 1552 static int lookup_fast(struct nameidata *nd, 1553 struct path *path, struct inode **inode, 1554 unsigned *seqp) 1555 { 1556 struct vfsmount *mnt = nd->path.mnt; 1557 struct dentry *dentry, *parent = nd->path.dentry; 1558 int status = 1; 1559 int err; 1560 1561 /* 1562 * Rename seqlock is not required here because in the off chance 1563 * of a false negative due to a concurrent rename, the caller is 1564 * going to fall back to non-racy lookup. 1565 */ 1566 if (nd->flags & LOOKUP_RCU) { 1567 unsigned seq; 1568 bool negative; 1569 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1570 if (unlikely(!dentry)) { 1571 if (unlazy_walk(nd)) 1572 return -ECHILD; 1573 return 0; 1574 } 1575 1576 /* 1577 * This sequence count validates that the inode matches 1578 * the dentry name information from lookup. 1579 */ 1580 *inode = d_backing_inode(dentry); 1581 negative = d_is_negative(dentry); 1582 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1583 return -ECHILD; 1584 1585 /* 1586 * This sequence count validates that the parent had no 1587 * changes while we did the lookup of the dentry above. 1588 * 1589 * The memory barrier in read_seqcount_begin of child is 1590 * enough, we can use __read_seqcount_retry here. 1591 */ 1592 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1593 return -ECHILD; 1594 1595 *seqp = seq; 1596 status = d_revalidate(dentry, nd->flags); 1597 if (likely(status > 0)) { 1598 /* 1599 * Note: do negative dentry check after revalidation in 1600 * case that drops it. 1601 */ 1602 if (unlikely(negative)) 1603 return -ENOENT; 1604 path->mnt = mnt; 1605 path->dentry = dentry; 1606 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1607 return 1; 1608 } 1609 if (unlazy_child(nd, dentry, seq)) 1610 return -ECHILD; 1611 if (unlikely(status == -ECHILD)) 1612 /* we'd been told to redo it in non-rcu mode */ 1613 status = d_revalidate(dentry, nd->flags); 1614 } else { 1615 dentry = __d_lookup(parent, &nd->last); 1616 if (unlikely(!dentry)) 1617 return 0; 1618 status = d_revalidate(dentry, nd->flags); 1619 } 1620 if (unlikely(status <= 0)) { 1621 if (!status) 1622 d_invalidate(dentry); 1623 dput(dentry); 1624 return status; 1625 } 1626 1627 path->mnt = mnt; 1628 path->dentry = dentry; 1629 err = follow_managed(path, nd); 1630 if (likely(err > 0)) 1631 *inode = d_backing_inode(path->dentry); 1632 return err; 1633 } 1634 1635 /* Fast lookup failed, do it the slow way */ 1636 static struct dentry *__lookup_slow(const struct qstr *name, 1637 struct dentry *dir, 1638 unsigned int flags) 1639 { 1640 struct dentry *dentry, *old; 1641 struct inode *inode = dir->d_inode; 1642 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1643 1644 /* Don't go there if it's already dead */ 1645 if (unlikely(IS_DEADDIR(inode))) 1646 return ERR_PTR(-ENOENT); 1647 again: 1648 dentry = d_alloc_parallel(dir, name, &wq); 1649 if (IS_ERR(dentry)) 1650 return dentry; 1651 if (unlikely(!d_in_lookup(dentry))) { 1652 if (!(flags & LOOKUP_NO_REVAL)) { 1653 int error = d_revalidate(dentry, flags); 1654 if (unlikely(error <= 0)) { 1655 if (!error) { 1656 d_invalidate(dentry); 1657 dput(dentry); 1658 goto again; 1659 } 1660 dput(dentry); 1661 dentry = ERR_PTR(error); 1662 } 1663 } 1664 } else { 1665 old = inode->i_op->lookup(inode, dentry, flags); 1666 d_lookup_done(dentry); 1667 if (unlikely(old)) { 1668 dput(dentry); 1669 dentry = old; 1670 } 1671 } 1672 return dentry; 1673 } 1674 1675 static struct dentry *lookup_slow(const struct qstr *name, 1676 struct dentry *dir, 1677 unsigned int flags) 1678 { 1679 struct inode *inode = dir->d_inode; 1680 struct dentry *res; 1681 inode_lock_shared(inode); 1682 res = __lookup_slow(name, dir, flags); 1683 inode_unlock_shared(inode); 1684 return res; 1685 } 1686 1687 static inline int may_lookup(struct nameidata *nd) 1688 { 1689 if (nd->flags & LOOKUP_RCU) { 1690 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1691 if (err != -ECHILD) 1692 return err; 1693 if (unlazy_walk(nd)) 1694 return -ECHILD; 1695 } 1696 return inode_permission(nd->inode, MAY_EXEC); 1697 } 1698 1699 static inline int handle_dots(struct nameidata *nd, int type) 1700 { 1701 if (type == LAST_DOTDOT) { 1702 if (!nd->root.mnt) 1703 set_root(nd); 1704 if (nd->flags & LOOKUP_RCU) { 1705 return follow_dotdot_rcu(nd); 1706 } else 1707 return follow_dotdot(nd); 1708 } 1709 return 0; 1710 } 1711 1712 static int pick_link(struct nameidata *nd, struct path *link, 1713 struct inode *inode, unsigned seq) 1714 { 1715 int error; 1716 struct saved *last; 1717 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1718 path_to_nameidata(link, nd); 1719 return -ELOOP; 1720 } 1721 if (!(nd->flags & LOOKUP_RCU)) { 1722 if (link->mnt == nd->path.mnt) 1723 mntget(link->mnt); 1724 } 1725 error = nd_alloc_stack(nd); 1726 if (unlikely(error)) { 1727 if (error == -ECHILD) { 1728 if (unlikely(!legitimize_path(nd, link, seq))) { 1729 drop_links(nd); 1730 nd->depth = 0; 1731 nd->flags &= ~LOOKUP_RCU; 1732 nd->path.mnt = NULL; 1733 nd->path.dentry = NULL; 1734 rcu_read_unlock(); 1735 } else if (likely(unlazy_walk(nd)) == 0) 1736 error = nd_alloc_stack(nd); 1737 } 1738 if (error) { 1739 path_put(link); 1740 return error; 1741 } 1742 } 1743 1744 last = nd->stack + nd->depth++; 1745 last->link = *link; 1746 clear_delayed_call(&last->done); 1747 nd->link_inode = inode; 1748 last->seq = seq; 1749 return 1; 1750 } 1751 1752 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1753 1754 /* 1755 * Do we need to follow links? We _really_ want to be able 1756 * to do this check without having to look at inode->i_op, 1757 * so we keep a cache of "no, this doesn't need follow_link" 1758 * for the common case. 1759 */ 1760 static inline int step_into(struct nameidata *nd, struct path *path, 1761 int flags, struct inode *inode, unsigned seq) 1762 { 1763 if (!(flags & WALK_MORE) && nd->depth) 1764 put_link(nd); 1765 if (likely(!d_is_symlink(path->dentry)) || 1766 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1767 /* not a symlink or should not follow */ 1768 path_to_nameidata(path, nd); 1769 nd->inode = inode; 1770 nd->seq = seq; 1771 return 0; 1772 } 1773 /* make sure that d_is_symlink above matches inode */ 1774 if (nd->flags & LOOKUP_RCU) { 1775 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1776 return -ECHILD; 1777 } 1778 return pick_link(nd, path, inode, seq); 1779 } 1780 1781 static int walk_component(struct nameidata *nd, int flags) 1782 { 1783 struct path path; 1784 struct inode *inode; 1785 unsigned seq; 1786 int err; 1787 /* 1788 * "." and ".." are special - ".." especially so because it has 1789 * to be able to know about the current root directory and 1790 * parent relationships. 1791 */ 1792 if (unlikely(nd->last_type != LAST_NORM)) { 1793 err = handle_dots(nd, nd->last_type); 1794 if (!(flags & WALK_MORE) && nd->depth) 1795 put_link(nd); 1796 return err; 1797 } 1798 err = lookup_fast(nd, &path, &inode, &seq); 1799 if (unlikely(err <= 0)) { 1800 if (err < 0) 1801 return err; 1802 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1803 nd->flags); 1804 if (IS_ERR(path.dentry)) 1805 return PTR_ERR(path.dentry); 1806 1807 path.mnt = nd->path.mnt; 1808 err = follow_managed(&path, nd); 1809 if (unlikely(err < 0)) 1810 return err; 1811 1812 seq = 0; /* we are already out of RCU mode */ 1813 inode = d_backing_inode(path.dentry); 1814 } 1815 1816 return step_into(nd, &path, flags, inode, seq); 1817 } 1818 1819 /* 1820 * We can do the critical dentry name comparison and hashing 1821 * operations one word at a time, but we are limited to: 1822 * 1823 * - Architectures with fast unaligned word accesses. We could 1824 * do a "get_unaligned()" if this helps and is sufficiently 1825 * fast. 1826 * 1827 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1828 * do not trap on the (extremely unlikely) case of a page 1829 * crossing operation. 1830 * 1831 * - Furthermore, we need an efficient 64-bit compile for the 1832 * 64-bit case in order to generate the "number of bytes in 1833 * the final mask". Again, that could be replaced with a 1834 * efficient population count instruction or similar. 1835 */ 1836 #ifdef CONFIG_DCACHE_WORD_ACCESS 1837 1838 #include <asm/word-at-a-time.h> 1839 1840 #ifdef HASH_MIX 1841 1842 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1843 1844 #elif defined(CONFIG_64BIT) 1845 /* 1846 * Register pressure in the mixing function is an issue, particularly 1847 * on 32-bit x86, but almost any function requires one state value and 1848 * one temporary. Instead, use a function designed for two state values 1849 * and no temporaries. 1850 * 1851 * This function cannot create a collision in only two iterations, so 1852 * we have two iterations to achieve avalanche. In those two iterations, 1853 * we have six layers of mixing, which is enough to spread one bit's 1854 * influence out to 2^6 = 64 state bits. 1855 * 1856 * Rotate constants are scored by considering either 64 one-bit input 1857 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1858 * probability of that delta causing a change to each of the 128 output 1859 * bits, using a sample of random initial states. 1860 * 1861 * The Shannon entropy of the computed probabilities is then summed 1862 * to produce a score. Ideally, any input change has a 50% chance of 1863 * toggling any given output bit. 1864 * 1865 * Mixing scores (in bits) for (12,45): 1866 * Input delta: 1-bit 2-bit 1867 * 1 round: 713.3 42542.6 1868 * 2 rounds: 2753.7 140389.8 1869 * 3 rounds: 5954.1 233458.2 1870 * 4 rounds: 7862.6 256672.2 1871 * Perfect: 8192 258048 1872 * (64*128) (64*63/2 * 128) 1873 */ 1874 #define HASH_MIX(x, y, a) \ 1875 ( x ^= (a), \ 1876 y ^= x, x = rol64(x,12),\ 1877 x += y, y = rol64(y,45),\ 1878 y *= 9 ) 1879 1880 /* 1881 * Fold two longs into one 32-bit hash value. This must be fast, but 1882 * latency isn't quite as critical, as there is a fair bit of additional 1883 * work done before the hash value is used. 1884 */ 1885 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1886 { 1887 y ^= x * GOLDEN_RATIO_64; 1888 y *= GOLDEN_RATIO_64; 1889 return y >> 32; 1890 } 1891 1892 #else /* 32-bit case */ 1893 1894 /* 1895 * Mixing scores (in bits) for (7,20): 1896 * Input delta: 1-bit 2-bit 1897 * 1 round: 330.3 9201.6 1898 * 2 rounds: 1246.4 25475.4 1899 * 3 rounds: 1907.1 31295.1 1900 * 4 rounds: 2042.3 31718.6 1901 * Perfect: 2048 31744 1902 * (32*64) (32*31/2 * 64) 1903 */ 1904 #define HASH_MIX(x, y, a) \ 1905 ( x ^= (a), \ 1906 y ^= x, x = rol32(x, 7),\ 1907 x += y, y = rol32(y,20),\ 1908 y *= 9 ) 1909 1910 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1911 { 1912 /* Use arch-optimized multiply if one exists */ 1913 return __hash_32(y ^ __hash_32(x)); 1914 } 1915 1916 #endif 1917 1918 /* 1919 * Return the hash of a string of known length. This is carfully 1920 * designed to match hash_name(), which is the more critical function. 1921 * In particular, we must end by hashing a final word containing 0..7 1922 * payload bytes, to match the way that hash_name() iterates until it 1923 * finds the delimiter after the name. 1924 */ 1925 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1926 { 1927 unsigned long a, x = 0, y = (unsigned long)salt; 1928 1929 for (;;) { 1930 if (!len) 1931 goto done; 1932 a = load_unaligned_zeropad(name); 1933 if (len < sizeof(unsigned long)) 1934 break; 1935 HASH_MIX(x, y, a); 1936 name += sizeof(unsigned long); 1937 len -= sizeof(unsigned long); 1938 } 1939 x ^= a & bytemask_from_count(len); 1940 done: 1941 return fold_hash(x, y); 1942 } 1943 EXPORT_SYMBOL(full_name_hash); 1944 1945 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1946 u64 hashlen_string(const void *salt, const char *name) 1947 { 1948 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1949 unsigned long adata, mask, len; 1950 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1951 1952 len = 0; 1953 goto inside; 1954 1955 do { 1956 HASH_MIX(x, y, a); 1957 len += sizeof(unsigned long); 1958 inside: 1959 a = load_unaligned_zeropad(name+len); 1960 } while (!has_zero(a, &adata, &constants)); 1961 1962 adata = prep_zero_mask(a, adata, &constants); 1963 mask = create_zero_mask(adata); 1964 x ^= a & zero_bytemask(mask); 1965 1966 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1967 } 1968 EXPORT_SYMBOL(hashlen_string); 1969 1970 /* 1971 * Calculate the length and hash of the path component, and 1972 * return the "hash_len" as the result. 1973 */ 1974 static inline u64 hash_name(const void *salt, const char *name) 1975 { 1976 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1977 unsigned long adata, bdata, mask, len; 1978 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1979 1980 len = 0; 1981 goto inside; 1982 1983 do { 1984 HASH_MIX(x, y, a); 1985 len += sizeof(unsigned long); 1986 inside: 1987 a = load_unaligned_zeropad(name+len); 1988 b = a ^ REPEAT_BYTE('/'); 1989 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1990 1991 adata = prep_zero_mask(a, adata, &constants); 1992 bdata = prep_zero_mask(b, bdata, &constants); 1993 mask = create_zero_mask(adata | bdata); 1994 x ^= a & zero_bytemask(mask); 1995 1996 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1997 } 1998 1999 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2000 2001 /* Return the hash of a string of known length */ 2002 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2003 { 2004 unsigned long hash = init_name_hash(salt); 2005 while (len--) 2006 hash = partial_name_hash((unsigned char)*name++, hash); 2007 return end_name_hash(hash); 2008 } 2009 EXPORT_SYMBOL(full_name_hash); 2010 2011 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2012 u64 hashlen_string(const void *salt, const char *name) 2013 { 2014 unsigned long hash = init_name_hash(salt); 2015 unsigned long len = 0, c; 2016 2017 c = (unsigned char)*name; 2018 while (c) { 2019 len++; 2020 hash = partial_name_hash(c, hash); 2021 c = (unsigned char)name[len]; 2022 } 2023 return hashlen_create(end_name_hash(hash), len); 2024 } 2025 EXPORT_SYMBOL(hashlen_string); 2026 2027 /* 2028 * We know there's a real path component here of at least 2029 * one character. 2030 */ 2031 static inline u64 hash_name(const void *salt, const char *name) 2032 { 2033 unsigned long hash = init_name_hash(salt); 2034 unsigned long len = 0, c; 2035 2036 c = (unsigned char)*name; 2037 do { 2038 len++; 2039 hash = partial_name_hash(c, hash); 2040 c = (unsigned char)name[len]; 2041 } while (c && c != '/'); 2042 return hashlen_create(end_name_hash(hash), len); 2043 } 2044 2045 #endif 2046 2047 /* 2048 * Name resolution. 2049 * This is the basic name resolution function, turning a pathname into 2050 * the final dentry. We expect 'base' to be positive and a directory. 2051 * 2052 * Returns 0 and nd will have valid dentry and mnt on success. 2053 * Returns error and drops reference to input namei data on failure. 2054 */ 2055 static int link_path_walk(const char *name, struct nameidata *nd) 2056 { 2057 int err; 2058 2059 if (IS_ERR(name)) 2060 return PTR_ERR(name); 2061 while (*name=='/') 2062 name++; 2063 if (!*name) 2064 return 0; 2065 2066 /* At this point we know we have a real path component. */ 2067 for(;;) { 2068 u64 hash_len; 2069 int type; 2070 2071 err = may_lookup(nd); 2072 if (err) 2073 return err; 2074 2075 hash_len = hash_name(nd->path.dentry, name); 2076 2077 type = LAST_NORM; 2078 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2079 case 2: 2080 if (name[1] == '.') { 2081 type = LAST_DOTDOT; 2082 nd->flags |= LOOKUP_JUMPED; 2083 } 2084 break; 2085 case 1: 2086 type = LAST_DOT; 2087 } 2088 if (likely(type == LAST_NORM)) { 2089 struct dentry *parent = nd->path.dentry; 2090 nd->flags &= ~LOOKUP_JUMPED; 2091 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2092 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2093 err = parent->d_op->d_hash(parent, &this); 2094 if (err < 0) 2095 return err; 2096 hash_len = this.hash_len; 2097 name = this.name; 2098 } 2099 } 2100 2101 nd->last.hash_len = hash_len; 2102 nd->last.name = name; 2103 nd->last_type = type; 2104 2105 name += hashlen_len(hash_len); 2106 if (!*name) 2107 goto OK; 2108 /* 2109 * If it wasn't NUL, we know it was '/'. Skip that 2110 * slash, and continue until no more slashes. 2111 */ 2112 do { 2113 name++; 2114 } while (unlikely(*name == '/')); 2115 if (unlikely(!*name)) { 2116 OK: 2117 /* pathname body, done */ 2118 if (!nd->depth) 2119 return 0; 2120 name = nd->stack[nd->depth - 1].name; 2121 /* trailing symlink, done */ 2122 if (!name) 2123 return 0; 2124 /* last component of nested symlink */ 2125 err = walk_component(nd, WALK_FOLLOW); 2126 } else { 2127 /* not the last component */ 2128 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2129 } 2130 if (err < 0) 2131 return err; 2132 2133 if (err) { 2134 const char *s = get_link(nd); 2135 2136 if (IS_ERR(s)) 2137 return PTR_ERR(s); 2138 err = 0; 2139 if (unlikely(!s)) { 2140 /* jumped */ 2141 put_link(nd); 2142 } else { 2143 nd->stack[nd->depth - 1].name = name; 2144 name = s; 2145 continue; 2146 } 2147 } 2148 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2149 if (nd->flags & LOOKUP_RCU) { 2150 if (unlazy_walk(nd)) 2151 return -ECHILD; 2152 } 2153 return -ENOTDIR; 2154 } 2155 } 2156 } 2157 2158 /* must be paired with terminate_walk() */ 2159 static const char *path_init(struct nameidata *nd, unsigned flags) 2160 { 2161 const char *s = nd->name->name; 2162 2163 if (!*s) 2164 flags &= ~LOOKUP_RCU; 2165 if (flags & LOOKUP_RCU) 2166 rcu_read_lock(); 2167 2168 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2169 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2170 nd->depth = 0; 2171 if (flags & LOOKUP_ROOT) { 2172 struct dentry *root = nd->root.dentry; 2173 struct inode *inode = root->d_inode; 2174 if (*s && unlikely(!d_can_lookup(root))) 2175 return ERR_PTR(-ENOTDIR); 2176 nd->path = nd->root; 2177 nd->inode = inode; 2178 if (flags & LOOKUP_RCU) { 2179 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2180 nd->root_seq = nd->seq; 2181 nd->m_seq = read_seqbegin(&mount_lock); 2182 } else { 2183 path_get(&nd->path); 2184 } 2185 return s; 2186 } 2187 2188 nd->root.mnt = NULL; 2189 nd->path.mnt = NULL; 2190 nd->path.dentry = NULL; 2191 2192 nd->m_seq = read_seqbegin(&mount_lock); 2193 if (*s == '/') { 2194 set_root(nd); 2195 if (likely(!nd_jump_root(nd))) 2196 return s; 2197 return ERR_PTR(-ECHILD); 2198 } else if (nd->dfd == AT_FDCWD) { 2199 if (flags & LOOKUP_RCU) { 2200 struct fs_struct *fs = current->fs; 2201 unsigned seq; 2202 2203 do { 2204 seq = read_seqcount_begin(&fs->seq); 2205 nd->path = fs->pwd; 2206 nd->inode = nd->path.dentry->d_inode; 2207 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2208 } while (read_seqcount_retry(&fs->seq, seq)); 2209 } else { 2210 get_fs_pwd(current->fs, &nd->path); 2211 nd->inode = nd->path.dentry->d_inode; 2212 } 2213 return s; 2214 } else { 2215 /* Caller must check execute permissions on the starting path component */ 2216 struct fd f = fdget_raw(nd->dfd); 2217 struct dentry *dentry; 2218 2219 if (!f.file) 2220 return ERR_PTR(-EBADF); 2221 2222 dentry = f.file->f_path.dentry; 2223 2224 if (*s && unlikely(!d_can_lookup(dentry))) { 2225 fdput(f); 2226 return ERR_PTR(-ENOTDIR); 2227 } 2228 2229 nd->path = f.file->f_path; 2230 if (flags & LOOKUP_RCU) { 2231 nd->inode = nd->path.dentry->d_inode; 2232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2233 } else { 2234 path_get(&nd->path); 2235 nd->inode = nd->path.dentry->d_inode; 2236 } 2237 fdput(f); 2238 return s; 2239 } 2240 } 2241 2242 static const char *trailing_symlink(struct nameidata *nd) 2243 { 2244 const char *s; 2245 int error = may_follow_link(nd); 2246 if (unlikely(error)) 2247 return ERR_PTR(error); 2248 nd->flags |= LOOKUP_PARENT; 2249 nd->stack[0].name = NULL; 2250 s = get_link(nd); 2251 return s ? s : ""; 2252 } 2253 2254 static inline int lookup_last(struct nameidata *nd) 2255 { 2256 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2258 2259 nd->flags &= ~LOOKUP_PARENT; 2260 return walk_component(nd, 0); 2261 } 2262 2263 static int handle_lookup_down(struct nameidata *nd) 2264 { 2265 struct path path = nd->path; 2266 struct inode *inode = nd->inode; 2267 unsigned seq = nd->seq; 2268 int err; 2269 2270 if (nd->flags & LOOKUP_RCU) { 2271 /* 2272 * don't bother with unlazy_walk on failure - we are 2273 * at the very beginning of walk, so we lose nothing 2274 * if we simply redo everything in non-RCU mode 2275 */ 2276 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2277 return -ECHILD; 2278 } else { 2279 dget(path.dentry); 2280 err = follow_managed(&path, nd); 2281 if (unlikely(err < 0)) 2282 return err; 2283 inode = d_backing_inode(path.dentry); 2284 seq = 0; 2285 } 2286 path_to_nameidata(&path, nd); 2287 nd->inode = inode; 2288 nd->seq = seq; 2289 return 0; 2290 } 2291 2292 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2293 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2294 { 2295 const char *s = path_init(nd, flags); 2296 int err; 2297 2298 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2299 err = handle_lookup_down(nd); 2300 if (unlikely(err < 0)) 2301 s = ERR_PTR(err); 2302 } 2303 2304 while (!(err = link_path_walk(s, nd)) 2305 && ((err = lookup_last(nd)) > 0)) { 2306 s = trailing_symlink(nd); 2307 } 2308 if (!err) 2309 err = complete_walk(nd); 2310 2311 if (!err && nd->flags & LOOKUP_DIRECTORY) 2312 if (!d_can_lookup(nd->path.dentry)) 2313 err = -ENOTDIR; 2314 if (!err) { 2315 *path = nd->path; 2316 nd->path.mnt = NULL; 2317 nd->path.dentry = NULL; 2318 } 2319 terminate_walk(nd); 2320 return err; 2321 } 2322 2323 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2324 struct path *path, struct path *root) 2325 { 2326 int retval; 2327 struct nameidata nd; 2328 if (IS_ERR(name)) 2329 return PTR_ERR(name); 2330 if (unlikely(root)) { 2331 nd.root = *root; 2332 flags |= LOOKUP_ROOT; 2333 } 2334 set_nameidata(&nd, dfd, name); 2335 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2336 if (unlikely(retval == -ECHILD)) 2337 retval = path_lookupat(&nd, flags, path); 2338 if (unlikely(retval == -ESTALE)) 2339 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2340 2341 if (likely(!retval)) 2342 audit_inode(name, path->dentry, 0); 2343 restore_nameidata(); 2344 putname(name); 2345 return retval; 2346 } 2347 2348 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2349 static int path_parentat(struct nameidata *nd, unsigned flags, 2350 struct path *parent) 2351 { 2352 const char *s = path_init(nd, flags); 2353 int err = link_path_walk(s, nd); 2354 if (!err) 2355 err = complete_walk(nd); 2356 if (!err) { 2357 *parent = nd->path; 2358 nd->path.mnt = NULL; 2359 nd->path.dentry = NULL; 2360 } 2361 terminate_walk(nd); 2362 return err; 2363 } 2364 2365 static struct filename *filename_parentat(int dfd, struct filename *name, 2366 unsigned int flags, struct path *parent, 2367 struct qstr *last, int *type) 2368 { 2369 int retval; 2370 struct nameidata nd; 2371 2372 if (IS_ERR(name)) 2373 return name; 2374 set_nameidata(&nd, dfd, name); 2375 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2376 if (unlikely(retval == -ECHILD)) 2377 retval = path_parentat(&nd, flags, parent); 2378 if (unlikely(retval == -ESTALE)) 2379 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2380 if (likely(!retval)) { 2381 *last = nd.last; 2382 *type = nd.last_type; 2383 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2384 } else { 2385 putname(name); 2386 name = ERR_PTR(retval); 2387 } 2388 restore_nameidata(); 2389 return name; 2390 } 2391 2392 /* does lookup, returns the object with parent locked */ 2393 struct dentry *kern_path_locked(const char *name, struct path *path) 2394 { 2395 struct filename *filename; 2396 struct dentry *d; 2397 struct qstr last; 2398 int type; 2399 2400 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2401 &last, &type); 2402 if (IS_ERR(filename)) 2403 return ERR_CAST(filename); 2404 if (unlikely(type != LAST_NORM)) { 2405 path_put(path); 2406 putname(filename); 2407 return ERR_PTR(-EINVAL); 2408 } 2409 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2410 d = __lookup_hash(&last, path->dentry, 0); 2411 if (IS_ERR(d)) { 2412 inode_unlock(path->dentry->d_inode); 2413 path_put(path); 2414 } 2415 putname(filename); 2416 return d; 2417 } 2418 2419 int kern_path(const char *name, unsigned int flags, struct path *path) 2420 { 2421 return filename_lookup(AT_FDCWD, getname_kernel(name), 2422 flags, path, NULL); 2423 } 2424 EXPORT_SYMBOL(kern_path); 2425 2426 /** 2427 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2428 * @dentry: pointer to dentry of the base directory 2429 * @mnt: pointer to vfs mount of the base directory 2430 * @name: pointer to file name 2431 * @flags: lookup flags 2432 * @path: pointer to struct path to fill 2433 */ 2434 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2435 const char *name, unsigned int flags, 2436 struct path *path) 2437 { 2438 struct path root = {.mnt = mnt, .dentry = dentry}; 2439 /* the first argument of filename_lookup() is ignored with root */ 2440 return filename_lookup(AT_FDCWD, getname_kernel(name), 2441 flags , path, &root); 2442 } 2443 EXPORT_SYMBOL(vfs_path_lookup); 2444 2445 static int lookup_one_len_common(const char *name, struct dentry *base, 2446 int len, struct qstr *this) 2447 { 2448 this->name = name; 2449 this->len = len; 2450 this->hash = full_name_hash(base, name, len); 2451 if (!len) 2452 return -EACCES; 2453 2454 if (unlikely(name[0] == '.')) { 2455 if (len < 2 || (len == 2 && name[1] == '.')) 2456 return -EACCES; 2457 } 2458 2459 while (len--) { 2460 unsigned int c = *(const unsigned char *)name++; 2461 if (c == '/' || c == '\0') 2462 return -EACCES; 2463 } 2464 /* 2465 * See if the low-level filesystem might want 2466 * to use its own hash.. 2467 */ 2468 if (base->d_flags & DCACHE_OP_HASH) { 2469 int err = base->d_op->d_hash(base, this); 2470 if (err < 0) 2471 return err; 2472 } 2473 2474 return inode_permission(base->d_inode, MAY_EXEC); 2475 } 2476 2477 /** 2478 * try_lookup_one_len - filesystem helper to lookup single pathname component 2479 * @name: pathname component to lookup 2480 * @base: base directory to lookup from 2481 * @len: maximum length @len should be interpreted to 2482 * 2483 * Look up a dentry by name in the dcache, returning NULL if it does not 2484 * currently exist. The function does not try to create a dentry. 2485 * 2486 * Note that this routine is purely a helper for filesystem usage and should 2487 * not be called by generic code. 2488 * 2489 * The caller must hold base->i_mutex. 2490 */ 2491 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2492 { 2493 struct qstr this; 2494 int err; 2495 2496 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2497 2498 err = lookup_one_len_common(name, base, len, &this); 2499 if (err) 2500 return ERR_PTR(err); 2501 2502 return lookup_dcache(&this, base, 0); 2503 } 2504 EXPORT_SYMBOL(try_lookup_one_len); 2505 2506 /** 2507 * lookup_one_len - filesystem helper to lookup single pathname component 2508 * @name: pathname component to lookup 2509 * @base: base directory to lookup from 2510 * @len: maximum length @len should be interpreted to 2511 * 2512 * Note that this routine is purely a helper for filesystem usage and should 2513 * not be called by generic code. 2514 * 2515 * The caller must hold base->i_mutex. 2516 */ 2517 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2518 { 2519 struct dentry *dentry; 2520 struct qstr this; 2521 int err; 2522 2523 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2524 2525 err = lookup_one_len_common(name, base, len, &this); 2526 if (err) 2527 return ERR_PTR(err); 2528 2529 dentry = lookup_dcache(&this, base, 0); 2530 return dentry ? dentry : __lookup_slow(&this, base, 0); 2531 } 2532 EXPORT_SYMBOL(lookup_one_len); 2533 2534 /** 2535 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2536 * @name: pathname component to lookup 2537 * @base: base directory to lookup from 2538 * @len: maximum length @len should be interpreted to 2539 * 2540 * Note that this routine is purely a helper for filesystem usage and should 2541 * not be called by generic code. 2542 * 2543 * Unlike lookup_one_len, it should be called without the parent 2544 * i_mutex held, and will take the i_mutex itself if necessary. 2545 */ 2546 struct dentry *lookup_one_len_unlocked(const char *name, 2547 struct dentry *base, int len) 2548 { 2549 struct qstr this; 2550 int err; 2551 struct dentry *ret; 2552 2553 err = lookup_one_len_common(name, base, len, &this); 2554 if (err) 2555 return ERR_PTR(err); 2556 2557 ret = lookup_dcache(&this, base, 0); 2558 if (!ret) 2559 ret = lookup_slow(&this, base, 0); 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(lookup_one_len_unlocked); 2563 2564 /* 2565 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2566 * on negatives. Returns known positive or ERR_PTR(); that's what 2567 * most of the users want. Note that pinned negative with unlocked parent 2568 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2569 * need to be very careful; pinned positives have ->d_inode stable, so 2570 * this one avoids such problems. 2571 */ 2572 struct dentry *lookup_positive_unlocked(const char *name, 2573 struct dentry *base, int len) 2574 { 2575 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2576 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2577 dput(ret); 2578 ret = ERR_PTR(-ENOENT); 2579 } 2580 return ret; 2581 } 2582 EXPORT_SYMBOL(lookup_positive_unlocked); 2583 2584 #ifdef CONFIG_UNIX98_PTYS 2585 int path_pts(struct path *path) 2586 { 2587 /* Find something mounted on "pts" in the same directory as 2588 * the input path. 2589 */ 2590 struct dentry *child, *parent; 2591 struct qstr this; 2592 int ret; 2593 2594 ret = path_parent_directory(path); 2595 if (ret) 2596 return ret; 2597 2598 parent = path->dentry; 2599 this.name = "pts"; 2600 this.len = 3; 2601 child = d_hash_and_lookup(parent, &this); 2602 if (!child) 2603 return -ENOENT; 2604 2605 path->dentry = child; 2606 dput(parent); 2607 follow_mount(path); 2608 return 0; 2609 } 2610 #endif 2611 2612 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2613 struct path *path, int *empty) 2614 { 2615 return filename_lookup(dfd, getname_flags(name, flags, empty), 2616 flags, path, NULL); 2617 } 2618 EXPORT_SYMBOL(user_path_at_empty); 2619 2620 /** 2621 * mountpoint_last - look up last component for umount 2622 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2623 * 2624 * This is a special lookup_last function just for umount. In this case, we 2625 * need to resolve the path without doing any revalidation. 2626 * 2627 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2628 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2629 * in almost all cases, this lookup will be served out of the dcache. The only 2630 * cases where it won't are if nd->last refers to a symlink or the path is 2631 * bogus and it doesn't exist. 2632 * 2633 * Returns: 2634 * -error: if there was an error during lookup. This includes -ENOENT if the 2635 * lookup found a negative dentry. 2636 * 2637 * 0: if we successfully resolved nd->last and found it to not to be a 2638 * symlink that needs to be followed. 2639 * 2640 * 1: if we successfully resolved nd->last and found it to be a symlink 2641 * that needs to be followed. 2642 */ 2643 static int 2644 mountpoint_last(struct nameidata *nd) 2645 { 2646 int error = 0; 2647 struct dentry *dir = nd->path.dentry; 2648 struct path path; 2649 2650 /* If we're in rcuwalk, drop out of it to handle last component */ 2651 if (nd->flags & LOOKUP_RCU) { 2652 if (unlazy_walk(nd)) 2653 return -ECHILD; 2654 } 2655 2656 nd->flags &= ~LOOKUP_PARENT; 2657 2658 if (unlikely(nd->last_type != LAST_NORM)) { 2659 error = handle_dots(nd, nd->last_type); 2660 if (error) 2661 return error; 2662 path.dentry = dget(nd->path.dentry); 2663 } else { 2664 path.dentry = d_lookup(dir, &nd->last); 2665 if (!path.dentry) { 2666 /* 2667 * No cached dentry. Mounted dentries are pinned in the 2668 * cache, so that means that this dentry is probably 2669 * a symlink or the path doesn't actually point 2670 * to a mounted dentry. 2671 */ 2672 path.dentry = lookup_slow(&nd->last, dir, 2673 nd->flags | LOOKUP_NO_REVAL); 2674 if (IS_ERR(path.dentry)) 2675 return PTR_ERR(path.dentry); 2676 } 2677 } 2678 if (d_flags_negative(smp_load_acquire(&path.dentry->d_flags))) { 2679 dput(path.dentry); 2680 return -ENOENT; 2681 } 2682 path.mnt = nd->path.mnt; 2683 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2684 } 2685 2686 /** 2687 * path_mountpoint - look up a path to be umounted 2688 * @nd: lookup context 2689 * @flags: lookup flags 2690 * @path: pointer to container for result 2691 * 2692 * Look up the given name, but don't attempt to revalidate the last component. 2693 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2694 */ 2695 static int 2696 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2697 { 2698 const char *s = path_init(nd, flags); 2699 int err; 2700 2701 while (!(err = link_path_walk(s, nd)) && 2702 (err = mountpoint_last(nd)) > 0) { 2703 s = trailing_symlink(nd); 2704 } 2705 if (!err) { 2706 *path = nd->path; 2707 nd->path.mnt = NULL; 2708 nd->path.dentry = NULL; 2709 follow_mount(path); 2710 } 2711 terminate_walk(nd); 2712 return err; 2713 } 2714 2715 static int 2716 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2717 unsigned int flags) 2718 { 2719 struct nameidata nd; 2720 int error; 2721 if (IS_ERR(name)) 2722 return PTR_ERR(name); 2723 set_nameidata(&nd, dfd, name); 2724 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2725 if (unlikely(error == -ECHILD)) 2726 error = path_mountpoint(&nd, flags, path); 2727 if (unlikely(error == -ESTALE)) 2728 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2729 if (likely(!error)) 2730 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL); 2731 restore_nameidata(); 2732 putname(name); 2733 return error; 2734 } 2735 2736 /** 2737 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2738 * @dfd: directory file descriptor 2739 * @name: pathname from userland 2740 * @flags: lookup flags 2741 * @path: pointer to container to hold result 2742 * 2743 * A umount is a special case for path walking. We're not actually interested 2744 * in the inode in this situation, and ESTALE errors can be a problem. We 2745 * simply want track down the dentry and vfsmount attached at the mountpoint 2746 * and avoid revalidating the last component. 2747 * 2748 * Returns 0 and populates "path" on success. 2749 */ 2750 int 2751 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2752 struct path *path) 2753 { 2754 return filename_mountpoint(dfd, getname(name), path, flags); 2755 } 2756 2757 int 2758 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2759 unsigned int flags) 2760 { 2761 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2762 } 2763 EXPORT_SYMBOL(kern_path_mountpoint); 2764 2765 int __check_sticky(struct inode *dir, struct inode *inode) 2766 { 2767 kuid_t fsuid = current_fsuid(); 2768 2769 if (uid_eq(inode->i_uid, fsuid)) 2770 return 0; 2771 if (uid_eq(dir->i_uid, fsuid)) 2772 return 0; 2773 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2774 } 2775 EXPORT_SYMBOL(__check_sticky); 2776 2777 /* 2778 * Check whether we can remove a link victim from directory dir, check 2779 * whether the type of victim is right. 2780 * 1. We can't do it if dir is read-only (done in permission()) 2781 * 2. We should have write and exec permissions on dir 2782 * 3. We can't remove anything from append-only dir 2783 * 4. We can't do anything with immutable dir (done in permission()) 2784 * 5. If the sticky bit on dir is set we should either 2785 * a. be owner of dir, or 2786 * b. be owner of victim, or 2787 * c. have CAP_FOWNER capability 2788 * 6. If the victim is append-only or immutable we can't do antyhing with 2789 * links pointing to it. 2790 * 7. If the victim has an unknown uid or gid we can't change the inode. 2791 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2792 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2793 * 10. We can't remove a root or mountpoint. 2794 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2795 * nfs_async_unlink(). 2796 */ 2797 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2798 { 2799 struct inode *inode = d_backing_inode(victim); 2800 int error; 2801 2802 if (d_is_negative(victim)) 2803 return -ENOENT; 2804 BUG_ON(!inode); 2805 2806 BUG_ON(victim->d_parent->d_inode != dir); 2807 2808 /* Inode writeback is not safe when the uid or gid are invalid. */ 2809 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2810 return -EOVERFLOW; 2811 2812 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2813 2814 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2815 if (error) 2816 return error; 2817 if (IS_APPEND(dir)) 2818 return -EPERM; 2819 2820 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2821 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2822 return -EPERM; 2823 if (isdir) { 2824 if (!d_is_dir(victim)) 2825 return -ENOTDIR; 2826 if (IS_ROOT(victim)) 2827 return -EBUSY; 2828 } else if (d_is_dir(victim)) 2829 return -EISDIR; 2830 if (IS_DEADDIR(dir)) 2831 return -ENOENT; 2832 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2833 return -EBUSY; 2834 return 0; 2835 } 2836 2837 /* Check whether we can create an object with dentry child in directory 2838 * dir. 2839 * 1. We can't do it if child already exists (open has special treatment for 2840 * this case, but since we are inlined it's OK) 2841 * 2. We can't do it if dir is read-only (done in permission()) 2842 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2843 * 4. We should have write and exec permissions on dir 2844 * 5. We can't do it if dir is immutable (done in permission()) 2845 */ 2846 static inline int may_create(struct inode *dir, struct dentry *child) 2847 { 2848 struct user_namespace *s_user_ns; 2849 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2850 if (child->d_inode) 2851 return -EEXIST; 2852 if (IS_DEADDIR(dir)) 2853 return -ENOENT; 2854 s_user_ns = dir->i_sb->s_user_ns; 2855 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2856 !kgid_has_mapping(s_user_ns, current_fsgid())) 2857 return -EOVERFLOW; 2858 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2859 } 2860 2861 /* 2862 * p1 and p2 should be directories on the same fs. 2863 */ 2864 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2865 { 2866 struct dentry *p; 2867 2868 if (p1 == p2) { 2869 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2870 return NULL; 2871 } 2872 2873 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2874 2875 p = d_ancestor(p2, p1); 2876 if (p) { 2877 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2878 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2879 return p; 2880 } 2881 2882 p = d_ancestor(p1, p2); 2883 if (p) { 2884 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2885 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2886 return p; 2887 } 2888 2889 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2890 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2891 return NULL; 2892 } 2893 EXPORT_SYMBOL(lock_rename); 2894 2895 void unlock_rename(struct dentry *p1, struct dentry *p2) 2896 { 2897 inode_unlock(p1->d_inode); 2898 if (p1 != p2) { 2899 inode_unlock(p2->d_inode); 2900 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2901 } 2902 } 2903 EXPORT_SYMBOL(unlock_rename); 2904 2905 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2906 bool want_excl) 2907 { 2908 int error = may_create(dir, dentry); 2909 if (error) 2910 return error; 2911 2912 if (!dir->i_op->create) 2913 return -EACCES; /* shouldn't it be ENOSYS? */ 2914 mode &= S_IALLUGO; 2915 mode |= S_IFREG; 2916 error = security_inode_create(dir, dentry, mode); 2917 if (error) 2918 return error; 2919 error = dir->i_op->create(dir, dentry, mode, want_excl); 2920 if (!error) 2921 fsnotify_create(dir, dentry); 2922 return error; 2923 } 2924 EXPORT_SYMBOL(vfs_create); 2925 2926 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2927 int (*f)(struct dentry *, umode_t, void *), 2928 void *arg) 2929 { 2930 struct inode *dir = dentry->d_parent->d_inode; 2931 int error = may_create(dir, dentry); 2932 if (error) 2933 return error; 2934 2935 mode &= S_IALLUGO; 2936 mode |= S_IFREG; 2937 error = security_inode_create(dir, dentry, mode); 2938 if (error) 2939 return error; 2940 error = f(dentry, mode, arg); 2941 if (!error) 2942 fsnotify_create(dir, dentry); 2943 return error; 2944 } 2945 EXPORT_SYMBOL(vfs_mkobj); 2946 2947 bool may_open_dev(const struct path *path) 2948 { 2949 return !(path->mnt->mnt_flags & MNT_NODEV) && 2950 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2951 } 2952 2953 static int may_open(const struct path *path, int acc_mode, int flag) 2954 { 2955 struct dentry *dentry = path->dentry; 2956 struct inode *inode = dentry->d_inode; 2957 int error; 2958 2959 if (!inode) 2960 return -ENOENT; 2961 2962 switch (inode->i_mode & S_IFMT) { 2963 case S_IFLNK: 2964 return -ELOOP; 2965 case S_IFDIR: 2966 if (acc_mode & MAY_WRITE) 2967 return -EISDIR; 2968 break; 2969 case S_IFBLK: 2970 case S_IFCHR: 2971 if (!may_open_dev(path)) 2972 return -EACCES; 2973 /*FALLTHRU*/ 2974 case S_IFIFO: 2975 case S_IFSOCK: 2976 flag &= ~O_TRUNC; 2977 break; 2978 } 2979 2980 error = inode_permission(inode, MAY_OPEN | acc_mode); 2981 if (error) 2982 return error; 2983 2984 /* 2985 * An append-only file must be opened in append mode for writing. 2986 */ 2987 if (IS_APPEND(inode)) { 2988 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2989 return -EPERM; 2990 if (flag & O_TRUNC) 2991 return -EPERM; 2992 } 2993 2994 /* O_NOATIME can only be set by the owner or superuser */ 2995 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2996 return -EPERM; 2997 2998 return 0; 2999 } 3000 3001 static int handle_truncate(struct file *filp) 3002 { 3003 const struct path *path = &filp->f_path; 3004 struct inode *inode = path->dentry->d_inode; 3005 int error = get_write_access(inode); 3006 if (error) 3007 return error; 3008 /* 3009 * Refuse to truncate files with mandatory locks held on them. 3010 */ 3011 error = locks_verify_locked(filp); 3012 if (!error) 3013 error = security_path_truncate(path); 3014 if (!error) { 3015 error = do_truncate(path->dentry, 0, 3016 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3017 filp); 3018 } 3019 put_write_access(inode); 3020 return error; 3021 } 3022 3023 static inline int open_to_namei_flags(int flag) 3024 { 3025 if ((flag & O_ACCMODE) == 3) 3026 flag--; 3027 return flag; 3028 } 3029 3030 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 3031 { 3032 struct user_namespace *s_user_ns; 3033 int error = security_path_mknod(dir, dentry, mode, 0); 3034 if (error) 3035 return error; 3036 3037 s_user_ns = dir->dentry->d_sb->s_user_ns; 3038 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 3039 !kgid_has_mapping(s_user_ns, current_fsgid())) 3040 return -EOVERFLOW; 3041 3042 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 3043 if (error) 3044 return error; 3045 3046 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3047 } 3048 3049 /* 3050 * Attempt to atomically look up, create and open a file from a negative 3051 * dentry. 3052 * 3053 * Returns 0 if successful. The file will have been created and attached to 3054 * @file by the filesystem calling finish_open(). 3055 * 3056 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3057 * be set. The caller will need to perform the open themselves. @path will 3058 * have been updated to point to the new dentry. This may be negative. 3059 * 3060 * Returns an error code otherwise. 3061 */ 3062 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3063 struct path *path, struct file *file, 3064 const struct open_flags *op, 3065 int open_flag, umode_t mode) 3066 { 3067 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3068 struct inode *dir = nd->path.dentry->d_inode; 3069 int error; 3070 3071 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3072 open_flag &= ~O_TRUNC; 3073 3074 if (nd->flags & LOOKUP_DIRECTORY) 3075 open_flag |= O_DIRECTORY; 3076 3077 file->f_path.dentry = DENTRY_NOT_SET; 3078 file->f_path.mnt = nd->path.mnt; 3079 error = dir->i_op->atomic_open(dir, dentry, file, 3080 open_to_namei_flags(open_flag), mode); 3081 d_lookup_done(dentry); 3082 if (!error) { 3083 if (file->f_mode & FMODE_OPENED) { 3084 /* 3085 * We didn't have the inode before the open, so check open 3086 * permission here. 3087 */ 3088 int acc_mode = op->acc_mode; 3089 if (file->f_mode & FMODE_CREATED) { 3090 WARN_ON(!(open_flag & O_CREAT)); 3091 fsnotify_create(dir, dentry); 3092 acc_mode = 0; 3093 } 3094 error = may_open(&file->f_path, acc_mode, open_flag); 3095 if (WARN_ON(error > 0)) 3096 error = -EINVAL; 3097 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3098 error = -EIO; 3099 } else { 3100 if (file->f_path.dentry) { 3101 dput(dentry); 3102 dentry = file->f_path.dentry; 3103 } 3104 if (file->f_mode & FMODE_CREATED) 3105 fsnotify_create(dir, dentry); 3106 if (unlikely(d_is_negative(dentry))) { 3107 error = -ENOENT; 3108 } else { 3109 path->dentry = dentry; 3110 path->mnt = nd->path.mnt; 3111 return 0; 3112 } 3113 } 3114 } 3115 dput(dentry); 3116 return error; 3117 } 3118 3119 /* 3120 * Look up and maybe create and open the last component. 3121 * 3122 * Must be called with parent locked (exclusive in O_CREAT case). 3123 * 3124 * Returns 0 on success, that is, if 3125 * the file was successfully atomically created (if necessary) and opened, or 3126 * the file was not completely opened at this time, though lookups and 3127 * creations were performed. 3128 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3129 * In the latter case dentry returned in @path might be negative if O_CREAT 3130 * hadn't been specified. 3131 * 3132 * An error code is returned on failure. 3133 */ 3134 static int lookup_open(struct nameidata *nd, struct path *path, 3135 struct file *file, 3136 const struct open_flags *op, 3137 bool got_write) 3138 { 3139 struct dentry *dir = nd->path.dentry; 3140 struct inode *dir_inode = dir->d_inode; 3141 int open_flag = op->open_flag; 3142 struct dentry *dentry; 3143 int error, create_error = 0; 3144 umode_t mode = op->mode; 3145 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3146 3147 if (unlikely(IS_DEADDIR(dir_inode))) 3148 return -ENOENT; 3149 3150 file->f_mode &= ~FMODE_CREATED; 3151 dentry = d_lookup(dir, &nd->last); 3152 for (;;) { 3153 if (!dentry) { 3154 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3155 if (IS_ERR(dentry)) 3156 return PTR_ERR(dentry); 3157 } 3158 if (d_in_lookup(dentry)) 3159 break; 3160 3161 error = d_revalidate(dentry, nd->flags); 3162 if (likely(error > 0)) 3163 break; 3164 if (error) 3165 goto out_dput; 3166 d_invalidate(dentry); 3167 dput(dentry); 3168 dentry = NULL; 3169 } 3170 if (dentry->d_inode) { 3171 /* Cached positive dentry: will open in f_op->open */ 3172 goto out_no_open; 3173 } 3174 3175 /* 3176 * Checking write permission is tricky, bacuse we don't know if we are 3177 * going to actually need it: O_CREAT opens should work as long as the 3178 * file exists. But checking existence breaks atomicity. The trick is 3179 * to check access and if not granted clear O_CREAT from the flags. 3180 * 3181 * Another problem is returing the "right" error value (e.g. for an 3182 * O_EXCL open we want to return EEXIST not EROFS). 3183 */ 3184 if (open_flag & O_CREAT) { 3185 if (!IS_POSIXACL(dir->d_inode)) 3186 mode &= ~current_umask(); 3187 if (unlikely(!got_write)) { 3188 create_error = -EROFS; 3189 open_flag &= ~O_CREAT; 3190 if (open_flag & (O_EXCL | O_TRUNC)) 3191 goto no_open; 3192 /* No side effects, safe to clear O_CREAT */ 3193 } else { 3194 create_error = may_o_create(&nd->path, dentry, mode); 3195 if (create_error) { 3196 open_flag &= ~O_CREAT; 3197 if (open_flag & O_EXCL) 3198 goto no_open; 3199 } 3200 } 3201 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3202 unlikely(!got_write)) { 3203 /* 3204 * No O_CREATE -> atomicity not a requirement -> fall 3205 * back to lookup + open 3206 */ 3207 goto no_open; 3208 } 3209 3210 if (dir_inode->i_op->atomic_open) { 3211 error = atomic_open(nd, dentry, path, file, op, open_flag, 3212 mode); 3213 if (unlikely(error == -ENOENT) && create_error) 3214 error = create_error; 3215 return error; 3216 } 3217 3218 no_open: 3219 if (d_in_lookup(dentry)) { 3220 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3221 nd->flags); 3222 d_lookup_done(dentry); 3223 if (unlikely(res)) { 3224 if (IS_ERR(res)) { 3225 error = PTR_ERR(res); 3226 goto out_dput; 3227 } 3228 dput(dentry); 3229 dentry = res; 3230 } 3231 } 3232 3233 /* Negative dentry, just create the file */ 3234 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3235 file->f_mode |= FMODE_CREATED; 3236 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3237 if (!dir_inode->i_op->create) { 3238 error = -EACCES; 3239 goto out_dput; 3240 } 3241 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3242 open_flag & O_EXCL); 3243 if (error) 3244 goto out_dput; 3245 fsnotify_create(dir_inode, dentry); 3246 } 3247 if (unlikely(create_error) && !dentry->d_inode) { 3248 error = create_error; 3249 goto out_dput; 3250 } 3251 out_no_open: 3252 path->dentry = dentry; 3253 path->mnt = nd->path.mnt; 3254 return 0; 3255 3256 out_dput: 3257 dput(dentry); 3258 return error; 3259 } 3260 3261 /* 3262 * Handle the last step of open() 3263 */ 3264 static int do_last(struct nameidata *nd, 3265 struct file *file, const struct open_flags *op) 3266 { 3267 struct dentry *dir = nd->path.dentry; 3268 int open_flag = op->open_flag; 3269 bool will_truncate = (open_flag & O_TRUNC) != 0; 3270 bool got_write = false; 3271 int acc_mode = op->acc_mode; 3272 unsigned seq; 3273 struct inode *inode; 3274 struct path path; 3275 int error; 3276 3277 nd->flags &= ~LOOKUP_PARENT; 3278 nd->flags |= op->intent; 3279 3280 if (nd->last_type != LAST_NORM) { 3281 error = handle_dots(nd, nd->last_type); 3282 if (unlikely(error)) 3283 return error; 3284 goto finish_open; 3285 } 3286 3287 if (!(open_flag & O_CREAT)) { 3288 if (nd->last.name[nd->last.len]) 3289 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3290 /* we _can_ be in RCU mode here */ 3291 error = lookup_fast(nd, &path, &inode, &seq); 3292 if (likely(error > 0)) 3293 goto finish_lookup; 3294 3295 if (error < 0) 3296 return error; 3297 3298 BUG_ON(nd->inode != dir->d_inode); 3299 BUG_ON(nd->flags & LOOKUP_RCU); 3300 } else { 3301 /* create side of things */ 3302 /* 3303 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3304 * has been cleared when we got to the last component we are 3305 * about to look up 3306 */ 3307 error = complete_walk(nd); 3308 if (error) 3309 return error; 3310 3311 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3312 /* trailing slashes? */ 3313 if (unlikely(nd->last.name[nd->last.len])) 3314 return -EISDIR; 3315 } 3316 3317 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3318 error = mnt_want_write(nd->path.mnt); 3319 if (!error) 3320 got_write = true; 3321 /* 3322 * do _not_ fail yet - we might not need that or fail with 3323 * a different error; let lookup_open() decide; we'll be 3324 * dropping this one anyway. 3325 */ 3326 } 3327 if (open_flag & O_CREAT) 3328 inode_lock(dir->d_inode); 3329 else 3330 inode_lock_shared(dir->d_inode); 3331 error = lookup_open(nd, &path, file, op, got_write); 3332 if (open_flag & O_CREAT) 3333 inode_unlock(dir->d_inode); 3334 else 3335 inode_unlock_shared(dir->d_inode); 3336 3337 if (error) 3338 goto out; 3339 3340 if (file->f_mode & FMODE_OPENED) { 3341 if ((file->f_mode & FMODE_CREATED) || 3342 !S_ISREG(file_inode(file)->i_mode)) 3343 will_truncate = false; 3344 3345 audit_inode(nd->name, file->f_path.dentry, 0); 3346 goto opened; 3347 } 3348 3349 if (file->f_mode & FMODE_CREATED) { 3350 /* Don't check for write permission, don't truncate */ 3351 open_flag &= ~O_TRUNC; 3352 will_truncate = false; 3353 acc_mode = 0; 3354 path_to_nameidata(&path, nd); 3355 goto finish_open_created; 3356 } 3357 3358 /* 3359 * If atomic_open() acquired write access it is dropped now due to 3360 * possible mount and symlink following (this might be optimized away if 3361 * necessary...) 3362 */ 3363 if (got_write) { 3364 mnt_drop_write(nd->path.mnt); 3365 got_write = false; 3366 } 3367 3368 error = follow_managed(&path, nd); 3369 if (unlikely(error < 0)) 3370 return error; 3371 3372 /* 3373 * create/update audit record if it already exists. 3374 */ 3375 audit_inode(nd->name, path.dentry, 0); 3376 3377 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3378 path_to_nameidata(&path, nd); 3379 return -EEXIST; 3380 } 3381 3382 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3383 inode = d_backing_inode(path.dentry); 3384 finish_lookup: 3385 error = step_into(nd, &path, 0, inode, seq); 3386 if (unlikely(error)) 3387 return error; 3388 finish_open: 3389 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3390 error = complete_walk(nd); 3391 if (error) 3392 return error; 3393 audit_inode(nd->name, nd->path.dentry, 0); 3394 if (open_flag & O_CREAT) { 3395 error = -EISDIR; 3396 if (d_is_dir(nd->path.dentry)) 3397 goto out; 3398 error = may_create_in_sticky(dir, 3399 d_backing_inode(nd->path.dentry)); 3400 if (unlikely(error)) 3401 goto out; 3402 } 3403 error = -ENOTDIR; 3404 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3405 goto out; 3406 if (!d_is_reg(nd->path.dentry)) 3407 will_truncate = false; 3408 3409 if (will_truncate) { 3410 error = mnt_want_write(nd->path.mnt); 3411 if (error) 3412 goto out; 3413 got_write = true; 3414 } 3415 finish_open_created: 3416 error = may_open(&nd->path, acc_mode, open_flag); 3417 if (error) 3418 goto out; 3419 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ 3420 error = vfs_open(&nd->path, file); 3421 if (error) 3422 goto out; 3423 opened: 3424 error = ima_file_check(file, op->acc_mode); 3425 if (!error && will_truncate) 3426 error = handle_truncate(file); 3427 out: 3428 if (unlikely(error > 0)) { 3429 WARN_ON(1); 3430 error = -EINVAL; 3431 } 3432 if (got_write) 3433 mnt_drop_write(nd->path.mnt); 3434 return error; 3435 } 3436 3437 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3438 { 3439 struct dentry *child = NULL; 3440 struct inode *dir = dentry->d_inode; 3441 struct inode *inode; 3442 int error; 3443 3444 /* we want directory to be writable */ 3445 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3446 if (error) 3447 goto out_err; 3448 error = -EOPNOTSUPP; 3449 if (!dir->i_op->tmpfile) 3450 goto out_err; 3451 error = -ENOMEM; 3452 child = d_alloc(dentry, &slash_name); 3453 if (unlikely(!child)) 3454 goto out_err; 3455 error = dir->i_op->tmpfile(dir, child, mode); 3456 if (error) 3457 goto out_err; 3458 error = -ENOENT; 3459 inode = child->d_inode; 3460 if (unlikely(!inode)) 3461 goto out_err; 3462 if (!(open_flag & O_EXCL)) { 3463 spin_lock(&inode->i_lock); 3464 inode->i_state |= I_LINKABLE; 3465 spin_unlock(&inode->i_lock); 3466 } 3467 ima_post_create_tmpfile(inode); 3468 return child; 3469 3470 out_err: 3471 dput(child); 3472 return ERR_PTR(error); 3473 } 3474 EXPORT_SYMBOL(vfs_tmpfile); 3475 3476 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3477 const struct open_flags *op, 3478 struct file *file) 3479 { 3480 struct dentry *child; 3481 struct path path; 3482 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3483 if (unlikely(error)) 3484 return error; 3485 error = mnt_want_write(path.mnt); 3486 if (unlikely(error)) 3487 goto out; 3488 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3489 error = PTR_ERR(child); 3490 if (IS_ERR(child)) 3491 goto out2; 3492 dput(path.dentry); 3493 path.dentry = child; 3494 audit_inode(nd->name, child, 0); 3495 /* Don't check for other permissions, the inode was just created */ 3496 error = may_open(&path, 0, op->open_flag); 3497 if (error) 3498 goto out2; 3499 file->f_path.mnt = path.mnt; 3500 error = finish_open(file, child, NULL); 3501 out2: 3502 mnt_drop_write(path.mnt); 3503 out: 3504 path_put(&path); 3505 return error; 3506 } 3507 3508 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3509 { 3510 struct path path; 3511 int error = path_lookupat(nd, flags, &path); 3512 if (!error) { 3513 audit_inode(nd->name, path.dentry, 0); 3514 error = vfs_open(&path, file); 3515 path_put(&path); 3516 } 3517 return error; 3518 } 3519 3520 static struct file *path_openat(struct nameidata *nd, 3521 const struct open_flags *op, unsigned flags) 3522 { 3523 struct file *file; 3524 int error; 3525 3526 file = alloc_empty_file(op->open_flag, current_cred()); 3527 if (IS_ERR(file)) 3528 return file; 3529 3530 if (unlikely(file->f_flags & __O_TMPFILE)) { 3531 error = do_tmpfile(nd, flags, op, file); 3532 } else if (unlikely(file->f_flags & O_PATH)) { 3533 error = do_o_path(nd, flags, file); 3534 } else { 3535 const char *s = path_init(nd, flags); 3536 while (!(error = link_path_walk(s, nd)) && 3537 (error = do_last(nd, file, op)) > 0) { 3538 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3539 s = trailing_symlink(nd); 3540 } 3541 terminate_walk(nd); 3542 } 3543 if (likely(!error)) { 3544 if (likely(file->f_mode & FMODE_OPENED)) 3545 return file; 3546 WARN_ON(1); 3547 error = -EINVAL; 3548 } 3549 fput(file); 3550 if (error == -EOPENSTALE) { 3551 if (flags & LOOKUP_RCU) 3552 error = -ECHILD; 3553 else 3554 error = -ESTALE; 3555 } 3556 return ERR_PTR(error); 3557 } 3558 3559 struct file *do_filp_open(int dfd, struct filename *pathname, 3560 const struct open_flags *op) 3561 { 3562 struct nameidata nd; 3563 int flags = op->lookup_flags; 3564 struct file *filp; 3565 3566 set_nameidata(&nd, dfd, pathname); 3567 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3568 if (unlikely(filp == ERR_PTR(-ECHILD))) 3569 filp = path_openat(&nd, op, flags); 3570 if (unlikely(filp == ERR_PTR(-ESTALE))) 3571 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3572 restore_nameidata(); 3573 return filp; 3574 } 3575 3576 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3577 const char *name, const struct open_flags *op) 3578 { 3579 struct nameidata nd; 3580 struct file *file; 3581 struct filename *filename; 3582 int flags = op->lookup_flags | LOOKUP_ROOT; 3583 3584 nd.root.mnt = mnt; 3585 nd.root.dentry = dentry; 3586 3587 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3588 return ERR_PTR(-ELOOP); 3589 3590 filename = getname_kernel(name); 3591 if (IS_ERR(filename)) 3592 return ERR_CAST(filename); 3593 3594 set_nameidata(&nd, -1, filename); 3595 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3596 if (unlikely(file == ERR_PTR(-ECHILD))) 3597 file = path_openat(&nd, op, flags); 3598 if (unlikely(file == ERR_PTR(-ESTALE))) 3599 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3600 restore_nameidata(); 3601 putname(filename); 3602 return file; 3603 } 3604 3605 static struct dentry *filename_create(int dfd, struct filename *name, 3606 struct path *path, unsigned int lookup_flags) 3607 { 3608 struct dentry *dentry = ERR_PTR(-EEXIST); 3609 struct qstr last; 3610 int type; 3611 int err2; 3612 int error; 3613 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3614 3615 /* 3616 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3617 * other flags passed in are ignored! 3618 */ 3619 lookup_flags &= LOOKUP_REVAL; 3620 3621 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3622 if (IS_ERR(name)) 3623 return ERR_CAST(name); 3624 3625 /* 3626 * Yucky last component or no last component at all? 3627 * (foo/., foo/.., /////) 3628 */ 3629 if (unlikely(type != LAST_NORM)) 3630 goto out; 3631 3632 /* don't fail immediately if it's r/o, at least try to report other errors */ 3633 err2 = mnt_want_write(path->mnt); 3634 /* 3635 * Do the final lookup. 3636 */ 3637 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3638 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3639 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3640 if (IS_ERR(dentry)) 3641 goto unlock; 3642 3643 error = -EEXIST; 3644 if (d_is_positive(dentry)) 3645 goto fail; 3646 3647 /* 3648 * Special case - lookup gave negative, but... we had foo/bar/ 3649 * From the vfs_mknod() POV we just have a negative dentry - 3650 * all is fine. Let's be bastards - you had / on the end, you've 3651 * been asking for (non-existent) directory. -ENOENT for you. 3652 */ 3653 if (unlikely(!is_dir && last.name[last.len])) { 3654 error = -ENOENT; 3655 goto fail; 3656 } 3657 if (unlikely(err2)) { 3658 error = err2; 3659 goto fail; 3660 } 3661 putname(name); 3662 return dentry; 3663 fail: 3664 dput(dentry); 3665 dentry = ERR_PTR(error); 3666 unlock: 3667 inode_unlock(path->dentry->d_inode); 3668 if (!err2) 3669 mnt_drop_write(path->mnt); 3670 out: 3671 path_put(path); 3672 putname(name); 3673 return dentry; 3674 } 3675 3676 struct dentry *kern_path_create(int dfd, const char *pathname, 3677 struct path *path, unsigned int lookup_flags) 3678 { 3679 return filename_create(dfd, getname_kernel(pathname), 3680 path, lookup_flags); 3681 } 3682 EXPORT_SYMBOL(kern_path_create); 3683 3684 void done_path_create(struct path *path, struct dentry *dentry) 3685 { 3686 dput(dentry); 3687 inode_unlock(path->dentry->d_inode); 3688 mnt_drop_write(path->mnt); 3689 path_put(path); 3690 } 3691 EXPORT_SYMBOL(done_path_create); 3692 3693 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3694 struct path *path, unsigned int lookup_flags) 3695 { 3696 return filename_create(dfd, getname(pathname), path, lookup_flags); 3697 } 3698 EXPORT_SYMBOL(user_path_create); 3699 3700 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3701 { 3702 int error = may_create(dir, dentry); 3703 3704 if (error) 3705 return error; 3706 3707 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3708 return -EPERM; 3709 3710 if (!dir->i_op->mknod) 3711 return -EPERM; 3712 3713 error = devcgroup_inode_mknod(mode, dev); 3714 if (error) 3715 return error; 3716 3717 error = security_inode_mknod(dir, dentry, mode, dev); 3718 if (error) 3719 return error; 3720 3721 error = dir->i_op->mknod(dir, dentry, mode, dev); 3722 if (!error) 3723 fsnotify_create(dir, dentry); 3724 return error; 3725 } 3726 EXPORT_SYMBOL(vfs_mknod); 3727 3728 static int may_mknod(umode_t mode) 3729 { 3730 switch (mode & S_IFMT) { 3731 case S_IFREG: 3732 case S_IFCHR: 3733 case S_IFBLK: 3734 case S_IFIFO: 3735 case S_IFSOCK: 3736 case 0: /* zero mode translates to S_IFREG */ 3737 return 0; 3738 case S_IFDIR: 3739 return -EPERM; 3740 default: 3741 return -EINVAL; 3742 } 3743 } 3744 3745 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3746 unsigned int dev) 3747 { 3748 struct dentry *dentry; 3749 struct path path; 3750 int error; 3751 unsigned int lookup_flags = 0; 3752 3753 error = may_mknod(mode); 3754 if (error) 3755 return error; 3756 retry: 3757 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3758 if (IS_ERR(dentry)) 3759 return PTR_ERR(dentry); 3760 3761 if (!IS_POSIXACL(path.dentry->d_inode)) 3762 mode &= ~current_umask(); 3763 error = security_path_mknod(&path, dentry, mode, dev); 3764 if (error) 3765 goto out; 3766 switch (mode & S_IFMT) { 3767 case 0: case S_IFREG: 3768 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3769 if (!error) 3770 ima_post_path_mknod(dentry); 3771 break; 3772 case S_IFCHR: case S_IFBLK: 3773 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3774 new_decode_dev(dev)); 3775 break; 3776 case S_IFIFO: case S_IFSOCK: 3777 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3778 break; 3779 } 3780 out: 3781 done_path_create(&path, dentry); 3782 if (retry_estale(error, lookup_flags)) { 3783 lookup_flags |= LOOKUP_REVAL; 3784 goto retry; 3785 } 3786 return error; 3787 } 3788 3789 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3790 unsigned int, dev) 3791 { 3792 return do_mknodat(dfd, filename, mode, dev); 3793 } 3794 3795 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3796 { 3797 return do_mknodat(AT_FDCWD, filename, mode, dev); 3798 } 3799 3800 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3801 { 3802 int error = may_create(dir, dentry); 3803 unsigned max_links = dir->i_sb->s_max_links; 3804 3805 if (error) 3806 return error; 3807 3808 if (!dir->i_op->mkdir) 3809 return -EPERM; 3810 3811 mode &= (S_IRWXUGO|S_ISVTX); 3812 error = security_inode_mkdir(dir, dentry, mode); 3813 if (error) 3814 return error; 3815 3816 if (max_links && dir->i_nlink >= max_links) 3817 return -EMLINK; 3818 3819 error = dir->i_op->mkdir(dir, dentry, mode); 3820 if (!error) 3821 fsnotify_mkdir(dir, dentry); 3822 return error; 3823 } 3824 EXPORT_SYMBOL(vfs_mkdir); 3825 3826 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3827 { 3828 struct dentry *dentry; 3829 struct path path; 3830 int error; 3831 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3832 3833 retry: 3834 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3835 if (IS_ERR(dentry)) 3836 return PTR_ERR(dentry); 3837 3838 if (!IS_POSIXACL(path.dentry->d_inode)) 3839 mode &= ~current_umask(); 3840 error = security_path_mkdir(&path, dentry, mode); 3841 if (!error) 3842 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3843 done_path_create(&path, dentry); 3844 if (retry_estale(error, lookup_flags)) { 3845 lookup_flags |= LOOKUP_REVAL; 3846 goto retry; 3847 } 3848 return error; 3849 } 3850 3851 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3852 { 3853 return do_mkdirat(dfd, pathname, mode); 3854 } 3855 3856 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3857 { 3858 return do_mkdirat(AT_FDCWD, pathname, mode); 3859 } 3860 3861 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3862 { 3863 int error = may_delete(dir, dentry, 1); 3864 3865 if (error) 3866 return error; 3867 3868 if (!dir->i_op->rmdir) 3869 return -EPERM; 3870 3871 dget(dentry); 3872 inode_lock(dentry->d_inode); 3873 3874 error = -EBUSY; 3875 if (is_local_mountpoint(dentry)) 3876 goto out; 3877 3878 error = security_inode_rmdir(dir, dentry); 3879 if (error) 3880 goto out; 3881 3882 error = dir->i_op->rmdir(dir, dentry); 3883 if (error) 3884 goto out; 3885 3886 shrink_dcache_parent(dentry); 3887 dentry->d_inode->i_flags |= S_DEAD; 3888 dont_mount(dentry); 3889 detach_mounts(dentry); 3890 fsnotify_rmdir(dir, dentry); 3891 3892 out: 3893 inode_unlock(dentry->d_inode); 3894 dput(dentry); 3895 if (!error) 3896 d_delete(dentry); 3897 return error; 3898 } 3899 EXPORT_SYMBOL(vfs_rmdir); 3900 3901 long do_rmdir(int dfd, const char __user *pathname) 3902 { 3903 int error = 0; 3904 struct filename *name; 3905 struct dentry *dentry; 3906 struct path path; 3907 struct qstr last; 3908 int type; 3909 unsigned int lookup_flags = 0; 3910 retry: 3911 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3912 &path, &last, &type); 3913 if (IS_ERR(name)) 3914 return PTR_ERR(name); 3915 3916 switch (type) { 3917 case LAST_DOTDOT: 3918 error = -ENOTEMPTY; 3919 goto exit1; 3920 case LAST_DOT: 3921 error = -EINVAL; 3922 goto exit1; 3923 case LAST_ROOT: 3924 error = -EBUSY; 3925 goto exit1; 3926 } 3927 3928 error = mnt_want_write(path.mnt); 3929 if (error) 3930 goto exit1; 3931 3932 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3933 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3934 error = PTR_ERR(dentry); 3935 if (IS_ERR(dentry)) 3936 goto exit2; 3937 if (!dentry->d_inode) { 3938 error = -ENOENT; 3939 goto exit3; 3940 } 3941 error = security_path_rmdir(&path, dentry); 3942 if (error) 3943 goto exit3; 3944 error = vfs_rmdir(path.dentry->d_inode, dentry); 3945 exit3: 3946 dput(dentry); 3947 exit2: 3948 inode_unlock(path.dentry->d_inode); 3949 mnt_drop_write(path.mnt); 3950 exit1: 3951 path_put(&path); 3952 putname(name); 3953 if (retry_estale(error, lookup_flags)) { 3954 lookup_flags |= LOOKUP_REVAL; 3955 goto retry; 3956 } 3957 return error; 3958 } 3959 3960 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3961 { 3962 return do_rmdir(AT_FDCWD, pathname); 3963 } 3964 3965 /** 3966 * vfs_unlink - unlink a filesystem object 3967 * @dir: parent directory 3968 * @dentry: victim 3969 * @delegated_inode: returns victim inode, if the inode is delegated. 3970 * 3971 * The caller must hold dir->i_mutex. 3972 * 3973 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3974 * return a reference to the inode in delegated_inode. The caller 3975 * should then break the delegation on that inode and retry. Because 3976 * breaking a delegation may take a long time, the caller should drop 3977 * dir->i_mutex before doing so. 3978 * 3979 * Alternatively, a caller may pass NULL for delegated_inode. This may 3980 * be appropriate for callers that expect the underlying filesystem not 3981 * to be NFS exported. 3982 */ 3983 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3984 { 3985 struct inode *target = dentry->d_inode; 3986 int error = may_delete(dir, dentry, 0); 3987 3988 if (error) 3989 return error; 3990 3991 if (!dir->i_op->unlink) 3992 return -EPERM; 3993 3994 inode_lock(target); 3995 if (is_local_mountpoint(dentry)) 3996 error = -EBUSY; 3997 else { 3998 error = security_inode_unlink(dir, dentry); 3999 if (!error) { 4000 error = try_break_deleg(target, delegated_inode); 4001 if (error) 4002 goto out; 4003 error = dir->i_op->unlink(dir, dentry); 4004 if (!error) { 4005 dont_mount(dentry); 4006 detach_mounts(dentry); 4007 fsnotify_unlink(dir, dentry); 4008 } 4009 } 4010 } 4011 out: 4012 inode_unlock(target); 4013 4014 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4015 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4016 fsnotify_link_count(target); 4017 d_delete(dentry); 4018 } 4019 4020 return error; 4021 } 4022 EXPORT_SYMBOL(vfs_unlink); 4023 4024 /* 4025 * Make sure that the actual truncation of the file will occur outside its 4026 * directory's i_mutex. Truncate can take a long time if there is a lot of 4027 * writeout happening, and we don't want to prevent access to the directory 4028 * while waiting on the I/O. 4029 */ 4030 long do_unlinkat(int dfd, struct filename *name) 4031 { 4032 int error; 4033 struct dentry *dentry; 4034 struct path path; 4035 struct qstr last; 4036 int type; 4037 struct inode *inode = NULL; 4038 struct inode *delegated_inode = NULL; 4039 unsigned int lookup_flags = 0; 4040 retry: 4041 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4042 if (IS_ERR(name)) 4043 return PTR_ERR(name); 4044 4045 error = -EISDIR; 4046 if (type != LAST_NORM) 4047 goto exit1; 4048 4049 error = mnt_want_write(path.mnt); 4050 if (error) 4051 goto exit1; 4052 retry_deleg: 4053 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4054 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4055 error = PTR_ERR(dentry); 4056 if (!IS_ERR(dentry)) { 4057 /* Why not before? Because we want correct error value */ 4058 if (last.name[last.len]) 4059 goto slashes; 4060 inode = dentry->d_inode; 4061 if (d_is_negative(dentry)) 4062 goto slashes; 4063 ihold(inode); 4064 error = security_path_unlink(&path, dentry); 4065 if (error) 4066 goto exit2; 4067 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4068 exit2: 4069 dput(dentry); 4070 } 4071 inode_unlock(path.dentry->d_inode); 4072 if (inode) 4073 iput(inode); /* truncate the inode here */ 4074 inode = NULL; 4075 if (delegated_inode) { 4076 error = break_deleg_wait(&delegated_inode); 4077 if (!error) 4078 goto retry_deleg; 4079 } 4080 mnt_drop_write(path.mnt); 4081 exit1: 4082 path_put(&path); 4083 if (retry_estale(error, lookup_flags)) { 4084 lookup_flags |= LOOKUP_REVAL; 4085 inode = NULL; 4086 goto retry; 4087 } 4088 putname(name); 4089 return error; 4090 4091 slashes: 4092 if (d_is_negative(dentry)) 4093 error = -ENOENT; 4094 else if (d_is_dir(dentry)) 4095 error = -EISDIR; 4096 else 4097 error = -ENOTDIR; 4098 goto exit2; 4099 } 4100 4101 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4102 { 4103 if ((flag & ~AT_REMOVEDIR) != 0) 4104 return -EINVAL; 4105 4106 if (flag & AT_REMOVEDIR) 4107 return do_rmdir(dfd, pathname); 4108 4109 return do_unlinkat(dfd, getname(pathname)); 4110 } 4111 4112 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4113 { 4114 return do_unlinkat(AT_FDCWD, getname(pathname)); 4115 } 4116 4117 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4118 { 4119 int error = may_create(dir, dentry); 4120 4121 if (error) 4122 return error; 4123 4124 if (!dir->i_op->symlink) 4125 return -EPERM; 4126 4127 error = security_inode_symlink(dir, dentry, oldname); 4128 if (error) 4129 return error; 4130 4131 error = dir->i_op->symlink(dir, dentry, oldname); 4132 if (!error) 4133 fsnotify_create(dir, dentry); 4134 return error; 4135 } 4136 EXPORT_SYMBOL(vfs_symlink); 4137 4138 long do_symlinkat(const char __user *oldname, int newdfd, 4139 const char __user *newname) 4140 { 4141 int error; 4142 struct filename *from; 4143 struct dentry *dentry; 4144 struct path path; 4145 unsigned int lookup_flags = 0; 4146 4147 from = getname(oldname); 4148 if (IS_ERR(from)) 4149 return PTR_ERR(from); 4150 retry: 4151 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4152 error = PTR_ERR(dentry); 4153 if (IS_ERR(dentry)) 4154 goto out_putname; 4155 4156 error = security_path_symlink(&path, dentry, from->name); 4157 if (!error) 4158 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4159 done_path_create(&path, dentry); 4160 if (retry_estale(error, lookup_flags)) { 4161 lookup_flags |= LOOKUP_REVAL; 4162 goto retry; 4163 } 4164 out_putname: 4165 putname(from); 4166 return error; 4167 } 4168 4169 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4170 int, newdfd, const char __user *, newname) 4171 { 4172 return do_symlinkat(oldname, newdfd, newname); 4173 } 4174 4175 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4176 { 4177 return do_symlinkat(oldname, AT_FDCWD, newname); 4178 } 4179 4180 /** 4181 * vfs_link - create a new link 4182 * @old_dentry: object to be linked 4183 * @dir: new parent 4184 * @new_dentry: where to create the new link 4185 * @delegated_inode: returns inode needing a delegation break 4186 * 4187 * The caller must hold dir->i_mutex 4188 * 4189 * If vfs_link discovers a delegation on the to-be-linked file in need 4190 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4191 * inode in delegated_inode. The caller should then break the delegation 4192 * and retry. Because breaking a delegation may take a long time, the 4193 * caller should drop the i_mutex before doing so. 4194 * 4195 * Alternatively, a caller may pass NULL for delegated_inode. This may 4196 * be appropriate for callers that expect the underlying filesystem not 4197 * to be NFS exported. 4198 */ 4199 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4200 { 4201 struct inode *inode = old_dentry->d_inode; 4202 unsigned max_links = dir->i_sb->s_max_links; 4203 int error; 4204 4205 if (!inode) 4206 return -ENOENT; 4207 4208 error = may_create(dir, new_dentry); 4209 if (error) 4210 return error; 4211 4212 if (dir->i_sb != inode->i_sb) 4213 return -EXDEV; 4214 4215 /* 4216 * A link to an append-only or immutable file cannot be created. 4217 */ 4218 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4219 return -EPERM; 4220 /* 4221 * Updating the link count will likely cause i_uid and i_gid to 4222 * be writen back improperly if their true value is unknown to 4223 * the vfs. 4224 */ 4225 if (HAS_UNMAPPED_ID(inode)) 4226 return -EPERM; 4227 if (!dir->i_op->link) 4228 return -EPERM; 4229 if (S_ISDIR(inode->i_mode)) 4230 return -EPERM; 4231 4232 error = security_inode_link(old_dentry, dir, new_dentry); 4233 if (error) 4234 return error; 4235 4236 inode_lock(inode); 4237 /* Make sure we don't allow creating hardlink to an unlinked file */ 4238 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4239 error = -ENOENT; 4240 else if (max_links && inode->i_nlink >= max_links) 4241 error = -EMLINK; 4242 else { 4243 error = try_break_deleg(inode, delegated_inode); 4244 if (!error) 4245 error = dir->i_op->link(old_dentry, dir, new_dentry); 4246 } 4247 4248 if (!error && (inode->i_state & I_LINKABLE)) { 4249 spin_lock(&inode->i_lock); 4250 inode->i_state &= ~I_LINKABLE; 4251 spin_unlock(&inode->i_lock); 4252 } 4253 inode_unlock(inode); 4254 if (!error) 4255 fsnotify_link(dir, inode, new_dentry); 4256 return error; 4257 } 4258 EXPORT_SYMBOL(vfs_link); 4259 4260 /* 4261 * Hardlinks are often used in delicate situations. We avoid 4262 * security-related surprises by not following symlinks on the 4263 * newname. --KAB 4264 * 4265 * We don't follow them on the oldname either to be compatible 4266 * with linux 2.0, and to avoid hard-linking to directories 4267 * and other special files. --ADM 4268 */ 4269 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4270 const char __user *newname, int flags) 4271 { 4272 struct dentry *new_dentry; 4273 struct path old_path, new_path; 4274 struct inode *delegated_inode = NULL; 4275 int how = 0; 4276 int error; 4277 4278 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4279 return -EINVAL; 4280 /* 4281 * To use null names we require CAP_DAC_READ_SEARCH 4282 * This ensures that not everyone will be able to create 4283 * handlink using the passed filedescriptor. 4284 */ 4285 if (flags & AT_EMPTY_PATH) { 4286 if (!capable(CAP_DAC_READ_SEARCH)) 4287 return -ENOENT; 4288 how = LOOKUP_EMPTY; 4289 } 4290 4291 if (flags & AT_SYMLINK_FOLLOW) 4292 how |= LOOKUP_FOLLOW; 4293 retry: 4294 error = user_path_at(olddfd, oldname, how, &old_path); 4295 if (error) 4296 return error; 4297 4298 new_dentry = user_path_create(newdfd, newname, &new_path, 4299 (how & LOOKUP_REVAL)); 4300 error = PTR_ERR(new_dentry); 4301 if (IS_ERR(new_dentry)) 4302 goto out; 4303 4304 error = -EXDEV; 4305 if (old_path.mnt != new_path.mnt) 4306 goto out_dput; 4307 error = may_linkat(&old_path); 4308 if (unlikely(error)) 4309 goto out_dput; 4310 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4311 if (error) 4312 goto out_dput; 4313 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4314 out_dput: 4315 done_path_create(&new_path, new_dentry); 4316 if (delegated_inode) { 4317 error = break_deleg_wait(&delegated_inode); 4318 if (!error) { 4319 path_put(&old_path); 4320 goto retry; 4321 } 4322 } 4323 if (retry_estale(error, how)) { 4324 path_put(&old_path); 4325 how |= LOOKUP_REVAL; 4326 goto retry; 4327 } 4328 out: 4329 path_put(&old_path); 4330 4331 return error; 4332 } 4333 4334 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4335 int, newdfd, const char __user *, newname, int, flags) 4336 { 4337 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4338 } 4339 4340 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4341 { 4342 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4343 } 4344 4345 /** 4346 * vfs_rename - rename a filesystem object 4347 * @old_dir: parent of source 4348 * @old_dentry: source 4349 * @new_dir: parent of destination 4350 * @new_dentry: destination 4351 * @delegated_inode: returns an inode needing a delegation break 4352 * @flags: rename flags 4353 * 4354 * The caller must hold multiple mutexes--see lock_rename()). 4355 * 4356 * If vfs_rename discovers a delegation in need of breaking at either 4357 * the source or destination, it will return -EWOULDBLOCK and return a 4358 * reference to the inode in delegated_inode. The caller should then 4359 * break the delegation and retry. Because breaking a delegation may 4360 * take a long time, the caller should drop all locks before doing 4361 * so. 4362 * 4363 * Alternatively, a caller may pass NULL for delegated_inode. This may 4364 * be appropriate for callers that expect the underlying filesystem not 4365 * to be NFS exported. 4366 * 4367 * The worst of all namespace operations - renaming directory. "Perverted" 4368 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4369 * Problems: 4370 * 4371 * a) we can get into loop creation. 4372 * b) race potential - two innocent renames can create a loop together. 4373 * That's where 4.4 screws up. Current fix: serialization on 4374 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4375 * story. 4376 * c) we have to lock _four_ objects - parents and victim (if it exists), 4377 * and source (if it is not a directory). 4378 * And that - after we got ->i_mutex on parents (until then we don't know 4379 * whether the target exists). Solution: try to be smart with locking 4380 * order for inodes. We rely on the fact that tree topology may change 4381 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4382 * move will be locked. Thus we can rank directories by the tree 4383 * (ancestors first) and rank all non-directories after them. 4384 * That works since everybody except rename does "lock parent, lookup, 4385 * lock child" and rename is under ->s_vfs_rename_mutex. 4386 * HOWEVER, it relies on the assumption that any object with ->lookup() 4387 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4388 * we'd better make sure that there's no link(2) for them. 4389 * d) conversion from fhandle to dentry may come in the wrong moment - when 4390 * we are removing the target. Solution: we will have to grab ->i_mutex 4391 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4392 * ->i_mutex on parents, which works but leads to some truly excessive 4393 * locking]. 4394 */ 4395 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4396 struct inode *new_dir, struct dentry *new_dentry, 4397 struct inode **delegated_inode, unsigned int flags) 4398 { 4399 int error; 4400 bool is_dir = d_is_dir(old_dentry); 4401 struct inode *source = old_dentry->d_inode; 4402 struct inode *target = new_dentry->d_inode; 4403 bool new_is_dir = false; 4404 unsigned max_links = new_dir->i_sb->s_max_links; 4405 struct name_snapshot old_name; 4406 4407 if (source == target) 4408 return 0; 4409 4410 error = may_delete(old_dir, old_dentry, is_dir); 4411 if (error) 4412 return error; 4413 4414 if (!target) { 4415 error = may_create(new_dir, new_dentry); 4416 } else { 4417 new_is_dir = d_is_dir(new_dentry); 4418 4419 if (!(flags & RENAME_EXCHANGE)) 4420 error = may_delete(new_dir, new_dentry, is_dir); 4421 else 4422 error = may_delete(new_dir, new_dentry, new_is_dir); 4423 } 4424 if (error) 4425 return error; 4426 4427 if (!old_dir->i_op->rename) 4428 return -EPERM; 4429 4430 /* 4431 * If we are going to change the parent - check write permissions, 4432 * we'll need to flip '..'. 4433 */ 4434 if (new_dir != old_dir) { 4435 if (is_dir) { 4436 error = inode_permission(source, MAY_WRITE); 4437 if (error) 4438 return error; 4439 } 4440 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4441 error = inode_permission(target, MAY_WRITE); 4442 if (error) 4443 return error; 4444 } 4445 } 4446 4447 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4448 flags); 4449 if (error) 4450 return error; 4451 4452 take_dentry_name_snapshot(&old_name, old_dentry); 4453 dget(new_dentry); 4454 if (!is_dir || (flags & RENAME_EXCHANGE)) 4455 lock_two_nondirectories(source, target); 4456 else if (target) 4457 inode_lock(target); 4458 4459 error = -EBUSY; 4460 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4461 goto out; 4462 4463 if (max_links && new_dir != old_dir) { 4464 error = -EMLINK; 4465 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4466 goto out; 4467 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4468 old_dir->i_nlink >= max_links) 4469 goto out; 4470 } 4471 if (!is_dir) { 4472 error = try_break_deleg(source, delegated_inode); 4473 if (error) 4474 goto out; 4475 } 4476 if (target && !new_is_dir) { 4477 error = try_break_deleg(target, delegated_inode); 4478 if (error) 4479 goto out; 4480 } 4481 error = old_dir->i_op->rename(old_dir, old_dentry, 4482 new_dir, new_dentry, flags); 4483 if (error) 4484 goto out; 4485 4486 if (!(flags & RENAME_EXCHANGE) && target) { 4487 if (is_dir) { 4488 shrink_dcache_parent(new_dentry); 4489 target->i_flags |= S_DEAD; 4490 } 4491 dont_mount(new_dentry); 4492 detach_mounts(new_dentry); 4493 } 4494 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4495 if (!(flags & RENAME_EXCHANGE)) 4496 d_move(old_dentry, new_dentry); 4497 else 4498 d_exchange(old_dentry, new_dentry); 4499 } 4500 out: 4501 if (!is_dir || (flags & RENAME_EXCHANGE)) 4502 unlock_two_nondirectories(source, target); 4503 else if (target) 4504 inode_unlock(target); 4505 dput(new_dentry); 4506 if (!error) { 4507 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4508 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4509 if (flags & RENAME_EXCHANGE) { 4510 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4511 new_is_dir, NULL, new_dentry); 4512 } 4513 } 4514 release_dentry_name_snapshot(&old_name); 4515 4516 return error; 4517 } 4518 EXPORT_SYMBOL(vfs_rename); 4519 4520 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4521 const char __user *newname, unsigned int flags) 4522 { 4523 struct dentry *old_dentry, *new_dentry; 4524 struct dentry *trap; 4525 struct path old_path, new_path; 4526 struct qstr old_last, new_last; 4527 int old_type, new_type; 4528 struct inode *delegated_inode = NULL; 4529 struct filename *from; 4530 struct filename *to; 4531 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4532 bool should_retry = false; 4533 int error; 4534 4535 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4536 return -EINVAL; 4537 4538 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4539 (flags & RENAME_EXCHANGE)) 4540 return -EINVAL; 4541 4542 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4543 return -EPERM; 4544 4545 if (flags & RENAME_EXCHANGE) 4546 target_flags = 0; 4547 4548 retry: 4549 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4550 &old_path, &old_last, &old_type); 4551 if (IS_ERR(from)) { 4552 error = PTR_ERR(from); 4553 goto exit; 4554 } 4555 4556 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4557 &new_path, &new_last, &new_type); 4558 if (IS_ERR(to)) { 4559 error = PTR_ERR(to); 4560 goto exit1; 4561 } 4562 4563 error = -EXDEV; 4564 if (old_path.mnt != new_path.mnt) 4565 goto exit2; 4566 4567 error = -EBUSY; 4568 if (old_type != LAST_NORM) 4569 goto exit2; 4570 4571 if (flags & RENAME_NOREPLACE) 4572 error = -EEXIST; 4573 if (new_type != LAST_NORM) 4574 goto exit2; 4575 4576 error = mnt_want_write(old_path.mnt); 4577 if (error) 4578 goto exit2; 4579 4580 retry_deleg: 4581 trap = lock_rename(new_path.dentry, old_path.dentry); 4582 4583 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4584 error = PTR_ERR(old_dentry); 4585 if (IS_ERR(old_dentry)) 4586 goto exit3; 4587 /* source must exist */ 4588 error = -ENOENT; 4589 if (d_is_negative(old_dentry)) 4590 goto exit4; 4591 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4592 error = PTR_ERR(new_dentry); 4593 if (IS_ERR(new_dentry)) 4594 goto exit4; 4595 error = -EEXIST; 4596 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4597 goto exit5; 4598 if (flags & RENAME_EXCHANGE) { 4599 error = -ENOENT; 4600 if (d_is_negative(new_dentry)) 4601 goto exit5; 4602 4603 if (!d_is_dir(new_dentry)) { 4604 error = -ENOTDIR; 4605 if (new_last.name[new_last.len]) 4606 goto exit5; 4607 } 4608 } 4609 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4610 if (!d_is_dir(old_dentry)) { 4611 error = -ENOTDIR; 4612 if (old_last.name[old_last.len]) 4613 goto exit5; 4614 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4615 goto exit5; 4616 } 4617 /* source should not be ancestor of target */ 4618 error = -EINVAL; 4619 if (old_dentry == trap) 4620 goto exit5; 4621 /* target should not be an ancestor of source */ 4622 if (!(flags & RENAME_EXCHANGE)) 4623 error = -ENOTEMPTY; 4624 if (new_dentry == trap) 4625 goto exit5; 4626 4627 error = security_path_rename(&old_path, old_dentry, 4628 &new_path, new_dentry, flags); 4629 if (error) 4630 goto exit5; 4631 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4632 new_path.dentry->d_inode, new_dentry, 4633 &delegated_inode, flags); 4634 exit5: 4635 dput(new_dentry); 4636 exit4: 4637 dput(old_dentry); 4638 exit3: 4639 unlock_rename(new_path.dentry, old_path.dentry); 4640 if (delegated_inode) { 4641 error = break_deleg_wait(&delegated_inode); 4642 if (!error) 4643 goto retry_deleg; 4644 } 4645 mnt_drop_write(old_path.mnt); 4646 exit2: 4647 if (retry_estale(error, lookup_flags)) 4648 should_retry = true; 4649 path_put(&new_path); 4650 putname(to); 4651 exit1: 4652 path_put(&old_path); 4653 putname(from); 4654 if (should_retry) { 4655 should_retry = false; 4656 lookup_flags |= LOOKUP_REVAL; 4657 goto retry; 4658 } 4659 exit: 4660 return error; 4661 } 4662 4663 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4664 int, newdfd, const char __user *, newname, unsigned int, flags) 4665 { 4666 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4667 } 4668 4669 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4670 int, newdfd, const char __user *, newname) 4671 { 4672 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4673 } 4674 4675 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4676 { 4677 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4678 } 4679 4680 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4681 { 4682 int error = may_create(dir, dentry); 4683 if (error) 4684 return error; 4685 4686 if (!dir->i_op->mknod) 4687 return -EPERM; 4688 4689 return dir->i_op->mknod(dir, dentry, 4690 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4691 } 4692 EXPORT_SYMBOL(vfs_whiteout); 4693 4694 int readlink_copy(char __user *buffer, int buflen, const char *link) 4695 { 4696 int len = PTR_ERR(link); 4697 if (IS_ERR(link)) 4698 goto out; 4699 4700 len = strlen(link); 4701 if (len > (unsigned) buflen) 4702 len = buflen; 4703 if (copy_to_user(buffer, link, len)) 4704 len = -EFAULT; 4705 out: 4706 return len; 4707 } 4708 4709 /** 4710 * vfs_readlink - copy symlink body into userspace buffer 4711 * @dentry: dentry on which to get symbolic link 4712 * @buffer: user memory pointer 4713 * @buflen: size of buffer 4714 * 4715 * Does not touch atime. That's up to the caller if necessary 4716 * 4717 * Does not call security hook. 4718 */ 4719 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4720 { 4721 struct inode *inode = d_inode(dentry); 4722 DEFINE_DELAYED_CALL(done); 4723 const char *link; 4724 int res; 4725 4726 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4727 if (unlikely(inode->i_op->readlink)) 4728 return inode->i_op->readlink(dentry, buffer, buflen); 4729 4730 if (!d_is_symlink(dentry)) 4731 return -EINVAL; 4732 4733 spin_lock(&inode->i_lock); 4734 inode->i_opflags |= IOP_DEFAULT_READLINK; 4735 spin_unlock(&inode->i_lock); 4736 } 4737 4738 link = READ_ONCE(inode->i_link); 4739 if (!link) { 4740 link = inode->i_op->get_link(dentry, inode, &done); 4741 if (IS_ERR(link)) 4742 return PTR_ERR(link); 4743 } 4744 res = readlink_copy(buffer, buflen, link); 4745 do_delayed_call(&done); 4746 return res; 4747 } 4748 EXPORT_SYMBOL(vfs_readlink); 4749 4750 /** 4751 * vfs_get_link - get symlink body 4752 * @dentry: dentry on which to get symbolic link 4753 * @done: caller needs to free returned data with this 4754 * 4755 * Calls security hook and i_op->get_link() on the supplied inode. 4756 * 4757 * It does not touch atime. That's up to the caller if necessary. 4758 * 4759 * Does not work on "special" symlinks like /proc/$$/fd/N 4760 */ 4761 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4762 { 4763 const char *res = ERR_PTR(-EINVAL); 4764 struct inode *inode = d_inode(dentry); 4765 4766 if (d_is_symlink(dentry)) { 4767 res = ERR_PTR(security_inode_readlink(dentry)); 4768 if (!res) 4769 res = inode->i_op->get_link(dentry, inode, done); 4770 } 4771 return res; 4772 } 4773 EXPORT_SYMBOL(vfs_get_link); 4774 4775 /* get the link contents into pagecache */ 4776 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4777 struct delayed_call *callback) 4778 { 4779 char *kaddr; 4780 struct page *page; 4781 struct address_space *mapping = inode->i_mapping; 4782 4783 if (!dentry) { 4784 page = find_get_page(mapping, 0); 4785 if (!page) 4786 return ERR_PTR(-ECHILD); 4787 if (!PageUptodate(page)) { 4788 put_page(page); 4789 return ERR_PTR(-ECHILD); 4790 } 4791 } else { 4792 page = read_mapping_page(mapping, 0, NULL); 4793 if (IS_ERR(page)) 4794 return (char*)page; 4795 } 4796 set_delayed_call(callback, page_put_link, page); 4797 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4798 kaddr = page_address(page); 4799 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4800 return kaddr; 4801 } 4802 4803 EXPORT_SYMBOL(page_get_link); 4804 4805 void page_put_link(void *arg) 4806 { 4807 put_page(arg); 4808 } 4809 EXPORT_SYMBOL(page_put_link); 4810 4811 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4812 { 4813 DEFINE_DELAYED_CALL(done); 4814 int res = readlink_copy(buffer, buflen, 4815 page_get_link(dentry, d_inode(dentry), 4816 &done)); 4817 do_delayed_call(&done); 4818 return res; 4819 } 4820 EXPORT_SYMBOL(page_readlink); 4821 4822 /* 4823 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4824 */ 4825 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4826 { 4827 struct address_space *mapping = inode->i_mapping; 4828 struct page *page; 4829 void *fsdata; 4830 int err; 4831 unsigned int flags = 0; 4832 if (nofs) 4833 flags |= AOP_FLAG_NOFS; 4834 4835 retry: 4836 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4837 flags, &page, &fsdata); 4838 if (err) 4839 goto fail; 4840 4841 memcpy(page_address(page), symname, len-1); 4842 4843 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4844 page, fsdata); 4845 if (err < 0) 4846 goto fail; 4847 if (err < len-1) 4848 goto retry; 4849 4850 mark_inode_dirty(inode); 4851 return 0; 4852 fail: 4853 return err; 4854 } 4855 EXPORT_SYMBOL(__page_symlink); 4856 4857 int page_symlink(struct inode *inode, const char *symname, int len) 4858 { 4859 return __page_symlink(inode, symname, len, 4860 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4861 } 4862 EXPORT_SYMBOL(page_symlink); 4863 4864 const struct inode_operations page_symlink_inode_operations = { 4865 .get_link = page_get_link, 4866 }; 4867 EXPORT_SYMBOL(page_symlink_inode_operations); 4868