1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 /** 263 * check_acl - perform ACL permission checking 264 * @mnt_userns: user namespace of the mount the inode was found from 265 * @inode: inode to check permissions on 266 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 267 * 268 * This function performs the ACL permission checking. Since this function 269 * retrieve POSIX acls it needs to know whether it is called from a blocking or 270 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 271 * 272 * If the inode has been found through an idmapped mount the user namespace of 273 * the vfsmount must be passed through @mnt_userns. This function will then take 274 * care to map the inode according to @mnt_userns before checking permissions. 275 * On non-idmapped mounts or if permission checking is to be performed on the 276 * raw inode simply passs init_user_ns. 277 */ 278 static int check_acl(struct user_namespace *mnt_userns, 279 struct inode *inode, int mask) 280 { 281 #ifdef CONFIG_FS_POSIX_ACL 282 struct posix_acl *acl; 283 284 if (mask & MAY_NOT_BLOCK) { 285 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 286 if (!acl) 287 return -EAGAIN; 288 /* no ->get_acl() calls in RCU mode... */ 289 if (is_uncached_acl(acl)) 290 return -ECHILD; 291 return posix_acl_permission(mnt_userns, inode, acl, mask); 292 } 293 294 acl = get_acl(inode, ACL_TYPE_ACCESS); 295 if (IS_ERR(acl)) 296 return PTR_ERR(acl); 297 if (acl) { 298 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 299 posix_acl_release(acl); 300 return error; 301 } 302 #endif 303 304 return -EAGAIN; 305 } 306 307 /** 308 * acl_permission_check - perform basic UNIX permission checking 309 * @mnt_userns: user namespace of the mount the inode was found from 310 * @inode: inode to check permissions on 311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 312 * 313 * This function performs the basic UNIX permission checking. Since this 314 * function may retrieve POSIX acls it needs to know whether it is called from a 315 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 316 * 317 * If the inode has been found through an idmapped mount the user namespace of 318 * the vfsmount must be passed through @mnt_userns. This function will then take 319 * care to map the inode according to @mnt_userns before checking permissions. 320 * On non-idmapped mounts or if permission checking is to be performed on the 321 * raw inode simply passs init_user_ns. 322 */ 323 static int acl_permission_check(struct user_namespace *mnt_userns, 324 struct inode *inode, int mask) 325 { 326 unsigned int mode = inode->i_mode; 327 kuid_t i_uid; 328 329 /* Are we the owner? If so, ACL's don't matter */ 330 i_uid = i_uid_into_mnt(mnt_userns, inode); 331 if (likely(uid_eq(current_fsuid(), i_uid))) { 332 mask &= 7; 333 mode >>= 6; 334 return (mask & ~mode) ? -EACCES : 0; 335 } 336 337 /* Do we have ACL's? */ 338 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 339 int error = check_acl(mnt_userns, inode, mask); 340 if (error != -EAGAIN) 341 return error; 342 } 343 344 /* Only RWX matters for group/other mode bits */ 345 mask &= 7; 346 347 /* 348 * Are the group permissions different from 349 * the other permissions in the bits we care 350 * about? Need to check group ownership if so. 351 */ 352 if (mask & (mode ^ (mode >> 3))) { 353 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 354 if (in_group_p(kgid)) 355 mode >>= 3; 356 } 357 358 /* Bits in 'mode' clear that we require? */ 359 return (mask & ~mode) ? -EACCES : 0; 360 } 361 362 /** 363 * generic_permission - check for access rights on a Posix-like filesystem 364 * @mnt_userns: user namespace of the mount the inode was found from 365 * @inode: inode to check access rights for 366 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 367 * %MAY_NOT_BLOCK ...) 368 * 369 * Used to check for read/write/execute permissions on a file. 370 * We use "fsuid" for this, letting us set arbitrary permissions 371 * for filesystem access without changing the "normal" uids which 372 * are used for other things. 373 * 374 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 375 * request cannot be satisfied (eg. requires blocking or too much complexity). 376 * It would then be called again in ref-walk mode. 377 * 378 * If the inode has been found through an idmapped mount the user namespace of 379 * the vfsmount must be passed through @mnt_userns. This function will then take 380 * care to map the inode according to @mnt_userns before checking permissions. 381 * On non-idmapped mounts or if permission checking is to be performed on the 382 * raw inode simply passs init_user_ns. 383 */ 384 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 385 int mask) 386 { 387 int ret; 388 389 /* 390 * Do the basic permission checks. 391 */ 392 ret = acl_permission_check(mnt_userns, inode, mask); 393 if (ret != -EACCES) 394 return ret; 395 396 if (S_ISDIR(inode->i_mode)) { 397 /* DACs are overridable for directories */ 398 if (!(mask & MAY_WRITE)) 399 if (capable_wrt_inode_uidgid(mnt_userns, inode, 400 CAP_DAC_READ_SEARCH)) 401 return 0; 402 if (capable_wrt_inode_uidgid(mnt_userns, inode, 403 CAP_DAC_OVERRIDE)) 404 return 0; 405 return -EACCES; 406 } 407 408 /* 409 * Searching includes executable on directories, else just read. 410 */ 411 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 412 if (mask == MAY_READ) 413 if (capable_wrt_inode_uidgid(mnt_userns, inode, 414 CAP_DAC_READ_SEARCH)) 415 return 0; 416 /* 417 * Read/write DACs are always overridable. 418 * Executable DACs are overridable when there is 419 * at least one exec bit set. 420 */ 421 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 422 if (capable_wrt_inode_uidgid(mnt_userns, inode, 423 CAP_DAC_OVERRIDE)) 424 return 0; 425 426 return -EACCES; 427 } 428 EXPORT_SYMBOL(generic_permission); 429 430 /** 431 * do_inode_permission - UNIX permission checking 432 * @mnt_userns: user namespace of the mount the inode was found from 433 * @inode: inode to check permissions on 434 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 435 * 436 * We _really_ want to just do "generic_permission()" without 437 * even looking at the inode->i_op values. So we keep a cache 438 * flag in inode->i_opflags, that says "this has not special 439 * permission function, use the fast case". 440 */ 441 static inline int do_inode_permission(struct user_namespace *mnt_userns, 442 struct inode *inode, int mask) 443 { 444 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 445 if (likely(inode->i_op->permission)) 446 return inode->i_op->permission(mnt_userns, inode, mask); 447 448 /* This gets set once for the inode lifetime */ 449 spin_lock(&inode->i_lock); 450 inode->i_opflags |= IOP_FASTPERM; 451 spin_unlock(&inode->i_lock); 452 } 453 return generic_permission(mnt_userns, inode, mask); 454 } 455 456 /** 457 * sb_permission - Check superblock-level permissions 458 * @sb: Superblock of inode to check permission on 459 * @inode: Inode to check permission on 460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 461 * 462 * Separate out file-system wide checks from inode-specific permission checks. 463 */ 464 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 465 { 466 if (unlikely(mask & MAY_WRITE)) { 467 umode_t mode = inode->i_mode; 468 469 /* Nobody gets write access to a read-only fs. */ 470 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 471 return -EROFS; 472 } 473 return 0; 474 } 475 476 /** 477 * inode_permission - Check for access rights to a given inode 478 * @mnt_userns: User namespace of the mount the inode was found from 479 * @inode: Inode to check permission on 480 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 481 * 482 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 483 * this, letting us set arbitrary permissions for filesystem access without 484 * changing the "normal" UIDs which are used for other things. 485 * 486 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 487 */ 488 int inode_permission(struct user_namespace *mnt_userns, 489 struct inode *inode, int mask) 490 { 491 int retval; 492 493 retval = sb_permission(inode->i_sb, inode, mask); 494 if (retval) 495 return retval; 496 497 if (unlikely(mask & MAY_WRITE)) { 498 /* 499 * Nobody gets write access to an immutable file. 500 */ 501 if (IS_IMMUTABLE(inode)) 502 return -EPERM; 503 504 /* 505 * Updating mtime will likely cause i_uid and i_gid to be 506 * written back improperly if their true value is unknown 507 * to the vfs. 508 */ 509 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 510 return -EACCES; 511 } 512 513 retval = do_inode_permission(mnt_userns, inode, mask); 514 if (retval) 515 return retval; 516 517 retval = devcgroup_inode_permission(inode, mask); 518 if (retval) 519 return retval; 520 521 return security_inode_permission(inode, mask); 522 } 523 EXPORT_SYMBOL(inode_permission); 524 525 /** 526 * path_get - get a reference to a path 527 * @path: path to get the reference to 528 * 529 * Given a path increment the reference count to the dentry and the vfsmount. 530 */ 531 void path_get(const struct path *path) 532 { 533 mntget(path->mnt); 534 dget(path->dentry); 535 } 536 EXPORT_SYMBOL(path_get); 537 538 /** 539 * path_put - put a reference to a path 540 * @path: path to put the reference to 541 * 542 * Given a path decrement the reference count to the dentry and the vfsmount. 543 */ 544 void path_put(const struct path *path) 545 { 546 dput(path->dentry); 547 mntput(path->mnt); 548 } 549 EXPORT_SYMBOL(path_put); 550 551 #define EMBEDDED_LEVELS 2 552 struct nameidata { 553 struct path path; 554 struct qstr last; 555 struct path root; 556 struct inode *inode; /* path.dentry.d_inode */ 557 unsigned int flags; 558 unsigned seq, m_seq, r_seq; 559 int last_type; 560 unsigned depth; 561 int total_link_count; 562 struct saved { 563 struct path link; 564 struct delayed_call done; 565 const char *name; 566 unsigned seq; 567 } *stack, internal[EMBEDDED_LEVELS]; 568 struct filename *name; 569 struct nameidata *saved; 570 unsigned root_seq; 571 int dfd; 572 kuid_t dir_uid; 573 umode_t dir_mode; 574 } __randomize_layout; 575 576 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 577 { 578 struct nameidata *old = current->nameidata; 579 p->stack = p->internal; 580 p->dfd = dfd; 581 p->name = name; 582 p->path.mnt = NULL; 583 p->path.dentry = NULL; 584 p->total_link_count = old ? old->total_link_count : 0; 585 p->saved = old; 586 current->nameidata = p; 587 } 588 589 static void restore_nameidata(void) 590 { 591 struct nameidata *now = current->nameidata, *old = now->saved; 592 593 current->nameidata = old; 594 if (old) 595 old->total_link_count = now->total_link_count; 596 if (now->stack != now->internal) 597 kfree(now->stack); 598 } 599 600 static bool nd_alloc_stack(struct nameidata *nd) 601 { 602 struct saved *p; 603 604 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 605 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 606 if (unlikely(!p)) 607 return false; 608 memcpy(p, nd->internal, sizeof(nd->internal)); 609 nd->stack = p; 610 return true; 611 } 612 613 /** 614 * path_connected - Verify that a dentry is below mnt.mnt_root 615 * 616 * Rename can sometimes move a file or directory outside of a bind 617 * mount, path_connected allows those cases to be detected. 618 */ 619 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 620 { 621 struct super_block *sb = mnt->mnt_sb; 622 623 /* Bind mounts can have disconnected paths */ 624 if (mnt->mnt_root == sb->s_root) 625 return true; 626 627 return is_subdir(dentry, mnt->mnt_root); 628 } 629 630 static void drop_links(struct nameidata *nd) 631 { 632 int i = nd->depth; 633 while (i--) { 634 struct saved *last = nd->stack + i; 635 do_delayed_call(&last->done); 636 clear_delayed_call(&last->done); 637 } 638 } 639 640 static void terminate_walk(struct nameidata *nd) 641 { 642 drop_links(nd); 643 if (!(nd->flags & LOOKUP_RCU)) { 644 int i; 645 path_put(&nd->path); 646 for (i = 0; i < nd->depth; i++) 647 path_put(&nd->stack[i].link); 648 if (nd->flags & LOOKUP_ROOT_GRABBED) { 649 path_put(&nd->root); 650 nd->flags &= ~LOOKUP_ROOT_GRABBED; 651 } 652 } else { 653 nd->flags &= ~LOOKUP_RCU; 654 rcu_read_unlock(); 655 } 656 nd->depth = 0; 657 nd->path.mnt = NULL; 658 nd->path.dentry = NULL; 659 } 660 661 /* path_put is needed afterwards regardless of success or failure */ 662 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 663 { 664 int res = __legitimize_mnt(path->mnt, mseq); 665 if (unlikely(res)) { 666 if (res > 0) 667 path->mnt = NULL; 668 path->dentry = NULL; 669 return false; 670 } 671 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 672 path->dentry = NULL; 673 return false; 674 } 675 return !read_seqcount_retry(&path->dentry->d_seq, seq); 676 } 677 678 static inline bool legitimize_path(struct nameidata *nd, 679 struct path *path, unsigned seq) 680 { 681 return __legitimize_path(path, seq, nd->m_seq); 682 } 683 684 static bool legitimize_links(struct nameidata *nd) 685 { 686 int i; 687 if (unlikely(nd->flags & LOOKUP_CACHED)) { 688 drop_links(nd); 689 nd->depth = 0; 690 return false; 691 } 692 for (i = 0; i < nd->depth; i++) { 693 struct saved *last = nd->stack + i; 694 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 695 drop_links(nd); 696 nd->depth = i + 1; 697 return false; 698 } 699 } 700 return true; 701 } 702 703 static bool legitimize_root(struct nameidata *nd) 704 { 705 /* 706 * For scoped-lookups (where nd->root has been zeroed), we need to 707 * restart the whole lookup from scratch -- because set_root() is wrong 708 * for these lookups (nd->dfd is the root, not the filesystem root). 709 */ 710 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 711 return false; 712 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 713 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 714 return true; 715 nd->flags |= LOOKUP_ROOT_GRABBED; 716 return legitimize_path(nd, &nd->root, nd->root_seq); 717 } 718 719 /* 720 * Path walking has 2 modes, rcu-walk and ref-walk (see 721 * Documentation/filesystems/path-lookup.txt). In situations when we can't 722 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 723 * normal reference counts on dentries and vfsmounts to transition to ref-walk 724 * mode. Refcounts are grabbed at the last known good point before rcu-walk 725 * got stuck, so ref-walk may continue from there. If this is not successful 726 * (eg. a seqcount has changed), then failure is returned and it's up to caller 727 * to restart the path walk from the beginning in ref-walk mode. 728 */ 729 730 /** 731 * try_to_unlazy - try to switch to ref-walk mode. 732 * @nd: nameidata pathwalk data 733 * Returns: true on success, false on failure 734 * 735 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 736 * for ref-walk mode. 737 * Must be called from rcu-walk context. 738 * Nothing should touch nameidata between try_to_unlazy() failure and 739 * terminate_walk(). 740 */ 741 static bool try_to_unlazy(struct nameidata *nd) 742 { 743 struct dentry *parent = nd->path.dentry; 744 745 BUG_ON(!(nd->flags & LOOKUP_RCU)); 746 747 nd->flags &= ~LOOKUP_RCU; 748 if (unlikely(!legitimize_links(nd))) 749 goto out1; 750 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 751 goto out; 752 if (unlikely(!legitimize_root(nd))) 753 goto out; 754 rcu_read_unlock(); 755 BUG_ON(nd->inode != parent->d_inode); 756 return true; 757 758 out1: 759 nd->path.mnt = NULL; 760 nd->path.dentry = NULL; 761 out: 762 rcu_read_unlock(); 763 return false; 764 } 765 766 /** 767 * try_to_unlazy_next - try to switch to ref-walk mode. 768 * @nd: nameidata pathwalk data 769 * @dentry: next dentry to step into 770 * @seq: seq number to check @dentry against 771 * Returns: true on success, false on failure 772 * 773 * Similar to to try_to_unlazy(), but here we have the next dentry already 774 * picked by rcu-walk and want to legitimize that in addition to the current 775 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 776 * Nothing should touch nameidata between try_to_unlazy_next() failure and 777 * terminate_walk(). 778 */ 779 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq) 780 { 781 BUG_ON(!(nd->flags & LOOKUP_RCU)); 782 783 nd->flags &= ~LOOKUP_RCU; 784 if (unlikely(!legitimize_links(nd))) 785 goto out2; 786 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 787 goto out2; 788 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 789 goto out1; 790 791 /* 792 * We need to move both the parent and the dentry from the RCU domain 793 * to be properly refcounted. And the sequence number in the dentry 794 * validates *both* dentry counters, since we checked the sequence 795 * number of the parent after we got the child sequence number. So we 796 * know the parent must still be valid if the child sequence number is 797 */ 798 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 799 goto out; 800 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 801 goto out_dput; 802 /* 803 * Sequence counts matched. Now make sure that the root is 804 * still valid and get it if required. 805 */ 806 if (unlikely(!legitimize_root(nd))) 807 goto out_dput; 808 rcu_read_unlock(); 809 return true; 810 811 out2: 812 nd->path.mnt = NULL; 813 out1: 814 nd->path.dentry = NULL; 815 out: 816 rcu_read_unlock(); 817 return false; 818 out_dput: 819 rcu_read_unlock(); 820 dput(dentry); 821 return false; 822 } 823 824 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 825 { 826 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 827 return dentry->d_op->d_revalidate(dentry, flags); 828 else 829 return 1; 830 } 831 832 /** 833 * complete_walk - successful completion of path walk 834 * @nd: pointer nameidata 835 * 836 * If we had been in RCU mode, drop out of it and legitimize nd->path. 837 * Revalidate the final result, unless we'd already done that during 838 * the path walk or the filesystem doesn't ask for it. Return 0 on 839 * success, -error on failure. In case of failure caller does not 840 * need to drop nd->path. 841 */ 842 static int complete_walk(struct nameidata *nd) 843 { 844 struct dentry *dentry = nd->path.dentry; 845 int status; 846 847 if (nd->flags & LOOKUP_RCU) { 848 /* 849 * We don't want to zero nd->root for scoped-lookups or 850 * externally-managed nd->root. 851 */ 852 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED))) 853 nd->root.mnt = NULL; 854 nd->flags &= ~LOOKUP_CACHED; 855 if (!try_to_unlazy(nd)) 856 return -ECHILD; 857 } 858 859 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 860 /* 861 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 862 * ever step outside the root during lookup" and should already 863 * be guaranteed by the rest of namei, we want to avoid a namei 864 * BUG resulting in userspace being given a path that was not 865 * scoped within the root at some point during the lookup. 866 * 867 * So, do a final sanity-check to make sure that in the 868 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 869 * we won't silently return an fd completely outside of the 870 * requested root to userspace. 871 * 872 * Userspace could move the path outside the root after this 873 * check, but as discussed elsewhere this is not a concern (the 874 * resolved file was inside the root at some point). 875 */ 876 if (!path_is_under(&nd->path, &nd->root)) 877 return -EXDEV; 878 } 879 880 if (likely(!(nd->flags & LOOKUP_JUMPED))) 881 return 0; 882 883 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 884 return 0; 885 886 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 887 if (status > 0) 888 return 0; 889 890 if (!status) 891 status = -ESTALE; 892 893 return status; 894 } 895 896 static int set_root(struct nameidata *nd) 897 { 898 struct fs_struct *fs = current->fs; 899 900 /* 901 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 902 * still have to ensure it doesn't happen because it will cause a breakout 903 * from the dirfd. 904 */ 905 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 906 return -ENOTRECOVERABLE; 907 908 if (nd->flags & LOOKUP_RCU) { 909 unsigned seq; 910 911 do { 912 seq = read_seqcount_begin(&fs->seq); 913 nd->root = fs->root; 914 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 915 } while (read_seqcount_retry(&fs->seq, seq)); 916 } else { 917 get_fs_root(fs, &nd->root); 918 nd->flags |= LOOKUP_ROOT_GRABBED; 919 } 920 return 0; 921 } 922 923 static int nd_jump_root(struct nameidata *nd) 924 { 925 if (unlikely(nd->flags & LOOKUP_BENEATH)) 926 return -EXDEV; 927 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 928 /* Absolute path arguments to path_init() are allowed. */ 929 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 930 return -EXDEV; 931 } 932 if (!nd->root.mnt) { 933 int error = set_root(nd); 934 if (error) 935 return error; 936 } 937 if (nd->flags & LOOKUP_RCU) { 938 struct dentry *d; 939 nd->path = nd->root; 940 d = nd->path.dentry; 941 nd->inode = d->d_inode; 942 nd->seq = nd->root_seq; 943 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 944 return -ECHILD; 945 } else { 946 path_put(&nd->path); 947 nd->path = nd->root; 948 path_get(&nd->path); 949 nd->inode = nd->path.dentry->d_inode; 950 } 951 nd->flags |= LOOKUP_JUMPED; 952 return 0; 953 } 954 955 /* 956 * Helper to directly jump to a known parsed path from ->get_link, 957 * caller must have taken a reference to path beforehand. 958 */ 959 int nd_jump_link(struct path *path) 960 { 961 int error = -ELOOP; 962 struct nameidata *nd = current->nameidata; 963 964 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 965 goto err; 966 967 error = -EXDEV; 968 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 969 if (nd->path.mnt != path->mnt) 970 goto err; 971 } 972 /* Not currently safe for scoped-lookups. */ 973 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 974 goto err; 975 976 path_put(&nd->path); 977 nd->path = *path; 978 nd->inode = nd->path.dentry->d_inode; 979 nd->flags |= LOOKUP_JUMPED; 980 return 0; 981 982 err: 983 path_put(path); 984 return error; 985 } 986 987 static inline void put_link(struct nameidata *nd) 988 { 989 struct saved *last = nd->stack + --nd->depth; 990 do_delayed_call(&last->done); 991 if (!(nd->flags & LOOKUP_RCU)) 992 path_put(&last->link); 993 } 994 995 int sysctl_protected_symlinks __read_mostly = 0; 996 int sysctl_protected_hardlinks __read_mostly = 0; 997 int sysctl_protected_fifos __read_mostly; 998 int sysctl_protected_regular __read_mostly; 999 1000 /** 1001 * may_follow_link - Check symlink following for unsafe situations 1002 * @nd: nameidata pathwalk data 1003 * 1004 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1005 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1006 * in a sticky world-writable directory. This is to protect privileged 1007 * processes from failing races against path names that may change out 1008 * from under them by way of other users creating malicious symlinks. 1009 * It will permit symlinks to be followed only when outside a sticky 1010 * world-writable directory, or when the uid of the symlink and follower 1011 * match, or when the directory owner matches the symlink's owner. 1012 * 1013 * Returns 0 if following the symlink is allowed, -ve on error. 1014 */ 1015 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1016 { 1017 struct user_namespace *mnt_userns; 1018 kuid_t i_uid; 1019 1020 if (!sysctl_protected_symlinks) 1021 return 0; 1022 1023 mnt_userns = mnt_user_ns(nd->path.mnt); 1024 i_uid = i_uid_into_mnt(mnt_userns, inode); 1025 /* Allowed if owner and follower match. */ 1026 if (uid_eq(current_cred()->fsuid, i_uid)) 1027 return 0; 1028 1029 /* Allowed if parent directory not sticky and world-writable. */ 1030 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1031 return 0; 1032 1033 /* Allowed if parent directory and link owner match. */ 1034 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1035 return 0; 1036 1037 if (nd->flags & LOOKUP_RCU) 1038 return -ECHILD; 1039 1040 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1041 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1042 return -EACCES; 1043 } 1044 1045 /** 1046 * safe_hardlink_source - Check for safe hardlink conditions 1047 * @mnt_userns: user namespace of the mount the inode was found from 1048 * @inode: the source inode to hardlink from 1049 * 1050 * Return false if at least one of the following conditions: 1051 * - inode is not a regular file 1052 * - inode is setuid 1053 * - inode is setgid and group-exec 1054 * - access failure for read and write 1055 * 1056 * Otherwise returns true. 1057 */ 1058 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1059 struct inode *inode) 1060 { 1061 umode_t mode = inode->i_mode; 1062 1063 /* Special files should not get pinned to the filesystem. */ 1064 if (!S_ISREG(mode)) 1065 return false; 1066 1067 /* Setuid files should not get pinned to the filesystem. */ 1068 if (mode & S_ISUID) 1069 return false; 1070 1071 /* Executable setgid files should not get pinned to the filesystem. */ 1072 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1073 return false; 1074 1075 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1076 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1077 return false; 1078 1079 return true; 1080 } 1081 1082 /** 1083 * may_linkat - Check permissions for creating a hardlink 1084 * @mnt_userns: user namespace of the mount the inode was found from 1085 * @link: the source to hardlink from 1086 * 1087 * Block hardlink when all of: 1088 * - sysctl_protected_hardlinks enabled 1089 * - fsuid does not match inode 1090 * - hardlink source is unsafe (see safe_hardlink_source() above) 1091 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1092 * 1093 * If the inode has been found through an idmapped mount the user namespace of 1094 * the vfsmount must be passed through @mnt_userns. This function will then take 1095 * care to map the inode according to @mnt_userns before checking permissions. 1096 * On non-idmapped mounts or if permission checking is to be performed on the 1097 * raw inode simply passs init_user_ns. 1098 * 1099 * Returns 0 if successful, -ve on error. 1100 */ 1101 int may_linkat(struct user_namespace *mnt_userns, struct path *link) 1102 { 1103 struct inode *inode = link->dentry->d_inode; 1104 1105 /* Inode writeback is not safe when the uid or gid are invalid. */ 1106 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1107 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1108 return -EOVERFLOW; 1109 1110 if (!sysctl_protected_hardlinks) 1111 return 0; 1112 1113 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1114 * otherwise, it must be a safe source. 1115 */ 1116 if (safe_hardlink_source(mnt_userns, inode) || 1117 inode_owner_or_capable(mnt_userns, inode)) 1118 return 0; 1119 1120 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1121 return -EPERM; 1122 } 1123 1124 /** 1125 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1126 * should be allowed, or not, on files that already 1127 * exist. 1128 * @mnt_userns: user namespace of the mount the inode was found from 1129 * @dir_mode: mode bits of directory 1130 * @dir_uid: owner of directory 1131 * @inode: the inode of the file to open 1132 * 1133 * Block an O_CREAT open of a FIFO (or a regular file) when: 1134 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1135 * - the file already exists 1136 * - we are in a sticky directory 1137 * - we don't own the file 1138 * - the owner of the directory doesn't own the file 1139 * - the directory is world writable 1140 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1141 * the directory doesn't have to be world writable: being group writable will 1142 * be enough. 1143 * 1144 * If the inode has been found through an idmapped mount the user namespace of 1145 * the vfsmount must be passed through @mnt_userns. This function will then take 1146 * care to map the inode according to @mnt_userns before checking permissions. 1147 * On non-idmapped mounts or if permission checking is to be performed on the 1148 * raw inode simply passs init_user_ns. 1149 * 1150 * Returns 0 if the open is allowed, -ve on error. 1151 */ 1152 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1153 struct nameidata *nd, struct inode *const inode) 1154 { 1155 umode_t dir_mode = nd->dir_mode; 1156 kuid_t dir_uid = nd->dir_uid; 1157 1158 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1159 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1160 likely(!(dir_mode & S_ISVTX)) || 1161 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1162 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1163 return 0; 1164 1165 if (likely(dir_mode & 0002) || 1166 (dir_mode & 0020 && 1167 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1168 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1169 const char *operation = S_ISFIFO(inode->i_mode) ? 1170 "sticky_create_fifo" : 1171 "sticky_create_regular"; 1172 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1173 return -EACCES; 1174 } 1175 return 0; 1176 } 1177 1178 /* 1179 * follow_up - Find the mountpoint of path's vfsmount 1180 * 1181 * Given a path, find the mountpoint of its source file system. 1182 * Replace @path with the path of the mountpoint in the parent mount. 1183 * Up is towards /. 1184 * 1185 * Return 1 if we went up a level and 0 if we were already at the 1186 * root. 1187 */ 1188 int follow_up(struct path *path) 1189 { 1190 struct mount *mnt = real_mount(path->mnt); 1191 struct mount *parent; 1192 struct dentry *mountpoint; 1193 1194 read_seqlock_excl(&mount_lock); 1195 parent = mnt->mnt_parent; 1196 if (parent == mnt) { 1197 read_sequnlock_excl(&mount_lock); 1198 return 0; 1199 } 1200 mntget(&parent->mnt); 1201 mountpoint = dget(mnt->mnt_mountpoint); 1202 read_sequnlock_excl(&mount_lock); 1203 dput(path->dentry); 1204 path->dentry = mountpoint; 1205 mntput(path->mnt); 1206 path->mnt = &parent->mnt; 1207 return 1; 1208 } 1209 EXPORT_SYMBOL(follow_up); 1210 1211 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1212 struct path *path, unsigned *seqp) 1213 { 1214 while (mnt_has_parent(m)) { 1215 struct dentry *mountpoint = m->mnt_mountpoint; 1216 1217 m = m->mnt_parent; 1218 if (unlikely(root->dentry == mountpoint && 1219 root->mnt == &m->mnt)) 1220 break; 1221 if (mountpoint != m->mnt.mnt_root) { 1222 path->mnt = &m->mnt; 1223 path->dentry = mountpoint; 1224 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1225 return true; 1226 } 1227 } 1228 return false; 1229 } 1230 1231 static bool choose_mountpoint(struct mount *m, const struct path *root, 1232 struct path *path) 1233 { 1234 bool found; 1235 1236 rcu_read_lock(); 1237 while (1) { 1238 unsigned seq, mseq = read_seqbegin(&mount_lock); 1239 1240 found = choose_mountpoint_rcu(m, root, path, &seq); 1241 if (unlikely(!found)) { 1242 if (!read_seqretry(&mount_lock, mseq)) 1243 break; 1244 } else { 1245 if (likely(__legitimize_path(path, seq, mseq))) 1246 break; 1247 rcu_read_unlock(); 1248 path_put(path); 1249 rcu_read_lock(); 1250 } 1251 } 1252 rcu_read_unlock(); 1253 return found; 1254 } 1255 1256 /* 1257 * Perform an automount 1258 * - return -EISDIR to tell follow_managed() to stop and return the path we 1259 * were called with. 1260 */ 1261 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1262 { 1263 struct dentry *dentry = path->dentry; 1264 1265 /* We don't want to mount if someone's just doing a stat - 1266 * unless they're stat'ing a directory and appended a '/' to 1267 * the name. 1268 * 1269 * We do, however, want to mount if someone wants to open or 1270 * create a file of any type under the mountpoint, wants to 1271 * traverse through the mountpoint or wants to open the 1272 * mounted directory. Also, autofs may mark negative dentries 1273 * as being automount points. These will need the attentions 1274 * of the daemon to instantiate them before they can be used. 1275 */ 1276 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1277 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1278 dentry->d_inode) 1279 return -EISDIR; 1280 1281 if (count && (*count)++ >= MAXSYMLINKS) 1282 return -ELOOP; 1283 1284 return finish_automount(dentry->d_op->d_automount(path), path); 1285 } 1286 1287 /* 1288 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1289 * dentries are pinned but not locked here, so negative dentry can go 1290 * positive right under us. Use of smp_load_acquire() provides a barrier 1291 * sufficient for ->d_inode and ->d_flags consistency. 1292 */ 1293 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1294 int *count, unsigned lookup_flags) 1295 { 1296 struct vfsmount *mnt = path->mnt; 1297 bool need_mntput = false; 1298 int ret = 0; 1299 1300 while (flags & DCACHE_MANAGED_DENTRY) { 1301 /* Allow the filesystem to manage the transit without i_mutex 1302 * being held. */ 1303 if (flags & DCACHE_MANAGE_TRANSIT) { 1304 ret = path->dentry->d_op->d_manage(path, false); 1305 flags = smp_load_acquire(&path->dentry->d_flags); 1306 if (ret < 0) 1307 break; 1308 } 1309 1310 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1311 struct vfsmount *mounted = lookup_mnt(path); 1312 if (mounted) { // ... in our namespace 1313 dput(path->dentry); 1314 if (need_mntput) 1315 mntput(path->mnt); 1316 path->mnt = mounted; 1317 path->dentry = dget(mounted->mnt_root); 1318 // here we know it's positive 1319 flags = path->dentry->d_flags; 1320 need_mntput = true; 1321 continue; 1322 } 1323 } 1324 1325 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1326 break; 1327 1328 // uncovered automount point 1329 ret = follow_automount(path, count, lookup_flags); 1330 flags = smp_load_acquire(&path->dentry->d_flags); 1331 if (ret < 0) 1332 break; 1333 } 1334 1335 if (ret == -EISDIR) 1336 ret = 0; 1337 // possible if you race with several mount --move 1338 if (need_mntput && path->mnt == mnt) 1339 mntput(path->mnt); 1340 if (!ret && unlikely(d_flags_negative(flags))) 1341 ret = -ENOENT; 1342 *jumped = need_mntput; 1343 return ret; 1344 } 1345 1346 static inline int traverse_mounts(struct path *path, bool *jumped, 1347 int *count, unsigned lookup_flags) 1348 { 1349 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1350 1351 /* fastpath */ 1352 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1353 *jumped = false; 1354 if (unlikely(d_flags_negative(flags))) 1355 return -ENOENT; 1356 return 0; 1357 } 1358 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1359 } 1360 1361 int follow_down_one(struct path *path) 1362 { 1363 struct vfsmount *mounted; 1364 1365 mounted = lookup_mnt(path); 1366 if (mounted) { 1367 dput(path->dentry); 1368 mntput(path->mnt); 1369 path->mnt = mounted; 1370 path->dentry = dget(mounted->mnt_root); 1371 return 1; 1372 } 1373 return 0; 1374 } 1375 EXPORT_SYMBOL(follow_down_one); 1376 1377 /* 1378 * Follow down to the covering mount currently visible to userspace. At each 1379 * point, the filesystem owning that dentry may be queried as to whether the 1380 * caller is permitted to proceed or not. 1381 */ 1382 int follow_down(struct path *path) 1383 { 1384 struct vfsmount *mnt = path->mnt; 1385 bool jumped; 1386 int ret = traverse_mounts(path, &jumped, NULL, 0); 1387 1388 if (path->mnt != mnt) 1389 mntput(mnt); 1390 return ret; 1391 } 1392 EXPORT_SYMBOL(follow_down); 1393 1394 /* 1395 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1396 * we meet a managed dentry that would need blocking. 1397 */ 1398 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1399 struct inode **inode, unsigned *seqp) 1400 { 1401 struct dentry *dentry = path->dentry; 1402 unsigned int flags = dentry->d_flags; 1403 1404 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1405 return true; 1406 1407 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1408 return false; 1409 1410 for (;;) { 1411 /* 1412 * Don't forget we might have a non-mountpoint managed dentry 1413 * that wants to block transit. 1414 */ 1415 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1416 int res = dentry->d_op->d_manage(path, true); 1417 if (res) 1418 return res == -EISDIR; 1419 flags = dentry->d_flags; 1420 } 1421 1422 if (flags & DCACHE_MOUNTED) { 1423 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1424 if (mounted) { 1425 path->mnt = &mounted->mnt; 1426 dentry = path->dentry = mounted->mnt.mnt_root; 1427 nd->flags |= LOOKUP_JUMPED; 1428 *seqp = read_seqcount_begin(&dentry->d_seq); 1429 *inode = dentry->d_inode; 1430 /* 1431 * We don't need to re-check ->d_seq after this 1432 * ->d_inode read - there will be an RCU delay 1433 * between mount hash removal and ->mnt_root 1434 * becoming unpinned. 1435 */ 1436 flags = dentry->d_flags; 1437 continue; 1438 } 1439 if (read_seqretry(&mount_lock, nd->m_seq)) 1440 return false; 1441 } 1442 return !(flags & DCACHE_NEED_AUTOMOUNT); 1443 } 1444 } 1445 1446 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1447 struct path *path, struct inode **inode, 1448 unsigned int *seqp) 1449 { 1450 bool jumped; 1451 int ret; 1452 1453 path->mnt = nd->path.mnt; 1454 path->dentry = dentry; 1455 if (nd->flags & LOOKUP_RCU) { 1456 unsigned int seq = *seqp; 1457 if (unlikely(!*inode)) 1458 return -ENOENT; 1459 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1460 return 0; 1461 if (!try_to_unlazy_next(nd, dentry, seq)) 1462 return -ECHILD; 1463 // *path might've been clobbered by __follow_mount_rcu() 1464 path->mnt = nd->path.mnt; 1465 path->dentry = dentry; 1466 } 1467 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1468 if (jumped) { 1469 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1470 ret = -EXDEV; 1471 else 1472 nd->flags |= LOOKUP_JUMPED; 1473 } 1474 if (unlikely(ret)) { 1475 dput(path->dentry); 1476 if (path->mnt != nd->path.mnt) 1477 mntput(path->mnt); 1478 } else { 1479 *inode = d_backing_inode(path->dentry); 1480 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1481 } 1482 return ret; 1483 } 1484 1485 /* 1486 * This looks up the name in dcache and possibly revalidates the found dentry. 1487 * NULL is returned if the dentry does not exist in the cache. 1488 */ 1489 static struct dentry *lookup_dcache(const struct qstr *name, 1490 struct dentry *dir, 1491 unsigned int flags) 1492 { 1493 struct dentry *dentry = d_lookup(dir, name); 1494 if (dentry) { 1495 int error = d_revalidate(dentry, flags); 1496 if (unlikely(error <= 0)) { 1497 if (!error) 1498 d_invalidate(dentry); 1499 dput(dentry); 1500 return ERR_PTR(error); 1501 } 1502 } 1503 return dentry; 1504 } 1505 1506 /* 1507 * Parent directory has inode locked exclusive. This is one 1508 * and only case when ->lookup() gets called on non in-lookup 1509 * dentries - as the matter of fact, this only gets called 1510 * when directory is guaranteed to have no in-lookup children 1511 * at all. 1512 */ 1513 static struct dentry *__lookup_hash(const struct qstr *name, 1514 struct dentry *base, unsigned int flags) 1515 { 1516 struct dentry *dentry = lookup_dcache(name, base, flags); 1517 struct dentry *old; 1518 struct inode *dir = base->d_inode; 1519 1520 if (dentry) 1521 return dentry; 1522 1523 /* Don't create child dentry for a dead directory. */ 1524 if (unlikely(IS_DEADDIR(dir))) 1525 return ERR_PTR(-ENOENT); 1526 1527 dentry = d_alloc(base, name); 1528 if (unlikely(!dentry)) 1529 return ERR_PTR(-ENOMEM); 1530 1531 old = dir->i_op->lookup(dir, dentry, flags); 1532 if (unlikely(old)) { 1533 dput(dentry); 1534 dentry = old; 1535 } 1536 return dentry; 1537 } 1538 1539 static struct dentry *lookup_fast(struct nameidata *nd, 1540 struct inode **inode, 1541 unsigned *seqp) 1542 { 1543 struct dentry *dentry, *parent = nd->path.dentry; 1544 int status = 1; 1545 1546 /* 1547 * Rename seqlock is not required here because in the off chance 1548 * of a false negative due to a concurrent rename, the caller is 1549 * going to fall back to non-racy lookup. 1550 */ 1551 if (nd->flags & LOOKUP_RCU) { 1552 unsigned seq; 1553 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1554 if (unlikely(!dentry)) { 1555 if (!try_to_unlazy(nd)) 1556 return ERR_PTR(-ECHILD); 1557 return NULL; 1558 } 1559 1560 /* 1561 * This sequence count validates that the inode matches 1562 * the dentry name information from lookup. 1563 */ 1564 *inode = d_backing_inode(dentry); 1565 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1566 return ERR_PTR(-ECHILD); 1567 1568 /* 1569 * This sequence count validates that the parent had no 1570 * changes while we did the lookup of the dentry above. 1571 * 1572 * The memory barrier in read_seqcount_begin of child is 1573 * enough, we can use __read_seqcount_retry here. 1574 */ 1575 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1576 return ERR_PTR(-ECHILD); 1577 1578 *seqp = seq; 1579 status = d_revalidate(dentry, nd->flags); 1580 if (likely(status > 0)) 1581 return dentry; 1582 if (!try_to_unlazy_next(nd, dentry, seq)) 1583 return ERR_PTR(-ECHILD); 1584 if (status == -ECHILD) 1585 /* we'd been told to redo it in non-rcu mode */ 1586 status = d_revalidate(dentry, nd->flags); 1587 } else { 1588 dentry = __d_lookup(parent, &nd->last); 1589 if (unlikely(!dentry)) 1590 return NULL; 1591 status = d_revalidate(dentry, nd->flags); 1592 } 1593 if (unlikely(status <= 0)) { 1594 if (!status) 1595 d_invalidate(dentry); 1596 dput(dentry); 1597 return ERR_PTR(status); 1598 } 1599 return dentry; 1600 } 1601 1602 /* Fast lookup failed, do it the slow way */ 1603 static struct dentry *__lookup_slow(const struct qstr *name, 1604 struct dentry *dir, 1605 unsigned int flags) 1606 { 1607 struct dentry *dentry, *old; 1608 struct inode *inode = dir->d_inode; 1609 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1610 1611 /* Don't go there if it's already dead */ 1612 if (unlikely(IS_DEADDIR(inode))) 1613 return ERR_PTR(-ENOENT); 1614 again: 1615 dentry = d_alloc_parallel(dir, name, &wq); 1616 if (IS_ERR(dentry)) 1617 return dentry; 1618 if (unlikely(!d_in_lookup(dentry))) { 1619 int error = d_revalidate(dentry, flags); 1620 if (unlikely(error <= 0)) { 1621 if (!error) { 1622 d_invalidate(dentry); 1623 dput(dentry); 1624 goto again; 1625 } 1626 dput(dentry); 1627 dentry = ERR_PTR(error); 1628 } 1629 } else { 1630 old = inode->i_op->lookup(inode, dentry, flags); 1631 d_lookup_done(dentry); 1632 if (unlikely(old)) { 1633 dput(dentry); 1634 dentry = old; 1635 } 1636 } 1637 return dentry; 1638 } 1639 1640 static struct dentry *lookup_slow(const struct qstr *name, 1641 struct dentry *dir, 1642 unsigned int flags) 1643 { 1644 struct inode *inode = dir->d_inode; 1645 struct dentry *res; 1646 inode_lock_shared(inode); 1647 res = __lookup_slow(name, dir, flags); 1648 inode_unlock_shared(inode); 1649 return res; 1650 } 1651 1652 static inline int may_lookup(struct user_namespace *mnt_userns, 1653 struct nameidata *nd) 1654 { 1655 if (nd->flags & LOOKUP_RCU) { 1656 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1657 if (err != -ECHILD || !try_to_unlazy(nd)) 1658 return err; 1659 } 1660 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1661 } 1662 1663 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1664 { 1665 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1666 return -ELOOP; 1667 1668 if (likely(nd->depth != EMBEDDED_LEVELS)) 1669 return 0; 1670 if (likely(nd->stack != nd->internal)) 1671 return 0; 1672 if (likely(nd_alloc_stack(nd))) 1673 return 0; 1674 1675 if (nd->flags & LOOKUP_RCU) { 1676 // we need to grab link before we do unlazy. And we can't skip 1677 // unlazy even if we fail to grab the link - cleanup needs it 1678 bool grabbed_link = legitimize_path(nd, link, seq); 1679 1680 if (!try_to_unlazy(nd) != 0 || !grabbed_link) 1681 return -ECHILD; 1682 1683 if (nd_alloc_stack(nd)) 1684 return 0; 1685 } 1686 return -ENOMEM; 1687 } 1688 1689 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1690 1691 static const char *pick_link(struct nameidata *nd, struct path *link, 1692 struct inode *inode, unsigned seq, int flags) 1693 { 1694 struct saved *last; 1695 const char *res; 1696 int error = reserve_stack(nd, link, seq); 1697 1698 if (unlikely(error)) { 1699 if (!(nd->flags & LOOKUP_RCU)) 1700 path_put(link); 1701 return ERR_PTR(error); 1702 } 1703 last = nd->stack + nd->depth++; 1704 last->link = *link; 1705 clear_delayed_call(&last->done); 1706 last->seq = seq; 1707 1708 if (flags & WALK_TRAILING) { 1709 error = may_follow_link(nd, inode); 1710 if (unlikely(error)) 1711 return ERR_PTR(error); 1712 } 1713 1714 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1715 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1716 return ERR_PTR(-ELOOP); 1717 1718 if (!(nd->flags & LOOKUP_RCU)) { 1719 touch_atime(&last->link); 1720 cond_resched(); 1721 } else if (atime_needs_update(&last->link, inode)) { 1722 if (!try_to_unlazy(nd)) 1723 return ERR_PTR(-ECHILD); 1724 touch_atime(&last->link); 1725 } 1726 1727 error = security_inode_follow_link(link->dentry, inode, 1728 nd->flags & LOOKUP_RCU); 1729 if (unlikely(error)) 1730 return ERR_PTR(error); 1731 1732 res = READ_ONCE(inode->i_link); 1733 if (!res) { 1734 const char * (*get)(struct dentry *, struct inode *, 1735 struct delayed_call *); 1736 get = inode->i_op->get_link; 1737 if (nd->flags & LOOKUP_RCU) { 1738 res = get(NULL, inode, &last->done); 1739 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1740 res = get(link->dentry, inode, &last->done); 1741 } else { 1742 res = get(link->dentry, inode, &last->done); 1743 } 1744 if (!res) 1745 goto all_done; 1746 if (IS_ERR(res)) 1747 return res; 1748 } 1749 if (*res == '/') { 1750 error = nd_jump_root(nd); 1751 if (unlikely(error)) 1752 return ERR_PTR(error); 1753 while (unlikely(*++res == '/')) 1754 ; 1755 } 1756 if (*res) 1757 return res; 1758 all_done: // pure jump 1759 put_link(nd); 1760 return NULL; 1761 } 1762 1763 /* 1764 * Do we need to follow links? We _really_ want to be able 1765 * to do this check without having to look at inode->i_op, 1766 * so we keep a cache of "no, this doesn't need follow_link" 1767 * for the common case. 1768 */ 1769 static const char *step_into(struct nameidata *nd, int flags, 1770 struct dentry *dentry, struct inode *inode, unsigned seq) 1771 { 1772 struct path path; 1773 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1774 1775 if (err < 0) 1776 return ERR_PTR(err); 1777 if (likely(!d_is_symlink(path.dentry)) || 1778 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1779 (flags & WALK_NOFOLLOW)) { 1780 /* not a symlink or should not follow */ 1781 if (!(nd->flags & LOOKUP_RCU)) { 1782 dput(nd->path.dentry); 1783 if (nd->path.mnt != path.mnt) 1784 mntput(nd->path.mnt); 1785 } 1786 nd->path = path; 1787 nd->inode = inode; 1788 nd->seq = seq; 1789 return NULL; 1790 } 1791 if (nd->flags & LOOKUP_RCU) { 1792 /* make sure that d_is_symlink above matches inode */ 1793 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1794 return ERR_PTR(-ECHILD); 1795 } else { 1796 if (path.mnt == nd->path.mnt) 1797 mntget(path.mnt); 1798 } 1799 return pick_link(nd, &path, inode, seq, flags); 1800 } 1801 1802 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1803 struct inode **inodep, 1804 unsigned *seqp) 1805 { 1806 struct dentry *parent, *old; 1807 1808 if (path_equal(&nd->path, &nd->root)) 1809 goto in_root; 1810 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1811 struct path path; 1812 unsigned seq; 1813 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1814 &nd->root, &path, &seq)) 1815 goto in_root; 1816 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1817 return ERR_PTR(-ECHILD); 1818 nd->path = path; 1819 nd->inode = path.dentry->d_inode; 1820 nd->seq = seq; 1821 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1822 return ERR_PTR(-ECHILD); 1823 /* we know that mountpoint was pinned */ 1824 } 1825 old = nd->path.dentry; 1826 parent = old->d_parent; 1827 *inodep = parent->d_inode; 1828 *seqp = read_seqcount_begin(&parent->d_seq); 1829 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1830 return ERR_PTR(-ECHILD); 1831 if (unlikely(!path_connected(nd->path.mnt, parent))) 1832 return ERR_PTR(-ECHILD); 1833 return parent; 1834 in_root: 1835 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1836 return ERR_PTR(-ECHILD); 1837 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1838 return ERR_PTR(-ECHILD); 1839 return NULL; 1840 } 1841 1842 static struct dentry *follow_dotdot(struct nameidata *nd, 1843 struct inode **inodep, 1844 unsigned *seqp) 1845 { 1846 struct dentry *parent; 1847 1848 if (path_equal(&nd->path, &nd->root)) 1849 goto in_root; 1850 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1851 struct path path; 1852 1853 if (!choose_mountpoint(real_mount(nd->path.mnt), 1854 &nd->root, &path)) 1855 goto in_root; 1856 path_put(&nd->path); 1857 nd->path = path; 1858 nd->inode = path.dentry->d_inode; 1859 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1860 return ERR_PTR(-EXDEV); 1861 } 1862 /* rare case of legitimate dget_parent()... */ 1863 parent = dget_parent(nd->path.dentry); 1864 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1865 dput(parent); 1866 return ERR_PTR(-ENOENT); 1867 } 1868 *seqp = 0; 1869 *inodep = parent->d_inode; 1870 return parent; 1871 1872 in_root: 1873 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1874 return ERR_PTR(-EXDEV); 1875 dget(nd->path.dentry); 1876 return NULL; 1877 } 1878 1879 static const char *handle_dots(struct nameidata *nd, int type) 1880 { 1881 if (type == LAST_DOTDOT) { 1882 const char *error = NULL; 1883 struct dentry *parent; 1884 struct inode *inode; 1885 unsigned seq; 1886 1887 if (!nd->root.mnt) { 1888 error = ERR_PTR(set_root(nd)); 1889 if (error) 1890 return error; 1891 } 1892 if (nd->flags & LOOKUP_RCU) 1893 parent = follow_dotdot_rcu(nd, &inode, &seq); 1894 else 1895 parent = follow_dotdot(nd, &inode, &seq); 1896 if (IS_ERR(parent)) 1897 return ERR_CAST(parent); 1898 if (unlikely(!parent)) 1899 error = step_into(nd, WALK_NOFOLLOW, 1900 nd->path.dentry, nd->inode, nd->seq); 1901 else 1902 error = step_into(nd, WALK_NOFOLLOW, 1903 parent, inode, seq); 1904 if (unlikely(error)) 1905 return error; 1906 1907 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1908 /* 1909 * If there was a racing rename or mount along our 1910 * path, then we can't be sure that ".." hasn't jumped 1911 * above nd->root (and so userspace should retry or use 1912 * some fallback). 1913 */ 1914 smp_rmb(); 1915 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1916 return ERR_PTR(-EAGAIN); 1917 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1918 return ERR_PTR(-EAGAIN); 1919 } 1920 } 1921 return NULL; 1922 } 1923 1924 static const char *walk_component(struct nameidata *nd, int flags) 1925 { 1926 struct dentry *dentry; 1927 struct inode *inode; 1928 unsigned seq; 1929 /* 1930 * "." and ".." are special - ".." especially so because it has 1931 * to be able to know about the current root directory and 1932 * parent relationships. 1933 */ 1934 if (unlikely(nd->last_type != LAST_NORM)) { 1935 if (!(flags & WALK_MORE) && nd->depth) 1936 put_link(nd); 1937 return handle_dots(nd, nd->last_type); 1938 } 1939 dentry = lookup_fast(nd, &inode, &seq); 1940 if (IS_ERR(dentry)) 1941 return ERR_CAST(dentry); 1942 if (unlikely(!dentry)) { 1943 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1944 if (IS_ERR(dentry)) 1945 return ERR_CAST(dentry); 1946 } 1947 if (!(flags & WALK_MORE) && nd->depth) 1948 put_link(nd); 1949 return step_into(nd, flags, dentry, inode, seq); 1950 } 1951 1952 /* 1953 * We can do the critical dentry name comparison and hashing 1954 * operations one word at a time, but we are limited to: 1955 * 1956 * - Architectures with fast unaligned word accesses. We could 1957 * do a "get_unaligned()" if this helps and is sufficiently 1958 * fast. 1959 * 1960 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1961 * do not trap on the (extremely unlikely) case of a page 1962 * crossing operation. 1963 * 1964 * - Furthermore, we need an efficient 64-bit compile for the 1965 * 64-bit case in order to generate the "number of bytes in 1966 * the final mask". Again, that could be replaced with a 1967 * efficient population count instruction or similar. 1968 */ 1969 #ifdef CONFIG_DCACHE_WORD_ACCESS 1970 1971 #include <asm/word-at-a-time.h> 1972 1973 #ifdef HASH_MIX 1974 1975 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1976 1977 #elif defined(CONFIG_64BIT) 1978 /* 1979 * Register pressure in the mixing function is an issue, particularly 1980 * on 32-bit x86, but almost any function requires one state value and 1981 * one temporary. Instead, use a function designed for two state values 1982 * and no temporaries. 1983 * 1984 * This function cannot create a collision in only two iterations, so 1985 * we have two iterations to achieve avalanche. In those two iterations, 1986 * we have six layers of mixing, which is enough to spread one bit's 1987 * influence out to 2^6 = 64 state bits. 1988 * 1989 * Rotate constants are scored by considering either 64 one-bit input 1990 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1991 * probability of that delta causing a change to each of the 128 output 1992 * bits, using a sample of random initial states. 1993 * 1994 * The Shannon entropy of the computed probabilities is then summed 1995 * to produce a score. Ideally, any input change has a 50% chance of 1996 * toggling any given output bit. 1997 * 1998 * Mixing scores (in bits) for (12,45): 1999 * Input delta: 1-bit 2-bit 2000 * 1 round: 713.3 42542.6 2001 * 2 rounds: 2753.7 140389.8 2002 * 3 rounds: 5954.1 233458.2 2003 * 4 rounds: 7862.6 256672.2 2004 * Perfect: 8192 258048 2005 * (64*128) (64*63/2 * 128) 2006 */ 2007 #define HASH_MIX(x, y, a) \ 2008 ( x ^= (a), \ 2009 y ^= x, x = rol64(x,12),\ 2010 x += y, y = rol64(y,45),\ 2011 y *= 9 ) 2012 2013 /* 2014 * Fold two longs into one 32-bit hash value. This must be fast, but 2015 * latency isn't quite as critical, as there is a fair bit of additional 2016 * work done before the hash value is used. 2017 */ 2018 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2019 { 2020 y ^= x * GOLDEN_RATIO_64; 2021 y *= GOLDEN_RATIO_64; 2022 return y >> 32; 2023 } 2024 2025 #else /* 32-bit case */ 2026 2027 /* 2028 * Mixing scores (in bits) for (7,20): 2029 * Input delta: 1-bit 2-bit 2030 * 1 round: 330.3 9201.6 2031 * 2 rounds: 1246.4 25475.4 2032 * 3 rounds: 1907.1 31295.1 2033 * 4 rounds: 2042.3 31718.6 2034 * Perfect: 2048 31744 2035 * (32*64) (32*31/2 * 64) 2036 */ 2037 #define HASH_MIX(x, y, a) \ 2038 ( x ^= (a), \ 2039 y ^= x, x = rol32(x, 7),\ 2040 x += y, y = rol32(y,20),\ 2041 y *= 9 ) 2042 2043 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2044 { 2045 /* Use arch-optimized multiply if one exists */ 2046 return __hash_32(y ^ __hash_32(x)); 2047 } 2048 2049 #endif 2050 2051 /* 2052 * Return the hash of a string of known length. This is carfully 2053 * designed to match hash_name(), which is the more critical function. 2054 * In particular, we must end by hashing a final word containing 0..7 2055 * payload bytes, to match the way that hash_name() iterates until it 2056 * finds the delimiter after the name. 2057 */ 2058 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2059 { 2060 unsigned long a, x = 0, y = (unsigned long)salt; 2061 2062 for (;;) { 2063 if (!len) 2064 goto done; 2065 a = load_unaligned_zeropad(name); 2066 if (len < sizeof(unsigned long)) 2067 break; 2068 HASH_MIX(x, y, a); 2069 name += sizeof(unsigned long); 2070 len -= sizeof(unsigned long); 2071 } 2072 x ^= a & bytemask_from_count(len); 2073 done: 2074 return fold_hash(x, y); 2075 } 2076 EXPORT_SYMBOL(full_name_hash); 2077 2078 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2079 u64 hashlen_string(const void *salt, const char *name) 2080 { 2081 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2082 unsigned long adata, mask, len; 2083 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2084 2085 len = 0; 2086 goto inside; 2087 2088 do { 2089 HASH_MIX(x, y, a); 2090 len += sizeof(unsigned long); 2091 inside: 2092 a = load_unaligned_zeropad(name+len); 2093 } while (!has_zero(a, &adata, &constants)); 2094 2095 adata = prep_zero_mask(a, adata, &constants); 2096 mask = create_zero_mask(adata); 2097 x ^= a & zero_bytemask(mask); 2098 2099 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2100 } 2101 EXPORT_SYMBOL(hashlen_string); 2102 2103 /* 2104 * Calculate the length and hash of the path component, and 2105 * return the "hash_len" as the result. 2106 */ 2107 static inline u64 hash_name(const void *salt, const char *name) 2108 { 2109 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2110 unsigned long adata, bdata, mask, len; 2111 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2112 2113 len = 0; 2114 goto inside; 2115 2116 do { 2117 HASH_MIX(x, y, a); 2118 len += sizeof(unsigned long); 2119 inside: 2120 a = load_unaligned_zeropad(name+len); 2121 b = a ^ REPEAT_BYTE('/'); 2122 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2123 2124 adata = prep_zero_mask(a, adata, &constants); 2125 bdata = prep_zero_mask(b, bdata, &constants); 2126 mask = create_zero_mask(adata | bdata); 2127 x ^= a & zero_bytemask(mask); 2128 2129 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2130 } 2131 2132 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2133 2134 /* Return the hash of a string of known length */ 2135 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2136 { 2137 unsigned long hash = init_name_hash(salt); 2138 while (len--) 2139 hash = partial_name_hash((unsigned char)*name++, hash); 2140 return end_name_hash(hash); 2141 } 2142 EXPORT_SYMBOL(full_name_hash); 2143 2144 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2145 u64 hashlen_string(const void *salt, const char *name) 2146 { 2147 unsigned long hash = init_name_hash(salt); 2148 unsigned long len = 0, c; 2149 2150 c = (unsigned char)*name; 2151 while (c) { 2152 len++; 2153 hash = partial_name_hash(c, hash); 2154 c = (unsigned char)name[len]; 2155 } 2156 return hashlen_create(end_name_hash(hash), len); 2157 } 2158 EXPORT_SYMBOL(hashlen_string); 2159 2160 /* 2161 * We know there's a real path component here of at least 2162 * one character. 2163 */ 2164 static inline u64 hash_name(const void *salt, const char *name) 2165 { 2166 unsigned long hash = init_name_hash(salt); 2167 unsigned long len = 0, c; 2168 2169 c = (unsigned char)*name; 2170 do { 2171 len++; 2172 hash = partial_name_hash(c, hash); 2173 c = (unsigned char)name[len]; 2174 } while (c && c != '/'); 2175 return hashlen_create(end_name_hash(hash), len); 2176 } 2177 2178 #endif 2179 2180 /* 2181 * Name resolution. 2182 * This is the basic name resolution function, turning a pathname into 2183 * the final dentry. We expect 'base' to be positive and a directory. 2184 * 2185 * Returns 0 and nd will have valid dentry and mnt on success. 2186 * Returns error and drops reference to input namei data on failure. 2187 */ 2188 static int link_path_walk(const char *name, struct nameidata *nd) 2189 { 2190 int depth = 0; // depth <= nd->depth 2191 int err; 2192 2193 nd->last_type = LAST_ROOT; 2194 nd->flags |= LOOKUP_PARENT; 2195 if (IS_ERR(name)) 2196 return PTR_ERR(name); 2197 while (*name=='/') 2198 name++; 2199 if (!*name) { 2200 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2201 return 0; 2202 } 2203 2204 /* At this point we know we have a real path component. */ 2205 for(;;) { 2206 struct user_namespace *mnt_userns; 2207 const char *link; 2208 u64 hash_len; 2209 int type; 2210 2211 mnt_userns = mnt_user_ns(nd->path.mnt); 2212 err = may_lookup(mnt_userns, nd); 2213 if (err) 2214 return err; 2215 2216 hash_len = hash_name(nd->path.dentry, name); 2217 2218 type = LAST_NORM; 2219 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2220 case 2: 2221 if (name[1] == '.') { 2222 type = LAST_DOTDOT; 2223 nd->flags |= LOOKUP_JUMPED; 2224 } 2225 break; 2226 case 1: 2227 type = LAST_DOT; 2228 } 2229 if (likely(type == LAST_NORM)) { 2230 struct dentry *parent = nd->path.dentry; 2231 nd->flags &= ~LOOKUP_JUMPED; 2232 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2233 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2234 err = parent->d_op->d_hash(parent, &this); 2235 if (err < 0) 2236 return err; 2237 hash_len = this.hash_len; 2238 name = this.name; 2239 } 2240 } 2241 2242 nd->last.hash_len = hash_len; 2243 nd->last.name = name; 2244 nd->last_type = type; 2245 2246 name += hashlen_len(hash_len); 2247 if (!*name) 2248 goto OK; 2249 /* 2250 * If it wasn't NUL, we know it was '/'. Skip that 2251 * slash, and continue until no more slashes. 2252 */ 2253 do { 2254 name++; 2255 } while (unlikely(*name == '/')); 2256 if (unlikely(!*name)) { 2257 OK: 2258 /* pathname or trailing symlink, done */ 2259 if (!depth) { 2260 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2261 nd->dir_mode = nd->inode->i_mode; 2262 nd->flags &= ~LOOKUP_PARENT; 2263 return 0; 2264 } 2265 /* last component of nested symlink */ 2266 name = nd->stack[--depth].name; 2267 link = walk_component(nd, 0); 2268 } else { 2269 /* not the last component */ 2270 link = walk_component(nd, WALK_MORE); 2271 } 2272 if (unlikely(link)) { 2273 if (IS_ERR(link)) 2274 return PTR_ERR(link); 2275 /* a symlink to follow */ 2276 nd->stack[depth++].name = name; 2277 name = link; 2278 continue; 2279 } 2280 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2281 if (nd->flags & LOOKUP_RCU) { 2282 if (!try_to_unlazy(nd)) 2283 return -ECHILD; 2284 } 2285 return -ENOTDIR; 2286 } 2287 } 2288 } 2289 2290 /* must be paired with terminate_walk() */ 2291 static const char *path_init(struct nameidata *nd, unsigned flags) 2292 { 2293 int error; 2294 const char *s = nd->name->name; 2295 2296 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2297 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2298 return ERR_PTR(-EAGAIN); 2299 2300 if (!*s) 2301 flags &= ~LOOKUP_RCU; 2302 if (flags & LOOKUP_RCU) 2303 rcu_read_lock(); 2304 2305 nd->flags = flags | LOOKUP_JUMPED; 2306 nd->depth = 0; 2307 2308 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2309 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2310 smp_rmb(); 2311 2312 if (flags & LOOKUP_ROOT) { 2313 struct dentry *root = nd->root.dentry; 2314 struct inode *inode = root->d_inode; 2315 if (*s && unlikely(!d_can_lookup(root))) 2316 return ERR_PTR(-ENOTDIR); 2317 nd->path = nd->root; 2318 nd->inode = inode; 2319 if (flags & LOOKUP_RCU) { 2320 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2321 nd->root_seq = nd->seq; 2322 } else { 2323 path_get(&nd->path); 2324 } 2325 return s; 2326 } 2327 2328 nd->root.mnt = NULL; 2329 2330 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2331 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2332 error = nd_jump_root(nd); 2333 if (unlikely(error)) 2334 return ERR_PTR(error); 2335 return s; 2336 } 2337 2338 /* Relative pathname -- get the starting-point it is relative to. */ 2339 if (nd->dfd == AT_FDCWD) { 2340 if (flags & LOOKUP_RCU) { 2341 struct fs_struct *fs = current->fs; 2342 unsigned seq; 2343 2344 do { 2345 seq = read_seqcount_begin(&fs->seq); 2346 nd->path = fs->pwd; 2347 nd->inode = nd->path.dentry->d_inode; 2348 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2349 } while (read_seqcount_retry(&fs->seq, seq)); 2350 } else { 2351 get_fs_pwd(current->fs, &nd->path); 2352 nd->inode = nd->path.dentry->d_inode; 2353 } 2354 } else { 2355 /* Caller must check execute permissions on the starting path component */ 2356 struct fd f = fdget_raw(nd->dfd); 2357 struct dentry *dentry; 2358 2359 if (!f.file) 2360 return ERR_PTR(-EBADF); 2361 2362 dentry = f.file->f_path.dentry; 2363 2364 if (*s && unlikely(!d_can_lookup(dentry))) { 2365 fdput(f); 2366 return ERR_PTR(-ENOTDIR); 2367 } 2368 2369 nd->path = f.file->f_path; 2370 if (flags & LOOKUP_RCU) { 2371 nd->inode = nd->path.dentry->d_inode; 2372 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2373 } else { 2374 path_get(&nd->path); 2375 nd->inode = nd->path.dentry->d_inode; 2376 } 2377 fdput(f); 2378 } 2379 2380 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2381 if (flags & LOOKUP_IS_SCOPED) { 2382 nd->root = nd->path; 2383 if (flags & LOOKUP_RCU) { 2384 nd->root_seq = nd->seq; 2385 } else { 2386 path_get(&nd->root); 2387 nd->flags |= LOOKUP_ROOT_GRABBED; 2388 } 2389 } 2390 return s; 2391 } 2392 2393 static inline const char *lookup_last(struct nameidata *nd) 2394 { 2395 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2396 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2397 2398 return walk_component(nd, WALK_TRAILING); 2399 } 2400 2401 static int handle_lookup_down(struct nameidata *nd) 2402 { 2403 if (!(nd->flags & LOOKUP_RCU)) 2404 dget(nd->path.dentry); 2405 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2406 nd->path.dentry, nd->inode, nd->seq)); 2407 } 2408 2409 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2410 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2411 { 2412 const char *s = path_init(nd, flags); 2413 int err; 2414 2415 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2416 err = handle_lookup_down(nd); 2417 if (unlikely(err < 0)) 2418 s = ERR_PTR(err); 2419 } 2420 2421 while (!(err = link_path_walk(s, nd)) && 2422 (s = lookup_last(nd)) != NULL) 2423 ; 2424 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2425 err = handle_lookup_down(nd); 2426 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please... 2427 } 2428 if (!err) 2429 err = complete_walk(nd); 2430 2431 if (!err && nd->flags & LOOKUP_DIRECTORY) 2432 if (!d_can_lookup(nd->path.dentry)) 2433 err = -ENOTDIR; 2434 if (!err) { 2435 *path = nd->path; 2436 nd->path.mnt = NULL; 2437 nd->path.dentry = NULL; 2438 } 2439 terminate_walk(nd); 2440 return err; 2441 } 2442 2443 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2444 struct path *path, struct path *root) 2445 { 2446 int retval; 2447 struct nameidata nd; 2448 if (IS_ERR(name)) 2449 return PTR_ERR(name); 2450 if (unlikely(root)) { 2451 nd.root = *root; 2452 flags |= LOOKUP_ROOT; 2453 } 2454 set_nameidata(&nd, dfd, name); 2455 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2456 if (unlikely(retval == -ECHILD)) 2457 retval = path_lookupat(&nd, flags, path); 2458 if (unlikely(retval == -ESTALE)) 2459 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2460 2461 if (likely(!retval)) 2462 audit_inode(name, path->dentry, 2463 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2464 restore_nameidata(); 2465 putname(name); 2466 return retval; 2467 } 2468 2469 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2470 static int path_parentat(struct nameidata *nd, unsigned flags, 2471 struct path *parent) 2472 { 2473 const char *s = path_init(nd, flags); 2474 int err = link_path_walk(s, nd); 2475 if (!err) 2476 err = complete_walk(nd); 2477 if (!err) { 2478 *parent = nd->path; 2479 nd->path.mnt = NULL; 2480 nd->path.dentry = NULL; 2481 } 2482 terminate_walk(nd); 2483 return err; 2484 } 2485 2486 static struct filename *filename_parentat(int dfd, struct filename *name, 2487 unsigned int flags, struct path *parent, 2488 struct qstr *last, int *type) 2489 { 2490 int retval; 2491 struct nameidata nd; 2492 2493 if (IS_ERR(name)) 2494 return name; 2495 set_nameidata(&nd, dfd, name); 2496 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2497 if (unlikely(retval == -ECHILD)) 2498 retval = path_parentat(&nd, flags, parent); 2499 if (unlikely(retval == -ESTALE)) 2500 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2501 if (likely(!retval)) { 2502 *last = nd.last; 2503 *type = nd.last_type; 2504 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2505 } else { 2506 putname(name); 2507 name = ERR_PTR(retval); 2508 } 2509 restore_nameidata(); 2510 return name; 2511 } 2512 2513 /* does lookup, returns the object with parent locked */ 2514 struct dentry *kern_path_locked(const char *name, struct path *path) 2515 { 2516 struct filename *filename; 2517 struct dentry *d; 2518 struct qstr last; 2519 int type; 2520 2521 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2522 &last, &type); 2523 if (IS_ERR(filename)) 2524 return ERR_CAST(filename); 2525 if (unlikely(type != LAST_NORM)) { 2526 path_put(path); 2527 putname(filename); 2528 return ERR_PTR(-EINVAL); 2529 } 2530 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2531 d = __lookup_hash(&last, path->dentry, 0); 2532 if (IS_ERR(d)) { 2533 inode_unlock(path->dentry->d_inode); 2534 path_put(path); 2535 } 2536 putname(filename); 2537 return d; 2538 } 2539 2540 int kern_path(const char *name, unsigned int flags, struct path *path) 2541 { 2542 return filename_lookup(AT_FDCWD, getname_kernel(name), 2543 flags, path, NULL); 2544 } 2545 EXPORT_SYMBOL(kern_path); 2546 2547 /** 2548 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2549 * @dentry: pointer to dentry of the base directory 2550 * @mnt: pointer to vfs mount of the base directory 2551 * @name: pointer to file name 2552 * @flags: lookup flags 2553 * @path: pointer to struct path to fill 2554 */ 2555 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2556 const char *name, unsigned int flags, 2557 struct path *path) 2558 { 2559 struct path root = {.mnt = mnt, .dentry = dentry}; 2560 /* the first argument of filename_lookup() is ignored with root */ 2561 return filename_lookup(AT_FDCWD, getname_kernel(name), 2562 flags , path, &root); 2563 } 2564 EXPORT_SYMBOL(vfs_path_lookup); 2565 2566 static int lookup_one_len_common(const char *name, struct dentry *base, 2567 int len, struct qstr *this) 2568 { 2569 this->name = name; 2570 this->len = len; 2571 this->hash = full_name_hash(base, name, len); 2572 if (!len) 2573 return -EACCES; 2574 2575 if (unlikely(name[0] == '.')) { 2576 if (len < 2 || (len == 2 && name[1] == '.')) 2577 return -EACCES; 2578 } 2579 2580 while (len--) { 2581 unsigned int c = *(const unsigned char *)name++; 2582 if (c == '/' || c == '\0') 2583 return -EACCES; 2584 } 2585 /* 2586 * See if the low-level filesystem might want 2587 * to use its own hash.. 2588 */ 2589 if (base->d_flags & DCACHE_OP_HASH) { 2590 int err = base->d_op->d_hash(base, this); 2591 if (err < 0) 2592 return err; 2593 } 2594 2595 return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC); 2596 } 2597 2598 /** 2599 * try_lookup_one_len - filesystem helper to lookup single pathname component 2600 * @name: pathname component to lookup 2601 * @base: base directory to lookup from 2602 * @len: maximum length @len should be interpreted to 2603 * 2604 * Look up a dentry by name in the dcache, returning NULL if it does not 2605 * currently exist. The function does not try to create a dentry. 2606 * 2607 * Note that this routine is purely a helper for filesystem usage and should 2608 * not be called by generic code. 2609 * 2610 * The caller must hold base->i_mutex. 2611 */ 2612 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2613 { 2614 struct qstr this; 2615 int err; 2616 2617 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2618 2619 err = lookup_one_len_common(name, base, len, &this); 2620 if (err) 2621 return ERR_PTR(err); 2622 2623 return lookup_dcache(&this, base, 0); 2624 } 2625 EXPORT_SYMBOL(try_lookup_one_len); 2626 2627 /** 2628 * lookup_one_len - filesystem helper to lookup single pathname component 2629 * @name: pathname component to lookup 2630 * @base: base directory to lookup from 2631 * @len: maximum length @len should be interpreted to 2632 * 2633 * Note that this routine is purely a helper for filesystem usage and should 2634 * not be called by generic code. 2635 * 2636 * The caller must hold base->i_mutex. 2637 */ 2638 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2639 { 2640 struct dentry *dentry; 2641 struct qstr this; 2642 int err; 2643 2644 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2645 2646 err = lookup_one_len_common(name, base, len, &this); 2647 if (err) 2648 return ERR_PTR(err); 2649 2650 dentry = lookup_dcache(&this, base, 0); 2651 return dentry ? dentry : __lookup_slow(&this, base, 0); 2652 } 2653 EXPORT_SYMBOL(lookup_one_len); 2654 2655 /** 2656 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2657 * @name: pathname component to lookup 2658 * @base: base directory to lookup from 2659 * @len: maximum length @len should be interpreted to 2660 * 2661 * Note that this routine is purely a helper for filesystem usage and should 2662 * not be called by generic code. 2663 * 2664 * Unlike lookup_one_len, it should be called without the parent 2665 * i_mutex held, and will take the i_mutex itself if necessary. 2666 */ 2667 struct dentry *lookup_one_len_unlocked(const char *name, 2668 struct dentry *base, int len) 2669 { 2670 struct qstr this; 2671 int err; 2672 struct dentry *ret; 2673 2674 err = lookup_one_len_common(name, base, len, &this); 2675 if (err) 2676 return ERR_PTR(err); 2677 2678 ret = lookup_dcache(&this, base, 0); 2679 if (!ret) 2680 ret = lookup_slow(&this, base, 0); 2681 return ret; 2682 } 2683 EXPORT_SYMBOL(lookup_one_len_unlocked); 2684 2685 /* 2686 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2687 * on negatives. Returns known positive or ERR_PTR(); that's what 2688 * most of the users want. Note that pinned negative with unlocked parent 2689 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2690 * need to be very careful; pinned positives have ->d_inode stable, so 2691 * this one avoids such problems. 2692 */ 2693 struct dentry *lookup_positive_unlocked(const char *name, 2694 struct dentry *base, int len) 2695 { 2696 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2697 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2698 dput(ret); 2699 ret = ERR_PTR(-ENOENT); 2700 } 2701 return ret; 2702 } 2703 EXPORT_SYMBOL(lookup_positive_unlocked); 2704 2705 #ifdef CONFIG_UNIX98_PTYS 2706 int path_pts(struct path *path) 2707 { 2708 /* Find something mounted on "pts" in the same directory as 2709 * the input path. 2710 */ 2711 struct dentry *parent = dget_parent(path->dentry); 2712 struct dentry *child; 2713 struct qstr this = QSTR_INIT("pts", 3); 2714 2715 if (unlikely(!path_connected(path->mnt, parent))) { 2716 dput(parent); 2717 return -ENOENT; 2718 } 2719 dput(path->dentry); 2720 path->dentry = parent; 2721 child = d_hash_and_lookup(parent, &this); 2722 if (!child) 2723 return -ENOENT; 2724 2725 path->dentry = child; 2726 dput(parent); 2727 follow_down(path); 2728 return 0; 2729 } 2730 #endif 2731 2732 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2733 struct path *path, int *empty) 2734 { 2735 return filename_lookup(dfd, getname_flags(name, flags, empty), 2736 flags, path, NULL); 2737 } 2738 EXPORT_SYMBOL(user_path_at_empty); 2739 2740 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2741 struct inode *inode) 2742 { 2743 kuid_t fsuid = current_fsuid(); 2744 2745 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2746 return 0; 2747 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2748 return 0; 2749 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2750 } 2751 EXPORT_SYMBOL(__check_sticky); 2752 2753 /* 2754 * Check whether we can remove a link victim from directory dir, check 2755 * whether the type of victim is right. 2756 * 1. We can't do it if dir is read-only (done in permission()) 2757 * 2. We should have write and exec permissions on dir 2758 * 3. We can't remove anything from append-only dir 2759 * 4. We can't do anything with immutable dir (done in permission()) 2760 * 5. If the sticky bit on dir is set we should either 2761 * a. be owner of dir, or 2762 * b. be owner of victim, or 2763 * c. have CAP_FOWNER capability 2764 * 6. If the victim is append-only or immutable we can't do antyhing with 2765 * links pointing to it. 2766 * 7. If the victim has an unknown uid or gid we can't change the inode. 2767 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2768 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2769 * 10. We can't remove a root or mountpoint. 2770 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2771 * nfs_async_unlink(). 2772 */ 2773 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2774 struct dentry *victim, bool isdir) 2775 { 2776 struct inode *inode = d_backing_inode(victim); 2777 int error; 2778 2779 if (d_is_negative(victim)) 2780 return -ENOENT; 2781 BUG_ON(!inode); 2782 2783 BUG_ON(victim->d_parent->d_inode != dir); 2784 2785 /* Inode writeback is not safe when the uid or gid are invalid. */ 2786 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2787 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2788 return -EOVERFLOW; 2789 2790 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2791 2792 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2793 if (error) 2794 return error; 2795 if (IS_APPEND(dir)) 2796 return -EPERM; 2797 2798 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2799 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2800 HAS_UNMAPPED_ID(mnt_userns, inode)) 2801 return -EPERM; 2802 if (isdir) { 2803 if (!d_is_dir(victim)) 2804 return -ENOTDIR; 2805 if (IS_ROOT(victim)) 2806 return -EBUSY; 2807 } else if (d_is_dir(victim)) 2808 return -EISDIR; 2809 if (IS_DEADDIR(dir)) 2810 return -ENOENT; 2811 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2812 return -EBUSY; 2813 return 0; 2814 } 2815 2816 /* Check whether we can create an object with dentry child in directory 2817 * dir. 2818 * 1. We can't do it if child already exists (open has special treatment for 2819 * this case, but since we are inlined it's OK) 2820 * 2. We can't do it if dir is read-only (done in permission()) 2821 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2822 * 4. We should have write and exec permissions on dir 2823 * 5. We can't do it if dir is immutable (done in permission()) 2824 */ 2825 static inline int may_create(struct user_namespace *mnt_userns, 2826 struct inode *dir, struct dentry *child) 2827 { 2828 struct user_namespace *s_user_ns; 2829 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2830 if (child->d_inode) 2831 return -EEXIST; 2832 if (IS_DEADDIR(dir)) 2833 return -ENOENT; 2834 s_user_ns = dir->i_sb->s_user_ns; 2835 if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) || 2836 !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns))) 2837 return -EOVERFLOW; 2838 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2839 } 2840 2841 /* 2842 * p1 and p2 should be directories on the same fs. 2843 */ 2844 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2845 { 2846 struct dentry *p; 2847 2848 if (p1 == p2) { 2849 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2850 return NULL; 2851 } 2852 2853 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2854 2855 p = d_ancestor(p2, p1); 2856 if (p) { 2857 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2858 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2859 return p; 2860 } 2861 2862 p = d_ancestor(p1, p2); 2863 if (p) { 2864 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2865 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2866 return p; 2867 } 2868 2869 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2870 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2871 return NULL; 2872 } 2873 EXPORT_SYMBOL(lock_rename); 2874 2875 void unlock_rename(struct dentry *p1, struct dentry *p2) 2876 { 2877 inode_unlock(p1->d_inode); 2878 if (p1 != p2) { 2879 inode_unlock(p2->d_inode); 2880 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2881 } 2882 } 2883 EXPORT_SYMBOL(unlock_rename); 2884 2885 /** 2886 * vfs_create - create new file 2887 * @mnt_userns: user namespace of the mount the inode was found from 2888 * @dir: inode of @dentry 2889 * @dentry: pointer to dentry of the base directory 2890 * @mode: mode of the new file 2891 * @want_excl: whether the file must not yet exist 2892 * 2893 * Create a new file. 2894 * 2895 * If the inode has been found through an idmapped mount the user namespace of 2896 * the vfsmount must be passed through @mnt_userns. This function will then take 2897 * care to map the inode according to @mnt_userns before checking permissions. 2898 * On non-idmapped mounts or if permission checking is to be performed on the 2899 * raw inode simply passs init_user_ns. 2900 */ 2901 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2902 struct dentry *dentry, umode_t mode, bool want_excl) 2903 { 2904 int error = may_create(mnt_userns, dir, dentry); 2905 if (error) 2906 return error; 2907 2908 if (!dir->i_op->create) 2909 return -EACCES; /* shouldn't it be ENOSYS? */ 2910 mode &= S_IALLUGO; 2911 mode |= S_IFREG; 2912 error = security_inode_create(dir, dentry, mode); 2913 if (error) 2914 return error; 2915 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 2916 if (!error) 2917 fsnotify_create(dir, dentry); 2918 return error; 2919 } 2920 EXPORT_SYMBOL(vfs_create); 2921 2922 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2923 int (*f)(struct dentry *, umode_t, void *), 2924 void *arg) 2925 { 2926 struct inode *dir = dentry->d_parent->d_inode; 2927 int error = may_create(&init_user_ns, dir, dentry); 2928 if (error) 2929 return error; 2930 2931 mode &= S_IALLUGO; 2932 mode |= S_IFREG; 2933 error = security_inode_create(dir, dentry, mode); 2934 if (error) 2935 return error; 2936 error = f(dentry, mode, arg); 2937 if (!error) 2938 fsnotify_create(dir, dentry); 2939 return error; 2940 } 2941 EXPORT_SYMBOL(vfs_mkobj); 2942 2943 bool may_open_dev(const struct path *path) 2944 { 2945 return !(path->mnt->mnt_flags & MNT_NODEV) && 2946 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2947 } 2948 2949 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 2950 int acc_mode, int flag) 2951 { 2952 struct dentry *dentry = path->dentry; 2953 struct inode *inode = dentry->d_inode; 2954 int error; 2955 2956 if (!inode) 2957 return -ENOENT; 2958 2959 switch (inode->i_mode & S_IFMT) { 2960 case S_IFLNK: 2961 return -ELOOP; 2962 case S_IFDIR: 2963 if (acc_mode & MAY_WRITE) 2964 return -EISDIR; 2965 if (acc_mode & MAY_EXEC) 2966 return -EACCES; 2967 break; 2968 case S_IFBLK: 2969 case S_IFCHR: 2970 if (!may_open_dev(path)) 2971 return -EACCES; 2972 fallthrough; 2973 case S_IFIFO: 2974 case S_IFSOCK: 2975 if (acc_mode & MAY_EXEC) 2976 return -EACCES; 2977 flag &= ~O_TRUNC; 2978 break; 2979 case S_IFREG: 2980 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 2981 return -EACCES; 2982 break; 2983 } 2984 2985 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 2986 if (error) 2987 return error; 2988 2989 /* 2990 * An append-only file must be opened in append mode for writing. 2991 */ 2992 if (IS_APPEND(inode)) { 2993 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2994 return -EPERM; 2995 if (flag & O_TRUNC) 2996 return -EPERM; 2997 } 2998 2999 /* O_NOATIME can only be set by the owner or superuser */ 3000 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 3001 return -EPERM; 3002 3003 return 0; 3004 } 3005 3006 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3007 { 3008 const struct path *path = &filp->f_path; 3009 struct inode *inode = path->dentry->d_inode; 3010 int error = get_write_access(inode); 3011 if (error) 3012 return error; 3013 /* 3014 * Refuse to truncate files with mandatory locks held on them. 3015 */ 3016 error = locks_verify_locked(filp); 3017 if (!error) 3018 error = security_path_truncate(path); 3019 if (!error) { 3020 error = do_truncate(mnt_userns, path->dentry, 0, 3021 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3022 filp); 3023 } 3024 put_write_access(inode); 3025 return error; 3026 } 3027 3028 static inline int open_to_namei_flags(int flag) 3029 { 3030 if ((flag & O_ACCMODE) == 3) 3031 flag--; 3032 return flag; 3033 } 3034 3035 static int may_o_create(struct user_namespace *mnt_userns, 3036 const struct path *dir, struct dentry *dentry, 3037 umode_t mode) 3038 { 3039 struct user_namespace *s_user_ns; 3040 int error = security_path_mknod(dir, dentry, mode, 0); 3041 if (error) 3042 return error; 3043 3044 s_user_ns = dir->dentry->d_sb->s_user_ns; 3045 if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) || 3046 !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns))) 3047 return -EOVERFLOW; 3048 3049 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3050 MAY_WRITE | MAY_EXEC); 3051 if (error) 3052 return error; 3053 3054 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3055 } 3056 3057 /* 3058 * Attempt to atomically look up, create and open a file from a negative 3059 * dentry. 3060 * 3061 * Returns 0 if successful. The file will have been created and attached to 3062 * @file by the filesystem calling finish_open(). 3063 * 3064 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3065 * be set. The caller will need to perform the open themselves. @path will 3066 * have been updated to point to the new dentry. This may be negative. 3067 * 3068 * Returns an error code otherwise. 3069 */ 3070 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3071 struct file *file, 3072 int open_flag, umode_t mode) 3073 { 3074 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3075 struct inode *dir = nd->path.dentry->d_inode; 3076 int error; 3077 3078 if (nd->flags & LOOKUP_DIRECTORY) 3079 open_flag |= O_DIRECTORY; 3080 3081 file->f_path.dentry = DENTRY_NOT_SET; 3082 file->f_path.mnt = nd->path.mnt; 3083 error = dir->i_op->atomic_open(dir, dentry, file, 3084 open_to_namei_flags(open_flag), mode); 3085 d_lookup_done(dentry); 3086 if (!error) { 3087 if (file->f_mode & FMODE_OPENED) { 3088 if (unlikely(dentry != file->f_path.dentry)) { 3089 dput(dentry); 3090 dentry = dget(file->f_path.dentry); 3091 } 3092 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3093 error = -EIO; 3094 } else { 3095 if (file->f_path.dentry) { 3096 dput(dentry); 3097 dentry = file->f_path.dentry; 3098 } 3099 if (unlikely(d_is_negative(dentry))) 3100 error = -ENOENT; 3101 } 3102 } 3103 if (error) { 3104 dput(dentry); 3105 dentry = ERR_PTR(error); 3106 } 3107 return dentry; 3108 } 3109 3110 /* 3111 * Look up and maybe create and open the last component. 3112 * 3113 * Must be called with parent locked (exclusive in O_CREAT case). 3114 * 3115 * Returns 0 on success, that is, if 3116 * the file was successfully atomically created (if necessary) and opened, or 3117 * the file was not completely opened at this time, though lookups and 3118 * creations were performed. 3119 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3120 * In the latter case dentry returned in @path might be negative if O_CREAT 3121 * hadn't been specified. 3122 * 3123 * An error code is returned on failure. 3124 */ 3125 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3126 const struct open_flags *op, 3127 bool got_write) 3128 { 3129 struct user_namespace *mnt_userns; 3130 struct dentry *dir = nd->path.dentry; 3131 struct inode *dir_inode = dir->d_inode; 3132 int open_flag = op->open_flag; 3133 struct dentry *dentry; 3134 int error, create_error = 0; 3135 umode_t mode = op->mode; 3136 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3137 3138 if (unlikely(IS_DEADDIR(dir_inode))) 3139 return ERR_PTR(-ENOENT); 3140 3141 file->f_mode &= ~FMODE_CREATED; 3142 dentry = d_lookup(dir, &nd->last); 3143 for (;;) { 3144 if (!dentry) { 3145 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3146 if (IS_ERR(dentry)) 3147 return dentry; 3148 } 3149 if (d_in_lookup(dentry)) 3150 break; 3151 3152 error = d_revalidate(dentry, nd->flags); 3153 if (likely(error > 0)) 3154 break; 3155 if (error) 3156 goto out_dput; 3157 d_invalidate(dentry); 3158 dput(dentry); 3159 dentry = NULL; 3160 } 3161 if (dentry->d_inode) { 3162 /* Cached positive dentry: will open in f_op->open */ 3163 return dentry; 3164 } 3165 3166 /* 3167 * Checking write permission is tricky, bacuse we don't know if we are 3168 * going to actually need it: O_CREAT opens should work as long as the 3169 * file exists. But checking existence breaks atomicity. The trick is 3170 * to check access and if not granted clear O_CREAT from the flags. 3171 * 3172 * Another problem is returing the "right" error value (e.g. for an 3173 * O_EXCL open we want to return EEXIST not EROFS). 3174 */ 3175 if (unlikely(!got_write)) 3176 open_flag &= ~O_TRUNC; 3177 mnt_userns = mnt_user_ns(nd->path.mnt); 3178 if (open_flag & O_CREAT) { 3179 if (open_flag & O_EXCL) 3180 open_flag &= ~O_TRUNC; 3181 if (!IS_POSIXACL(dir->d_inode)) 3182 mode &= ~current_umask(); 3183 if (likely(got_write)) 3184 create_error = may_o_create(mnt_userns, &nd->path, 3185 dentry, mode); 3186 else 3187 create_error = -EROFS; 3188 } 3189 if (create_error) 3190 open_flag &= ~O_CREAT; 3191 if (dir_inode->i_op->atomic_open) { 3192 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3193 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3194 dentry = ERR_PTR(create_error); 3195 return dentry; 3196 } 3197 3198 if (d_in_lookup(dentry)) { 3199 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3200 nd->flags); 3201 d_lookup_done(dentry); 3202 if (unlikely(res)) { 3203 if (IS_ERR(res)) { 3204 error = PTR_ERR(res); 3205 goto out_dput; 3206 } 3207 dput(dentry); 3208 dentry = res; 3209 } 3210 } 3211 3212 /* Negative dentry, just create the file */ 3213 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3214 file->f_mode |= FMODE_CREATED; 3215 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3216 if (!dir_inode->i_op->create) { 3217 error = -EACCES; 3218 goto out_dput; 3219 } 3220 3221 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3222 mode, open_flag & O_EXCL); 3223 if (error) 3224 goto out_dput; 3225 } 3226 if (unlikely(create_error) && !dentry->d_inode) { 3227 error = create_error; 3228 goto out_dput; 3229 } 3230 return dentry; 3231 3232 out_dput: 3233 dput(dentry); 3234 return ERR_PTR(error); 3235 } 3236 3237 static const char *open_last_lookups(struct nameidata *nd, 3238 struct file *file, const struct open_flags *op) 3239 { 3240 struct dentry *dir = nd->path.dentry; 3241 int open_flag = op->open_flag; 3242 bool got_write = false; 3243 unsigned seq; 3244 struct inode *inode; 3245 struct dentry *dentry; 3246 const char *res; 3247 3248 nd->flags |= op->intent; 3249 3250 if (nd->last_type != LAST_NORM) { 3251 if (nd->depth) 3252 put_link(nd); 3253 return handle_dots(nd, nd->last_type); 3254 } 3255 3256 if (!(open_flag & O_CREAT)) { 3257 if (nd->last.name[nd->last.len]) 3258 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3259 /* we _can_ be in RCU mode here */ 3260 dentry = lookup_fast(nd, &inode, &seq); 3261 if (IS_ERR(dentry)) 3262 return ERR_CAST(dentry); 3263 if (likely(dentry)) 3264 goto finish_lookup; 3265 3266 BUG_ON(nd->flags & LOOKUP_RCU); 3267 } else { 3268 /* create side of things */ 3269 if (nd->flags & LOOKUP_RCU) { 3270 if (!try_to_unlazy(nd)) 3271 return ERR_PTR(-ECHILD); 3272 } 3273 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3274 /* trailing slashes? */ 3275 if (unlikely(nd->last.name[nd->last.len])) 3276 return ERR_PTR(-EISDIR); 3277 } 3278 3279 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3280 got_write = !mnt_want_write(nd->path.mnt); 3281 /* 3282 * do _not_ fail yet - we might not need that or fail with 3283 * a different error; let lookup_open() decide; we'll be 3284 * dropping this one anyway. 3285 */ 3286 } 3287 if (open_flag & O_CREAT) 3288 inode_lock(dir->d_inode); 3289 else 3290 inode_lock_shared(dir->d_inode); 3291 dentry = lookup_open(nd, file, op, got_write); 3292 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3293 fsnotify_create(dir->d_inode, dentry); 3294 if (open_flag & O_CREAT) 3295 inode_unlock(dir->d_inode); 3296 else 3297 inode_unlock_shared(dir->d_inode); 3298 3299 if (got_write) 3300 mnt_drop_write(nd->path.mnt); 3301 3302 if (IS_ERR(dentry)) 3303 return ERR_CAST(dentry); 3304 3305 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3306 dput(nd->path.dentry); 3307 nd->path.dentry = dentry; 3308 return NULL; 3309 } 3310 3311 finish_lookup: 3312 if (nd->depth) 3313 put_link(nd); 3314 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3315 if (unlikely(res)) 3316 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3317 return res; 3318 } 3319 3320 /* 3321 * Handle the last step of open() 3322 */ 3323 static int do_open(struct nameidata *nd, 3324 struct file *file, const struct open_flags *op) 3325 { 3326 struct user_namespace *mnt_userns; 3327 int open_flag = op->open_flag; 3328 bool do_truncate; 3329 int acc_mode; 3330 int error; 3331 3332 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3333 error = complete_walk(nd); 3334 if (error) 3335 return error; 3336 } 3337 if (!(file->f_mode & FMODE_CREATED)) 3338 audit_inode(nd->name, nd->path.dentry, 0); 3339 mnt_userns = mnt_user_ns(nd->path.mnt); 3340 if (open_flag & O_CREAT) { 3341 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3342 return -EEXIST; 3343 if (d_is_dir(nd->path.dentry)) 3344 return -EISDIR; 3345 error = may_create_in_sticky(mnt_userns, nd, 3346 d_backing_inode(nd->path.dentry)); 3347 if (unlikely(error)) 3348 return error; 3349 } 3350 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3351 return -ENOTDIR; 3352 3353 do_truncate = false; 3354 acc_mode = op->acc_mode; 3355 if (file->f_mode & FMODE_CREATED) { 3356 /* Don't check for write permission, don't truncate */ 3357 open_flag &= ~O_TRUNC; 3358 acc_mode = 0; 3359 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3360 error = mnt_want_write(nd->path.mnt); 3361 if (error) 3362 return error; 3363 do_truncate = true; 3364 } 3365 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3366 if (!error && !(file->f_mode & FMODE_OPENED)) 3367 error = vfs_open(&nd->path, file); 3368 if (!error) 3369 error = ima_file_check(file, op->acc_mode); 3370 if (!error && do_truncate) 3371 error = handle_truncate(mnt_userns, file); 3372 if (unlikely(error > 0)) { 3373 WARN_ON(1); 3374 error = -EINVAL; 3375 } 3376 if (do_truncate) 3377 mnt_drop_write(nd->path.mnt); 3378 return error; 3379 } 3380 3381 /** 3382 * vfs_tmpfile - create tmpfile 3383 * @mnt_userns: user namespace of the mount the inode was found from 3384 * @dentry: pointer to dentry of the base directory 3385 * @mode: mode of the new tmpfile 3386 * @open_flags: flags 3387 * 3388 * Create a temporary file. 3389 * 3390 * If the inode has been found through an idmapped mount the user namespace of 3391 * the vfsmount must be passed through @mnt_userns. This function will then take 3392 * care to map the inode according to @mnt_userns before checking permissions. 3393 * On non-idmapped mounts or if permission checking is to be performed on the 3394 * raw inode simply passs init_user_ns. 3395 */ 3396 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns, 3397 struct dentry *dentry, umode_t mode, int open_flag) 3398 { 3399 struct dentry *child = NULL; 3400 struct inode *dir = dentry->d_inode; 3401 struct inode *inode; 3402 int error; 3403 3404 /* we want directory to be writable */ 3405 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3406 if (error) 3407 goto out_err; 3408 error = -EOPNOTSUPP; 3409 if (!dir->i_op->tmpfile) 3410 goto out_err; 3411 error = -ENOMEM; 3412 child = d_alloc(dentry, &slash_name); 3413 if (unlikely(!child)) 3414 goto out_err; 3415 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode); 3416 if (error) 3417 goto out_err; 3418 error = -ENOENT; 3419 inode = child->d_inode; 3420 if (unlikely(!inode)) 3421 goto out_err; 3422 if (!(open_flag & O_EXCL)) { 3423 spin_lock(&inode->i_lock); 3424 inode->i_state |= I_LINKABLE; 3425 spin_unlock(&inode->i_lock); 3426 } 3427 ima_post_create_tmpfile(mnt_userns, inode); 3428 return child; 3429 3430 out_err: 3431 dput(child); 3432 return ERR_PTR(error); 3433 } 3434 EXPORT_SYMBOL(vfs_tmpfile); 3435 3436 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3437 const struct open_flags *op, 3438 struct file *file) 3439 { 3440 struct user_namespace *mnt_userns; 3441 struct dentry *child; 3442 struct path path; 3443 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3444 if (unlikely(error)) 3445 return error; 3446 error = mnt_want_write(path.mnt); 3447 if (unlikely(error)) 3448 goto out; 3449 mnt_userns = mnt_user_ns(path.mnt); 3450 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag); 3451 error = PTR_ERR(child); 3452 if (IS_ERR(child)) 3453 goto out2; 3454 dput(path.dentry); 3455 path.dentry = child; 3456 audit_inode(nd->name, child, 0); 3457 /* Don't check for other permissions, the inode was just created */ 3458 error = may_open(mnt_userns, &path, 0, op->open_flag); 3459 if (!error) 3460 error = vfs_open(&path, file); 3461 out2: 3462 mnt_drop_write(path.mnt); 3463 out: 3464 path_put(&path); 3465 return error; 3466 } 3467 3468 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3469 { 3470 struct path path; 3471 int error = path_lookupat(nd, flags, &path); 3472 if (!error) { 3473 audit_inode(nd->name, path.dentry, 0); 3474 error = vfs_open(&path, file); 3475 path_put(&path); 3476 } 3477 return error; 3478 } 3479 3480 static struct file *path_openat(struct nameidata *nd, 3481 const struct open_flags *op, unsigned flags) 3482 { 3483 struct file *file; 3484 int error; 3485 3486 file = alloc_empty_file(op->open_flag, current_cred()); 3487 if (IS_ERR(file)) 3488 return file; 3489 3490 if (unlikely(file->f_flags & __O_TMPFILE)) { 3491 error = do_tmpfile(nd, flags, op, file); 3492 } else if (unlikely(file->f_flags & O_PATH)) { 3493 error = do_o_path(nd, flags, file); 3494 } else { 3495 const char *s = path_init(nd, flags); 3496 while (!(error = link_path_walk(s, nd)) && 3497 (s = open_last_lookups(nd, file, op)) != NULL) 3498 ; 3499 if (!error) 3500 error = do_open(nd, file, op); 3501 terminate_walk(nd); 3502 } 3503 if (likely(!error)) { 3504 if (likely(file->f_mode & FMODE_OPENED)) 3505 return file; 3506 WARN_ON(1); 3507 error = -EINVAL; 3508 } 3509 fput(file); 3510 if (error == -EOPENSTALE) { 3511 if (flags & LOOKUP_RCU) 3512 error = -ECHILD; 3513 else 3514 error = -ESTALE; 3515 } 3516 return ERR_PTR(error); 3517 } 3518 3519 struct file *do_filp_open(int dfd, struct filename *pathname, 3520 const struct open_flags *op) 3521 { 3522 struct nameidata nd; 3523 int flags = op->lookup_flags; 3524 struct file *filp; 3525 3526 set_nameidata(&nd, dfd, pathname); 3527 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3528 if (unlikely(filp == ERR_PTR(-ECHILD))) 3529 filp = path_openat(&nd, op, flags); 3530 if (unlikely(filp == ERR_PTR(-ESTALE))) 3531 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3532 restore_nameidata(); 3533 return filp; 3534 } 3535 3536 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3537 const char *name, const struct open_flags *op) 3538 { 3539 struct nameidata nd; 3540 struct file *file; 3541 struct filename *filename; 3542 int flags = op->lookup_flags | LOOKUP_ROOT; 3543 3544 nd.root.mnt = mnt; 3545 nd.root.dentry = dentry; 3546 3547 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3548 return ERR_PTR(-ELOOP); 3549 3550 filename = getname_kernel(name); 3551 if (IS_ERR(filename)) 3552 return ERR_CAST(filename); 3553 3554 set_nameidata(&nd, -1, filename); 3555 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3556 if (unlikely(file == ERR_PTR(-ECHILD))) 3557 file = path_openat(&nd, op, flags); 3558 if (unlikely(file == ERR_PTR(-ESTALE))) 3559 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3560 restore_nameidata(); 3561 putname(filename); 3562 return file; 3563 } 3564 3565 static struct dentry *filename_create(int dfd, struct filename *name, 3566 struct path *path, unsigned int lookup_flags) 3567 { 3568 struct dentry *dentry = ERR_PTR(-EEXIST); 3569 struct qstr last; 3570 int type; 3571 int err2; 3572 int error; 3573 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3574 3575 /* 3576 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3577 * other flags passed in are ignored! 3578 */ 3579 lookup_flags &= LOOKUP_REVAL; 3580 3581 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3582 if (IS_ERR(name)) 3583 return ERR_CAST(name); 3584 3585 /* 3586 * Yucky last component or no last component at all? 3587 * (foo/., foo/.., /////) 3588 */ 3589 if (unlikely(type != LAST_NORM)) 3590 goto out; 3591 3592 /* don't fail immediately if it's r/o, at least try to report other errors */ 3593 err2 = mnt_want_write(path->mnt); 3594 /* 3595 * Do the final lookup. 3596 */ 3597 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3598 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3599 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3600 if (IS_ERR(dentry)) 3601 goto unlock; 3602 3603 error = -EEXIST; 3604 if (d_is_positive(dentry)) 3605 goto fail; 3606 3607 /* 3608 * Special case - lookup gave negative, but... we had foo/bar/ 3609 * From the vfs_mknod() POV we just have a negative dentry - 3610 * all is fine. Let's be bastards - you had / on the end, you've 3611 * been asking for (non-existent) directory. -ENOENT for you. 3612 */ 3613 if (unlikely(!is_dir && last.name[last.len])) { 3614 error = -ENOENT; 3615 goto fail; 3616 } 3617 if (unlikely(err2)) { 3618 error = err2; 3619 goto fail; 3620 } 3621 putname(name); 3622 return dentry; 3623 fail: 3624 dput(dentry); 3625 dentry = ERR_PTR(error); 3626 unlock: 3627 inode_unlock(path->dentry->d_inode); 3628 if (!err2) 3629 mnt_drop_write(path->mnt); 3630 out: 3631 path_put(path); 3632 putname(name); 3633 return dentry; 3634 } 3635 3636 struct dentry *kern_path_create(int dfd, const char *pathname, 3637 struct path *path, unsigned int lookup_flags) 3638 { 3639 return filename_create(dfd, getname_kernel(pathname), 3640 path, lookup_flags); 3641 } 3642 EXPORT_SYMBOL(kern_path_create); 3643 3644 void done_path_create(struct path *path, struct dentry *dentry) 3645 { 3646 dput(dentry); 3647 inode_unlock(path->dentry->d_inode); 3648 mnt_drop_write(path->mnt); 3649 path_put(path); 3650 } 3651 EXPORT_SYMBOL(done_path_create); 3652 3653 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3654 struct path *path, unsigned int lookup_flags) 3655 { 3656 return filename_create(dfd, getname(pathname), path, lookup_flags); 3657 } 3658 EXPORT_SYMBOL(user_path_create); 3659 3660 /** 3661 * vfs_mknod - create device node or file 3662 * @mnt_userns: user namespace of the mount the inode was found from 3663 * @dir: inode of @dentry 3664 * @dentry: pointer to dentry of the base directory 3665 * @mode: mode of the new device node or file 3666 * @dev: device number of device to create 3667 * 3668 * Create a device node or file. 3669 * 3670 * If the inode has been found through an idmapped mount the user namespace of 3671 * the vfsmount must be passed through @mnt_userns. This function will then take 3672 * care to map the inode according to @mnt_userns before checking permissions. 3673 * On non-idmapped mounts or if permission checking is to be performed on the 3674 * raw inode simply passs init_user_ns. 3675 */ 3676 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3677 struct dentry *dentry, umode_t mode, dev_t dev) 3678 { 3679 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3680 int error = may_create(mnt_userns, dir, dentry); 3681 3682 if (error) 3683 return error; 3684 3685 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3686 !capable(CAP_MKNOD)) 3687 return -EPERM; 3688 3689 if (!dir->i_op->mknod) 3690 return -EPERM; 3691 3692 error = devcgroup_inode_mknod(mode, dev); 3693 if (error) 3694 return error; 3695 3696 error = security_inode_mknod(dir, dentry, mode, dev); 3697 if (error) 3698 return error; 3699 3700 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3701 if (!error) 3702 fsnotify_create(dir, dentry); 3703 return error; 3704 } 3705 EXPORT_SYMBOL(vfs_mknod); 3706 3707 static int may_mknod(umode_t mode) 3708 { 3709 switch (mode & S_IFMT) { 3710 case S_IFREG: 3711 case S_IFCHR: 3712 case S_IFBLK: 3713 case S_IFIFO: 3714 case S_IFSOCK: 3715 case 0: /* zero mode translates to S_IFREG */ 3716 return 0; 3717 case S_IFDIR: 3718 return -EPERM; 3719 default: 3720 return -EINVAL; 3721 } 3722 } 3723 3724 static long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3725 unsigned int dev) 3726 { 3727 struct user_namespace *mnt_userns; 3728 struct dentry *dentry; 3729 struct path path; 3730 int error; 3731 unsigned int lookup_flags = 0; 3732 3733 error = may_mknod(mode); 3734 if (error) 3735 return error; 3736 retry: 3737 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3738 if (IS_ERR(dentry)) 3739 return PTR_ERR(dentry); 3740 3741 if (!IS_POSIXACL(path.dentry->d_inode)) 3742 mode &= ~current_umask(); 3743 error = security_path_mknod(&path, dentry, mode, dev); 3744 if (error) 3745 goto out; 3746 3747 mnt_userns = mnt_user_ns(path.mnt); 3748 switch (mode & S_IFMT) { 3749 case 0: case S_IFREG: 3750 error = vfs_create(mnt_userns, path.dentry->d_inode, 3751 dentry, mode, true); 3752 if (!error) 3753 ima_post_path_mknod(mnt_userns, dentry); 3754 break; 3755 case S_IFCHR: case S_IFBLK: 3756 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3757 dentry, mode, new_decode_dev(dev)); 3758 break; 3759 case S_IFIFO: case S_IFSOCK: 3760 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3761 dentry, mode, 0); 3762 break; 3763 } 3764 out: 3765 done_path_create(&path, dentry); 3766 if (retry_estale(error, lookup_flags)) { 3767 lookup_flags |= LOOKUP_REVAL; 3768 goto retry; 3769 } 3770 return error; 3771 } 3772 3773 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3774 unsigned int, dev) 3775 { 3776 return do_mknodat(dfd, filename, mode, dev); 3777 } 3778 3779 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3780 { 3781 return do_mknodat(AT_FDCWD, filename, mode, dev); 3782 } 3783 3784 /** 3785 * vfs_mkdir - create directory 3786 * @mnt_userns: user namespace of the mount the inode was found from 3787 * @dir: inode of @dentry 3788 * @dentry: pointer to dentry of the base directory 3789 * @mode: mode of the new directory 3790 * 3791 * Create a directory. 3792 * 3793 * If the inode has been found through an idmapped mount the user namespace of 3794 * the vfsmount must be passed through @mnt_userns. This function will then take 3795 * care to map the inode according to @mnt_userns before checking permissions. 3796 * On non-idmapped mounts or if permission checking is to be performed on the 3797 * raw inode simply passs init_user_ns. 3798 */ 3799 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 3800 struct dentry *dentry, umode_t mode) 3801 { 3802 int error = may_create(mnt_userns, dir, dentry); 3803 unsigned max_links = dir->i_sb->s_max_links; 3804 3805 if (error) 3806 return error; 3807 3808 if (!dir->i_op->mkdir) 3809 return -EPERM; 3810 3811 mode &= (S_IRWXUGO|S_ISVTX); 3812 error = security_inode_mkdir(dir, dentry, mode); 3813 if (error) 3814 return error; 3815 3816 if (max_links && dir->i_nlink >= max_links) 3817 return -EMLINK; 3818 3819 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 3820 if (!error) 3821 fsnotify_mkdir(dir, dentry); 3822 return error; 3823 } 3824 EXPORT_SYMBOL(vfs_mkdir); 3825 3826 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3827 { 3828 struct dentry *dentry; 3829 struct path path; 3830 int error; 3831 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3832 3833 retry: 3834 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3835 if (IS_ERR(dentry)) 3836 return PTR_ERR(dentry); 3837 3838 if (!IS_POSIXACL(path.dentry->d_inode)) 3839 mode &= ~current_umask(); 3840 error = security_path_mkdir(&path, dentry, mode); 3841 if (!error) { 3842 struct user_namespace *mnt_userns; 3843 mnt_userns = mnt_user_ns(path.mnt); 3844 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 3845 mode); 3846 } 3847 done_path_create(&path, dentry); 3848 if (retry_estale(error, lookup_flags)) { 3849 lookup_flags |= LOOKUP_REVAL; 3850 goto retry; 3851 } 3852 return error; 3853 } 3854 3855 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3856 { 3857 return do_mkdirat(dfd, pathname, mode); 3858 } 3859 3860 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3861 { 3862 return do_mkdirat(AT_FDCWD, pathname, mode); 3863 } 3864 3865 /** 3866 * vfs_rmdir - remove directory 3867 * @mnt_userns: user namespace of the mount the inode was found from 3868 * @dir: inode of @dentry 3869 * @dentry: pointer to dentry of the base directory 3870 * 3871 * Remove a directory. 3872 * 3873 * If the inode has been found through an idmapped mount the user namespace of 3874 * the vfsmount must be passed through @mnt_userns. This function will then take 3875 * care to map the inode according to @mnt_userns before checking permissions. 3876 * On non-idmapped mounts or if permission checking is to be performed on the 3877 * raw inode simply passs init_user_ns. 3878 */ 3879 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 3880 struct dentry *dentry) 3881 { 3882 int error = may_delete(mnt_userns, dir, dentry, 1); 3883 3884 if (error) 3885 return error; 3886 3887 if (!dir->i_op->rmdir) 3888 return -EPERM; 3889 3890 dget(dentry); 3891 inode_lock(dentry->d_inode); 3892 3893 error = -EBUSY; 3894 if (is_local_mountpoint(dentry)) 3895 goto out; 3896 3897 error = security_inode_rmdir(dir, dentry); 3898 if (error) 3899 goto out; 3900 3901 error = dir->i_op->rmdir(dir, dentry); 3902 if (error) 3903 goto out; 3904 3905 shrink_dcache_parent(dentry); 3906 dentry->d_inode->i_flags |= S_DEAD; 3907 dont_mount(dentry); 3908 detach_mounts(dentry); 3909 fsnotify_rmdir(dir, dentry); 3910 3911 out: 3912 inode_unlock(dentry->d_inode); 3913 dput(dentry); 3914 if (!error) 3915 d_delete(dentry); 3916 return error; 3917 } 3918 EXPORT_SYMBOL(vfs_rmdir); 3919 3920 long do_rmdir(int dfd, struct filename *name) 3921 { 3922 struct user_namespace *mnt_userns; 3923 int error = 0; 3924 struct dentry *dentry; 3925 struct path path; 3926 struct qstr last; 3927 int type; 3928 unsigned int lookup_flags = 0; 3929 retry: 3930 name = filename_parentat(dfd, name, lookup_flags, 3931 &path, &last, &type); 3932 if (IS_ERR(name)) 3933 return PTR_ERR(name); 3934 3935 switch (type) { 3936 case LAST_DOTDOT: 3937 error = -ENOTEMPTY; 3938 goto exit1; 3939 case LAST_DOT: 3940 error = -EINVAL; 3941 goto exit1; 3942 case LAST_ROOT: 3943 error = -EBUSY; 3944 goto exit1; 3945 } 3946 3947 error = mnt_want_write(path.mnt); 3948 if (error) 3949 goto exit1; 3950 3951 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3952 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3953 error = PTR_ERR(dentry); 3954 if (IS_ERR(dentry)) 3955 goto exit2; 3956 if (!dentry->d_inode) { 3957 error = -ENOENT; 3958 goto exit3; 3959 } 3960 error = security_path_rmdir(&path, dentry); 3961 if (error) 3962 goto exit3; 3963 mnt_userns = mnt_user_ns(path.mnt); 3964 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 3965 exit3: 3966 dput(dentry); 3967 exit2: 3968 inode_unlock(path.dentry->d_inode); 3969 mnt_drop_write(path.mnt); 3970 exit1: 3971 path_put(&path); 3972 if (retry_estale(error, lookup_flags)) { 3973 lookup_flags |= LOOKUP_REVAL; 3974 goto retry; 3975 } 3976 putname(name); 3977 return error; 3978 } 3979 3980 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3981 { 3982 return do_rmdir(AT_FDCWD, getname(pathname)); 3983 } 3984 3985 /** 3986 * vfs_unlink - unlink a filesystem object 3987 * @mnt_userns: user namespace of the mount the inode was found from 3988 * @dir: parent directory 3989 * @dentry: victim 3990 * @delegated_inode: returns victim inode, if the inode is delegated. 3991 * 3992 * The caller must hold dir->i_mutex. 3993 * 3994 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3995 * return a reference to the inode in delegated_inode. The caller 3996 * should then break the delegation on that inode and retry. Because 3997 * breaking a delegation may take a long time, the caller should drop 3998 * dir->i_mutex before doing so. 3999 * 4000 * Alternatively, a caller may pass NULL for delegated_inode. This may 4001 * be appropriate for callers that expect the underlying filesystem not 4002 * to be NFS exported. 4003 * 4004 * If the inode has been found through an idmapped mount the user namespace of 4005 * the vfsmount must be passed through @mnt_userns. This function will then take 4006 * care to map the inode according to @mnt_userns before checking permissions. 4007 * On non-idmapped mounts or if permission checking is to be performed on the 4008 * raw inode simply passs init_user_ns. 4009 */ 4010 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4011 struct dentry *dentry, struct inode **delegated_inode) 4012 { 4013 struct inode *target = dentry->d_inode; 4014 int error = may_delete(mnt_userns, dir, dentry, 0); 4015 4016 if (error) 4017 return error; 4018 4019 if (!dir->i_op->unlink) 4020 return -EPERM; 4021 4022 inode_lock(target); 4023 if (is_local_mountpoint(dentry)) 4024 error = -EBUSY; 4025 else { 4026 error = security_inode_unlink(dir, dentry); 4027 if (!error) { 4028 error = try_break_deleg(target, delegated_inode); 4029 if (error) 4030 goto out; 4031 error = dir->i_op->unlink(dir, dentry); 4032 if (!error) { 4033 dont_mount(dentry); 4034 detach_mounts(dentry); 4035 fsnotify_unlink(dir, dentry); 4036 } 4037 } 4038 } 4039 out: 4040 inode_unlock(target); 4041 4042 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4043 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4044 fsnotify_link_count(target); 4045 d_delete(dentry); 4046 } 4047 4048 return error; 4049 } 4050 EXPORT_SYMBOL(vfs_unlink); 4051 4052 /* 4053 * Make sure that the actual truncation of the file will occur outside its 4054 * directory's i_mutex. Truncate can take a long time if there is a lot of 4055 * writeout happening, and we don't want to prevent access to the directory 4056 * while waiting on the I/O. 4057 */ 4058 long do_unlinkat(int dfd, struct filename *name) 4059 { 4060 int error; 4061 struct dentry *dentry; 4062 struct path path; 4063 struct qstr last; 4064 int type; 4065 struct inode *inode = NULL; 4066 struct inode *delegated_inode = NULL; 4067 unsigned int lookup_flags = 0; 4068 retry: 4069 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4070 if (IS_ERR(name)) 4071 return PTR_ERR(name); 4072 4073 error = -EISDIR; 4074 if (type != LAST_NORM) 4075 goto exit1; 4076 4077 error = mnt_want_write(path.mnt); 4078 if (error) 4079 goto exit1; 4080 retry_deleg: 4081 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4082 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4083 error = PTR_ERR(dentry); 4084 if (!IS_ERR(dentry)) { 4085 struct user_namespace *mnt_userns; 4086 4087 /* Why not before? Because we want correct error value */ 4088 if (last.name[last.len]) 4089 goto slashes; 4090 inode = dentry->d_inode; 4091 if (d_is_negative(dentry)) 4092 goto slashes; 4093 ihold(inode); 4094 error = security_path_unlink(&path, dentry); 4095 if (error) 4096 goto exit2; 4097 mnt_userns = mnt_user_ns(path.mnt); 4098 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4099 &delegated_inode); 4100 exit2: 4101 dput(dentry); 4102 } 4103 inode_unlock(path.dentry->d_inode); 4104 if (inode) 4105 iput(inode); /* truncate the inode here */ 4106 inode = NULL; 4107 if (delegated_inode) { 4108 error = break_deleg_wait(&delegated_inode); 4109 if (!error) 4110 goto retry_deleg; 4111 } 4112 mnt_drop_write(path.mnt); 4113 exit1: 4114 path_put(&path); 4115 if (retry_estale(error, lookup_flags)) { 4116 lookup_flags |= LOOKUP_REVAL; 4117 inode = NULL; 4118 goto retry; 4119 } 4120 putname(name); 4121 return error; 4122 4123 slashes: 4124 if (d_is_negative(dentry)) 4125 error = -ENOENT; 4126 else if (d_is_dir(dentry)) 4127 error = -EISDIR; 4128 else 4129 error = -ENOTDIR; 4130 goto exit2; 4131 } 4132 4133 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4134 { 4135 if ((flag & ~AT_REMOVEDIR) != 0) 4136 return -EINVAL; 4137 4138 if (flag & AT_REMOVEDIR) 4139 return do_rmdir(dfd, getname(pathname)); 4140 return do_unlinkat(dfd, getname(pathname)); 4141 } 4142 4143 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4144 { 4145 return do_unlinkat(AT_FDCWD, getname(pathname)); 4146 } 4147 4148 /** 4149 * vfs_symlink - create symlink 4150 * @mnt_userns: user namespace of the mount the inode was found from 4151 * @dir: inode of @dentry 4152 * @dentry: pointer to dentry of the base directory 4153 * @oldname: name of the file to link to 4154 * 4155 * Create a symlink. 4156 * 4157 * If the inode has been found through an idmapped mount the user namespace of 4158 * the vfsmount must be passed through @mnt_userns. This function will then take 4159 * care to map the inode according to @mnt_userns before checking permissions. 4160 * On non-idmapped mounts or if permission checking is to be performed on the 4161 * raw inode simply passs init_user_ns. 4162 */ 4163 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4164 struct dentry *dentry, const char *oldname) 4165 { 4166 int error = may_create(mnt_userns, dir, dentry); 4167 4168 if (error) 4169 return error; 4170 4171 if (!dir->i_op->symlink) 4172 return -EPERM; 4173 4174 error = security_inode_symlink(dir, dentry, oldname); 4175 if (error) 4176 return error; 4177 4178 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4179 if (!error) 4180 fsnotify_create(dir, dentry); 4181 return error; 4182 } 4183 EXPORT_SYMBOL(vfs_symlink); 4184 4185 static long do_symlinkat(const char __user *oldname, int newdfd, 4186 const char __user *newname) 4187 { 4188 int error; 4189 struct filename *from; 4190 struct dentry *dentry; 4191 struct path path; 4192 unsigned int lookup_flags = 0; 4193 4194 from = getname(oldname); 4195 if (IS_ERR(from)) 4196 return PTR_ERR(from); 4197 retry: 4198 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4199 error = PTR_ERR(dentry); 4200 if (IS_ERR(dentry)) 4201 goto out_putname; 4202 4203 error = security_path_symlink(&path, dentry, from->name); 4204 if (!error) { 4205 struct user_namespace *mnt_userns; 4206 4207 mnt_userns = mnt_user_ns(path.mnt); 4208 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4209 from->name); 4210 } 4211 done_path_create(&path, dentry); 4212 if (retry_estale(error, lookup_flags)) { 4213 lookup_flags |= LOOKUP_REVAL; 4214 goto retry; 4215 } 4216 out_putname: 4217 putname(from); 4218 return error; 4219 } 4220 4221 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4222 int, newdfd, const char __user *, newname) 4223 { 4224 return do_symlinkat(oldname, newdfd, newname); 4225 } 4226 4227 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4228 { 4229 return do_symlinkat(oldname, AT_FDCWD, newname); 4230 } 4231 4232 /** 4233 * vfs_link - create a new link 4234 * @old_dentry: object to be linked 4235 * @mnt_userns: the user namespace of the mount 4236 * @dir: new parent 4237 * @new_dentry: where to create the new link 4238 * @delegated_inode: returns inode needing a delegation break 4239 * 4240 * The caller must hold dir->i_mutex 4241 * 4242 * If vfs_link discovers a delegation on the to-be-linked file in need 4243 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4244 * inode in delegated_inode. The caller should then break the delegation 4245 * and retry. Because breaking a delegation may take a long time, the 4246 * caller should drop the i_mutex before doing so. 4247 * 4248 * Alternatively, a caller may pass NULL for delegated_inode. This may 4249 * be appropriate for callers that expect the underlying filesystem not 4250 * to be NFS exported. 4251 * 4252 * If the inode has been found through an idmapped mount the user namespace of 4253 * the vfsmount must be passed through @mnt_userns. This function will then take 4254 * care to map the inode according to @mnt_userns before checking permissions. 4255 * On non-idmapped mounts or if permission checking is to be performed on the 4256 * raw inode simply passs init_user_ns. 4257 */ 4258 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4259 struct inode *dir, struct dentry *new_dentry, 4260 struct inode **delegated_inode) 4261 { 4262 struct inode *inode = old_dentry->d_inode; 4263 unsigned max_links = dir->i_sb->s_max_links; 4264 int error; 4265 4266 if (!inode) 4267 return -ENOENT; 4268 4269 error = may_create(mnt_userns, dir, new_dentry); 4270 if (error) 4271 return error; 4272 4273 if (dir->i_sb != inode->i_sb) 4274 return -EXDEV; 4275 4276 /* 4277 * A link to an append-only or immutable file cannot be created. 4278 */ 4279 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4280 return -EPERM; 4281 /* 4282 * Updating the link count will likely cause i_uid and i_gid to 4283 * be writen back improperly if their true value is unknown to 4284 * the vfs. 4285 */ 4286 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4287 return -EPERM; 4288 if (!dir->i_op->link) 4289 return -EPERM; 4290 if (S_ISDIR(inode->i_mode)) 4291 return -EPERM; 4292 4293 error = security_inode_link(old_dentry, dir, new_dentry); 4294 if (error) 4295 return error; 4296 4297 inode_lock(inode); 4298 /* Make sure we don't allow creating hardlink to an unlinked file */ 4299 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4300 error = -ENOENT; 4301 else if (max_links && inode->i_nlink >= max_links) 4302 error = -EMLINK; 4303 else { 4304 error = try_break_deleg(inode, delegated_inode); 4305 if (!error) 4306 error = dir->i_op->link(old_dentry, dir, new_dentry); 4307 } 4308 4309 if (!error && (inode->i_state & I_LINKABLE)) { 4310 spin_lock(&inode->i_lock); 4311 inode->i_state &= ~I_LINKABLE; 4312 spin_unlock(&inode->i_lock); 4313 } 4314 inode_unlock(inode); 4315 if (!error) 4316 fsnotify_link(dir, inode, new_dentry); 4317 return error; 4318 } 4319 EXPORT_SYMBOL(vfs_link); 4320 4321 /* 4322 * Hardlinks are often used in delicate situations. We avoid 4323 * security-related surprises by not following symlinks on the 4324 * newname. --KAB 4325 * 4326 * We don't follow them on the oldname either to be compatible 4327 * with linux 2.0, and to avoid hard-linking to directories 4328 * and other special files. --ADM 4329 */ 4330 static int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4331 const char __user *newname, int flags) 4332 { 4333 struct user_namespace *mnt_userns; 4334 struct dentry *new_dentry; 4335 struct path old_path, new_path; 4336 struct inode *delegated_inode = NULL; 4337 int how = 0; 4338 int error; 4339 4340 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4341 return -EINVAL; 4342 /* 4343 * To use null names we require CAP_DAC_READ_SEARCH 4344 * This ensures that not everyone will be able to create 4345 * handlink using the passed filedescriptor. 4346 */ 4347 if (flags & AT_EMPTY_PATH) { 4348 if (!capable(CAP_DAC_READ_SEARCH)) 4349 return -ENOENT; 4350 how = LOOKUP_EMPTY; 4351 } 4352 4353 if (flags & AT_SYMLINK_FOLLOW) 4354 how |= LOOKUP_FOLLOW; 4355 retry: 4356 error = user_path_at(olddfd, oldname, how, &old_path); 4357 if (error) 4358 return error; 4359 4360 new_dentry = user_path_create(newdfd, newname, &new_path, 4361 (how & LOOKUP_REVAL)); 4362 error = PTR_ERR(new_dentry); 4363 if (IS_ERR(new_dentry)) 4364 goto out; 4365 4366 error = -EXDEV; 4367 if (old_path.mnt != new_path.mnt) 4368 goto out_dput; 4369 mnt_userns = mnt_user_ns(new_path.mnt); 4370 error = may_linkat(mnt_userns, &old_path); 4371 if (unlikely(error)) 4372 goto out_dput; 4373 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4374 if (error) 4375 goto out_dput; 4376 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4377 new_dentry, &delegated_inode); 4378 out_dput: 4379 done_path_create(&new_path, new_dentry); 4380 if (delegated_inode) { 4381 error = break_deleg_wait(&delegated_inode); 4382 if (!error) { 4383 path_put(&old_path); 4384 goto retry; 4385 } 4386 } 4387 if (retry_estale(error, how)) { 4388 path_put(&old_path); 4389 how |= LOOKUP_REVAL; 4390 goto retry; 4391 } 4392 out: 4393 path_put(&old_path); 4394 4395 return error; 4396 } 4397 4398 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4399 int, newdfd, const char __user *, newname, int, flags) 4400 { 4401 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4402 } 4403 4404 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4405 { 4406 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4407 } 4408 4409 /** 4410 * vfs_rename - rename a filesystem object 4411 * @old_mnt_userns: old user namespace of the mount the inode was found from 4412 * @old_dir: parent of source 4413 * @old_dentry: source 4414 * @new_mnt_userns: new user namespace of the mount the inode was found from 4415 * @new_dir: parent of destination 4416 * @new_dentry: destination 4417 * @delegated_inode: returns an inode needing a delegation break 4418 * @flags: rename flags 4419 * 4420 * The caller must hold multiple mutexes--see lock_rename()). 4421 * 4422 * If vfs_rename discovers a delegation in need of breaking at either 4423 * the source or destination, it will return -EWOULDBLOCK and return a 4424 * reference to the inode in delegated_inode. The caller should then 4425 * break the delegation and retry. Because breaking a delegation may 4426 * take a long time, the caller should drop all locks before doing 4427 * so. 4428 * 4429 * Alternatively, a caller may pass NULL for delegated_inode. This may 4430 * be appropriate for callers that expect the underlying filesystem not 4431 * to be NFS exported. 4432 * 4433 * The worst of all namespace operations - renaming directory. "Perverted" 4434 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4435 * Problems: 4436 * 4437 * a) we can get into loop creation. 4438 * b) race potential - two innocent renames can create a loop together. 4439 * That's where 4.4 screws up. Current fix: serialization on 4440 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4441 * story. 4442 * c) we have to lock _four_ objects - parents and victim (if it exists), 4443 * and source (if it is not a directory). 4444 * And that - after we got ->i_mutex on parents (until then we don't know 4445 * whether the target exists). Solution: try to be smart with locking 4446 * order for inodes. We rely on the fact that tree topology may change 4447 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4448 * move will be locked. Thus we can rank directories by the tree 4449 * (ancestors first) and rank all non-directories after them. 4450 * That works since everybody except rename does "lock parent, lookup, 4451 * lock child" and rename is under ->s_vfs_rename_mutex. 4452 * HOWEVER, it relies on the assumption that any object with ->lookup() 4453 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4454 * we'd better make sure that there's no link(2) for them. 4455 * d) conversion from fhandle to dentry may come in the wrong moment - when 4456 * we are removing the target. Solution: we will have to grab ->i_mutex 4457 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4458 * ->i_mutex on parents, which works but leads to some truly excessive 4459 * locking]. 4460 */ 4461 int vfs_rename(struct renamedata *rd) 4462 { 4463 int error; 4464 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4465 struct dentry *old_dentry = rd->old_dentry; 4466 struct dentry *new_dentry = rd->new_dentry; 4467 struct inode **delegated_inode = rd->delegated_inode; 4468 unsigned int flags = rd->flags; 4469 bool is_dir = d_is_dir(old_dentry); 4470 struct inode *source = old_dentry->d_inode; 4471 struct inode *target = new_dentry->d_inode; 4472 bool new_is_dir = false; 4473 unsigned max_links = new_dir->i_sb->s_max_links; 4474 struct name_snapshot old_name; 4475 4476 if (source == target) 4477 return 0; 4478 4479 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4480 if (error) 4481 return error; 4482 4483 if (!target) { 4484 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4485 } else { 4486 new_is_dir = d_is_dir(new_dentry); 4487 4488 if (!(flags & RENAME_EXCHANGE)) 4489 error = may_delete(rd->new_mnt_userns, new_dir, 4490 new_dentry, is_dir); 4491 else 4492 error = may_delete(rd->new_mnt_userns, new_dir, 4493 new_dentry, new_is_dir); 4494 } 4495 if (error) 4496 return error; 4497 4498 if (!old_dir->i_op->rename) 4499 return -EPERM; 4500 4501 /* 4502 * If we are going to change the parent - check write permissions, 4503 * we'll need to flip '..'. 4504 */ 4505 if (new_dir != old_dir) { 4506 if (is_dir) { 4507 error = inode_permission(rd->old_mnt_userns, source, 4508 MAY_WRITE); 4509 if (error) 4510 return error; 4511 } 4512 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4513 error = inode_permission(rd->new_mnt_userns, target, 4514 MAY_WRITE); 4515 if (error) 4516 return error; 4517 } 4518 } 4519 4520 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4521 flags); 4522 if (error) 4523 return error; 4524 4525 take_dentry_name_snapshot(&old_name, old_dentry); 4526 dget(new_dentry); 4527 if (!is_dir || (flags & RENAME_EXCHANGE)) 4528 lock_two_nondirectories(source, target); 4529 else if (target) 4530 inode_lock(target); 4531 4532 error = -EBUSY; 4533 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4534 goto out; 4535 4536 if (max_links && new_dir != old_dir) { 4537 error = -EMLINK; 4538 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4539 goto out; 4540 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4541 old_dir->i_nlink >= max_links) 4542 goto out; 4543 } 4544 if (!is_dir) { 4545 error = try_break_deleg(source, delegated_inode); 4546 if (error) 4547 goto out; 4548 } 4549 if (target && !new_is_dir) { 4550 error = try_break_deleg(target, delegated_inode); 4551 if (error) 4552 goto out; 4553 } 4554 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4555 new_dir, new_dentry, flags); 4556 if (error) 4557 goto out; 4558 4559 if (!(flags & RENAME_EXCHANGE) && target) { 4560 if (is_dir) { 4561 shrink_dcache_parent(new_dentry); 4562 target->i_flags |= S_DEAD; 4563 } 4564 dont_mount(new_dentry); 4565 detach_mounts(new_dentry); 4566 } 4567 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4568 if (!(flags & RENAME_EXCHANGE)) 4569 d_move(old_dentry, new_dentry); 4570 else 4571 d_exchange(old_dentry, new_dentry); 4572 } 4573 out: 4574 if (!is_dir || (flags & RENAME_EXCHANGE)) 4575 unlock_two_nondirectories(source, target); 4576 else if (target) 4577 inode_unlock(target); 4578 dput(new_dentry); 4579 if (!error) { 4580 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4581 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4582 if (flags & RENAME_EXCHANGE) { 4583 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4584 new_is_dir, NULL, new_dentry); 4585 } 4586 } 4587 release_dentry_name_snapshot(&old_name); 4588 4589 return error; 4590 } 4591 EXPORT_SYMBOL(vfs_rename); 4592 4593 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4594 struct filename *to, unsigned int flags) 4595 { 4596 struct renamedata rd; 4597 struct dentry *old_dentry, *new_dentry; 4598 struct dentry *trap; 4599 struct path old_path, new_path; 4600 struct qstr old_last, new_last; 4601 int old_type, new_type; 4602 struct inode *delegated_inode = NULL; 4603 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4604 bool should_retry = false; 4605 int error = -EINVAL; 4606 4607 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4608 goto put_both; 4609 4610 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4611 (flags & RENAME_EXCHANGE)) 4612 goto put_both; 4613 4614 if (flags & RENAME_EXCHANGE) 4615 target_flags = 0; 4616 4617 retry: 4618 from = filename_parentat(olddfd, from, lookup_flags, &old_path, 4619 &old_last, &old_type); 4620 if (IS_ERR(from)) { 4621 error = PTR_ERR(from); 4622 goto put_new; 4623 } 4624 4625 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4626 &new_type); 4627 if (IS_ERR(to)) { 4628 error = PTR_ERR(to); 4629 goto exit1; 4630 } 4631 4632 error = -EXDEV; 4633 if (old_path.mnt != new_path.mnt) 4634 goto exit2; 4635 4636 error = -EBUSY; 4637 if (old_type != LAST_NORM) 4638 goto exit2; 4639 4640 if (flags & RENAME_NOREPLACE) 4641 error = -EEXIST; 4642 if (new_type != LAST_NORM) 4643 goto exit2; 4644 4645 error = mnt_want_write(old_path.mnt); 4646 if (error) 4647 goto exit2; 4648 4649 retry_deleg: 4650 trap = lock_rename(new_path.dentry, old_path.dentry); 4651 4652 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4653 error = PTR_ERR(old_dentry); 4654 if (IS_ERR(old_dentry)) 4655 goto exit3; 4656 /* source must exist */ 4657 error = -ENOENT; 4658 if (d_is_negative(old_dentry)) 4659 goto exit4; 4660 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4661 error = PTR_ERR(new_dentry); 4662 if (IS_ERR(new_dentry)) 4663 goto exit4; 4664 error = -EEXIST; 4665 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4666 goto exit5; 4667 if (flags & RENAME_EXCHANGE) { 4668 error = -ENOENT; 4669 if (d_is_negative(new_dentry)) 4670 goto exit5; 4671 4672 if (!d_is_dir(new_dentry)) { 4673 error = -ENOTDIR; 4674 if (new_last.name[new_last.len]) 4675 goto exit5; 4676 } 4677 } 4678 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4679 if (!d_is_dir(old_dentry)) { 4680 error = -ENOTDIR; 4681 if (old_last.name[old_last.len]) 4682 goto exit5; 4683 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4684 goto exit5; 4685 } 4686 /* source should not be ancestor of target */ 4687 error = -EINVAL; 4688 if (old_dentry == trap) 4689 goto exit5; 4690 /* target should not be an ancestor of source */ 4691 if (!(flags & RENAME_EXCHANGE)) 4692 error = -ENOTEMPTY; 4693 if (new_dentry == trap) 4694 goto exit5; 4695 4696 error = security_path_rename(&old_path, old_dentry, 4697 &new_path, new_dentry, flags); 4698 if (error) 4699 goto exit5; 4700 4701 rd.old_dir = old_path.dentry->d_inode; 4702 rd.old_dentry = old_dentry; 4703 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4704 rd.new_dir = new_path.dentry->d_inode; 4705 rd.new_dentry = new_dentry; 4706 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4707 rd.delegated_inode = &delegated_inode; 4708 rd.flags = flags; 4709 error = vfs_rename(&rd); 4710 exit5: 4711 dput(new_dentry); 4712 exit4: 4713 dput(old_dentry); 4714 exit3: 4715 unlock_rename(new_path.dentry, old_path.dentry); 4716 if (delegated_inode) { 4717 error = break_deleg_wait(&delegated_inode); 4718 if (!error) 4719 goto retry_deleg; 4720 } 4721 mnt_drop_write(old_path.mnt); 4722 exit2: 4723 if (retry_estale(error, lookup_flags)) 4724 should_retry = true; 4725 path_put(&new_path); 4726 exit1: 4727 path_put(&old_path); 4728 if (should_retry) { 4729 should_retry = false; 4730 lookup_flags |= LOOKUP_REVAL; 4731 goto retry; 4732 } 4733 put_both: 4734 if (!IS_ERR(from)) 4735 putname(from); 4736 put_new: 4737 if (!IS_ERR(to)) 4738 putname(to); 4739 return error; 4740 } 4741 4742 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4743 int, newdfd, const char __user *, newname, unsigned int, flags) 4744 { 4745 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4746 flags); 4747 } 4748 4749 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4750 int, newdfd, const char __user *, newname) 4751 { 4752 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4753 0); 4754 } 4755 4756 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4757 { 4758 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4759 getname(newname), 0); 4760 } 4761 4762 int readlink_copy(char __user *buffer, int buflen, const char *link) 4763 { 4764 int len = PTR_ERR(link); 4765 if (IS_ERR(link)) 4766 goto out; 4767 4768 len = strlen(link); 4769 if (len > (unsigned) buflen) 4770 len = buflen; 4771 if (copy_to_user(buffer, link, len)) 4772 len = -EFAULT; 4773 out: 4774 return len; 4775 } 4776 4777 /** 4778 * vfs_readlink - copy symlink body into userspace buffer 4779 * @dentry: dentry on which to get symbolic link 4780 * @buffer: user memory pointer 4781 * @buflen: size of buffer 4782 * 4783 * Does not touch atime. That's up to the caller if necessary 4784 * 4785 * Does not call security hook. 4786 */ 4787 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4788 { 4789 struct inode *inode = d_inode(dentry); 4790 DEFINE_DELAYED_CALL(done); 4791 const char *link; 4792 int res; 4793 4794 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4795 if (unlikely(inode->i_op->readlink)) 4796 return inode->i_op->readlink(dentry, buffer, buflen); 4797 4798 if (!d_is_symlink(dentry)) 4799 return -EINVAL; 4800 4801 spin_lock(&inode->i_lock); 4802 inode->i_opflags |= IOP_DEFAULT_READLINK; 4803 spin_unlock(&inode->i_lock); 4804 } 4805 4806 link = READ_ONCE(inode->i_link); 4807 if (!link) { 4808 link = inode->i_op->get_link(dentry, inode, &done); 4809 if (IS_ERR(link)) 4810 return PTR_ERR(link); 4811 } 4812 res = readlink_copy(buffer, buflen, link); 4813 do_delayed_call(&done); 4814 return res; 4815 } 4816 EXPORT_SYMBOL(vfs_readlink); 4817 4818 /** 4819 * vfs_get_link - get symlink body 4820 * @dentry: dentry on which to get symbolic link 4821 * @done: caller needs to free returned data with this 4822 * 4823 * Calls security hook and i_op->get_link() on the supplied inode. 4824 * 4825 * It does not touch atime. That's up to the caller if necessary. 4826 * 4827 * Does not work on "special" symlinks like /proc/$$/fd/N 4828 */ 4829 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4830 { 4831 const char *res = ERR_PTR(-EINVAL); 4832 struct inode *inode = d_inode(dentry); 4833 4834 if (d_is_symlink(dentry)) { 4835 res = ERR_PTR(security_inode_readlink(dentry)); 4836 if (!res) 4837 res = inode->i_op->get_link(dentry, inode, done); 4838 } 4839 return res; 4840 } 4841 EXPORT_SYMBOL(vfs_get_link); 4842 4843 /* get the link contents into pagecache */ 4844 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4845 struct delayed_call *callback) 4846 { 4847 char *kaddr; 4848 struct page *page; 4849 struct address_space *mapping = inode->i_mapping; 4850 4851 if (!dentry) { 4852 page = find_get_page(mapping, 0); 4853 if (!page) 4854 return ERR_PTR(-ECHILD); 4855 if (!PageUptodate(page)) { 4856 put_page(page); 4857 return ERR_PTR(-ECHILD); 4858 } 4859 } else { 4860 page = read_mapping_page(mapping, 0, NULL); 4861 if (IS_ERR(page)) 4862 return (char*)page; 4863 } 4864 set_delayed_call(callback, page_put_link, page); 4865 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4866 kaddr = page_address(page); 4867 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4868 return kaddr; 4869 } 4870 4871 EXPORT_SYMBOL(page_get_link); 4872 4873 void page_put_link(void *arg) 4874 { 4875 put_page(arg); 4876 } 4877 EXPORT_SYMBOL(page_put_link); 4878 4879 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4880 { 4881 DEFINE_DELAYED_CALL(done); 4882 int res = readlink_copy(buffer, buflen, 4883 page_get_link(dentry, d_inode(dentry), 4884 &done)); 4885 do_delayed_call(&done); 4886 return res; 4887 } 4888 EXPORT_SYMBOL(page_readlink); 4889 4890 /* 4891 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4892 */ 4893 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4894 { 4895 struct address_space *mapping = inode->i_mapping; 4896 struct page *page; 4897 void *fsdata; 4898 int err; 4899 unsigned int flags = 0; 4900 if (nofs) 4901 flags |= AOP_FLAG_NOFS; 4902 4903 retry: 4904 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4905 flags, &page, &fsdata); 4906 if (err) 4907 goto fail; 4908 4909 memcpy(page_address(page), symname, len-1); 4910 4911 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4912 page, fsdata); 4913 if (err < 0) 4914 goto fail; 4915 if (err < len-1) 4916 goto retry; 4917 4918 mark_inode_dirty(inode); 4919 return 0; 4920 fail: 4921 return err; 4922 } 4923 EXPORT_SYMBOL(__page_symlink); 4924 4925 int page_symlink(struct inode *inode, const char *symname, int len) 4926 { 4927 return __page_symlink(inode, symname, len, 4928 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4929 } 4930 EXPORT_SYMBOL(page_symlink); 4931 4932 const struct inode_operations page_symlink_inode_operations = { 4933 .get_link = page_get_link, 4934 }; 4935 EXPORT_SYMBOL(page_symlink_inode_operations); 4936