1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <linux/bitops.h> 39 #include <linux/init_task.h> 40 #include <linux/uaccess.h> 41 42 #include "internal.h" 43 #include "mount.h" 44 45 /* [Feb-1997 T. Schoebel-Theuer] 46 * Fundamental changes in the pathname lookup mechanisms (namei) 47 * were necessary because of omirr. The reason is that omirr needs 48 * to know the _real_ pathname, not the user-supplied one, in case 49 * of symlinks (and also when transname replacements occur). 50 * 51 * The new code replaces the old recursive symlink resolution with 52 * an iterative one (in case of non-nested symlink chains). It does 53 * this with calls to <fs>_follow_link(). 54 * As a side effect, dir_namei(), _namei() and follow_link() are now 55 * replaced with a single function lookup_dentry() that can handle all 56 * the special cases of the former code. 57 * 58 * With the new dcache, the pathname is stored at each inode, at least as 59 * long as the refcount of the inode is positive. As a side effect, the 60 * size of the dcache depends on the inode cache and thus is dynamic. 61 * 62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 63 * resolution to correspond with current state of the code. 64 * 65 * Note that the symlink resolution is not *completely* iterative. 66 * There is still a significant amount of tail- and mid- recursion in 67 * the algorithm. Also, note that <fs>_readlink() is not used in 68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 69 * may return different results than <fs>_follow_link(). Many virtual 70 * filesystems (including /proc) exhibit this behavior. 71 */ 72 73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 75 * and the name already exists in form of a symlink, try to create the new 76 * name indicated by the symlink. The old code always complained that the 77 * name already exists, due to not following the symlink even if its target 78 * is nonexistent. The new semantics affects also mknod() and link() when 79 * the name is a symlink pointing to a non-existent name. 80 * 81 * I don't know which semantics is the right one, since I have no access 82 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 84 * "old" one. Personally, I think the new semantics is much more logical. 85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 86 * file does succeed in both HP-UX and SunOs, but not in Solaris 87 * and in the old Linux semantics. 88 */ 89 90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 91 * semantics. See the comments in "open_namei" and "do_link" below. 92 * 93 * [10-Sep-98 Alan Modra] Another symlink change. 94 */ 95 96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 97 * inside the path - always follow. 98 * in the last component in creation/removal/renaming - never follow. 99 * if LOOKUP_FOLLOW passed - follow. 100 * if the pathname has trailing slashes - follow. 101 * otherwise - don't follow. 102 * (applied in that order). 103 * 104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 106 * During the 2.4 we need to fix the userland stuff depending on it - 107 * hopefully we will be able to get rid of that wart in 2.5. So far only 108 * XEmacs seems to be relying on it... 109 */ 110 /* 111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 113 * any extra contention... 114 */ 115 116 /* In order to reduce some races, while at the same time doing additional 117 * checking and hopefully speeding things up, we copy filenames to the 118 * kernel data space before using them.. 119 * 120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 121 * PATH_MAX includes the nul terminator --RR. 122 */ 123 124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 125 126 struct filename * 127 getname_flags(const char __user *filename, int flags, int *empty) 128 { 129 struct filename *result; 130 char *kname; 131 int len; 132 133 result = audit_reusename(filename); 134 if (result) 135 return result; 136 137 result = __getname(); 138 if (unlikely(!result)) 139 return ERR_PTR(-ENOMEM); 140 141 /* 142 * First, try to embed the struct filename inside the names_cache 143 * allocation 144 */ 145 kname = (char *)result->iname; 146 result->name = kname; 147 148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 149 if (unlikely(len < 0)) { 150 __putname(result); 151 return ERR_PTR(len); 152 } 153 154 /* 155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 156 * separate struct filename so we can dedicate the entire 157 * names_cache allocation for the pathname, and re-do the copy from 158 * userland. 159 */ 160 if (unlikely(len == EMBEDDED_NAME_MAX)) { 161 const size_t size = offsetof(struct filename, iname[1]); 162 kname = (char *)result; 163 164 /* 165 * size is chosen that way we to guarantee that 166 * result->iname[0] is within the same object and that 167 * kname can't be equal to result->iname, no matter what. 168 */ 169 result = kzalloc(size, GFP_KERNEL); 170 if (unlikely(!result)) { 171 __putname(kname); 172 return ERR_PTR(-ENOMEM); 173 } 174 result->name = kname; 175 len = strncpy_from_user(kname, filename, PATH_MAX); 176 if (unlikely(len < 0)) { 177 __putname(kname); 178 kfree(result); 179 return ERR_PTR(len); 180 } 181 if (unlikely(len == PATH_MAX)) { 182 __putname(kname); 183 kfree(result); 184 return ERR_PTR(-ENAMETOOLONG); 185 } 186 } 187 188 result->refcnt = 1; 189 /* The empty path is special. */ 190 if (unlikely(!len)) { 191 if (empty) 192 *empty = 1; 193 if (!(flags & LOOKUP_EMPTY)) { 194 putname(result); 195 return ERR_PTR(-ENOENT); 196 } 197 } 198 199 result->uptr = filename; 200 result->aname = NULL; 201 audit_getname(result); 202 return result; 203 } 204 205 struct filename * 206 getname(const char __user * filename) 207 { 208 return getname_flags(filename, 0, NULL); 209 } 210 211 struct filename * 212 getname_kernel(const char * filename) 213 { 214 struct filename *result; 215 int len = strlen(filename) + 1; 216 217 result = __getname(); 218 if (unlikely(!result)) 219 return ERR_PTR(-ENOMEM); 220 221 if (len <= EMBEDDED_NAME_MAX) { 222 result->name = (char *)result->iname; 223 } else if (len <= PATH_MAX) { 224 struct filename *tmp; 225 226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 227 if (unlikely(!tmp)) { 228 __putname(result); 229 return ERR_PTR(-ENOMEM); 230 } 231 tmp->name = (char *)result; 232 result = tmp; 233 } else { 234 __putname(result); 235 return ERR_PTR(-ENAMETOOLONG); 236 } 237 memcpy((char *)result->name, filename, len); 238 result->uptr = NULL; 239 result->aname = NULL; 240 result->refcnt = 1; 241 audit_getname(result); 242 243 return result; 244 } 245 246 void putname(struct filename *name) 247 { 248 BUG_ON(name->refcnt <= 0); 249 250 if (--name->refcnt > 0) 251 return; 252 253 if (name->name != name->iname) { 254 __putname(name->name); 255 kfree(name); 256 } else 257 __putname(name); 258 } 259 260 static int check_acl(struct inode *inode, int mask) 261 { 262 #ifdef CONFIG_FS_POSIX_ACL 263 struct posix_acl *acl; 264 265 if (mask & MAY_NOT_BLOCK) { 266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 267 if (!acl) 268 return -EAGAIN; 269 /* no ->get_acl() calls in RCU mode... */ 270 if (is_uncached_acl(acl)) 271 return -ECHILD; 272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 273 } 274 275 acl = get_acl(inode, ACL_TYPE_ACCESS); 276 if (IS_ERR(acl)) 277 return PTR_ERR(acl); 278 if (acl) { 279 int error = posix_acl_permission(inode, acl, mask); 280 posix_acl_release(acl); 281 return error; 282 } 283 #endif 284 285 return -EAGAIN; 286 } 287 288 /* 289 * This does the basic permission checking 290 */ 291 static int acl_permission_check(struct inode *inode, int mask) 292 { 293 unsigned int mode = inode->i_mode; 294 295 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 296 mode >>= 6; 297 else { 298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 299 int error = check_acl(inode, mask); 300 if (error != -EAGAIN) 301 return error; 302 } 303 304 if (in_group_p(inode->i_gid)) 305 mode >>= 3; 306 } 307 308 /* 309 * If the DACs are ok we don't need any capability check. 310 */ 311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 312 return 0; 313 return -EACCES; 314 } 315 316 /** 317 * generic_permission - check for access rights on a Posix-like filesystem 318 * @inode: inode to check access rights for 319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 320 * 321 * Used to check for read/write/execute permissions on a file. 322 * We use "fsuid" for this, letting us set arbitrary permissions 323 * for filesystem access without changing the "normal" uids which 324 * are used for other things. 325 * 326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 327 * request cannot be satisfied (eg. requires blocking or too much complexity). 328 * It would then be called again in ref-walk mode. 329 */ 330 int generic_permission(struct inode *inode, int mask) 331 { 332 int ret; 333 334 /* 335 * Do the basic permission checks. 336 */ 337 ret = acl_permission_check(inode, mask); 338 if (ret != -EACCES) 339 return ret; 340 341 if (S_ISDIR(inode->i_mode)) { 342 /* DACs are overridable for directories */ 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 348 return 0; 349 return -EACCES; 350 } 351 352 /* 353 * Searching includes executable on directories, else just read. 354 */ 355 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 356 if (mask == MAY_READ) 357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 358 return 0; 359 /* 360 * Read/write DACs are always overridable. 361 * Executable DACs are overridable when there is 362 * at least one exec bit set. 363 */ 364 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 366 return 0; 367 368 return -EACCES; 369 } 370 EXPORT_SYMBOL(generic_permission); 371 372 /* 373 * We _really_ want to just do "generic_permission()" without 374 * even looking at the inode->i_op values. So we keep a cache 375 * flag in inode->i_opflags, that says "this has not special 376 * permission function, use the fast case". 377 */ 378 static inline int do_inode_permission(struct inode *inode, int mask) 379 { 380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 381 if (likely(inode->i_op->permission)) 382 return inode->i_op->permission(inode, mask); 383 384 /* This gets set once for the inode lifetime */ 385 spin_lock(&inode->i_lock); 386 inode->i_opflags |= IOP_FASTPERM; 387 spin_unlock(&inode->i_lock); 388 } 389 return generic_permission(inode, mask); 390 } 391 392 /** 393 * __inode_permission - Check for access rights to a given inode 394 * @inode: Inode to check permission on 395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 396 * 397 * Check for read/write/execute permissions on an inode. 398 * 399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 400 * 401 * This does not check for a read-only file system. You probably want 402 * inode_permission(). 403 */ 404 int __inode_permission(struct inode *inode, int mask) 405 { 406 int retval; 407 408 if (unlikely(mask & MAY_WRITE)) { 409 /* 410 * Nobody gets write access to an immutable file. 411 */ 412 if (IS_IMMUTABLE(inode)) 413 return -EPERM; 414 415 /* 416 * Updating mtime will likely cause i_uid and i_gid to be 417 * written back improperly if their true value is unknown 418 * to the vfs. 419 */ 420 if (HAS_UNMAPPED_ID(inode)) 421 return -EACCES; 422 } 423 424 retval = do_inode_permission(inode, mask); 425 if (retval) 426 return retval; 427 428 retval = devcgroup_inode_permission(inode, mask); 429 if (retval) 430 return retval; 431 432 return security_inode_permission(inode, mask); 433 } 434 EXPORT_SYMBOL(__inode_permission); 435 436 /** 437 * sb_permission - Check superblock-level permissions 438 * @sb: Superblock of inode to check permission on 439 * @inode: Inode to check permission on 440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 441 * 442 * Separate out file-system wide checks from inode-specific permission checks. 443 */ 444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 445 { 446 if (unlikely(mask & MAY_WRITE)) { 447 umode_t mode = inode->i_mode; 448 449 /* Nobody gets write access to a read-only fs. */ 450 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 451 return -EROFS; 452 } 453 return 0; 454 } 455 456 /** 457 * inode_permission - Check for access rights to a given inode 458 * @inode: Inode to check permission on 459 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 460 * 461 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 462 * this, letting us set arbitrary permissions for filesystem access without 463 * changing the "normal" UIDs which are used for other things. 464 * 465 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 466 */ 467 int inode_permission(struct inode *inode, int mask) 468 { 469 int retval; 470 471 retval = sb_permission(inode->i_sb, inode, mask); 472 if (retval) 473 return retval; 474 return __inode_permission(inode, mask); 475 } 476 EXPORT_SYMBOL(inode_permission); 477 478 /** 479 * path_get - get a reference to a path 480 * @path: path to get the reference to 481 * 482 * Given a path increment the reference count to the dentry and the vfsmount. 483 */ 484 void path_get(const struct path *path) 485 { 486 mntget(path->mnt); 487 dget(path->dentry); 488 } 489 EXPORT_SYMBOL(path_get); 490 491 /** 492 * path_put - put a reference to a path 493 * @path: path to put the reference to 494 * 495 * Given a path decrement the reference count to the dentry and the vfsmount. 496 */ 497 void path_put(const struct path *path) 498 { 499 dput(path->dentry); 500 mntput(path->mnt); 501 } 502 EXPORT_SYMBOL(path_put); 503 504 #define EMBEDDED_LEVELS 2 505 struct nameidata { 506 struct path path; 507 struct qstr last; 508 struct path root; 509 struct inode *inode; /* path.dentry.d_inode */ 510 unsigned int flags; 511 unsigned seq, m_seq; 512 int last_type; 513 unsigned depth; 514 int total_link_count; 515 struct saved { 516 struct path link; 517 struct delayed_call done; 518 const char *name; 519 unsigned seq; 520 } *stack, internal[EMBEDDED_LEVELS]; 521 struct filename *name; 522 struct nameidata *saved; 523 struct inode *link_inode; 524 unsigned root_seq; 525 int dfd; 526 } __randomize_layout; 527 528 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 529 { 530 struct nameidata *old = current->nameidata; 531 p->stack = p->internal; 532 p->dfd = dfd; 533 p->name = name; 534 p->total_link_count = old ? old->total_link_count : 0; 535 p->saved = old; 536 current->nameidata = p; 537 } 538 539 static void restore_nameidata(void) 540 { 541 struct nameidata *now = current->nameidata, *old = now->saved; 542 543 current->nameidata = old; 544 if (old) 545 old->total_link_count = now->total_link_count; 546 if (now->stack != now->internal) 547 kfree(now->stack); 548 } 549 550 static int __nd_alloc_stack(struct nameidata *nd) 551 { 552 struct saved *p; 553 554 if (nd->flags & LOOKUP_RCU) { 555 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 556 GFP_ATOMIC); 557 if (unlikely(!p)) 558 return -ECHILD; 559 } else { 560 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 561 GFP_KERNEL); 562 if (unlikely(!p)) 563 return -ENOMEM; 564 } 565 memcpy(p, nd->internal, sizeof(nd->internal)); 566 nd->stack = p; 567 return 0; 568 } 569 570 /** 571 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 572 * @path: nameidate to verify 573 * 574 * Rename can sometimes move a file or directory outside of a bind 575 * mount, path_connected allows those cases to be detected. 576 */ 577 static bool path_connected(const struct path *path) 578 { 579 struct vfsmount *mnt = path->mnt; 580 581 /* Only bind mounts can have disconnected paths */ 582 if (mnt->mnt_root == mnt->mnt_sb->s_root) 583 return true; 584 585 return is_subdir(path->dentry, mnt->mnt_root); 586 } 587 588 static inline int nd_alloc_stack(struct nameidata *nd) 589 { 590 if (likely(nd->depth != EMBEDDED_LEVELS)) 591 return 0; 592 if (likely(nd->stack != nd->internal)) 593 return 0; 594 return __nd_alloc_stack(nd); 595 } 596 597 static void drop_links(struct nameidata *nd) 598 { 599 int i = nd->depth; 600 while (i--) { 601 struct saved *last = nd->stack + i; 602 do_delayed_call(&last->done); 603 clear_delayed_call(&last->done); 604 } 605 } 606 607 static void terminate_walk(struct nameidata *nd) 608 { 609 drop_links(nd); 610 if (!(nd->flags & LOOKUP_RCU)) { 611 int i; 612 path_put(&nd->path); 613 for (i = 0; i < nd->depth; i++) 614 path_put(&nd->stack[i].link); 615 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 616 path_put(&nd->root); 617 nd->root.mnt = NULL; 618 } 619 } else { 620 nd->flags &= ~LOOKUP_RCU; 621 if (!(nd->flags & LOOKUP_ROOT)) 622 nd->root.mnt = NULL; 623 rcu_read_unlock(); 624 } 625 nd->depth = 0; 626 } 627 628 /* path_put is needed afterwards regardless of success or failure */ 629 static bool legitimize_path(struct nameidata *nd, 630 struct path *path, unsigned seq) 631 { 632 int res = __legitimize_mnt(path->mnt, nd->m_seq); 633 if (unlikely(res)) { 634 if (res > 0) 635 path->mnt = NULL; 636 path->dentry = NULL; 637 return false; 638 } 639 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 640 path->dentry = NULL; 641 return false; 642 } 643 return !read_seqcount_retry(&path->dentry->d_seq, seq); 644 } 645 646 static bool legitimize_links(struct nameidata *nd) 647 { 648 int i; 649 for (i = 0; i < nd->depth; i++) { 650 struct saved *last = nd->stack + i; 651 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 652 drop_links(nd); 653 nd->depth = i + 1; 654 return false; 655 } 656 } 657 return true; 658 } 659 660 /* 661 * Path walking has 2 modes, rcu-walk and ref-walk (see 662 * Documentation/filesystems/path-lookup.txt). In situations when we can't 663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 664 * normal reference counts on dentries and vfsmounts to transition to ref-walk 665 * mode. Refcounts are grabbed at the last known good point before rcu-walk 666 * got stuck, so ref-walk may continue from there. If this is not successful 667 * (eg. a seqcount has changed), then failure is returned and it's up to caller 668 * to restart the path walk from the beginning in ref-walk mode. 669 */ 670 671 /** 672 * unlazy_walk - try to switch to ref-walk mode. 673 * @nd: nameidata pathwalk data 674 * Returns: 0 on success, -ECHILD on failure 675 * 676 * unlazy_walk attempts to legitimize the current nd->path and nd->root 677 * for ref-walk mode. 678 * Must be called from rcu-walk context. 679 * Nothing should touch nameidata between unlazy_walk() failure and 680 * terminate_walk(). 681 */ 682 static int unlazy_walk(struct nameidata *nd) 683 { 684 struct dentry *parent = nd->path.dentry; 685 686 BUG_ON(!(nd->flags & LOOKUP_RCU)); 687 688 nd->flags &= ~LOOKUP_RCU; 689 if (unlikely(!legitimize_links(nd))) 690 goto out2; 691 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 692 goto out1; 693 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 694 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 695 goto out; 696 } 697 rcu_read_unlock(); 698 BUG_ON(nd->inode != parent->d_inode); 699 return 0; 700 701 out2: 702 nd->path.mnt = NULL; 703 nd->path.dentry = NULL; 704 out1: 705 if (!(nd->flags & LOOKUP_ROOT)) 706 nd->root.mnt = NULL; 707 out: 708 rcu_read_unlock(); 709 return -ECHILD; 710 } 711 712 /** 713 * unlazy_child - try to switch to ref-walk mode. 714 * @nd: nameidata pathwalk data 715 * @dentry: child of nd->path.dentry 716 * @seq: seq number to check dentry against 717 * Returns: 0 on success, -ECHILD on failure 718 * 719 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 720 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 721 * @nd. Must be called from rcu-walk context. 722 * Nothing should touch nameidata between unlazy_child() failure and 723 * terminate_walk(). 724 */ 725 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 726 { 727 BUG_ON(!(nd->flags & LOOKUP_RCU)); 728 729 nd->flags &= ~LOOKUP_RCU; 730 if (unlikely(!legitimize_links(nd))) 731 goto out2; 732 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 733 goto out2; 734 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 735 goto out1; 736 737 /* 738 * We need to move both the parent and the dentry from the RCU domain 739 * to be properly refcounted. And the sequence number in the dentry 740 * validates *both* dentry counters, since we checked the sequence 741 * number of the parent after we got the child sequence number. So we 742 * know the parent must still be valid if the child sequence number is 743 */ 744 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 745 goto out; 746 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 747 rcu_read_unlock(); 748 dput(dentry); 749 goto drop_root_mnt; 750 } 751 /* 752 * Sequence counts matched. Now make sure that the root is 753 * still valid and get it if required. 754 */ 755 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 756 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 757 rcu_read_unlock(); 758 dput(dentry); 759 return -ECHILD; 760 } 761 } 762 763 rcu_read_unlock(); 764 return 0; 765 766 out2: 767 nd->path.mnt = NULL; 768 out1: 769 nd->path.dentry = NULL; 770 out: 771 rcu_read_unlock(); 772 drop_root_mnt: 773 if (!(nd->flags & LOOKUP_ROOT)) 774 nd->root.mnt = NULL; 775 return -ECHILD; 776 } 777 778 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 779 { 780 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 781 return dentry->d_op->d_revalidate(dentry, flags); 782 else 783 return 1; 784 } 785 786 /** 787 * complete_walk - successful completion of path walk 788 * @nd: pointer nameidata 789 * 790 * If we had been in RCU mode, drop out of it and legitimize nd->path. 791 * Revalidate the final result, unless we'd already done that during 792 * the path walk or the filesystem doesn't ask for it. Return 0 on 793 * success, -error on failure. In case of failure caller does not 794 * need to drop nd->path. 795 */ 796 static int complete_walk(struct nameidata *nd) 797 { 798 struct dentry *dentry = nd->path.dentry; 799 int status; 800 801 if (nd->flags & LOOKUP_RCU) { 802 if (!(nd->flags & LOOKUP_ROOT)) 803 nd->root.mnt = NULL; 804 if (unlikely(unlazy_walk(nd))) 805 return -ECHILD; 806 } 807 808 if (likely(!(nd->flags & LOOKUP_JUMPED))) 809 return 0; 810 811 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 812 return 0; 813 814 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 815 if (status > 0) 816 return 0; 817 818 if (!status) 819 status = -ESTALE; 820 821 return status; 822 } 823 824 static void set_root(struct nameidata *nd) 825 { 826 struct fs_struct *fs = current->fs; 827 828 if (nd->flags & LOOKUP_RCU) { 829 unsigned seq; 830 831 do { 832 seq = read_seqcount_begin(&fs->seq); 833 nd->root = fs->root; 834 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 835 } while (read_seqcount_retry(&fs->seq, seq)); 836 } else { 837 get_fs_root(fs, &nd->root); 838 } 839 } 840 841 static void path_put_conditional(struct path *path, struct nameidata *nd) 842 { 843 dput(path->dentry); 844 if (path->mnt != nd->path.mnt) 845 mntput(path->mnt); 846 } 847 848 static inline void path_to_nameidata(const struct path *path, 849 struct nameidata *nd) 850 { 851 if (!(nd->flags & LOOKUP_RCU)) { 852 dput(nd->path.dentry); 853 if (nd->path.mnt != path->mnt) 854 mntput(nd->path.mnt); 855 } 856 nd->path.mnt = path->mnt; 857 nd->path.dentry = path->dentry; 858 } 859 860 static int nd_jump_root(struct nameidata *nd) 861 { 862 if (nd->flags & LOOKUP_RCU) { 863 struct dentry *d; 864 nd->path = nd->root; 865 d = nd->path.dentry; 866 nd->inode = d->d_inode; 867 nd->seq = nd->root_seq; 868 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 869 return -ECHILD; 870 } else { 871 path_put(&nd->path); 872 nd->path = nd->root; 873 path_get(&nd->path); 874 nd->inode = nd->path.dentry->d_inode; 875 } 876 nd->flags |= LOOKUP_JUMPED; 877 return 0; 878 } 879 880 /* 881 * Helper to directly jump to a known parsed path from ->get_link, 882 * caller must have taken a reference to path beforehand. 883 */ 884 void nd_jump_link(struct path *path) 885 { 886 struct nameidata *nd = current->nameidata; 887 path_put(&nd->path); 888 889 nd->path = *path; 890 nd->inode = nd->path.dentry->d_inode; 891 nd->flags |= LOOKUP_JUMPED; 892 } 893 894 static inline void put_link(struct nameidata *nd) 895 { 896 struct saved *last = nd->stack + --nd->depth; 897 do_delayed_call(&last->done); 898 if (!(nd->flags & LOOKUP_RCU)) 899 path_put(&last->link); 900 } 901 902 int sysctl_protected_symlinks __read_mostly = 0; 903 int sysctl_protected_hardlinks __read_mostly = 0; 904 905 /** 906 * may_follow_link - Check symlink following for unsafe situations 907 * @nd: nameidata pathwalk data 908 * 909 * In the case of the sysctl_protected_symlinks sysctl being enabled, 910 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 911 * in a sticky world-writable directory. This is to protect privileged 912 * processes from failing races against path names that may change out 913 * from under them by way of other users creating malicious symlinks. 914 * It will permit symlinks to be followed only when outside a sticky 915 * world-writable directory, or when the uid of the symlink and follower 916 * match, or when the directory owner matches the symlink's owner. 917 * 918 * Returns 0 if following the symlink is allowed, -ve on error. 919 */ 920 static inline int may_follow_link(struct nameidata *nd) 921 { 922 const struct inode *inode; 923 const struct inode *parent; 924 kuid_t puid; 925 926 if (!sysctl_protected_symlinks) 927 return 0; 928 929 /* Allowed if owner and follower match. */ 930 inode = nd->link_inode; 931 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 932 return 0; 933 934 /* Allowed if parent directory not sticky and world-writable. */ 935 parent = nd->inode; 936 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 937 return 0; 938 939 /* Allowed if parent directory and link owner match. */ 940 puid = parent->i_uid; 941 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 942 return 0; 943 944 if (nd->flags & LOOKUP_RCU) 945 return -ECHILD; 946 947 audit_log_link_denied("follow_link", &nd->stack[0].link); 948 return -EACCES; 949 } 950 951 /** 952 * safe_hardlink_source - Check for safe hardlink conditions 953 * @inode: the source inode to hardlink from 954 * 955 * Return false if at least one of the following conditions: 956 * - inode is not a regular file 957 * - inode is setuid 958 * - inode is setgid and group-exec 959 * - access failure for read and write 960 * 961 * Otherwise returns true. 962 */ 963 static bool safe_hardlink_source(struct inode *inode) 964 { 965 umode_t mode = inode->i_mode; 966 967 /* Special files should not get pinned to the filesystem. */ 968 if (!S_ISREG(mode)) 969 return false; 970 971 /* Setuid files should not get pinned to the filesystem. */ 972 if (mode & S_ISUID) 973 return false; 974 975 /* Executable setgid files should not get pinned to the filesystem. */ 976 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 977 return false; 978 979 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 980 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 981 return false; 982 983 return true; 984 } 985 986 /** 987 * may_linkat - Check permissions for creating a hardlink 988 * @link: the source to hardlink from 989 * 990 * Block hardlink when all of: 991 * - sysctl_protected_hardlinks enabled 992 * - fsuid does not match inode 993 * - hardlink source is unsafe (see safe_hardlink_source() above) 994 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 995 * 996 * Returns 0 if successful, -ve on error. 997 */ 998 static int may_linkat(struct path *link) 999 { 1000 struct inode *inode; 1001 1002 if (!sysctl_protected_hardlinks) 1003 return 0; 1004 1005 inode = link->dentry->d_inode; 1006 1007 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1008 * otherwise, it must be a safe source. 1009 */ 1010 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1011 return 0; 1012 1013 audit_log_link_denied("linkat", link); 1014 return -EPERM; 1015 } 1016 1017 static __always_inline 1018 const char *get_link(struct nameidata *nd) 1019 { 1020 struct saved *last = nd->stack + nd->depth - 1; 1021 struct dentry *dentry = last->link.dentry; 1022 struct inode *inode = nd->link_inode; 1023 int error; 1024 const char *res; 1025 1026 if (!(nd->flags & LOOKUP_RCU)) { 1027 touch_atime(&last->link); 1028 cond_resched(); 1029 } else if (atime_needs_update_rcu(&last->link, inode)) { 1030 if (unlikely(unlazy_walk(nd))) 1031 return ERR_PTR(-ECHILD); 1032 touch_atime(&last->link); 1033 } 1034 1035 error = security_inode_follow_link(dentry, inode, 1036 nd->flags & LOOKUP_RCU); 1037 if (unlikely(error)) 1038 return ERR_PTR(error); 1039 1040 nd->last_type = LAST_BIND; 1041 res = inode->i_link; 1042 if (!res) { 1043 const char * (*get)(struct dentry *, struct inode *, 1044 struct delayed_call *); 1045 get = inode->i_op->get_link; 1046 if (nd->flags & LOOKUP_RCU) { 1047 res = get(NULL, inode, &last->done); 1048 if (res == ERR_PTR(-ECHILD)) { 1049 if (unlikely(unlazy_walk(nd))) 1050 return ERR_PTR(-ECHILD); 1051 res = get(dentry, inode, &last->done); 1052 } 1053 } else { 1054 res = get(dentry, inode, &last->done); 1055 } 1056 if (IS_ERR_OR_NULL(res)) 1057 return res; 1058 } 1059 if (*res == '/') { 1060 if (!nd->root.mnt) 1061 set_root(nd); 1062 if (unlikely(nd_jump_root(nd))) 1063 return ERR_PTR(-ECHILD); 1064 while (unlikely(*++res == '/')) 1065 ; 1066 } 1067 if (!*res) 1068 res = NULL; 1069 return res; 1070 } 1071 1072 /* 1073 * follow_up - Find the mountpoint of path's vfsmount 1074 * 1075 * Given a path, find the mountpoint of its source file system. 1076 * Replace @path with the path of the mountpoint in the parent mount. 1077 * Up is towards /. 1078 * 1079 * Return 1 if we went up a level and 0 if we were already at the 1080 * root. 1081 */ 1082 int follow_up(struct path *path) 1083 { 1084 struct mount *mnt = real_mount(path->mnt); 1085 struct mount *parent; 1086 struct dentry *mountpoint; 1087 1088 read_seqlock_excl(&mount_lock); 1089 parent = mnt->mnt_parent; 1090 if (parent == mnt) { 1091 read_sequnlock_excl(&mount_lock); 1092 return 0; 1093 } 1094 mntget(&parent->mnt); 1095 mountpoint = dget(mnt->mnt_mountpoint); 1096 read_sequnlock_excl(&mount_lock); 1097 dput(path->dentry); 1098 path->dentry = mountpoint; 1099 mntput(path->mnt); 1100 path->mnt = &parent->mnt; 1101 return 1; 1102 } 1103 EXPORT_SYMBOL(follow_up); 1104 1105 /* 1106 * Perform an automount 1107 * - return -EISDIR to tell follow_managed() to stop and return the path we 1108 * were called with. 1109 */ 1110 static int follow_automount(struct path *path, struct nameidata *nd, 1111 bool *need_mntput) 1112 { 1113 struct vfsmount *mnt; 1114 int err; 1115 1116 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1117 return -EREMOTE; 1118 1119 /* We don't want to mount if someone's just doing a stat - 1120 * unless they're stat'ing a directory and appended a '/' to 1121 * the name. 1122 * 1123 * We do, however, want to mount if someone wants to open or 1124 * create a file of any type under the mountpoint, wants to 1125 * traverse through the mountpoint or wants to open the 1126 * mounted directory. Also, autofs may mark negative dentries 1127 * as being automount points. These will need the attentions 1128 * of the daemon to instantiate them before they can be used. 1129 */ 1130 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1131 LOOKUP_OPEN | LOOKUP_CREATE | 1132 LOOKUP_AUTOMOUNT))) { 1133 /* Positive dentry that isn't meant to trigger an 1134 * automount, EISDIR will allow it to be used, 1135 * otherwise there's no mount here "now" so return 1136 * ENOENT. 1137 */ 1138 if (path->dentry->d_inode) 1139 return -EISDIR; 1140 else 1141 return -ENOENT; 1142 } 1143 1144 if (path->dentry->d_sb->s_user_ns != &init_user_ns) 1145 return -EACCES; 1146 1147 nd->total_link_count++; 1148 if (nd->total_link_count >= 40) 1149 return -ELOOP; 1150 1151 mnt = path->dentry->d_op->d_automount(path); 1152 if (IS_ERR(mnt)) { 1153 /* 1154 * The filesystem is allowed to return -EISDIR here to indicate 1155 * it doesn't want to automount. For instance, autofs would do 1156 * this so that its userspace daemon can mount on this dentry. 1157 * 1158 * However, we can only permit this if it's a terminal point in 1159 * the path being looked up; if it wasn't then the remainder of 1160 * the path is inaccessible and we should say so. 1161 */ 1162 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1163 return -EREMOTE; 1164 return PTR_ERR(mnt); 1165 } 1166 1167 if (!mnt) /* mount collision */ 1168 return 0; 1169 1170 if (!*need_mntput) { 1171 /* lock_mount() may release path->mnt on error */ 1172 mntget(path->mnt); 1173 *need_mntput = true; 1174 } 1175 err = finish_automount(mnt, path); 1176 1177 switch (err) { 1178 case -EBUSY: 1179 /* Someone else made a mount here whilst we were busy */ 1180 return 0; 1181 case 0: 1182 path_put(path); 1183 path->mnt = mnt; 1184 path->dentry = dget(mnt->mnt_root); 1185 return 0; 1186 default: 1187 return err; 1188 } 1189 1190 } 1191 1192 /* 1193 * Handle a dentry that is managed in some way. 1194 * - Flagged for transit management (autofs) 1195 * - Flagged as mountpoint 1196 * - Flagged as automount point 1197 * 1198 * This may only be called in refwalk mode. 1199 * 1200 * Serialization is taken care of in namespace.c 1201 */ 1202 static int follow_managed(struct path *path, struct nameidata *nd) 1203 { 1204 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1205 unsigned managed; 1206 bool need_mntput = false; 1207 int ret = 0; 1208 1209 /* Given that we're not holding a lock here, we retain the value in a 1210 * local variable for each dentry as we look at it so that we don't see 1211 * the components of that value change under us */ 1212 while (managed = READ_ONCE(path->dentry->d_flags), 1213 managed &= DCACHE_MANAGED_DENTRY, 1214 unlikely(managed != 0)) { 1215 /* Allow the filesystem to manage the transit without i_mutex 1216 * being held. */ 1217 if (managed & DCACHE_MANAGE_TRANSIT) { 1218 BUG_ON(!path->dentry->d_op); 1219 BUG_ON(!path->dentry->d_op->d_manage); 1220 ret = path->dentry->d_op->d_manage(path, false); 1221 if (ret < 0) 1222 break; 1223 } 1224 1225 /* Transit to a mounted filesystem. */ 1226 if (managed & DCACHE_MOUNTED) { 1227 struct vfsmount *mounted = lookup_mnt(path); 1228 if (mounted) { 1229 dput(path->dentry); 1230 if (need_mntput) 1231 mntput(path->mnt); 1232 path->mnt = mounted; 1233 path->dentry = dget(mounted->mnt_root); 1234 need_mntput = true; 1235 continue; 1236 } 1237 1238 /* Something is mounted on this dentry in another 1239 * namespace and/or whatever was mounted there in this 1240 * namespace got unmounted before lookup_mnt() could 1241 * get it */ 1242 } 1243 1244 /* Handle an automount point */ 1245 if (managed & DCACHE_NEED_AUTOMOUNT) { 1246 ret = follow_automount(path, nd, &need_mntput); 1247 if (ret < 0) 1248 break; 1249 continue; 1250 } 1251 1252 /* We didn't change the current path point */ 1253 break; 1254 } 1255 1256 if (need_mntput && path->mnt == mnt) 1257 mntput(path->mnt); 1258 if (ret == -EISDIR || !ret) 1259 ret = 1; 1260 if (need_mntput) 1261 nd->flags |= LOOKUP_JUMPED; 1262 if (unlikely(ret < 0)) 1263 path_put_conditional(path, nd); 1264 return ret; 1265 } 1266 1267 int follow_down_one(struct path *path) 1268 { 1269 struct vfsmount *mounted; 1270 1271 mounted = lookup_mnt(path); 1272 if (mounted) { 1273 dput(path->dentry); 1274 mntput(path->mnt); 1275 path->mnt = mounted; 1276 path->dentry = dget(mounted->mnt_root); 1277 return 1; 1278 } 1279 return 0; 1280 } 1281 EXPORT_SYMBOL(follow_down_one); 1282 1283 static inline int managed_dentry_rcu(const struct path *path) 1284 { 1285 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1286 path->dentry->d_op->d_manage(path, true) : 0; 1287 } 1288 1289 /* 1290 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1291 * we meet a managed dentry that would need blocking. 1292 */ 1293 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1294 struct inode **inode, unsigned *seqp) 1295 { 1296 for (;;) { 1297 struct mount *mounted; 1298 /* 1299 * Don't forget we might have a non-mountpoint managed dentry 1300 * that wants to block transit. 1301 */ 1302 switch (managed_dentry_rcu(path)) { 1303 case -ECHILD: 1304 default: 1305 return false; 1306 case -EISDIR: 1307 return true; 1308 case 0: 1309 break; 1310 } 1311 1312 if (!d_mountpoint(path->dentry)) 1313 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1314 1315 mounted = __lookup_mnt(path->mnt, path->dentry); 1316 if (!mounted) 1317 break; 1318 path->mnt = &mounted->mnt; 1319 path->dentry = mounted->mnt.mnt_root; 1320 nd->flags |= LOOKUP_JUMPED; 1321 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1322 /* 1323 * Update the inode too. We don't need to re-check the 1324 * dentry sequence number here after this d_inode read, 1325 * because a mount-point is always pinned. 1326 */ 1327 *inode = path->dentry->d_inode; 1328 } 1329 return !read_seqretry(&mount_lock, nd->m_seq) && 1330 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1331 } 1332 1333 static int follow_dotdot_rcu(struct nameidata *nd) 1334 { 1335 struct inode *inode = nd->inode; 1336 1337 while (1) { 1338 if (path_equal(&nd->path, &nd->root)) 1339 break; 1340 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1341 struct dentry *old = nd->path.dentry; 1342 struct dentry *parent = old->d_parent; 1343 unsigned seq; 1344 1345 inode = parent->d_inode; 1346 seq = read_seqcount_begin(&parent->d_seq); 1347 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1348 return -ECHILD; 1349 nd->path.dentry = parent; 1350 nd->seq = seq; 1351 if (unlikely(!path_connected(&nd->path))) 1352 return -ENOENT; 1353 break; 1354 } else { 1355 struct mount *mnt = real_mount(nd->path.mnt); 1356 struct mount *mparent = mnt->mnt_parent; 1357 struct dentry *mountpoint = mnt->mnt_mountpoint; 1358 struct inode *inode2 = mountpoint->d_inode; 1359 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1360 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1361 return -ECHILD; 1362 if (&mparent->mnt == nd->path.mnt) 1363 break; 1364 /* we know that mountpoint was pinned */ 1365 nd->path.dentry = mountpoint; 1366 nd->path.mnt = &mparent->mnt; 1367 inode = inode2; 1368 nd->seq = seq; 1369 } 1370 } 1371 while (unlikely(d_mountpoint(nd->path.dentry))) { 1372 struct mount *mounted; 1373 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1374 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1375 return -ECHILD; 1376 if (!mounted) 1377 break; 1378 nd->path.mnt = &mounted->mnt; 1379 nd->path.dentry = mounted->mnt.mnt_root; 1380 inode = nd->path.dentry->d_inode; 1381 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1382 } 1383 nd->inode = inode; 1384 return 0; 1385 } 1386 1387 /* 1388 * Follow down to the covering mount currently visible to userspace. At each 1389 * point, the filesystem owning that dentry may be queried as to whether the 1390 * caller is permitted to proceed or not. 1391 */ 1392 int follow_down(struct path *path) 1393 { 1394 unsigned managed; 1395 int ret; 1396 1397 while (managed = READ_ONCE(path->dentry->d_flags), 1398 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1399 /* Allow the filesystem to manage the transit without i_mutex 1400 * being held. 1401 * 1402 * We indicate to the filesystem if someone is trying to mount 1403 * something here. This gives autofs the chance to deny anyone 1404 * other than its daemon the right to mount on its 1405 * superstructure. 1406 * 1407 * The filesystem may sleep at this point. 1408 */ 1409 if (managed & DCACHE_MANAGE_TRANSIT) { 1410 BUG_ON(!path->dentry->d_op); 1411 BUG_ON(!path->dentry->d_op->d_manage); 1412 ret = path->dentry->d_op->d_manage(path, false); 1413 if (ret < 0) 1414 return ret == -EISDIR ? 0 : ret; 1415 } 1416 1417 /* Transit to a mounted filesystem. */ 1418 if (managed & DCACHE_MOUNTED) { 1419 struct vfsmount *mounted = lookup_mnt(path); 1420 if (!mounted) 1421 break; 1422 dput(path->dentry); 1423 mntput(path->mnt); 1424 path->mnt = mounted; 1425 path->dentry = dget(mounted->mnt_root); 1426 continue; 1427 } 1428 1429 /* Don't handle automount points here */ 1430 break; 1431 } 1432 return 0; 1433 } 1434 EXPORT_SYMBOL(follow_down); 1435 1436 /* 1437 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1438 */ 1439 static void follow_mount(struct path *path) 1440 { 1441 while (d_mountpoint(path->dentry)) { 1442 struct vfsmount *mounted = lookup_mnt(path); 1443 if (!mounted) 1444 break; 1445 dput(path->dentry); 1446 mntput(path->mnt); 1447 path->mnt = mounted; 1448 path->dentry = dget(mounted->mnt_root); 1449 } 1450 } 1451 1452 static int path_parent_directory(struct path *path) 1453 { 1454 struct dentry *old = path->dentry; 1455 /* rare case of legitimate dget_parent()... */ 1456 path->dentry = dget_parent(path->dentry); 1457 dput(old); 1458 if (unlikely(!path_connected(path))) 1459 return -ENOENT; 1460 return 0; 1461 } 1462 1463 static int follow_dotdot(struct nameidata *nd) 1464 { 1465 while(1) { 1466 if (nd->path.dentry == nd->root.dentry && 1467 nd->path.mnt == nd->root.mnt) { 1468 break; 1469 } 1470 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1471 int ret = path_parent_directory(&nd->path); 1472 if (ret) 1473 return ret; 1474 break; 1475 } 1476 if (!follow_up(&nd->path)) 1477 break; 1478 } 1479 follow_mount(&nd->path); 1480 nd->inode = nd->path.dentry->d_inode; 1481 return 0; 1482 } 1483 1484 /* 1485 * This looks up the name in dcache and possibly revalidates the found dentry. 1486 * NULL is returned if the dentry does not exist in the cache. 1487 */ 1488 static struct dentry *lookup_dcache(const struct qstr *name, 1489 struct dentry *dir, 1490 unsigned int flags) 1491 { 1492 struct dentry *dentry = d_lookup(dir, name); 1493 if (dentry) { 1494 int error = d_revalidate(dentry, flags); 1495 if (unlikely(error <= 0)) { 1496 if (!error) 1497 d_invalidate(dentry); 1498 dput(dentry); 1499 return ERR_PTR(error); 1500 } 1501 } 1502 return dentry; 1503 } 1504 1505 /* 1506 * Call i_op->lookup on the dentry. The dentry must be negative and 1507 * unhashed. 1508 * 1509 * dir->d_inode->i_mutex must be held 1510 */ 1511 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1512 unsigned int flags) 1513 { 1514 struct dentry *old; 1515 1516 /* Don't create child dentry for a dead directory. */ 1517 if (unlikely(IS_DEADDIR(dir))) { 1518 dput(dentry); 1519 return ERR_PTR(-ENOENT); 1520 } 1521 1522 old = dir->i_op->lookup(dir, dentry, flags); 1523 if (unlikely(old)) { 1524 dput(dentry); 1525 dentry = old; 1526 } 1527 return dentry; 1528 } 1529 1530 static struct dentry *__lookup_hash(const struct qstr *name, 1531 struct dentry *base, unsigned int flags) 1532 { 1533 struct dentry *dentry = lookup_dcache(name, base, flags); 1534 1535 if (dentry) 1536 return dentry; 1537 1538 dentry = d_alloc(base, name); 1539 if (unlikely(!dentry)) 1540 return ERR_PTR(-ENOMEM); 1541 1542 return lookup_real(base->d_inode, dentry, flags); 1543 } 1544 1545 static int lookup_fast(struct nameidata *nd, 1546 struct path *path, struct inode **inode, 1547 unsigned *seqp) 1548 { 1549 struct vfsmount *mnt = nd->path.mnt; 1550 struct dentry *dentry, *parent = nd->path.dentry; 1551 int status = 1; 1552 int err; 1553 1554 /* 1555 * Rename seqlock is not required here because in the off chance 1556 * of a false negative due to a concurrent rename, the caller is 1557 * going to fall back to non-racy lookup. 1558 */ 1559 if (nd->flags & LOOKUP_RCU) { 1560 unsigned seq; 1561 bool negative; 1562 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1563 if (unlikely(!dentry)) { 1564 if (unlazy_walk(nd)) 1565 return -ECHILD; 1566 return 0; 1567 } 1568 1569 /* 1570 * This sequence count validates that the inode matches 1571 * the dentry name information from lookup. 1572 */ 1573 *inode = d_backing_inode(dentry); 1574 negative = d_is_negative(dentry); 1575 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1576 return -ECHILD; 1577 1578 /* 1579 * This sequence count validates that the parent had no 1580 * changes while we did the lookup of the dentry above. 1581 * 1582 * The memory barrier in read_seqcount_begin of child is 1583 * enough, we can use __read_seqcount_retry here. 1584 */ 1585 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1586 return -ECHILD; 1587 1588 *seqp = seq; 1589 status = d_revalidate(dentry, nd->flags); 1590 if (likely(status > 0)) { 1591 /* 1592 * Note: do negative dentry check after revalidation in 1593 * case that drops it. 1594 */ 1595 if (unlikely(negative)) 1596 return -ENOENT; 1597 path->mnt = mnt; 1598 path->dentry = dentry; 1599 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1600 return 1; 1601 } 1602 if (unlazy_child(nd, dentry, seq)) 1603 return -ECHILD; 1604 if (unlikely(status == -ECHILD)) 1605 /* we'd been told to redo it in non-rcu mode */ 1606 status = d_revalidate(dentry, nd->flags); 1607 } else { 1608 dentry = __d_lookup(parent, &nd->last); 1609 if (unlikely(!dentry)) 1610 return 0; 1611 status = d_revalidate(dentry, nd->flags); 1612 } 1613 if (unlikely(status <= 0)) { 1614 if (!status) 1615 d_invalidate(dentry); 1616 dput(dentry); 1617 return status; 1618 } 1619 if (unlikely(d_is_negative(dentry))) { 1620 dput(dentry); 1621 return -ENOENT; 1622 } 1623 1624 path->mnt = mnt; 1625 path->dentry = dentry; 1626 err = follow_managed(path, nd); 1627 if (likely(err > 0)) 1628 *inode = d_backing_inode(path->dentry); 1629 return err; 1630 } 1631 1632 /* Fast lookup failed, do it the slow way */ 1633 static struct dentry *lookup_slow(const struct qstr *name, 1634 struct dentry *dir, 1635 unsigned int flags) 1636 { 1637 struct dentry *dentry = ERR_PTR(-ENOENT), *old; 1638 struct inode *inode = dir->d_inode; 1639 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1640 1641 inode_lock_shared(inode); 1642 /* Don't go there if it's already dead */ 1643 if (unlikely(IS_DEADDIR(inode))) 1644 goto out; 1645 again: 1646 dentry = d_alloc_parallel(dir, name, &wq); 1647 if (IS_ERR(dentry)) 1648 goto out; 1649 if (unlikely(!d_in_lookup(dentry))) { 1650 if (!(flags & LOOKUP_NO_REVAL)) { 1651 int error = d_revalidate(dentry, flags); 1652 if (unlikely(error <= 0)) { 1653 if (!error) { 1654 d_invalidate(dentry); 1655 dput(dentry); 1656 goto again; 1657 } 1658 dput(dentry); 1659 dentry = ERR_PTR(error); 1660 } 1661 } 1662 } else { 1663 old = inode->i_op->lookup(inode, dentry, flags); 1664 d_lookup_done(dentry); 1665 if (unlikely(old)) { 1666 dput(dentry); 1667 dentry = old; 1668 } 1669 } 1670 out: 1671 inode_unlock_shared(inode); 1672 return dentry; 1673 } 1674 1675 static inline int may_lookup(struct nameidata *nd) 1676 { 1677 if (nd->flags & LOOKUP_RCU) { 1678 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1679 if (err != -ECHILD) 1680 return err; 1681 if (unlazy_walk(nd)) 1682 return -ECHILD; 1683 } 1684 return inode_permission(nd->inode, MAY_EXEC); 1685 } 1686 1687 static inline int handle_dots(struct nameidata *nd, int type) 1688 { 1689 if (type == LAST_DOTDOT) { 1690 if (!nd->root.mnt) 1691 set_root(nd); 1692 if (nd->flags & LOOKUP_RCU) { 1693 return follow_dotdot_rcu(nd); 1694 } else 1695 return follow_dotdot(nd); 1696 } 1697 return 0; 1698 } 1699 1700 static int pick_link(struct nameidata *nd, struct path *link, 1701 struct inode *inode, unsigned seq) 1702 { 1703 int error; 1704 struct saved *last; 1705 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1706 path_to_nameidata(link, nd); 1707 return -ELOOP; 1708 } 1709 if (!(nd->flags & LOOKUP_RCU)) { 1710 if (link->mnt == nd->path.mnt) 1711 mntget(link->mnt); 1712 } 1713 error = nd_alloc_stack(nd); 1714 if (unlikely(error)) { 1715 if (error == -ECHILD) { 1716 if (unlikely(!legitimize_path(nd, link, seq))) { 1717 drop_links(nd); 1718 nd->depth = 0; 1719 nd->flags &= ~LOOKUP_RCU; 1720 nd->path.mnt = NULL; 1721 nd->path.dentry = NULL; 1722 if (!(nd->flags & LOOKUP_ROOT)) 1723 nd->root.mnt = NULL; 1724 rcu_read_unlock(); 1725 } else if (likely(unlazy_walk(nd)) == 0) 1726 error = nd_alloc_stack(nd); 1727 } 1728 if (error) { 1729 path_put(link); 1730 return error; 1731 } 1732 } 1733 1734 last = nd->stack + nd->depth++; 1735 last->link = *link; 1736 clear_delayed_call(&last->done); 1737 nd->link_inode = inode; 1738 last->seq = seq; 1739 return 1; 1740 } 1741 1742 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1743 1744 /* 1745 * Do we need to follow links? We _really_ want to be able 1746 * to do this check without having to look at inode->i_op, 1747 * so we keep a cache of "no, this doesn't need follow_link" 1748 * for the common case. 1749 */ 1750 static inline int step_into(struct nameidata *nd, struct path *path, 1751 int flags, struct inode *inode, unsigned seq) 1752 { 1753 if (!(flags & WALK_MORE) && nd->depth) 1754 put_link(nd); 1755 if (likely(!d_is_symlink(path->dentry)) || 1756 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1757 /* not a symlink or should not follow */ 1758 path_to_nameidata(path, nd); 1759 nd->inode = inode; 1760 nd->seq = seq; 1761 return 0; 1762 } 1763 /* make sure that d_is_symlink above matches inode */ 1764 if (nd->flags & LOOKUP_RCU) { 1765 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1766 return -ECHILD; 1767 } 1768 return pick_link(nd, path, inode, seq); 1769 } 1770 1771 static int walk_component(struct nameidata *nd, int flags) 1772 { 1773 struct path path; 1774 struct inode *inode; 1775 unsigned seq; 1776 int err; 1777 /* 1778 * "." and ".." are special - ".." especially so because it has 1779 * to be able to know about the current root directory and 1780 * parent relationships. 1781 */ 1782 if (unlikely(nd->last_type != LAST_NORM)) { 1783 err = handle_dots(nd, nd->last_type); 1784 if (!(flags & WALK_MORE) && nd->depth) 1785 put_link(nd); 1786 return err; 1787 } 1788 err = lookup_fast(nd, &path, &inode, &seq); 1789 if (unlikely(err <= 0)) { 1790 if (err < 0) 1791 return err; 1792 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1793 nd->flags); 1794 if (IS_ERR(path.dentry)) 1795 return PTR_ERR(path.dentry); 1796 1797 path.mnt = nd->path.mnt; 1798 err = follow_managed(&path, nd); 1799 if (unlikely(err < 0)) 1800 return err; 1801 1802 if (unlikely(d_is_negative(path.dentry))) { 1803 path_to_nameidata(&path, nd); 1804 return -ENOENT; 1805 } 1806 1807 seq = 0; /* we are already out of RCU mode */ 1808 inode = d_backing_inode(path.dentry); 1809 } 1810 1811 return step_into(nd, &path, flags, inode, seq); 1812 } 1813 1814 /* 1815 * We can do the critical dentry name comparison and hashing 1816 * operations one word at a time, but we are limited to: 1817 * 1818 * - Architectures with fast unaligned word accesses. We could 1819 * do a "get_unaligned()" if this helps and is sufficiently 1820 * fast. 1821 * 1822 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1823 * do not trap on the (extremely unlikely) case of a page 1824 * crossing operation. 1825 * 1826 * - Furthermore, we need an efficient 64-bit compile for the 1827 * 64-bit case in order to generate the "number of bytes in 1828 * the final mask". Again, that could be replaced with a 1829 * efficient population count instruction or similar. 1830 */ 1831 #ifdef CONFIG_DCACHE_WORD_ACCESS 1832 1833 #include <asm/word-at-a-time.h> 1834 1835 #ifdef HASH_MIX 1836 1837 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1838 1839 #elif defined(CONFIG_64BIT) 1840 /* 1841 * Register pressure in the mixing function is an issue, particularly 1842 * on 32-bit x86, but almost any function requires one state value and 1843 * one temporary. Instead, use a function designed for two state values 1844 * and no temporaries. 1845 * 1846 * This function cannot create a collision in only two iterations, so 1847 * we have two iterations to achieve avalanche. In those two iterations, 1848 * we have six layers of mixing, which is enough to spread one bit's 1849 * influence out to 2^6 = 64 state bits. 1850 * 1851 * Rotate constants are scored by considering either 64 one-bit input 1852 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1853 * probability of that delta causing a change to each of the 128 output 1854 * bits, using a sample of random initial states. 1855 * 1856 * The Shannon entropy of the computed probabilities is then summed 1857 * to produce a score. Ideally, any input change has a 50% chance of 1858 * toggling any given output bit. 1859 * 1860 * Mixing scores (in bits) for (12,45): 1861 * Input delta: 1-bit 2-bit 1862 * 1 round: 713.3 42542.6 1863 * 2 rounds: 2753.7 140389.8 1864 * 3 rounds: 5954.1 233458.2 1865 * 4 rounds: 7862.6 256672.2 1866 * Perfect: 8192 258048 1867 * (64*128) (64*63/2 * 128) 1868 */ 1869 #define HASH_MIX(x, y, a) \ 1870 ( x ^= (a), \ 1871 y ^= x, x = rol64(x,12),\ 1872 x += y, y = rol64(y,45),\ 1873 y *= 9 ) 1874 1875 /* 1876 * Fold two longs into one 32-bit hash value. This must be fast, but 1877 * latency isn't quite as critical, as there is a fair bit of additional 1878 * work done before the hash value is used. 1879 */ 1880 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1881 { 1882 y ^= x * GOLDEN_RATIO_64; 1883 y *= GOLDEN_RATIO_64; 1884 return y >> 32; 1885 } 1886 1887 #else /* 32-bit case */ 1888 1889 /* 1890 * Mixing scores (in bits) for (7,20): 1891 * Input delta: 1-bit 2-bit 1892 * 1 round: 330.3 9201.6 1893 * 2 rounds: 1246.4 25475.4 1894 * 3 rounds: 1907.1 31295.1 1895 * 4 rounds: 2042.3 31718.6 1896 * Perfect: 2048 31744 1897 * (32*64) (32*31/2 * 64) 1898 */ 1899 #define HASH_MIX(x, y, a) \ 1900 ( x ^= (a), \ 1901 y ^= x, x = rol32(x, 7),\ 1902 x += y, y = rol32(y,20),\ 1903 y *= 9 ) 1904 1905 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1906 { 1907 /* Use arch-optimized multiply if one exists */ 1908 return __hash_32(y ^ __hash_32(x)); 1909 } 1910 1911 #endif 1912 1913 /* 1914 * Return the hash of a string of known length. This is carfully 1915 * designed to match hash_name(), which is the more critical function. 1916 * In particular, we must end by hashing a final word containing 0..7 1917 * payload bytes, to match the way that hash_name() iterates until it 1918 * finds the delimiter after the name. 1919 */ 1920 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1921 { 1922 unsigned long a, x = 0, y = (unsigned long)salt; 1923 1924 for (;;) { 1925 if (!len) 1926 goto done; 1927 a = load_unaligned_zeropad(name); 1928 if (len < sizeof(unsigned long)) 1929 break; 1930 HASH_MIX(x, y, a); 1931 name += sizeof(unsigned long); 1932 len -= sizeof(unsigned long); 1933 } 1934 x ^= a & bytemask_from_count(len); 1935 done: 1936 return fold_hash(x, y); 1937 } 1938 EXPORT_SYMBOL(full_name_hash); 1939 1940 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1941 u64 hashlen_string(const void *salt, const char *name) 1942 { 1943 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1944 unsigned long adata, mask, len; 1945 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1946 1947 len = 0; 1948 goto inside; 1949 1950 do { 1951 HASH_MIX(x, y, a); 1952 len += sizeof(unsigned long); 1953 inside: 1954 a = load_unaligned_zeropad(name+len); 1955 } while (!has_zero(a, &adata, &constants)); 1956 1957 adata = prep_zero_mask(a, adata, &constants); 1958 mask = create_zero_mask(adata); 1959 x ^= a & zero_bytemask(mask); 1960 1961 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1962 } 1963 EXPORT_SYMBOL(hashlen_string); 1964 1965 /* 1966 * Calculate the length and hash of the path component, and 1967 * return the "hash_len" as the result. 1968 */ 1969 static inline u64 hash_name(const void *salt, const char *name) 1970 { 1971 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1972 unsigned long adata, bdata, mask, len; 1973 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1974 1975 len = 0; 1976 goto inside; 1977 1978 do { 1979 HASH_MIX(x, y, a); 1980 len += sizeof(unsigned long); 1981 inside: 1982 a = load_unaligned_zeropad(name+len); 1983 b = a ^ REPEAT_BYTE('/'); 1984 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1985 1986 adata = prep_zero_mask(a, adata, &constants); 1987 bdata = prep_zero_mask(b, bdata, &constants); 1988 mask = create_zero_mask(adata | bdata); 1989 x ^= a & zero_bytemask(mask); 1990 1991 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1992 } 1993 1994 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1995 1996 /* Return the hash of a string of known length */ 1997 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1998 { 1999 unsigned long hash = init_name_hash(salt); 2000 while (len--) 2001 hash = partial_name_hash((unsigned char)*name++, hash); 2002 return end_name_hash(hash); 2003 } 2004 EXPORT_SYMBOL(full_name_hash); 2005 2006 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2007 u64 hashlen_string(const void *salt, const char *name) 2008 { 2009 unsigned long hash = init_name_hash(salt); 2010 unsigned long len = 0, c; 2011 2012 c = (unsigned char)*name; 2013 while (c) { 2014 len++; 2015 hash = partial_name_hash(c, hash); 2016 c = (unsigned char)name[len]; 2017 } 2018 return hashlen_create(end_name_hash(hash), len); 2019 } 2020 EXPORT_SYMBOL(hashlen_string); 2021 2022 /* 2023 * We know there's a real path component here of at least 2024 * one character. 2025 */ 2026 static inline u64 hash_name(const void *salt, const char *name) 2027 { 2028 unsigned long hash = init_name_hash(salt); 2029 unsigned long len = 0, c; 2030 2031 c = (unsigned char)*name; 2032 do { 2033 len++; 2034 hash = partial_name_hash(c, hash); 2035 c = (unsigned char)name[len]; 2036 } while (c && c != '/'); 2037 return hashlen_create(end_name_hash(hash), len); 2038 } 2039 2040 #endif 2041 2042 /* 2043 * Name resolution. 2044 * This is the basic name resolution function, turning a pathname into 2045 * the final dentry. We expect 'base' to be positive and a directory. 2046 * 2047 * Returns 0 and nd will have valid dentry and mnt on success. 2048 * Returns error and drops reference to input namei data on failure. 2049 */ 2050 static int link_path_walk(const char *name, struct nameidata *nd) 2051 { 2052 int err; 2053 2054 while (*name=='/') 2055 name++; 2056 if (!*name) 2057 return 0; 2058 2059 /* At this point we know we have a real path component. */ 2060 for(;;) { 2061 u64 hash_len; 2062 int type; 2063 2064 err = may_lookup(nd); 2065 if (err) 2066 return err; 2067 2068 hash_len = hash_name(nd->path.dentry, name); 2069 2070 type = LAST_NORM; 2071 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2072 case 2: 2073 if (name[1] == '.') { 2074 type = LAST_DOTDOT; 2075 nd->flags |= LOOKUP_JUMPED; 2076 } 2077 break; 2078 case 1: 2079 type = LAST_DOT; 2080 } 2081 if (likely(type == LAST_NORM)) { 2082 struct dentry *parent = nd->path.dentry; 2083 nd->flags &= ~LOOKUP_JUMPED; 2084 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2085 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2086 err = parent->d_op->d_hash(parent, &this); 2087 if (err < 0) 2088 return err; 2089 hash_len = this.hash_len; 2090 name = this.name; 2091 } 2092 } 2093 2094 nd->last.hash_len = hash_len; 2095 nd->last.name = name; 2096 nd->last_type = type; 2097 2098 name += hashlen_len(hash_len); 2099 if (!*name) 2100 goto OK; 2101 /* 2102 * If it wasn't NUL, we know it was '/'. Skip that 2103 * slash, and continue until no more slashes. 2104 */ 2105 do { 2106 name++; 2107 } while (unlikely(*name == '/')); 2108 if (unlikely(!*name)) { 2109 OK: 2110 /* pathname body, done */ 2111 if (!nd->depth) 2112 return 0; 2113 name = nd->stack[nd->depth - 1].name; 2114 /* trailing symlink, done */ 2115 if (!name) 2116 return 0; 2117 /* last component of nested symlink */ 2118 err = walk_component(nd, WALK_FOLLOW); 2119 } else { 2120 /* not the last component */ 2121 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2122 } 2123 if (err < 0) 2124 return err; 2125 2126 if (err) { 2127 const char *s = get_link(nd); 2128 2129 if (IS_ERR(s)) 2130 return PTR_ERR(s); 2131 err = 0; 2132 if (unlikely(!s)) { 2133 /* jumped */ 2134 put_link(nd); 2135 } else { 2136 nd->stack[nd->depth - 1].name = name; 2137 name = s; 2138 continue; 2139 } 2140 } 2141 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2142 if (nd->flags & LOOKUP_RCU) { 2143 if (unlazy_walk(nd)) 2144 return -ECHILD; 2145 } 2146 return -ENOTDIR; 2147 } 2148 } 2149 } 2150 2151 static const char *path_init(struct nameidata *nd, unsigned flags) 2152 { 2153 const char *s = nd->name->name; 2154 2155 if (!*s) 2156 flags &= ~LOOKUP_RCU; 2157 2158 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2159 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2160 nd->depth = 0; 2161 if (flags & LOOKUP_ROOT) { 2162 struct dentry *root = nd->root.dentry; 2163 struct inode *inode = root->d_inode; 2164 if (*s && unlikely(!d_can_lookup(root))) 2165 return ERR_PTR(-ENOTDIR); 2166 nd->path = nd->root; 2167 nd->inode = inode; 2168 if (flags & LOOKUP_RCU) { 2169 rcu_read_lock(); 2170 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2171 nd->root_seq = nd->seq; 2172 nd->m_seq = read_seqbegin(&mount_lock); 2173 } else { 2174 path_get(&nd->path); 2175 } 2176 return s; 2177 } 2178 2179 nd->root.mnt = NULL; 2180 nd->path.mnt = NULL; 2181 nd->path.dentry = NULL; 2182 2183 nd->m_seq = read_seqbegin(&mount_lock); 2184 if (*s == '/') { 2185 if (flags & LOOKUP_RCU) 2186 rcu_read_lock(); 2187 set_root(nd); 2188 if (likely(!nd_jump_root(nd))) 2189 return s; 2190 nd->root.mnt = NULL; 2191 rcu_read_unlock(); 2192 return ERR_PTR(-ECHILD); 2193 } else if (nd->dfd == AT_FDCWD) { 2194 if (flags & LOOKUP_RCU) { 2195 struct fs_struct *fs = current->fs; 2196 unsigned seq; 2197 2198 rcu_read_lock(); 2199 2200 do { 2201 seq = read_seqcount_begin(&fs->seq); 2202 nd->path = fs->pwd; 2203 nd->inode = nd->path.dentry->d_inode; 2204 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2205 } while (read_seqcount_retry(&fs->seq, seq)); 2206 } else { 2207 get_fs_pwd(current->fs, &nd->path); 2208 nd->inode = nd->path.dentry->d_inode; 2209 } 2210 return s; 2211 } else { 2212 /* Caller must check execute permissions on the starting path component */ 2213 struct fd f = fdget_raw(nd->dfd); 2214 struct dentry *dentry; 2215 2216 if (!f.file) 2217 return ERR_PTR(-EBADF); 2218 2219 dentry = f.file->f_path.dentry; 2220 2221 if (*s) { 2222 if (!d_can_lookup(dentry)) { 2223 fdput(f); 2224 return ERR_PTR(-ENOTDIR); 2225 } 2226 } 2227 2228 nd->path = f.file->f_path; 2229 if (flags & LOOKUP_RCU) { 2230 rcu_read_lock(); 2231 nd->inode = nd->path.dentry->d_inode; 2232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2233 } else { 2234 path_get(&nd->path); 2235 nd->inode = nd->path.dentry->d_inode; 2236 } 2237 fdput(f); 2238 return s; 2239 } 2240 } 2241 2242 static const char *trailing_symlink(struct nameidata *nd) 2243 { 2244 const char *s; 2245 int error = may_follow_link(nd); 2246 if (unlikely(error)) 2247 return ERR_PTR(error); 2248 nd->flags |= LOOKUP_PARENT; 2249 nd->stack[0].name = NULL; 2250 s = get_link(nd); 2251 return s ? s : ""; 2252 } 2253 2254 static inline int lookup_last(struct nameidata *nd) 2255 { 2256 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2258 2259 nd->flags &= ~LOOKUP_PARENT; 2260 return walk_component(nd, 0); 2261 } 2262 2263 static int handle_lookup_down(struct nameidata *nd) 2264 { 2265 struct path path = nd->path; 2266 struct inode *inode = nd->inode; 2267 unsigned seq = nd->seq; 2268 int err; 2269 2270 if (nd->flags & LOOKUP_RCU) { 2271 /* 2272 * don't bother with unlazy_walk on failure - we are 2273 * at the very beginning of walk, so we lose nothing 2274 * if we simply redo everything in non-RCU mode 2275 */ 2276 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2277 return -ECHILD; 2278 } else { 2279 dget(path.dentry); 2280 err = follow_managed(&path, nd); 2281 if (unlikely(err < 0)) 2282 return err; 2283 inode = d_backing_inode(path.dentry); 2284 seq = 0; 2285 } 2286 path_to_nameidata(&path, nd); 2287 nd->inode = inode; 2288 nd->seq = seq; 2289 return 0; 2290 } 2291 2292 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2293 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2294 { 2295 const char *s = path_init(nd, flags); 2296 int err; 2297 2298 if (IS_ERR(s)) 2299 return PTR_ERR(s); 2300 2301 if (unlikely(flags & LOOKUP_DOWN)) { 2302 err = handle_lookup_down(nd); 2303 if (unlikely(err < 0)) { 2304 terminate_walk(nd); 2305 return err; 2306 } 2307 } 2308 2309 while (!(err = link_path_walk(s, nd)) 2310 && ((err = lookup_last(nd)) > 0)) { 2311 s = trailing_symlink(nd); 2312 if (IS_ERR(s)) { 2313 err = PTR_ERR(s); 2314 break; 2315 } 2316 } 2317 if (!err) 2318 err = complete_walk(nd); 2319 2320 if (!err && nd->flags & LOOKUP_DIRECTORY) 2321 if (!d_can_lookup(nd->path.dentry)) 2322 err = -ENOTDIR; 2323 if (!err) { 2324 *path = nd->path; 2325 nd->path.mnt = NULL; 2326 nd->path.dentry = NULL; 2327 } 2328 terminate_walk(nd); 2329 return err; 2330 } 2331 2332 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2333 struct path *path, struct path *root) 2334 { 2335 int retval; 2336 struct nameidata nd; 2337 if (IS_ERR(name)) 2338 return PTR_ERR(name); 2339 if (unlikely(root)) { 2340 nd.root = *root; 2341 flags |= LOOKUP_ROOT; 2342 } 2343 set_nameidata(&nd, dfd, name); 2344 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2345 if (unlikely(retval == -ECHILD)) 2346 retval = path_lookupat(&nd, flags, path); 2347 if (unlikely(retval == -ESTALE)) 2348 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2349 2350 if (likely(!retval)) 2351 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2352 restore_nameidata(); 2353 putname(name); 2354 return retval; 2355 } 2356 2357 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2358 static int path_parentat(struct nameidata *nd, unsigned flags, 2359 struct path *parent) 2360 { 2361 const char *s = path_init(nd, flags); 2362 int err; 2363 if (IS_ERR(s)) 2364 return PTR_ERR(s); 2365 err = link_path_walk(s, nd); 2366 if (!err) 2367 err = complete_walk(nd); 2368 if (!err) { 2369 *parent = nd->path; 2370 nd->path.mnt = NULL; 2371 nd->path.dentry = NULL; 2372 } 2373 terminate_walk(nd); 2374 return err; 2375 } 2376 2377 static struct filename *filename_parentat(int dfd, struct filename *name, 2378 unsigned int flags, struct path *parent, 2379 struct qstr *last, int *type) 2380 { 2381 int retval; 2382 struct nameidata nd; 2383 2384 if (IS_ERR(name)) 2385 return name; 2386 set_nameidata(&nd, dfd, name); 2387 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2388 if (unlikely(retval == -ECHILD)) 2389 retval = path_parentat(&nd, flags, parent); 2390 if (unlikely(retval == -ESTALE)) 2391 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2392 if (likely(!retval)) { 2393 *last = nd.last; 2394 *type = nd.last_type; 2395 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2396 } else { 2397 putname(name); 2398 name = ERR_PTR(retval); 2399 } 2400 restore_nameidata(); 2401 return name; 2402 } 2403 2404 /* does lookup, returns the object with parent locked */ 2405 struct dentry *kern_path_locked(const char *name, struct path *path) 2406 { 2407 struct filename *filename; 2408 struct dentry *d; 2409 struct qstr last; 2410 int type; 2411 2412 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2413 &last, &type); 2414 if (IS_ERR(filename)) 2415 return ERR_CAST(filename); 2416 if (unlikely(type != LAST_NORM)) { 2417 path_put(path); 2418 putname(filename); 2419 return ERR_PTR(-EINVAL); 2420 } 2421 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2422 d = __lookup_hash(&last, path->dentry, 0); 2423 if (IS_ERR(d)) { 2424 inode_unlock(path->dentry->d_inode); 2425 path_put(path); 2426 } 2427 putname(filename); 2428 return d; 2429 } 2430 2431 int kern_path(const char *name, unsigned int flags, struct path *path) 2432 { 2433 return filename_lookup(AT_FDCWD, getname_kernel(name), 2434 flags, path, NULL); 2435 } 2436 EXPORT_SYMBOL(kern_path); 2437 2438 /** 2439 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2440 * @dentry: pointer to dentry of the base directory 2441 * @mnt: pointer to vfs mount of the base directory 2442 * @name: pointer to file name 2443 * @flags: lookup flags 2444 * @path: pointer to struct path to fill 2445 */ 2446 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2447 const char *name, unsigned int flags, 2448 struct path *path) 2449 { 2450 struct path root = {.mnt = mnt, .dentry = dentry}; 2451 /* the first argument of filename_lookup() is ignored with root */ 2452 return filename_lookup(AT_FDCWD, getname_kernel(name), 2453 flags , path, &root); 2454 } 2455 EXPORT_SYMBOL(vfs_path_lookup); 2456 2457 /** 2458 * lookup_one_len - filesystem helper to lookup single pathname component 2459 * @name: pathname component to lookup 2460 * @base: base directory to lookup from 2461 * @len: maximum length @len should be interpreted to 2462 * 2463 * Note that this routine is purely a helper for filesystem usage and should 2464 * not be called by generic code. 2465 * 2466 * The caller must hold base->i_mutex. 2467 */ 2468 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2469 { 2470 struct qstr this; 2471 unsigned int c; 2472 int err; 2473 2474 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2475 2476 this.name = name; 2477 this.len = len; 2478 this.hash = full_name_hash(base, name, len); 2479 if (!len) 2480 return ERR_PTR(-EACCES); 2481 2482 if (unlikely(name[0] == '.')) { 2483 if (len < 2 || (len == 2 && name[1] == '.')) 2484 return ERR_PTR(-EACCES); 2485 } 2486 2487 while (len--) { 2488 c = *(const unsigned char *)name++; 2489 if (c == '/' || c == '\0') 2490 return ERR_PTR(-EACCES); 2491 } 2492 /* 2493 * See if the low-level filesystem might want 2494 * to use its own hash.. 2495 */ 2496 if (base->d_flags & DCACHE_OP_HASH) { 2497 int err = base->d_op->d_hash(base, &this); 2498 if (err < 0) 2499 return ERR_PTR(err); 2500 } 2501 2502 err = inode_permission(base->d_inode, MAY_EXEC); 2503 if (err) 2504 return ERR_PTR(err); 2505 2506 return __lookup_hash(&this, base, 0); 2507 } 2508 EXPORT_SYMBOL(lookup_one_len); 2509 2510 /** 2511 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2512 * @name: pathname component to lookup 2513 * @base: base directory to lookup from 2514 * @len: maximum length @len should be interpreted to 2515 * 2516 * Note that this routine is purely a helper for filesystem usage and should 2517 * not be called by generic code. 2518 * 2519 * Unlike lookup_one_len, it should be called without the parent 2520 * i_mutex held, and will take the i_mutex itself if necessary. 2521 */ 2522 struct dentry *lookup_one_len_unlocked(const char *name, 2523 struct dentry *base, int len) 2524 { 2525 struct qstr this; 2526 unsigned int c; 2527 int err; 2528 struct dentry *ret; 2529 2530 this.name = name; 2531 this.len = len; 2532 this.hash = full_name_hash(base, name, len); 2533 if (!len) 2534 return ERR_PTR(-EACCES); 2535 2536 if (unlikely(name[0] == '.')) { 2537 if (len < 2 || (len == 2 && name[1] == '.')) 2538 return ERR_PTR(-EACCES); 2539 } 2540 2541 while (len--) { 2542 c = *(const unsigned char *)name++; 2543 if (c == '/' || c == '\0') 2544 return ERR_PTR(-EACCES); 2545 } 2546 /* 2547 * See if the low-level filesystem might want 2548 * to use its own hash.. 2549 */ 2550 if (base->d_flags & DCACHE_OP_HASH) { 2551 int err = base->d_op->d_hash(base, &this); 2552 if (err < 0) 2553 return ERR_PTR(err); 2554 } 2555 2556 err = inode_permission(base->d_inode, MAY_EXEC); 2557 if (err) 2558 return ERR_PTR(err); 2559 2560 ret = lookup_dcache(&this, base, 0); 2561 if (!ret) 2562 ret = lookup_slow(&this, base, 0); 2563 return ret; 2564 } 2565 EXPORT_SYMBOL(lookup_one_len_unlocked); 2566 2567 #ifdef CONFIG_UNIX98_PTYS 2568 int path_pts(struct path *path) 2569 { 2570 /* Find something mounted on "pts" in the same directory as 2571 * the input path. 2572 */ 2573 struct dentry *child, *parent; 2574 struct qstr this; 2575 int ret; 2576 2577 ret = path_parent_directory(path); 2578 if (ret) 2579 return ret; 2580 2581 parent = path->dentry; 2582 this.name = "pts"; 2583 this.len = 3; 2584 child = d_hash_and_lookup(parent, &this); 2585 if (!child) 2586 return -ENOENT; 2587 2588 path->dentry = child; 2589 dput(parent); 2590 follow_mount(path); 2591 return 0; 2592 } 2593 #endif 2594 2595 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2596 struct path *path, int *empty) 2597 { 2598 return filename_lookup(dfd, getname_flags(name, flags, empty), 2599 flags, path, NULL); 2600 } 2601 EXPORT_SYMBOL(user_path_at_empty); 2602 2603 /** 2604 * mountpoint_last - look up last component for umount 2605 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2606 * 2607 * This is a special lookup_last function just for umount. In this case, we 2608 * need to resolve the path without doing any revalidation. 2609 * 2610 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2611 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2612 * in almost all cases, this lookup will be served out of the dcache. The only 2613 * cases where it won't are if nd->last refers to a symlink or the path is 2614 * bogus and it doesn't exist. 2615 * 2616 * Returns: 2617 * -error: if there was an error during lookup. This includes -ENOENT if the 2618 * lookup found a negative dentry. 2619 * 2620 * 0: if we successfully resolved nd->last and found it to not to be a 2621 * symlink that needs to be followed. 2622 * 2623 * 1: if we successfully resolved nd->last and found it to be a symlink 2624 * that needs to be followed. 2625 */ 2626 static int 2627 mountpoint_last(struct nameidata *nd) 2628 { 2629 int error = 0; 2630 struct dentry *dir = nd->path.dentry; 2631 struct path path; 2632 2633 /* If we're in rcuwalk, drop out of it to handle last component */ 2634 if (nd->flags & LOOKUP_RCU) { 2635 if (unlazy_walk(nd)) 2636 return -ECHILD; 2637 } 2638 2639 nd->flags &= ~LOOKUP_PARENT; 2640 2641 if (unlikely(nd->last_type != LAST_NORM)) { 2642 error = handle_dots(nd, nd->last_type); 2643 if (error) 2644 return error; 2645 path.dentry = dget(nd->path.dentry); 2646 } else { 2647 path.dentry = d_lookup(dir, &nd->last); 2648 if (!path.dentry) { 2649 /* 2650 * No cached dentry. Mounted dentries are pinned in the 2651 * cache, so that means that this dentry is probably 2652 * a symlink or the path doesn't actually point 2653 * to a mounted dentry. 2654 */ 2655 path.dentry = lookup_slow(&nd->last, dir, 2656 nd->flags | LOOKUP_NO_REVAL); 2657 if (IS_ERR(path.dentry)) 2658 return PTR_ERR(path.dentry); 2659 } 2660 } 2661 if (d_is_negative(path.dentry)) { 2662 dput(path.dentry); 2663 return -ENOENT; 2664 } 2665 path.mnt = nd->path.mnt; 2666 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2667 } 2668 2669 /** 2670 * path_mountpoint - look up a path to be umounted 2671 * @nd: lookup context 2672 * @flags: lookup flags 2673 * @path: pointer to container for result 2674 * 2675 * Look up the given name, but don't attempt to revalidate the last component. 2676 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2677 */ 2678 static int 2679 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2680 { 2681 const char *s = path_init(nd, flags); 2682 int err; 2683 if (IS_ERR(s)) 2684 return PTR_ERR(s); 2685 while (!(err = link_path_walk(s, nd)) && 2686 (err = mountpoint_last(nd)) > 0) { 2687 s = trailing_symlink(nd); 2688 if (IS_ERR(s)) { 2689 err = PTR_ERR(s); 2690 break; 2691 } 2692 } 2693 if (!err) { 2694 *path = nd->path; 2695 nd->path.mnt = NULL; 2696 nd->path.dentry = NULL; 2697 follow_mount(path); 2698 } 2699 terminate_walk(nd); 2700 return err; 2701 } 2702 2703 static int 2704 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2705 unsigned int flags) 2706 { 2707 struct nameidata nd; 2708 int error; 2709 if (IS_ERR(name)) 2710 return PTR_ERR(name); 2711 set_nameidata(&nd, dfd, name); 2712 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2713 if (unlikely(error == -ECHILD)) 2714 error = path_mountpoint(&nd, flags, path); 2715 if (unlikely(error == -ESTALE)) 2716 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2717 if (likely(!error)) 2718 audit_inode(name, path->dentry, 0); 2719 restore_nameidata(); 2720 putname(name); 2721 return error; 2722 } 2723 2724 /** 2725 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2726 * @dfd: directory file descriptor 2727 * @name: pathname from userland 2728 * @flags: lookup flags 2729 * @path: pointer to container to hold result 2730 * 2731 * A umount is a special case for path walking. We're not actually interested 2732 * in the inode in this situation, and ESTALE errors can be a problem. We 2733 * simply want track down the dentry and vfsmount attached at the mountpoint 2734 * and avoid revalidating the last component. 2735 * 2736 * Returns 0 and populates "path" on success. 2737 */ 2738 int 2739 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2740 struct path *path) 2741 { 2742 return filename_mountpoint(dfd, getname(name), path, flags); 2743 } 2744 2745 int 2746 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2747 unsigned int flags) 2748 { 2749 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2750 } 2751 EXPORT_SYMBOL(kern_path_mountpoint); 2752 2753 int __check_sticky(struct inode *dir, struct inode *inode) 2754 { 2755 kuid_t fsuid = current_fsuid(); 2756 2757 if (uid_eq(inode->i_uid, fsuid)) 2758 return 0; 2759 if (uid_eq(dir->i_uid, fsuid)) 2760 return 0; 2761 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2762 } 2763 EXPORT_SYMBOL(__check_sticky); 2764 2765 /* 2766 * Check whether we can remove a link victim from directory dir, check 2767 * whether the type of victim is right. 2768 * 1. We can't do it if dir is read-only (done in permission()) 2769 * 2. We should have write and exec permissions on dir 2770 * 3. We can't remove anything from append-only dir 2771 * 4. We can't do anything with immutable dir (done in permission()) 2772 * 5. If the sticky bit on dir is set we should either 2773 * a. be owner of dir, or 2774 * b. be owner of victim, or 2775 * c. have CAP_FOWNER capability 2776 * 6. If the victim is append-only or immutable we can't do antyhing with 2777 * links pointing to it. 2778 * 7. If the victim has an unknown uid or gid we can't change the inode. 2779 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2780 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2781 * 10. We can't remove a root or mountpoint. 2782 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2783 * nfs_async_unlink(). 2784 */ 2785 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2786 { 2787 struct inode *inode = d_backing_inode(victim); 2788 int error; 2789 2790 if (d_is_negative(victim)) 2791 return -ENOENT; 2792 BUG_ON(!inode); 2793 2794 BUG_ON(victim->d_parent->d_inode != dir); 2795 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2796 2797 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2798 if (error) 2799 return error; 2800 if (IS_APPEND(dir)) 2801 return -EPERM; 2802 2803 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2804 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2805 return -EPERM; 2806 if (isdir) { 2807 if (!d_is_dir(victim)) 2808 return -ENOTDIR; 2809 if (IS_ROOT(victim)) 2810 return -EBUSY; 2811 } else if (d_is_dir(victim)) 2812 return -EISDIR; 2813 if (IS_DEADDIR(dir)) 2814 return -ENOENT; 2815 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2816 return -EBUSY; 2817 return 0; 2818 } 2819 2820 /* Check whether we can create an object with dentry child in directory 2821 * dir. 2822 * 1. We can't do it if child already exists (open has special treatment for 2823 * this case, but since we are inlined it's OK) 2824 * 2. We can't do it if dir is read-only (done in permission()) 2825 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2826 * 4. We should have write and exec permissions on dir 2827 * 5. We can't do it if dir is immutable (done in permission()) 2828 */ 2829 static inline int may_create(struct inode *dir, struct dentry *child) 2830 { 2831 struct user_namespace *s_user_ns; 2832 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2833 if (child->d_inode) 2834 return -EEXIST; 2835 if (IS_DEADDIR(dir)) 2836 return -ENOENT; 2837 s_user_ns = dir->i_sb->s_user_ns; 2838 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2839 !kgid_has_mapping(s_user_ns, current_fsgid())) 2840 return -EOVERFLOW; 2841 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2842 } 2843 2844 /* 2845 * p1 and p2 should be directories on the same fs. 2846 */ 2847 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2848 { 2849 struct dentry *p; 2850 2851 if (p1 == p2) { 2852 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2853 return NULL; 2854 } 2855 2856 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2857 2858 p = d_ancestor(p2, p1); 2859 if (p) { 2860 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2861 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2862 return p; 2863 } 2864 2865 p = d_ancestor(p1, p2); 2866 if (p) { 2867 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2868 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2869 return p; 2870 } 2871 2872 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2873 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2874 return NULL; 2875 } 2876 EXPORT_SYMBOL(lock_rename); 2877 2878 void unlock_rename(struct dentry *p1, struct dentry *p2) 2879 { 2880 inode_unlock(p1->d_inode); 2881 if (p1 != p2) { 2882 inode_unlock(p2->d_inode); 2883 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2884 } 2885 } 2886 EXPORT_SYMBOL(unlock_rename); 2887 2888 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2889 bool want_excl) 2890 { 2891 int error = may_create(dir, dentry); 2892 if (error) 2893 return error; 2894 2895 if (!dir->i_op->create) 2896 return -EACCES; /* shouldn't it be ENOSYS? */ 2897 mode &= S_IALLUGO; 2898 mode |= S_IFREG; 2899 error = security_inode_create(dir, dentry, mode); 2900 if (error) 2901 return error; 2902 error = dir->i_op->create(dir, dentry, mode, want_excl); 2903 if (!error) 2904 fsnotify_create(dir, dentry); 2905 return error; 2906 } 2907 EXPORT_SYMBOL(vfs_create); 2908 2909 bool may_open_dev(const struct path *path) 2910 { 2911 return !(path->mnt->mnt_flags & MNT_NODEV) && 2912 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2913 } 2914 2915 static int may_open(const struct path *path, int acc_mode, int flag) 2916 { 2917 struct dentry *dentry = path->dentry; 2918 struct inode *inode = dentry->d_inode; 2919 int error; 2920 2921 if (!inode) 2922 return -ENOENT; 2923 2924 switch (inode->i_mode & S_IFMT) { 2925 case S_IFLNK: 2926 return -ELOOP; 2927 case S_IFDIR: 2928 if (acc_mode & MAY_WRITE) 2929 return -EISDIR; 2930 break; 2931 case S_IFBLK: 2932 case S_IFCHR: 2933 if (!may_open_dev(path)) 2934 return -EACCES; 2935 /*FALLTHRU*/ 2936 case S_IFIFO: 2937 case S_IFSOCK: 2938 flag &= ~O_TRUNC; 2939 break; 2940 } 2941 2942 error = inode_permission(inode, MAY_OPEN | acc_mode); 2943 if (error) 2944 return error; 2945 2946 /* 2947 * An append-only file must be opened in append mode for writing. 2948 */ 2949 if (IS_APPEND(inode)) { 2950 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2951 return -EPERM; 2952 if (flag & O_TRUNC) 2953 return -EPERM; 2954 } 2955 2956 /* O_NOATIME can only be set by the owner or superuser */ 2957 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2958 return -EPERM; 2959 2960 return 0; 2961 } 2962 2963 static int handle_truncate(struct file *filp) 2964 { 2965 const struct path *path = &filp->f_path; 2966 struct inode *inode = path->dentry->d_inode; 2967 int error = get_write_access(inode); 2968 if (error) 2969 return error; 2970 /* 2971 * Refuse to truncate files with mandatory locks held on them. 2972 */ 2973 error = locks_verify_locked(filp); 2974 if (!error) 2975 error = security_path_truncate(path); 2976 if (!error) { 2977 error = do_truncate(path->dentry, 0, 2978 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2979 filp); 2980 } 2981 put_write_access(inode); 2982 return error; 2983 } 2984 2985 static inline int open_to_namei_flags(int flag) 2986 { 2987 if ((flag & O_ACCMODE) == 3) 2988 flag--; 2989 return flag; 2990 } 2991 2992 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2993 { 2994 struct user_namespace *s_user_ns; 2995 int error = security_path_mknod(dir, dentry, mode, 0); 2996 if (error) 2997 return error; 2998 2999 s_user_ns = dir->dentry->d_sb->s_user_ns; 3000 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 3001 !kgid_has_mapping(s_user_ns, current_fsgid())) 3002 return -EOVERFLOW; 3003 3004 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 3005 if (error) 3006 return error; 3007 3008 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3009 } 3010 3011 /* 3012 * Attempt to atomically look up, create and open a file from a negative 3013 * dentry. 3014 * 3015 * Returns 0 if successful. The file will have been created and attached to 3016 * @file by the filesystem calling finish_open(). 3017 * 3018 * Returns 1 if the file was looked up only or didn't need creating. The 3019 * caller will need to perform the open themselves. @path will have been 3020 * updated to point to the new dentry. This may be negative. 3021 * 3022 * Returns an error code otherwise. 3023 */ 3024 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3025 struct path *path, struct file *file, 3026 const struct open_flags *op, 3027 int open_flag, umode_t mode, 3028 int *opened) 3029 { 3030 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3031 struct inode *dir = nd->path.dentry->d_inode; 3032 int error; 3033 3034 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3035 open_flag &= ~O_TRUNC; 3036 3037 if (nd->flags & LOOKUP_DIRECTORY) 3038 open_flag |= O_DIRECTORY; 3039 3040 file->f_path.dentry = DENTRY_NOT_SET; 3041 file->f_path.mnt = nd->path.mnt; 3042 error = dir->i_op->atomic_open(dir, dentry, file, 3043 open_to_namei_flags(open_flag), 3044 mode, opened); 3045 d_lookup_done(dentry); 3046 if (!error) { 3047 /* 3048 * We didn't have the inode before the open, so check open 3049 * permission here. 3050 */ 3051 int acc_mode = op->acc_mode; 3052 if (*opened & FILE_CREATED) { 3053 WARN_ON(!(open_flag & O_CREAT)); 3054 fsnotify_create(dir, dentry); 3055 acc_mode = 0; 3056 } 3057 error = may_open(&file->f_path, acc_mode, open_flag); 3058 if (WARN_ON(error > 0)) 3059 error = -EINVAL; 3060 } else if (error > 0) { 3061 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3062 error = -EIO; 3063 } else { 3064 if (file->f_path.dentry) { 3065 dput(dentry); 3066 dentry = file->f_path.dentry; 3067 } 3068 if (*opened & FILE_CREATED) 3069 fsnotify_create(dir, dentry); 3070 if (unlikely(d_is_negative(dentry))) { 3071 error = -ENOENT; 3072 } else { 3073 path->dentry = dentry; 3074 path->mnt = nd->path.mnt; 3075 return 1; 3076 } 3077 } 3078 } 3079 dput(dentry); 3080 return error; 3081 } 3082 3083 /* 3084 * Look up and maybe create and open the last component. 3085 * 3086 * Must be called with i_mutex held on parent. 3087 * 3088 * Returns 0 if the file was successfully atomically created (if necessary) and 3089 * opened. In this case the file will be returned attached to @file. 3090 * 3091 * Returns 1 if the file was not completely opened at this time, though lookups 3092 * and creations will have been performed and the dentry returned in @path will 3093 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3094 * specified then a negative dentry may be returned. 3095 * 3096 * An error code is returned otherwise. 3097 * 3098 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3099 * cleared otherwise prior to returning. 3100 */ 3101 static int lookup_open(struct nameidata *nd, struct path *path, 3102 struct file *file, 3103 const struct open_flags *op, 3104 bool got_write, int *opened) 3105 { 3106 struct dentry *dir = nd->path.dentry; 3107 struct inode *dir_inode = dir->d_inode; 3108 int open_flag = op->open_flag; 3109 struct dentry *dentry; 3110 int error, create_error = 0; 3111 umode_t mode = op->mode; 3112 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3113 3114 if (unlikely(IS_DEADDIR(dir_inode))) 3115 return -ENOENT; 3116 3117 *opened &= ~FILE_CREATED; 3118 dentry = d_lookup(dir, &nd->last); 3119 for (;;) { 3120 if (!dentry) { 3121 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3122 if (IS_ERR(dentry)) 3123 return PTR_ERR(dentry); 3124 } 3125 if (d_in_lookup(dentry)) 3126 break; 3127 3128 error = d_revalidate(dentry, nd->flags); 3129 if (likely(error > 0)) 3130 break; 3131 if (error) 3132 goto out_dput; 3133 d_invalidate(dentry); 3134 dput(dentry); 3135 dentry = NULL; 3136 } 3137 if (dentry->d_inode) { 3138 /* Cached positive dentry: will open in f_op->open */ 3139 goto out_no_open; 3140 } 3141 3142 /* 3143 * Checking write permission is tricky, bacuse we don't know if we are 3144 * going to actually need it: O_CREAT opens should work as long as the 3145 * file exists. But checking existence breaks atomicity. The trick is 3146 * to check access and if not granted clear O_CREAT from the flags. 3147 * 3148 * Another problem is returing the "right" error value (e.g. for an 3149 * O_EXCL open we want to return EEXIST not EROFS). 3150 */ 3151 if (open_flag & O_CREAT) { 3152 if (!IS_POSIXACL(dir->d_inode)) 3153 mode &= ~current_umask(); 3154 if (unlikely(!got_write)) { 3155 create_error = -EROFS; 3156 open_flag &= ~O_CREAT; 3157 if (open_flag & (O_EXCL | O_TRUNC)) 3158 goto no_open; 3159 /* No side effects, safe to clear O_CREAT */ 3160 } else { 3161 create_error = may_o_create(&nd->path, dentry, mode); 3162 if (create_error) { 3163 open_flag &= ~O_CREAT; 3164 if (open_flag & O_EXCL) 3165 goto no_open; 3166 } 3167 } 3168 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3169 unlikely(!got_write)) { 3170 /* 3171 * No O_CREATE -> atomicity not a requirement -> fall 3172 * back to lookup + open 3173 */ 3174 goto no_open; 3175 } 3176 3177 if (dir_inode->i_op->atomic_open) { 3178 error = atomic_open(nd, dentry, path, file, op, open_flag, 3179 mode, opened); 3180 if (unlikely(error == -ENOENT) && create_error) 3181 error = create_error; 3182 return error; 3183 } 3184 3185 no_open: 3186 if (d_in_lookup(dentry)) { 3187 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3188 nd->flags); 3189 d_lookup_done(dentry); 3190 if (unlikely(res)) { 3191 if (IS_ERR(res)) { 3192 error = PTR_ERR(res); 3193 goto out_dput; 3194 } 3195 dput(dentry); 3196 dentry = res; 3197 } 3198 } 3199 3200 /* Negative dentry, just create the file */ 3201 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3202 *opened |= FILE_CREATED; 3203 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3204 if (!dir_inode->i_op->create) { 3205 error = -EACCES; 3206 goto out_dput; 3207 } 3208 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3209 open_flag & O_EXCL); 3210 if (error) 3211 goto out_dput; 3212 fsnotify_create(dir_inode, dentry); 3213 } 3214 if (unlikely(create_error) && !dentry->d_inode) { 3215 error = create_error; 3216 goto out_dput; 3217 } 3218 out_no_open: 3219 path->dentry = dentry; 3220 path->mnt = nd->path.mnt; 3221 return 1; 3222 3223 out_dput: 3224 dput(dentry); 3225 return error; 3226 } 3227 3228 /* 3229 * Handle the last step of open() 3230 */ 3231 static int do_last(struct nameidata *nd, 3232 struct file *file, const struct open_flags *op, 3233 int *opened) 3234 { 3235 struct dentry *dir = nd->path.dentry; 3236 int open_flag = op->open_flag; 3237 bool will_truncate = (open_flag & O_TRUNC) != 0; 3238 bool got_write = false; 3239 int acc_mode = op->acc_mode; 3240 unsigned seq; 3241 struct inode *inode; 3242 struct path path; 3243 int error; 3244 3245 nd->flags &= ~LOOKUP_PARENT; 3246 nd->flags |= op->intent; 3247 3248 if (nd->last_type != LAST_NORM) { 3249 error = handle_dots(nd, nd->last_type); 3250 if (unlikely(error)) 3251 return error; 3252 goto finish_open; 3253 } 3254 3255 if (!(open_flag & O_CREAT)) { 3256 if (nd->last.name[nd->last.len]) 3257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3258 /* we _can_ be in RCU mode here */ 3259 error = lookup_fast(nd, &path, &inode, &seq); 3260 if (likely(error > 0)) 3261 goto finish_lookup; 3262 3263 if (error < 0) 3264 return error; 3265 3266 BUG_ON(nd->inode != dir->d_inode); 3267 BUG_ON(nd->flags & LOOKUP_RCU); 3268 } else { 3269 /* create side of things */ 3270 /* 3271 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3272 * has been cleared when we got to the last component we are 3273 * about to look up 3274 */ 3275 error = complete_walk(nd); 3276 if (error) 3277 return error; 3278 3279 audit_inode(nd->name, dir, LOOKUP_PARENT); 3280 /* trailing slashes? */ 3281 if (unlikely(nd->last.name[nd->last.len])) 3282 return -EISDIR; 3283 } 3284 3285 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3286 error = mnt_want_write(nd->path.mnt); 3287 if (!error) 3288 got_write = true; 3289 /* 3290 * do _not_ fail yet - we might not need that or fail with 3291 * a different error; let lookup_open() decide; we'll be 3292 * dropping this one anyway. 3293 */ 3294 } 3295 if (open_flag & O_CREAT) 3296 inode_lock(dir->d_inode); 3297 else 3298 inode_lock_shared(dir->d_inode); 3299 error = lookup_open(nd, &path, file, op, got_write, opened); 3300 if (open_flag & O_CREAT) 3301 inode_unlock(dir->d_inode); 3302 else 3303 inode_unlock_shared(dir->d_inode); 3304 3305 if (error <= 0) { 3306 if (error) 3307 goto out; 3308 3309 if ((*opened & FILE_CREATED) || 3310 !S_ISREG(file_inode(file)->i_mode)) 3311 will_truncate = false; 3312 3313 audit_inode(nd->name, file->f_path.dentry, 0); 3314 goto opened; 3315 } 3316 3317 if (*opened & FILE_CREATED) { 3318 /* Don't check for write permission, don't truncate */ 3319 open_flag &= ~O_TRUNC; 3320 will_truncate = false; 3321 acc_mode = 0; 3322 path_to_nameidata(&path, nd); 3323 goto finish_open_created; 3324 } 3325 3326 /* 3327 * If atomic_open() acquired write access it is dropped now due to 3328 * possible mount and symlink following (this might be optimized away if 3329 * necessary...) 3330 */ 3331 if (got_write) { 3332 mnt_drop_write(nd->path.mnt); 3333 got_write = false; 3334 } 3335 3336 error = follow_managed(&path, nd); 3337 if (unlikely(error < 0)) 3338 return error; 3339 3340 if (unlikely(d_is_negative(path.dentry))) { 3341 path_to_nameidata(&path, nd); 3342 return -ENOENT; 3343 } 3344 3345 /* 3346 * create/update audit record if it already exists. 3347 */ 3348 audit_inode(nd->name, path.dentry, 0); 3349 3350 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3351 path_to_nameidata(&path, nd); 3352 return -EEXIST; 3353 } 3354 3355 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3356 inode = d_backing_inode(path.dentry); 3357 finish_lookup: 3358 error = step_into(nd, &path, 0, inode, seq); 3359 if (unlikely(error)) 3360 return error; 3361 finish_open: 3362 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3363 error = complete_walk(nd); 3364 if (error) 3365 return error; 3366 audit_inode(nd->name, nd->path.dentry, 0); 3367 error = -EISDIR; 3368 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3369 goto out; 3370 error = -ENOTDIR; 3371 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3372 goto out; 3373 if (!d_is_reg(nd->path.dentry)) 3374 will_truncate = false; 3375 3376 if (will_truncate) { 3377 error = mnt_want_write(nd->path.mnt); 3378 if (error) 3379 goto out; 3380 got_write = true; 3381 } 3382 finish_open_created: 3383 error = may_open(&nd->path, acc_mode, open_flag); 3384 if (error) 3385 goto out; 3386 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3387 error = vfs_open(&nd->path, file, current_cred()); 3388 if (error) 3389 goto out; 3390 *opened |= FILE_OPENED; 3391 opened: 3392 error = open_check_o_direct(file); 3393 if (!error) 3394 error = ima_file_check(file, op->acc_mode, *opened); 3395 if (!error && will_truncate) 3396 error = handle_truncate(file); 3397 out: 3398 if (unlikely(error) && (*opened & FILE_OPENED)) 3399 fput(file); 3400 if (unlikely(error > 0)) { 3401 WARN_ON(1); 3402 error = -EINVAL; 3403 } 3404 if (got_write) 3405 mnt_drop_write(nd->path.mnt); 3406 return error; 3407 } 3408 3409 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3410 { 3411 struct dentry *child = NULL; 3412 struct inode *dir = dentry->d_inode; 3413 struct inode *inode; 3414 int error; 3415 3416 /* we want directory to be writable */ 3417 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3418 if (error) 3419 goto out_err; 3420 error = -EOPNOTSUPP; 3421 if (!dir->i_op->tmpfile) 3422 goto out_err; 3423 error = -ENOMEM; 3424 child = d_alloc(dentry, &slash_name); 3425 if (unlikely(!child)) 3426 goto out_err; 3427 error = dir->i_op->tmpfile(dir, child, mode); 3428 if (error) 3429 goto out_err; 3430 error = -ENOENT; 3431 inode = child->d_inode; 3432 if (unlikely(!inode)) 3433 goto out_err; 3434 if (!(open_flag & O_EXCL)) { 3435 spin_lock(&inode->i_lock); 3436 inode->i_state |= I_LINKABLE; 3437 spin_unlock(&inode->i_lock); 3438 } 3439 return child; 3440 3441 out_err: 3442 dput(child); 3443 return ERR_PTR(error); 3444 } 3445 EXPORT_SYMBOL(vfs_tmpfile); 3446 3447 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3448 const struct open_flags *op, 3449 struct file *file, int *opened) 3450 { 3451 struct dentry *child; 3452 struct path path; 3453 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3454 if (unlikely(error)) 3455 return error; 3456 error = mnt_want_write(path.mnt); 3457 if (unlikely(error)) 3458 goto out; 3459 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3460 error = PTR_ERR(child); 3461 if (unlikely(IS_ERR(child))) 3462 goto out2; 3463 dput(path.dentry); 3464 path.dentry = child; 3465 audit_inode(nd->name, child, 0); 3466 /* Don't check for other permissions, the inode was just created */ 3467 error = may_open(&path, 0, op->open_flag); 3468 if (error) 3469 goto out2; 3470 file->f_path.mnt = path.mnt; 3471 error = finish_open(file, child, NULL, opened); 3472 if (error) 3473 goto out2; 3474 error = open_check_o_direct(file); 3475 if (error) 3476 fput(file); 3477 out2: 3478 mnt_drop_write(path.mnt); 3479 out: 3480 path_put(&path); 3481 return error; 3482 } 3483 3484 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3485 { 3486 struct path path; 3487 int error = path_lookupat(nd, flags, &path); 3488 if (!error) { 3489 audit_inode(nd->name, path.dentry, 0); 3490 error = vfs_open(&path, file, current_cred()); 3491 path_put(&path); 3492 } 3493 return error; 3494 } 3495 3496 static struct file *path_openat(struct nameidata *nd, 3497 const struct open_flags *op, unsigned flags) 3498 { 3499 const char *s; 3500 struct file *file; 3501 int opened = 0; 3502 int error; 3503 3504 file = get_empty_filp(); 3505 if (IS_ERR(file)) 3506 return file; 3507 3508 file->f_flags = op->open_flag; 3509 3510 if (unlikely(file->f_flags & __O_TMPFILE)) { 3511 error = do_tmpfile(nd, flags, op, file, &opened); 3512 goto out2; 3513 } 3514 3515 if (unlikely(file->f_flags & O_PATH)) { 3516 error = do_o_path(nd, flags, file); 3517 if (!error) 3518 opened |= FILE_OPENED; 3519 goto out2; 3520 } 3521 3522 s = path_init(nd, flags); 3523 if (IS_ERR(s)) { 3524 put_filp(file); 3525 return ERR_CAST(s); 3526 } 3527 while (!(error = link_path_walk(s, nd)) && 3528 (error = do_last(nd, file, op, &opened)) > 0) { 3529 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3530 s = trailing_symlink(nd); 3531 if (IS_ERR(s)) { 3532 error = PTR_ERR(s); 3533 break; 3534 } 3535 } 3536 terminate_walk(nd); 3537 out2: 3538 if (!(opened & FILE_OPENED)) { 3539 BUG_ON(!error); 3540 put_filp(file); 3541 } 3542 if (unlikely(error)) { 3543 if (error == -EOPENSTALE) { 3544 if (flags & LOOKUP_RCU) 3545 error = -ECHILD; 3546 else 3547 error = -ESTALE; 3548 } 3549 file = ERR_PTR(error); 3550 } 3551 return file; 3552 } 3553 3554 struct file *do_filp_open(int dfd, struct filename *pathname, 3555 const struct open_flags *op) 3556 { 3557 struct nameidata nd; 3558 int flags = op->lookup_flags; 3559 struct file *filp; 3560 3561 set_nameidata(&nd, dfd, pathname); 3562 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3563 if (unlikely(filp == ERR_PTR(-ECHILD))) 3564 filp = path_openat(&nd, op, flags); 3565 if (unlikely(filp == ERR_PTR(-ESTALE))) 3566 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3567 restore_nameidata(); 3568 return filp; 3569 } 3570 3571 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3572 const char *name, const struct open_flags *op) 3573 { 3574 struct nameidata nd; 3575 struct file *file; 3576 struct filename *filename; 3577 int flags = op->lookup_flags | LOOKUP_ROOT; 3578 3579 nd.root.mnt = mnt; 3580 nd.root.dentry = dentry; 3581 3582 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3583 return ERR_PTR(-ELOOP); 3584 3585 filename = getname_kernel(name); 3586 if (IS_ERR(filename)) 3587 return ERR_CAST(filename); 3588 3589 set_nameidata(&nd, -1, filename); 3590 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3591 if (unlikely(file == ERR_PTR(-ECHILD))) 3592 file = path_openat(&nd, op, flags); 3593 if (unlikely(file == ERR_PTR(-ESTALE))) 3594 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3595 restore_nameidata(); 3596 putname(filename); 3597 return file; 3598 } 3599 3600 static struct dentry *filename_create(int dfd, struct filename *name, 3601 struct path *path, unsigned int lookup_flags) 3602 { 3603 struct dentry *dentry = ERR_PTR(-EEXIST); 3604 struct qstr last; 3605 int type; 3606 int err2; 3607 int error; 3608 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3609 3610 /* 3611 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3612 * other flags passed in are ignored! 3613 */ 3614 lookup_flags &= LOOKUP_REVAL; 3615 3616 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3617 if (IS_ERR(name)) 3618 return ERR_CAST(name); 3619 3620 /* 3621 * Yucky last component or no last component at all? 3622 * (foo/., foo/.., /////) 3623 */ 3624 if (unlikely(type != LAST_NORM)) 3625 goto out; 3626 3627 /* don't fail immediately if it's r/o, at least try to report other errors */ 3628 err2 = mnt_want_write(path->mnt); 3629 /* 3630 * Do the final lookup. 3631 */ 3632 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3633 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3634 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3635 if (IS_ERR(dentry)) 3636 goto unlock; 3637 3638 error = -EEXIST; 3639 if (d_is_positive(dentry)) 3640 goto fail; 3641 3642 /* 3643 * Special case - lookup gave negative, but... we had foo/bar/ 3644 * From the vfs_mknod() POV we just have a negative dentry - 3645 * all is fine. Let's be bastards - you had / on the end, you've 3646 * been asking for (non-existent) directory. -ENOENT for you. 3647 */ 3648 if (unlikely(!is_dir && last.name[last.len])) { 3649 error = -ENOENT; 3650 goto fail; 3651 } 3652 if (unlikely(err2)) { 3653 error = err2; 3654 goto fail; 3655 } 3656 putname(name); 3657 return dentry; 3658 fail: 3659 dput(dentry); 3660 dentry = ERR_PTR(error); 3661 unlock: 3662 inode_unlock(path->dentry->d_inode); 3663 if (!err2) 3664 mnt_drop_write(path->mnt); 3665 out: 3666 path_put(path); 3667 putname(name); 3668 return dentry; 3669 } 3670 3671 struct dentry *kern_path_create(int dfd, const char *pathname, 3672 struct path *path, unsigned int lookup_flags) 3673 { 3674 return filename_create(dfd, getname_kernel(pathname), 3675 path, lookup_flags); 3676 } 3677 EXPORT_SYMBOL(kern_path_create); 3678 3679 void done_path_create(struct path *path, struct dentry *dentry) 3680 { 3681 dput(dentry); 3682 inode_unlock(path->dentry->d_inode); 3683 mnt_drop_write(path->mnt); 3684 path_put(path); 3685 } 3686 EXPORT_SYMBOL(done_path_create); 3687 3688 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3689 struct path *path, unsigned int lookup_flags) 3690 { 3691 return filename_create(dfd, getname(pathname), path, lookup_flags); 3692 } 3693 EXPORT_SYMBOL(user_path_create); 3694 3695 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3696 { 3697 int error = may_create(dir, dentry); 3698 3699 if (error) 3700 return error; 3701 3702 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3703 return -EPERM; 3704 3705 if (!dir->i_op->mknod) 3706 return -EPERM; 3707 3708 error = devcgroup_inode_mknod(mode, dev); 3709 if (error) 3710 return error; 3711 3712 error = security_inode_mknod(dir, dentry, mode, dev); 3713 if (error) 3714 return error; 3715 3716 error = dir->i_op->mknod(dir, dentry, mode, dev); 3717 if (!error) 3718 fsnotify_create(dir, dentry); 3719 return error; 3720 } 3721 EXPORT_SYMBOL(vfs_mknod); 3722 3723 static int may_mknod(umode_t mode) 3724 { 3725 switch (mode & S_IFMT) { 3726 case S_IFREG: 3727 case S_IFCHR: 3728 case S_IFBLK: 3729 case S_IFIFO: 3730 case S_IFSOCK: 3731 case 0: /* zero mode translates to S_IFREG */ 3732 return 0; 3733 case S_IFDIR: 3734 return -EPERM; 3735 default: 3736 return -EINVAL; 3737 } 3738 } 3739 3740 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3741 unsigned, dev) 3742 { 3743 struct dentry *dentry; 3744 struct path path; 3745 int error; 3746 unsigned int lookup_flags = 0; 3747 3748 error = may_mknod(mode); 3749 if (error) 3750 return error; 3751 retry: 3752 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3753 if (IS_ERR(dentry)) 3754 return PTR_ERR(dentry); 3755 3756 if (!IS_POSIXACL(path.dentry->d_inode)) 3757 mode &= ~current_umask(); 3758 error = security_path_mknod(&path, dentry, mode, dev); 3759 if (error) 3760 goto out; 3761 switch (mode & S_IFMT) { 3762 case 0: case S_IFREG: 3763 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3764 if (!error) 3765 ima_post_path_mknod(dentry); 3766 break; 3767 case S_IFCHR: case S_IFBLK: 3768 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3769 new_decode_dev(dev)); 3770 break; 3771 case S_IFIFO: case S_IFSOCK: 3772 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3773 break; 3774 } 3775 out: 3776 done_path_create(&path, dentry); 3777 if (retry_estale(error, lookup_flags)) { 3778 lookup_flags |= LOOKUP_REVAL; 3779 goto retry; 3780 } 3781 return error; 3782 } 3783 3784 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3785 { 3786 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3787 } 3788 3789 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3790 { 3791 int error = may_create(dir, dentry); 3792 unsigned max_links = dir->i_sb->s_max_links; 3793 3794 if (error) 3795 return error; 3796 3797 if (!dir->i_op->mkdir) 3798 return -EPERM; 3799 3800 mode &= (S_IRWXUGO|S_ISVTX); 3801 error = security_inode_mkdir(dir, dentry, mode); 3802 if (error) 3803 return error; 3804 3805 if (max_links && dir->i_nlink >= max_links) 3806 return -EMLINK; 3807 3808 error = dir->i_op->mkdir(dir, dentry, mode); 3809 if (!error) 3810 fsnotify_mkdir(dir, dentry); 3811 return error; 3812 } 3813 EXPORT_SYMBOL(vfs_mkdir); 3814 3815 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3816 { 3817 struct dentry *dentry; 3818 struct path path; 3819 int error; 3820 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3821 3822 retry: 3823 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3824 if (IS_ERR(dentry)) 3825 return PTR_ERR(dentry); 3826 3827 if (!IS_POSIXACL(path.dentry->d_inode)) 3828 mode &= ~current_umask(); 3829 error = security_path_mkdir(&path, dentry, mode); 3830 if (!error) 3831 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3832 done_path_create(&path, dentry); 3833 if (retry_estale(error, lookup_flags)) { 3834 lookup_flags |= LOOKUP_REVAL; 3835 goto retry; 3836 } 3837 return error; 3838 } 3839 3840 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3841 { 3842 return sys_mkdirat(AT_FDCWD, pathname, mode); 3843 } 3844 3845 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3846 { 3847 int error = may_delete(dir, dentry, 1); 3848 3849 if (error) 3850 return error; 3851 3852 if (!dir->i_op->rmdir) 3853 return -EPERM; 3854 3855 dget(dentry); 3856 inode_lock(dentry->d_inode); 3857 3858 error = -EBUSY; 3859 if (is_local_mountpoint(dentry)) 3860 goto out; 3861 3862 error = security_inode_rmdir(dir, dentry); 3863 if (error) 3864 goto out; 3865 3866 shrink_dcache_parent(dentry); 3867 error = dir->i_op->rmdir(dir, dentry); 3868 if (error) 3869 goto out; 3870 3871 dentry->d_inode->i_flags |= S_DEAD; 3872 dont_mount(dentry); 3873 detach_mounts(dentry); 3874 3875 out: 3876 inode_unlock(dentry->d_inode); 3877 dput(dentry); 3878 if (!error) 3879 d_delete(dentry); 3880 return error; 3881 } 3882 EXPORT_SYMBOL(vfs_rmdir); 3883 3884 static long do_rmdir(int dfd, const char __user *pathname) 3885 { 3886 int error = 0; 3887 struct filename *name; 3888 struct dentry *dentry; 3889 struct path path; 3890 struct qstr last; 3891 int type; 3892 unsigned int lookup_flags = 0; 3893 retry: 3894 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3895 &path, &last, &type); 3896 if (IS_ERR(name)) 3897 return PTR_ERR(name); 3898 3899 switch (type) { 3900 case LAST_DOTDOT: 3901 error = -ENOTEMPTY; 3902 goto exit1; 3903 case LAST_DOT: 3904 error = -EINVAL; 3905 goto exit1; 3906 case LAST_ROOT: 3907 error = -EBUSY; 3908 goto exit1; 3909 } 3910 3911 error = mnt_want_write(path.mnt); 3912 if (error) 3913 goto exit1; 3914 3915 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3916 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3917 error = PTR_ERR(dentry); 3918 if (IS_ERR(dentry)) 3919 goto exit2; 3920 if (!dentry->d_inode) { 3921 error = -ENOENT; 3922 goto exit3; 3923 } 3924 error = security_path_rmdir(&path, dentry); 3925 if (error) 3926 goto exit3; 3927 error = vfs_rmdir(path.dentry->d_inode, dentry); 3928 exit3: 3929 dput(dentry); 3930 exit2: 3931 inode_unlock(path.dentry->d_inode); 3932 mnt_drop_write(path.mnt); 3933 exit1: 3934 path_put(&path); 3935 putname(name); 3936 if (retry_estale(error, lookup_flags)) { 3937 lookup_flags |= LOOKUP_REVAL; 3938 goto retry; 3939 } 3940 return error; 3941 } 3942 3943 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3944 { 3945 return do_rmdir(AT_FDCWD, pathname); 3946 } 3947 3948 /** 3949 * vfs_unlink - unlink a filesystem object 3950 * @dir: parent directory 3951 * @dentry: victim 3952 * @delegated_inode: returns victim inode, if the inode is delegated. 3953 * 3954 * The caller must hold dir->i_mutex. 3955 * 3956 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3957 * return a reference to the inode in delegated_inode. The caller 3958 * should then break the delegation on that inode and retry. Because 3959 * breaking a delegation may take a long time, the caller should drop 3960 * dir->i_mutex before doing so. 3961 * 3962 * Alternatively, a caller may pass NULL for delegated_inode. This may 3963 * be appropriate for callers that expect the underlying filesystem not 3964 * to be NFS exported. 3965 */ 3966 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3967 { 3968 struct inode *target = dentry->d_inode; 3969 int error = may_delete(dir, dentry, 0); 3970 3971 if (error) 3972 return error; 3973 3974 if (!dir->i_op->unlink) 3975 return -EPERM; 3976 3977 inode_lock(target); 3978 if (is_local_mountpoint(dentry)) 3979 error = -EBUSY; 3980 else { 3981 error = security_inode_unlink(dir, dentry); 3982 if (!error) { 3983 error = try_break_deleg(target, delegated_inode); 3984 if (error) 3985 goto out; 3986 error = dir->i_op->unlink(dir, dentry); 3987 if (!error) { 3988 dont_mount(dentry); 3989 detach_mounts(dentry); 3990 } 3991 } 3992 } 3993 out: 3994 inode_unlock(target); 3995 3996 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3997 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3998 fsnotify_link_count(target); 3999 d_delete(dentry); 4000 } 4001 4002 return error; 4003 } 4004 EXPORT_SYMBOL(vfs_unlink); 4005 4006 /* 4007 * Make sure that the actual truncation of the file will occur outside its 4008 * directory's i_mutex. Truncate can take a long time if there is a lot of 4009 * writeout happening, and we don't want to prevent access to the directory 4010 * while waiting on the I/O. 4011 */ 4012 static long do_unlinkat(int dfd, const char __user *pathname) 4013 { 4014 int error; 4015 struct filename *name; 4016 struct dentry *dentry; 4017 struct path path; 4018 struct qstr last; 4019 int type; 4020 struct inode *inode = NULL; 4021 struct inode *delegated_inode = NULL; 4022 unsigned int lookup_flags = 0; 4023 retry: 4024 name = filename_parentat(dfd, getname(pathname), lookup_flags, 4025 &path, &last, &type); 4026 if (IS_ERR(name)) 4027 return PTR_ERR(name); 4028 4029 error = -EISDIR; 4030 if (type != LAST_NORM) 4031 goto exit1; 4032 4033 error = mnt_want_write(path.mnt); 4034 if (error) 4035 goto exit1; 4036 retry_deleg: 4037 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4038 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4039 error = PTR_ERR(dentry); 4040 if (!IS_ERR(dentry)) { 4041 /* Why not before? Because we want correct error value */ 4042 if (last.name[last.len]) 4043 goto slashes; 4044 inode = dentry->d_inode; 4045 if (d_is_negative(dentry)) 4046 goto slashes; 4047 ihold(inode); 4048 error = security_path_unlink(&path, dentry); 4049 if (error) 4050 goto exit2; 4051 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4052 exit2: 4053 dput(dentry); 4054 } 4055 inode_unlock(path.dentry->d_inode); 4056 if (inode) 4057 iput(inode); /* truncate the inode here */ 4058 inode = NULL; 4059 if (delegated_inode) { 4060 error = break_deleg_wait(&delegated_inode); 4061 if (!error) 4062 goto retry_deleg; 4063 } 4064 mnt_drop_write(path.mnt); 4065 exit1: 4066 path_put(&path); 4067 putname(name); 4068 if (retry_estale(error, lookup_flags)) { 4069 lookup_flags |= LOOKUP_REVAL; 4070 inode = NULL; 4071 goto retry; 4072 } 4073 return error; 4074 4075 slashes: 4076 if (d_is_negative(dentry)) 4077 error = -ENOENT; 4078 else if (d_is_dir(dentry)) 4079 error = -EISDIR; 4080 else 4081 error = -ENOTDIR; 4082 goto exit2; 4083 } 4084 4085 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4086 { 4087 if ((flag & ~AT_REMOVEDIR) != 0) 4088 return -EINVAL; 4089 4090 if (flag & AT_REMOVEDIR) 4091 return do_rmdir(dfd, pathname); 4092 4093 return do_unlinkat(dfd, pathname); 4094 } 4095 4096 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4097 { 4098 return do_unlinkat(AT_FDCWD, pathname); 4099 } 4100 4101 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4102 { 4103 int error = may_create(dir, dentry); 4104 4105 if (error) 4106 return error; 4107 4108 if (!dir->i_op->symlink) 4109 return -EPERM; 4110 4111 error = security_inode_symlink(dir, dentry, oldname); 4112 if (error) 4113 return error; 4114 4115 error = dir->i_op->symlink(dir, dentry, oldname); 4116 if (!error) 4117 fsnotify_create(dir, dentry); 4118 return error; 4119 } 4120 EXPORT_SYMBOL(vfs_symlink); 4121 4122 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4123 int, newdfd, const char __user *, newname) 4124 { 4125 int error; 4126 struct filename *from; 4127 struct dentry *dentry; 4128 struct path path; 4129 unsigned int lookup_flags = 0; 4130 4131 from = getname(oldname); 4132 if (IS_ERR(from)) 4133 return PTR_ERR(from); 4134 retry: 4135 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4136 error = PTR_ERR(dentry); 4137 if (IS_ERR(dentry)) 4138 goto out_putname; 4139 4140 error = security_path_symlink(&path, dentry, from->name); 4141 if (!error) 4142 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4143 done_path_create(&path, dentry); 4144 if (retry_estale(error, lookup_flags)) { 4145 lookup_flags |= LOOKUP_REVAL; 4146 goto retry; 4147 } 4148 out_putname: 4149 putname(from); 4150 return error; 4151 } 4152 4153 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4154 { 4155 return sys_symlinkat(oldname, AT_FDCWD, newname); 4156 } 4157 4158 /** 4159 * vfs_link - create a new link 4160 * @old_dentry: object to be linked 4161 * @dir: new parent 4162 * @new_dentry: where to create the new link 4163 * @delegated_inode: returns inode needing a delegation break 4164 * 4165 * The caller must hold dir->i_mutex 4166 * 4167 * If vfs_link discovers a delegation on the to-be-linked file in need 4168 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4169 * inode in delegated_inode. The caller should then break the delegation 4170 * and retry. Because breaking a delegation may take a long time, the 4171 * caller should drop the i_mutex before doing so. 4172 * 4173 * Alternatively, a caller may pass NULL for delegated_inode. This may 4174 * be appropriate for callers that expect the underlying filesystem not 4175 * to be NFS exported. 4176 */ 4177 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4178 { 4179 struct inode *inode = old_dentry->d_inode; 4180 unsigned max_links = dir->i_sb->s_max_links; 4181 int error; 4182 4183 if (!inode) 4184 return -ENOENT; 4185 4186 error = may_create(dir, new_dentry); 4187 if (error) 4188 return error; 4189 4190 if (dir->i_sb != inode->i_sb) 4191 return -EXDEV; 4192 4193 /* 4194 * A link to an append-only or immutable file cannot be created. 4195 */ 4196 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4197 return -EPERM; 4198 /* 4199 * Updating the link count will likely cause i_uid and i_gid to 4200 * be writen back improperly if their true value is unknown to 4201 * the vfs. 4202 */ 4203 if (HAS_UNMAPPED_ID(inode)) 4204 return -EPERM; 4205 if (!dir->i_op->link) 4206 return -EPERM; 4207 if (S_ISDIR(inode->i_mode)) 4208 return -EPERM; 4209 4210 error = security_inode_link(old_dentry, dir, new_dentry); 4211 if (error) 4212 return error; 4213 4214 inode_lock(inode); 4215 /* Make sure we don't allow creating hardlink to an unlinked file */ 4216 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4217 error = -ENOENT; 4218 else if (max_links && inode->i_nlink >= max_links) 4219 error = -EMLINK; 4220 else { 4221 error = try_break_deleg(inode, delegated_inode); 4222 if (!error) 4223 error = dir->i_op->link(old_dentry, dir, new_dentry); 4224 } 4225 4226 if (!error && (inode->i_state & I_LINKABLE)) { 4227 spin_lock(&inode->i_lock); 4228 inode->i_state &= ~I_LINKABLE; 4229 spin_unlock(&inode->i_lock); 4230 } 4231 inode_unlock(inode); 4232 if (!error) 4233 fsnotify_link(dir, inode, new_dentry); 4234 return error; 4235 } 4236 EXPORT_SYMBOL(vfs_link); 4237 4238 /* 4239 * Hardlinks are often used in delicate situations. We avoid 4240 * security-related surprises by not following symlinks on the 4241 * newname. --KAB 4242 * 4243 * We don't follow them on the oldname either to be compatible 4244 * with linux 2.0, and to avoid hard-linking to directories 4245 * and other special files. --ADM 4246 */ 4247 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4248 int, newdfd, const char __user *, newname, int, flags) 4249 { 4250 struct dentry *new_dentry; 4251 struct path old_path, new_path; 4252 struct inode *delegated_inode = NULL; 4253 int how = 0; 4254 int error; 4255 4256 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4257 return -EINVAL; 4258 /* 4259 * To use null names we require CAP_DAC_READ_SEARCH 4260 * This ensures that not everyone will be able to create 4261 * handlink using the passed filedescriptor. 4262 */ 4263 if (flags & AT_EMPTY_PATH) { 4264 if (!capable(CAP_DAC_READ_SEARCH)) 4265 return -ENOENT; 4266 how = LOOKUP_EMPTY; 4267 } 4268 4269 if (flags & AT_SYMLINK_FOLLOW) 4270 how |= LOOKUP_FOLLOW; 4271 retry: 4272 error = user_path_at(olddfd, oldname, how, &old_path); 4273 if (error) 4274 return error; 4275 4276 new_dentry = user_path_create(newdfd, newname, &new_path, 4277 (how & LOOKUP_REVAL)); 4278 error = PTR_ERR(new_dentry); 4279 if (IS_ERR(new_dentry)) 4280 goto out; 4281 4282 error = -EXDEV; 4283 if (old_path.mnt != new_path.mnt) 4284 goto out_dput; 4285 error = may_linkat(&old_path); 4286 if (unlikely(error)) 4287 goto out_dput; 4288 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4289 if (error) 4290 goto out_dput; 4291 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4292 out_dput: 4293 done_path_create(&new_path, new_dentry); 4294 if (delegated_inode) { 4295 error = break_deleg_wait(&delegated_inode); 4296 if (!error) { 4297 path_put(&old_path); 4298 goto retry; 4299 } 4300 } 4301 if (retry_estale(error, how)) { 4302 path_put(&old_path); 4303 how |= LOOKUP_REVAL; 4304 goto retry; 4305 } 4306 out: 4307 path_put(&old_path); 4308 4309 return error; 4310 } 4311 4312 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4313 { 4314 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4315 } 4316 4317 /** 4318 * vfs_rename - rename a filesystem object 4319 * @old_dir: parent of source 4320 * @old_dentry: source 4321 * @new_dir: parent of destination 4322 * @new_dentry: destination 4323 * @delegated_inode: returns an inode needing a delegation break 4324 * @flags: rename flags 4325 * 4326 * The caller must hold multiple mutexes--see lock_rename()). 4327 * 4328 * If vfs_rename discovers a delegation in need of breaking at either 4329 * the source or destination, it will return -EWOULDBLOCK and return a 4330 * reference to the inode in delegated_inode. The caller should then 4331 * break the delegation and retry. Because breaking a delegation may 4332 * take a long time, the caller should drop all locks before doing 4333 * so. 4334 * 4335 * Alternatively, a caller may pass NULL for delegated_inode. This may 4336 * be appropriate for callers that expect the underlying filesystem not 4337 * to be NFS exported. 4338 * 4339 * The worst of all namespace operations - renaming directory. "Perverted" 4340 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4341 * Problems: 4342 * 4343 * a) we can get into loop creation. 4344 * b) race potential - two innocent renames can create a loop together. 4345 * That's where 4.4 screws up. Current fix: serialization on 4346 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4347 * story. 4348 * c) we have to lock _four_ objects - parents and victim (if it exists), 4349 * and source (if it is not a directory). 4350 * And that - after we got ->i_mutex on parents (until then we don't know 4351 * whether the target exists). Solution: try to be smart with locking 4352 * order for inodes. We rely on the fact that tree topology may change 4353 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4354 * move will be locked. Thus we can rank directories by the tree 4355 * (ancestors first) and rank all non-directories after them. 4356 * That works since everybody except rename does "lock parent, lookup, 4357 * lock child" and rename is under ->s_vfs_rename_mutex. 4358 * HOWEVER, it relies on the assumption that any object with ->lookup() 4359 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4360 * we'd better make sure that there's no link(2) for them. 4361 * d) conversion from fhandle to dentry may come in the wrong moment - when 4362 * we are removing the target. Solution: we will have to grab ->i_mutex 4363 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4364 * ->i_mutex on parents, which works but leads to some truly excessive 4365 * locking]. 4366 */ 4367 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4368 struct inode *new_dir, struct dentry *new_dentry, 4369 struct inode **delegated_inode, unsigned int flags) 4370 { 4371 int error; 4372 bool is_dir = d_is_dir(old_dentry); 4373 struct inode *source = old_dentry->d_inode; 4374 struct inode *target = new_dentry->d_inode; 4375 bool new_is_dir = false; 4376 unsigned max_links = new_dir->i_sb->s_max_links; 4377 struct name_snapshot old_name; 4378 4379 if (source == target) 4380 return 0; 4381 4382 error = may_delete(old_dir, old_dentry, is_dir); 4383 if (error) 4384 return error; 4385 4386 if (!target) { 4387 error = may_create(new_dir, new_dentry); 4388 } else { 4389 new_is_dir = d_is_dir(new_dentry); 4390 4391 if (!(flags & RENAME_EXCHANGE)) 4392 error = may_delete(new_dir, new_dentry, is_dir); 4393 else 4394 error = may_delete(new_dir, new_dentry, new_is_dir); 4395 } 4396 if (error) 4397 return error; 4398 4399 if (!old_dir->i_op->rename) 4400 return -EPERM; 4401 4402 /* 4403 * If we are going to change the parent - check write permissions, 4404 * we'll need to flip '..'. 4405 */ 4406 if (new_dir != old_dir) { 4407 if (is_dir) { 4408 error = inode_permission(source, MAY_WRITE); 4409 if (error) 4410 return error; 4411 } 4412 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4413 error = inode_permission(target, MAY_WRITE); 4414 if (error) 4415 return error; 4416 } 4417 } 4418 4419 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4420 flags); 4421 if (error) 4422 return error; 4423 4424 take_dentry_name_snapshot(&old_name, old_dentry); 4425 dget(new_dentry); 4426 if (!is_dir || (flags & RENAME_EXCHANGE)) 4427 lock_two_nondirectories(source, target); 4428 else if (target) 4429 inode_lock(target); 4430 4431 error = -EBUSY; 4432 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4433 goto out; 4434 4435 if (max_links && new_dir != old_dir) { 4436 error = -EMLINK; 4437 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4438 goto out; 4439 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4440 old_dir->i_nlink >= max_links) 4441 goto out; 4442 } 4443 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4444 shrink_dcache_parent(new_dentry); 4445 if (!is_dir) { 4446 error = try_break_deleg(source, delegated_inode); 4447 if (error) 4448 goto out; 4449 } 4450 if (target && !new_is_dir) { 4451 error = try_break_deleg(target, delegated_inode); 4452 if (error) 4453 goto out; 4454 } 4455 error = old_dir->i_op->rename(old_dir, old_dentry, 4456 new_dir, new_dentry, flags); 4457 if (error) 4458 goto out; 4459 4460 if (!(flags & RENAME_EXCHANGE) && target) { 4461 if (is_dir) 4462 target->i_flags |= S_DEAD; 4463 dont_mount(new_dentry); 4464 detach_mounts(new_dentry); 4465 } 4466 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4467 if (!(flags & RENAME_EXCHANGE)) 4468 d_move(old_dentry, new_dentry); 4469 else 4470 d_exchange(old_dentry, new_dentry); 4471 } 4472 out: 4473 if (!is_dir || (flags & RENAME_EXCHANGE)) 4474 unlock_two_nondirectories(source, target); 4475 else if (target) 4476 inode_unlock(target); 4477 dput(new_dentry); 4478 if (!error) { 4479 fsnotify_move(old_dir, new_dir, old_name.name, is_dir, 4480 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4481 if (flags & RENAME_EXCHANGE) { 4482 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4483 new_is_dir, NULL, new_dentry); 4484 } 4485 } 4486 release_dentry_name_snapshot(&old_name); 4487 4488 return error; 4489 } 4490 EXPORT_SYMBOL(vfs_rename); 4491 4492 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4493 int, newdfd, const char __user *, newname, unsigned int, flags) 4494 { 4495 struct dentry *old_dentry, *new_dentry; 4496 struct dentry *trap; 4497 struct path old_path, new_path; 4498 struct qstr old_last, new_last; 4499 int old_type, new_type; 4500 struct inode *delegated_inode = NULL; 4501 struct filename *from; 4502 struct filename *to; 4503 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4504 bool should_retry = false; 4505 int error; 4506 4507 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4508 return -EINVAL; 4509 4510 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4511 (flags & RENAME_EXCHANGE)) 4512 return -EINVAL; 4513 4514 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4515 return -EPERM; 4516 4517 if (flags & RENAME_EXCHANGE) 4518 target_flags = 0; 4519 4520 retry: 4521 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4522 &old_path, &old_last, &old_type); 4523 if (IS_ERR(from)) { 4524 error = PTR_ERR(from); 4525 goto exit; 4526 } 4527 4528 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4529 &new_path, &new_last, &new_type); 4530 if (IS_ERR(to)) { 4531 error = PTR_ERR(to); 4532 goto exit1; 4533 } 4534 4535 error = -EXDEV; 4536 if (old_path.mnt != new_path.mnt) 4537 goto exit2; 4538 4539 error = -EBUSY; 4540 if (old_type != LAST_NORM) 4541 goto exit2; 4542 4543 if (flags & RENAME_NOREPLACE) 4544 error = -EEXIST; 4545 if (new_type != LAST_NORM) 4546 goto exit2; 4547 4548 error = mnt_want_write(old_path.mnt); 4549 if (error) 4550 goto exit2; 4551 4552 retry_deleg: 4553 trap = lock_rename(new_path.dentry, old_path.dentry); 4554 4555 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4556 error = PTR_ERR(old_dentry); 4557 if (IS_ERR(old_dentry)) 4558 goto exit3; 4559 /* source must exist */ 4560 error = -ENOENT; 4561 if (d_is_negative(old_dentry)) 4562 goto exit4; 4563 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4564 error = PTR_ERR(new_dentry); 4565 if (IS_ERR(new_dentry)) 4566 goto exit4; 4567 error = -EEXIST; 4568 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4569 goto exit5; 4570 if (flags & RENAME_EXCHANGE) { 4571 error = -ENOENT; 4572 if (d_is_negative(new_dentry)) 4573 goto exit5; 4574 4575 if (!d_is_dir(new_dentry)) { 4576 error = -ENOTDIR; 4577 if (new_last.name[new_last.len]) 4578 goto exit5; 4579 } 4580 } 4581 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4582 if (!d_is_dir(old_dentry)) { 4583 error = -ENOTDIR; 4584 if (old_last.name[old_last.len]) 4585 goto exit5; 4586 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4587 goto exit5; 4588 } 4589 /* source should not be ancestor of target */ 4590 error = -EINVAL; 4591 if (old_dentry == trap) 4592 goto exit5; 4593 /* target should not be an ancestor of source */ 4594 if (!(flags & RENAME_EXCHANGE)) 4595 error = -ENOTEMPTY; 4596 if (new_dentry == trap) 4597 goto exit5; 4598 4599 error = security_path_rename(&old_path, old_dentry, 4600 &new_path, new_dentry, flags); 4601 if (error) 4602 goto exit5; 4603 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4604 new_path.dentry->d_inode, new_dentry, 4605 &delegated_inode, flags); 4606 exit5: 4607 dput(new_dentry); 4608 exit4: 4609 dput(old_dentry); 4610 exit3: 4611 unlock_rename(new_path.dentry, old_path.dentry); 4612 if (delegated_inode) { 4613 error = break_deleg_wait(&delegated_inode); 4614 if (!error) 4615 goto retry_deleg; 4616 } 4617 mnt_drop_write(old_path.mnt); 4618 exit2: 4619 if (retry_estale(error, lookup_flags)) 4620 should_retry = true; 4621 path_put(&new_path); 4622 putname(to); 4623 exit1: 4624 path_put(&old_path); 4625 putname(from); 4626 if (should_retry) { 4627 should_retry = false; 4628 lookup_flags |= LOOKUP_REVAL; 4629 goto retry; 4630 } 4631 exit: 4632 return error; 4633 } 4634 4635 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4636 int, newdfd, const char __user *, newname) 4637 { 4638 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4639 } 4640 4641 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4642 { 4643 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4644 } 4645 4646 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4647 { 4648 int error = may_create(dir, dentry); 4649 if (error) 4650 return error; 4651 4652 if (!dir->i_op->mknod) 4653 return -EPERM; 4654 4655 return dir->i_op->mknod(dir, dentry, 4656 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4657 } 4658 EXPORT_SYMBOL(vfs_whiteout); 4659 4660 int readlink_copy(char __user *buffer, int buflen, const char *link) 4661 { 4662 int len = PTR_ERR(link); 4663 if (IS_ERR(link)) 4664 goto out; 4665 4666 len = strlen(link); 4667 if (len > (unsigned) buflen) 4668 len = buflen; 4669 if (copy_to_user(buffer, link, len)) 4670 len = -EFAULT; 4671 out: 4672 return len; 4673 } 4674 4675 /* 4676 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4677 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4678 * for any given inode is up to filesystem. 4679 */ 4680 static int generic_readlink(struct dentry *dentry, char __user *buffer, 4681 int buflen) 4682 { 4683 DEFINE_DELAYED_CALL(done); 4684 struct inode *inode = d_inode(dentry); 4685 const char *link = inode->i_link; 4686 int res; 4687 4688 if (!link) { 4689 link = inode->i_op->get_link(dentry, inode, &done); 4690 if (IS_ERR(link)) 4691 return PTR_ERR(link); 4692 } 4693 res = readlink_copy(buffer, buflen, link); 4694 do_delayed_call(&done); 4695 return res; 4696 } 4697 4698 /** 4699 * vfs_readlink - copy symlink body into userspace buffer 4700 * @dentry: dentry on which to get symbolic link 4701 * @buffer: user memory pointer 4702 * @buflen: size of buffer 4703 * 4704 * Does not touch atime. That's up to the caller if necessary 4705 * 4706 * Does not call security hook. 4707 */ 4708 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4709 { 4710 struct inode *inode = d_inode(dentry); 4711 4712 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4713 if (unlikely(inode->i_op->readlink)) 4714 return inode->i_op->readlink(dentry, buffer, buflen); 4715 4716 if (!d_is_symlink(dentry)) 4717 return -EINVAL; 4718 4719 spin_lock(&inode->i_lock); 4720 inode->i_opflags |= IOP_DEFAULT_READLINK; 4721 spin_unlock(&inode->i_lock); 4722 } 4723 4724 return generic_readlink(dentry, buffer, buflen); 4725 } 4726 EXPORT_SYMBOL(vfs_readlink); 4727 4728 /** 4729 * vfs_get_link - get symlink body 4730 * @dentry: dentry on which to get symbolic link 4731 * @done: caller needs to free returned data with this 4732 * 4733 * Calls security hook and i_op->get_link() on the supplied inode. 4734 * 4735 * It does not touch atime. That's up to the caller if necessary. 4736 * 4737 * Does not work on "special" symlinks like /proc/$$/fd/N 4738 */ 4739 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4740 { 4741 const char *res = ERR_PTR(-EINVAL); 4742 struct inode *inode = d_inode(dentry); 4743 4744 if (d_is_symlink(dentry)) { 4745 res = ERR_PTR(security_inode_readlink(dentry)); 4746 if (!res) 4747 res = inode->i_op->get_link(dentry, inode, done); 4748 } 4749 return res; 4750 } 4751 EXPORT_SYMBOL(vfs_get_link); 4752 4753 /* get the link contents into pagecache */ 4754 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4755 struct delayed_call *callback) 4756 { 4757 char *kaddr; 4758 struct page *page; 4759 struct address_space *mapping = inode->i_mapping; 4760 4761 if (!dentry) { 4762 page = find_get_page(mapping, 0); 4763 if (!page) 4764 return ERR_PTR(-ECHILD); 4765 if (!PageUptodate(page)) { 4766 put_page(page); 4767 return ERR_PTR(-ECHILD); 4768 } 4769 } else { 4770 page = read_mapping_page(mapping, 0, NULL); 4771 if (IS_ERR(page)) 4772 return (char*)page; 4773 } 4774 set_delayed_call(callback, page_put_link, page); 4775 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4776 kaddr = page_address(page); 4777 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4778 return kaddr; 4779 } 4780 4781 EXPORT_SYMBOL(page_get_link); 4782 4783 void page_put_link(void *arg) 4784 { 4785 put_page(arg); 4786 } 4787 EXPORT_SYMBOL(page_put_link); 4788 4789 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4790 { 4791 DEFINE_DELAYED_CALL(done); 4792 int res = readlink_copy(buffer, buflen, 4793 page_get_link(dentry, d_inode(dentry), 4794 &done)); 4795 do_delayed_call(&done); 4796 return res; 4797 } 4798 EXPORT_SYMBOL(page_readlink); 4799 4800 /* 4801 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4802 */ 4803 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4804 { 4805 struct address_space *mapping = inode->i_mapping; 4806 struct page *page; 4807 void *fsdata; 4808 int err; 4809 unsigned int flags = 0; 4810 if (nofs) 4811 flags |= AOP_FLAG_NOFS; 4812 4813 retry: 4814 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4815 flags, &page, &fsdata); 4816 if (err) 4817 goto fail; 4818 4819 memcpy(page_address(page), symname, len-1); 4820 4821 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4822 page, fsdata); 4823 if (err < 0) 4824 goto fail; 4825 if (err < len-1) 4826 goto retry; 4827 4828 mark_inode_dirty(inode); 4829 return 0; 4830 fail: 4831 return err; 4832 } 4833 EXPORT_SYMBOL(__page_symlink); 4834 4835 int page_symlink(struct inode *inode, const char *symname, int len) 4836 { 4837 return __page_symlink(inode, symname, len, 4838 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4839 } 4840 EXPORT_SYMBOL(page_symlink); 4841 4842 const struct inode_operations page_symlink_inode_operations = { 4843 .get_link = page_get_link, 4844 }; 4845 EXPORT_SYMBOL(page_symlink_inode_operations); 4846