xref: /openbmc/linux/fs/namei.c (revision 6cd70754)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 /**
263  * check_acl - perform ACL permission checking
264  * @mnt_userns:	user namespace of the mount the inode was found from
265  * @inode:	inode to check permissions on
266  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
267  *
268  * This function performs the ACL permission checking. Since this function
269  * retrieve POSIX acls it needs to know whether it is called from a blocking or
270  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
271  *
272  * If the inode has been found through an idmapped mount the user namespace of
273  * the vfsmount must be passed through @mnt_userns. This function will then take
274  * care to map the inode according to @mnt_userns before checking permissions.
275  * On non-idmapped mounts or if permission checking is to be performed on the
276  * raw inode simply passs init_user_ns.
277  */
278 static int check_acl(struct user_namespace *mnt_userns,
279 		     struct inode *inode, int mask)
280 {
281 #ifdef CONFIG_FS_POSIX_ACL
282 	struct posix_acl *acl;
283 
284 	if (mask & MAY_NOT_BLOCK) {
285 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
286 	        if (!acl)
287 	                return -EAGAIN;
288 		/* no ->get_acl() calls in RCU mode... */
289 		if (is_uncached_acl(acl))
290 			return -ECHILD;
291 	        return posix_acl_permission(mnt_userns, inode, acl, mask);
292 	}
293 
294 	acl = get_acl(inode, ACL_TYPE_ACCESS);
295 	if (IS_ERR(acl))
296 		return PTR_ERR(acl);
297 	if (acl) {
298 	        int error = posix_acl_permission(mnt_userns, inode, acl, mask);
299 	        posix_acl_release(acl);
300 	        return error;
301 	}
302 #endif
303 
304 	return -EAGAIN;
305 }
306 
307 /**
308  * acl_permission_check - perform basic UNIX permission checking
309  * @mnt_userns:	user namespace of the mount the inode was found from
310  * @inode:	inode to check permissions on
311  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
312  *
313  * This function performs the basic UNIX permission checking. Since this
314  * function may retrieve POSIX acls it needs to know whether it is called from a
315  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
316  *
317  * If the inode has been found through an idmapped mount the user namespace of
318  * the vfsmount must be passed through @mnt_userns. This function will then take
319  * care to map the inode according to @mnt_userns before checking permissions.
320  * On non-idmapped mounts or if permission checking is to be performed on the
321  * raw inode simply passs init_user_ns.
322  */
323 static int acl_permission_check(struct user_namespace *mnt_userns,
324 				struct inode *inode, int mask)
325 {
326 	unsigned int mode = inode->i_mode;
327 	kuid_t i_uid;
328 
329 	/* Are we the owner? If so, ACL's don't matter */
330 	i_uid = i_uid_into_mnt(mnt_userns, inode);
331 	if (likely(uid_eq(current_fsuid(), i_uid))) {
332 		mask &= 7;
333 		mode >>= 6;
334 		return (mask & ~mode) ? -EACCES : 0;
335 	}
336 
337 	/* Do we have ACL's? */
338 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
339 		int error = check_acl(mnt_userns, inode, mask);
340 		if (error != -EAGAIN)
341 			return error;
342 	}
343 
344 	/* Only RWX matters for group/other mode bits */
345 	mask &= 7;
346 
347 	/*
348 	 * Are the group permissions different from
349 	 * the other permissions in the bits we care
350 	 * about? Need to check group ownership if so.
351 	 */
352 	if (mask & (mode ^ (mode >> 3))) {
353 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
354 		if (in_group_p(kgid))
355 			mode >>= 3;
356 	}
357 
358 	/* Bits in 'mode' clear that we require? */
359 	return (mask & ~mode) ? -EACCES : 0;
360 }
361 
362 /**
363  * generic_permission -  check for access rights on a Posix-like filesystem
364  * @mnt_userns:	user namespace of the mount the inode was found from
365  * @inode:	inode to check access rights for
366  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
367  *		%MAY_NOT_BLOCK ...)
368  *
369  * Used to check for read/write/execute permissions on a file.
370  * We use "fsuid" for this, letting us set arbitrary permissions
371  * for filesystem access without changing the "normal" uids which
372  * are used for other things.
373  *
374  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
375  * request cannot be satisfied (eg. requires blocking or too much complexity).
376  * It would then be called again in ref-walk mode.
377  *
378  * If the inode has been found through an idmapped mount the user namespace of
379  * the vfsmount must be passed through @mnt_userns. This function will then take
380  * care to map the inode according to @mnt_userns before checking permissions.
381  * On non-idmapped mounts or if permission checking is to be performed on the
382  * raw inode simply passs init_user_ns.
383  */
384 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
385 		       int mask)
386 {
387 	int ret;
388 
389 	/*
390 	 * Do the basic permission checks.
391 	 */
392 	ret = acl_permission_check(mnt_userns, inode, mask);
393 	if (ret != -EACCES)
394 		return ret;
395 
396 	if (S_ISDIR(inode->i_mode)) {
397 		/* DACs are overridable for directories */
398 		if (!(mask & MAY_WRITE))
399 			if (capable_wrt_inode_uidgid(mnt_userns, inode,
400 						     CAP_DAC_READ_SEARCH))
401 				return 0;
402 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
403 					     CAP_DAC_OVERRIDE))
404 			return 0;
405 		return -EACCES;
406 	}
407 
408 	/*
409 	 * Searching includes executable on directories, else just read.
410 	 */
411 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
412 	if (mask == MAY_READ)
413 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
414 					     CAP_DAC_READ_SEARCH))
415 			return 0;
416 	/*
417 	 * Read/write DACs are always overridable.
418 	 * Executable DACs are overridable when there is
419 	 * at least one exec bit set.
420 	 */
421 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
422 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
423 					     CAP_DAC_OVERRIDE))
424 			return 0;
425 
426 	return -EACCES;
427 }
428 EXPORT_SYMBOL(generic_permission);
429 
430 /**
431  * do_inode_permission - UNIX permission checking
432  * @mnt_userns:	user namespace of the mount the inode was found from
433  * @inode:	inode to check permissions on
434  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
435  *
436  * We _really_ want to just do "generic_permission()" without
437  * even looking at the inode->i_op values. So we keep a cache
438  * flag in inode->i_opflags, that says "this has not special
439  * permission function, use the fast case".
440  */
441 static inline int do_inode_permission(struct user_namespace *mnt_userns,
442 				      struct inode *inode, int mask)
443 {
444 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
445 		if (likely(inode->i_op->permission))
446 			return inode->i_op->permission(mnt_userns, inode, mask);
447 
448 		/* This gets set once for the inode lifetime */
449 		spin_lock(&inode->i_lock);
450 		inode->i_opflags |= IOP_FASTPERM;
451 		spin_unlock(&inode->i_lock);
452 	}
453 	return generic_permission(mnt_userns, inode, mask);
454 }
455 
456 /**
457  * sb_permission - Check superblock-level permissions
458  * @sb: Superblock of inode to check permission on
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Separate out file-system wide checks from inode-specific permission checks.
463  */
464 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
465 {
466 	if (unlikely(mask & MAY_WRITE)) {
467 		umode_t mode = inode->i_mode;
468 
469 		/* Nobody gets write access to a read-only fs. */
470 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
471 			return -EROFS;
472 	}
473 	return 0;
474 }
475 
476 /**
477  * inode_permission - Check for access rights to a given inode
478  * @mnt_userns:	User namespace of the mount the inode was found from
479  * @inode:	Inode to check permission on
480  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
481  *
482  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
483  * this, letting us set arbitrary permissions for filesystem access without
484  * changing the "normal" UIDs which are used for other things.
485  *
486  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
487  */
488 int inode_permission(struct user_namespace *mnt_userns,
489 		     struct inode *inode, int mask)
490 {
491 	int retval;
492 
493 	retval = sb_permission(inode->i_sb, inode, mask);
494 	if (retval)
495 		return retval;
496 
497 	if (unlikely(mask & MAY_WRITE)) {
498 		/*
499 		 * Nobody gets write access to an immutable file.
500 		 */
501 		if (IS_IMMUTABLE(inode))
502 			return -EPERM;
503 
504 		/*
505 		 * Updating mtime will likely cause i_uid and i_gid to be
506 		 * written back improperly if their true value is unknown
507 		 * to the vfs.
508 		 */
509 		if (HAS_UNMAPPED_ID(mnt_userns, inode))
510 			return -EACCES;
511 	}
512 
513 	retval = do_inode_permission(mnt_userns, inode, mask);
514 	if (retval)
515 		return retval;
516 
517 	retval = devcgroup_inode_permission(inode, mask);
518 	if (retval)
519 		return retval;
520 
521 	return security_inode_permission(inode, mask);
522 }
523 EXPORT_SYMBOL(inode_permission);
524 
525 /**
526  * path_get - get a reference to a path
527  * @path: path to get the reference to
528  *
529  * Given a path increment the reference count to the dentry and the vfsmount.
530  */
531 void path_get(const struct path *path)
532 {
533 	mntget(path->mnt);
534 	dget(path->dentry);
535 }
536 EXPORT_SYMBOL(path_get);
537 
538 /**
539  * path_put - put a reference to a path
540  * @path: path to put the reference to
541  *
542  * Given a path decrement the reference count to the dentry and the vfsmount.
543  */
544 void path_put(const struct path *path)
545 {
546 	dput(path->dentry);
547 	mntput(path->mnt);
548 }
549 EXPORT_SYMBOL(path_put);
550 
551 #define EMBEDDED_LEVELS 2
552 struct nameidata {
553 	struct path	path;
554 	struct qstr	last;
555 	struct path	root;
556 	struct inode	*inode; /* path.dentry.d_inode */
557 	unsigned int	flags;
558 	unsigned	seq, m_seq, r_seq;
559 	int		last_type;
560 	unsigned	depth;
561 	int		total_link_count;
562 	struct saved {
563 		struct path link;
564 		struct delayed_call done;
565 		const char *name;
566 		unsigned seq;
567 	} *stack, internal[EMBEDDED_LEVELS];
568 	struct filename	*name;
569 	struct nameidata *saved;
570 	unsigned	root_seq;
571 	int		dfd;
572 	kuid_t		dir_uid;
573 	umode_t		dir_mode;
574 } __randomize_layout;
575 
576 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
577 {
578 	struct nameidata *old = current->nameidata;
579 	p->stack = p->internal;
580 	p->dfd = dfd;
581 	p->name = name;
582 	p->path.mnt = NULL;
583 	p->path.dentry = NULL;
584 	p->total_link_count = old ? old->total_link_count : 0;
585 	p->saved = old;
586 	current->nameidata = p;
587 }
588 
589 static void restore_nameidata(void)
590 {
591 	struct nameidata *now = current->nameidata, *old = now->saved;
592 
593 	current->nameidata = old;
594 	if (old)
595 		old->total_link_count = now->total_link_count;
596 	if (now->stack != now->internal)
597 		kfree(now->stack);
598 }
599 
600 static bool nd_alloc_stack(struct nameidata *nd)
601 {
602 	struct saved *p;
603 
604 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
605 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
606 	if (unlikely(!p))
607 		return false;
608 	memcpy(p, nd->internal, sizeof(nd->internal));
609 	nd->stack = p;
610 	return true;
611 }
612 
613 /**
614  * path_connected - Verify that a dentry is below mnt.mnt_root
615  *
616  * Rename can sometimes move a file or directory outside of a bind
617  * mount, path_connected allows those cases to be detected.
618  */
619 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
620 {
621 	struct super_block *sb = mnt->mnt_sb;
622 
623 	/* Bind mounts can have disconnected paths */
624 	if (mnt->mnt_root == sb->s_root)
625 		return true;
626 
627 	return is_subdir(dentry, mnt->mnt_root);
628 }
629 
630 static void drop_links(struct nameidata *nd)
631 {
632 	int i = nd->depth;
633 	while (i--) {
634 		struct saved *last = nd->stack + i;
635 		do_delayed_call(&last->done);
636 		clear_delayed_call(&last->done);
637 	}
638 }
639 
640 static void terminate_walk(struct nameidata *nd)
641 {
642 	drop_links(nd);
643 	if (!(nd->flags & LOOKUP_RCU)) {
644 		int i;
645 		path_put(&nd->path);
646 		for (i = 0; i < nd->depth; i++)
647 			path_put(&nd->stack[i].link);
648 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
649 			path_put(&nd->root);
650 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
651 		}
652 	} else {
653 		nd->flags &= ~LOOKUP_RCU;
654 		rcu_read_unlock();
655 	}
656 	nd->depth = 0;
657 	nd->path.mnt = NULL;
658 	nd->path.dentry = NULL;
659 }
660 
661 /* path_put is needed afterwards regardless of success or failure */
662 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
663 {
664 	int res = __legitimize_mnt(path->mnt, mseq);
665 	if (unlikely(res)) {
666 		if (res > 0)
667 			path->mnt = NULL;
668 		path->dentry = NULL;
669 		return false;
670 	}
671 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
672 		path->dentry = NULL;
673 		return false;
674 	}
675 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
676 }
677 
678 static inline bool legitimize_path(struct nameidata *nd,
679 			    struct path *path, unsigned seq)
680 {
681 	return __legitimize_path(path, seq, nd->m_seq);
682 }
683 
684 static bool legitimize_links(struct nameidata *nd)
685 {
686 	int i;
687 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
688 		drop_links(nd);
689 		nd->depth = 0;
690 		return false;
691 	}
692 	for (i = 0; i < nd->depth; i++) {
693 		struct saved *last = nd->stack + i;
694 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
695 			drop_links(nd);
696 			nd->depth = i + 1;
697 			return false;
698 		}
699 	}
700 	return true;
701 }
702 
703 static bool legitimize_root(struct nameidata *nd)
704 {
705 	/*
706 	 * For scoped-lookups (where nd->root has been zeroed), we need to
707 	 * restart the whole lookup from scratch -- because set_root() is wrong
708 	 * for these lookups (nd->dfd is the root, not the filesystem root).
709 	 */
710 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
711 		return false;
712 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
713 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
714 		return true;
715 	nd->flags |= LOOKUP_ROOT_GRABBED;
716 	return legitimize_path(nd, &nd->root, nd->root_seq);
717 }
718 
719 /*
720  * Path walking has 2 modes, rcu-walk and ref-walk (see
721  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
722  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
723  * normal reference counts on dentries and vfsmounts to transition to ref-walk
724  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
725  * got stuck, so ref-walk may continue from there. If this is not successful
726  * (eg. a seqcount has changed), then failure is returned and it's up to caller
727  * to restart the path walk from the beginning in ref-walk mode.
728  */
729 
730 /**
731  * try_to_unlazy - try to switch to ref-walk mode.
732  * @nd: nameidata pathwalk data
733  * Returns: true on success, false on failure
734  *
735  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
736  * for ref-walk mode.
737  * Must be called from rcu-walk context.
738  * Nothing should touch nameidata between try_to_unlazy() failure and
739  * terminate_walk().
740  */
741 static bool try_to_unlazy(struct nameidata *nd)
742 {
743 	struct dentry *parent = nd->path.dentry;
744 
745 	BUG_ON(!(nd->flags & LOOKUP_RCU));
746 
747 	nd->flags &= ~LOOKUP_RCU;
748 	if (unlikely(!legitimize_links(nd)))
749 		goto out1;
750 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
751 		goto out;
752 	if (unlikely(!legitimize_root(nd)))
753 		goto out;
754 	rcu_read_unlock();
755 	BUG_ON(nd->inode != parent->d_inode);
756 	return true;
757 
758 out1:
759 	nd->path.mnt = NULL;
760 	nd->path.dentry = NULL;
761 out:
762 	rcu_read_unlock();
763 	return false;
764 }
765 
766 /**
767  * try_to_unlazy_next - try to switch to ref-walk mode.
768  * @nd: nameidata pathwalk data
769  * @dentry: next dentry to step into
770  * @seq: seq number to check @dentry against
771  * Returns: true on success, false on failure
772  *
773  * Similar to to try_to_unlazy(), but here we have the next dentry already
774  * picked by rcu-walk and want to legitimize that in addition to the current
775  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
776  * Nothing should touch nameidata between try_to_unlazy_next() failure and
777  * terminate_walk().
778  */
779 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
780 {
781 	BUG_ON(!(nd->flags & LOOKUP_RCU));
782 
783 	nd->flags &= ~LOOKUP_RCU;
784 	if (unlikely(!legitimize_links(nd)))
785 		goto out2;
786 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
787 		goto out2;
788 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
789 		goto out1;
790 
791 	/*
792 	 * We need to move both the parent and the dentry from the RCU domain
793 	 * to be properly refcounted. And the sequence number in the dentry
794 	 * validates *both* dentry counters, since we checked the sequence
795 	 * number of the parent after we got the child sequence number. So we
796 	 * know the parent must still be valid if the child sequence number is
797 	 */
798 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
799 		goto out;
800 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
801 		goto out_dput;
802 	/*
803 	 * Sequence counts matched. Now make sure that the root is
804 	 * still valid and get it if required.
805 	 */
806 	if (unlikely(!legitimize_root(nd)))
807 		goto out_dput;
808 	rcu_read_unlock();
809 	return true;
810 
811 out2:
812 	nd->path.mnt = NULL;
813 out1:
814 	nd->path.dentry = NULL;
815 out:
816 	rcu_read_unlock();
817 	return false;
818 out_dput:
819 	rcu_read_unlock();
820 	dput(dentry);
821 	return false;
822 }
823 
824 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
825 {
826 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
827 		return dentry->d_op->d_revalidate(dentry, flags);
828 	else
829 		return 1;
830 }
831 
832 /**
833  * complete_walk - successful completion of path walk
834  * @nd:  pointer nameidata
835  *
836  * If we had been in RCU mode, drop out of it and legitimize nd->path.
837  * Revalidate the final result, unless we'd already done that during
838  * the path walk or the filesystem doesn't ask for it.  Return 0 on
839  * success, -error on failure.  In case of failure caller does not
840  * need to drop nd->path.
841  */
842 static int complete_walk(struct nameidata *nd)
843 {
844 	struct dentry *dentry = nd->path.dentry;
845 	int status;
846 
847 	if (nd->flags & LOOKUP_RCU) {
848 		/*
849 		 * We don't want to zero nd->root for scoped-lookups or
850 		 * externally-managed nd->root.
851 		 */
852 		if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
853 			nd->root.mnt = NULL;
854 		nd->flags &= ~LOOKUP_CACHED;
855 		if (!try_to_unlazy(nd))
856 			return -ECHILD;
857 	}
858 
859 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
860 		/*
861 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
862 		 * ever step outside the root during lookup" and should already
863 		 * be guaranteed by the rest of namei, we want to avoid a namei
864 		 * BUG resulting in userspace being given a path that was not
865 		 * scoped within the root at some point during the lookup.
866 		 *
867 		 * So, do a final sanity-check to make sure that in the
868 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
869 		 * we won't silently return an fd completely outside of the
870 		 * requested root to userspace.
871 		 *
872 		 * Userspace could move the path outside the root after this
873 		 * check, but as discussed elsewhere this is not a concern (the
874 		 * resolved file was inside the root at some point).
875 		 */
876 		if (!path_is_under(&nd->path, &nd->root))
877 			return -EXDEV;
878 	}
879 
880 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
881 		return 0;
882 
883 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
884 		return 0;
885 
886 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
887 	if (status > 0)
888 		return 0;
889 
890 	if (!status)
891 		status = -ESTALE;
892 
893 	return status;
894 }
895 
896 static int set_root(struct nameidata *nd)
897 {
898 	struct fs_struct *fs = current->fs;
899 
900 	/*
901 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
902 	 * still have to ensure it doesn't happen because it will cause a breakout
903 	 * from the dirfd.
904 	 */
905 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
906 		return -ENOTRECOVERABLE;
907 
908 	if (nd->flags & LOOKUP_RCU) {
909 		unsigned seq;
910 
911 		do {
912 			seq = read_seqcount_begin(&fs->seq);
913 			nd->root = fs->root;
914 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
915 		} while (read_seqcount_retry(&fs->seq, seq));
916 	} else {
917 		get_fs_root(fs, &nd->root);
918 		nd->flags |= LOOKUP_ROOT_GRABBED;
919 	}
920 	return 0;
921 }
922 
923 static int nd_jump_root(struct nameidata *nd)
924 {
925 	if (unlikely(nd->flags & LOOKUP_BENEATH))
926 		return -EXDEV;
927 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
928 		/* Absolute path arguments to path_init() are allowed. */
929 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
930 			return -EXDEV;
931 	}
932 	if (!nd->root.mnt) {
933 		int error = set_root(nd);
934 		if (error)
935 			return error;
936 	}
937 	if (nd->flags & LOOKUP_RCU) {
938 		struct dentry *d;
939 		nd->path = nd->root;
940 		d = nd->path.dentry;
941 		nd->inode = d->d_inode;
942 		nd->seq = nd->root_seq;
943 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
944 			return -ECHILD;
945 	} else {
946 		path_put(&nd->path);
947 		nd->path = nd->root;
948 		path_get(&nd->path);
949 		nd->inode = nd->path.dentry->d_inode;
950 	}
951 	nd->flags |= LOOKUP_JUMPED;
952 	return 0;
953 }
954 
955 /*
956  * Helper to directly jump to a known parsed path from ->get_link,
957  * caller must have taken a reference to path beforehand.
958  */
959 int nd_jump_link(struct path *path)
960 {
961 	int error = -ELOOP;
962 	struct nameidata *nd = current->nameidata;
963 
964 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
965 		goto err;
966 
967 	error = -EXDEV;
968 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
969 		if (nd->path.mnt != path->mnt)
970 			goto err;
971 	}
972 	/* Not currently safe for scoped-lookups. */
973 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
974 		goto err;
975 
976 	path_put(&nd->path);
977 	nd->path = *path;
978 	nd->inode = nd->path.dentry->d_inode;
979 	nd->flags |= LOOKUP_JUMPED;
980 	return 0;
981 
982 err:
983 	path_put(path);
984 	return error;
985 }
986 
987 static inline void put_link(struct nameidata *nd)
988 {
989 	struct saved *last = nd->stack + --nd->depth;
990 	do_delayed_call(&last->done);
991 	if (!(nd->flags & LOOKUP_RCU))
992 		path_put(&last->link);
993 }
994 
995 int sysctl_protected_symlinks __read_mostly = 0;
996 int sysctl_protected_hardlinks __read_mostly = 0;
997 int sysctl_protected_fifos __read_mostly;
998 int sysctl_protected_regular __read_mostly;
999 
1000 /**
1001  * may_follow_link - Check symlink following for unsafe situations
1002  * @nd: nameidata pathwalk data
1003  *
1004  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1005  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1006  * in a sticky world-writable directory. This is to protect privileged
1007  * processes from failing races against path names that may change out
1008  * from under them by way of other users creating malicious symlinks.
1009  * It will permit symlinks to be followed only when outside a sticky
1010  * world-writable directory, or when the uid of the symlink and follower
1011  * match, or when the directory owner matches the symlink's owner.
1012  *
1013  * Returns 0 if following the symlink is allowed, -ve on error.
1014  */
1015 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1016 {
1017 	struct user_namespace *mnt_userns;
1018 	kuid_t i_uid;
1019 
1020 	if (!sysctl_protected_symlinks)
1021 		return 0;
1022 
1023 	mnt_userns = mnt_user_ns(nd->path.mnt);
1024 	i_uid = i_uid_into_mnt(mnt_userns, inode);
1025 	/* Allowed if owner and follower match. */
1026 	if (uid_eq(current_cred()->fsuid, i_uid))
1027 		return 0;
1028 
1029 	/* Allowed if parent directory not sticky and world-writable. */
1030 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1031 		return 0;
1032 
1033 	/* Allowed if parent directory and link owner match. */
1034 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1035 		return 0;
1036 
1037 	if (nd->flags & LOOKUP_RCU)
1038 		return -ECHILD;
1039 
1040 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1041 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1042 	return -EACCES;
1043 }
1044 
1045 /**
1046  * safe_hardlink_source - Check for safe hardlink conditions
1047  * @mnt_userns:	user namespace of the mount the inode was found from
1048  * @inode: the source inode to hardlink from
1049  *
1050  * Return false if at least one of the following conditions:
1051  *    - inode is not a regular file
1052  *    - inode is setuid
1053  *    - inode is setgid and group-exec
1054  *    - access failure for read and write
1055  *
1056  * Otherwise returns true.
1057  */
1058 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1059 				 struct inode *inode)
1060 {
1061 	umode_t mode = inode->i_mode;
1062 
1063 	/* Special files should not get pinned to the filesystem. */
1064 	if (!S_ISREG(mode))
1065 		return false;
1066 
1067 	/* Setuid files should not get pinned to the filesystem. */
1068 	if (mode & S_ISUID)
1069 		return false;
1070 
1071 	/* Executable setgid files should not get pinned to the filesystem. */
1072 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1073 		return false;
1074 
1075 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1076 	if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1077 		return false;
1078 
1079 	return true;
1080 }
1081 
1082 /**
1083  * may_linkat - Check permissions for creating a hardlink
1084  * @mnt_userns:	user namespace of the mount the inode was found from
1085  * @link: the source to hardlink from
1086  *
1087  * Block hardlink when all of:
1088  *  - sysctl_protected_hardlinks enabled
1089  *  - fsuid does not match inode
1090  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1091  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1092  *
1093  * If the inode has been found through an idmapped mount the user namespace of
1094  * the vfsmount must be passed through @mnt_userns. This function will then take
1095  * care to map the inode according to @mnt_userns before checking permissions.
1096  * On non-idmapped mounts or if permission checking is to be performed on the
1097  * raw inode simply passs init_user_ns.
1098  *
1099  * Returns 0 if successful, -ve on error.
1100  */
1101 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1102 {
1103 	struct inode *inode = link->dentry->d_inode;
1104 
1105 	/* Inode writeback is not safe when the uid or gid are invalid. */
1106 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1107 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1108 		return -EOVERFLOW;
1109 
1110 	if (!sysctl_protected_hardlinks)
1111 		return 0;
1112 
1113 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1114 	 * otherwise, it must be a safe source.
1115 	 */
1116 	if (safe_hardlink_source(mnt_userns, inode) ||
1117 	    inode_owner_or_capable(mnt_userns, inode))
1118 		return 0;
1119 
1120 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1121 	return -EPERM;
1122 }
1123 
1124 /**
1125  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1126  *			  should be allowed, or not, on files that already
1127  *			  exist.
1128  * @mnt_userns:	user namespace of the mount the inode was found from
1129  * @dir_mode: mode bits of directory
1130  * @dir_uid: owner of directory
1131  * @inode: the inode of the file to open
1132  *
1133  * Block an O_CREAT open of a FIFO (or a regular file) when:
1134  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1135  *   - the file already exists
1136  *   - we are in a sticky directory
1137  *   - we don't own the file
1138  *   - the owner of the directory doesn't own the file
1139  *   - the directory is world writable
1140  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1141  * the directory doesn't have to be world writable: being group writable will
1142  * be enough.
1143  *
1144  * If the inode has been found through an idmapped mount the user namespace of
1145  * the vfsmount must be passed through @mnt_userns. This function will then take
1146  * care to map the inode according to @mnt_userns before checking permissions.
1147  * On non-idmapped mounts or if permission checking is to be performed on the
1148  * raw inode simply passs init_user_ns.
1149  *
1150  * Returns 0 if the open is allowed, -ve on error.
1151  */
1152 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1153 				struct nameidata *nd, struct inode *const inode)
1154 {
1155 	umode_t dir_mode = nd->dir_mode;
1156 	kuid_t dir_uid = nd->dir_uid;
1157 
1158 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1159 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1160 	    likely(!(dir_mode & S_ISVTX)) ||
1161 	    uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1162 	    uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1163 		return 0;
1164 
1165 	if (likely(dir_mode & 0002) ||
1166 	    (dir_mode & 0020 &&
1167 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1168 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1169 		const char *operation = S_ISFIFO(inode->i_mode) ?
1170 					"sticky_create_fifo" :
1171 					"sticky_create_regular";
1172 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1173 		return -EACCES;
1174 	}
1175 	return 0;
1176 }
1177 
1178 /*
1179  * follow_up - Find the mountpoint of path's vfsmount
1180  *
1181  * Given a path, find the mountpoint of its source file system.
1182  * Replace @path with the path of the mountpoint in the parent mount.
1183  * Up is towards /.
1184  *
1185  * Return 1 if we went up a level and 0 if we were already at the
1186  * root.
1187  */
1188 int follow_up(struct path *path)
1189 {
1190 	struct mount *mnt = real_mount(path->mnt);
1191 	struct mount *parent;
1192 	struct dentry *mountpoint;
1193 
1194 	read_seqlock_excl(&mount_lock);
1195 	parent = mnt->mnt_parent;
1196 	if (parent == mnt) {
1197 		read_sequnlock_excl(&mount_lock);
1198 		return 0;
1199 	}
1200 	mntget(&parent->mnt);
1201 	mountpoint = dget(mnt->mnt_mountpoint);
1202 	read_sequnlock_excl(&mount_lock);
1203 	dput(path->dentry);
1204 	path->dentry = mountpoint;
1205 	mntput(path->mnt);
1206 	path->mnt = &parent->mnt;
1207 	return 1;
1208 }
1209 EXPORT_SYMBOL(follow_up);
1210 
1211 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1212 				  struct path *path, unsigned *seqp)
1213 {
1214 	while (mnt_has_parent(m)) {
1215 		struct dentry *mountpoint = m->mnt_mountpoint;
1216 
1217 		m = m->mnt_parent;
1218 		if (unlikely(root->dentry == mountpoint &&
1219 			     root->mnt == &m->mnt))
1220 			break;
1221 		if (mountpoint != m->mnt.mnt_root) {
1222 			path->mnt = &m->mnt;
1223 			path->dentry = mountpoint;
1224 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1225 			return true;
1226 		}
1227 	}
1228 	return false;
1229 }
1230 
1231 static bool choose_mountpoint(struct mount *m, const struct path *root,
1232 			      struct path *path)
1233 {
1234 	bool found;
1235 
1236 	rcu_read_lock();
1237 	while (1) {
1238 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1239 
1240 		found = choose_mountpoint_rcu(m, root, path, &seq);
1241 		if (unlikely(!found)) {
1242 			if (!read_seqretry(&mount_lock, mseq))
1243 				break;
1244 		} else {
1245 			if (likely(__legitimize_path(path, seq, mseq)))
1246 				break;
1247 			rcu_read_unlock();
1248 			path_put(path);
1249 			rcu_read_lock();
1250 		}
1251 	}
1252 	rcu_read_unlock();
1253 	return found;
1254 }
1255 
1256 /*
1257  * Perform an automount
1258  * - return -EISDIR to tell follow_managed() to stop and return the path we
1259  *   were called with.
1260  */
1261 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1262 {
1263 	struct dentry *dentry = path->dentry;
1264 
1265 	/* We don't want to mount if someone's just doing a stat -
1266 	 * unless they're stat'ing a directory and appended a '/' to
1267 	 * the name.
1268 	 *
1269 	 * We do, however, want to mount if someone wants to open or
1270 	 * create a file of any type under the mountpoint, wants to
1271 	 * traverse through the mountpoint or wants to open the
1272 	 * mounted directory.  Also, autofs may mark negative dentries
1273 	 * as being automount points.  These will need the attentions
1274 	 * of the daemon to instantiate them before they can be used.
1275 	 */
1276 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1277 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1278 	    dentry->d_inode)
1279 		return -EISDIR;
1280 
1281 	if (count && (*count)++ >= MAXSYMLINKS)
1282 		return -ELOOP;
1283 
1284 	return finish_automount(dentry->d_op->d_automount(path), path);
1285 }
1286 
1287 /*
1288  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1289  * dentries are pinned but not locked here, so negative dentry can go
1290  * positive right under us.  Use of smp_load_acquire() provides a barrier
1291  * sufficient for ->d_inode and ->d_flags consistency.
1292  */
1293 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1294 			     int *count, unsigned lookup_flags)
1295 {
1296 	struct vfsmount *mnt = path->mnt;
1297 	bool need_mntput = false;
1298 	int ret = 0;
1299 
1300 	while (flags & DCACHE_MANAGED_DENTRY) {
1301 		/* Allow the filesystem to manage the transit without i_mutex
1302 		 * being held. */
1303 		if (flags & DCACHE_MANAGE_TRANSIT) {
1304 			ret = path->dentry->d_op->d_manage(path, false);
1305 			flags = smp_load_acquire(&path->dentry->d_flags);
1306 			if (ret < 0)
1307 				break;
1308 		}
1309 
1310 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1311 			struct vfsmount *mounted = lookup_mnt(path);
1312 			if (mounted) {		// ... in our namespace
1313 				dput(path->dentry);
1314 				if (need_mntput)
1315 					mntput(path->mnt);
1316 				path->mnt = mounted;
1317 				path->dentry = dget(mounted->mnt_root);
1318 				// here we know it's positive
1319 				flags = path->dentry->d_flags;
1320 				need_mntput = true;
1321 				continue;
1322 			}
1323 		}
1324 
1325 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1326 			break;
1327 
1328 		// uncovered automount point
1329 		ret = follow_automount(path, count, lookup_flags);
1330 		flags = smp_load_acquire(&path->dentry->d_flags);
1331 		if (ret < 0)
1332 			break;
1333 	}
1334 
1335 	if (ret == -EISDIR)
1336 		ret = 0;
1337 	// possible if you race with several mount --move
1338 	if (need_mntput && path->mnt == mnt)
1339 		mntput(path->mnt);
1340 	if (!ret && unlikely(d_flags_negative(flags)))
1341 		ret = -ENOENT;
1342 	*jumped = need_mntput;
1343 	return ret;
1344 }
1345 
1346 static inline int traverse_mounts(struct path *path, bool *jumped,
1347 				  int *count, unsigned lookup_flags)
1348 {
1349 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1350 
1351 	/* fastpath */
1352 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1353 		*jumped = false;
1354 		if (unlikely(d_flags_negative(flags)))
1355 			return -ENOENT;
1356 		return 0;
1357 	}
1358 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1359 }
1360 
1361 int follow_down_one(struct path *path)
1362 {
1363 	struct vfsmount *mounted;
1364 
1365 	mounted = lookup_mnt(path);
1366 	if (mounted) {
1367 		dput(path->dentry);
1368 		mntput(path->mnt);
1369 		path->mnt = mounted;
1370 		path->dentry = dget(mounted->mnt_root);
1371 		return 1;
1372 	}
1373 	return 0;
1374 }
1375 EXPORT_SYMBOL(follow_down_one);
1376 
1377 /*
1378  * Follow down to the covering mount currently visible to userspace.  At each
1379  * point, the filesystem owning that dentry may be queried as to whether the
1380  * caller is permitted to proceed or not.
1381  */
1382 int follow_down(struct path *path)
1383 {
1384 	struct vfsmount *mnt = path->mnt;
1385 	bool jumped;
1386 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1387 
1388 	if (path->mnt != mnt)
1389 		mntput(mnt);
1390 	return ret;
1391 }
1392 EXPORT_SYMBOL(follow_down);
1393 
1394 /*
1395  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1396  * we meet a managed dentry that would need blocking.
1397  */
1398 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1399 			       struct inode **inode, unsigned *seqp)
1400 {
1401 	struct dentry *dentry = path->dentry;
1402 	unsigned int flags = dentry->d_flags;
1403 
1404 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1405 		return true;
1406 
1407 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1408 		return false;
1409 
1410 	for (;;) {
1411 		/*
1412 		 * Don't forget we might have a non-mountpoint managed dentry
1413 		 * that wants to block transit.
1414 		 */
1415 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1416 			int res = dentry->d_op->d_manage(path, true);
1417 			if (res)
1418 				return res == -EISDIR;
1419 			flags = dentry->d_flags;
1420 		}
1421 
1422 		if (flags & DCACHE_MOUNTED) {
1423 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1424 			if (mounted) {
1425 				path->mnt = &mounted->mnt;
1426 				dentry = path->dentry = mounted->mnt.mnt_root;
1427 				nd->flags |= LOOKUP_JUMPED;
1428 				*seqp = read_seqcount_begin(&dentry->d_seq);
1429 				*inode = dentry->d_inode;
1430 				/*
1431 				 * We don't need to re-check ->d_seq after this
1432 				 * ->d_inode read - there will be an RCU delay
1433 				 * between mount hash removal and ->mnt_root
1434 				 * becoming unpinned.
1435 				 */
1436 				flags = dentry->d_flags;
1437 				continue;
1438 			}
1439 			if (read_seqretry(&mount_lock, nd->m_seq))
1440 				return false;
1441 		}
1442 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1443 	}
1444 }
1445 
1446 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1447 			  struct path *path, struct inode **inode,
1448 			  unsigned int *seqp)
1449 {
1450 	bool jumped;
1451 	int ret;
1452 
1453 	path->mnt = nd->path.mnt;
1454 	path->dentry = dentry;
1455 	if (nd->flags & LOOKUP_RCU) {
1456 		unsigned int seq = *seqp;
1457 		if (unlikely(!*inode))
1458 			return -ENOENT;
1459 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1460 			return 0;
1461 		if (!try_to_unlazy_next(nd, dentry, seq))
1462 			return -ECHILD;
1463 		// *path might've been clobbered by __follow_mount_rcu()
1464 		path->mnt = nd->path.mnt;
1465 		path->dentry = dentry;
1466 	}
1467 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1468 	if (jumped) {
1469 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1470 			ret = -EXDEV;
1471 		else
1472 			nd->flags |= LOOKUP_JUMPED;
1473 	}
1474 	if (unlikely(ret)) {
1475 		dput(path->dentry);
1476 		if (path->mnt != nd->path.mnt)
1477 			mntput(path->mnt);
1478 	} else {
1479 		*inode = d_backing_inode(path->dentry);
1480 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1481 	}
1482 	return ret;
1483 }
1484 
1485 /*
1486  * This looks up the name in dcache and possibly revalidates the found dentry.
1487  * NULL is returned if the dentry does not exist in the cache.
1488  */
1489 static struct dentry *lookup_dcache(const struct qstr *name,
1490 				    struct dentry *dir,
1491 				    unsigned int flags)
1492 {
1493 	struct dentry *dentry = d_lookup(dir, name);
1494 	if (dentry) {
1495 		int error = d_revalidate(dentry, flags);
1496 		if (unlikely(error <= 0)) {
1497 			if (!error)
1498 				d_invalidate(dentry);
1499 			dput(dentry);
1500 			return ERR_PTR(error);
1501 		}
1502 	}
1503 	return dentry;
1504 }
1505 
1506 /*
1507  * Parent directory has inode locked exclusive.  This is one
1508  * and only case when ->lookup() gets called on non in-lookup
1509  * dentries - as the matter of fact, this only gets called
1510  * when directory is guaranteed to have no in-lookup children
1511  * at all.
1512  */
1513 static struct dentry *__lookup_hash(const struct qstr *name,
1514 		struct dentry *base, unsigned int flags)
1515 {
1516 	struct dentry *dentry = lookup_dcache(name, base, flags);
1517 	struct dentry *old;
1518 	struct inode *dir = base->d_inode;
1519 
1520 	if (dentry)
1521 		return dentry;
1522 
1523 	/* Don't create child dentry for a dead directory. */
1524 	if (unlikely(IS_DEADDIR(dir)))
1525 		return ERR_PTR(-ENOENT);
1526 
1527 	dentry = d_alloc(base, name);
1528 	if (unlikely(!dentry))
1529 		return ERR_PTR(-ENOMEM);
1530 
1531 	old = dir->i_op->lookup(dir, dentry, flags);
1532 	if (unlikely(old)) {
1533 		dput(dentry);
1534 		dentry = old;
1535 	}
1536 	return dentry;
1537 }
1538 
1539 static struct dentry *lookup_fast(struct nameidata *nd,
1540 				  struct inode **inode,
1541 			          unsigned *seqp)
1542 {
1543 	struct dentry *dentry, *parent = nd->path.dentry;
1544 	int status = 1;
1545 
1546 	/*
1547 	 * Rename seqlock is not required here because in the off chance
1548 	 * of a false negative due to a concurrent rename, the caller is
1549 	 * going to fall back to non-racy lookup.
1550 	 */
1551 	if (nd->flags & LOOKUP_RCU) {
1552 		unsigned seq;
1553 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1554 		if (unlikely(!dentry)) {
1555 			if (!try_to_unlazy(nd))
1556 				return ERR_PTR(-ECHILD);
1557 			return NULL;
1558 		}
1559 
1560 		/*
1561 		 * This sequence count validates that the inode matches
1562 		 * the dentry name information from lookup.
1563 		 */
1564 		*inode = d_backing_inode(dentry);
1565 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1566 			return ERR_PTR(-ECHILD);
1567 
1568 		/*
1569 		 * This sequence count validates that the parent had no
1570 		 * changes while we did the lookup of the dentry above.
1571 		 *
1572 		 * The memory barrier in read_seqcount_begin of child is
1573 		 *  enough, we can use __read_seqcount_retry here.
1574 		 */
1575 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1576 			return ERR_PTR(-ECHILD);
1577 
1578 		*seqp = seq;
1579 		status = d_revalidate(dentry, nd->flags);
1580 		if (likely(status > 0))
1581 			return dentry;
1582 		if (!try_to_unlazy_next(nd, dentry, seq))
1583 			return ERR_PTR(-ECHILD);
1584 		if (status == -ECHILD)
1585 			/* we'd been told to redo it in non-rcu mode */
1586 			status = d_revalidate(dentry, nd->flags);
1587 	} else {
1588 		dentry = __d_lookup(parent, &nd->last);
1589 		if (unlikely(!dentry))
1590 			return NULL;
1591 		status = d_revalidate(dentry, nd->flags);
1592 	}
1593 	if (unlikely(status <= 0)) {
1594 		if (!status)
1595 			d_invalidate(dentry);
1596 		dput(dentry);
1597 		return ERR_PTR(status);
1598 	}
1599 	return dentry;
1600 }
1601 
1602 /* Fast lookup failed, do it the slow way */
1603 static struct dentry *__lookup_slow(const struct qstr *name,
1604 				    struct dentry *dir,
1605 				    unsigned int flags)
1606 {
1607 	struct dentry *dentry, *old;
1608 	struct inode *inode = dir->d_inode;
1609 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1610 
1611 	/* Don't go there if it's already dead */
1612 	if (unlikely(IS_DEADDIR(inode)))
1613 		return ERR_PTR(-ENOENT);
1614 again:
1615 	dentry = d_alloc_parallel(dir, name, &wq);
1616 	if (IS_ERR(dentry))
1617 		return dentry;
1618 	if (unlikely(!d_in_lookup(dentry))) {
1619 		int error = d_revalidate(dentry, flags);
1620 		if (unlikely(error <= 0)) {
1621 			if (!error) {
1622 				d_invalidate(dentry);
1623 				dput(dentry);
1624 				goto again;
1625 			}
1626 			dput(dentry);
1627 			dentry = ERR_PTR(error);
1628 		}
1629 	} else {
1630 		old = inode->i_op->lookup(inode, dentry, flags);
1631 		d_lookup_done(dentry);
1632 		if (unlikely(old)) {
1633 			dput(dentry);
1634 			dentry = old;
1635 		}
1636 	}
1637 	return dentry;
1638 }
1639 
1640 static struct dentry *lookup_slow(const struct qstr *name,
1641 				  struct dentry *dir,
1642 				  unsigned int flags)
1643 {
1644 	struct inode *inode = dir->d_inode;
1645 	struct dentry *res;
1646 	inode_lock_shared(inode);
1647 	res = __lookup_slow(name, dir, flags);
1648 	inode_unlock_shared(inode);
1649 	return res;
1650 }
1651 
1652 static inline int may_lookup(struct user_namespace *mnt_userns,
1653 			     struct nameidata *nd)
1654 {
1655 	if (nd->flags & LOOKUP_RCU) {
1656 		int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1657 		if (err != -ECHILD || !try_to_unlazy(nd))
1658 			return err;
1659 	}
1660 	return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1661 }
1662 
1663 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1664 {
1665 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1666 		return -ELOOP;
1667 
1668 	if (likely(nd->depth != EMBEDDED_LEVELS))
1669 		return 0;
1670 	if (likely(nd->stack != nd->internal))
1671 		return 0;
1672 	if (likely(nd_alloc_stack(nd)))
1673 		return 0;
1674 
1675 	if (nd->flags & LOOKUP_RCU) {
1676 		// we need to grab link before we do unlazy.  And we can't skip
1677 		// unlazy even if we fail to grab the link - cleanup needs it
1678 		bool grabbed_link = legitimize_path(nd, link, seq);
1679 
1680 		if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1681 			return -ECHILD;
1682 
1683 		if (nd_alloc_stack(nd))
1684 			return 0;
1685 	}
1686 	return -ENOMEM;
1687 }
1688 
1689 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1690 
1691 static const char *pick_link(struct nameidata *nd, struct path *link,
1692 		     struct inode *inode, unsigned seq, int flags)
1693 {
1694 	struct saved *last;
1695 	const char *res;
1696 	int error = reserve_stack(nd, link, seq);
1697 
1698 	if (unlikely(error)) {
1699 		if (!(nd->flags & LOOKUP_RCU))
1700 			path_put(link);
1701 		return ERR_PTR(error);
1702 	}
1703 	last = nd->stack + nd->depth++;
1704 	last->link = *link;
1705 	clear_delayed_call(&last->done);
1706 	last->seq = seq;
1707 
1708 	if (flags & WALK_TRAILING) {
1709 		error = may_follow_link(nd, inode);
1710 		if (unlikely(error))
1711 			return ERR_PTR(error);
1712 	}
1713 
1714 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1715 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1716 		return ERR_PTR(-ELOOP);
1717 
1718 	if (!(nd->flags & LOOKUP_RCU)) {
1719 		touch_atime(&last->link);
1720 		cond_resched();
1721 	} else if (atime_needs_update(&last->link, inode)) {
1722 		if (!try_to_unlazy(nd))
1723 			return ERR_PTR(-ECHILD);
1724 		touch_atime(&last->link);
1725 	}
1726 
1727 	error = security_inode_follow_link(link->dentry, inode,
1728 					   nd->flags & LOOKUP_RCU);
1729 	if (unlikely(error))
1730 		return ERR_PTR(error);
1731 
1732 	res = READ_ONCE(inode->i_link);
1733 	if (!res) {
1734 		const char * (*get)(struct dentry *, struct inode *,
1735 				struct delayed_call *);
1736 		get = inode->i_op->get_link;
1737 		if (nd->flags & LOOKUP_RCU) {
1738 			res = get(NULL, inode, &last->done);
1739 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1740 				res = get(link->dentry, inode, &last->done);
1741 		} else {
1742 			res = get(link->dentry, inode, &last->done);
1743 		}
1744 		if (!res)
1745 			goto all_done;
1746 		if (IS_ERR(res))
1747 			return res;
1748 	}
1749 	if (*res == '/') {
1750 		error = nd_jump_root(nd);
1751 		if (unlikely(error))
1752 			return ERR_PTR(error);
1753 		while (unlikely(*++res == '/'))
1754 			;
1755 	}
1756 	if (*res)
1757 		return res;
1758 all_done: // pure jump
1759 	put_link(nd);
1760 	return NULL;
1761 }
1762 
1763 /*
1764  * Do we need to follow links? We _really_ want to be able
1765  * to do this check without having to look at inode->i_op,
1766  * so we keep a cache of "no, this doesn't need follow_link"
1767  * for the common case.
1768  */
1769 static const char *step_into(struct nameidata *nd, int flags,
1770 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1771 {
1772 	struct path path;
1773 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1774 
1775 	if (err < 0)
1776 		return ERR_PTR(err);
1777 	if (likely(!d_is_symlink(path.dentry)) ||
1778 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1779 	   (flags & WALK_NOFOLLOW)) {
1780 		/* not a symlink or should not follow */
1781 		if (!(nd->flags & LOOKUP_RCU)) {
1782 			dput(nd->path.dentry);
1783 			if (nd->path.mnt != path.mnt)
1784 				mntput(nd->path.mnt);
1785 		}
1786 		nd->path = path;
1787 		nd->inode = inode;
1788 		nd->seq = seq;
1789 		return NULL;
1790 	}
1791 	if (nd->flags & LOOKUP_RCU) {
1792 		/* make sure that d_is_symlink above matches inode */
1793 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1794 			return ERR_PTR(-ECHILD);
1795 	} else {
1796 		if (path.mnt == nd->path.mnt)
1797 			mntget(path.mnt);
1798 	}
1799 	return pick_link(nd, &path, inode, seq, flags);
1800 }
1801 
1802 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1803 					struct inode **inodep,
1804 					unsigned *seqp)
1805 {
1806 	struct dentry *parent, *old;
1807 
1808 	if (path_equal(&nd->path, &nd->root))
1809 		goto in_root;
1810 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1811 		struct path path;
1812 		unsigned seq;
1813 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1814 					   &nd->root, &path, &seq))
1815 			goto in_root;
1816 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1817 			return ERR_PTR(-ECHILD);
1818 		nd->path = path;
1819 		nd->inode = path.dentry->d_inode;
1820 		nd->seq = seq;
1821 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1822 			return ERR_PTR(-ECHILD);
1823 		/* we know that mountpoint was pinned */
1824 	}
1825 	old = nd->path.dentry;
1826 	parent = old->d_parent;
1827 	*inodep = parent->d_inode;
1828 	*seqp = read_seqcount_begin(&parent->d_seq);
1829 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1830 		return ERR_PTR(-ECHILD);
1831 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1832 		return ERR_PTR(-ECHILD);
1833 	return parent;
1834 in_root:
1835 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1836 		return ERR_PTR(-ECHILD);
1837 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1838 		return ERR_PTR(-ECHILD);
1839 	return NULL;
1840 }
1841 
1842 static struct dentry *follow_dotdot(struct nameidata *nd,
1843 				 struct inode **inodep,
1844 				 unsigned *seqp)
1845 {
1846 	struct dentry *parent;
1847 
1848 	if (path_equal(&nd->path, &nd->root))
1849 		goto in_root;
1850 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1851 		struct path path;
1852 
1853 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1854 				       &nd->root, &path))
1855 			goto in_root;
1856 		path_put(&nd->path);
1857 		nd->path = path;
1858 		nd->inode = path.dentry->d_inode;
1859 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1860 			return ERR_PTR(-EXDEV);
1861 	}
1862 	/* rare case of legitimate dget_parent()... */
1863 	parent = dget_parent(nd->path.dentry);
1864 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1865 		dput(parent);
1866 		return ERR_PTR(-ENOENT);
1867 	}
1868 	*seqp = 0;
1869 	*inodep = parent->d_inode;
1870 	return parent;
1871 
1872 in_root:
1873 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1874 		return ERR_PTR(-EXDEV);
1875 	dget(nd->path.dentry);
1876 	return NULL;
1877 }
1878 
1879 static const char *handle_dots(struct nameidata *nd, int type)
1880 {
1881 	if (type == LAST_DOTDOT) {
1882 		const char *error = NULL;
1883 		struct dentry *parent;
1884 		struct inode *inode;
1885 		unsigned seq;
1886 
1887 		if (!nd->root.mnt) {
1888 			error = ERR_PTR(set_root(nd));
1889 			if (error)
1890 				return error;
1891 		}
1892 		if (nd->flags & LOOKUP_RCU)
1893 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1894 		else
1895 			parent = follow_dotdot(nd, &inode, &seq);
1896 		if (IS_ERR(parent))
1897 			return ERR_CAST(parent);
1898 		if (unlikely(!parent))
1899 			error = step_into(nd, WALK_NOFOLLOW,
1900 					 nd->path.dentry, nd->inode, nd->seq);
1901 		else
1902 			error = step_into(nd, WALK_NOFOLLOW,
1903 					 parent, inode, seq);
1904 		if (unlikely(error))
1905 			return error;
1906 
1907 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1908 			/*
1909 			 * If there was a racing rename or mount along our
1910 			 * path, then we can't be sure that ".." hasn't jumped
1911 			 * above nd->root (and so userspace should retry or use
1912 			 * some fallback).
1913 			 */
1914 			smp_rmb();
1915 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1916 				return ERR_PTR(-EAGAIN);
1917 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1918 				return ERR_PTR(-EAGAIN);
1919 		}
1920 	}
1921 	return NULL;
1922 }
1923 
1924 static const char *walk_component(struct nameidata *nd, int flags)
1925 {
1926 	struct dentry *dentry;
1927 	struct inode *inode;
1928 	unsigned seq;
1929 	/*
1930 	 * "." and ".." are special - ".." especially so because it has
1931 	 * to be able to know about the current root directory and
1932 	 * parent relationships.
1933 	 */
1934 	if (unlikely(nd->last_type != LAST_NORM)) {
1935 		if (!(flags & WALK_MORE) && nd->depth)
1936 			put_link(nd);
1937 		return handle_dots(nd, nd->last_type);
1938 	}
1939 	dentry = lookup_fast(nd, &inode, &seq);
1940 	if (IS_ERR(dentry))
1941 		return ERR_CAST(dentry);
1942 	if (unlikely(!dentry)) {
1943 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1944 		if (IS_ERR(dentry))
1945 			return ERR_CAST(dentry);
1946 	}
1947 	if (!(flags & WALK_MORE) && nd->depth)
1948 		put_link(nd);
1949 	return step_into(nd, flags, dentry, inode, seq);
1950 }
1951 
1952 /*
1953  * We can do the critical dentry name comparison and hashing
1954  * operations one word at a time, but we are limited to:
1955  *
1956  * - Architectures with fast unaligned word accesses. We could
1957  *   do a "get_unaligned()" if this helps and is sufficiently
1958  *   fast.
1959  *
1960  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1961  *   do not trap on the (extremely unlikely) case of a page
1962  *   crossing operation.
1963  *
1964  * - Furthermore, we need an efficient 64-bit compile for the
1965  *   64-bit case in order to generate the "number of bytes in
1966  *   the final mask". Again, that could be replaced with a
1967  *   efficient population count instruction or similar.
1968  */
1969 #ifdef CONFIG_DCACHE_WORD_ACCESS
1970 
1971 #include <asm/word-at-a-time.h>
1972 
1973 #ifdef HASH_MIX
1974 
1975 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1976 
1977 #elif defined(CONFIG_64BIT)
1978 /*
1979  * Register pressure in the mixing function is an issue, particularly
1980  * on 32-bit x86, but almost any function requires one state value and
1981  * one temporary.  Instead, use a function designed for two state values
1982  * and no temporaries.
1983  *
1984  * This function cannot create a collision in only two iterations, so
1985  * we have two iterations to achieve avalanche.  In those two iterations,
1986  * we have six layers of mixing, which is enough to spread one bit's
1987  * influence out to 2^6 = 64 state bits.
1988  *
1989  * Rotate constants are scored by considering either 64 one-bit input
1990  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1991  * probability of that delta causing a change to each of the 128 output
1992  * bits, using a sample of random initial states.
1993  *
1994  * The Shannon entropy of the computed probabilities is then summed
1995  * to produce a score.  Ideally, any input change has a 50% chance of
1996  * toggling any given output bit.
1997  *
1998  * Mixing scores (in bits) for (12,45):
1999  * Input delta: 1-bit      2-bit
2000  * 1 round:     713.3    42542.6
2001  * 2 rounds:   2753.7   140389.8
2002  * 3 rounds:   5954.1   233458.2
2003  * 4 rounds:   7862.6   256672.2
2004  * Perfect:    8192     258048
2005  *            (64*128) (64*63/2 * 128)
2006  */
2007 #define HASH_MIX(x, y, a)	\
2008 	(	x ^= (a),	\
2009 	y ^= x,	x = rol64(x,12),\
2010 	x += y,	y = rol64(y,45),\
2011 	y *= 9			)
2012 
2013 /*
2014  * Fold two longs into one 32-bit hash value.  This must be fast, but
2015  * latency isn't quite as critical, as there is a fair bit of additional
2016  * work done before the hash value is used.
2017  */
2018 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2019 {
2020 	y ^= x * GOLDEN_RATIO_64;
2021 	y *= GOLDEN_RATIO_64;
2022 	return y >> 32;
2023 }
2024 
2025 #else	/* 32-bit case */
2026 
2027 /*
2028  * Mixing scores (in bits) for (7,20):
2029  * Input delta: 1-bit      2-bit
2030  * 1 round:     330.3     9201.6
2031  * 2 rounds:   1246.4    25475.4
2032  * 3 rounds:   1907.1    31295.1
2033  * 4 rounds:   2042.3    31718.6
2034  * Perfect:    2048      31744
2035  *            (32*64)   (32*31/2 * 64)
2036  */
2037 #define HASH_MIX(x, y, a)	\
2038 	(	x ^= (a),	\
2039 	y ^= x,	x = rol32(x, 7),\
2040 	x += y,	y = rol32(y,20),\
2041 	y *= 9			)
2042 
2043 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2044 {
2045 	/* Use arch-optimized multiply if one exists */
2046 	return __hash_32(y ^ __hash_32(x));
2047 }
2048 
2049 #endif
2050 
2051 /*
2052  * Return the hash of a string of known length.  This is carfully
2053  * designed to match hash_name(), which is the more critical function.
2054  * In particular, we must end by hashing a final word containing 0..7
2055  * payload bytes, to match the way that hash_name() iterates until it
2056  * finds the delimiter after the name.
2057  */
2058 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2059 {
2060 	unsigned long a, x = 0, y = (unsigned long)salt;
2061 
2062 	for (;;) {
2063 		if (!len)
2064 			goto done;
2065 		a = load_unaligned_zeropad(name);
2066 		if (len < sizeof(unsigned long))
2067 			break;
2068 		HASH_MIX(x, y, a);
2069 		name += sizeof(unsigned long);
2070 		len -= sizeof(unsigned long);
2071 	}
2072 	x ^= a & bytemask_from_count(len);
2073 done:
2074 	return fold_hash(x, y);
2075 }
2076 EXPORT_SYMBOL(full_name_hash);
2077 
2078 /* Return the "hash_len" (hash and length) of a null-terminated string */
2079 u64 hashlen_string(const void *salt, const char *name)
2080 {
2081 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2082 	unsigned long adata, mask, len;
2083 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2084 
2085 	len = 0;
2086 	goto inside;
2087 
2088 	do {
2089 		HASH_MIX(x, y, a);
2090 		len += sizeof(unsigned long);
2091 inside:
2092 		a = load_unaligned_zeropad(name+len);
2093 	} while (!has_zero(a, &adata, &constants));
2094 
2095 	adata = prep_zero_mask(a, adata, &constants);
2096 	mask = create_zero_mask(adata);
2097 	x ^= a & zero_bytemask(mask);
2098 
2099 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2100 }
2101 EXPORT_SYMBOL(hashlen_string);
2102 
2103 /*
2104  * Calculate the length and hash of the path component, and
2105  * return the "hash_len" as the result.
2106  */
2107 static inline u64 hash_name(const void *salt, const char *name)
2108 {
2109 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2110 	unsigned long adata, bdata, mask, len;
2111 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2112 
2113 	len = 0;
2114 	goto inside;
2115 
2116 	do {
2117 		HASH_MIX(x, y, a);
2118 		len += sizeof(unsigned long);
2119 inside:
2120 		a = load_unaligned_zeropad(name+len);
2121 		b = a ^ REPEAT_BYTE('/');
2122 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2123 
2124 	adata = prep_zero_mask(a, adata, &constants);
2125 	bdata = prep_zero_mask(b, bdata, &constants);
2126 	mask = create_zero_mask(adata | bdata);
2127 	x ^= a & zero_bytemask(mask);
2128 
2129 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2130 }
2131 
2132 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2133 
2134 /* Return the hash of a string of known length */
2135 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2136 {
2137 	unsigned long hash = init_name_hash(salt);
2138 	while (len--)
2139 		hash = partial_name_hash((unsigned char)*name++, hash);
2140 	return end_name_hash(hash);
2141 }
2142 EXPORT_SYMBOL(full_name_hash);
2143 
2144 /* Return the "hash_len" (hash and length) of a null-terminated string */
2145 u64 hashlen_string(const void *salt, const char *name)
2146 {
2147 	unsigned long hash = init_name_hash(salt);
2148 	unsigned long len = 0, c;
2149 
2150 	c = (unsigned char)*name;
2151 	while (c) {
2152 		len++;
2153 		hash = partial_name_hash(c, hash);
2154 		c = (unsigned char)name[len];
2155 	}
2156 	return hashlen_create(end_name_hash(hash), len);
2157 }
2158 EXPORT_SYMBOL(hashlen_string);
2159 
2160 /*
2161  * We know there's a real path component here of at least
2162  * one character.
2163  */
2164 static inline u64 hash_name(const void *salt, const char *name)
2165 {
2166 	unsigned long hash = init_name_hash(salt);
2167 	unsigned long len = 0, c;
2168 
2169 	c = (unsigned char)*name;
2170 	do {
2171 		len++;
2172 		hash = partial_name_hash(c, hash);
2173 		c = (unsigned char)name[len];
2174 	} while (c && c != '/');
2175 	return hashlen_create(end_name_hash(hash), len);
2176 }
2177 
2178 #endif
2179 
2180 /*
2181  * Name resolution.
2182  * This is the basic name resolution function, turning a pathname into
2183  * the final dentry. We expect 'base' to be positive and a directory.
2184  *
2185  * Returns 0 and nd will have valid dentry and mnt on success.
2186  * Returns error and drops reference to input namei data on failure.
2187  */
2188 static int link_path_walk(const char *name, struct nameidata *nd)
2189 {
2190 	int depth = 0; // depth <= nd->depth
2191 	int err;
2192 
2193 	nd->last_type = LAST_ROOT;
2194 	nd->flags |= LOOKUP_PARENT;
2195 	if (IS_ERR(name))
2196 		return PTR_ERR(name);
2197 	while (*name=='/')
2198 		name++;
2199 	if (!*name) {
2200 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2201 		return 0;
2202 	}
2203 
2204 	/* At this point we know we have a real path component. */
2205 	for(;;) {
2206 		struct user_namespace *mnt_userns;
2207 		const char *link;
2208 		u64 hash_len;
2209 		int type;
2210 
2211 		mnt_userns = mnt_user_ns(nd->path.mnt);
2212 		err = may_lookup(mnt_userns, nd);
2213 		if (err)
2214 			return err;
2215 
2216 		hash_len = hash_name(nd->path.dentry, name);
2217 
2218 		type = LAST_NORM;
2219 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2220 			case 2:
2221 				if (name[1] == '.') {
2222 					type = LAST_DOTDOT;
2223 					nd->flags |= LOOKUP_JUMPED;
2224 				}
2225 				break;
2226 			case 1:
2227 				type = LAST_DOT;
2228 		}
2229 		if (likely(type == LAST_NORM)) {
2230 			struct dentry *parent = nd->path.dentry;
2231 			nd->flags &= ~LOOKUP_JUMPED;
2232 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2233 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2234 				err = parent->d_op->d_hash(parent, &this);
2235 				if (err < 0)
2236 					return err;
2237 				hash_len = this.hash_len;
2238 				name = this.name;
2239 			}
2240 		}
2241 
2242 		nd->last.hash_len = hash_len;
2243 		nd->last.name = name;
2244 		nd->last_type = type;
2245 
2246 		name += hashlen_len(hash_len);
2247 		if (!*name)
2248 			goto OK;
2249 		/*
2250 		 * If it wasn't NUL, we know it was '/'. Skip that
2251 		 * slash, and continue until no more slashes.
2252 		 */
2253 		do {
2254 			name++;
2255 		} while (unlikely(*name == '/'));
2256 		if (unlikely(!*name)) {
2257 OK:
2258 			/* pathname or trailing symlink, done */
2259 			if (!depth) {
2260 				nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2261 				nd->dir_mode = nd->inode->i_mode;
2262 				nd->flags &= ~LOOKUP_PARENT;
2263 				return 0;
2264 			}
2265 			/* last component of nested symlink */
2266 			name = nd->stack[--depth].name;
2267 			link = walk_component(nd, 0);
2268 		} else {
2269 			/* not the last component */
2270 			link = walk_component(nd, WALK_MORE);
2271 		}
2272 		if (unlikely(link)) {
2273 			if (IS_ERR(link))
2274 				return PTR_ERR(link);
2275 			/* a symlink to follow */
2276 			nd->stack[depth++].name = name;
2277 			name = link;
2278 			continue;
2279 		}
2280 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2281 			if (nd->flags & LOOKUP_RCU) {
2282 				if (!try_to_unlazy(nd))
2283 					return -ECHILD;
2284 			}
2285 			return -ENOTDIR;
2286 		}
2287 	}
2288 }
2289 
2290 /* must be paired with terminate_walk() */
2291 static const char *path_init(struct nameidata *nd, unsigned flags)
2292 {
2293 	int error;
2294 	const char *s = nd->name->name;
2295 
2296 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2297 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2298 		return ERR_PTR(-EAGAIN);
2299 
2300 	if (!*s)
2301 		flags &= ~LOOKUP_RCU;
2302 	if (flags & LOOKUP_RCU)
2303 		rcu_read_lock();
2304 
2305 	nd->flags = flags | LOOKUP_JUMPED;
2306 	nd->depth = 0;
2307 
2308 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2309 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2310 	smp_rmb();
2311 
2312 	if (flags & LOOKUP_ROOT) {
2313 		struct dentry *root = nd->root.dentry;
2314 		struct inode *inode = root->d_inode;
2315 		if (*s && unlikely(!d_can_lookup(root)))
2316 			return ERR_PTR(-ENOTDIR);
2317 		nd->path = nd->root;
2318 		nd->inode = inode;
2319 		if (flags & LOOKUP_RCU) {
2320 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2321 			nd->root_seq = nd->seq;
2322 		} else {
2323 			path_get(&nd->path);
2324 		}
2325 		return s;
2326 	}
2327 
2328 	nd->root.mnt = NULL;
2329 
2330 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2331 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2332 		error = nd_jump_root(nd);
2333 		if (unlikely(error))
2334 			return ERR_PTR(error);
2335 		return s;
2336 	}
2337 
2338 	/* Relative pathname -- get the starting-point it is relative to. */
2339 	if (nd->dfd == AT_FDCWD) {
2340 		if (flags & LOOKUP_RCU) {
2341 			struct fs_struct *fs = current->fs;
2342 			unsigned seq;
2343 
2344 			do {
2345 				seq = read_seqcount_begin(&fs->seq);
2346 				nd->path = fs->pwd;
2347 				nd->inode = nd->path.dentry->d_inode;
2348 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2349 			} while (read_seqcount_retry(&fs->seq, seq));
2350 		} else {
2351 			get_fs_pwd(current->fs, &nd->path);
2352 			nd->inode = nd->path.dentry->d_inode;
2353 		}
2354 	} else {
2355 		/* Caller must check execute permissions on the starting path component */
2356 		struct fd f = fdget_raw(nd->dfd);
2357 		struct dentry *dentry;
2358 
2359 		if (!f.file)
2360 			return ERR_PTR(-EBADF);
2361 
2362 		dentry = f.file->f_path.dentry;
2363 
2364 		if (*s && unlikely(!d_can_lookup(dentry))) {
2365 			fdput(f);
2366 			return ERR_PTR(-ENOTDIR);
2367 		}
2368 
2369 		nd->path = f.file->f_path;
2370 		if (flags & LOOKUP_RCU) {
2371 			nd->inode = nd->path.dentry->d_inode;
2372 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2373 		} else {
2374 			path_get(&nd->path);
2375 			nd->inode = nd->path.dentry->d_inode;
2376 		}
2377 		fdput(f);
2378 	}
2379 
2380 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2381 	if (flags & LOOKUP_IS_SCOPED) {
2382 		nd->root = nd->path;
2383 		if (flags & LOOKUP_RCU) {
2384 			nd->root_seq = nd->seq;
2385 		} else {
2386 			path_get(&nd->root);
2387 			nd->flags |= LOOKUP_ROOT_GRABBED;
2388 		}
2389 	}
2390 	return s;
2391 }
2392 
2393 static inline const char *lookup_last(struct nameidata *nd)
2394 {
2395 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2396 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2397 
2398 	return walk_component(nd, WALK_TRAILING);
2399 }
2400 
2401 static int handle_lookup_down(struct nameidata *nd)
2402 {
2403 	if (!(nd->flags & LOOKUP_RCU))
2404 		dget(nd->path.dentry);
2405 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2406 			nd->path.dentry, nd->inode, nd->seq));
2407 }
2408 
2409 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2410 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2411 {
2412 	const char *s = path_init(nd, flags);
2413 	int err;
2414 
2415 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2416 		err = handle_lookup_down(nd);
2417 		if (unlikely(err < 0))
2418 			s = ERR_PTR(err);
2419 	}
2420 
2421 	while (!(err = link_path_walk(s, nd)) &&
2422 	       (s = lookup_last(nd)) != NULL)
2423 		;
2424 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2425 		err = handle_lookup_down(nd);
2426 		nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2427 	}
2428 	if (!err)
2429 		err = complete_walk(nd);
2430 
2431 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2432 		if (!d_can_lookup(nd->path.dentry))
2433 			err = -ENOTDIR;
2434 	if (!err) {
2435 		*path = nd->path;
2436 		nd->path.mnt = NULL;
2437 		nd->path.dentry = NULL;
2438 	}
2439 	terminate_walk(nd);
2440 	return err;
2441 }
2442 
2443 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2444 		    struct path *path, struct path *root)
2445 {
2446 	int retval;
2447 	struct nameidata nd;
2448 	if (IS_ERR(name))
2449 		return PTR_ERR(name);
2450 	if (unlikely(root)) {
2451 		nd.root = *root;
2452 		flags |= LOOKUP_ROOT;
2453 	}
2454 	set_nameidata(&nd, dfd, name);
2455 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2456 	if (unlikely(retval == -ECHILD))
2457 		retval = path_lookupat(&nd, flags, path);
2458 	if (unlikely(retval == -ESTALE))
2459 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2460 
2461 	if (likely(!retval))
2462 		audit_inode(name, path->dentry,
2463 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2464 	restore_nameidata();
2465 	putname(name);
2466 	return retval;
2467 }
2468 
2469 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2470 static int path_parentat(struct nameidata *nd, unsigned flags,
2471 				struct path *parent)
2472 {
2473 	const char *s = path_init(nd, flags);
2474 	int err = link_path_walk(s, nd);
2475 	if (!err)
2476 		err = complete_walk(nd);
2477 	if (!err) {
2478 		*parent = nd->path;
2479 		nd->path.mnt = NULL;
2480 		nd->path.dentry = NULL;
2481 	}
2482 	terminate_walk(nd);
2483 	return err;
2484 }
2485 
2486 static struct filename *filename_parentat(int dfd, struct filename *name,
2487 				unsigned int flags, struct path *parent,
2488 				struct qstr *last, int *type)
2489 {
2490 	int retval;
2491 	struct nameidata nd;
2492 
2493 	if (IS_ERR(name))
2494 		return name;
2495 	set_nameidata(&nd, dfd, name);
2496 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2497 	if (unlikely(retval == -ECHILD))
2498 		retval = path_parentat(&nd, flags, parent);
2499 	if (unlikely(retval == -ESTALE))
2500 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2501 	if (likely(!retval)) {
2502 		*last = nd.last;
2503 		*type = nd.last_type;
2504 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2505 	} else {
2506 		putname(name);
2507 		name = ERR_PTR(retval);
2508 	}
2509 	restore_nameidata();
2510 	return name;
2511 }
2512 
2513 /* does lookup, returns the object with parent locked */
2514 struct dentry *kern_path_locked(const char *name, struct path *path)
2515 {
2516 	struct filename *filename;
2517 	struct dentry *d;
2518 	struct qstr last;
2519 	int type;
2520 
2521 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2522 				    &last, &type);
2523 	if (IS_ERR(filename))
2524 		return ERR_CAST(filename);
2525 	if (unlikely(type != LAST_NORM)) {
2526 		path_put(path);
2527 		putname(filename);
2528 		return ERR_PTR(-EINVAL);
2529 	}
2530 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2531 	d = __lookup_hash(&last, path->dentry, 0);
2532 	if (IS_ERR(d)) {
2533 		inode_unlock(path->dentry->d_inode);
2534 		path_put(path);
2535 	}
2536 	putname(filename);
2537 	return d;
2538 }
2539 
2540 int kern_path(const char *name, unsigned int flags, struct path *path)
2541 {
2542 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2543 			       flags, path, NULL);
2544 }
2545 EXPORT_SYMBOL(kern_path);
2546 
2547 /**
2548  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2549  * @dentry:  pointer to dentry of the base directory
2550  * @mnt: pointer to vfs mount of the base directory
2551  * @name: pointer to file name
2552  * @flags: lookup flags
2553  * @path: pointer to struct path to fill
2554  */
2555 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2556 		    const char *name, unsigned int flags,
2557 		    struct path *path)
2558 {
2559 	struct path root = {.mnt = mnt, .dentry = dentry};
2560 	/* the first argument of filename_lookup() is ignored with root */
2561 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2562 			       flags , path, &root);
2563 }
2564 EXPORT_SYMBOL(vfs_path_lookup);
2565 
2566 static int lookup_one_len_common(const char *name, struct dentry *base,
2567 				 int len, struct qstr *this)
2568 {
2569 	this->name = name;
2570 	this->len = len;
2571 	this->hash = full_name_hash(base, name, len);
2572 	if (!len)
2573 		return -EACCES;
2574 
2575 	if (unlikely(name[0] == '.')) {
2576 		if (len < 2 || (len == 2 && name[1] == '.'))
2577 			return -EACCES;
2578 	}
2579 
2580 	while (len--) {
2581 		unsigned int c = *(const unsigned char *)name++;
2582 		if (c == '/' || c == '\0')
2583 			return -EACCES;
2584 	}
2585 	/*
2586 	 * See if the low-level filesystem might want
2587 	 * to use its own hash..
2588 	 */
2589 	if (base->d_flags & DCACHE_OP_HASH) {
2590 		int err = base->d_op->d_hash(base, this);
2591 		if (err < 0)
2592 			return err;
2593 	}
2594 
2595 	return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC);
2596 }
2597 
2598 /**
2599  * try_lookup_one_len - filesystem helper to lookup single pathname component
2600  * @name:	pathname component to lookup
2601  * @base:	base directory to lookup from
2602  * @len:	maximum length @len should be interpreted to
2603  *
2604  * Look up a dentry by name in the dcache, returning NULL if it does not
2605  * currently exist.  The function does not try to create a dentry.
2606  *
2607  * Note that this routine is purely a helper for filesystem usage and should
2608  * not be called by generic code.
2609  *
2610  * The caller must hold base->i_mutex.
2611  */
2612 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2613 {
2614 	struct qstr this;
2615 	int err;
2616 
2617 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2618 
2619 	err = lookup_one_len_common(name, base, len, &this);
2620 	if (err)
2621 		return ERR_PTR(err);
2622 
2623 	return lookup_dcache(&this, base, 0);
2624 }
2625 EXPORT_SYMBOL(try_lookup_one_len);
2626 
2627 /**
2628  * lookup_one_len - filesystem helper to lookup single pathname component
2629  * @name:	pathname component to lookup
2630  * @base:	base directory to lookup from
2631  * @len:	maximum length @len should be interpreted to
2632  *
2633  * Note that this routine is purely a helper for filesystem usage and should
2634  * not be called by generic code.
2635  *
2636  * The caller must hold base->i_mutex.
2637  */
2638 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2639 {
2640 	struct dentry *dentry;
2641 	struct qstr this;
2642 	int err;
2643 
2644 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2645 
2646 	err = lookup_one_len_common(name, base, len, &this);
2647 	if (err)
2648 		return ERR_PTR(err);
2649 
2650 	dentry = lookup_dcache(&this, base, 0);
2651 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2652 }
2653 EXPORT_SYMBOL(lookup_one_len);
2654 
2655 /**
2656  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2657  * @name:	pathname component to lookup
2658  * @base:	base directory to lookup from
2659  * @len:	maximum length @len should be interpreted to
2660  *
2661  * Note that this routine is purely a helper for filesystem usage and should
2662  * not be called by generic code.
2663  *
2664  * Unlike lookup_one_len, it should be called without the parent
2665  * i_mutex held, and will take the i_mutex itself if necessary.
2666  */
2667 struct dentry *lookup_one_len_unlocked(const char *name,
2668 				       struct dentry *base, int len)
2669 {
2670 	struct qstr this;
2671 	int err;
2672 	struct dentry *ret;
2673 
2674 	err = lookup_one_len_common(name, base, len, &this);
2675 	if (err)
2676 		return ERR_PTR(err);
2677 
2678 	ret = lookup_dcache(&this, base, 0);
2679 	if (!ret)
2680 		ret = lookup_slow(&this, base, 0);
2681 	return ret;
2682 }
2683 EXPORT_SYMBOL(lookup_one_len_unlocked);
2684 
2685 /*
2686  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2687  * on negatives.  Returns known positive or ERR_PTR(); that's what
2688  * most of the users want.  Note that pinned negative with unlocked parent
2689  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2690  * need to be very careful; pinned positives have ->d_inode stable, so
2691  * this one avoids such problems.
2692  */
2693 struct dentry *lookup_positive_unlocked(const char *name,
2694 				       struct dentry *base, int len)
2695 {
2696 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2697 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2698 		dput(ret);
2699 		ret = ERR_PTR(-ENOENT);
2700 	}
2701 	return ret;
2702 }
2703 EXPORT_SYMBOL(lookup_positive_unlocked);
2704 
2705 #ifdef CONFIG_UNIX98_PTYS
2706 int path_pts(struct path *path)
2707 {
2708 	/* Find something mounted on "pts" in the same directory as
2709 	 * the input path.
2710 	 */
2711 	struct dentry *parent = dget_parent(path->dentry);
2712 	struct dentry *child;
2713 	struct qstr this = QSTR_INIT("pts", 3);
2714 
2715 	if (unlikely(!path_connected(path->mnt, parent))) {
2716 		dput(parent);
2717 		return -ENOENT;
2718 	}
2719 	dput(path->dentry);
2720 	path->dentry = parent;
2721 	child = d_hash_and_lookup(parent, &this);
2722 	if (!child)
2723 		return -ENOENT;
2724 
2725 	path->dentry = child;
2726 	dput(parent);
2727 	follow_down(path);
2728 	return 0;
2729 }
2730 #endif
2731 
2732 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2733 		 struct path *path, int *empty)
2734 {
2735 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2736 			       flags, path, NULL);
2737 }
2738 EXPORT_SYMBOL(user_path_at_empty);
2739 
2740 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2741 		   struct inode *inode)
2742 {
2743 	kuid_t fsuid = current_fsuid();
2744 
2745 	if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2746 		return 0;
2747 	if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2748 		return 0;
2749 	return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2750 }
2751 EXPORT_SYMBOL(__check_sticky);
2752 
2753 /*
2754  *	Check whether we can remove a link victim from directory dir, check
2755  *  whether the type of victim is right.
2756  *  1. We can't do it if dir is read-only (done in permission())
2757  *  2. We should have write and exec permissions on dir
2758  *  3. We can't remove anything from append-only dir
2759  *  4. We can't do anything with immutable dir (done in permission())
2760  *  5. If the sticky bit on dir is set we should either
2761  *	a. be owner of dir, or
2762  *	b. be owner of victim, or
2763  *	c. have CAP_FOWNER capability
2764  *  6. If the victim is append-only or immutable we can't do antyhing with
2765  *     links pointing to it.
2766  *  7. If the victim has an unknown uid or gid we can't change the inode.
2767  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2768  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2769  * 10. We can't remove a root or mountpoint.
2770  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2771  *     nfs_async_unlink().
2772  */
2773 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2774 		      struct dentry *victim, bool isdir)
2775 {
2776 	struct inode *inode = d_backing_inode(victim);
2777 	int error;
2778 
2779 	if (d_is_negative(victim))
2780 		return -ENOENT;
2781 	BUG_ON(!inode);
2782 
2783 	BUG_ON(victim->d_parent->d_inode != dir);
2784 
2785 	/* Inode writeback is not safe when the uid or gid are invalid. */
2786 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2787 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2788 		return -EOVERFLOW;
2789 
2790 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2791 
2792 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2793 	if (error)
2794 		return error;
2795 	if (IS_APPEND(dir))
2796 		return -EPERM;
2797 
2798 	if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2799 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2800 	    HAS_UNMAPPED_ID(mnt_userns, inode))
2801 		return -EPERM;
2802 	if (isdir) {
2803 		if (!d_is_dir(victim))
2804 			return -ENOTDIR;
2805 		if (IS_ROOT(victim))
2806 			return -EBUSY;
2807 	} else if (d_is_dir(victim))
2808 		return -EISDIR;
2809 	if (IS_DEADDIR(dir))
2810 		return -ENOENT;
2811 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2812 		return -EBUSY;
2813 	return 0;
2814 }
2815 
2816 /*	Check whether we can create an object with dentry child in directory
2817  *  dir.
2818  *  1. We can't do it if child already exists (open has special treatment for
2819  *     this case, but since we are inlined it's OK)
2820  *  2. We can't do it if dir is read-only (done in permission())
2821  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2822  *  4. We should have write and exec permissions on dir
2823  *  5. We can't do it if dir is immutable (done in permission())
2824  */
2825 static inline int may_create(struct user_namespace *mnt_userns,
2826 			     struct inode *dir, struct dentry *child)
2827 {
2828 	struct user_namespace *s_user_ns;
2829 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2830 	if (child->d_inode)
2831 		return -EEXIST;
2832 	if (IS_DEADDIR(dir))
2833 		return -ENOENT;
2834 	s_user_ns = dir->i_sb->s_user_ns;
2835 	if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) ||
2836 	    !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns)))
2837 		return -EOVERFLOW;
2838 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2839 }
2840 
2841 /*
2842  * p1 and p2 should be directories on the same fs.
2843  */
2844 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2845 {
2846 	struct dentry *p;
2847 
2848 	if (p1 == p2) {
2849 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2850 		return NULL;
2851 	}
2852 
2853 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2854 
2855 	p = d_ancestor(p2, p1);
2856 	if (p) {
2857 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2858 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2859 		return p;
2860 	}
2861 
2862 	p = d_ancestor(p1, p2);
2863 	if (p) {
2864 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2865 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2866 		return p;
2867 	}
2868 
2869 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2870 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2871 	return NULL;
2872 }
2873 EXPORT_SYMBOL(lock_rename);
2874 
2875 void unlock_rename(struct dentry *p1, struct dentry *p2)
2876 {
2877 	inode_unlock(p1->d_inode);
2878 	if (p1 != p2) {
2879 		inode_unlock(p2->d_inode);
2880 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2881 	}
2882 }
2883 EXPORT_SYMBOL(unlock_rename);
2884 
2885 /**
2886  * vfs_create - create new file
2887  * @mnt_userns:	user namespace of the mount the inode was found from
2888  * @dir:	inode of @dentry
2889  * @dentry:	pointer to dentry of the base directory
2890  * @mode:	mode of the new file
2891  * @want_excl:	whether the file must not yet exist
2892  *
2893  * Create a new file.
2894  *
2895  * If the inode has been found through an idmapped mount the user namespace of
2896  * the vfsmount must be passed through @mnt_userns. This function will then take
2897  * care to map the inode according to @mnt_userns before checking permissions.
2898  * On non-idmapped mounts or if permission checking is to be performed on the
2899  * raw inode simply passs init_user_ns.
2900  */
2901 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2902 	       struct dentry *dentry, umode_t mode, bool want_excl)
2903 {
2904 	int error = may_create(mnt_userns, dir, dentry);
2905 	if (error)
2906 		return error;
2907 
2908 	if (!dir->i_op->create)
2909 		return -EACCES;	/* shouldn't it be ENOSYS? */
2910 	mode &= S_IALLUGO;
2911 	mode |= S_IFREG;
2912 	error = security_inode_create(dir, dentry, mode);
2913 	if (error)
2914 		return error;
2915 	error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
2916 	if (!error)
2917 		fsnotify_create(dir, dentry);
2918 	return error;
2919 }
2920 EXPORT_SYMBOL(vfs_create);
2921 
2922 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2923 		int (*f)(struct dentry *, umode_t, void *),
2924 		void *arg)
2925 {
2926 	struct inode *dir = dentry->d_parent->d_inode;
2927 	int error = may_create(&init_user_ns, dir, dentry);
2928 	if (error)
2929 		return error;
2930 
2931 	mode &= S_IALLUGO;
2932 	mode |= S_IFREG;
2933 	error = security_inode_create(dir, dentry, mode);
2934 	if (error)
2935 		return error;
2936 	error = f(dentry, mode, arg);
2937 	if (!error)
2938 		fsnotify_create(dir, dentry);
2939 	return error;
2940 }
2941 EXPORT_SYMBOL(vfs_mkobj);
2942 
2943 bool may_open_dev(const struct path *path)
2944 {
2945 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2946 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2947 }
2948 
2949 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
2950 		    int acc_mode, int flag)
2951 {
2952 	struct dentry *dentry = path->dentry;
2953 	struct inode *inode = dentry->d_inode;
2954 	int error;
2955 
2956 	if (!inode)
2957 		return -ENOENT;
2958 
2959 	switch (inode->i_mode & S_IFMT) {
2960 	case S_IFLNK:
2961 		return -ELOOP;
2962 	case S_IFDIR:
2963 		if (acc_mode & MAY_WRITE)
2964 			return -EISDIR;
2965 		if (acc_mode & MAY_EXEC)
2966 			return -EACCES;
2967 		break;
2968 	case S_IFBLK:
2969 	case S_IFCHR:
2970 		if (!may_open_dev(path))
2971 			return -EACCES;
2972 		fallthrough;
2973 	case S_IFIFO:
2974 	case S_IFSOCK:
2975 		if (acc_mode & MAY_EXEC)
2976 			return -EACCES;
2977 		flag &= ~O_TRUNC;
2978 		break;
2979 	case S_IFREG:
2980 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
2981 			return -EACCES;
2982 		break;
2983 	}
2984 
2985 	error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
2986 	if (error)
2987 		return error;
2988 
2989 	/*
2990 	 * An append-only file must be opened in append mode for writing.
2991 	 */
2992 	if (IS_APPEND(inode)) {
2993 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2994 			return -EPERM;
2995 		if (flag & O_TRUNC)
2996 			return -EPERM;
2997 	}
2998 
2999 	/* O_NOATIME can only be set by the owner or superuser */
3000 	if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3001 		return -EPERM;
3002 
3003 	return 0;
3004 }
3005 
3006 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3007 {
3008 	const struct path *path = &filp->f_path;
3009 	struct inode *inode = path->dentry->d_inode;
3010 	int error = get_write_access(inode);
3011 	if (error)
3012 		return error;
3013 	/*
3014 	 * Refuse to truncate files with mandatory locks held on them.
3015 	 */
3016 	error = locks_verify_locked(filp);
3017 	if (!error)
3018 		error = security_path_truncate(path);
3019 	if (!error) {
3020 		error = do_truncate(mnt_userns, path->dentry, 0,
3021 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3022 				    filp);
3023 	}
3024 	put_write_access(inode);
3025 	return error;
3026 }
3027 
3028 static inline int open_to_namei_flags(int flag)
3029 {
3030 	if ((flag & O_ACCMODE) == 3)
3031 		flag--;
3032 	return flag;
3033 }
3034 
3035 static int may_o_create(struct user_namespace *mnt_userns,
3036 			const struct path *dir, struct dentry *dentry,
3037 			umode_t mode)
3038 {
3039 	struct user_namespace *s_user_ns;
3040 	int error = security_path_mknod(dir, dentry, mode, 0);
3041 	if (error)
3042 		return error;
3043 
3044 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3045 	if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) ||
3046 	    !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns)))
3047 		return -EOVERFLOW;
3048 
3049 	error = inode_permission(mnt_userns, dir->dentry->d_inode,
3050 				 MAY_WRITE | MAY_EXEC);
3051 	if (error)
3052 		return error;
3053 
3054 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3055 }
3056 
3057 /*
3058  * Attempt to atomically look up, create and open a file from a negative
3059  * dentry.
3060  *
3061  * Returns 0 if successful.  The file will have been created and attached to
3062  * @file by the filesystem calling finish_open().
3063  *
3064  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3065  * be set.  The caller will need to perform the open themselves.  @path will
3066  * have been updated to point to the new dentry.  This may be negative.
3067  *
3068  * Returns an error code otherwise.
3069  */
3070 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3071 				  struct file *file,
3072 				  int open_flag, umode_t mode)
3073 {
3074 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3075 	struct inode *dir =  nd->path.dentry->d_inode;
3076 	int error;
3077 
3078 	if (nd->flags & LOOKUP_DIRECTORY)
3079 		open_flag |= O_DIRECTORY;
3080 
3081 	file->f_path.dentry = DENTRY_NOT_SET;
3082 	file->f_path.mnt = nd->path.mnt;
3083 	error = dir->i_op->atomic_open(dir, dentry, file,
3084 				       open_to_namei_flags(open_flag), mode);
3085 	d_lookup_done(dentry);
3086 	if (!error) {
3087 		if (file->f_mode & FMODE_OPENED) {
3088 			if (unlikely(dentry != file->f_path.dentry)) {
3089 				dput(dentry);
3090 				dentry = dget(file->f_path.dentry);
3091 			}
3092 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3093 			error = -EIO;
3094 		} else {
3095 			if (file->f_path.dentry) {
3096 				dput(dentry);
3097 				dentry = file->f_path.dentry;
3098 			}
3099 			if (unlikely(d_is_negative(dentry)))
3100 				error = -ENOENT;
3101 		}
3102 	}
3103 	if (error) {
3104 		dput(dentry);
3105 		dentry = ERR_PTR(error);
3106 	}
3107 	return dentry;
3108 }
3109 
3110 /*
3111  * Look up and maybe create and open the last component.
3112  *
3113  * Must be called with parent locked (exclusive in O_CREAT case).
3114  *
3115  * Returns 0 on success, that is, if
3116  *  the file was successfully atomically created (if necessary) and opened, or
3117  *  the file was not completely opened at this time, though lookups and
3118  *  creations were performed.
3119  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3120  * In the latter case dentry returned in @path might be negative if O_CREAT
3121  * hadn't been specified.
3122  *
3123  * An error code is returned on failure.
3124  */
3125 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3126 				  const struct open_flags *op,
3127 				  bool got_write)
3128 {
3129 	struct user_namespace *mnt_userns;
3130 	struct dentry *dir = nd->path.dentry;
3131 	struct inode *dir_inode = dir->d_inode;
3132 	int open_flag = op->open_flag;
3133 	struct dentry *dentry;
3134 	int error, create_error = 0;
3135 	umode_t mode = op->mode;
3136 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3137 
3138 	if (unlikely(IS_DEADDIR(dir_inode)))
3139 		return ERR_PTR(-ENOENT);
3140 
3141 	file->f_mode &= ~FMODE_CREATED;
3142 	dentry = d_lookup(dir, &nd->last);
3143 	for (;;) {
3144 		if (!dentry) {
3145 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3146 			if (IS_ERR(dentry))
3147 				return dentry;
3148 		}
3149 		if (d_in_lookup(dentry))
3150 			break;
3151 
3152 		error = d_revalidate(dentry, nd->flags);
3153 		if (likely(error > 0))
3154 			break;
3155 		if (error)
3156 			goto out_dput;
3157 		d_invalidate(dentry);
3158 		dput(dentry);
3159 		dentry = NULL;
3160 	}
3161 	if (dentry->d_inode) {
3162 		/* Cached positive dentry: will open in f_op->open */
3163 		return dentry;
3164 	}
3165 
3166 	/*
3167 	 * Checking write permission is tricky, bacuse we don't know if we are
3168 	 * going to actually need it: O_CREAT opens should work as long as the
3169 	 * file exists.  But checking existence breaks atomicity.  The trick is
3170 	 * to check access and if not granted clear O_CREAT from the flags.
3171 	 *
3172 	 * Another problem is returing the "right" error value (e.g. for an
3173 	 * O_EXCL open we want to return EEXIST not EROFS).
3174 	 */
3175 	if (unlikely(!got_write))
3176 		open_flag &= ~O_TRUNC;
3177 	mnt_userns = mnt_user_ns(nd->path.mnt);
3178 	if (open_flag & O_CREAT) {
3179 		if (open_flag & O_EXCL)
3180 			open_flag &= ~O_TRUNC;
3181 		if (!IS_POSIXACL(dir->d_inode))
3182 			mode &= ~current_umask();
3183 		if (likely(got_write))
3184 			create_error = may_o_create(mnt_userns, &nd->path,
3185 						    dentry, mode);
3186 		else
3187 			create_error = -EROFS;
3188 	}
3189 	if (create_error)
3190 		open_flag &= ~O_CREAT;
3191 	if (dir_inode->i_op->atomic_open) {
3192 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3193 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3194 			dentry = ERR_PTR(create_error);
3195 		return dentry;
3196 	}
3197 
3198 	if (d_in_lookup(dentry)) {
3199 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3200 							     nd->flags);
3201 		d_lookup_done(dentry);
3202 		if (unlikely(res)) {
3203 			if (IS_ERR(res)) {
3204 				error = PTR_ERR(res);
3205 				goto out_dput;
3206 			}
3207 			dput(dentry);
3208 			dentry = res;
3209 		}
3210 	}
3211 
3212 	/* Negative dentry, just create the file */
3213 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3214 		file->f_mode |= FMODE_CREATED;
3215 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3216 		if (!dir_inode->i_op->create) {
3217 			error = -EACCES;
3218 			goto out_dput;
3219 		}
3220 
3221 		error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3222 						mode, open_flag & O_EXCL);
3223 		if (error)
3224 			goto out_dput;
3225 	}
3226 	if (unlikely(create_error) && !dentry->d_inode) {
3227 		error = create_error;
3228 		goto out_dput;
3229 	}
3230 	return dentry;
3231 
3232 out_dput:
3233 	dput(dentry);
3234 	return ERR_PTR(error);
3235 }
3236 
3237 static const char *open_last_lookups(struct nameidata *nd,
3238 		   struct file *file, const struct open_flags *op)
3239 {
3240 	struct dentry *dir = nd->path.dentry;
3241 	int open_flag = op->open_flag;
3242 	bool got_write = false;
3243 	unsigned seq;
3244 	struct inode *inode;
3245 	struct dentry *dentry;
3246 	const char *res;
3247 
3248 	nd->flags |= op->intent;
3249 
3250 	if (nd->last_type != LAST_NORM) {
3251 		if (nd->depth)
3252 			put_link(nd);
3253 		return handle_dots(nd, nd->last_type);
3254 	}
3255 
3256 	if (!(open_flag & O_CREAT)) {
3257 		if (nd->last.name[nd->last.len])
3258 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3259 		/* we _can_ be in RCU mode here */
3260 		dentry = lookup_fast(nd, &inode, &seq);
3261 		if (IS_ERR(dentry))
3262 			return ERR_CAST(dentry);
3263 		if (likely(dentry))
3264 			goto finish_lookup;
3265 
3266 		BUG_ON(nd->flags & LOOKUP_RCU);
3267 	} else {
3268 		/* create side of things */
3269 		if (nd->flags & LOOKUP_RCU) {
3270 			if (!try_to_unlazy(nd))
3271 				return ERR_PTR(-ECHILD);
3272 		}
3273 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3274 		/* trailing slashes? */
3275 		if (unlikely(nd->last.name[nd->last.len]))
3276 			return ERR_PTR(-EISDIR);
3277 	}
3278 
3279 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3280 		got_write = !mnt_want_write(nd->path.mnt);
3281 		/*
3282 		 * do _not_ fail yet - we might not need that or fail with
3283 		 * a different error; let lookup_open() decide; we'll be
3284 		 * dropping this one anyway.
3285 		 */
3286 	}
3287 	if (open_flag & O_CREAT)
3288 		inode_lock(dir->d_inode);
3289 	else
3290 		inode_lock_shared(dir->d_inode);
3291 	dentry = lookup_open(nd, file, op, got_write);
3292 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3293 		fsnotify_create(dir->d_inode, dentry);
3294 	if (open_flag & O_CREAT)
3295 		inode_unlock(dir->d_inode);
3296 	else
3297 		inode_unlock_shared(dir->d_inode);
3298 
3299 	if (got_write)
3300 		mnt_drop_write(nd->path.mnt);
3301 
3302 	if (IS_ERR(dentry))
3303 		return ERR_CAST(dentry);
3304 
3305 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3306 		dput(nd->path.dentry);
3307 		nd->path.dentry = dentry;
3308 		return NULL;
3309 	}
3310 
3311 finish_lookup:
3312 	if (nd->depth)
3313 		put_link(nd);
3314 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3315 	if (unlikely(res))
3316 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3317 	return res;
3318 }
3319 
3320 /*
3321  * Handle the last step of open()
3322  */
3323 static int do_open(struct nameidata *nd,
3324 		   struct file *file, const struct open_flags *op)
3325 {
3326 	struct user_namespace *mnt_userns;
3327 	int open_flag = op->open_flag;
3328 	bool do_truncate;
3329 	int acc_mode;
3330 	int error;
3331 
3332 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3333 		error = complete_walk(nd);
3334 		if (error)
3335 			return error;
3336 	}
3337 	if (!(file->f_mode & FMODE_CREATED))
3338 		audit_inode(nd->name, nd->path.dentry, 0);
3339 	mnt_userns = mnt_user_ns(nd->path.mnt);
3340 	if (open_flag & O_CREAT) {
3341 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3342 			return -EEXIST;
3343 		if (d_is_dir(nd->path.dentry))
3344 			return -EISDIR;
3345 		error = may_create_in_sticky(mnt_userns, nd,
3346 					     d_backing_inode(nd->path.dentry));
3347 		if (unlikely(error))
3348 			return error;
3349 	}
3350 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3351 		return -ENOTDIR;
3352 
3353 	do_truncate = false;
3354 	acc_mode = op->acc_mode;
3355 	if (file->f_mode & FMODE_CREATED) {
3356 		/* Don't check for write permission, don't truncate */
3357 		open_flag &= ~O_TRUNC;
3358 		acc_mode = 0;
3359 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3360 		error = mnt_want_write(nd->path.mnt);
3361 		if (error)
3362 			return error;
3363 		do_truncate = true;
3364 	}
3365 	error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3366 	if (!error && !(file->f_mode & FMODE_OPENED))
3367 		error = vfs_open(&nd->path, file);
3368 	if (!error)
3369 		error = ima_file_check(file, op->acc_mode);
3370 	if (!error && do_truncate)
3371 		error = handle_truncate(mnt_userns, file);
3372 	if (unlikely(error > 0)) {
3373 		WARN_ON(1);
3374 		error = -EINVAL;
3375 	}
3376 	if (do_truncate)
3377 		mnt_drop_write(nd->path.mnt);
3378 	return error;
3379 }
3380 
3381 /**
3382  * vfs_tmpfile - create tmpfile
3383  * @mnt_userns:	user namespace of the mount the inode was found from
3384  * @dentry:	pointer to dentry of the base directory
3385  * @mode:	mode of the new tmpfile
3386  * @open_flags:	flags
3387  *
3388  * Create a temporary file.
3389  *
3390  * If the inode has been found through an idmapped mount the user namespace of
3391  * the vfsmount must be passed through @mnt_userns. This function will then take
3392  * care to map the inode according to @mnt_userns before checking permissions.
3393  * On non-idmapped mounts or if permission checking is to be performed on the
3394  * raw inode simply passs init_user_ns.
3395  */
3396 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3397 			   struct dentry *dentry, umode_t mode, int open_flag)
3398 {
3399 	struct dentry *child = NULL;
3400 	struct inode *dir = dentry->d_inode;
3401 	struct inode *inode;
3402 	int error;
3403 
3404 	/* we want directory to be writable */
3405 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3406 	if (error)
3407 		goto out_err;
3408 	error = -EOPNOTSUPP;
3409 	if (!dir->i_op->tmpfile)
3410 		goto out_err;
3411 	error = -ENOMEM;
3412 	child = d_alloc(dentry, &slash_name);
3413 	if (unlikely(!child))
3414 		goto out_err;
3415 	error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3416 	if (error)
3417 		goto out_err;
3418 	error = -ENOENT;
3419 	inode = child->d_inode;
3420 	if (unlikely(!inode))
3421 		goto out_err;
3422 	if (!(open_flag & O_EXCL)) {
3423 		spin_lock(&inode->i_lock);
3424 		inode->i_state |= I_LINKABLE;
3425 		spin_unlock(&inode->i_lock);
3426 	}
3427 	ima_post_create_tmpfile(mnt_userns, inode);
3428 	return child;
3429 
3430 out_err:
3431 	dput(child);
3432 	return ERR_PTR(error);
3433 }
3434 EXPORT_SYMBOL(vfs_tmpfile);
3435 
3436 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3437 		const struct open_flags *op,
3438 		struct file *file)
3439 {
3440 	struct user_namespace *mnt_userns;
3441 	struct dentry *child;
3442 	struct path path;
3443 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3444 	if (unlikely(error))
3445 		return error;
3446 	error = mnt_want_write(path.mnt);
3447 	if (unlikely(error))
3448 		goto out;
3449 	mnt_userns = mnt_user_ns(path.mnt);
3450 	child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3451 	error = PTR_ERR(child);
3452 	if (IS_ERR(child))
3453 		goto out2;
3454 	dput(path.dentry);
3455 	path.dentry = child;
3456 	audit_inode(nd->name, child, 0);
3457 	/* Don't check for other permissions, the inode was just created */
3458 	error = may_open(mnt_userns, &path, 0, op->open_flag);
3459 	if (!error)
3460 		error = vfs_open(&path, file);
3461 out2:
3462 	mnt_drop_write(path.mnt);
3463 out:
3464 	path_put(&path);
3465 	return error;
3466 }
3467 
3468 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3469 {
3470 	struct path path;
3471 	int error = path_lookupat(nd, flags, &path);
3472 	if (!error) {
3473 		audit_inode(nd->name, path.dentry, 0);
3474 		error = vfs_open(&path, file);
3475 		path_put(&path);
3476 	}
3477 	return error;
3478 }
3479 
3480 static struct file *path_openat(struct nameidata *nd,
3481 			const struct open_flags *op, unsigned flags)
3482 {
3483 	struct file *file;
3484 	int error;
3485 
3486 	file = alloc_empty_file(op->open_flag, current_cred());
3487 	if (IS_ERR(file))
3488 		return file;
3489 
3490 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3491 		error = do_tmpfile(nd, flags, op, file);
3492 	} else if (unlikely(file->f_flags & O_PATH)) {
3493 		error = do_o_path(nd, flags, file);
3494 	} else {
3495 		const char *s = path_init(nd, flags);
3496 		while (!(error = link_path_walk(s, nd)) &&
3497 		       (s = open_last_lookups(nd, file, op)) != NULL)
3498 			;
3499 		if (!error)
3500 			error = do_open(nd, file, op);
3501 		terminate_walk(nd);
3502 	}
3503 	if (likely(!error)) {
3504 		if (likely(file->f_mode & FMODE_OPENED))
3505 			return file;
3506 		WARN_ON(1);
3507 		error = -EINVAL;
3508 	}
3509 	fput(file);
3510 	if (error == -EOPENSTALE) {
3511 		if (flags & LOOKUP_RCU)
3512 			error = -ECHILD;
3513 		else
3514 			error = -ESTALE;
3515 	}
3516 	return ERR_PTR(error);
3517 }
3518 
3519 struct file *do_filp_open(int dfd, struct filename *pathname,
3520 		const struct open_flags *op)
3521 {
3522 	struct nameidata nd;
3523 	int flags = op->lookup_flags;
3524 	struct file *filp;
3525 
3526 	set_nameidata(&nd, dfd, pathname);
3527 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3528 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3529 		filp = path_openat(&nd, op, flags);
3530 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3531 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3532 	restore_nameidata();
3533 	return filp;
3534 }
3535 
3536 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3537 		const char *name, const struct open_flags *op)
3538 {
3539 	struct nameidata nd;
3540 	struct file *file;
3541 	struct filename *filename;
3542 	int flags = op->lookup_flags | LOOKUP_ROOT;
3543 
3544 	nd.root.mnt = mnt;
3545 	nd.root.dentry = dentry;
3546 
3547 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3548 		return ERR_PTR(-ELOOP);
3549 
3550 	filename = getname_kernel(name);
3551 	if (IS_ERR(filename))
3552 		return ERR_CAST(filename);
3553 
3554 	set_nameidata(&nd, -1, filename);
3555 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3556 	if (unlikely(file == ERR_PTR(-ECHILD)))
3557 		file = path_openat(&nd, op, flags);
3558 	if (unlikely(file == ERR_PTR(-ESTALE)))
3559 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3560 	restore_nameidata();
3561 	putname(filename);
3562 	return file;
3563 }
3564 
3565 static struct dentry *filename_create(int dfd, struct filename *name,
3566 				struct path *path, unsigned int lookup_flags)
3567 {
3568 	struct dentry *dentry = ERR_PTR(-EEXIST);
3569 	struct qstr last;
3570 	int type;
3571 	int err2;
3572 	int error;
3573 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3574 
3575 	/*
3576 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3577 	 * other flags passed in are ignored!
3578 	 */
3579 	lookup_flags &= LOOKUP_REVAL;
3580 
3581 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3582 	if (IS_ERR(name))
3583 		return ERR_CAST(name);
3584 
3585 	/*
3586 	 * Yucky last component or no last component at all?
3587 	 * (foo/., foo/.., /////)
3588 	 */
3589 	if (unlikely(type != LAST_NORM))
3590 		goto out;
3591 
3592 	/* don't fail immediately if it's r/o, at least try to report other errors */
3593 	err2 = mnt_want_write(path->mnt);
3594 	/*
3595 	 * Do the final lookup.
3596 	 */
3597 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3598 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3599 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3600 	if (IS_ERR(dentry))
3601 		goto unlock;
3602 
3603 	error = -EEXIST;
3604 	if (d_is_positive(dentry))
3605 		goto fail;
3606 
3607 	/*
3608 	 * Special case - lookup gave negative, but... we had foo/bar/
3609 	 * From the vfs_mknod() POV we just have a negative dentry -
3610 	 * all is fine. Let's be bastards - you had / on the end, you've
3611 	 * been asking for (non-existent) directory. -ENOENT for you.
3612 	 */
3613 	if (unlikely(!is_dir && last.name[last.len])) {
3614 		error = -ENOENT;
3615 		goto fail;
3616 	}
3617 	if (unlikely(err2)) {
3618 		error = err2;
3619 		goto fail;
3620 	}
3621 	putname(name);
3622 	return dentry;
3623 fail:
3624 	dput(dentry);
3625 	dentry = ERR_PTR(error);
3626 unlock:
3627 	inode_unlock(path->dentry->d_inode);
3628 	if (!err2)
3629 		mnt_drop_write(path->mnt);
3630 out:
3631 	path_put(path);
3632 	putname(name);
3633 	return dentry;
3634 }
3635 
3636 struct dentry *kern_path_create(int dfd, const char *pathname,
3637 				struct path *path, unsigned int lookup_flags)
3638 {
3639 	return filename_create(dfd, getname_kernel(pathname),
3640 				path, lookup_flags);
3641 }
3642 EXPORT_SYMBOL(kern_path_create);
3643 
3644 void done_path_create(struct path *path, struct dentry *dentry)
3645 {
3646 	dput(dentry);
3647 	inode_unlock(path->dentry->d_inode);
3648 	mnt_drop_write(path->mnt);
3649 	path_put(path);
3650 }
3651 EXPORT_SYMBOL(done_path_create);
3652 
3653 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3654 				struct path *path, unsigned int lookup_flags)
3655 {
3656 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3657 }
3658 EXPORT_SYMBOL(user_path_create);
3659 
3660 /**
3661  * vfs_mknod - create device node or file
3662  * @mnt_userns:	user namespace of the mount the inode was found from
3663  * @dir:	inode of @dentry
3664  * @dentry:	pointer to dentry of the base directory
3665  * @mode:	mode of the new device node or file
3666  * @dev:	device number of device to create
3667  *
3668  * Create a device node or file.
3669  *
3670  * If the inode has been found through an idmapped mount the user namespace of
3671  * the vfsmount must be passed through @mnt_userns. This function will then take
3672  * care to map the inode according to @mnt_userns before checking permissions.
3673  * On non-idmapped mounts or if permission checking is to be performed on the
3674  * raw inode simply passs init_user_ns.
3675  */
3676 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3677 	      struct dentry *dentry, umode_t mode, dev_t dev)
3678 {
3679 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3680 	int error = may_create(mnt_userns, dir, dentry);
3681 
3682 	if (error)
3683 		return error;
3684 
3685 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3686 	    !capable(CAP_MKNOD))
3687 		return -EPERM;
3688 
3689 	if (!dir->i_op->mknod)
3690 		return -EPERM;
3691 
3692 	error = devcgroup_inode_mknod(mode, dev);
3693 	if (error)
3694 		return error;
3695 
3696 	error = security_inode_mknod(dir, dentry, mode, dev);
3697 	if (error)
3698 		return error;
3699 
3700 	error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3701 	if (!error)
3702 		fsnotify_create(dir, dentry);
3703 	return error;
3704 }
3705 EXPORT_SYMBOL(vfs_mknod);
3706 
3707 static int may_mknod(umode_t mode)
3708 {
3709 	switch (mode & S_IFMT) {
3710 	case S_IFREG:
3711 	case S_IFCHR:
3712 	case S_IFBLK:
3713 	case S_IFIFO:
3714 	case S_IFSOCK:
3715 	case 0: /* zero mode translates to S_IFREG */
3716 		return 0;
3717 	case S_IFDIR:
3718 		return -EPERM;
3719 	default:
3720 		return -EINVAL;
3721 	}
3722 }
3723 
3724 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3725 		unsigned int dev)
3726 {
3727 	struct user_namespace *mnt_userns;
3728 	struct dentry *dentry;
3729 	struct path path;
3730 	int error;
3731 	unsigned int lookup_flags = 0;
3732 
3733 	error = may_mknod(mode);
3734 	if (error)
3735 		return error;
3736 retry:
3737 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3738 	if (IS_ERR(dentry))
3739 		return PTR_ERR(dentry);
3740 
3741 	if (!IS_POSIXACL(path.dentry->d_inode))
3742 		mode &= ~current_umask();
3743 	error = security_path_mknod(&path, dentry, mode, dev);
3744 	if (error)
3745 		goto out;
3746 
3747 	mnt_userns = mnt_user_ns(path.mnt);
3748 	switch (mode & S_IFMT) {
3749 		case 0: case S_IFREG:
3750 			error = vfs_create(mnt_userns, path.dentry->d_inode,
3751 					   dentry, mode, true);
3752 			if (!error)
3753 				ima_post_path_mknod(mnt_userns, dentry);
3754 			break;
3755 		case S_IFCHR: case S_IFBLK:
3756 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3757 					  dentry, mode, new_decode_dev(dev));
3758 			break;
3759 		case S_IFIFO: case S_IFSOCK:
3760 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3761 					  dentry, mode, 0);
3762 			break;
3763 	}
3764 out:
3765 	done_path_create(&path, dentry);
3766 	if (retry_estale(error, lookup_flags)) {
3767 		lookup_flags |= LOOKUP_REVAL;
3768 		goto retry;
3769 	}
3770 	return error;
3771 }
3772 
3773 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3774 		unsigned int, dev)
3775 {
3776 	return do_mknodat(dfd, filename, mode, dev);
3777 }
3778 
3779 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3780 {
3781 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3782 }
3783 
3784 /**
3785  * vfs_mkdir - create directory
3786  * @mnt_userns:	user namespace of the mount the inode was found from
3787  * @dir:	inode of @dentry
3788  * @dentry:	pointer to dentry of the base directory
3789  * @mode:	mode of the new directory
3790  *
3791  * Create a directory.
3792  *
3793  * If the inode has been found through an idmapped mount the user namespace of
3794  * the vfsmount must be passed through @mnt_userns. This function will then take
3795  * care to map the inode according to @mnt_userns before checking permissions.
3796  * On non-idmapped mounts or if permission checking is to be performed on the
3797  * raw inode simply passs init_user_ns.
3798  */
3799 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3800 	      struct dentry *dentry, umode_t mode)
3801 {
3802 	int error = may_create(mnt_userns, dir, dentry);
3803 	unsigned max_links = dir->i_sb->s_max_links;
3804 
3805 	if (error)
3806 		return error;
3807 
3808 	if (!dir->i_op->mkdir)
3809 		return -EPERM;
3810 
3811 	mode &= (S_IRWXUGO|S_ISVTX);
3812 	error = security_inode_mkdir(dir, dentry, mode);
3813 	if (error)
3814 		return error;
3815 
3816 	if (max_links && dir->i_nlink >= max_links)
3817 		return -EMLINK;
3818 
3819 	error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3820 	if (!error)
3821 		fsnotify_mkdir(dir, dentry);
3822 	return error;
3823 }
3824 EXPORT_SYMBOL(vfs_mkdir);
3825 
3826 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3827 {
3828 	struct dentry *dentry;
3829 	struct path path;
3830 	int error;
3831 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3832 
3833 retry:
3834 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3835 	if (IS_ERR(dentry))
3836 		return PTR_ERR(dentry);
3837 
3838 	if (!IS_POSIXACL(path.dentry->d_inode))
3839 		mode &= ~current_umask();
3840 	error = security_path_mkdir(&path, dentry, mode);
3841 	if (!error) {
3842 		struct user_namespace *mnt_userns;
3843 		mnt_userns = mnt_user_ns(path.mnt);
3844 		error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
3845 				  mode);
3846 	}
3847 	done_path_create(&path, dentry);
3848 	if (retry_estale(error, lookup_flags)) {
3849 		lookup_flags |= LOOKUP_REVAL;
3850 		goto retry;
3851 	}
3852 	return error;
3853 }
3854 
3855 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3856 {
3857 	return do_mkdirat(dfd, pathname, mode);
3858 }
3859 
3860 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3861 {
3862 	return do_mkdirat(AT_FDCWD, pathname, mode);
3863 }
3864 
3865 /**
3866  * vfs_rmdir - remove directory
3867  * @mnt_userns:	user namespace of the mount the inode was found from
3868  * @dir:	inode of @dentry
3869  * @dentry:	pointer to dentry of the base directory
3870  *
3871  * Remove a directory.
3872  *
3873  * If the inode has been found through an idmapped mount the user namespace of
3874  * the vfsmount must be passed through @mnt_userns. This function will then take
3875  * care to map the inode according to @mnt_userns before checking permissions.
3876  * On non-idmapped mounts or if permission checking is to be performed on the
3877  * raw inode simply passs init_user_ns.
3878  */
3879 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
3880 		     struct dentry *dentry)
3881 {
3882 	int error = may_delete(mnt_userns, dir, dentry, 1);
3883 
3884 	if (error)
3885 		return error;
3886 
3887 	if (!dir->i_op->rmdir)
3888 		return -EPERM;
3889 
3890 	dget(dentry);
3891 	inode_lock(dentry->d_inode);
3892 
3893 	error = -EBUSY;
3894 	if (is_local_mountpoint(dentry))
3895 		goto out;
3896 
3897 	error = security_inode_rmdir(dir, dentry);
3898 	if (error)
3899 		goto out;
3900 
3901 	error = dir->i_op->rmdir(dir, dentry);
3902 	if (error)
3903 		goto out;
3904 
3905 	shrink_dcache_parent(dentry);
3906 	dentry->d_inode->i_flags |= S_DEAD;
3907 	dont_mount(dentry);
3908 	detach_mounts(dentry);
3909 	fsnotify_rmdir(dir, dentry);
3910 
3911 out:
3912 	inode_unlock(dentry->d_inode);
3913 	dput(dentry);
3914 	if (!error)
3915 		d_delete(dentry);
3916 	return error;
3917 }
3918 EXPORT_SYMBOL(vfs_rmdir);
3919 
3920 long do_rmdir(int dfd, struct filename *name)
3921 {
3922 	struct user_namespace *mnt_userns;
3923 	int error = 0;
3924 	struct dentry *dentry;
3925 	struct path path;
3926 	struct qstr last;
3927 	int type;
3928 	unsigned int lookup_flags = 0;
3929 retry:
3930 	name = filename_parentat(dfd, name, lookup_flags,
3931 				&path, &last, &type);
3932 	if (IS_ERR(name))
3933 		return PTR_ERR(name);
3934 
3935 	switch (type) {
3936 	case LAST_DOTDOT:
3937 		error = -ENOTEMPTY;
3938 		goto exit1;
3939 	case LAST_DOT:
3940 		error = -EINVAL;
3941 		goto exit1;
3942 	case LAST_ROOT:
3943 		error = -EBUSY;
3944 		goto exit1;
3945 	}
3946 
3947 	error = mnt_want_write(path.mnt);
3948 	if (error)
3949 		goto exit1;
3950 
3951 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3952 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3953 	error = PTR_ERR(dentry);
3954 	if (IS_ERR(dentry))
3955 		goto exit2;
3956 	if (!dentry->d_inode) {
3957 		error = -ENOENT;
3958 		goto exit3;
3959 	}
3960 	error = security_path_rmdir(&path, dentry);
3961 	if (error)
3962 		goto exit3;
3963 	mnt_userns = mnt_user_ns(path.mnt);
3964 	error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
3965 exit3:
3966 	dput(dentry);
3967 exit2:
3968 	inode_unlock(path.dentry->d_inode);
3969 	mnt_drop_write(path.mnt);
3970 exit1:
3971 	path_put(&path);
3972 	if (retry_estale(error, lookup_flags)) {
3973 		lookup_flags |= LOOKUP_REVAL;
3974 		goto retry;
3975 	}
3976 	putname(name);
3977 	return error;
3978 }
3979 
3980 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3981 {
3982 	return do_rmdir(AT_FDCWD, getname(pathname));
3983 }
3984 
3985 /**
3986  * vfs_unlink - unlink a filesystem object
3987  * @mnt_userns:	user namespace of the mount the inode was found from
3988  * @dir:	parent directory
3989  * @dentry:	victim
3990  * @delegated_inode: returns victim inode, if the inode is delegated.
3991  *
3992  * The caller must hold dir->i_mutex.
3993  *
3994  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3995  * return a reference to the inode in delegated_inode.  The caller
3996  * should then break the delegation on that inode and retry.  Because
3997  * breaking a delegation may take a long time, the caller should drop
3998  * dir->i_mutex before doing so.
3999  *
4000  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4001  * be appropriate for callers that expect the underlying filesystem not
4002  * to be NFS exported.
4003  *
4004  * If the inode has been found through an idmapped mount the user namespace of
4005  * the vfsmount must be passed through @mnt_userns. This function will then take
4006  * care to map the inode according to @mnt_userns before checking permissions.
4007  * On non-idmapped mounts or if permission checking is to be performed on the
4008  * raw inode simply passs init_user_ns.
4009  */
4010 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4011 	       struct dentry *dentry, struct inode **delegated_inode)
4012 {
4013 	struct inode *target = dentry->d_inode;
4014 	int error = may_delete(mnt_userns, dir, dentry, 0);
4015 
4016 	if (error)
4017 		return error;
4018 
4019 	if (!dir->i_op->unlink)
4020 		return -EPERM;
4021 
4022 	inode_lock(target);
4023 	if (is_local_mountpoint(dentry))
4024 		error = -EBUSY;
4025 	else {
4026 		error = security_inode_unlink(dir, dentry);
4027 		if (!error) {
4028 			error = try_break_deleg(target, delegated_inode);
4029 			if (error)
4030 				goto out;
4031 			error = dir->i_op->unlink(dir, dentry);
4032 			if (!error) {
4033 				dont_mount(dentry);
4034 				detach_mounts(dentry);
4035 				fsnotify_unlink(dir, dentry);
4036 			}
4037 		}
4038 	}
4039 out:
4040 	inode_unlock(target);
4041 
4042 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4043 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4044 		fsnotify_link_count(target);
4045 		d_delete(dentry);
4046 	}
4047 
4048 	return error;
4049 }
4050 EXPORT_SYMBOL(vfs_unlink);
4051 
4052 /*
4053  * Make sure that the actual truncation of the file will occur outside its
4054  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4055  * writeout happening, and we don't want to prevent access to the directory
4056  * while waiting on the I/O.
4057  */
4058 long do_unlinkat(int dfd, struct filename *name)
4059 {
4060 	int error;
4061 	struct dentry *dentry;
4062 	struct path path;
4063 	struct qstr last;
4064 	int type;
4065 	struct inode *inode = NULL;
4066 	struct inode *delegated_inode = NULL;
4067 	unsigned int lookup_flags = 0;
4068 retry:
4069 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4070 	if (IS_ERR(name))
4071 		return PTR_ERR(name);
4072 
4073 	error = -EISDIR;
4074 	if (type != LAST_NORM)
4075 		goto exit1;
4076 
4077 	error = mnt_want_write(path.mnt);
4078 	if (error)
4079 		goto exit1;
4080 retry_deleg:
4081 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4082 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4083 	error = PTR_ERR(dentry);
4084 	if (!IS_ERR(dentry)) {
4085 		struct user_namespace *mnt_userns;
4086 
4087 		/* Why not before? Because we want correct error value */
4088 		if (last.name[last.len])
4089 			goto slashes;
4090 		inode = dentry->d_inode;
4091 		if (d_is_negative(dentry))
4092 			goto slashes;
4093 		ihold(inode);
4094 		error = security_path_unlink(&path, dentry);
4095 		if (error)
4096 			goto exit2;
4097 		mnt_userns = mnt_user_ns(path.mnt);
4098 		error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4099 				   &delegated_inode);
4100 exit2:
4101 		dput(dentry);
4102 	}
4103 	inode_unlock(path.dentry->d_inode);
4104 	if (inode)
4105 		iput(inode);	/* truncate the inode here */
4106 	inode = NULL;
4107 	if (delegated_inode) {
4108 		error = break_deleg_wait(&delegated_inode);
4109 		if (!error)
4110 			goto retry_deleg;
4111 	}
4112 	mnt_drop_write(path.mnt);
4113 exit1:
4114 	path_put(&path);
4115 	if (retry_estale(error, lookup_flags)) {
4116 		lookup_flags |= LOOKUP_REVAL;
4117 		inode = NULL;
4118 		goto retry;
4119 	}
4120 	putname(name);
4121 	return error;
4122 
4123 slashes:
4124 	if (d_is_negative(dentry))
4125 		error = -ENOENT;
4126 	else if (d_is_dir(dentry))
4127 		error = -EISDIR;
4128 	else
4129 		error = -ENOTDIR;
4130 	goto exit2;
4131 }
4132 
4133 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4134 {
4135 	if ((flag & ~AT_REMOVEDIR) != 0)
4136 		return -EINVAL;
4137 
4138 	if (flag & AT_REMOVEDIR)
4139 		return do_rmdir(dfd, getname(pathname));
4140 	return do_unlinkat(dfd, getname(pathname));
4141 }
4142 
4143 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4144 {
4145 	return do_unlinkat(AT_FDCWD, getname(pathname));
4146 }
4147 
4148 /**
4149  * vfs_symlink - create symlink
4150  * @mnt_userns:	user namespace of the mount the inode was found from
4151  * @dir:	inode of @dentry
4152  * @dentry:	pointer to dentry of the base directory
4153  * @oldname:	name of the file to link to
4154  *
4155  * Create a symlink.
4156  *
4157  * If the inode has been found through an idmapped mount the user namespace of
4158  * the vfsmount must be passed through @mnt_userns. This function will then take
4159  * care to map the inode according to @mnt_userns before checking permissions.
4160  * On non-idmapped mounts or if permission checking is to be performed on the
4161  * raw inode simply passs init_user_ns.
4162  */
4163 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4164 		struct dentry *dentry, const char *oldname)
4165 {
4166 	int error = may_create(mnt_userns, dir, dentry);
4167 
4168 	if (error)
4169 		return error;
4170 
4171 	if (!dir->i_op->symlink)
4172 		return -EPERM;
4173 
4174 	error = security_inode_symlink(dir, dentry, oldname);
4175 	if (error)
4176 		return error;
4177 
4178 	error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4179 	if (!error)
4180 		fsnotify_create(dir, dentry);
4181 	return error;
4182 }
4183 EXPORT_SYMBOL(vfs_symlink);
4184 
4185 static long do_symlinkat(const char __user *oldname, int newdfd,
4186 		  const char __user *newname)
4187 {
4188 	int error;
4189 	struct filename *from;
4190 	struct dentry *dentry;
4191 	struct path path;
4192 	unsigned int lookup_flags = 0;
4193 
4194 	from = getname(oldname);
4195 	if (IS_ERR(from))
4196 		return PTR_ERR(from);
4197 retry:
4198 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4199 	error = PTR_ERR(dentry);
4200 	if (IS_ERR(dentry))
4201 		goto out_putname;
4202 
4203 	error = security_path_symlink(&path, dentry, from->name);
4204 	if (!error) {
4205 		struct user_namespace *mnt_userns;
4206 
4207 		mnt_userns = mnt_user_ns(path.mnt);
4208 		error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4209 				    from->name);
4210 	}
4211 	done_path_create(&path, dentry);
4212 	if (retry_estale(error, lookup_flags)) {
4213 		lookup_flags |= LOOKUP_REVAL;
4214 		goto retry;
4215 	}
4216 out_putname:
4217 	putname(from);
4218 	return error;
4219 }
4220 
4221 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4222 		int, newdfd, const char __user *, newname)
4223 {
4224 	return do_symlinkat(oldname, newdfd, newname);
4225 }
4226 
4227 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4228 {
4229 	return do_symlinkat(oldname, AT_FDCWD, newname);
4230 }
4231 
4232 /**
4233  * vfs_link - create a new link
4234  * @old_dentry:	object to be linked
4235  * @mnt_userns:	the user namespace of the mount
4236  * @dir:	new parent
4237  * @new_dentry:	where to create the new link
4238  * @delegated_inode: returns inode needing a delegation break
4239  *
4240  * The caller must hold dir->i_mutex
4241  *
4242  * If vfs_link discovers a delegation on the to-be-linked file in need
4243  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4244  * inode in delegated_inode.  The caller should then break the delegation
4245  * and retry.  Because breaking a delegation may take a long time, the
4246  * caller should drop the i_mutex before doing so.
4247  *
4248  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4249  * be appropriate for callers that expect the underlying filesystem not
4250  * to be NFS exported.
4251  *
4252  * If the inode has been found through an idmapped mount the user namespace of
4253  * the vfsmount must be passed through @mnt_userns. This function will then take
4254  * care to map the inode according to @mnt_userns before checking permissions.
4255  * On non-idmapped mounts or if permission checking is to be performed on the
4256  * raw inode simply passs init_user_ns.
4257  */
4258 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4259 	     struct inode *dir, struct dentry *new_dentry,
4260 	     struct inode **delegated_inode)
4261 {
4262 	struct inode *inode = old_dentry->d_inode;
4263 	unsigned max_links = dir->i_sb->s_max_links;
4264 	int error;
4265 
4266 	if (!inode)
4267 		return -ENOENT;
4268 
4269 	error = may_create(mnt_userns, dir, new_dentry);
4270 	if (error)
4271 		return error;
4272 
4273 	if (dir->i_sb != inode->i_sb)
4274 		return -EXDEV;
4275 
4276 	/*
4277 	 * A link to an append-only or immutable file cannot be created.
4278 	 */
4279 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4280 		return -EPERM;
4281 	/*
4282 	 * Updating the link count will likely cause i_uid and i_gid to
4283 	 * be writen back improperly if their true value is unknown to
4284 	 * the vfs.
4285 	 */
4286 	if (HAS_UNMAPPED_ID(mnt_userns, inode))
4287 		return -EPERM;
4288 	if (!dir->i_op->link)
4289 		return -EPERM;
4290 	if (S_ISDIR(inode->i_mode))
4291 		return -EPERM;
4292 
4293 	error = security_inode_link(old_dentry, dir, new_dentry);
4294 	if (error)
4295 		return error;
4296 
4297 	inode_lock(inode);
4298 	/* Make sure we don't allow creating hardlink to an unlinked file */
4299 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4300 		error =  -ENOENT;
4301 	else if (max_links && inode->i_nlink >= max_links)
4302 		error = -EMLINK;
4303 	else {
4304 		error = try_break_deleg(inode, delegated_inode);
4305 		if (!error)
4306 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4307 	}
4308 
4309 	if (!error && (inode->i_state & I_LINKABLE)) {
4310 		spin_lock(&inode->i_lock);
4311 		inode->i_state &= ~I_LINKABLE;
4312 		spin_unlock(&inode->i_lock);
4313 	}
4314 	inode_unlock(inode);
4315 	if (!error)
4316 		fsnotify_link(dir, inode, new_dentry);
4317 	return error;
4318 }
4319 EXPORT_SYMBOL(vfs_link);
4320 
4321 /*
4322  * Hardlinks are often used in delicate situations.  We avoid
4323  * security-related surprises by not following symlinks on the
4324  * newname.  --KAB
4325  *
4326  * We don't follow them on the oldname either to be compatible
4327  * with linux 2.0, and to avoid hard-linking to directories
4328  * and other special files.  --ADM
4329  */
4330 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4331 	      const char __user *newname, int flags)
4332 {
4333 	struct user_namespace *mnt_userns;
4334 	struct dentry *new_dentry;
4335 	struct path old_path, new_path;
4336 	struct inode *delegated_inode = NULL;
4337 	int how = 0;
4338 	int error;
4339 
4340 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4341 		return -EINVAL;
4342 	/*
4343 	 * To use null names we require CAP_DAC_READ_SEARCH
4344 	 * This ensures that not everyone will be able to create
4345 	 * handlink using the passed filedescriptor.
4346 	 */
4347 	if (flags & AT_EMPTY_PATH) {
4348 		if (!capable(CAP_DAC_READ_SEARCH))
4349 			return -ENOENT;
4350 		how = LOOKUP_EMPTY;
4351 	}
4352 
4353 	if (flags & AT_SYMLINK_FOLLOW)
4354 		how |= LOOKUP_FOLLOW;
4355 retry:
4356 	error = user_path_at(olddfd, oldname, how, &old_path);
4357 	if (error)
4358 		return error;
4359 
4360 	new_dentry = user_path_create(newdfd, newname, &new_path,
4361 					(how & LOOKUP_REVAL));
4362 	error = PTR_ERR(new_dentry);
4363 	if (IS_ERR(new_dentry))
4364 		goto out;
4365 
4366 	error = -EXDEV;
4367 	if (old_path.mnt != new_path.mnt)
4368 		goto out_dput;
4369 	mnt_userns = mnt_user_ns(new_path.mnt);
4370 	error = may_linkat(mnt_userns, &old_path);
4371 	if (unlikely(error))
4372 		goto out_dput;
4373 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4374 	if (error)
4375 		goto out_dput;
4376 	error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4377 			 new_dentry, &delegated_inode);
4378 out_dput:
4379 	done_path_create(&new_path, new_dentry);
4380 	if (delegated_inode) {
4381 		error = break_deleg_wait(&delegated_inode);
4382 		if (!error) {
4383 			path_put(&old_path);
4384 			goto retry;
4385 		}
4386 	}
4387 	if (retry_estale(error, how)) {
4388 		path_put(&old_path);
4389 		how |= LOOKUP_REVAL;
4390 		goto retry;
4391 	}
4392 out:
4393 	path_put(&old_path);
4394 
4395 	return error;
4396 }
4397 
4398 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4399 		int, newdfd, const char __user *, newname, int, flags)
4400 {
4401 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4402 }
4403 
4404 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4405 {
4406 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4407 }
4408 
4409 /**
4410  * vfs_rename - rename a filesystem object
4411  * @old_mnt_userns:	old user namespace of the mount the inode was found from
4412  * @old_dir:		parent of source
4413  * @old_dentry:		source
4414  * @new_mnt_userns:	new user namespace of the mount the inode was found from
4415  * @new_dir:		parent of destination
4416  * @new_dentry:		destination
4417  * @delegated_inode:	returns an inode needing a delegation break
4418  * @flags:		rename flags
4419  *
4420  * The caller must hold multiple mutexes--see lock_rename()).
4421  *
4422  * If vfs_rename discovers a delegation in need of breaking at either
4423  * the source or destination, it will return -EWOULDBLOCK and return a
4424  * reference to the inode in delegated_inode.  The caller should then
4425  * break the delegation and retry.  Because breaking a delegation may
4426  * take a long time, the caller should drop all locks before doing
4427  * so.
4428  *
4429  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4430  * be appropriate for callers that expect the underlying filesystem not
4431  * to be NFS exported.
4432  *
4433  * The worst of all namespace operations - renaming directory. "Perverted"
4434  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4435  * Problems:
4436  *
4437  *	a) we can get into loop creation.
4438  *	b) race potential - two innocent renames can create a loop together.
4439  *	   That's where 4.4 screws up. Current fix: serialization on
4440  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4441  *	   story.
4442  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4443  *	   and source (if it is not a directory).
4444  *	   And that - after we got ->i_mutex on parents (until then we don't know
4445  *	   whether the target exists).  Solution: try to be smart with locking
4446  *	   order for inodes.  We rely on the fact that tree topology may change
4447  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4448  *	   move will be locked.  Thus we can rank directories by the tree
4449  *	   (ancestors first) and rank all non-directories after them.
4450  *	   That works since everybody except rename does "lock parent, lookup,
4451  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4452  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4453  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4454  *	   we'd better make sure that there's no link(2) for them.
4455  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4456  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4457  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4458  *	   ->i_mutex on parents, which works but leads to some truly excessive
4459  *	   locking].
4460  */
4461 int vfs_rename(struct renamedata *rd)
4462 {
4463 	int error;
4464 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4465 	struct dentry *old_dentry = rd->old_dentry;
4466 	struct dentry *new_dentry = rd->new_dentry;
4467 	struct inode **delegated_inode = rd->delegated_inode;
4468 	unsigned int flags = rd->flags;
4469 	bool is_dir = d_is_dir(old_dentry);
4470 	struct inode *source = old_dentry->d_inode;
4471 	struct inode *target = new_dentry->d_inode;
4472 	bool new_is_dir = false;
4473 	unsigned max_links = new_dir->i_sb->s_max_links;
4474 	struct name_snapshot old_name;
4475 
4476 	if (source == target)
4477 		return 0;
4478 
4479 	error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4480 	if (error)
4481 		return error;
4482 
4483 	if (!target) {
4484 		error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4485 	} else {
4486 		new_is_dir = d_is_dir(new_dentry);
4487 
4488 		if (!(flags & RENAME_EXCHANGE))
4489 			error = may_delete(rd->new_mnt_userns, new_dir,
4490 					   new_dentry, is_dir);
4491 		else
4492 			error = may_delete(rd->new_mnt_userns, new_dir,
4493 					   new_dentry, new_is_dir);
4494 	}
4495 	if (error)
4496 		return error;
4497 
4498 	if (!old_dir->i_op->rename)
4499 		return -EPERM;
4500 
4501 	/*
4502 	 * If we are going to change the parent - check write permissions,
4503 	 * we'll need to flip '..'.
4504 	 */
4505 	if (new_dir != old_dir) {
4506 		if (is_dir) {
4507 			error = inode_permission(rd->old_mnt_userns, source,
4508 						 MAY_WRITE);
4509 			if (error)
4510 				return error;
4511 		}
4512 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4513 			error = inode_permission(rd->new_mnt_userns, target,
4514 						 MAY_WRITE);
4515 			if (error)
4516 				return error;
4517 		}
4518 	}
4519 
4520 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4521 				      flags);
4522 	if (error)
4523 		return error;
4524 
4525 	take_dentry_name_snapshot(&old_name, old_dentry);
4526 	dget(new_dentry);
4527 	if (!is_dir || (flags & RENAME_EXCHANGE))
4528 		lock_two_nondirectories(source, target);
4529 	else if (target)
4530 		inode_lock(target);
4531 
4532 	error = -EBUSY;
4533 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4534 		goto out;
4535 
4536 	if (max_links && new_dir != old_dir) {
4537 		error = -EMLINK;
4538 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4539 			goto out;
4540 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4541 		    old_dir->i_nlink >= max_links)
4542 			goto out;
4543 	}
4544 	if (!is_dir) {
4545 		error = try_break_deleg(source, delegated_inode);
4546 		if (error)
4547 			goto out;
4548 	}
4549 	if (target && !new_is_dir) {
4550 		error = try_break_deleg(target, delegated_inode);
4551 		if (error)
4552 			goto out;
4553 	}
4554 	error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4555 				      new_dir, new_dentry, flags);
4556 	if (error)
4557 		goto out;
4558 
4559 	if (!(flags & RENAME_EXCHANGE) && target) {
4560 		if (is_dir) {
4561 			shrink_dcache_parent(new_dentry);
4562 			target->i_flags |= S_DEAD;
4563 		}
4564 		dont_mount(new_dentry);
4565 		detach_mounts(new_dentry);
4566 	}
4567 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4568 		if (!(flags & RENAME_EXCHANGE))
4569 			d_move(old_dentry, new_dentry);
4570 		else
4571 			d_exchange(old_dentry, new_dentry);
4572 	}
4573 out:
4574 	if (!is_dir || (flags & RENAME_EXCHANGE))
4575 		unlock_two_nondirectories(source, target);
4576 	else if (target)
4577 		inode_unlock(target);
4578 	dput(new_dentry);
4579 	if (!error) {
4580 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4581 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4582 		if (flags & RENAME_EXCHANGE) {
4583 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4584 				      new_is_dir, NULL, new_dentry);
4585 		}
4586 	}
4587 	release_dentry_name_snapshot(&old_name);
4588 
4589 	return error;
4590 }
4591 EXPORT_SYMBOL(vfs_rename);
4592 
4593 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4594 		 struct filename *to, unsigned int flags)
4595 {
4596 	struct renamedata rd;
4597 	struct dentry *old_dentry, *new_dentry;
4598 	struct dentry *trap;
4599 	struct path old_path, new_path;
4600 	struct qstr old_last, new_last;
4601 	int old_type, new_type;
4602 	struct inode *delegated_inode = NULL;
4603 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4604 	bool should_retry = false;
4605 	int error = -EINVAL;
4606 
4607 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4608 		goto put_both;
4609 
4610 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4611 	    (flags & RENAME_EXCHANGE))
4612 		goto put_both;
4613 
4614 	if (flags & RENAME_EXCHANGE)
4615 		target_flags = 0;
4616 
4617 retry:
4618 	from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4619 					&old_last, &old_type);
4620 	if (IS_ERR(from)) {
4621 		error = PTR_ERR(from);
4622 		goto put_new;
4623 	}
4624 
4625 	to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4626 				&new_type);
4627 	if (IS_ERR(to)) {
4628 		error = PTR_ERR(to);
4629 		goto exit1;
4630 	}
4631 
4632 	error = -EXDEV;
4633 	if (old_path.mnt != new_path.mnt)
4634 		goto exit2;
4635 
4636 	error = -EBUSY;
4637 	if (old_type != LAST_NORM)
4638 		goto exit2;
4639 
4640 	if (flags & RENAME_NOREPLACE)
4641 		error = -EEXIST;
4642 	if (new_type != LAST_NORM)
4643 		goto exit2;
4644 
4645 	error = mnt_want_write(old_path.mnt);
4646 	if (error)
4647 		goto exit2;
4648 
4649 retry_deleg:
4650 	trap = lock_rename(new_path.dentry, old_path.dentry);
4651 
4652 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4653 	error = PTR_ERR(old_dentry);
4654 	if (IS_ERR(old_dentry))
4655 		goto exit3;
4656 	/* source must exist */
4657 	error = -ENOENT;
4658 	if (d_is_negative(old_dentry))
4659 		goto exit4;
4660 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4661 	error = PTR_ERR(new_dentry);
4662 	if (IS_ERR(new_dentry))
4663 		goto exit4;
4664 	error = -EEXIST;
4665 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4666 		goto exit5;
4667 	if (flags & RENAME_EXCHANGE) {
4668 		error = -ENOENT;
4669 		if (d_is_negative(new_dentry))
4670 			goto exit5;
4671 
4672 		if (!d_is_dir(new_dentry)) {
4673 			error = -ENOTDIR;
4674 			if (new_last.name[new_last.len])
4675 				goto exit5;
4676 		}
4677 	}
4678 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4679 	if (!d_is_dir(old_dentry)) {
4680 		error = -ENOTDIR;
4681 		if (old_last.name[old_last.len])
4682 			goto exit5;
4683 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4684 			goto exit5;
4685 	}
4686 	/* source should not be ancestor of target */
4687 	error = -EINVAL;
4688 	if (old_dentry == trap)
4689 		goto exit5;
4690 	/* target should not be an ancestor of source */
4691 	if (!(flags & RENAME_EXCHANGE))
4692 		error = -ENOTEMPTY;
4693 	if (new_dentry == trap)
4694 		goto exit5;
4695 
4696 	error = security_path_rename(&old_path, old_dentry,
4697 				     &new_path, new_dentry, flags);
4698 	if (error)
4699 		goto exit5;
4700 
4701 	rd.old_dir	   = old_path.dentry->d_inode;
4702 	rd.old_dentry	   = old_dentry;
4703 	rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4704 	rd.new_dir	   = new_path.dentry->d_inode;
4705 	rd.new_dentry	   = new_dentry;
4706 	rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4707 	rd.delegated_inode = &delegated_inode;
4708 	rd.flags	   = flags;
4709 	error = vfs_rename(&rd);
4710 exit5:
4711 	dput(new_dentry);
4712 exit4:
4713 	dput(old_dentry);
4714 exit3:
4715 	unlock_rename(new_path.dentry, old_path.dentry);
4716 	if (delegated_inode) {
4717 		error = break_deleg_wait(&delegated_inode);
4718 		if (!error)
4719 			goto retry_deleg;
4720 	}
4721 	mnt_drop_write(old_path.mnt);
4722 exit2:
4723 	if (retry_estale(error, lookup_flags))
4724 		should_retry = true;
4725 	path_put(&new_path);
4726 exit1:
4727 	path_put(&old_path);
4728 	if (should_retry) {
4729 		should_retry = false;
4730 		lookup_flags |= LOOKUP_REVAL;
4731 		goto retry;
4732 	}
4733 put_both:
4734 	if (!IS_ERR(from))
4735 		putname(from);
4736 put_new:
4737 	if (!IS_ERR(to))
4738 		putname(to);
4739 	return error;
4740 }
4741 
4742 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4743 		int, newdfd, const char __user *, newname, unsigned int, flags)
4744 {
4745 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4746 				flags);
4747 }
4748 
4749 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4750 		int, newdfd, const char __user *, newname)
4751 {
4752 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4753 				0);
4754 }
4755 
4756 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4757 {
4758 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4759 				getname(newname), 0);
4760 }
4761 
4762 int readlink_copy(char __user *buffer, int buflen, const char *link)
4763 {
4764 	int len = PTR_ERR(link);
4765 	if (IS_ERR(link))
4766 		goto out;
4767 
4768 	len = strlen(link);
4769 	if (len > (unsigned) buflen)
4770 		len = buflen;
4771 	if (copy_to_user(buffer, link, len))
4772 		len = -EFAULT;
4773 out:
4774 	return len;
4775 }
4776 
4777 /**
4778  * vfs_readlink - copy symlink body into userspace buffer
4779  * @dentry: dentry on which to get symbolic link
4780  * @buffer: user memory pointer
4781  * @buflen: size of buffer
4782  *
4783  * Does not touch atime.  That's up to the caller if necessary
4784  *
4785  * Does not call security hook.
4786  */
4787 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4788 {
4789 	struct inode *inode = d_inode(dentry);
4790 	DEFINE_DELAYED_CALL(done);
4791 	const char *link;
4792 	int res;
4793 
4794 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4795 		if (unlikely(inode->i_op->readlink))
4796 			return inode->i_op->readlink(dentry, buffer, buflen);
4797 
4798 		if (!d_is_symlink(dentry))
4799 			return -EINVAL;
4800 
4801 		spin_lock(&inode->i_lock);
4802 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4803 		spin_unlock(&inode->i_lock);
4804 	}
4805 
4806 	link = READ_ONCE(inode->i_link);
4807 	if (!link) {
4808 		link = inode->i_op->get_link(dentry, inode, &done);
4809 		if (IS_ERR(link))
4810 			return PTR_ERR(link);
4811 	}
4812 	res = readlink_copy(buffer, buflen, link);
4813 	do_delayed_call(&done);
4814 	return res;
4815 }
4816 EXPORT_SYMBOL(vfs_readlink);
4817 
4818 /**
4819  * vfs_get_link - get symlink body
4820  * @dentry: dentry on which to get symbolic link
4821  * @done: caller needs to free returned data with this
4822  *
4823  * Calls security hook and i_op->get_link() on the supplied inode.
4824  *
4825  * It does not touch atime.  That's up to the caller if necessary.
4826  *
4827  * Does not work on "special" symlinks like /proc/$$/fd/N
4828  */
4829 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4830 {
4831 	const char *res = ERR_PTR(-EINVAL);
4832 	struct inode *inode = d_inode(dentry);
4833 
4834 	if (d_is_symlink(dentry)) {
4835 		res = ERR_PTR(security_inode_readlink(dentry));
4836 		if (!res)
4837 			res = inode->i_op->get_link(dentry, inode, done);
4838 	}
4839 	return res;
4840 }
4841 EXPORT_SYMBOL(vfs_get_link);
4842 
4843 /* get the link contents into pagecache */
4844 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4845 			  struct delayed_call *callback)
4846 {
4847 	char *kaddr;
4848 	struct page *page;
4849 	struct address_space *mapping = inode->i_mapping;
4850 
4851 	if (!dentry) {
4852 		page = find_get_page(mapping, 0);
4853 		if (!page)
4854 			return ERR_PTR(-ECHILD);
4855 		if (!PageUptodate(page)) {
4856 			put_page(page);
4857 			return ERR_PTR(-ECHILD);
4858 		}
4859 	} else {
4860 		page = read_mapping_page(mapping, 0, NULL);
4861 		if (IS_ERR(page))
4862 			return (char*)page;
4863 	}
4864 	set_delayed_call(callback, page_put_link, page);
4865 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4866 	kaddr = page_address(page);
4867 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4868 	return kaddr;
4869 }
4870 
4871 EXPORT_SYMBOL(page_get_link);
4872 
4873 void page_put_link(void *arg)
4874 {
4875 	put_page(arg);
4876 }
4877 EXPORT_SYMBOL(page_put_link);
4878 
4879 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4880 {
4881 	DEFINE_DELAYED_CALL(done);
4882 	int res = readlink_copy(buffer, buflen,
4883 				page_get_link(dentry, d_inode(dentry),
4884 					      &done));
4885 	do_delayed_call(&done);
4886 	return res;
4887 }
4888 EXPORT_SYMBOL(page_readlink);
4889 
4890 /*
4891  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4892  */
4893 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4894 {
4895 	struct address_space *mapping = inode->i_mapping;
4896 	struct page *page;
4897 	void *fsdata;
4898 	int err;
4899 	unsigned int flags = 0;
4900 	if (nofs)
4901 		flags |= AOP_FLAG_NOFS;
4902 
4903 retry:
4904 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4905 				flags, &page, &fsdata);
4906 	if (err)
4907 		goto fail;
4908 
4909 	memcpy(page_address(page), symname, len-1);
4910 
4911 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4912 							page, fsdata);
4913 	if (err < 0)
4914 		goto fail;
4915 	if (err < len-1)
4916 		goto retry;
4917 
4918 	mark_inode_dirty(inode);
4919 	return 0;
4920 fail:
4921 	return err;
4922 }
4923 EXPORT_SYMBOL(__page_symlink);
4924 
4925 int page_symlink(struct inode *inode, const char *symname, int len)
4926 {
4927 	return __page_symlink(inode, symname, len,
4928 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4929 }
4930 EXPORT_SYMBOL(page_symlink);
4931 
4932 const struct inode_operations page_symlink_inode_operations = {
4933 	.get_link	= page_get_link,
4934 };
4935 EXPORT_SYMBOL(page_symlink_inode_operations);
4936