1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic permission checking 292 */ 293 static int acl_permission_check(struct inode *inode, int mask) 294 { 295 unsigned int mode = inode->i_mode; 296 297 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 298 mode >>= 6; 299 else { 300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 301 int error = check_acl(inode, mask); 302 if (error != -EAGAIN) 303 return error; 304 } 305 306 if (in_group_p(inode->i_gid)) 307 mode >>= 3; 308 } 309 310 /* 311 * If the DACs are ok we don't need any capability check. 312 */ 313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 314 return 0; 315 return -EACCES; 316 } 317 318 /** 319 * generic_permission - check for access rights on a Posix-like filesystem 320 * @inode: inode to check access rights for 321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 322 * 323 * Used to check for read/write/execute permissions on a file. 324 * We use "fsuid" for this, letting us set arbitrary permissions 325 * for filesystem access without changing the "normal" uids which 326 * are used for other things. 327 * 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 329 * request cannot be satisfied (eg. requires blocking or too much complexity). 330 * It would then be called again in ref-walk mode. 331 */ 332 int generic_permission(struct inode *inode, int mask) 333 { 334 int ret; 335 336 /* 337 * Do the basic permission checks. 338 */ 339 ret = acl_permission_check(inode, mask); 340 if (ret != -EACCES) 341 return ret; 342 343 if (S_ISDIR(inode->i_mode)) { 344 /* DACs are overridable for directories */ 345 if (!(mask & MAY_WRITE)) 346 if (capable_wrt_inode_uidgid(inode, 347 CAP_DAC_READ_SEARCH)) 348 return 0; 349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 350 return 0; 351 return -EACCES; 352 } 353 354 /* 355 * Searching includes executable on directories, else just read. 356 */ 357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 358 if (mask == MAY_READ) 359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 360 return 0; 361 /* 362 * Read/write DACs are always overridable. 363 * Executable DACs are overridable when there is 364 * at least one exec bit set. 365 */ 366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 368 return 0; 369 370 return -EACCES; 371 } 372 EXPORT_SYMBOL(generic_permission); 373 374 /* 375 * We _really_ want to just do "generic_permission()" without 376 * even looking at the inode->i_op values. So we keep a cache 377 * flag in inode->i_opflags, that says "this has not special 378 * permission function, use the fast case". 379 */ 380 static inline int do_inode_permission(struct inode *inode, int mask) 381 { 382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 383 if (likely(inode->i_op->permission)) 384 return inode->i_op->permission(inode, mask); 385 386 /* This gets set once for the inode lifetime */ 387 spin_lock(&inode->i_lock); 388 inode->i_opflags |= IOP_FASTPERM; 389 spin_unlock(&inode->i_lock); 390 } 391 return generic_permission(inode, mask); 392 } 393 394 /** 395 * sb_permission - Check superblock-level permissions 396 * @sb: Superblock of inode to check permission on 397 * @inode: Inode to check permission on 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 399 * 400 * Separate out file-system wide checks from inode-specific permission checks. 401 */ 402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 403 { 404 if (unlikely(mask & MAY_WRITE)) { 405 umode_t mode = inode->i_mode; 406 407 /* Nobody gets write access to a read-only fs. */ 408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 409 return -EROFS; 410 } 411 return 0; 412 } 413 414 /** 415 * inode_permission - Check for access rights to a given inode 416 * @inode: Inode to check permission on 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 418 * 419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 420 * this, letting us set arbitrary permissions for filesystem access without 421 * changing the "normal" UIDs which are used for other things. 422 * 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 424 */ 425 int inode_permission(struct inode *inode, int mask) 426 { 427 int retval; 428 429 retval = sb_permission(inode->i_sb, inode, mask); 430 if (retval) 431 return retval; 432 433 if (unlikely(mask & MAY_WRITE)) { 434 /* 435 * Nobody gets write access to an immutable file. 436 */ 437 if (IS_IMMUTABLE(inode)) 438 return -EPERM; 439 440 /* 441 * Updating mtime will likely cause i_uid and i_gid to be 442 * written back improperly if their true value is unknown 443 * to the vfs. 444 */ 445 if (HAS_UNMAPPED_ID(inode)) 446 return -EACCES; 447 } 448 449 retval = do_inode_permission(inode, mask); 450 if (retval) 451 return retval; 452 453 retval = devcgroup_inode_permission(inode, mask); 454 if (retval) 455 return retval; 456 457 return security_inode_permission(inode, mask); 458 } 459 EXPORT_SYMBOL(inode_permission); 460 461 /** 462 * path_get - get a reference to a path 463 * @path: path to get the reference to 464 * 465 * Given a path increment the reference count to the dentry and the vfsmount. 466 */ 467 void path_get(const struct path *path) 468 { 469 mntget(path->mnt); 470 dget(path->dentry); 471 } 472 EXPORT_SYMBOL(path_get); 473 474 /** 475 * path_put - put a reference to a path 476 * @path: path to put the reference to 477 * 478 * Given a path decrement the reference count to the dentry and the vfsmount. 479 */ 480 void path_put(const struct path *path) 481 { 482 dput(path->dentry); 483 mntput(path->mnt); 484 } 485 EXPORT_SYMBOL(path_put); 486 487 #define EMBEDDED_LEVELS 2 488 struct nameidata { 489 struct path path; 490 struct qstr last; 491 struct path root; 492 struct inode *inode; /* path.dentry.d_inode */ 493 unsigned int flags; 494 unsigned seq, m_seq, r_seq; 495 int last_type; 496 unsigned depth; 497 int total_link_count; 498 struct saved { 499 struct path link; 500 struct delayed_call done; 501 const char *name; 502 unsigned seq; 503 } *stack, internal[EMBEDDED_LEVELS]; 504 struct filename *name; 505 struct nameidata *saved; 506 struct inode *link_inode; 507 unsigned root_seq; 508 int dfd; 509 } __randomize_layout; 510 511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 512 { 513 struct nameidata *old = current->nameidata; 514 p->stack = p->internal; 515 p->dfd = dfd; 516 p->name = name; 517 p->total_link_count = old ? old->total_link_count : 0; 518 p->saved = old; 519 current->nameidata = p; 520 } 521 522 static void restore_nameidata(void) 523 { 524 struct nameidata *now = current->nameidata, *old = now->saved; 525 526 current->nameidata = old; 527 if (old) 528 old->total_link_count = now->total_link_count; 529 if (now->stack != now->internal) 530 kfree(now->stack); 531 } 532 533 static int __nd_alloc_stack(struct nameidata *nd) 534 { 535 struct saved *p; 536 537 if (nd->flags & LOOKUP_RCU) { 538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 539 GFP_ATOMIC); 540 if (unlikely(!p)) 541 return -ECHILD; 542 } else { 543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 544 GFP_KERNEL); 545 if (unlikely(!p)) 546 return -ENOMEM; 547 } 548 memcpy(p, nd->internal, sizeof(nd->internal)); 549 nd->stack = p; 550 return 0; 551 } 552 553 /** 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 555 * @path: nameidate to verify 556 * 557 * Rename can sometimes move a file or directory outside of a bind 558 * mount, path_connected allows those cases to be detected. 559 */ 560 static bool path_connected(const struct path *path) 561 { 562 struct vfsmount *mnt = path->mnt; 563 struct super_block *sb = mnt->mnt_sb; 564 565 /* Bind mounts and multi-root filesystems can have disconnected paths */ 566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 567 return true; 568 569 return is_subdir(path->dentry, mnt->mnt_root); 570 } 571 572 static inline int nd_alloc_stack(struct nameidata *nd) 573 { 574 if (likely(nd->depth != EMBEDDED_LEVELS)) 575 return 0; 576 if (likely(nd->stack != nd->internal)) 577 return 0; 578 return __nd_alloc_stack(nd); 579 } 580 581 static void drop_links(struct nameidata *nd) 582 { 583 int i = nd->depth; 584 while (i--) { 585 struct saved *last = nd->stack + i; 586 do_delayed_call(&last->done); 587 clear_delayed_call(&last->done); 588 } 589 } 590 591 static void terminate_walk(struct nameidata *nd) 592 { 593 drop_links(nd); 594 if (!(nd->flags & LOOKUP_RCU)) { 595 int i; 596 path_put(&nd->path); 597 for (i = 0; i < nd->depth; i++) 598 path_put(&nd->stack[i].link); 599 if (nd->flags & LOOKUP_ROOT_GRABBED) { 600 path_put(&nd->root); 601 nd->flags &= ~LOOKUP_ROOT_GRABBED; 602 } 603 } else { 604 nd->flags &= ~LOOKUP_RCU; 605 rcu_read_unlock(); 606 } 607 nd->depth = 0; 608 } 609 610 /* path_put is needed afterwards regardless of success or failure */ 611 static bool legitimize_path(struct nameidata *nd, 612 struct path *path, unsigned seq) 613 { 614 int res = __legitimize_mnt(path->mnt, nd->m_seq); 615 if (unlikely(res)) { 616 if (res > 0) 617 path->mnt = NULL; 618 path->dentry = NULL; 619 return false; 620 } 621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 622 path->dentry = NULL; 623 return false; 624 } 625 return !read_seqcount_retry(&path->dentry->d_seq, seq); 626 } 627 628 static bool legitimize_links(struct nameidata *nd) 629 { 630 int i; 631 for (i = 0; i < nd->depth; i++) { 632 struct saved *last = nd->stack + i; 633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 634 drop_links(nd); 635 nd->depth = i + 1; 636 return false; 637 } 638 } 639 return true; 640 } 641 642 static bool legitimize_root(struct nameidata *nd) 643 { 644 /* 645 * For scoped-lookups (where nd->root has been zeroed), we need to 646 * restart the whole lookup from scratch -- because set_root() is wrong 647 * for these lookups (nd->dfd is the root, not the filesystem root). 648 */ 649 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 650 return false; 651 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 652 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 653 return true; 654 nd->flags |= LOOKUP_ROOT_GRABBED; 655 return legitimize_path(nd, &nd->root, nd->root_seq); 656 } 657 658 /* 659 * Path walking has 2 modes, rcu-walk and ref-walk (see 660 * Documentation/filesystems/path-lookup.txt). In situations when we can't 661 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 662 * normal reference counts on dentries and vfsmounts to transition to ref-walk 663 * mode. Refcounts are grabbed at the last known good point before rcu-walk 664 * got stuck, so ref-walk may continue from there. If this is not successful 665 * (eg. a seqcount has changed), then failure is returned and it's up to caller 666 * to restart the path walk from the beginning in ref-walk mode. 667 */ 668 669 /** 670 * unlazy_walk - try to switch to ref-walk mode. 671 * @nd: nameidata pathwalk data 672 * Returns: 0 on success, -ECHILD on failure 673 * 674 * unlazy_walk attempts to legitimize the current nd->path and nd->root 675 * for ref-walk mode. 676 * Must be called from rcu-walk context. 677 * Nothing should touch nameidata between unlazy_walk() failure and 678 * terminate_walk(). 679 */ 680 static int unlazy_walk(struct nameidata *nd) 681 { 682 struct dentry *parent = nd->path.dentry; 683 684 BUG_ON(!(nd->flags & LOOKUP_RCU)); 685 686 nd->flags &= ~LOOKUP_RCU; 687 if (unlikely(!legitimize_links(nd))) 688 goto out1; 689 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 690 goto out; 691 if (unlikely(!legitimize_root(nd))) 692 goto out; 693 rcu_read_unlock(); 694 BUG_ON(nd->inode != parent->d_inode); 695 return 0; 696 697 out1: 698 nd->path.mnt = NULL; 699 nd->path.dentry = NULL; 700 out: 701 rcu_read_unlock(); 702 return -ECHILD; 703 } 704 705 /** 706 * unlazy_child - try to switch to ref-walk mode. 707 * @nd: nameidata pathwalk data 708 * @dentry: child of nd->path.dentry 709 * @seq: seq number to check dentry against 710 * Returns: 0 on success, -ECHILD on failure 711 * 712 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 713 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 714 * @nd. Must be called from rcu-walk context. 715 * Nothing should touch nameidata between unlazy_child() failure and 716 * terminate_walk(). 717 */ 718 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 719 { 720 BUG_ON(!(nd->flags & LOOKUP_RCU)); 721 722 nd->flags &= ~LOOKUP_RCU; 723 if (unlikely(!legitimize_links(nd))) 724 goto out2; 725 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 726 goto out2; 727 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 728 goto out1; 729 730 /* 731 * We need to move both the parent and the dentry from the RCU domain 732 * to be properly refcounted. And the sequence number in the dentry 733 * validates *both* dentry counters, since we checked the sequence 734 * number of the parent after we got the child sequence number. So we 735 * know the parent must still be valid if the child sequence number is 736 */ 737 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 738 goto out; 739 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 740 goto out_dput; 741 /* 742 * Sequence counts matched. Now make sure that the root is 743 * still valid and get it if required. 744 */ 745 if (unlikely(!legitimize_root(nd))) 746 goto out_dput; 747 rcu_read_unlock(); 748 return 0; 749 750 out2: 751 nd->path.mnt = NULL; 752 out1: 753 nd->path.dentry = NULL; 754 out: 755 rcu_read_unlock(); 756 return -ECHILD; 757 out_dput: 758 rcu_read_unlock(); 759 dput(dentry); 760 return -ECHILD; 761 } 762 763 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 764 { 765 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 766 return dentry->d_op->d_revalidate(dentry, flags); 767 else 768 return 1; 769 } 770 771 /** 772 * complete_walk - successful completion of path walk 773 * @nd: pointer nameidata 774 * 775 * If we had been in RCU mode, drop out of it and legitimize nd->path. 776 * Revalidate the final result, unless we'd already done that during 777 * the path walk or the filesystem doesn't ask for it. Return 0 on 778 * success, -error on failure. In case of failure caller does not 779 * need to drop nd->path. 780 */ 781 static int complete_walk(struct nameidata *nd) 782 { 783 struct dentry *dentry = nd->path.dentry; 784 int status; 785 786 if (nd->flags & LOOKUP_RCU) { 787 /* 788 * We don't want to zero nd->root for scoped-lookups or 789 * externally-managed nd->root. 790 */ 791 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED))) 792 nd->root.mnt = NULL; 793 if (unlikely(unlazy_walk(nd))) 794 return -ECHILD; 795 } 796 797 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 798 /* 799 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 800 * ever step outside the root during lookup" and should already 801 * be guaranteed by the rest of namei, we want to avoid a namei 802 * BUG resulting in userspace being given a path that was not 803 * scoped within the root at some point during the lookup. 804 * 805 * So, do a final sanity-check to make sure that in the 806 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 807 * we won't silently return an fd completely outside of the 808 * requested root to userspace. 809 * 810 * Userspace could move the path outside the root after this 811 * check, but as discussed elsewhere this is not a concern (the 812 * resolved file was inside the root at some point). 813 */ 814 if (!path_is_under(&nd->path, &nd->root)) 815 return -EXDEV; 816 } 817 818 if (likely(!(nd->flags & LOOKUP_JUMPED))) 819 return 0; 820 821 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 822 return 0; 823 824 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 825 if (status > 0) 826 return 0; 827 828 if (!status) 829 status = -ESTALE; 830 831 return status; 832 } 833 834 static int set_root(struct nameidata *nd) 835 { 836 struct fs_struct *fs = current->fs; 837 838 /* 839 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 840 * still have to ensure it doesn't happen because it will cause a breakout 841 * from the dirfd. 842 */ 843 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 844 return -ENOTRECOVERABLE; 845 846 if (nd->flags & LOOKUP_RCU) { 847 unsigned seq; 848 849 do { 850 seq = read_seqcount_begin(&fs->seq); 851 nd->root = fs->root; 852 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 853 } while (read_seqcount_retry(&fs->seq, seq)); 854 } else { 855 get_fs_root(fs, &nd->root); 856 nd->flags |= LOOKUP_ROOT_GRABBED; 857 } 858 return 0; 859 } 860 861 static void path_put_conditional(struct path *path, struct nameidata *nd) 862 { 863 dput(path->dentry); 864 if (path->mnt != nd->path.mnt) 865 mntput(path->mnt); 866 } 867 868 static inline void path_to_nameidata(const struct path *path, 869 struct nameidata *nd) 870 { 871 if (!(nd->flags & LOOKUP_RCU)) { 872 dput(nd->path.dentry); 873 if (nd->path.mnt != path->mnt) 874 mntput(nd->path.mnt); 875 } 876 nd->path.mnt = path->mnt; 877 nd->path.dentry = path->dentry; 878 } 879 880 static int nd_jump_root(struct nameidata *nd) 881 { 882 if (unlikely(nd->flags & LOOKUP_BENEATH)) 883 return -EXDEV; 884 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 885 /* Absolute path arguments to path_init() are allowed. */ 886 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 887 return -EXDEV; 888 } 889 if (!nd->root.mnt) { 890 int error = set_root(nd); 891 if (error) 892 return error; 893 } 894 if (nd->flags & LOOKUP_RCU) { 895 struct dentry *d; 896 nd->path = nd->root; 897 d = nd->path.dentry; 898 nd->inode = d->d_inode; 899 nd->seq = nd->root_seq; 900 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 901 return -ECHILD; 902 } else { 903 path_put(&nd->path); 904 nd->path = nd->root; 905 path_get(&nd->path); 906 nd->inode = nd->path.dentry->d_inode; 907 } 908 nd->flags |= LOOKUP_JUMPED; 909 return 0; 910 } 911 912 /* 913 * Helper to directly jump to a known parsed path from ->get_link, 914 * caller must have taken a reference to path beforehand. 915 */ 916 int nd_jump_link(struct path *path) 917 { 918 int error = -ELOOP; 919 struct nameidata *nd = current->nameidata; 920 921 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 922 goto err; 923 924 error = -EXDEV; 925 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 926 if (nd->path.mnt != path->mnt) 927 goto err; 928 } 929 /* Not currently safe for scoped-lookups. */ 930 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 931 goto err; 932 933 path_put(&nd->path); 934 nd->path = *path; 935 nd->inode = nd->path.dentry->d_inode; 936 nd->flags |= LOOKUP_JUMPED; 937 return 0; 938 939 err: 940 path_put(path); 941 return error; 942 } 943 944 static inline void put_link(struct nameidata *nd) 945 { 946 struct saved *last = nd->stack + --nd->depth; 947 do_delayed_call(&last->done); 948 if (!(nd->flags & LOOKUP_RCU)) 949 path_put(&last->link); 950 } 951 952 int sysctl_protected_symlinks __read_mostly = 0; 953 int sysctl_protected_hardlinks __read_mostly = 0; 954 int sysctl_protected_fifos __read_mostly; 955 int sysctl_protected_regular __read_mostly; 956 957 /** 958 * may_follow_link - Check symlink following for unsafe situations 959 * @nd: nameidata pathwalk data 960 * 961 * In the case of the sysctl_protected_symlinks sysctl being enabled, 962 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 963 * in a sticky world-writable directory. This is to protect privileged 964 * processes from failing races against path names that may change out 965 * from under them by way of other users creating malicious symlinks. 966 * It will permit symlinks to be followed only when outside a sticky 967 * world-writable directory, or when the uid of the symlink and follower 968 * match, or when the directory owner matches the symlink's owner. 969 * 970 * Returns 0 if following the symlink is allowed, -ve on error. 971 */ 972 static inline int may_follow_link(struct nameidata *nd) 973 { 974 const struct inode *inode; 975 const struct inode *parent; 976 kuid_t puid; 977 978 if (!sysctl_protected_symlinks) 979 return 0; 980 981 /* Allowed if owner and follower match. */ 982 inode = nd->link_inode; 983 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 984 return 0; 985 986 /* Allowed if parent directory not sticky and world-writable. */ 987 parent = nd->inode; 988 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 989 return 0; 990 991 /* Allowed if parent directory and link owner match. */ 992 puid = parent->i_uid; 993 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 994 return 0; 995 996 if (nd->flags & LOOKUP_RCU) 997 return -ECHILD; 998 999 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1000 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1001 return -EACCES; 1002 } 1003 1004 /** 1005 * safe_hardlink_source - Check for safe hardlink conditions 1006 * @inode: the source inode to hardlink from 1007 * 1008 * Return false if at least one of the following conditions: 1009 * - inode is not a regular file 1010 * - inode is setuid 1011 * - inode is setgid and group-exec 1012 * - access failure for read and write 1013 * 1014 * Otherwise returns true. 1015 */ 1016 static bool safe_hardlink_source(struct inode *inode) 1017 { 1018 umode_t mode = inode->i_mode; 1019 1020 /* Special files should not get pinned to the filesystem. */ 1021 if (!S_ISREG(mode)) 1022 return false; 1023 1024 /* Setuid files should not get pinned to the filesystem. */ 1025 if (mode & S_ISUID) 1026 return false; 1027 1028 /* Executable setgid files should not get pinned to the filesystem. */ 1029 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1030 return false; 1031 1032 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1033 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 1034 return false; 1035 1036 return true; 1037 } 1038 1039 /** 1040 * may_linkat - Check permissions for creating a hardlink 1041 * @link: the source to hardlink from 1042 * 1043 * Block hardlink when all of: 1044 * - sysctl_protected_hardlinks enabled 1045 * - fsuid does not match inode 1046 * - hardlink source is unsafe (see safe_hardlink_source() above) 1047 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1048 * 1049 * Returns 0 if successful, -ve on error. 1050 */ 1051 static int may_linkat(struct path *link) 1052 { 1053 struct inode *inode = link->dentry->d_inode; 1054 1055 /* Inode writeback is not safe when the uid or gid are invalid. */ 1056 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 1057 return -EOVERFLOW; 1058 1059 if (!sysctl_protected_hardlinks) 1060 return 0; 1061 1062 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1063 * otherwise, it must be a safe source. 1064 */ 1065 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1066 return 0; 1067 1068 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1069 return -EPERM; 1070 } 1071 1072 /** 1073 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1074 * should be allowed, or not, on files that already 1075 * exist. 1076 * @dir_mode: mode bits of directory 1077 * @dir_uid: owner of directory 1078 * @inode: the inode of the file to open 1079 * 1080 * Block an O_CREAT open of a FIFO (or a regular file) when: 1081 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1082 * - the file already exists 1083 * - we are in a sticky directory 1084 * - we don't own the file 1085 * - the owner of the directory doesn't own the file 1086 * - the directory is world writable 1087 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1088 * the directory doesn't have to be world writable: being group writable will 1089 * be enough. 1090 * 1091 * Returns 0 if the open is allowed, -ve on error. 1092 */ 1093 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid, 1094 struct inode * const inode) 1095 { 1096 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1097 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1098 likely(!(dir_mode & S_ISVTX)) || 1099 uid_eq(inode->i_uid, dir_uid) || 1100 uid_eq(current_fsuid(), inode->i_uid)) 1101 return 0; 1102 1103 if (likely(dir_mode & 0002) || 1104 (dir_mode & 0020 && 1105 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1106 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1107 const char *operation = S_ISFIFO(inode->i_mode) ? 1108 "sticky_create_fifo" : 1109 "sticky_create_regular"; 1110 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1111 return -EACCES; 1112 } 1113 return 0; 1114 } 1115 1116 static __always_inline 1117 const char *get_link(struct nameidata *nd) 1118 { 1119 struct saved *last = nd->stack + nd->depth - 1; 1120 struct dentry *dentry = last->link.dentry; 1121 struct inode *inode = nd->link_inode; 1122 int error; 1123 const char *res; 1124 1125 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS)) 1126 return ERR_PTR(-ELOOP); 1127 1128 if (!(nd->flags & LOOKUP_RCU)) { 1129 touch_atime(&last->link); 1130 cond_resched(); 1131 } else if (atime_needs_update(&last->link, inode)) { 1132 if (unlikely(unlazy_walk(nd))) 1133 return ERR_PTR(-ECHILD); 1134 touch_atime(&last->link); 1135 } 1136 1137 error = security_inode_follow_link(dentry, inode, 1138 nd->flags & LOOKUP_RCU); 1139 if (unlikely(error)) 1140 return ERR_PTR(error); 1141 1142 nd->last_type = LAST_BIND; 1143 res = READ_ONCE(inode->i_link); 1144 if (!res) { 1145 const char * (*get)(struct dentry *, struct inode *, 1146 struct delayed_call *); 1147 get = inode->i_op->get_link; 1148 if (nd->flags & LOOKUP_RCU) { 1149 res = get(NULL, inode, &last->done); 1150 if (res == ERR_PTR(-ECHILD)) { 1151 if (unlikely(unlazy_walk(nd))) 1152 return ERR_PTR(-ECHILD); 1153 res = get(dentry, inode, &last->done); 1154 } 1155 } else { 1156 res = get(dentry, inode, &last->done); 1157 } 1158 if (IS_ERR_OR_NULL(res)) 1159 return res; 1160 } 1161 if (*res == '/') { 1162 error = nd_jump_root(nd); 1163 if (unlikely(error)) 1164 return ERR_PTR(error); 1165 while (unlikely(*++res == '/')) 1166 ; 1167 } 1168 if (!*res) 1169 res = NULL; 1170 return res; 1171 } 1172 1173 /* 1174 * follow_up - Find the mountpoint of path's vfsmount 1175 * 1176 * Given a path, find the mountpoint of its source file system. 1177 * Replace @path with the path of the mountpoint in the parent mount. 1178 * Up is towards /. 1179 * 1180 * Return 1 if we went up a level and 0 if we were already at the 1181 * root. 1182 */ 1183 int follow_up(struct path *path) 1184 { 1185 struct mount *mnt = real_mount(path->mnt); 1186 struct mount *parent; 1187 struct dentry *mountpoint; 1188 1189 read_seqlock_excl(&mount_lock); 1190 parent = mnt->mnt_parent; 1191 if (parent == mnt) { 1192 read_sequnlock_excl(&mount_lock); 1193 return 0; 1194 } 1195 mntget(&parent->mnt); 1196 mountpoint = dget(mnt->mnt_mountpoint); 1197 read_sequnlock_excl(&mount_lock); 1198 dput(path->dentry); 1199 path->dentry = mountpoint; 1200 mntput(path->mnt); 1201 path->mnt = &parent->mnt; 1202 return 1; 1203 } 1204 EXPORT_SYMBOL(follow_up); 1205 1206 /* 1207 * Perform an automount 1208 * - return -EISDIR to tell follow_managed() to stop and return the path we 1209 * were called with. 1210 */ 1211 static int follow_automount(struct path *path, struct nameidata *nd, 1212 bool *need_mntput) 1213 { 1214 struct vfsmount *mnt; 1215 int err; 1216 1217 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1218 return -EREMOTE; 1219 1220 /* We don't want to mount if someone's just doing a stat - 1221 * unless they're stat'ing a directory and appended a '/' to 1222 * the name. 1223 * 1224 * We do, however, want to mount if someone wants to open or 1225 * create a file of any type under the mountpoint, wants to 1226 * traverse through the mountpoint or wants to open the 1227 * mounted directory. Also, autofs may mark negative dentries 1228 * as being automount points. These will need the attentions 1229 * of the daemon to instantiate them before they can be used. 1230 */ 1231 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1232 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1233 path->dentry->d_inode) 1234 return -EISDIR; 1235 1236 nd->total_link_count++; 1237 if (nd->total_link_count >= 40) 1238 return -ELOOP; 1239 1240 mnt = path->dentry->d_op->d_automount(path); 1241 if (IS_ERR(mnt)) { 1242 /* 1243 * The filesystem is allowed to return -EISDIR here to indicate 1244 * it doesn't want to automount. For instance, autofs would do 1245 * this so that its userspace daemon can mount on this dentry. 1246 * 1247 * However, we can only permit this if it's a terminal point in 1248 * the path being looked up; if it wasn't then the remainder of 1249 * the path is inaccessible and we should say so. 1250 */ 1251 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1252 return -EREMOTE; 1253 return PTR_ERR(mnt); 1254 } 1255 1256 if (!mnt) /* mount collision */ 1257 return 0; 1258 1259 if (!*need_mntput) { 1260 /* lock_mount() may release path->mnt on error */ 1261 mntget(path->mnt); 1262 *need_mntput = true; 1263 } 1264 err = finish_automount(mnt, path); 1265 1266 switch (err) { 1267 case -EBUSY: 1268 /* Someone else made a mount here whilst we were busy */ 1269 return 0; 1270 case 0: 1271 path_put(path); 1272 path->mnt = mnt; 1273 path->dentry = dget(mnt->mnt_root); 1274 return 0; 1275 default: 1276 return err; 1277 } 1278 1279 } 1280 1281 /* 1282 * Handle a dentry that is managed in some way. 1283 * - Flagged for transit management (autofs) 1284 * - Flagged as mountpoint 1285 * - Flagged as automount point 1286 * 1287 * This may only be called in refwalk mode. 1288 * On success path->dentry is known positive. 1289 * 1290 * Serialization is taken care of in namespace.c 1291 */ 1292 static int follow_managed(struct path *path, struct nameidata *nd) 1293 { 1294 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1295 unsigned flags; 1296 bool need_mntput = false; 1297 int ret = 0; 1298 1299 /* Given that we're not holding a lock here, we retain the value in a 1300 * local variable for each dentry as we look at it so that we don't see 1301 * the components of that value change under us */ 1302 while (flags = smp_load_acquire(&path->dentry->d_flags), 1303 unlikely(flags & DCACHE_MANAGED_DENTRY)) { 1304 /* Allow the filesystem to manage the transit without i_mutex 1305 * being held. */ 1306 if (flags & DCACHE_MANAGE_TRANSIT) { 1307 BUG_ON(!path->dentry->d_op); 1308 BUG_ON(!path->dentry->d_op->d_manage); 1309 ret = path->dentry->d_op->d_manage(path, false); 1310 flags = smp_load_acquire(&path->dentry->d_flags); 1311 if (ret < 0) 1312 break; 1313 } 1314 1315 /* Transit to a mounted filesystem. */ 1316 if (flags & DCACHE_MOUNTED) { 1317 struct vfsmount *mounted = lookup_mnt(path); 1318 if (mounted) { 1319 dput(path->dentry); 1320 if (need_mntput) 1321 mntput(path->mnt); 1322 path->mnt = mounted; 1323 path->dentry = dget(mounted->mnt_root); 1324 need_mntput = true; 1325 continue; 1326 } 1327 1328 /* Something is mounted on this dentry in another 1329 * namespace and/or whatever was mounted there in this 1330 * namespace got unmounted before lookup_mnt() could 1331 * get it */ 1332 } 1333 1334 /* Handle an automount point */ 1335 if (flags & DCACHE_NEED_AUTOMOUNT) { 1336 ret = follow_automount(path, nd, &need_mntput); 1337 if (ret < 0) 1338 break; 1339 continue; 1340 } 1341 1342 /* We didn't change the current path point */ 1343 break; 1344 } 1345 1346 if (need_mntput) { 1347 if (path->mnt == mnt) 1348 mntput(path->mnt); 1349 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1350 ret = -EXDEV; 1351 else 1352 nd->flags |= LOOKUP_JUMPED; 1353 } 1354 if (ret == -EISDIR || !ret) 1355 ret = 1; 1356 if (ret > 0 && unlikely(d_flags_negative(flags))) 1357 ret = -ENOENT; 1358 if (unlikely(ret < 0)) 1359 path_put_conditional(path, nd); 1360 return ret; 1361 } 1362 1363 int follow_down_one(struct path *path) 1364 { 1365 struct vfsmount *mounted; 1366 1367 mounted = lookup_mnt(path); 1368 if (mounted) { 1369 dput(path->dentry); 1370 mntput(path->mnt); 1371 path->mnt = mounted; 1372 path->dentry = dget(mounted->mnt_root); 1373 return 1; 1374 } 1375 return 0; 1376 } 1377 EXPORT_SYMBOL(follow_down_one); 1378 1379 static inline int managed_dentry_rcu(const struct path *path) 1380 { 1381 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1382 path->dentry->d_op->d_manage(path, true) : 0; 1383 } 1384 1385 /* 1386 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1387 * we meet a managed dentry that would need blocking. 1388 */ 1389 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1390 struct inode **inode, unsigned *seqp) 1391 { 1392 for (;;) { 1393 struct mount *mounted; 1394 /* 1395 * Don't forget we might have a non-mountpoint managed dentry 1396 * that wants to block transit. 1397 */ 1398 switch (managed_dentry_rcu(path)) { 1399 case -ECHILD: 1400 default: 1401 return false; 1402 case -EISDIR: 1403 return true; 1404 case 0: 1405 break; 1406 } 1407 1408 if (!d_mountpoint(path->dentry)) 1409 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1410 1411 mounted = __lookup_mnt(path->mnt, path->dentry); 1412 if (!mounted) 1413 break; 1414 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1415 return false; 1416 path->mnt = &mounted->mnt; 1417 path->dentry = mounted->mnt.mnt_root; 1418 nd->flags |= LOOKUP_JUMPED; 1419 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1420 /* 1421 * Update the inode too. We don't need to re-check the 1422 * dentry sequence number here after this d_inode read, 1423 * because a mount-point is always pinned. 1424 */ 1425 *inode = path->dentry->d_inode; 1426 } 1427 return !read_seqretry(&mount_lock, nd->m_seq) && 1428 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1429 } 1430 1431 static int follow_dotdot_rcu(struct nameidata *nd) 1432 { 1433 struct inode *inode = nd->inode; 1434 1435 while (1) { 1436 if (path_equal(&nd->path, &nd->root)) { 1437 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1438 return -ECHILD; 1439 break; 1440 } 1441 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1442 struct dentry *old = nd->path.dentry; 1443 struct dentry *parent = old->d_parent; 1444 unsigned seq; 1445 1446 inode = parent->d_inode; 1447 seq = read_seqcount_begin(&parent->d_seq); 1448 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1449 return -ECHILD; 1450 nd->path.dentry = parent; 1451 nd->seq = seq; 1452 if (unlikely(!path_connected(&nd->path))) 1453 return -ECHILD; 1454 break; 1455 } else { 1456 struct mount *mnt = real_mount(nd->path.mnt); 1457 struct mount *mparent = mnt->mnt_parent; 1458 struct dentry *mountpoint = mnt->mnt_mountpoint; 1459 struct inode *inode2 = mountpoint->d_inode; 1460 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1461 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1462 return -ECHILD; 1463 if (&mparent->mnt == nd->path.mnt) 1464 break; 1465 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1466 return -ECHILD; 1467 /* we know that mountpoint was pinned */ 1468 nd->path.dentry = mountpoint; 1469 nd->path.mnt = &mparent->mnt; 1470 inode = inode2; 1471 nd->seq = seq; 1472 } 1473 } 1474 while (unlikely(d_mountpoint(nd->path.dentry))) { 1475 struct mount *mounted; 1476 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1477 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1478 return -ECHILD; 1479 if (!mounted) 1480 break; 1481 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1482 return -ECHILD; 1483 nd->path.mnt = &mounted->mnt; 1484 nd->path.dentry = mounted->mnt.mnt_root; 1485 inode = nd->path.dentry->d_inode; 1486 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1487 } 1488 nd->inode = inode; 1489 return 0; 1490 } 1491 1492 /* 1493 * Follow down to the covering mount currently visible to userspace. At each 1494 * point, the filesystem owning that dentry may be queried as to whether the 1495 * caller is permitted to proceed or not. 1496 */ 1497 int follow_down(struct path *path) 1498 { 1499 unsigned managed; 1500 int ret; 1501 1502 while (managed = READ_ONCE(path->dentry->d_flags), 1503 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1504 /* Allow the filesystem to manage the transit without i_mutex 1505 * being held. 1506 * 1507 * We indicate to the filesystem if someone is trying to mount 1508 * something here. This gives autofs the chance to deny anyone 1509 * other than its daemon the right to mount on its 1510 * superstructure. 1511 * 1512 * The filesystem may sleep at this point. 1513 */ 1514 if (managed & DCACHE_MANAGE_TRANSIT) { 1515 BUG_ON(!path->dentry->d_op); 1516 BUG_ON(!path->dentry->d_op->d_manage); 1517 ret = path->dentry->d_op->d_manage(path, false); 1518 if (ret < 0) 1519 return ret == -EISDIR ? 0 : ret; 1520 } 1521 1522 /* Transit to a mounted filesystem. */ 1523 if (managed & DCACHE_MOUNTED) { 1524 struct vfsmount *mounted = lookup_mnt(path); 1525 if (!mounted) 1526 break; 1527 dput(path->dentry); 1528 mntput(path->mnt); 1529 path->mnt = mounted; 1530 path->dentry = dget(mounted->mnt_root); 1531 continue; 1532 } 1533 1534 /* Don't handle automount points here */ 1535 break; 1536 } 1537 return 0; 1538 } 1539 EXPORT_SYMBOL(follow_down); 1540 1541 /* 1542 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1543 */ 1544 static void follow_mount(struct path *path) 1545 { 1546 while (d_mountpoint(path->dentry)) { 1547 struct vfsmount *mounted = lookup_mnt(path); 1548 if (!mounted) 1549 break; 1550 dput(path->dentry); 1551 mntput(path->mnt); 1552 path->mnt = mounted; 1553 path->dentry = dget(mounted->mnt_root); 1554 } 1555 } 1556 1557 static int path_parent_directory(struct path *path) 1558 { 1559 struct dentry *old = path->dentry; 1560 /* rare case of legitimate dget_parent()... */ 1561 path->dentry = dget_parent(path->dentry); 1562 dput(old); 1563 if (unlikely(!path_connected(path))) 1564 return -ENOENT; 1565 return 0; 1566 } 1567 1568 static int follow_dotdot(struct nameidata *nd) 1569 { 1570 while (1) { 1571 if (path_equal(&nd->path, &nd->root)) { 1572 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1573 return -EXDEV; 1574 break; 1575 } 1576 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1577 int ret = path_parent_directory(&nd->path); 1578 if (ret) 1579 return ret; 1580 break; 1581 } 1582 if (!follow_up(&nd->path)) 1583 break; 1584 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1585 return -EXDEV; 1586 } 1587 follow_mount(&nd->path); 1588 nd->inode = nd->path.dentry->d_inode; 1589 return 0; 1590 } 1591 1592 /* 1593 * This looks up the name in dcache and possibly revalidates the found dentry. 1594 * NULL is returned if the dentry does not exist in the cache. 1595 */ 1596 static struct dentry *lookup_dcache(const struct qstr *name, 1597 struct dentry *dir, 1598 unsigned int flags) 1599 { 1600 struct dentry *dentry = d_lookup(dir, name); 1601 if (dentry) { 1602 int error = d_revalidate(dentry, flags); 1603 if (unlikely(error <= 0)) { 1604 if (!error) 1605 d_invalidate(dentry); 1606 dput(dentry); 1607 return ERR_PTR(error); 1608 } 1609 } 1610 return dentry; 1611 } 1612 1613 /* 1614 * Parent directory has inode locked exclusive. This is one 1615 * and only case when ->lookup() gets called on non in-lookup 1616 * dentries - as the matter of fact, this only gets called 1617 * when directory is guaranteed to have no in-lookup children 1618 * at all. 1619 */ 1620 static struct dentry *__lookup_hash(const struct qstr *name, 1621 struct dentry *base, unsigned int flags) 1622 { 1623 struct dentry *dentry = lookup_dcache(name, base, flags); 1624 struct dentry *old; 1625 struct inode *dir = base->d_inode; 1626 1627 if (dentry) 1628 return dentry; 1629 1630 /* Don't create child dentry for a dead directory. */ 1631 if (unlikely(IS_DEADDIR(dir))) 1632 return ERR_PTR(-ENOENT); 1633 1634 dentry = d_alloc(base, name); 1635 if (unlikely(!dentry)) 1636 return ERR_PTR(-ENOMEM); 1637 1638 old = dir->i_op->lookup(dir, dentry, flags); 1639 if (unlikely(old)) { 1640 dput(dentry); 1641 dentry = old; 1642 } 1643 return dentry; 1644 } 1645 1646 static int lookup_fast(struct nameidata *nd, 1647 struct path *path, struct inode **inode, 1648 unsigned *seqp) 1649 { 1650 struct vfsmount *mnt = nd->path.mnt; 1651 struct dentry *dentry, *parent = nd->path.dentry; 1652 int status = 1; 1653 int err; 1654 1655 /* 1656 * Rename seqlock is not required here because in the off chance 1657 * of a false negative due to a concurrent rename, the caller is 1658 * going to fall back to non-racy lookup. 1659 */ 1660 if (nd->flags & LOOKUP_RCU) { 1661 unsigned seq; 1662 bool negative; 1663 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1664 if (unlikely(!dentry)) { 1665 if (unlazy_walk(nd)) 1666 return -ECHILD; 1667 return 0; 1668 } 1669 1670 /* 1671 * This sequence count validates that the inode matches 1672 * the dentry name information from lookup. 1673 */ 1674 *inode = d_backing_inode(dentry); 1675 negative = d_is_negative(dentry); 1676 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1677 return -ECHILD; 1678 1679 /* 1680 * This sequence count validates that the parent had no 1681 * changes while we did the lookup of the dentry above. 1682 * 1683 * The memory barrier in read_seqcount_begin of child is 1684 * enough, we can use __read_seqcount_retry here. 1685 */ 1686 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1687 return -ECHILD; 1688 1689 *seqp = seq; 1690 status = d_revalidate(dentry, nd->flags); 1691 if (likely(status > 0)) { 1692 /* 1693 * Note: do negative dentry check after revalidation in 1694 * case that drops it. 1695 */ 1696 if (unlikely(negative)) 1697 return -ENOENT; 1698 path->mnt = mnt; 1699 path->dentry = dentry; 1700 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1701 return 1; 1702 } 1703 if (unlazy_child(nd, dentry, seq)) 1704 return -ECHILD; 1705 if (unlikely(status == -ECHILD)) 1706 /* we'd been told to redo it in non-rcu mode */ 1707 status = d_revalidate(dentry, nd->flags); 1708 } else { 1709 dentry = __d_lookup(parent, &nd->last); 1710 if (unlikely(!dentry)) 1711 return 0; 1712 status = d_revalidate(dentry, nd->flags); 1713 } 1714 if (unlikely(status <= 0)) { 1715 if (!status) 1716 d_invalidate(dentry); 1717 dput(dentry); 1718 return status; 1719 } 1720 1721 path->mnt = mnt; 1722 path->dentry = dentry; 1723 err = follow_managed(path, nd); 1724 if (likely(err > 0)) 1725 *inode = d_backing_inode(path->dentry); 1726 return err; 1727 } 1728 1729 /* Fast lookup failed, do it the slow way */ 1730 static struct dentry *__lookup_slow(const struct qstr *name, 1731 struct dentry *dir, 1732 unsigned int flags) 1733 { 1734 struct dentry *dentry, *old; 1735 struct inode *inode = dir->d_inode; 1736 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1737 1738 /* Don't go there if it's already dead */ 1739 if (unlikely(IS_DEADDIR(inode))) 1740 return ERR_PTR(-ENOENT); 1741 again: 1742 dentry = d_alloc_parallel(dir, name, &wq); 1743 if (IS_ERR(dentry)) 1744 return dentry; 1745 if (unlikely(!d_in_lookup(dentry))) { 1746 int error = d_revalidate(dentry, flags); 1747 if (unlikely(error <= 0)) { 1748 if (!error) { 1749 d_invalidate(dentry); 1750 dput(dentry); 1751 goto again; 1752 } 1753 dput(dentry); 1754 dentry = ERR_PTR(error); 1755 } 1756 } else { 1757 old = inode->i_op->lookup(inode, dentry, flags); 1758 d_lookup_done(dentry); 1759 if (unlikely(old)) { 1760 dput(dentry); 1761 dentry = old; 1762 } 1763 } 1764 return dentry; 1765 } 1766 1767 static struct dentry *lookup_slow(const struct qstr *name, 1768 struct dentry *dir, 1769 unsigned int flags) 1770 { 1771 struct inode *inode = dir->d_inode; 1772 struct dentry *res; 1773 inode_lock_shared(inode); 1774 res = __lookup_slow(name, dir, flags); 1775 inode_unlock_shared(inode); 1776 return res; 1777 } 1778 1779 static inline int may_lookup(struct nameidata *nd) 1780 { 1781 if (nd->flags & LOOKUP_RCU) { 1782 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1783 if (err != -ECHILD) 1784 return err; 1785 if (unlazy_walk(nd)) 1786 return -ECHILD; 1787 } 1788 return inode_permission(nd->inode, MAY_EXEC); 1789 } 1790 1791 static inline int handle_dots(struct nameidata *nd, int type) 1792 { 1793 if (type == LAST_DOTDOT) { 1794 int error = 0; 1795 1796 if (!nd->root.mnt) { 1797 error = set_root(nd); 1798 if (error) 1799 return error; 1800 } 1801 if (nd->flags & LOOKUP_RCU) 1802 error = follow_dotdot_rcu(nd); 1803 else 1804 error = follow_dotdot(nd); 1805 if (error) 1806 return error; 1807 1808 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1809 /* 1810 * If there was a racing rename or mount along our 1811 * path, then we can't be sure that ".." hasn't jumped 1812 * above nd->root (and so userspace should retry or use 1813 * some fallback). 1814 */ 1815 smp_rmb(); 1816 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1817 return -EAGAIN; 1818 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1819 return -EAGAIN; 1820 } 1821 } 1822 return 0; 1823 } 1824 1825 static int pick_link(struct nameidata *nd, struct path *link, 1826 struct inode *inode, unsigned seq) 1827 { 1828 int error; 1829 struct saved *last; 1830 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1831 path_to_nameidata(link, nd); 1832 return -ELOOP; 1833 } 1834 if (!(nd->flags & LOOKUP_RCU)) { 1835 if (link->mnt == nd->path.mnt) 1836 mntget(link->mnt); 1837 } 1838 error = nd_alloc_stack(nd); 1839 if (unlikely(error)) { 1840 if (error == -ECHILD) { 1841 if (unlikely(!legitimize_path(nd, link, seq))) { 1842 drop_links(nd); 1843 nd->depth = 0; 1844 nd->flags &= ~LOOKUP_RCU; 1845 nd->path.mnt = NULL; 1846 nd->path.dentry = NULL; 1847 rcu_read_unlock(); 1848 } else if (likely(unlazy_walk(nd)) == 0) 1849 error = nd_alloc_stack(nd); 1850 } 1851 if (error) { 1852 path_put(link); 1853 return error; 1854 } 1855 } 1856 1857 last = nd->stack + nd->depth++; 1858 last->link = *link; 1859 clear_delayed_call(&last->done); 1860 nd->link_inode = inode; 1861 last->seq = seq; 1862 return 1; 1863 } 1864 1865 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1866 1867 /* 1868 * Do we need to follow links? We _really_ want to be able 1869 * to do this check without having to look at inode->i_op, 1870 * so we keep a cache of "no, this doesn't need follow_link" 1871 * for the common case. 1872 */ 1873 static inline int step_into(struct nameidata *nd, struct path *path, 1874 int flags, struct inode *inode, unsigned seq) 1875 { 1876 if (!(flags & WALK_MORE) && nd->depth) 1877 put_link(nd); 1878 if (likely(!d_is_symlink(path->dentry)) || 1879 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1880 /* not a symlink or should not follow */ 1881 path_to_nameidata(path, nd); 1882 nd->inode = inode; 1883 nd->seq = seq; 1884 return 0; 1885 } 1886 /* make sure that d_is_symlink above matches inode */ 1887 if (nd->flags & LOOKUP_RCU) { 1888 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1889 return -ECHILD; 1890 } 1891 return pick_link(nd, path, inode, seq); 1892 } 1893 1894 static int walk_component(struct nameidata *nd, int flags) 1895 { 1896 struct path path; 1897 struct inode *inode; 1898 unsigned seq; 1899 int err; 1900 /* 1901 * "." and ".." are special - ".." especially so because it has 1902 * to be able to know about the current root directory and 1903 * parent relationships. 1904 */ 1905 if (unlikely(nd->last_type != LAST_NORM)) { 1906 err = handle_dots(nd, nd->last_type); 1907 if (!(flags & WALK_MORE) && nd->depth) 1908 put_link(nd); 1909 return err; 1910 } 1911 err = lookup_fast(nd, &path, &inode, &seq); 1912 if (unlikely(err <= 0)) { 1913 if (err < 0) 1914 return err; 1915 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1916 nd->flags); 1917 if (IS_ERR(path.dentry)) 1918 return PTR_ERR(path.dentry); 1919 1920 path.mnt = nd->path.mnt; 1921 err = follow_managed(&path, nd); 1922 if (unlikely(err < 0)) 1923 return err; 1924 1925 seq = 0; /* we are already out of RCU mode */ 1926 inode = d_backing_inode(path.dentry); 1927 } 1928 1929 return step_into(nd, &path, flags, inode, seq); 1930 } 1931 1932 /* 1933 * We can do the critical dentry name comparison and hashing 1934 * operations one word at a time, but we are limited to: 1935 * 1936 * - Architectures with fast unaligned word accesses. We could 1937 * do a "get_unaligned()" if this helps and is sufficiently 1938 * fast. 1939 * 1940 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1941 * do not trap on the (extremely unlikely) case of a page 1942 * crossing operation. 1943 * 1944 * - Furthermore, we need an efficient 64-bit compile for the 1945 * 64-bit case in order to generate the "number of bytes in 1946 * the final mask". Again, that could be replaced with a 1947 * efficient population count instruction or similar. 1948 */ 1949 #ifdef CONFIG_DCACHE_WORD_ACCESS 1950 1951 #include <asm/word-at-a-time.h> 1952 1953 #ifdef HASH_MIX 1954 1955 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1956 1957 #elif defined(CONFIG_64BIT) 1958 /* 1959 * Register pressure in the mixing function is an issue, particularly 1960 * on 32-bit x86, but almost any function requires one state value and 1961 * one temporary. Instead, use a function designed for two state values 1962 * and no temporaries. 1963 * 1964 * This function cannot create a collision in only two iterations, so 1965 * we have two iterations to achieve avalanche. In those two iterations, 1966 * we have six layers of mixing, which is enough to spread one bit's 1967 * influence out to 2^6 = 64 state bits. 1968 * 1969 * Rotate constants are scored by considering either 64 one-bit input 1970 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1971 * probability of that delta causing a change to each of the 128 output 1972 * bits, using a sample of random initial states. 1973 * 1974 * The Shannon entropy of the computed probabilities is then summed 1975 * to produce a score. Ideally, any input change has a 50% chance of 1976 * toggling any given output bit. 1977 * 1978 * Mixing scores (in bits) for (12,45): 1979 * Input delta: 1-bit 2-bit 1980 * 1 round: 713.3 42542.6 1981 * 2 rounds: 2753.7 140389.8 1982 * 3 rounds: 5954.1 233458.2 1983 * 4 rounds: 7862.6 256672.2 1984 * Perfect: 8192 258048 1985 * (64*128) (64*63/2 * 128) 1986 */ 1987 #define HASH_MIX(x, y, a) \ 1988 ( x ^= (a), \ 1989 y ^= x, x = rol64(x,12),\ 1990 x += y, y = rol64(y,45),\ 1991 y *= 9 ) 1992 1993 /* 1994 * Fold two longs into one 32-bit hash value. This must be fast, but 1995 * latency isn't quite as critical, as there is a fair bit of additional 1996 * work done before the hash value is used. 1997 */ 1998 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1999 { 2000 y ^= x * GOLDEN_RATIO_64; 2001 y *= GOLDEN_RATIO_64; 2002 return y >> 32; 2003 } 2004 2005 #else /* 32-bit case */ 2006 2007 /* 2008 * Mixing scores (in bits) for (7,20): 2009 * Input delta: 1-bit 2-bit 2010 * 1 round: 330.3 9201.6 2011 * 2 rounds: 1246.4 25475.4 2012 * 3 rounds: 1907.1 31295.1 2013 * 4 rounds: 2042.3 31718.6 2014 * Perfect: 2048 31744 2015 * (32*64) (32*31/2 * 64) 2016 */ 2017 #define HASH_MIX(x, y, a) \ 2018 ( x ^= (a), \ 2019 y ^= x, x = rol32(x, 7),\ 2020 x += y, y = rol32(y,20),\ 2021 y *= 9 ) 2022 2023 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2024 { 2025 /* Use arch-optimized multiply if one exists */ 2026 return __hash_32(y ^ __hash_32(x)); 2027 } 2028 2029 #endif 2030 2031 /* 2032 * Return the hash of a string of known length. This is carfully 2033 * designed to match hash_name(), which is the more critical function. 2034 * In particular, we must end by hashing a final word containing 0..7 2035 * payload bytes, to match the way that hash_name() iterates until it 2036 * finds the delimiter after the name. 2037 */ 2038 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2039 { 2040 unsigned long a, x = 0, y = (unsigned long)salt; 2041 2042 for (;;) { 2043 if (!len) 2044 goto done; 2045 a = load_unaligned_zeropad(name); 2046 if (len < sizeof(unsigned long)) 2047 break; 2048 HASH_MIX(x, y, a); 2049 name += sizeof(unsigned long); 2050 len -= sizeof(unsigned long); 2051 } 2052 x ^= a & bytemask_from_count(len); 2053 done: 2054 return fold_hash(x, y); 2055 } 2056 EXPORT_SYMBOL(full_name_hash); 2057 2058 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2059 u64 hashlen_string(const void *salt, const char *name) 2060 { 2061 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2062 unsigned long adata, mask, len; 2063 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2064 2065 len = 0; 2066 goto inside; 2067 2068 do { 2069 HASH_MIX(x, y, a); 2070 len += sizeof(unsigned long); 2071 inside: 2072 a = load_unaligned_zeropad(name+len); 2073 } while (!has_zero(a, &adata, &constants)); 2074 2075 adata = prep_zero_mask(a, adata, &constants); 2076 mask = create_zero_mask(adata); 2077 x ^= a & zero_bytemask(mask); 2078 2079 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2080 } 2081 EXPORT_SYMBOL(hashlen_string); 2082 2083 /* 2084 * Calculate the length and hash of the path component, and 2085 * return the "hash_len" as the result. 2086 */ 2087 static inline u64 hash_name(const void *salt, const char *name) 2088 { 2089 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2090 unsigned long adata, bdata, mask, len; 2091 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2092 2093 len = 0; 2094 goto inside; 2095 2096 do { 2097 HASH_MIX(x, y, a); 2098 len += sizeof(unsigned long); 2099 inside: 2100 a = load_unaligned_zeropad(name+len); 2101 b = a ^ REPEAT_BYTE('/'); 2102 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2103 2104 adata = prep_zero_mask(a, adata, &constants); 2105 bdata = prep_zero_mask(b, bdata, &constants); 2106 mask = create_zero_mask(adata | bdata); 2107 x ^= a & zero_bytemask(mask); 2108 2109 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2110 } 2111 2112 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2113 2114 /* Return the hash of a string of known length */ 2115 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2116 { 2117 unsigned long hash = init_name_hash(salt); 2118 while (len--) 2119 hash = partial_name_hash((unsigned char)*name++, hash); 2120 return end_name_hash(hash); 2121 } 2122 EXPORT_SYMBOL(full_name_hash); 2123 2124 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2125 u64 hashlen_string(const void *salt, const char *name) 2126 { 2127 unsigned long hash = init_name_hash(salt); 2128 unsigned long len = 0, c; 2129 2130 c = (unsigned char)*name; 2131 while (c) { 2132 len++; 2133 hash = partial_name_hash(c, hash); 2134 c = (unsigned char)name[len]; 2135 } 2136 return hashlen_create(end_name_hash(hash), len); 2137 } 2138 EXPORT_SYMBOL(hashlen_string); 2139 2140 /* 2141 * We know there's a real path component here of at least 2142 * one character. 2143 */ 2144 static inline u64 hash_name(const void *salt, const char *name) 2145 { 2146 unsigned long hash = init_name_hash(salt); 2147 unsigned long len = 0, c; 2148 2149 c = (unsigned char)*name; 2150 do { 2151 len++; 2152 hash = partial_name_hash(c, hash); 2153 c = (unsigned char)name[len]; 2154 } while (c && c != '/'); 2155 return hashlen_create(end_name_hash(hash), len); 2156 } 2157 2158 #endif 2159 2160 /* 2161 * Name resolution. 2162 * This is the basic name resolution function, turning a pathname into 2163 * the final dentry. We expect 'base' to be positive and a directory. 2164 * 2165 * Returns 0 and nd will have valid dentry and mnt on success. 2166 * Returns error and drops reference to input namei data on failure. 2167 */ 2168 static int link_path_walk(const char *name, struct nameidata *nd) 2169 { 2170 int err; 2171 2172 if (IS_ERR(name)) 2173 return PTR_ERR(name); 2174 while (*name=='/') 2175 name++; 2176 if (!*name) 2177 return 0; 2178 2179 /* At this point we know we have a real path component. */ 2180 for(;;) { 2181 u64 hash_len; 2182 int type; 2183 2184 err = may_lookup(nd); 2185 if (err) 2186 return err; 2187 2188 hash_len = hash_name(nd->path.dentry, name); 2189 2190 type = LAST_NORM; 2191 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2192 case 2: 2193 if (name[1] == '.') { 2194 type = LAST_DOTDOT; 2195 nd->flags |= LOOKUP_JUMPED; 2196 } 2197 break; 2198 case 1: 2199 type = LAST_DOT; 2200 } 2201 if (likely(type == LAST_NORM)) { 2202 struct dentry *parent = nd->path.dentry; 2203 nd->flags &= ~LOOKUP_JUMPED; 2204 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2205 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2206 err = parent->d_op->d_hash(parent, &this); 2207 if (err < 0) 2208 return err; 2209 hash_len = this.hash_len; 2210 name = this.name; 2211 } 2212 } 2213 2214 nd->last.hash_len = hash_len; 2215 nd->last.name = name; 2216 nd->last_type = type; 2217 2218 name += hashlen_len(hash_len); 2219 if (!*name) 2220 goto OK; 2221 /* 2222 * If it wasn't NUL, we know it was '/'. Skip that 2223 * slash, and continue until no more slashes. 2224 */ 2225 do { 2226 name++; 2227 } while (unlikely(*name == '/')); 2228 if (unlikely(!*name)) { 2229 OK: 2230 /* pathname body, done */ 2231 if (!nd->depth) 2232 return 0; 2233 name = nd->stack[nd->depth - 1].name; 2234 /* trailing symlink, done */ 2235 if (!name) 2236 return 0; 2237 /* last component of nested symlink */ 2238 err = walk_component(nd, WALK_FOLLOW); 2239 } else { 2240 /* not the last component */ 2241 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2242 } 2243 if (err < 0) 2244 return err; 2245 2246 if (err) { 2247 const char *s = get_link(nd); 2248 2249 if (IS_ERR(s)) 2250 return PTR_ERR(s); 2251 err = 0; 2252 if (unlikely(!s)) { 2253 /* jumped */ 2254 put_link(nd); 2255 } else { 2256 nd->stack[nd->depth - 1].name = name; 2257 name = s; 2258 continue; 2259 } 2260 } 2261 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2262 if (nd->flags & LOOKUP_RCU) { 2263 if (unlazy_walk(nd)) 2264 return -ECHILD; 2265 } 2266 return -ENOTDIR; 2267 } 2268 } 2269 } 2270 2271 /* must be paired with terminate_walk() */ 2272 static const char *path_init(struct nameidata *nd, unsigned flags) 2273 { 2274 int error; 2275 const char *s = nd->name->name; 2276 2277 if (!*s) 2278 flags &= ~LOOKUP_RCU; 2279 if (flags & LOOKUP_RCU) 2280 rcu_read_lock(); 2281 2282 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2283 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2284 nd->depth = 0; 2285 2286 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2287 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2288 smp_rmb(); 2289 2290 if (flags & LOOKUP_ROOT) { 2291 struct dentry *root = nd->root.dentry; 2292 struct inode *inode = root->d_inode; 2293 if (*s && unlikely(!d_can_lookup(root))) 2294 return ERR_PTR(-ENOTDIR); 2295 nd->path = nd->root; 2296 nd->inode = inode; 2297 if (flags & LOOKUP_RCU) { 2298 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2299 nd->root_seq = nd->seq; 2300 } else { 2301 path_get(&nd->path); 2302 } 2303 return s; 2304 } 2305 2306 nd->root.mnt = NULL; 2307 nd->path.mnt = NULL; 2308 nd->path.dentry = NULL; 2309 2310 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2311 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2312 error = nd_jump_root(nd); 2313 if (unlikely(error)) 2314 return ERR_PTR(error); 2315 return s; 2316 } 2317 2318 /* Relative pathname -- get the starting-point it is relative to. */ 2319 if (nd->dfd == AT_FDCWD) { 2320 if (flags & LOOKUP_RCU) { 2321 struct fs_struct *fs = current->fs; 2322 unsigned seq; 2323 2324 do { 2325 seq = read_seqcount_begin(&fs->seq); 2326 nd->path = fs->pwd; 2327 nd->inode = nd->path.dentry->d_inode; 2328 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2329 } while (read_seqcount_retry(&fs->seq, seq)); 2330 } else { 2331 get_fs_pwd(current->fs, &nd->path); 2332 nd->inode = nd->path.dentry->d_inode; 2333 } 2334 } else { 2335 /* Caller must check execute permissions on the starting path component */ 2336 struct fd f = fdget_raw(nd->dfd); 2337 struct dentry *dentry; 2338 2339 if (!f.file) 2340 return ERR_PTR(-EBADF); 2341 2342 dentry = f.file->f_path.dentry; 2343 2344 if (*s && unlikely(!d_can_lookup(dentry))) { 2345 fdput(f); 2346 return ERR_PTR(-ENOTDIR); 2347 } 2348 2349 nd->path = f.file->f_path; 2350 if (flags & LOOKUP_RCU) { 2351 nd->inode = nd->path.dentry->d_inode; 2352 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2353 } else { 2354 path_get(&nd->path); 2355 nd->inode = nd->path.dentry->d_inode; 2356 } 2357 fdput(f); 2358 } 2359 2360 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2361 if (flags & LOOKUP_IS_SCOPED) { 2362 nd->root = nd->path; 2363 if (flags & LOOKUP_RCU) { 2364 nd->root_seq = nd->seq; 2365 } else { 2366 path_get(&nd->root); 2367 nd->flags |= LOOKUP_ROOT_GRABBED; 2368 } 2369 } 2370 return s; 2371 } 2372 2373 static const char *trailing_symlink(struct nameidata *nd) 2374 { 2375 const char *s; 2376 int error = may_follow_link(nd); 2377 if (unlikely(error)) 2378 return ERR_PTR(error); 2379 nd->flags |= LOOKUP_PARENT; 2380 nd->stack[0].name = NULL; 2381 s = get_link(nd); 2382 return s ? s : ""; 2383 } 2384 2385 static inline int lookup_last(struct nameidata *nd) 2386 { 2387 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2388 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2389 2390 nd->flags &= ~LOOKUP_PARENT; 2391 return walk_component(nd, 0); 2392 } 2393 2394 static int handle_lookup_down(struct nameidata *nd) 2395 { 2396 struct path path = nd->path; 2397 struct inode *inode = nd->inode; 2398 unsigned seq = nd->seq; 2399 int err; 2400 2401 if (nd->flags & LOOKUP_RCU) { 2402 /* 2403 * don't bother with unlazy_walk on failure - we are 2404 * at the very beginning of walk, so we lose nothing 2405 * if we simply redo everything in non-RCU mode 2406 */ 2407 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2408 return -ECHILD; 2409 } else { 2410 dget(path.dentry); 2411 err = follow_managed(&path, nd); 2412 if (unlikely(err < 0)) 2413 return err; 2414 inode = d_backing_inode(path.dentry); 2415 seq = 0; 2416 } 2417 path_to_nameidata(&path, nd); 2418 nd->inode = inode; 2419 nd->seq = seq; 2420 return 0; 2421 } 2422 2423 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2424 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2425 { 2426 const char *s = path_init(nd, flags); 2427 int err; 2428 2429 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2430 err = handle_lookup_down(nd); 2431 if (unlikely(err < 0)) 2432 s = ERR_PTR(err); 2433 } 2434 2435 while (!(err = link_path_walk(s, nd)) 2436 && ((err = lookup_last(nd)) > 0)) { 2437 s = trailing_symlink(nd); 2438 } 2439 if (!err) 2440 err = complete_walk(nd); 2441 2442 if (!err && nd->flags & LOOKUP_DIRECTORY) 2443 if (!d_can_lookup(nd->path.dentry)) 2444 err = -ENOTDIR; 2445 if (!err) { 2446 *path = nd->path; 2447 nd->path.mnt = NULL; 2448 nd->path.dentry = NULL; 2449 } 2450 terminate_walk(nd); 2451 return err; 2452 } 2453 2454 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2455 struct path *path, struct path *root) 2456 { 2457 int retval; 2458 struct nameidata nd; 2459 if (IS_ERR(name)) 2460 return PTR_ERR(name); 2461 if (unlikely(root)) { 2462 nd.root = *root; 2463 flags |= LOOKUP_ROOT; 2464 } 2465 set_nameidata(&nd, dfd, name); 2466 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2467 if (unlikely(retval == -ECHILD)) 2468 retval = path_lookupat(&nd, flags, path); 2469 if (unlikely(retval == -ESTALE)) 2470 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2471 2472 if (likely(!retval)) 2473 audit_inode(name, path->dentry, 0); 2474 restore_nameidata(); 2475 putname(name); 2476 return retval; 2477 } 2478 2479 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2480 static int path_parentat(struct nameidata *nd, unsigned flags, 2481 struct path *parent) 2482 { 2483 const char *s = path_init(nd, flags); 2484 int err = link_path_walk(s, nd); 2485 if (!err) 2486 err = complete_walk(nd); 2487 if (!err) { 2488 *parent = nd->path; 2489 nd->path.mnt = NULL; 2490 nd->path.dentry = NULL; 2491 } 2492 terminate_walk(nd); 2493 return err; 2494 } 2495 2496 static struct filename *filename_parentat(int dfd, struct filename *name, 2497 unsigned int flags, struct path *parent, 2498 struct qstr *last, int *type) 2499 { 2500 int retval; 2501 struct nameidata nd; 2502 2503 if (IS_ERR(name)) 2504 return name; 2505 set_nameidata(&nd, dfd, name); 2506 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2507 if (unlikely(retval == -ECHILD)) 2508 retval = path_parentat(&nd, flags, parent); 2509 if (unlikely(retval == -ESTALE)) 2510 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2511 if (likely(!retval)) { 2512 *last = nd.last; 2513 *type = nd.last_type; 2514 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2515 } else { 2516 putname(name); 2517 name = ERR_PTR(retval); 2518 } 2519 restore_nameidata(); 2520 return name; 2521 } 2522 2523 /* does lookup, returns the object with parent locked */ 2524 struct dentry *kern_path_locked(const char *name, struct path *path) 2525 { 2526 struct filename *filename; 2527 struct dentry *d; 2528 struct qstr last; 2529 int type; 2530 2531 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2532 &last, &type); 2533 if (IS_ERR(filename)) 2534 return ERR_CAST(filename); 2535 if (unlikely(type != LAST_NORM)) { 2536 path_put(path); 2537 putname(filename); 2538 return ERR_PTR(-EINVAL); 2539 } 2540 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2541 d = __lookup_hash(&last, path->dentry, 0); 2542 if (IS_ERR(d)) { 2543 inode_unlock(path->dentry->d_inode); 2544 path_put(path); 2545 } 2546 putname(filename); 2547 return d; 2548 } 2549 2550 int kern_path(const char *name, unsigned int flags, struct path *path) 2551 { 2552 return filename_lookup(AT_FDCWD, getname_kernel(name), 2553 flags, path, NULL); 2554 } 2555 EXPORT_SYMBOL(kern_path); 2556 2557 /** 2558 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2559 * @dentry: pointer to dentry of the base directory 2560 * @mnt: pointer to vfs mount of the base directory 2561 * @name: pointer to file name 2562 * @flags: lookup flags 2563 * @path: pointer to struct path to fill 2564 */ 2565 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2566 const char *name, unsigned int flags, 2567 struct path *path) 2568 { 2569 struct path root = {.mnt = mnt, .dentry = dentry}; 2570 /* the first argument of filename_lookup() is ignored with root */ 2571 return filename_lookup(AT_FDCWD, getname_kernel(name), 2572 flags , path, &root); 2573 } 2574 EXPORT_SYMBOL(vfs_path_lookup); 2575 2576 static int lookup_one_len_common(const char *name, struct dentry *base, 2577 int len, struct qstr *this) 2578 { 2579 this->name = name; 2580 this->len = len; 2581 this->hash = full_name_hash(base, name, len); 2582 if (!len) 2583 return -EACCES; 2584 2585 if (unlikely(name[0] == '.')) { 2586 if (len < 2 || (len == 2 && name[1] == '.')) 2587 return -EACCES; 2588 } 2589 2590 while (len--) { 2591 unsigned int c = *(const unsigned char *)name++; 2592 if (c == '/' || c == '\0') 2593 return -EACCES; 2594 } 2595 /* 2596 * See if the low-level filesystem might want 2597 * to use its own hash.. 2598 */ 2599 if (base->d_flags & DCACHE_OP_HASH) { 2600 int err = base->d_op->d_hash(base, this); 2601 if (err < 0) 2602 return err; 2603 } 2604 2605 return inode_permission(base->d_inode, MAY_EXEC); 2606 } 2607 2608 /** 2609 * try_lookup_one_len - filesystem helper to lookup single pathname component 2610 * @name: pathname component to lookup 2611 * @base: base directory to lookup from 2612 * @len: maximum length @len should be interpreted to 2613 * 2614 * Look up a dentry by name in the dcache, returning NULL if it does not 2615 * currently exist. The function does not try to create a dentry. 2616 * 2617 * Note that this routine is purely a helper for filesystem usage and should 2618 * not be called by generic code. 2619 * 2620 * The caller must hold base->i_mutex. 2621 */ 2622 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2623 { 2624 struct qstr this; 2625 int err; 2626 2627 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2628 2629 err = lookup_one_len_common(name, base, len, &this); 2630 if (err) 2631 return ERR_PTR(err); 2632 2633 return lookup_dcache(&this, base, 0); 2634 } 2635 EXPORT_SYMBOL(try_lookup_one_len); 2636 2637 /** 2638 * lookup_one_len - filesystem helper to lookup single pathname component 2639 * @name: pathname component to lookup 2640 * @base: base directory to lookup from 2641 * @len: maximum length @len should be interpreted to 2642 * 2643 * Note that this routine is purely a helper for filesystem usage and should 2644 * not be called by generic code. 2645 * 2646 * The caller must hold base->i_mutex. 2647 */ 2648 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2649 { 2650 struct dentry *dentry; 2651 struct qstr this; 2652 int err; 2653 2654 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2655 2656 err = lookup_one_len_common(name, base, len, &this); 2657 if (err) 2658 return ERR_PTR(err); 2659 2660 dentry = lookup_dcache(&this, base, 0); 2661 return dentry ? dentry : __lookup_slow(&this, base, 0); 2662 } 2663 EXPORT_SYMBOL(lookup_one_len); 2664 2665 /** 2666 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2667 * @name: pathname component to lookup 2668 * @base: base directory to lookup from 2669 * @len: maximum length @len should be interpreted to 2670 * 2671 * Note that this routine is purely a helper for filesystem usage and should 2672 * not be called by generic code. 2673 * 2674 * Unlike lookup_one_len, it should be called without the parent 2675 * i_mutex held, and will take the i_mutex itself if necessary. 2676 */ 2677 struct dentry *lookup_one_len_unlocked(const char *name, 2678 struct dentry *base, int len) 2679 { 2680 struct qstr this; 2681 int err; 2682 struct dentry *ret; 2683 2684 err = lookup_one_len_common(name, base, len, &this); 2685 if (err) 2686 return ERR_PTR(err); 2687 2688 ret = lookup_dcache(&this, base, 0); 2689 if (!ret) 2690 ret = lookup_slow(&this, base, 0); 2691 return ret; 2692 } 2693 EXPORT_SYMBOL(lookup_one_len_unlocked); 2694 2695 /* 2696 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2697 * on negatives. Returns known positive or ERR_PTR(); that's what 2698 * most of the users want. Note that pinned negative with unlocked parent 2699 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2700 * need to be very careful; pinned positives have ->d_inode stable, so 2701 * this one avoids such problems. 2702 */ 2703 struct dentry *lookup_positive_unlocked(const char *name, 2704 struct dentry *base, int len) 2705 { 2706 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2707 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2708 dput(ret); 2709 ret = ERR_PTR(-ENOENT); 2710 } 2711 return ret; 2712 } 2713 EXPORT_SYMBOL(lookup_positive_unlocked); 2714 2715 #ifdef CONFIG_UNIX98_PTYS 2716 int path_pts(struct path *path) 2717 { 2718 /* Find something mounted on "pts" in the same directory as 2719 * the input path. 2720 */ 2721 struct dentry *child, *parent; 2722 struct qstr this; 2723 int ret; 2724 2725 ret = path_parent_directory(path); 2726 if (ret) 2727 return ret; 2728 2729 parent = path->dentry; 2730 this.name = "pts"; 2731 this.len = 3; 2732 child = d_hash_and_lookup(parent, &this); 2733 if (!child) 2734 return -ENOENT; 2735 2736 path->dentry = child; 2737 dput(parent); 2738 follow_mount(path); 2739 return 0; 2740 } 2741 #endif 2742 2743 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2744 struct path *path, int *empty) 2745 { 2746 return filename_lookup(dfd, getname_flags(name, flags, empty), 2747 flags, path, NULL); 2748 } 2749 EXPORT_SYMBOL(user_path_at_empty); 2750 2751 /** 2752 * path_mountpoint - look up a path to be umounted 2753 * @nd: lookup context 2754 * @flags: lookup flags 2755 * @path: pointer to container for result 2756 * 2757 * Look up the given name, but don't attempt to revalidate the last component. 2758 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2759 */ 2760 static int 2761 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2762 { 2763 const char *s = path_init(nd, flags); 2764 int err; 2765 2766 while (!(err = link_path_walk(s, nd)) && 2767 (err = lookup_last(nd)) > 0) { 2768 s = trailing_symlink(nd); 2769 } 2770 if (!err && (nd->flags & LOOKUP_RCU)) 2771 err = unlazy_walk(nd); 2772 if (!err) 2773 err = handle_lookup_down(nd); 2774 if (!err) { 2775 *path = nd->path; 2776 nd->path.mnt = NULL; 2777 nd->path.dentry = NULL; 2778 } 2779 terminate_walk(nd); 2780 return err; 2781 } 2782 2783 static int 2784 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2785 unsigned int flags) 2786 { 2787 struct nameidata nd; 2788 int error; 2789 if (IS_ERR(name)) 2790 return PTR_ERR(name); 2791 set_nameidata(&nd, dfd, name); 2792 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2793 if (unlikely(error == -ECHILD)) 2794 error = path_mountpoint(&nd, flags, path); 2795 if (unlikely(error == -ESTALE)) 2796 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2797 if (likely(!error)) 2798 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL); 2799 restore_nameidata(); 2800 putname(name); 2801 return error; 2802 } 2803 2804 /** 2805 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2806 * @dfd: directory file descriptor 2807 * @name: pathname from userland 2808 * @flags: lookup flags 2809 * @path: pointer to container to hold result 2810 * 2811 * A umount is a special case for path walking. We're not actually interested 2812 * in the inode in this situation, and ESTALE errors can be a problem. We 2813 * simply want track down the dentry and vfsmount attached at the mountpoint 2814 * and avoid revalidating the last component. 2815 * 2816 * Returns 0 and populates "path" on success. 2817 */ 2818 int 2819 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2820 struct path *path) 2821 { 2822 return filename_mountpoint(dfd, getname(name), path, flags); 2823 } 2824 2825 int 2826 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2827 unsigned int flags) 2828 { 2829 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2830 } 2831 EXPORT_SYMBOL(kern_path_mountpoint); 2832 2833 int __check_sticky(struct inode *dir, struct inode *inode) 2834 { 2835 kuid_t fsuid = current_fsuid(); 2836 2837 if (uid_eq(inode->i_uid, fsuid)) 2838 return 0; 2839 if (uid_eq(dir->i_uid, fsuid)) 2840 return 0; 2841 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2842 } 2843 EXPORT_SYMBOL(__check_sticky); 2844 2845 /* 2846 * Check whether we can remove a link victim from directory dir, check 2847 * whether the type of victim is right. 2848 * 1. We can't do it if dir is read-only (done in permission()) 2849 * 2. We should have write and exec permissions on dir 2850 * 3. We can't remove anything from append-only dir 2851 * 4. We can't do anything with immutable dir (done in permission()) 2852 * 5. If the sticky bit on dir is set we should either 2853 * a. be owner of dir, or 2854 * b. be owner of victim, or 2855 * c. have CAP_FOWNER capability 2856 * 6. If the victim is append-only or immutable we can't do antyhing with 2857 * links pointing to it. 2858 * 7. If the victim has an unknown uid or gid we can't change the inode. 2859 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2860 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2861 * 10. We can't remove a root or mountpoint. 2862 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2863 * nfs_async_unlink(). 2864 */ 2865 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2866 { 2867 struct inode *inode = d_backing_inode(victim); 2868 int error; 2869 2870 if (d_is_negative(victim)) 2871 return -ENOENT; 2872 BUG_ON(!inode); 2873 2874 BUG_ON(victim->d_parent->d_inode != dir); 2875 2876 /* Inode writeback is not safe when the uid or gid are invalid. */ 2877 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2878 return -EOVERFLOW; 2879 2880 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2881 2882 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2883 if (error) 2884 return error; 2885 if (IS_APPEND(dir)) 2886 return -EPERM; 2887 2888 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2889 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2890 return -EPERM; 2891 if (isdir) { 2892 if (!d_is_dir(victim)) 2893 return -ENOTDIR; 2894 if (IS_ROOT(victim)) 2895 return -EBUSY; 2896 } else if (d_is_dir(victim)) 2897 return -EISDIR; 2898 if (IS_DEADDIR(dir)) 2899 return -ENOENT; 2900 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2901 return -EBUSY; 2902 return 0; 2903 } 2904 2905 /* Check whether we can create an object with dentry child in directory 2906 * dir. 2907 * 1. We can't do it if child already exists (open has special treatment for 2908 * this case, but since we are inlined it's OK) 2909 * 2. We can't do it if dir is read-only (done in permission()) 2910 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2911 * 4. We should have write and exec permissions on dir 2912 * 5. We can't do it if dir is immutable (done in permission()) 2913 */ 2914 static inline int may_create(struct inode *dir, struct dentry *child) 2915 { 2916 struct user_namespace *s_user_ns; 2917 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2918 if (child->d_inode) 2919 return -EEXIST; 2920 if (IS_DEADDIR(dir)) 2921 return -ENOENT; 2922 s_user_ns = dir->i_sb->s_user_ns; 2923 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2924 !kgid_has_mapping(s_user_ns, current_fsgid())) 2925 return -EOVERFLOW; 2926 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2927 } 2928 2929 /* 2930 * p1 and p2 should be directories on the same fs. 2931 */ 2932 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2933 { 2934 struct dentry *p; 2935 2936 if (p1 == p2) { 2937 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2938 return NULL; 2939 } 2940 2941 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2942 2943 p = d_ancestor(p2, p1); 2944 if (p) { 2945 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2946 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2947 return p; 2948 } 2949 2950 p = d_ancestor(p1, p2); 2951 if (p) { 2952 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2953 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2954 return p; 2955 } 2956 2957 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2958 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2959 return NULL; 2960 } 2961 EXPORT_SYMBOL(lock_rename); 2962 2963 void unlock_rename(struct dentry *p1, struct dentry *p2) 2964 { 2965 inode_unlock(p1->d_inode); 2966 if (p1 != p2) { 2967 inode_unlock(p2->d_inode); 2968 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2969 } 2970 } 2971 EXPORT_SYMBOL(unlock_rename); 2972 2973 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2974 bool want_excl) 2975 { 2976 int error = may_create(dir, dentry); 2977 if (error) 2978 return error; 2979 2980 if (!dir->i_op->create) 2981 return -EACCES; /* shouldn't it be ENOSYS? */ 2982 mode &= S_IALLUGO; 2983 mode |= S_IFREG; 2984 error = security_inode_create(dir, dentry, mode); 2985 if (error) 2986 return error; 2987 error = dir->i_op->create(dir, dentry, mode, want_excl); 2988 if (!error) 2989 fsnotify_create(dir, dentry); 2990 return error; 2991 } 2992 EXPORT_SYMBOL(vfs_create); 2993 2994 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2995 int (*f)(struct dentry *, umode_t, void *), 2996 void *arg) 2997 { 2998 struct inode *dir = dentry->d_parent->d_inode; 2999 int error = may_create(dir, dentry); 3000 if (error) 3001 return error; 3002 3003 mode &= S_IALLUGO; 3004 mode |= S_IFREG; 3005 error = security_inode_create(dir, dentry, mode); 3006 if (error) 3007 return error; 3008 error = f(dentry, mode, arg); 3009 if (!error) 3010 fsnotify_create(dir, dentry); 3011 return error; 3012 } 3013 EXPORT_SYMBOL(vfs_mkobj); 3014 3015 bool may_open_dev(const struct path *path) 3016 { 3017 return !(path->mnt->mnt_flags & MNT_NODEV) && 3018 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3019 } 3020 3021 static int may_open(const struct path *path, int acc_mode, int flag) 3022 { 3023 struct dentry *dentry = path->dentry; 3024 struct inode *inode = dentry->d_inode; 3025 int error; 3026 3027 if (!inode) 3028 return -ENOENT; 3029 3030 switch (inode->i_mode & S_IFMT) { 3031 case S_IFLNK: 3032 return -ELOOP; 3033 case S_IFDIR: 3034 if (acc_mode & MAY_WRITE) 3035 return -EISDIR; 3036 break; 3037 case S_IFBLK: 3038 case S_IFCHR: 3039 if (!may_open_dev(path)) 3040 return -EACCES; 3041 /*FALLTHRU*/ 3042 case S_IFIFO: 3043 case S_IFSOCK: 3044 flag &= ~O_TRUNC; 3045 break; 3046 } 3047 3048 error = inode_permission(inode, MAY_OPEN | acc_mode); 3049 if (error) 3050 return error; 3051 3052 /* 3053 * An append-only file must be opened in append mode for writing. 3054 */ 3055 if (IS_APPEND(inode)) { 3056 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3057 return -EPERM; 3058 if (flag & O_TRUNC) 3059 return -EPERM; 3060 } 3061 3062 /* O_NOATIME can only be set by the owner or superuser */ 3063 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 3064 return -EPERM; 3065 3066 return 0; 3067 } 3068 3069 static int handle_truncate(struct file *filp) 3070 { 3071 const struct path *path = &filp->f_path; 3072 struct inode *inode = path->dentry->d_inode; 3073 int error = get_write_access(inode); 3074 if (error) 3075 return error; 3076 /* 3077 * Refuse to truncate files with mandatory locks held on them. 3078 */ 3079 error = locks_verify_locked(filp); 3080 if (!error) 3081 error = security_path_truncate(path); 3082 if (!error) { 3083 error = do_truncate(path->dentry, 0, 3084 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3085 filp); 3086 } 3087 put_write_access(inode); 3088 return error; 3089 } 3090 3091 static inline int open_to_namei_flags(int flag) 3092 { 3093 if ((flag & O_ACCMODE) == 3) 3094 flag--; 3095 return flag; 3096 } 3097 3098 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 3099 { 3100 struct user_namespace *s_user_ns; 3101 int error = security_path_mknod(dir, dentry, mode, 0); 3102 if (error) 3103 return error; 3104 3105 s_user_ns = dir->dentry->d_sb->s_user_ns; 3106 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 3107 !kgid_has_mapping(s_user_ns, current_fsgid())) 3108 return -EOVERFLOW; 3109 3110 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 3111 if (error) 3112 return error; 3113 3114 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3115 } 3116 3117 /* 3118 * Attempt to atomically look up, create and open a file from a negative 3119 * dentry. 3120 * 3121 * Returns 0 if successful. The file will have been created and attached to 3122 * @file by the filesystem calling finish_open(). 3123 * 3124 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3125 * be set. The caller will need to perform the open themselves. @path will 3126 * have been updated to point to the new dentry. This may be negative. 3127 * 3128 * Returns an error code otherwise. 3129 */ 3130 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3131 struct path *path, struct file *file, 3132 const struct open_flags *op, 3133 int open_flag, umode_t mode) 3134 { 3135 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3136 struct inode *dir = nd->path.dentry->d_inode; 3137 int error; 3138 3139 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3140 open_flag &= ~O_TRUNC; 3141 3142 if (nd->flags & LOOKUP_DIRECTORY) 3143 open_flag |= O_DIRECTORY; 3144 3145 file->f_path.dentry = DENTRY_NOT_SET; 3146 file->f_path.mnt = nd->path.mnt; 3147 error = dir->i_op->atomic_open(dir, dentry, file, 3148 open_to_namei_flags(open_flag), mode); 3149 d_lookup_done(dentry); 3150 if (!error) { 3151 if (file->f_mode & FMODE_OPENED) { 3152 /* 3153 * We didn't have the inode before the open, so check open 3154 * permission here. 3155 */ 3156 int acc_mode = op->acc_mode; 3157 if (file->f_mode & FMODE_CREATED) { 3158 WARN_ON(!(open_flag & O_CREAT)); 3159 fsnotify_create(dir, dentry); 3160 acc_mode = 0; 3161 } 3162 error = may_open(&file->f_path, acc_mode, open_flag); 3163 if (WARN_ON(error > 0)) 3164 error = -EINVAL; 3165 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3166 error = -EIO; 3167 } else { 3168 if (file->f_path.dentry) { 3169 dput(dentry); 3170 dentry = file->f_path.dentry; 3171 } 3172 if (file->f_mode & FMODE_CREATED) 3173 fsnotify_create(dir, dentry); 3174 if (unlikely(d_is_negative(dentry))) { 3175 error = -ENOENT; 3176 } else { 3177 path->dentry = dentry; 3178 path->mnt = nd->path.mnt; 3179 return 0; 3180 } 3181 } 3182 } 3183 dput(dentry); 3184 return error; 3185 } 3186 3187 /* 3188 * Look up and maybe create and open the last component. 3189 * 3190 * Must be called with parent locked (exclusive in O_CREAT case). 3191 * 3192 * Returns 0 on success, that is, if 3193 * the file was successfully atomically created (if necessary) and opened, or 3194 * the file was not completely opened at this time, though lookups and 3195 * creations were performed. 3196 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3197 * In the latter case dentry returned in @path might be negative if O_CREAT 3198 * hadn't been specified. 3199 * 3200 * An error code is returned on failure. 3201 */ 3202 static int lookup_open(struct nameidata *nd, struct path *path, 3203 struct file *file, 3204 const struct open_flags *op, 3205 bool got_write) 3206 { 3207 struct dentry *dir = nd->path.dentry; 3208 struct inode *dir_inode = dir->d_inode; 3209 int open_flag = op->open_flag; 3210 struct dentry *dentry; 3211 int error, create_error = 0; 3212 umode_t mode = op->mode; 3213 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3214 3215 if (unlikely(IS_DEADDIR(dir_inode))) 3216 return -ENOENT; 3217 3218 file->f_mode &= ~FMODE_CREATED; 3219 dentry = d_lookup(dir, &nd->last); 3220 for (;;) { 3221 if (!dentry) { 3222 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3223 if (IS_ERR(dentry)) 3224 return PTR_ERR(dentry); 3225 } 3226 if (d_in_lookup(dentry)) 3227 break; 3228 3229 error = d_revalidate(dentry, nd->flags); 3230 if (likely(error > 0)) 3231 break; 3232 if (error) 3233 goto out_dput; 3234 d_invalidate(dentry); 3235 dput(dentry); 3236 dentry = NULL; 3237 } 3238 if (dentry->d_inode) { 3239 /* Cached positive dentry: will open in f_op->open */ 3240 goto out_no_open; 3241 } 3242 3243 /* 3244 * Checking write permission is tricky, bacuse we don't know if we are 3245 * going to actually need it: O_CREAT opens should work as long as the 3246 * file exists. But checking existence breaks atomicity. The trick is 3247 * to check access and if not granted clear O_CREAT from the flags. 3248 * 3249 * Another problem is returing the "right" error value (e.g. for an 3250 * O_EXCL open we want to return EEXIST not EROFS). 3251 */ 3252 if (open_flag & O_CREAT) { 3253 if (!IS_POSIXACL(dir->d_inode)) 3254 mode &= ~current_umask(); 3255 if (unlikely(!got_write)) { 3256 create_error = -EROFS; 3257 open_flag &= ~O_CREAT; 3258 if (open_flag & (O_EXCL | O_TRUNC)) 3259 goto no_open; 3260 /* No side effects, safe to clear O_CREAT */ 3261 } else { 3262 create_error = may_o_create(&nd->path, dentry, mode); 3263 if (create_error) { 3264 open_flag &= ~O_CREAT; 3265 if (open_flag & O_EXCL) 3266 goto no_open; 3267 } 3268 } 3269 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3270 unlikely(!got_write)) { 3271 /* 3272 * No O_CREATE -> atomicity not a requirement -> fall 3273 * back to lookup + open 3274 */ 3275 goto no_open; 3276 } 3277 3278 if (dir_inode->i_op->atomic_open) { 3279 error = atomic_open(nd, dentry, path, file, op, open_flag, 3280 mode); 3281 if (unlikely(error == -ENOENT) && create_error) 3282 error = create_error; 3283 return error; 3284 } 3285 3286 no_open: 3287 if (d_in_lookup(dentry)) { 3288 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3289 nd->flags); 3290 d_lookup_done(dentry); 3291 if (unlikely(res)) { 3292 if (IS_ERR(res)) { 3293 error = PTR_ERR(res); 3294 goto out_dput; 3295 } 3296 dput(dentry); 3297 dentry = res; 3298 } 3299 } 3300 3301 /* Negative dentry, just create the file */ 3302 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3303 file->f_mode |= FMODE_CREATED; 3304 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3305 if (!dir_inode->i_op->create) { 3306 error = -EACCES; 3307 goto out_dput; 3308 } 3309 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3310 open_flag & O_EXCL); 3311 if (error) 3312 goto out_dput; 3313 fsnotify_create(dir_inode, dentry); 3314 } 3315 if (unlikely(create_error) && !dentry->d_inode) { 3316 error = create_error; 3317 goto out_dput; 3318 } 3319 out_no_open: 3320 path->dentry = dentry; 3321 path->mnt = nd->path.mnt; 3322 return 0; 3323 3324 out_dput: 3325 dput(dentry); 3326 return error; 3327 } 3328 3329 /* 3330 * Handle the last step of open() 3331 */ 3332 static int do_last(struct nameidata *nd, 3333 struct file *file, const struct open_flags *op) 3334 { 3335 struct dentry *dir = nd->path.dentry; 3336 kuid_t dir_uid = nd->inode->i_uid; 3337 umode_t dir_mode = nd->inode->i_mode; 3338 int open_flag = op->open_flag; 3339 bool will_truncate = (open_flag & O_TRUNC) != 0; 3340 bool got_write = false; 3341 int acc_mode = op->acc_mode; 3342 unsigned seq; 3343 struct inode *inode; 3344 struct path path; 3345 int error; 3346 3347 nd->flags &= ~LOOKUP_PARENT; 3348 nd->flags |= op->intent; 3349 3350 if (nd->last_type != LAST_NORM) { 3351 error = handle_dots(nd, nd->last_type); 3352 if (unlikely(error)) 3353 return error; 3354 goto finish_open; 3355 } 3356 3357 if (!(open_flag & O_CREAT)) { 3358 if (nd->last.name[nd->last.len]) 3359 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3360 /* we _can_ be in RCU mode here */ 3361 error = lookup_fast(nd, &path, &inode, &seq); 3362 if (likely(error > 0)) 3363 goto finish_lookup; 3364 3365 if (error < 0) 3366 return error; 3367 3368 BUG_ON(nd->inode != dir->d_inode); 3369 BUG_ON(nd->flags & LOOKUP_RCU); 3370 } else { 3371 /* create side of things */ 3372 /* 3373 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3374 * has been cleared when we got to the last component we are 3375 * about to look up 3376 */ 3377 error = complete_walk(nd); 3378 if (error) 3379 return error; 3380 3381 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3382 /* trailing slashes? */ 3383 if (unlikely(nd->last.name[nd->last.len])) 3384 return -EISDIR; 3385 } 3386 3387 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3388 error = mnt_want_write(nd->path.mnt); 3389 if (!error) 3390 got_write = true; 3391 /* 3392 * do _not_ fail yet - we might not need that or fail with 3393 * a different error; let lookup_open() decide; we'll be 3394 * dropping this one anyway. 3395 */ 3396 } 3397 if (open_flag & O_CREAT) 3398 inode_lock(dir->d_inode); 3399 else 3400 inode_lock_shared(dir->d_inode); 3401 error = lookup_open(nd, &path, file, op, got_write); 3402 if (open_flag & O_CREAT) 3403 inode_unlock(dir->d_inode); 3404 else 3405 inode_unlock_shared(dir->d_inode); 3406 3407 if (error) 3408 goto out; 3409 3410 if (file->f_mode & FMODE_OPENED) { 3411 if ((file->f_mode & FMODE_CREATED) || 3412 !S_ISREG(file_inode(file)->i_mode)) 3413 will_truncate = false; 3414 3415 audit_inode(nd->name, file->f_path.dentry, 0); 3416 goto opened; 3417 } 3418 3419 if (file->f_mode & FMODE_CREATED) { 3420 /* Don't check for write permission, don't truncate */ 3421 open_flag &= ~O_TRUNC; 3422 will_truncate = false; 3423 acc_mode = 0; 3424 path_to_nameidata(&path, nd); 3425 goto finish_open_created; 3426 } 3427 3428 /* 3429 * If atomic_open() acquired write access it is dropped now due to 3430 * possible mount and symlink following (this might be optimized away if 3431 * necessary...) 3432 */ 3433 if (got_write) { 3434 mnt_drop_write(nd->path.mnt); 3435 got_write = false; 3436 } 3437 3438 error = follow_managed(&path, nd); 3439 if (unlikely(error < 0)) 3440 return error; 3441 3442 /* 3443 * create/update audit record if it already exists. 3444 */ 3445 audit_inode(nd->name, path.dentry, 0); 3446 3447 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3448 path_to_nameidata(&path, nd); 3449 return -EEXIST; 3450 } 3451 3452 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3453 inode = d_backing_inode(path.dentry); 3454 finish_lookup: 3455 error = step_into(nd, &path, 0, inode, seq); 3456 if (unlikely(error)) 3457 return error; 3458 finish_open: 3459 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3460 error = complete_walk(nd); 3461 if (error) 3462 return error; 3463 audit_inode(nd->name, nd->path.dentry, 0); 3464 if (open_flag & O_CREAT) { 3465 error = -EISDIR; 3466 if (d_is_dir(nd->path.dentry)) 3467 goto out; 3468 error = may_create_in_sticky(dir_mode, dir_uid, 3469 d_backing_inode(nd->path.dentry)); 3470 if (unlikely(error)) 3471 goto out; 3472 } 3473 error = -ENOTDIR; 3474 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3475 goto out; 3476 if (!d_is_reg(nd->path.dentry)) 3477 will_truncate = false; 3478 3479 if (will_truncate) { 3480 error = mnt_want_write(nd->path.mnt); 3481 if (error) 3482 goto out; 3483 got_write = true; 3484 } 3485 finish_open_created: 3486 error = may_open(&nd->path, acc_mode, open_flag); 3487 if (error) 3488 goto out; 3489 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ 3490 error = vfs_open(&nd->path, file); 3491 if (error) 3492 goto out; 3493 opened: 3494 error = ima_file_check(file, op->acc_mode); 3495 if (!error && will_truncate) 3496 error = handle_truncate(file); 3497 out: 3498 if (unlikely(error > 0)) { 3499 WARN_ON(1); 3500 error = -EINVAL; 3501 } 3502 if (got_write) 3503 mnt_drop_write(nd->path.mnt); 3504 return error; 3505 } 3506 3507 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3508 { 3509 struct dentry *child = NULL; 3510 struct inode *dir = dentry->d_inode; 3511 struct inode *inode; 3512 int error; 3513 3514 /* we want directory to be writable */ 3515 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3516 if (error) 3517 goto out_err; 3518 error = -EOPNOTSUPP; 3519 if (!dir->i_op->tmpfile) 3520 goto out_err; 3521 error = -ENOMEM; 3522 child = d_alloc(dentry, &slash_name); 3523 if (unlikely(!child)) 3524 goto out_err; 3525 error = dir->i_op->tmpfile(dir, child, mode); 3526 if (error) 3527 goto out_err; 3528 error = -ENOENT; 3529 inode = child->d_inode; 3530 if (unlikely(!inode)) 3531 goto out_err; 3532 if (!(open_flag & O_EXCL)) { 3533 spin_lock(&inode->i_lock); 3534 inode->i_state |= I_LINKABLE; 3535 spin_unlock(&inode->i_lock); 3536 } 3537 ima_post_create_tmpfile(inode); 3538 return child; 3539 3540 out_err: 3541 dput(child); 3542 return ERR_PTR(error); 3543 } 3544 EXPORT_SYMBOL(vfs_tmpfile); 3545 3546 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3547 const struct open_flags *op, 3548 struct file *file) 3549 { 3550 struct dentry *child; 3551 struct path path; 3552 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3553 if (unlikely(error)) 3554 return error; 3555 error = mnt_want_write(path.mnt); 3556 if (unlikely(error)) 3557 goto out; 3558 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3559 error = PTR_ERR(child); 3560 if (IS_ERR(child)) 3561 goto out2; 3562 dput(path.dentry); 3563 path.dentry = child; 3564 audit_inode(nd->name, child, 0); 3565 /* Don't check for other permissions, the inode was just created */ 3566 error = may_open(&path, 0, op->open_flag); 3567 if (error) 3568 goto out2; 3569 file->f_path.mnt = path.mnt; 3570 error = finish_open(file, child, NULL); 3571 out2: 3572 mnt_drop_write(path.mnt); 3573 out: 3574 path_put(&path); 3575 return error; 3576 } 3577 3578 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3579 { 3580 struct path path; 3581 int error = path_lookupat(nd, flags, &path); 3582 if (!error) { 3583 audit_inode(nd->name, path.dentry, 0); 3584 error = vfs_open(&path, file); 3585 path_put(&path); 3586 } 3587 return error; 3588 } 3589 3590 static struct file *path_openat(struct nameidata *nd, 3591 const struct open_flags *op, unsigned flags) 3592 { 3593 struct file *file; 3594 int error; 3595 3596 file = alloc_empty_file(op->open_flag, current_cred()); 3597 if (IS_ERR(file)) 3598 return file; 3599 3600 if (unlikely(file->f_flags & __O_TMPFILE)) { 3601 error = do_tmpfile(nd, flags, op, file); 3602 } else if (unlikely(file->f_flags & O_PATH)) { 3603 error = do_o_path(nd, flags, file); 3604 } else { 3605 const char *s = path_init(nd, flags); 3606 while (!(error = link_path_walk(s, nd)) && 3607 (error = do_last(nd, file, op)) > 0) { 3608 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3609 s = trailing_symlink(nd); 3610 } 3611 terminate_walk(nd); 3612 } 3613 if (likely(!error)) { 3614 if (likely(file->f_mode & FMODE_OPENED)) 3615 return file; 3616 WARN_ON(1); 3617 error = -EINVAL; 3618 } 3619 fput(file); 3620 if (error == -EOPENSTALE) { 3621 if (flags & LOOKUP_RCU) 3622 error = -ECHILD; 3623 else 3624 error = -ESTALE; 3625 } 3626 return ERR_PTR(error); 3627 } 3628 3629 struct file *do_filp_open(int dfd, struct filename *pathname, 3630 const struct open_flags *op) 3631 { 3632 struct nameidata nd; 3633 int flags = op->lookup_flags; 3634 struct file *filp; 3635 3636 set_nameidata(&nd, dfd, pathname); 3637 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3638 if (unlikely(filp == ERR_PTR(-ECHILD))) 3639 filp = path_openat(&nd, op, flags); 3640 if (unlikely(filp == ERR_PTR(-ESTALE))) 3641 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3642 restore_nameidata(); 3643 return filp; 3644 } 3645 3646 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3647 const char *name, const struct open_flags *op) 3648 { 3649 struct nameidata nd; 3650 struct file *file; 3651 struct filename *filename; 3652 int flags = op->lookup_flags | LOOKUP_ROOT; 3653 3654 nd.root.mnt = mnt; 3655 nd.root.dentry = dentry; 3656 3657 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3658 return ERR_PTR(-ELOOP); 3659 3660 filename = getname_kernel(name); 3661 if (IS_ERR(filename)) 3662 return ERR_CAST(filename); 3663 3664 set_nameidata(&nd, -1, filename); 3665 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3666 if (unlikely(file == ERR_PTR(-ECHILD))) 3667 file = path_openat(&nd, op, flags); 3668 if (unlikely(file == ERR_PTR(-ESTALE))) 3669 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3670 restore_nameidata(); 3671 putname(filename); 3672 return file; 3673 } 3674 3675 static struct dentry *filename_create(int dfd, struct filename *name, 3676 struct path *path, unsigned int lookup_flags) 3677 { 3678 struct dentry *dentry = ERR_PTR(-EEXIST); 3679 struct qstr last; 3680 int type; 3681 int err2; 3682 int error; 3683 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3684 3685 /* 3686 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3687 * other flags passed in are ignored! 3688 */ 3689 lookup_flags &= LOOKUP_REVAL; 3690 3691 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3692 if (IS_ERR(name)) 3693 return ERR_CAST(name); 3694 3695 /* 3696 * Yucky last component or no last component at all? 3697 * (foo/., foo/.., /////) 3698 */ 3699 if (unlikely(type != LAST_NORM)) 3700 goto out; 3701 3702 /* don't fail immediately if it's r/o, at least try to report other errors */ 3703 err2 = mnt_want_write(path->mnt); 3704 /* 3705 * Do the final lookup. 3706 */ 3707 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3708 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3709 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3710 if (IS_ERR(dentry)) 3711 goto unlock; 3712 3713 error = -EEXIST; 3714 if (d_is_positive(dentry)) 3715 goto fail; 3716 3717 /* 3718 * Special case - lookup gave negative, but... we had foo/bar/ 3719 * From the vfs_mknod() POV we just have a negative dentry - 3720 * all is fine. Let's be bastards - you had / on the end, you've 3721 * been asking for (non-existent) directory. -ENOENT for you. 3722 */ 3723 if (unlikely(!is_dir && last.name[last.len])) { 3724 error = -ENOENT; 3725 goto fail; 3726 } 3727 if (unlikely(err2)) { 3728 error = err2; 3729 goto fail; 3730 } 3731 putname(name); 3732 return dentry; 3733 fail: 3734 dput(dentry); 3735 dentry = ERR_PTR(error); 3736 unlock: 3737 inode_unlock(path->dentry->d_inode); 3738 if (!err2) 3739 mnt_drop_write(path->mnt); 3740 out: 3741 path_put(path); 3742 putname(name); 3743 return dentry; 3744 } 3745 3746 struct dentry *kern_path_create(int dfd, const char *pathname, 3747 struct path *path, unsigned int lookup_flags) 3748 { 3749 return filename_create(dfd, getname_kernel(pathname), 3750 path, lookup_flags); 3751 } 3752 EXPORT_SYMBOL(kern_path_create); 3753 3754 void done_path_create(struct path *path, struct dentry *dentry) 3755 { 3756 dput(dentry); 3757 inode_unlock(path->dentry->d_inode); 3758 mnt_drop_write(path->mnt); 3759 path_put(path); 3760 } 3761 EXPORT_SYMBOL(done_path_create); 3762 3763 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3764 struct path *path, unsigned int lookup_flags) 3765 { 3766 return filename_create(dfd, getname(pathname), path, lookup_flags); 3767 } 3768 EXPORT_SYMBOL(user_path_create); 3769 3770 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3771 { 3772 int error = may_create(dir, dentry); 3773 3774 if (error) 3775 return error; 3776 3777 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3778 return -EPERM; 3779 3780 if (!dir->i_op->mknod) 3781 return -EPERM; 3782 3783 error = devcgroup_inode_mknod(mode, dev); 3784 if (error) 3785 return error; 3786 3787 error = security_inode_mknod(dir, dentry, mode, dev); 3788 if (error) 3789 return error; 3790 3791 error = dir->i_op->mknod(dir, dentry, mode, dev); 3792 if (!error) 3793 fsnotify_create(dir, dentry); 3794 return error; 3795 } 3796 EXPORT_SYMBOL(vfs_mknod); 3797 3798 static int may_mknod(umode_t mode) 3799 { 3800 switch (mode & S_IFMT) { 3801 case S_IFREG: 3802 case S_IFCHR: 3803 case S_IFBLK: 3804 case S_IFIFO: 3805 case S_IFSOCK: 3806 case 0: /* zero mode translates to S_IFREG */ 3807 return 0; 3808 case S_IFDIR: 3809 return -EPERM; 3810 default: 3811 return -EINVAL; 3812 } 3813 } 3814 3815 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3816 unsigned int dev) 3817 { 3818 struct dentry *dentry; 3819 struct path path; 3820 int error; 3821 unsigned int lookup_flags = 0; 3822 3823 error = may_mknod(mode); 3824 if (error) 3825 return error; 3826 retry: 3827 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3828 if (IS_ERR(dentry)) 3829 return PTR_ERR(dentry); 3830 3831 if (!IS_POSIXACL(path.dentry->d_inode)) 3832 mode &= ~current_umask(); 3833 error = security_path_mknod(&path, dentry, mode, dev); 3834 if (error) 3835 goto out; 3836 switch (mode & S_IFMT) { 3837 case 0: case S_IFREG: 3838 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3839 if (!error) 3840 ima_post_path_mknod(dentry); 3841 break; 3842 case S_IFCHR: case S_IFBLK: 3843 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3844 new_decode_dev(dev)); 3845 break; 3846 case S_IFIFO: case S_IFSOCK: 3847 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3848 break; 3849 } 3850 out: 3851 done_path_create(&path, dentry); 3852 if (retry_estale(error, lookup_flags)) { 3853 lookup_flags |= LOOKUP_REVAL; 3854 goto retry; 3855 } 3856 return error; 3857 } 3858 3859 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3860 unsigned int, dev) 3861 { 3862 return do_mknodat(dfd, filename, mode, dev); 3863 } 3864 3865 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3866 { 3867 return do_mknodat(AT_FDCWD, filename, mode, dev); 3868 } 3869 3870 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3871 { 3872 int error = may_create(dir, dentry); 3873 unsigned max_links = dir->i_sb->s_max_links; 3874 3875 if (error) 3876 return error; 3877 3878 if (!dir->i_op->mkdir) 3879 return -EPERM; 3880 3881 mode &= (S_IRWXUGO|S_ISVTX); 3882 error = security_inode_mkdir(dir, dentry, mode); 3883 if (error) 3884 return error; 3885 3886 if (max_links && dir->i_nlink >= max_links) 3887 return -EMLINK; 3888 3889 error = dir->i_op->mkdir(dir, dentry, mode); 3890 if (!error) 3891 fsnotify_mkdir(dir, dentry); 3892 return error; 3893 } 3894 EXPORT_SYMBOL(vfs_mkdir); 3895 3896 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3897 { 3898 struct dentry *dentry; 3899 struct path path; 3900 int error; 3901 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3902 3903 retry: 3904 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3905 if (IS_ERR(dentry)) 3906 return PTR_ERR(dentry); 3907 3908 if (!IS_POSIXACL(path.dentry->d_inode)) 3909 mode &= ~current_umask(); 3910 error = security_path_mkdir(&path, dentry, mode); 3911 if (!error) 3912 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3913 done_path_create(&path, dentry); 3914 if (retry_estale(error, lookup_flags)) { 3915 lookup_flags |= LOOKUP_REVAL; 3916 goto retry; 3917 } 3918 return error; 3919 } 3920 3921 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3922 { 3923 return do_mkdirat(dfd, pathname, mode); 3924 } 3925 3926 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3927 { 3928 return do_mkdirat(AT_FDCWD, pathname, mode); 3929 } 3930 3931 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3932 { 3933 int error = may_delete(dir, dentry, 1); 3934 3935 if (error) 3936 return error; 3937 3938 if (!dir->i_op->rmdir) 3939 return -EPERM; 3940 3941 dget(dentry); 3942 inode_lock(dentry->d_inode); 3943 3944 error = -EBUSY; 3945 if (is_local_mountpoint(dentry)) 3946 goto out; 3947 3948 error = security_inode_rmdir(dir, dentry); 3949 if (error) 3950 goto out; 3951 3952 error = dir->i_op->rmdir(dir, dentry); 3953 if (error) 3954 goto out; 3955 3956 shrink_dcache_parent(dentry); 3957 dentry->d_inode->i_flags |= S_DEAD; 3958 dont_mount(dentry); 3959 detach_mounts(dentry); 3960 fsnotify_rmdir(dir, dentry); 3961 3962 out: 3963 inode_unlock(dentry->d_inode); 3964 dput(dentry); 3965 if (!error) 3966 d_delete(dentry); 3967 return error; 3968 } 3969 EXPORT_SYMBOL(vfs_rmdir); 3970 3971 long do_rmdir(int dfd, const char __user *pathname) 3972 { 3973 int error = 0; 3974 struct filename *name; 3975 struct dentry *dentry; 3976 struct path path; 3977 struct qstr last; 3978 int type; 3979 unsigned int lookup_flags = 0; 3980 retry: 3981 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3982 &path, &last, &type); 3983 if (IS_ERR(name)) 3984 return PTR_ERR(name); 3985 3986 switch (type) { 3987 case LAST_DOTDOT: 3988 error = -ENOTEMPTY; 3989 goto exit1; 3990 case LAST_DOT: 3991 error = -EINVAL; 3992 goto exit1; 3993 case LAST_ROOT: 3994 error = -EBUSY; 3995 goto exit1; 3996 } 3997 3998 error = mnt_want_write(path.mnt); 3999 if (error) 4000 goto exit1; 4001 4002 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4003 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4004 error = PTR_ERR(dentry); 4005 if (IS_ERR(dentry)) 4006 goto exit2; 4007 if (!dentry->d_inode) { 4008 error = -ENOENT; 4009 goto exit3; 4010 } 4011 error = security_path_rmdir(&path, dentry); 4012 if (error) 4013 goto exit3; 4014 error = vfs_rmdir(path.dentry->d_inode, dentry); 4015 exit3: 4016 dput(dentry); 4017 exit2: 4018 inode_unlock(path.dentry->d_inode); 4019 mnt_drop_write(path.mnt); 4020 exit1: 4021 path_put(&path); 4022 putname(name); 4023 if (retry_estale(error, lookup_flags)) { 4024 lookup_flags |= LOOKUP_REVAL; 4025 goto retry; 4026 } 4027 return error; 4028 } 4029 4030 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4031 { 4032 return do_rmdir(AT_FDCWD, pathname); 4033 } 4034 4035 /** 4036 * vfs_unlink - unlink a filesystem object 4037 * @dir: parent directory 4038 * @dentry: victim 4039 * @delegated_inode: returns victim inode, if the inode is delegated. 4040 * 4041 * The caller must hold dir->i_mutex. 4042 * 4043 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4044 * return a reference to the inode in delegated_inode. The caller 4045 * should then break the delegation on that inode and retry. Because 4046 * breaking a delegation may take a long time, the caller should drop 4047 * dir->i_mutex before doing so. 4048 * 4049 * Alternatively, a caller may pass NULL for delegated_inode. This may 4050 * be appropriate for callers that expect the underlying filesystem not 4051 * to be NFS exported. 4052 */ 4053 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 4054 { 4055 struct inode *target = dentry->d_inode; 4056 int error = may_delete(dir, dentry, 0); 4057 4058 if (error) 4059 return error; 4060 4061 if (!dir->i_op->unlink) 4062 return -EPERM; 4063 4064 inode_lock(target); 4065 if (is_local_mountpoint(dentry)) 4066 error = -EBUSY; 4067 else { 4068 error = security_inode_unlink(dir, dentry); 4069 if (!error) { 4070 error = try_break_deleg(target, delegated_inode); 4071 if (error) 4072 goto out; 4073 error = dir->i_op->unlink(dir, dentry); 4074 if (!error) { 4075 dont_mount(dentry); 4076 detach_mounts(dentry); 4077 fsnotify_unlink(dir, dentry); 4078 } 4079 } 4080 } 4081 out: 4082 inode_unlock(target); 4083 4084 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4085 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4086 fsnotify_link_count(target); 4087 d_delete(dentry); 4088 } 4089 4090 return error; 4091 } 4092 EXPORT_SYMBOL(vfs_unlink); 4093 4094 /* 4095 * Make sure that the actual truncation of the file will occur outside its 4096 * directory's i_mutex. Truncate can take a long time if there is a lot of 4097 * writeout happening, and we don't want to prevent access to the directory 4098 * while waiting on the I/O. 4099 */ 4100 long do_unlinkat(int dfd, struct filename *name) 4101 { 4102 int error; 4103 struct dentry *dentry; 4104 struct path path; 4105 struct qstr last; 4106 int type; 4107 struct inode *inode = NULL; 4108 struct inode *delegated_inode = NULL; 4109 unsigned int lookup_flags = 0; 4110 retry: 4111 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4112 if (IS_ERR(name)) 4113 return PTR_ERR(name); 4114 4115 error = -EISDIR; 4116 if (type != LAST_NORM) 4117 goto exit1; 4118 4119 error = mnt_want_write(path.mnt); 4120 if (error) 4121 goto exit1; 4122 retry_deleg: 4123 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4124 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4125 error = PTR_ERR(dentry); 4126 if (!IS_ERR(dentry)) { 4127 /* Why not before? Because we want correct error value */ 4128 if (last.name[last.len]) 4129 goto slashes; 4130 inode = dentry->d_inode; 4131 if (d_is_negative(dentry)) 4132 goto slashes; 4133 ihold(inode); 4134 error = security_path_unlink(&path, dentry); 4135 if (error) 4136 goto exit2; 4137 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4138 exit2: 4139 dput(dentry); 4140 } 4141 inode_unlock(path.dentry->d_inode); 4142 if (inode) 4143 iput(inode); /* truncate the inode here */ 4144 inode = NULL; 4145 if (delegated_inode) { 4146 error = break_deleg_wait(&delegated_inode); 4147 if (!error) 4148 goto retry_deleg; 4149 } 4150 mnt_drop_write(path.mnt); 4151 exit1: 4152 path_put(&path); 4153 if (retry_estale(error, lookup_flags)) { 4154 lookup_flags |= LOOKUP_REVAL; 4155 inode = NULL; 4156 goto retry; 4157 } 4158 putname(name); 4159 return error; 4160 4161 slashes: 4162 if (d_is_negative(dentry)) 4163 error = -ENOENT; 4164 else if (d_is_dir(dentry)) 4165 error = -EISDIR; 4166 else 4167 error = -ENOTDIR; 4168 goto exit2; 4169 } 4170 4171 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4172 { 4173 if ((flag & ~AT_REMOVEDIR) != 0) 4174 return -EINVAL; 4175 4176 if (flag & AT_REMOVEDIR) 4177 return do_rmdir(dfd, pathname); 4178 4179 return do_unlinkat(dfd, getname(pathname)); 4180 } 4181 4182 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4183 { 4184 return do_unlinkat(AT_FDCWD, getname(pathname)); 4185 } 4186 4187 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4188 { 4189 int error = may_create(dir, dentry); 4190 4191 if (error) 4192 return error; 4193 4194 if (!dir->i_op->symlink) 4195 return -EPERM; 4196 4197 error = security_inode_symlink(dir, dentry, oldname); 4198 if (error) 4199 return error; 4200 4201 error = dir->i_op->symlink(dir, dentry, oldname); 4202 if (!error) 4203 fsnotify_create(dir, dentry); 4204 return error; 4205 } 4206 EXPORT_SYMBOL(vfs_symlink); 4207 4208 long do_symlinkat(const char __user *oldname, int newdfd, 4209 const char __user *newname) 4210 { 4211 int error; 4212 struct filename *from; 4213 struct dentry *dentry; 4214 struct path path; 4215 unsigned int lookup_flags = 0; 4216 4217 from = getname(oldname); 4218 if (IS_ERR(from)) 4219 return PTR_ERR(from); 4220 retry: 4221 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4222 error = PTR_ERR(dentry); 4223 if (IS_ERR(dentry)) 4224 goto out_putname; 4225 4226 error = security_path_symlink(&path, dentry, from->name); 4227 if (!error) 4228 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4229 done_path_create(&path, dentry); 4230 if (retry_estale(error, lookup_flags)) { 4231 lookup_flags |= LOOKUP_REVAL; 4232 goto retry; 4233 } 4234 out_putname: 4235 putname(from); 4236 return error; 4237 } 4238 4239 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4240 int, newdfd, const char __user *, newname) 4241 { 4242 return do_symlinkat(oldname, newdfd, newname); 4243 } 4244 4245 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4246 { 4247 return do_symlinkat(oldname, AT_FDCWD, newname); 4248 } 4249 4250 /** 4251 * vfs_link - create a new link 4252 * @old_dentry: object to be linked 4253 * @dir: new parent 4254 * @new_dentry: where to create the new link 4255 * @delegated_inode: returns inode needing a delegation break 4256 * 4257 * The caller must hold dir->i_mutex 4258 * 4259 * If vfs_link discovers a delegation on the to-be-linked file in need 4260 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4261 * inode in delegated_inode. The caller should then break the delegation 4262 * and retry. Because breaking a delegation may take a long time, the 4263 * caller should drop the i_mutex before doing so. 4264 * 4265 * Alternatively, a caller may pass NULL for delegated_inode. This may 4266 * be appropriate for callers that expect the underlying filesystem not 4267 * to be NFS exported. 4268 */ 4269 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4270 { 4271 struct inode *inode = old_dentry->d_inode; 4272 unsigned max_links = dir->i_sb->s_max_links; 4273 int error; 4274 4275 if (!inode) 4276 return -ENOENT; 4277 4278 error = may_create(dir, new_dentry); 4279 if (error) 4280 return error; 4281 4282 if (dir->i_sb != inode->i_sb) 4283 return -EXDEV; 4284 4285 /* 4286 * A link to an append-only or immutable file cannot be created. 4287 */ 4288 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4289 return -EPERM; 4290 /* 4291 * Updating the link count will likely cause i_uid and i_gid to 4292 * be writen back improperly if their true value is unknown to 4293 * the vfs. 4294 */ 4295 if (HAS_UNMAPPED_ID(inode)) 4296 return -EPERM; 4297 if (!dir->i_op->link) 4298 return -EPERM; 4299 if (S_ISDIR(inode->i_mode)) 4300 return -EPERM; 4301 4302 error = security_inode_link(old_dentry, dir, new_dentry); 4303 if (error) 4304 return error; 4305 4306 inode_lock(inode); 4307 /* Make sure we don't allow creating hardlink to an unlinked file */ 4308 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4309 error = -ENOENT; 4310 else if (max_links && inode->i_nlink >= max_links) 4311 error = -EMLINK; 4312 else { 4313 error = try_break_deleg(inode, delegated_inode); 4314 if (!error) 4315 error = dir->i_op->link(old_dentry, dir, new_dentry); 4316 } 4317 4318 if (!error && (inode->i_state & I_LINKABLE)) { 4319 spin_lock(&inode->i_lock); 4320 inode->i_state &= ~I_LINKABLE; 4321 spin_unlock(&inode->i_lock); 4322 } 4323 inode_unlock(inode); 4324 if (!error) 4325 fsnotify_link(dir, inode, new_dentry); 4326 return error; 4327 } 4328 EXPORT_SYMBOL(vfs_link); 4329 4330 /* 4331 * Hardlinks are often used in delicate situations. We avoid 4332 * security-related surprises by not following symlinks on the 4333 * newname. --KAB 4334 * 4335 * We don't follow them on the oldname either to be compatible 4336 * with linux 2.0, and to avoid hard-linking to directories 4337 * and other special files. --ADM 4338 */ 4339 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4340 const char __user *newname, int flags) 4341 { 4342 struct dentry *new_dentry; 4343 struct path old_path, new_path; 4344 struct inode *delegated_inode = NULL; 4345 int how = 0; 4346 int error; 4347 4348 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4349 return -EINVAL; 4350 /* 4351 * To use null names we require CAP_DAC_READ_SEARCH 4352 * This ensures that not everyone will be able to create 4353 * handlink using the passed filedescriptor. 4354 */ 4355 if (flags & AT_EMPTY_PATH) { 4356 if (!capable(CAP_DAC_READ_SEARCH)) 4357 return -ENOENT; 4358 how = LOOKUP_EMPTY; 4359 } 4360 4361 if (flags & AT_SYMLINK_FOLLOW) 4362 how |= LOOKUP_FOLLOW; 4363 retry: 4364 error = user_path_at(olddfd, oldname, how, &old_path); 4365 if (error) 4366 return error; 4367 4368 new_dentry = user_path_create(newdfd, newname, &new_path, 4369 (how & LOOKUP_REVAL)); 4370 error = PTR_ERR(new_dentry); 4371 if (IS_ERR(new_dentry)) 4372 goto out; 4373 4374 error = -EXDEV; 4375 if (old_path.mnt != new_path.mnt) 4376 goto out_dput; 4377 error = may_linkat(&old_path); 4378 if (unlikely(error)) 4379 goto out_dput; 4380 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4381 if (error) 4382 goto out_dput; 4383 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4384 out_dput: 4385 done_path_create(&new_path, new_dentry); 4386 if (delegated_inode) { 4387 error = break_deleg_wait(&delegated_inode); 4388 if (!error) { 4389 path_put(&old_path); 4390 goto retry; 4391 } 4392 } 4393 if (retry_estale(error, how)) { 4394 path_put(&old_path); 4395 how |= LOOKUP_REVAL; 4396 goto retry; 4397 } 4398 out: 4399 path_put(&old_path); 4400 4401 return error; 4402 } 4403 4404 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4405 int, newdfd, const char __user *, newname, int, flags) 4406 { 4407 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4408 } 4409 4410 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4411 { 4412 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4413 } 4414 4415 /** 4416 * vfs_rename - rename a filesystem object 4417 * @old_dir: parent of source 4418 * @old_dentry: source 4419 * @new_dir: parent of destination 4420 * @new_dentry: destination 4421 * @delegated_inode: returns an inode needing a delegation break 4422 * @flags: rename flags 4423 * 4424 * The caller must hold multiple mutexes--see lock_rename()). 4425 * 4426 * If vfs_rename discovers a delegation in need of breaking at either 4427 * the source or destination, it will return -EWOULDBLOCK and return a 4428 * reference to the inode in delegated_inode. The caller should then 4429 * break the delegation and retry. Because breaking a delegation may 4430 * take a long time, the caller should drop all locks before doing 4431 * so. 4432 * 4433 * Alternatively, a caller may pass NULL for delegated_inode. This may 4434 * be appropriate for callers that expect the underlying filesystem not 4435 * to be NFS exported. 4436 * 4437 * The worst of all namespace operations - renaming directory. "Perverted" 4438 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4439 * Problems: 4440 * 4441 * a) we can get into loop creation. 4442 * b) race potential - two innocent renames can create a loop together. 4443 * That's where 4.4 screws up. Current fix: serialization on 4444 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4445 * story. 4446 * c) we have to lock _four_ objects - parents and victim (if it exists), 4447 * and source (if it is not a directory). 4448 * And that - after we got ->i_mutex on parents (until then we don't know 4449 * whether the target exists). Solution: try to be smart with locking 4450 * order for inodes. We rely on the fact that tree topology may change 4451 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4452 * move will be locked. Thus we can rank directories by the tree 4453 * (ancestors first) and rank all non-directories after them. 4454 * That works since everybody except rename does "lock parent, lookup, 4455 * lock child" and rename is under ->s_vfs_rename_mutex. 4456 * HOWEVER, it relies on the assumption that any object with ->lookup() 4457 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4458 * we'd better make sure that there's no link(2) for them. 4459 * d) conversion from fhandle to dentry may come in the wrong moment - when 4460 * we are removing the target. Solution: we will have to grab ->i_mutex 4461 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4462 * ->i_mutex on parents, which works but leads to some truly excessive 4463 * locking]. 4464 */ 4465 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4466 struct inode *new_dir, struct dentry *new_dentry, 4467 struct inode **delegated_inode, unsigned int flags) 4468 { 4469 int error; 4470 bool is_dir = d_is_dir(old_dentry); 4471 struct inode *source = old_dentry->d_inode; 4472 struct inode *target = new_dentry->d_inode; 4473 bool new_is_dir = false; 4474 unsigned max_links = new_dir->i_sb->s_max_links; 4475 struct name_snapshot old_name; 4476 4477 if (source == target) 4478 return 0; 4479 4480 error = may_delete(old_dir, old_dentry, is_dir); 4481 if (error) 4482 return error; 4483 4484 if (!target) { 4485 error = may_create(new_dir, new_dentry); 4486 } else { 4487 new_is_dir = d_is_dir(new_dentry); 4488 4489 if (!(flags & RENAME_EXCHANGE)) 4490 error = may_delete(new_dir, new_dentry, is_dir); 4491 else 4492 error = may_delete(new_dir, new_dentry, new_is_dir); 4493 } 4494 if (error) 4495 return error; 4496 4497 if (!old_dir->i_op->rename) 4498 return -EPERM; 4499 4500 /* 4501 * If we are going to change the parent - check write permissions, 4502 * we'll need to flip '..'. 4503 */ 4504 if (new_dir != old_dir) { 4505 if (is_dir) { 4506 error = inode_permission(source, MAY_WRITE); 4507 if (error) 4508 return error; 4509 } 4510 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4511 error = inode_permission(target, MAY_WRITE); 4512 if (error) 4513 return error; 4514 } 4515 } 4516 4517 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4518 flags); 4519 if (error) 4520 return error; 4521 4522 take_dentry_name_snapshot(&old_name, old_dentry); 4523 dget(new_dentry); 4524 if (!is_dir || (flags & RENAME_EXCHANGE)) 4525 lock_two_nondirectories(source, target); 4526 else if (target) 4527 inode_lock(target); 4528 4529 error = -EBUSY; 4530 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4531 goto out; 4532 4533 if (max_links && new_dir != old_dir) { 4534 error = -EMLINK; 4535 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4536 goto out; 4537 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4538 old_dir->i_nlink >= max_links) 4539 goto out; 4540 } 4541 if (!is_dir) { 4542 error = try_break_deleg(source, delegated_inode); 4543 if (error) 4544 goto out; 4545 } 4546 if (target && !new_is_dir) { 4547 error = try_break_deleg(target, delegated_inode); 4548 if (error) 4549 goto out; 4550 } 4551 error = old_dir->i_op->rename(old_dir, old_dentry, 4552 new_dir, new_dentry, flags); 4553 if (error) 4554 goto out; 4555 4556 if (!(flags & RENAME_EXCHANGE) && target) { 4557 if (is_dir) { 4558 shrink_dcache_parent(new_dentry); 4559 target->i_flags |= S_DEAD; 4560 } 4561 dont_mount(new_dentry); 4562 detach_mounts(new_dentry); 4563 } 4564 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4565 if (!(flags & RENAME_EXCHANGE)) 4566 d_move(old_dentry, new_dentry); 4567 else 4568 d_exchange(old_dentry, new_dentry); 4569 } 4570 out: 4571 if (!is_dir || (flags & RENAME_EXCHANGE)) 4572 unlock_two_nondirectories(source, target); 4573 else if (target) 4574 inode_unlock(target); 4575 dput(new_dentry); 4576 if (!error) { 4577 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4578 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4579 if (flags & RENAME_EXCHANGE) { 4580 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4581 new_is_dir, NULL, new_dentry); 4582 } 4583 } 4584 release_dentry_name_snapshot(&old_name); 4585 4586 return error; 4587 } 4588 EXPORT_SYMBOL(vfs_rename); 4589 4590 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4591 const char __user *newname, unsigned int flags) 4592 { 4593 struct dentry *old_dentry, *new_dentry; 4594 struct dentry *trap; 4595 struct path old_path, new_path; 4596 struct qstr old_last, new_last; 4597 int old_type, new_type; 4598 struct inode *delegated_inode = NULL; 4599 struct filename *from; 4600 struct filename *to; 4601 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4602 bool should_retry = false; 4603 int error; 4604 4605 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4606 return -EINVAL; 4607 4608 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4609 (flags & RENAME_EXCHANGE)) 4610 return -EINVAL; 4611 4612 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4613 return -EPERM; 4614 4615 if (flags & RENAME_EXCHANGE) 4616 target_flags = 0; 4617 4618 retry: 4619 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4620 &old_path, &old_last, &old_type); 4621 if (IS_ERR(from)) { 4622 error = PTR_ERR(from); 4623 goto exit; 4624 } 4625 4626 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4627 &new_path, &new_last, &new_type); 4628 if (IS_ERR(to)) { 4629 error = PTR_ERR(to); 4630 goto exit1; 4631 } 4632 4633 error = -EXDEV; 4634 if (old_path.mnt != new_path.mnt) 4635 goto exit2; 4636 4637 error = -EBUSY; 4638 if (old_type != LAST_NORM) 4639 goto exit2; 4640 4641 if (flags & RENAME_NOREPLACE) 4642 error = -EEXIST; 4643 if (new_type != LAST_NORM) 4644 goto exit2; 4645 4646 error = mnt_want_write(old_path.mnt); 4647 if (error) 4648 goto exit2; 4649 4650 retry_deleg: 4651 trap = lock_rename(new_path.dentry, old_path.dentry); 4652 4653 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4654 error = PTR_ERR(old_dentry); 4655 if (IS_ERR(old_dentry)) 4656 goto exit3; 4657 /* source must exist */ 4658 error = -ENOENT; 4659 if (d_is_negative(old_dentry)) 4660 goto exit4; 4661 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4662 error = PTR_ERR(new_dentry); 4663 if (IS_ERR(new_dentry)) 4664 goto exit4; 4665 error = -EEXIST; 4666 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4667 goto exit5; 4668 if (flags & RENAME_EXCHANGE) { 4669 error = -ENOENT; 4670 if (d_is_negative(new_dentry)) 4671 goto exit5; 4672 4673 if (!d_is_dir(new_dentry)) { 4674 error = -ENOTDIR; 4675 if (new_last.name[new_last.len]) 4676 goto exit5; 4677 } 4678 } 4679 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4680 if (!d_is_dir(old_dentry)) { 4681 error = -ENOTDIR; 4682 if (old_last.name[old_last.len]) 4683 goto exit5; 4684 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4685 goto exit5; 4686 } 4687 /* source should not be ancestor of target */ 4688 error = -EINVAL; 4689 if (old_dentry == trap) 4690 goto exit5; 4691 /* target should not be an ancestor of source */ 4692 if (!(flags & RENAME_EXCHANGE)) 4693 error = -ENOTEMPTY; 4694 if (new_dentry == trap) 4695 goto exit5; 4696 4697 error = security_path_rename(&old_path, old_dentry, 4698 &new_path, new_dentry, flags); 4699 if (error) 4700 goto exit5; 4701 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4702 new_path.dentry->d_inode, new_dentry, 4703 &delegated_inode, flags); 4704 exit5: 4705 dput(new_dentry); 4706 exit4: 4707 dput(old_dentry); 4708 exit3: 4709 unlock_rename(new_path.dentry, old_path.dentry); 4710 if (delegated_inode) { 4711 error = break_deleg_wait(&delegated_inode); 4712 if (!error) 4713 goto retry_deleg; 4714 } 4715 mnt_drop_write(old_path.mnt); 4716 exit2: 4717 if (retry_estale(error, lookup_flags)) 4718 should_retry = true; 4719 path_put(&new_path); 4720 putname(to); 4721 exit1: 4722 path_put(&old_path); 4723 putname(from); 4724 if (should_retry) { 4725 should_retry = false; 4726 lookup_flags |= LOOKUP_REVAL; 4727 goto retry; 4728 } 4729 exit: 4730 return error; 4731 } 4732 4733 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4734 int, newdfd, const char __user *, newname, unsigned int, flags) 4735 { 4736 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4737 } 4738 4739 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4740 int, newdfd, const char __user *, newname) 4741 { 4742 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4743 } 4744 4745 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4746 { 4747 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4748 } 4749 4750 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4751 { 4752 int error = may_create(dir, dentry); 4753 if (error) 4754 return error; 4755 4756 if (!dir->i_op->mknod) 4757 return -EPERM; 4758 4759 return dir->i_op->mknod(dir, dentry, 4760 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4761 } 4762 EXPORT_SYMBOL(vfs_whiteout); 4763 4764 int readlink_copy(char __user *buffer, int buflen, const char *link) 4765 { 4766 int len = PTR_ERR(link); 4767 if (IS_ERR(link)) 4768 goto out; 4769 4770 len = strlen(link); 4771 if (len > (unsigned) buflen) 4772 len = buflen; 4773 if (copy_to_user(buffer, link, len)) 4774 len = -EFAULT; 4775 out: 4776 return len; 4777 } 4778 4779 /** 4780 * vfs_readlink - copy symlink body into userspace buffer 4781 * @dentry: dentry on which to get symbolic link 4782 * @buffer: user memory pointer 4783 * @buflen: size of buffer 4784 * 4785 * Does not touch atime. That's up to the caller if necessary 4786 * 4787 * Does not call security hook. 4788 */ 4789 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4790 { 4791 struct inode *inode = d_inode(dentry); 4792 DEFINE_DELAYED_CALL(done); 4793 const char *link; 4794 int res; 4795 4796 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4797 if (unlikely(inode->i_op->readlink)) 4798 return inode->i_op->readlink(dentry, buffer, buflen); 4799 4800 if (!d_is_symlink(dentry)) 4801 return -EINVAL; 4802 4803 spin_lock(&inode->i_lock); 4804 inode->i_opflags |= IOP_DEFAULT_READLINK; 4805 spin_unlock(&inode->i_lock); 4806 } 4807 4808 link = READ_ONCE(inode->i_link); 4809 if (!link) { 4810 link = inode->i_op->get_link(dentry, inode, &done); 4811 if (IS_ERR(link)) 4812 return PTR_ERR(link); 4813 } 4814 res = readlink_copy(buffer, buflen, link); 4815 do_delayed_call(&done); 4816 return res; 4817 } 4818 EXPORT_SYMBOL(vfs_readlink); 4819 4820 /** 4821 * vfs_get_link - get symlink body 4822 * @dentry: dentry on which to get symbolic link 4823 * @done: caller needs to free returned data with this 4824 * 4825 * Calls security hook and i_op->get_link() on the supplied inode. 4826 * 4827 * It does not touch atime. That's up to the caller if necessary. 4828 * 4829 * Does not work on "special" symlinks like /proc/$$/fd/N 4830 */ 4831 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4832 { 4833 const char *res = ERR_PTR(-EINVAL); 4834 struct inode *inode = d_inode(dentry); 4835 4836 if (d_is_symlink(dentry)) { 4837 res = ERR_PTR(security_inode_readlink(dentry)); 4838 if (!res) 4839 res = inode->i_op->get_link(dentry, inode, done); 4840 } 4841 return res; 4842 } 4843 EXPORT_SYMBOL(vfs_get_link); 4844 4845 /* get the link contents into pagecache */ 4846 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4847 struct delayed_call *callback) 4848 { 4849 char *kaddr; 4850 struct page *page; 4851 struct address_space *mapping = inode->i_mapping; 4852 4853 if (!dentry) { 4854 page = find_get_page(mapping, 0); 4855 if (!page) 4856 return ERR_PTR(-ECHILD); 4857 if (!PageUptodate(page)) { 4858 put_page(page); 4859 return ERR_PTR(-ECHILD); 4860 } 4861 } else { 4862 page = read_mapping_page(mapping, 0, NULL); 4863 if (IS_ERR(page)) 4864 return (char*)page; 4865 } 4866 set_delayed_call(callback, page_put_link, page); 4867 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4868 kaddr = page_address(page); 4869 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4870 return kaddr; 4871 } 4872 4873 EXPORT_SYMBOL(page_get_link); 4874 4875 void page_put_link(void *arg) 4876 { 4877 put_page(arg); 4878 } 4879 EXPORT_SYMBOL(page_put_link); 4880 4881 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4882 { 4883 DEFINE_DELAYED_CALL(done); 4884 int res = readlink_copy(buffer, buflen, 4885 page_get_link(dentry, d_inode(dentry), 4886 &done)); 4887 do_delayed_call(&done); 4888 return res; 4889 } 4890 EXPORT_SYMBOL(page_readlink); 4891 4892 /* 4893 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4894 */ 4895 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4896 { 4897 struct address_space *mapping = inode->i_mapping; 4898 struct page *page; 4899 void *fsdata; 4900 int err; 4901 unsigned int flags = 0; 4902 if (nofs) 4903 flags |= AOP_FLAG_NOFS; 4904 4905 retry: 4906 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4907 flags, &page, &fsdata); 4908 if (err) 4909 goto fail; 4910 4911 memcpy(page_address(page), symname, len-1); 4912 4913 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4914 page, fsdata); 4915 if (err < 0) 4916 goto fail; 4917 if (err < len-1) 4918 goto retry; 4919 4920 mark_inode_dirty(inode); 4921 return 0; 4922 fail: 4923 return err; 4924 } 4925 EXPORT_SYMBOL(__page_symlink); 4926 4927 int page_symlink(struct inode *inode, const char *symname, int len) 4928 { 4929 return __page_symlink(inode, symname, len, 4930 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4931 } 4932 EXPORT_SYMBOL(page_symlink); 4933 4934 const struct inode_operations page_symlink_inode_operations = { 4935 .get_link = page_get_link, 4936 }; 4937 EXPORT_SYMBOL(page_symlink_inode_operations); 4938