1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 void final_putname(struct filename *name) 122 { 123 if (name->separate) { 124 __putname(name->name); 125 kfree(name); 126 } else { 127 __putname(name); 128 } 129 } 130 131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 132 133 static struct filename * 134 getname_flags(const char __user *filename, int flags, int *empty) 135 { 136 struct filename *result, *err; 137 int len; 138 long max; 139 char *kname; 140 141 result = audit_reusename(filename); 142 if (result) 143 return result; 144 145 result = __getname(); 146 if (unlikely(!result)) 147 return ERR_PTR(-ENOMEM); 148 149 /* 150 * First, try to embed the struct filename inside the names_cache 151 * allocation 152 */ 153 kname = (char *)result + sizeof(*result); 154 result->name = kname; 155 result->separate = false; 156 max = EMBEDDED_NAME_MAX; 157 158 recopy: 159 len = strncpy_from_user(kname, filename, max); 160 if (unlikely(len < 0)) { 161 err = ERR_PTR(len); 162 goto error; 163 } 164 165 /* 166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 167 * separate struct filename so we can dedicate the entire 168 * names_cache allocation for the pathname, and re-do the copy from 169 * userland. 170 */ 171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 172 kname = (char *)result; 173 174 result = kzalloc(sizeof(*result), GFP_KERNEL); 175 if (!result) { 176 err = ERR_PTR(-ENOMEM); 177 result = (struct filename *)kname; 178 goto error; 179 } 180 result->name = kname; 181 result->separate = true; 182 max = PATH_MAX; 183 goto recopy; 184 } 185 186 /* The empty path is special. */ 187 if (unlikely(!len)) { 188 if (empty) 189 *empty = 1; 190 err = ERR_PTR(-ENOENT); 191 if (!(flags & LOOKUP_EMPTY)) 192 goto error; 193 } 194 195 err = ERR_PTR(-ENAMETOOLONG); 196 if (unlikely(len >= PATH_MAX)) 197 goto error; 198 199 result->uptr = filename; 200 result->aname = NULL; 201 audit_getname(result); 202 return result; 203 204 error: 205 final_putname(result); 206 return err; 207 } 208 209 struct filename * 210 getname(const char __user * filename) 211 { 212 return getname_flags(filename, 0, NULL); 213 } 214 215 /* 216 * The "getname_kernel()" interface doesn't do pathnames longer 217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user. 218 */ 219 struct filename * 220 getname_kernel(const char * filename) 221 { 222 struct filename *result; 223 char *kname; 224 int len; 225 226 len = strlen(filename); 227 if (len >= EMBEDDED_NAME_MAX) 228 return ERR_PTR(-ENAMETOOLONG); 229 230 result = __getname(); 231 if (unlikely(!result)) 232 return ERR_PTR(-ENOMEM); 233 234 kname = (char *)result + sizeof(*result); 235 result->name = kname; 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->separate = false; 239 240 strlcpy(kname, filename, EMBEDDED_NAME_MAX); 241 return result; 242 } 243 244 #ifdef CONFIG_AUDITSYSCALL 245 void putname(struct filename *name) 246 { 247 if (unlikely(!audit_dummy_context())) 248 return audit_putname(name); 249 final_putname(name); 250 } 251 #endif 252 253 static int check_acl(struct inode *inode, int mask) 254 { 255 #ifdef CONFIG_FS_POSIX_ACL 256 struct posix_acl *acl; 257 258 if (mask & MAY_NOT_BLOCK) { 259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 260 if (!acl) 261 return -EAGAIN; 262 /* no ->get_acl() calls in RCU mode... */ 263 if (acl == ACL_NOT_CACHED) 264 return -ECHILD; 265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 266 } 267 268 acl = get_acl(inode, ACL_TYPE_ACCESS); 269 if (IS_ERR(acl)) 270 return PTR_ERR(acl); 271 if (acl) { 272 int error = posix_acl_permission(inode, acl, mask); 273 posix_acl_release(acl); 274 return error; 275 } 276 #endif 277 278 return -EAGAIN; 279 } 280 281 /* 282 * This does the basic permission checking 283 */ 284 static int acl_permission_check(struct inode *inode, int mask) 285 { 286 unsigned int mode = inode->i_mode; 287 288 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 289 mode >>= 6; 290 else { 291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 292 int error = check_acl(inode, mask); 293 if (error != -EAGAIN) 294 return error; 295 } 296 297 if (in_group_p(inode->i_gid)) 298 mode >>= 3; 299 } 300 301 /* 302 * If the DACs are ok we don't need any capability check. 303 */ 304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 305 return 0; 306 return -EACCES; 307 } 308 309 /** 310 * generic_permission - check for access rights on a Posix-like filesystem 311 * @inode: inode to check access rights for 312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 313 * 314 * Used to check for read/write/execute permissions on a file. 315 * We use "fsuid" for this, letting us set arbitrary permissions 316 * for filesystem access without changing the "normal" uids which 317 * are used for other things. 318 * 319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 320 * request cannot be satisfied (eg. requires blocking or too much complexity). 321 * It would then be called again in ref-walk mode. 322 */ 323 int generic_permission(struct inode *inode, int mask) 324 { 325 int ret; 326 327 /* 328 * Do the basic permission checks. 329 */ 330 ret = acl_permission_check(inode, mask); 331 if (ret != -EACCES) 332 return ret; 333 334 if (S_ISDIR(inode->i_mode)) { 335 /* DACs are overridable for directories */ 336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 337 return 0; 338 if (!(mask & MAY_WRITE)) 339 if (capable_wrt_inode_uidgid(inode, 340 CAP_DAC_READ_SEARCH)) 341 return 0; 342 return -EACCES; 343 } 344 /* 345 * Read/write DACs are always overridable. 346 * Executable DACs are overridable when there is 347 * at least one exec bit set. 348 */ 349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 351 return 0; 352 353 /* 354 * Searching includes executable on directories, else just read. 355 */ 356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 357 if (mask == MAY_READ) 358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 359 return 0; 360 361 return -EACCES; 362 } 363 EXPORT_SYMBOL(generic_permission); 364 365 /* 366 * We _really_ want to just do "generic_permission()" without 367 * even looking at the inode->i_op values. So we keep a cache 368 * flag in inode->i_opflags, that says "this has not special 369 * permission function, use the fast case". 370 */ 371 static inline int do_inode_permission(struct inode *inode, int mask) 372 { 373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 374 if (likely(inode->i_op->permission)) 375 return inode->i_op->permission(inode, mask); 376 377 /* This gets set once for the inode lifetime */ 378 spin_lock(&inode->i_lock); 379 inode->i_opflags |= IOP_FASTPERM; 380 spin_unlock(&inode->i_lock); 381 } 382 return generic_permission(inode, mask); 383 } 384 385 /** 386 * __inode_permission - Check for access rights to a given inode 387 * @inode: Inode to check permission on 388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 389 * 390 * Check for read/write/execute permissions on an inode. 391 * 392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 393 * 394 * This does not check for a read-only file system. You probably want 395 * inode_permission(). 396 */ 397 int __inode_permission(struct inode *inode, int mask) 398 { 399 int retval; 400 401 if (unlikely(mask & MAY_WRITE)) { 402 /* 403 * Nobody gets write access to an immutable file. 404 */ 405 if (IS_IMMUTABLE(inode)) 406 return -EACCES; 407 } 408 409 retval = do_inode_permission(inode, mask); 410 if (retval) 411 return retval; 412 413 retval = devcgroup_inode_permission(inode, mask); 414 if (retval) 415 return retval; 416 417 return security_inode_permission(inode, mask); 418 } 419 EXPORT_SYMBOL(__inode_permission); 420 421 /** 422 * sb_permission - Check superblock-level permissions 423 * @sb: Superblock of inode to check permission on 424 * @inode: Inode to check permission on 425 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 426 * 427 * Separate out file-system wide checks from inode-specific permission checks. 428 */ 429 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 430 { 431 if (unlikely(mask & MAY_WRITE)) { 432 umode_t mode = inode->i_mode; 433 434 /* Nobody gets write access to a read-only fs. */ 435 if ((sb->s_flags & MS_RDONLY) && 436 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 437 return -EROFS; 438 } 439 return 0; 440 } 441 442 /** 443 * inode_permission - Check for access rights to a given inode 444 * @inode: Inode to check permission on 445 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 446 * 447 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 448 * this, letting us set arbitrary permissions for filesystem access without 449 * changing the "normal" UIDs which are used for other things. 450 * 451 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 452 */ 453 int inode_permission(struct inode *inode, int mask) 454 { 455 int retval; 456 457 retval = sb_permission(inode->i_sb, inode, mask); 458 if (retval) 459 return retval; 460 return __inode_permission(inode, mask); 461 } 462 EXPORT_SYMBOL(inode_permission); 463 464 /** 465 * path_get - get a reference to a path 466 * @path: path to get the reference to 467 * 468 * Given a path increment the reference count to the dentry and the vfsmount. 469 */ 470 void path_get(const struct path *path) 471 { 472 mntget(path->mnt); 473 dget(path->dentry); 474 } 475 EXPORT_SYMBOL(path_get); 476 477 /** 478 * path_put - put a reference to a path 479 * @path: path to put the reference to 480 * 481 * Given a path decrement the reference count to the dentry and the vfsmount. 482 */ 483 void path_put(const struct path *path) 484 { 485 dput(path->dentry); 486 mntput(path->mnt); 487 } 488 EXPORT_SYMBOL(path_put); 489 490 /* 491 * Path walking has 2 modes, rcu-walk and ref-walk (see 492 * Documentation/filesystems/path-lookup.txt). In situations when we can't 493 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 494 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 495 * mode. Refcounts are grabbed at the last known good point before rcu-walk 496 * got stuck, so ref-walk may continue from there. If this is not successful 497 * (eg. a seqcount has changed), then failure is returned and it's up to caller 498 * to restart the path walk from the beginning in ref-walk mode. 499 */ 500 501 /** 502 * unlazy_walk - try to switch to ref-walk mode. 503 * @nd: nameidata pathwalk data 504 * @dentry: child of nd->path.dentry or NULL 505 * Returns: 0 on success, -ECHILD on failure 506 * 507 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 508 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 509 * @nd or NULL. Must be called from rcu-walk context. 510 */ 511 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 512 { 513 struct fs_struct *fs = current->fs; 514 struct dentry *parent = nd->path.dentry; 515 516 BUG_ON(!(nd->flags & LOOKUP_RCU)); 517 518 /* 519 * After legitimizing the bastards, terminate_walk() 520 * will do the right thing for non-RCU mode, and all our 521 * subsequent exit cases should rcu_read_unlock() 522 * before returning. Do vfsmount first; if dentry 523 * can't be legitimized, just set nd->path.dentry to NULL 524 * and rely on dput(NULL) being a no-op. 525 */ 526 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 527 return -ECHILD; 528 nd->flags &= ~LOOKUP_RCU; 529 530 if (!lockref_get_not_dead(&parent->d_lockref)) { 531 nd->path.dentry = NULL; 532 goto out; 533 } 534 535 /* 536 * For a negative lookup, the lookup sequence point is the parents 537 * sequence point, and it only needs to revalidate the parent dentry. 538 * 539 * For a positive lookup, we need to move both the parent and the 540 * dentry from the RCU domain to be properly refcounted. And the 541 * sequence number in the dentry validates *both* dentry counters, 542 * since we checked the sequence number of the parent after we got 543 * the child sequence number. So we know the parent must still 544 * be valid if the child sequence number is still valid. 545 */ 546 if (!dentry) { 547 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 548 goto out; 549 BUG_ON(nd->inode != parent->d_inode); 550 } else { 551 if (!lockref_get_not_dead(&dentry->d_lockref)) 552 goto out; 553 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 554 goto drop_dentry; 555 } 556 557 /* 558 * Sequence counts matched. Now make sure that the root is 559 * still valid and get it if required. 560 */ 561 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 562 spin_lock(&fs->lock); 563 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 564 goto unlock_and_drop_dentry; 565 path_get(&nd->root); 566 spin_unlock(&fs->lock); 567 } 568 569 rcu_read_unlock(); 570 return 0; 571 572 unlock_and_drop_dentry: 573 spin_unlock(&fs->lock); 574 drop_dentry: 575 rcu_read_unlock(); 576 dput(dentry); 577 goto drop_root_mnt; 578 out: 579 rcu_read_unlock(); 580 drop_root_mnt: 581 if (!(nd->flags & LOOKUP_ROOT)) 582 nd->root.mnt = NULL; 583 return -ECHILD; 584 } 585 586 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 587 { 588 return dentry->d_op->d_revalidate(dentry, flags); 589 } 590 591 /** 592 * complete_walk - successful completion of path walk 593 * @nd: pointer nameidata 594 * 595 * If we had been in RCU mode, drop out of it and legitimize nd->path. 596 * Revalidate the final result, unless we'd already done that during 597 * the path walk or the filesystem doesn't ask for it. Return 0 on 598 * success, -error on failure. In case of failure caller does not 599 * need to drop nd->path. 600 */ 601 static int complete_walk(struct nameidata *nd) 602 { 603 struct dentry *dentry = nd->path.dentry; 604 int status; 605 606 if (nd->flags & LOOKUP_RCU) { 607 nd->flags &= ~LOOKUP_RCU; 608 if (!(nd->flags & LOOKUP_ROOT)) 609 nd->root.mnt = NULL; 610 611 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 612 rcu_read_unlock(); 613 return -ECHILD; 614 } 615 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 616 rcu_read_unlock(); 617 mntput(nd->path.mnt); 618 return -ECHILD; 619 } 620 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 621 rcu_read_unlock(); 622 dput(dentry); 623 mntput(nd->path.mnt); 624 return -ECHILD; 625 } 626 rcu_read_unlock(); 627 } 628 629 if (likely(!(nd->flags & LOOKUP_JUMPED))) 630 return 0; 631 632 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 633 return 0; 634 635 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 636 if (status > 0) 637 return 0; 638 639 if (!status) 640 status = -ESTALE; 641 642 path_put(&nd->path); 643 return status; 644 } 645 646 static __always_inline void set_root(struct nameidata *nd) 647 { 648 get_fs_root(current->fs, &nd->root); 649 } 650 651 static int link_path_walk(const char *, struct nameidata *); 652 653 static __always_inline unsigned set_root_rcu(struct nameidata *nd) 654 { 655 struct fs_struct *fs = current->fs; 656 unsigned seq, res; 657 658 do { 659 seq = read_seqcount_begin(&fs->seq); 660 nd->root = fs->root; 661 res = __read_seqcount_begin(&nd->root.dentry->d_seq); 662 } while (read_seqcount_retry(&fs->seq, seq)); 663 return res; 664 } 665 666 static void path_put_conditional(struct path *path, struct nameidata *nd) 667 { 668 dput(path->dentry); 669 if (path->mnt != nd->path.mnt) 670 mntput(path->mnt); 671 } 672 673 static inline void path_to_nameidata(const struct path *path, 674 struct nameidata *nd) 675 { 676 if (!(nd->flags & LOOKUP_RCU)) { 677 dput(nd->path.dentry); 678 if (nd->path.mnt != path->mnt) 679 mntput(nd->path.mnt); 680 } 681 nd->path.mnt = path->mnt; 682 nd->path.dentry = path->dentry; 683 } 684 685 /* 686 * Helper to directly jump to a known parsed path from ->follow_link, 687 * caller must have taken a reference to path beforehand. 688 */ 689 void nd_jump_link(struct nameidata *nd, struct path *path) 690 { 691 path_put(&nd->path); 692 693 nd->path = *path; 694 nd->inode = nd->path.dentry->d_inode; 695 nd->flags |= LOOKUP_JUMPED; 696 } 697 698 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 699 { 700 struct inode *inode = link->dentry->d_inode; 701 if (inode->i_op->put_link) 702 inode->i_op->put_link(link->dentry, nd, cookie); 703 path_put(link); 704 } 705 706 int sysctl_protected_symlinks __read_mostly = 0; 707 int sysctl_protected_hardlinks __read_mostly = 0; 708 709 /** 710 * may_follow_link - Check symlink following for unsafe situations 711 * @link: The path of the symlink 712 * @nd: nameidata pathwalk data 713 * 714 * In the case of the sysctl_protected_symlinks sysctl being enabled, 715 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 716 * in a sticky world-writable directory. This is to protect privileged 717 * processes from failing races against path names that may change out 718 * from under them by way of other users creating malicious symlinks. 719 * It will permit symlinks to be followed only when outside a sticky 720 * world-writable directory, or when the uid of the symlink and follower 721 * match, or when the directory owner matches the symlink's owner. 722 * 723 * Returns 0 if following the symlink is allowed, -ve on error. 724 */ 725 static inline int may_follow_link(struct path *link, struct nameidata *nd) 726 { 727 const struct inode *inode; 728 const struct inode *parent; 729 730 if (!sysctl_protected_symlinks) 731 return 0; 732 733 /* Allowed if owner and follower match. */ 734 inode = link->dentry->d_inode; 735 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 736 return 0; 737 738 /* Allowed if parent directory not sticky and world-writable. */ 739 parent = nd->path.dentry->d_inode; 740 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 741 return 0; 742 743 /* Allowed if parent directory and link owner match. */ 744 if (uid_eq(parent->i_uid, inode->i_uid)) 745 return 0; 746 747 audit_log_link_denied("follow_link", link); 748 path_put_conditional(link, nd); 749 path_put(&nd->path); 750 return -EACCES; 751 } 752 753 /** 754 * safe_hardlink_source - Check for safe hardlink conditions 755 * @inode: the source inode to hardlink from 756 * 757 * Return false if at least one of the following conditions: 758 * - inode is not a regular file 759 * - inode is setuid 760 * - inode is setgid and group-exec 761 * - access failure for read and write 762 * 763 * Otherwise returns true. 764 */ 765 static bool safe_hardlink_source(struct inode *inode) 766 { 767 umode_t mode = inode->i_mode; 768 769 /* Special files should not get pinned to the filesystem. */ 770 if (!S_ISREG(mode)) 771 return false; 772 773 /* Setuid files should not get pinned to the filesystem. */ 774 if (mode & S_ISUID) 775 return false; 776 777 /* Executable setgid files should not get pinned to the filesystem. */ 778 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 779 return false; 780 781 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 782 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 783 return false; 784 785 return true; 786 } 787 788 /** 789 * may_linkat - Check permissions for creating a hardlink 790 * @link: the source to hardlink from 791 * 792 * Block hardlink when all of: 793 * - sysctl_protected_hardlinks enabled 794 * - fsuid does not match inode 795 * - hardlink source is unsafe (see safe_hardlink_source() above) 796 * - not CAP_FOWNER 797 * 798 * Returns 0 if successful, -ve on error. 799 */ 800 static int may_linkat(struct path *link) 801 { 802 const struct cred *cred; 803 struct inode *inode; 804 805 if (!sysctl_protected_hardlinks) 806 return 0; 807 808 cred = current_cred(); 809 inode = link->dentry->d_inode; 810 811 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 812 * otherwise, it must be a safe source. 813 */ 814 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 815 capable(CAP_FOWNER)) 816 return 0; 817 818 audit_log_link_denied("linkat", link); 819 return -EPERM; 820 } 821 822 static __always_inline int 823 follow_link(struct path *link, struct nameidata *nd, void **p) 824 { 825 struct dentry *dentry = link->dentry; 826 int error; 827 char *s; 828 829 BUG_ON(nd->flags & LOOKUP_RCU); 830 831 if (link->mnt == nd->path.mnt) 832 mntget(link->mnt); 833 834 error = -ELOOP; 835 if (unlikely(current->total_link_count >= 40)) 836 goto out_put_nd_path; 837 838 cond_resched(); 839 current->total_link_count++; 840 841 touch_atime(link); 842 nd_set_link(nd, NULL); 843 844 error = security_inode_follow_link(link->dentry, nd); 845 if (error) 846 goto out_put_nd_path; 847 848 nd->last_type = LAST_BIND; 849 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 850 error = PTR_ERR(*p); 851 if (IS_ERR(*p)) 852 goto out_put_nd_path; 853 854 error = 0; 855 s = nd_get_link(nd); 856 if (s) { 857 if (unlikely(IS_ERR(s))) { 858 path_put(&nd->path); 859 put_link(nd, link, *p); 860 return PTR_ERR(s); 861 } 862 if (*s == '/') { 863 if (!nd->root.mnt) 864 set_root(nd); 865 path_put(&nd->path); 866 nd->path = nd->root; 867 path_get(&nd->root); 868 nd->flags |= LOOKUP_JUMPED; 869 } 870 nd->inode = nd->path.dentry->d_inode; 871 error = link_path_walk(s, nd); 872 if (unlikely(error)) 873 put_link(nd, link, *p); 874 } 875 876 return error; 877 878 out_put_nd_path: 879 *p = NULL; 880 path_put(&nd->path); 881 path_put(link); 882 return error; 883 } 884 885 static int follow_up_rcu(struct path *path) 886 { 887 struct mount *mnt = real_mount(path->mnt); 888 struct mount *parent; 889 struct dentry *mountpoint; 890 891 parent = mnt->mnt_parent; 892 if (&parent->mnt == path->mnt) 893 return 0; 894 mountpoint = mnt->mnt_mountpoint; 895 path->dentry = mountpoint; 896 path->mnt = &parent->mnt; 897 return 1; 898 } 899 900 /* 901 * follow_up - Find the mountpoint of path's vfsmount 902 * 903 * Given a path, find the mountpoint of its source file system. 904 * Replace @path with the path of the mountpoint in the parent mount. 905 * Up is towards /. 906 * 907 * Return 1 if we went up a level and 0 if we were already at the 908 * root. 909 */ 910 int follow_up(struct path *path) 911 { 912 struct mount *mnt = real_mount(path->mnt); 913 struct mount *parent; 914 struct dentry *mountpoint; 915 916 read_seqlock_excl(&mount_lock); 917 parent = mnt->mnt_parent; 918 if (parent == mnt) { 919 read_sequnlock_excl(&mount_lock); 920 return 0; 921 } 922 mntget(&parent->mnt); 923 mountpoint = dget(mnt->mnt_mountpoint); 924 read_sequnlock_excl(&mount_lock); 925 dput(path->dentry); 926 path->dentry = mountpoint; 927 mntput(path->mnt); 928 path->mnt = &parent->mnt; 929 return 1; 930 } 931 EXPORT_SYMBOL(follow_up); 932 933 /* 934 * Perform an automount 935 * - return -EISDIR to tell follow_managed() to stop and return the path we 936 * were called with. 937 */ 938 static int follow_automount(struct path *path, unsigned flags, 939 bool *need_mntput) 940 { 941 struct vfsmount *mnt; 942 int err; 943 944 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 945 return -EREMOTE; 946 947 /* We don't want to mount if someone's just doing a stat - 948 * unless they're stat'ing a directory and appended a '/' to 949 * the name. 950 * 951 * We do, however, want to mount if someone wants to open or 952 * create a file of any type under the mountpoint, wants to 953 * traverse through the mountpoint or wants to open the 954 * mounted directory. Also, autofs may mark negative dentries 955 * as being automount points. These will need the attentions 956 * of the daemon to instantiate them before they can be used. 957 */ 958 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 959 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 960 path->dentry->d_inode) 961 return -EISDIR; 962 963 current->total_link_count++; 964 if (current->total_link_count >= 40) 965 return -ELOOP; 966 967 mnt = path->dentry->d_op->d_automount(path); 968 if (IS_ERR(mnt)) { 969 /* 970 * The filesystem is allowed to return -EISDIR here to indicate 971 * it doesn't want to automount. For instance, autofs would do 972 * this so that its userspace daemon can mount on this dentry. 973 * 974 * However, we can only permit this if it's a terminal point in 975 * the path being looked up; if it wasn't then the remainder of 976 * the path is inaccessible and we should say so. 977 */ 978 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 979 return -EREMOTE; 980 return PTR_ERR(mnt); 981 } 982 983 if (!mnt) /* mount collision */ 984 return 0; 985 986 if (!*need_mntput) { 987 /* lock_mount() may release path->mnt on error */ 988 mntget(path->mnt); 989 *need_mntput = true; 990 } 991 err = finish_automount(mnt, path); 992 993 switch (err) { 994 case -EBUSY: 995 /* Someone else made a mount here whilst we were busy */ 996 return 0; 997 case 0: 998 path_put(path); 999 path->mnt = mnt; 1000 path->dentry = dget(mnt->mnt_root); 1001 return 0; 1002 default: 1003 return err; 1004 } 1005 1006 } 1007 1008 /* 1009 * Handle a dentry that is managed in some way. 1010 * - Flagged for transit management (autofs) 1011 * - Flagged as mountpoint 1012 * - Flagged as automount point 1013 * 1014 * This may only be called in refwalk mode. 1015 * 1016 * Serialization is taken care of in namespace.c 1017 */ 1018 static int follow_managed(struct path *path, unsigned flags) 1019 { 1020 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1021 unsigned managed; 1022 bool need_mntput = false; 1023 int ret = 0; 1024 1025 /* Given that we're not holding a lock here, we retain the value in a 1026 * local variable for each dentry as we look at it so that we don't see 1027 * the components of that value change under us */ 1028 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1029 managed &= DCACHE_MANAGED_DENTRY, 1030 unlikely(managed != 0)) { 1031 /* Allow the filesystem to manage the transit without i_mutex 1032 * being held. */ 1033 if (managed & DCACHE_MANAGE_TRANSIT) { 1034 BUG_ON(!path->dentry->d_op); 1035 BUG_ON(!path->dentry->d_op->d_manage); 1036 ret = path->dentry->d_op->d_manage(path->dentry, false); 1037 if (ret < 0) 1038 break; 1039 } 1040 1041 /* Transit to a mounted filesystem. */ 1042 if (managed & DCACHE_MOUNTED) { 1043 struct vfsmount *mounted = lookup_mnt(path); 1044 if (mounted) { 1045 dput(path->dentry); 1046 if (need_mntput) 1047 mntput(path->mnt); 1048 path->mnt = mounted; 1049 path->dentry = dget(mounted->mnt_root); 1050 need_mntput = true; 1051 continue; 1052 } 1053 1054 /* Something is mounted on this dentry in another 1055 * namespace and/or whatever was mounted there in this 1056 * namespace got unmounted before lookup_mnt() could 1057 * get it */ 1058 } 1059 1060 /* Handle an automount point */ 1061 if (managed & DCACHE_NEED_AUTOMOUNT) { 1062 ret = follow_automount(path, flags, &need_mntput); 1063 if (ret < 0) 1064 break; 1065 continue; 1066 } 1067 1068 /* We didn't change the current path point */ 1069 break; 1070 } 1071 1072 if (need_mntput && path->mnt == mnt) 1073 mntput(path->mnt); 1074 if (ret == -EISDIR) 1075 ret = 0; 1076 return ret < 0 ? ret : need_mntput; 1077 } 1078 1079 int follow_down_one(struct path *path) 1080 { 1081 struct vfsmount *mounted; 1082 1083 mounted = lookup_mnt(path); 1084 if (mounted) { 1085 dput(path->dentry); 1086 mntput(path->mnt); 1087 path->mnt = mounted; 1088 path->dentry = dget(mounted->mnt_root); 1089 return 1; 1090 } 1091 return 0; 1092 } 1093 EXPORT_SYMBOL(follow_down_one); 1094 1095 static inline int managed_dentry_rcu(struct dentry *dentry) 1096 { 1097 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1098 dentry->d_op->d_manage(dentry, true) : 0; 1099 } 1100 1101 /* 1102 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1103 * we meet a managed dentry that would need blocking. 1104 */ 1105 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1106 struct inode **inode) 1107 { 1108 for (;;) { 1109 struct mount *mounted; 1110 /* 1111 * Don't forget we might have a non-mountpoint managed dentry 1112 * that wants to block transit. 1113 */ 1114 switch (managed_dentry_rcu(path->dentry)) { 1115 case -ECHILD: 1116 default: 1117 return false; 1118 case -EISDIR: 1119 return true; 1120 case 0: 1121 break; 1122 } 1123 1124 if (!d_mountpoint(path->dentry)) 1125 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1126 1127 mounted = __lookup_mnt(path->mnt, path->dentry); 1128 if (!mounted) 1129 break; 1130 path->mnt = &mounted->mnt; 1131 path->dentry = mounted->mnt.mnt_root; 1132 nd->flags |= LOOKUP_JUMPED; 1133 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1134 /* 1135 * Update the inode too. We don't need to re-check the 1136 * dentry sequence number here after this d_inode read, 1137 * because a mount-point is always pinned. 1138 */ 1139 *inode = path->dentry->d_inode; 1140 } 1141 return !read_seqretry(&mount_lock, nd->m_seq) && 1142 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1143 } 1144 1145 static int follow_dotdot_rcu(struct nameidata *nd) 1146 { 1147 struct inode *inode = nd->inode; 1148 if (!nd->root.mnt) 1149 set_root_rcu(nd); 1150 1151 while (1) { 1152 if (nd->path.dentry == nd->root.dentry && 1153 nd->path.mnt == nd->root.mnt) { 1154 break; 1155 } 1156 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1157 struct dentry *old = nd->path.dentry; 1158 struct dentry *parent = old->d_parent; 1159 unsigned seq; 1160 1161 inode = parent->d_inode; 1162 seq = read_seqcount_begin(&parent->d_seq); 1163 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1164 goto failed; 1165 nd->path.dentry = parent; 1166 nd->seq = seq; 1167 break; 1168 } 1169 if (!follow_up_rcu(&nd->path)) 1170 break; 1171 inode = nd->path.dentry->d_inode; 1172 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1173 } 1174 while (d_mountpoint(nd->path.dentry)) { 1175 struct mount *mounted; 1176 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1177 if (!mounted) 1178 break; 1179 nd->path.mnt = &mounted->mnt; 1180 nd->path.dentry = mounted->mnt.mnt_root; 1181 inode = nd->path.dentry->d_inode; 1182 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1183 if (read_seqretry(&mount_lock, nd->m_seq)) 1184 goto failed; 1185 } 1186 nd->inode = inode; 1187 return 0; 1188 1189 failed: 1190 nd->flags &= ~LOOKUP_RCU; 1191 if (!(nd->flags & LOOKUP_ROOT)) 1192 nd->root.mnt = NULL; 1193 rcu_read_unlock(); 1194 return -ECHILD; 1195 } 1196 1197 /* 1198 * Follow down to the covering mount currently visible to userspace. At each 1199 * point, the filesystem owning that dentry may be queried as to whether the 1200 * caller is permitted to proceed or not. 1201 */ 1202 int follow_down(struct path *path) 1203 { 1204 unsigned managed; 1205 int ret; 1206 1207 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1208 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1209 /* Allow the filesystem to manage the transit without i_mutex 1210 * being held. 1211 * 1212 * We indicate to the filesystem if someone is trying to mount 1213 * something here. This gives autofs the chance to deny anyone 1214 * other than its daemon the right to mount on its 1215 * superstructure. 1216 * 1217 * The filesystem may sleep at this point. 1218 */ 1219 if (managed & DCACHE_MANAGE_TRANSIT) { 1220 BUG_ON(!path->dentry->d_op); 1221 BUG_ON(!path->dentry->d_op->d_manage); 1222 ret = path->dentry->d_op->d_manage( 1223 path->dentry, false); 1224 if (ret < 0) 1225 return ret == -EISDIR ? 0 : ret; 1226 } 1227 1228 /* Transit to a mounted filesystem. */ 1229 if (managed & DCACHE_MOUNTED) { 1230 struct vfsmount *mounted = lookup_mnt(path); 1231 if (!mounted) 1232 break; 1233 dput(path->dentry); 1234 mntput(path->mnt); 1235 path->mnt = mounted; 1236 path->dentry = dget(mounted->mnt_root); 1237 continue; 1238 } 1239 1240 /* Don't handle automount points here */ 1241 break; 1242 } 1243 return 0; 1244 } 1245 EXPORT_SYMBOL(follow_down); 1246 1247 /* 1248 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1249 */ 1250 static void follow_mount(struct path *path) 1251 { 1252 while (d_mountpoint(path->dentry)) { 1253 struct vfsmount *mounted = lookup_mnt(path); 1254 if (!mounted) 1255 break; 1256 dput(path->dentry); 1257 mntput(path->mnt); 1258 path->mnt = mounted; 1259 path->dentry = dget(mounted->mnt_root); 1260 } 1261 } 1262 1263 static void follow_dotdot(struct nameidata *nd) 1264 { 1265 if (!nd->root.mnt) 1266 set_root(nd); 1267 1268 while(1) { 1269 struct dentry *old = nd->path.dentry; 1270 1271 if (nd->path.dentry == nd->root.dentry && 1272 nd->path.mnt == nd->root.mnt) { 1273 break; 1274 } 1275 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1276 /* rare case of legitimate dget_parent()... */ 1277 nd->path.dentry = dget_parent(nd->path.dentry); 1278 dput(old); 1279 break; 1280 } 1281 if (!follow_up(&nd->path)) 1282 break; 1283 } 1284 follow_mount(&nd->path); 1285 nd->inode = nd->path.dentry->d_inode; 1286 } 1287 1288 /* 1289 * This looks up the name in dcache, possibly revalidates the old dentry and 1290 * allocates a new one if not found or not valid. In the need_lookup argument 1291 * returns whether i_op->lookup is necessary. 1292 * 1293 * dir->d_inode->i_mutex must be held 1294 */ 1295 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1296 unsigned int flags, bool *need_lookup) 1297 { 1298 struct dentry *dentry; 1299 int error; 1300 1301 *need_lookup = false; 1302 dentry = d_lookup(dir, name); 1303 if (dentry) { 1304 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1305 error = d_revalidate(dentry, flags); 1306 if (unlikely(error <= 0)) { 1307 if (error < 0) { 1308 dput(dentry); 1309 return ERR_PTR(error); 1310 } else { 1311 d_invalidate(dentry); 1312 dput(dentry); 1313 dentry = NULL; 1314 } 1315 } 1316 } 1317 } 1318 1319 if (!dentry) { 1320 dentry = d_alloc(dir, name); 1321 if (unlikely(!dentry)) 1322 return ERR_PTR(-ENOMEM); 1323 1324 *need_lookup = true; 1325 } 1326 return dentry; 1327 } 1328 1329 /* 1330 * Call i_op->lookup on the dentry. The dentry must be negative and 1331 * unhashed. 1332 * 1333 * dir->d_inode->i_mutex must be held 1334 */ 1335 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1336 unsigned int flags) 1337 { 1338 struct dentry *old; 1339 1340 /* Don't create child dentry for a dead directory. */ 1341 if (unlikely(IS_DEADDIR(dir))) { 1342 dput(dentry); 1343 return ERR_PTR(-ENOENT); 1344 } 1345 1346 old = dir->i_op->lookup(dir, dentry, flags); 1347 if (unlikely(old)) { 1348 dput(dentry); 1349 dentry = old; 1350 } 1351 return dentry; 1352 } 1353 1354 static struct dentry *__lookup_hash(struct qstr *name, 1355 struct dentry *base, unsigned int flags) 1356 { 1357 bool need_lookup; 1358 struct dentry *dentry; 1359 1360 dentry = lookup_dcache(name, base, flags, &need_lookup); 1361 if (!need_lookup) 1362 return dentry; 1363 1364 return lookup_real(base->d_inode, dentry, flags); 1365 } 1366 1367 /* 1368 * It's more convoluted than I'd like it to be, but... it's still fairly 1369 * small and for now I'd prefer to have fast path as straight as possible. 1370 * It _is_ time-critical. 1371 */ 1372 static int lookup_fast(struct nameidata *nd, 1373 struct path *path, struct inode **inode) 1374 { 1375 struct vfsmount *mnt = nd->path.mnt; 1376 struct dentry *dentry, *parent = nd->path.dentry; 1377 int need_reval = 1; 1378 int status = 1; 1379 int err; 1380 1381 /* 1382 * Rename seqlock is not required here because in the off chance 1383 * of a false negative due to a concurrent rename, we're going to 1384 * do the non-racy lookup, below. 1385 */ 1386 if (nd->flags & LOOKUP_RCU) { 1387 unsigned seq; 1388 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1389 if (!dentry) 1390 goto unlazy; 1391 1392 /* 1393 * This sequence count validates that the inode matches 1394 * the dentry name information from lookup. 1395 */ 1396 *inode = dentry->d_inode; 1397 if (read_seqcount_retry(&dentry->d_seq, seq)) 1398 return -ECHILD; 1399 1400 /* 1401 * This sequence count validates that the parent had no 1402 * changes while we did the lookup of the dentry above. 1403 * 1404 * The memory barrier in read_seqcount_begin of child is 1405 * enough, we can use __read_seqcount_retry here. 1406 */ 1407 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1408 return -ECHILD; 1409 nd->seq = seq; 1410 1411 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1412 status = d_revalidate(dentry, nd->flags); 1413 if (unlikely(status <= 0)) { 1414 if (status != -ECHILD) 1415 need_reval = 0; 1416 goto unlazy; 1417 } 1418 } 1419 path->mnt = mnt; 1420 path->dentry = dentry; 1421 if (likely(__follow_mount_rcu(nd, path, inode))) 1422 return 0; 1423 unlazy: 1424 if (unlazy_walk(nd, dentry)) 1425 return -ECHILD; 1426 } else { 1427 dentry = __d_lookup(parent, &nd->last); 1428 } 1429 1430 if (unlikely(!dentry)) 1431 goto need_lookup; 1432 1433 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1434 status = d_revalidate(dentry, nd->flags); 1435 if (unlikely(status <= 0)) { 1436 if (status < 0) { 1437 dput(dentry); 1438 return status; 1439 } 1440 d_invalidate(dentry); 1441 dput(dentry); 1442 goto need_lookup; 1443 } 1444 1445 path->mnt = mnt; 1446 path->dentry = dentry; 1447 err = follow_managed(path, nd->flags); 1448 if (unlikely(err < 0)) { 1449 path_put_conditional(path, nd); 1450 return err; 1451 } 1452 if (err) 1453 nd->flags |= LOOKUP_JUMPED; 1454 *inode = path->dentry->d_inode; 1455 return 0; 1456 1457 need_lookup: 1458 return 1; 1459 } 1460 1461 /* Fast lookup failed, do it the slow way */ 1462 static int lookup_slow(struct nameidata *nd, struct path *path) 1463 { 1464 struct dentry *dentry, *parent; 1465 int err; 1466 1467 parent = nd->path.dentry; 1468 BUG_ON(nd->inode != parent->d_inode); 1469 1470 mutex_lock(&parent->d_inode->i_mutex); 1471 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1472 mutex_unlock(&parent->d_inode->i_mutex); 1473 if (IS_ERR(dentry)) 1474 return PTR_ERR(dentry); 1475 path->mnt = nd->path.mnt; 1476 path->dentry = dentry; 1477 err = follow_managed(path, nd->flags); 1478 if (unlikely(err < 0)) { 1479 path_put_conditional(path, nd); 1480 return err; 1481 } 1482 if (err) 1483 nd->flags |= LOOKUP_JUMPED; 1484 return 0; 1485 } 1486 1487 static inline int may_lookup(struct nameidata *nd) 1488 { 1489 if (nd->flags & LOOKUP_RCU) { 1490 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1491 if (err != -ECHILD) 1492 return err; 1493 if (unlazy_walk(nd, NULL)) 1494 return -ECHILD; 1495 } 1496 return inode_permission(nd->inode, MAY_EXEC); 1497 } 1498 1499 static inline int handle_dots(struct nameidata *nd, int type) 1500 { 1501 if (type == LAST_DOTDOT) { 1502 if (nd->flags & LOOKUP_RCU) { 1503 if (follow_dotdot_rcu(nd)) 1504 return -ECHILD; 1505 } else 1506 follow_dotdot(nd); 1507 } 1508 return 0; 1509 } 1510 1511 static void terminate_walk(struct nameidata *nd) 1512 { 1513 if (!(nd->flags & LOOKUP_RCU)) { 1514 path_put(&nd->path); 1515 } else { 1516 nd->flags &= ~LOOKUP_RCU; 1517 if (!(nd->flags & LOOKUP_ROOT)) 1518 nd->root.mnt = NULL; 1519 rcu_read_unlock(); 1520 } 1521 } 1522 1523 /* 1524 * Do we need to follow links? We _really_ want to be able 1525 * to do this check without having to look at inode->i_op, 1526 * so we keep a cache of "no, this doesn't need follow_link" 1527 * for the common case. 1528 */ 1529 static inline int should_follow_link(struct dentry *dentry, int follow) 1530 { 1531 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1532 } 1533 1534 static inline int walk_component(struct nameidata *nd, struct path *path, 1535 int follow) 1536 { 1537 struct inode *inode; 1538 int err; 1539 /* 1540 * "." and ".." are special - ".." especially so because it has 1541 * to be able to know about the current root directory and 1542 * parent relationships. 1543 */ 1544 if (unlikely(nd->last_type != LAST_NORM)) 1545 return handle_dots(nd, nd->last_type); 1546 err = lookup_fast(nd, path, &inode); 1547 if (unlikely(err)) { 1548 if (err < 0) 1549 goto out_err; 1550 1551 err = lookup_slow(nd, path); 1552 if (err < 0) 1553 goto out_err; 1554 1555 inode = path->dentry->d_inode; 1556 } 1557 err = -ENOENT; 1558 if (!inode || d_is_negative(path->dentry)) 1559 goto out_path_put; 1560 1561 if (should_follow_link(path->dentry, follow)) { 1562 if (nd->flags & LOOKUP_RCU) { 1563 if (unlikely(unlazy_walk(nd, path->dentry))) { 1564 err = -ECHILD; 1565 goto out_err; 1566 } 1567 } 1568 BUG_ON(inode != path->dentry->d_inode); 1569 return 1; 1570 } 1571 path_to_nameidata(path, nd); 1572 nd->inode = inode; 1573 return 0; 1574 1575 out_path_put: 1576 path_to_nameidata(path, nd); 1577 out_err: 1578 terminate_walk(nd); 1579 return err; 1580 } 1581 1582 /* 1583 * This limits recursive symlink follows to 8, while 1584 * limiting consecutive symlinks to 40. 1585 * 1586 * Without that kind of total limit, nasty chains of consecutive 1587 * symlinks can cause almost arbitrarily long lookups. 1588 */ 1589 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1590 { 1591 int res; 1592 1593 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1594 path_put_conditional(path, nd); 1595 path_put(&nd->path); 1596 return -ELOOP; 1597 } 1598 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1599 1600 nd->depth++; 1601 current->link_count++; 1602 1603 do { 1604 struct path link = *path; 1605 void *cookie; 1606 1607 res = follow_link(&link, nd, &cookie); 1608 if (res) 1609 break; 1610 res = walk_component(nd, path, LOOKUP_FOLLOW); 1611 put_link(nd, &link, cookie); 1612 } while (res > 0); 1613 1614 current->link_count--; 1615 nd->depth--; 1616 return res; 1617 } 1618 1619 /* 1620 * We can do the critical dentry name comparison and hashing 1621 * operations one word at a time, but we are limited to: 1622 * 1623 * - Architectures with fast unaligned word accesses. We could 1624 * do a "get_unaligned()" if this helps and is sufficiently 1625 * fast. 1626 * 1627 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1628 * do not trap on the (extremely unlikely) case of a page 1629 * crossing operation. 1630 * 1631 * - Furthermore, we need an efficient 64-bit compile for the 1632 * 64-bit case in order to generate the "number of bytes in 1633 * the final mask". Again, that could be replaced with a 1634 * efficient population count instruction or similar. 1635 */ 1636 #ifdef CONFIG_DCACHE_WORD_ACCESS 1637 1638 #include <asm/word-at-a-time.h> 1639 1640 #ifdef CONFIG_64BIT 1641 1642 static inline unsigned int fold_hash(unsigned long hash) 1643 { 1644 return hash_64(hash, 32); 1645 } 1646 1647 #else /* 32-bit case */ 1648 1649 #define fold_hash(x) (x) 1650 1651 #endif 1652 1653 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1654 { 1655 unsigned long a, mask; 1656 unsigned long hash = 0; 1657 1658 for (;;) { 1659 a = load_unaligned_zeropad(name); 1660 if (len < sizeof(unsigned long)) 1661 break; 1662 hash += a; 1663 hash *= 9; 1664 name += sizeof(unsigned long); 1665 len -= sizeof(unsigned long); 1666 if (!len) 1667 goto done; 1668 } 1669 mask = bytemask_from_count(len); 1670 hash += mask & a; 1671 done: 1672 return fold_hash(hash); 1673 } 1674 EXPORT_SYMBOL(full_name_hash); 1675 1676 /* 1677 * Calculate the length and hash of the path component, and 1678 * return the "hash_len" as the result. 1679 */ 1680 static inline u64 hash_name(const char *name) 1681 { 1682 unsigned long a, b, adata, bdata, mask, hash, len; 1683 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1684 1685 hash = a = 0; 1686 len = -sizeof(unsigned long); 1687 do { 1688 hash = (hash + a) * 9; 1689 len += sizeof(unsigned long); 1690 a = load_unaligned_zeropad(name+len); 1691 b = a ^ REPEAT_BYTE('/'); 1692 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1693 1694 adata = prep_zero_mask(a, adata, &constants); 1695 bdata = prep_zero_mask(b, bdata, &constants); 1696 1697 mask = create_zero_mask(adata | bdata); 1698 1699 hash += a & zero_bytemask(mask); 1700 len += find_zero(mask); 1701 return hashlen_create(fold_hash(hash), len); 1702 } 1703 1704 #else 1705 1706 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1707 { 1708 unsigned long hash = init_name_hash(); 1709 while (len--) 1710 hash = partial_name_hash(*name++, hash); 1711 return end_name_hash(hash); 1712 } 1713 EXPORT_SYMBOL(full_name_hash); 1714 1715 /* 1716 * We know there's a real path component here of at least 1717 * one character. 1718 */ 1719 static inline u64 hash_name(const char *name) 1720 { 1721 unsigned long hash = init_name_hash(); 1722 unsigned long len = 0, c; 1723 1724 c = (unsigned char)*name; 1725 do { 1726 len++; 1727 hash = partial_name_hash(c, hash); 1728 c = (unsigned char)name[len]; 1729 } while (c && c != '/'); 1730 return hashlen_create(end_name_hash(hash), len); 1731 } 1732 1733 #endif 1734 1735 /* 1736 * Name resolution. 1737 * This is the basic name resolution function, turning a pathname into 1738 * the final dentry. We expect 'base' to be positive and a directory. 1739 * 1740 * Returns 0 and nd will have valid dentry and mnt on success. 1741 * Returns error and drops reference to input namei data on failure. 1742 */ 1743 static int link_path_walk(const char *name, struct nameidata *nd) 1744 { 1745 struct path next; 1746 int err; 1747 1748 while (*name=='/') 1749 name++; 1750 if (!*name) 1751 return 0; 1752 1753 /* At this point we know we have a real path component. */ 1754 for(;;) { 1755 u64 hash_len; 1756 int type; 1757 1758 err = may_lookup(nd); 1759 if (err) 1760 break; 1761 1762 hash_len = hash_name(name); 1763 1764 type = LAST_NORM; 1765 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1766 case 2: 1767 if (name[1] == '.') { 1768 type = LAST_DOTDOT; 1769 nd->flags |= LOOKUP_JUMPED; 1770 } 1771 break; 1772 case 1: 1773 type = LAST_DOT; 1774 } 1775 if (likely(type == LAST_NORM)) { 1776 struct dentry *parent = nd->path.dentry; 1777 nd->flags &= ~LOOKUP_JUMPED; 1778 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1779 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1780 err = parent->d_op->d_hash(parent, &this); 1781 if (err < 0) 1782 break; 1783 hash_len = this.hash_len; 1784 name = this.name; 1785 } 1786 } 1787 1788 nd->last.hash_len = hash_len; 1789 nd->last.name = name; 1790 nd->last_type = type; 1791 1792 name += hashlen_len(hash_len); 1793 if (!*name) 1794 return 0; 1795 /* 1796 * If it wasn't NUL, we know it was '/'. Skip that 1797 * slash, and continue until no more slashes. 1798 */ 1799 do { 1800 name++; 1801 } while (unlikely(*name == '/')); 1802 if (!*name) 1803 return 0; 1804 1805 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1806 if (err < 0) 1807 return err; 1808 1809 if (err) { 1810 err = nested_symlink(&next, nd); 1811 if (err) 1812 return err; 1813 } 1814 if (!d_can_lookup(nd->path.dentry)) { 1815 err = -ENOTDIR; 1816 break; 1817 } 1818 } 1819 terminate_walk(nd); 1820 return err; 1821 } 1822 1823 static int path_init(int dfd, const char *name, unsigned int flags, 1824 struct nameidata *nd, struct file **fp) 1825 { 1826 int retval = 0; 1827 1828 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1829 nd->flags = flags | LOOKUP_JUMPED; 1830 nd->depth = 0; 1831 if (flags & LOOKUP_ROOT) { 1832 struct dentry *root = nd->root.dentry; 1833 struct inode *inode = root->d_inode; 1834 if (*name) { 1835 if (!d_can_lookup(root)) 1836 return -ENOTDIR; 1837 retval = inode_permission(inode, MAY_EXEC); 1838 if (retval) 1839 return retval; 1840 } 1841 nd->path = nd->root; 1842 nd->inode = inode; 1843 if (flags & LOOKUP_RCU) { 1844 rcu_read_lock(); 1845 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1846 nd->m_seq = read_seqbegin(&mount_lock); 1847 } else { 1848 path_get(&nd->path); 1849 } 1850 return 0; 1851 } 1852 1853 nd->root.mnt = NULL; 1854 1855 nd->m_seq = read_seqbegin(&mount_lock); 1856 if (*name=='/') { 1857 if (flags & LOOKUP_RCU) { 1858 rcu_read_lock(); 1859 nd->seq = set_root_rcu(nd); 1860 } else { 1861 set_root(nd); 1862 path_get(&nd->root); 1863 } 1864 nd->path = nd->root; 1865 } else if (dfd == AT_FDCWD) { 1866 if (flags & LOOKUP_RCU) { 1867 struct fs_struct *fs = current->fs; 1868 unsigned seq; 1869 1870 rcu_read_lock(); 1871 1872 do { 1873 seq = read_seqcount_begin(&fs->seq); 1874 nd->path = fs->pwd; 1875 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1876 } while (read_seqcount_retry(&fs->seq, seq)); 1877 } else { 1878 get_fs_pwd(current->fs, &nd->path); 1879 } 1880 } else { 1881 /* Caller must check execute permissions on the starting path component */ 1882 struct fd f = fdget_raw(dfd); 1883 struct dentry *dentry; 1884 1885 if (!f.file) 1886 return -EBADF; 1887 1888 dentry = f.file->f_path.dentry; 1889 1890 if (*name) { 1891 if (!d_can_lookup(dentry)) { 1892 fdput(f); 1893 return -ENOTDIR; 1894 } 1895 } 1896 1897 nd->path = f.file->f_path; 1898 if (flags & LOOKUP_RCU) { 1899 if (f.flags & FDPUT_FPUT) 1900 *fp = f.file; 1901 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1902 rcu_read_lock(); 1903 } else { 1904 path_get(&nd->path); 1905 fdput(f); 1906 } 1907 } 1908 1909 nd->inode = nd->path.dentry->d_inode; 1910 if (!(flags & LOOKUP_RCU)) 1911 return 0; 1912 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 1913 return 0; 1914 if (!(nd->flags & LOOKUP_ROOT)) 1915 nd->root.mnt = NULL; 1916 rcu_read_unlock(); 1917 return -ECHILD; 1918 } 1919 1920 static inline int lookup_last(struct nameidata *nd, struct path *path) 1921 { 1922 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1923 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1924 1925 nd->flags &= ~LOOKUP_PARENT; 1926 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1927 } 1928 1929 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1930 static int path_lookupat(int dfd, const char *name, 1931 unsigned int flags, struct nameidata *nd) 1932 { 1933 struct file *base = NULL; 1934 struct path path; 1935 int err; 1936 1937 /* 1938 * Path walking is largely split up into 2 different synchronisation 1939 * schemes, rcu-walk and ref-walk (explained in 1940 * Documentation/filesystems/path-lookup.txt). These share much of the 1941 * path walk code, but some things particularly setup, cleanup, and 1942 * following mounts are sufficiently divergent that functions are 1943 * duplicated. Typically there is a function foo(), and its RCU 1944 * analogue, foo_rcu(). 1945 * 1946 * -ECHILD is the error number of choice (just to avoid clashes) that 1947 * is returned if some aspect of an rcu-walk fails. Such an error must 1948 * be handled by restarting a traditional ref-walk (which will always 1949 * be able to complete). 1950 */ 1951 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1952 1953 if (unlikely(err)) 1954 goto out; 1955 1956 current->total_link_count = 0; 1957 err = link_path_walk(name, nd); 1958 1959 if (!err && !(flags & LOOKUP_PARENT)) { 1960 err = lookup_last(nd, &path); 1961 while (err > 0) { 1962 void *cookie; 1963 struct path link = path; 1964 err = may_follow_link(&link, nd); 1965 if (unlikely(err)) 1966 break; 1967 nd->flags |= LOOKUP_PARENT; 1968 err = follow_link(&link, nd, &cookie); 1969 if (err) 1970 break; 1971 err = lookup_last(nd, &path); 1972 put_link(nd, &link, cookie); 1973 } 1974 } 1975 1976 if (!err) 1977 err = complete_walk(nd); 1978 1979 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1980 if (!d_can_lookup(nd->path.dentry)) { 1981 path_put(&nd->path); 1982 err = -ENOTDIR; 1983 } 1984 } 1985 1986 out: 1987 if (base) 1988 fput(base); 1989 1990 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1991 path_put(&nd->root); 1992 nd->root.mnt = NULL; 1993 } 1994 return err; 1995 } 1996 1997 static int filename_lookup(int dfd, struct filename *name, 1998 unsigned int flags, struct nameidata *nd) 1999 { 2000 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 2001 if (unlikely(retval == -ECHILD)) 2002 retval = path_lookupat(dfd, name->name, flags, nd); 2003 if (unlikely(retval == -ESTALE)) 2004 retval = path_lookupat(dfd, name->name, 2005 flags | LOOKUP_REVAL, nd); 2006 2007 if (likely(!retval)) 2008 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2009 return retval; 2010 } 2011 2012 static int do_path_lookup(int dfd, const char *name, 2013 unsigned int flags, struct nameidata *nd) 2014 { 2015 struct filename filename = { .name = name }; 2016 2017 return filename_lookup(dfd, &filename, flags, nd); 2018 } 2019 2020 /* does lookup, returns the object with parent locked */ 2021 struct dentry *kern_path_locked(const char *name, struct path *path) 2022 { 2023 struct nameidata nd; 2024 struct dentry *d; 2025 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 2026 if (err) 2027 return ERR_PTR(err); 2028 if (nd.last_type != LAST_NORM) { 2029 path_put(&nd.path); 2030 return ERR_PTR(-EINVAL); 2031 } 2032 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2033 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2034 if (IS_ERR(d)) { 2035 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2036 path_put(&nd.path); 2037 return d; 2038 } 2039 *path = nd.path; 2040 return d; 2041 } 2042 2043 int kern_path(const char *name, unsigned int flags, struct path *path) 2044 { 2045 struct nameidata nd; 2046 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2047 if (!res) 2048 *path = nd.path; 2049 return res; 2050 } 2051 EXPORT_SYMBOL(kern_path); 2052 2053 /** 2054 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2055 * @dentry: pointer to dentry of the base directory 2056 * @mnt: pointer to vfs mount of the base directory 2057 * @name: pointer to file name 2058 * @flags: lookup flags 2059 * @path: pointer to struct path to fill 2060 */ 2061 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2062 const char *name, unsigned int flags, 2063 struct path *path) 2064 { 2065 struct nameidata nd; 2066 int err; 2067 nd.root.dentry = dentry; 2068 nd.root.mnt = mnt; 2069 BUG_ON(flags & LOOKUP_PARENT); 2070 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2071 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2072 if (!err) 2073 *path = nd.path; 2074 return err; 2075 } 2076 EXPORT_SYMBOL(vfs_path_lookup); 2077 2078 /* 2079 * Restricted form of lookup. Doesn't follow links, single-component only, 2080 * needs parent already locked. Doesn't follow mounts. 2081 * SMP-safe. 2082 */ 2083 static struct dentry *lookup_hash(struct nameidata *nd) 2084 { 2085 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2086 } 2087 2088 /** 2089 * lookup_one_len - filesystem helper to lookup single pathname component 2090 * @name: pathname component to lookup 2091 * @base: base directory to lookup from 2092 * @len: maximum length @len should be interpreted to 2093 * 2094 * Note that this routine is purely a helper for filesystem usage and should 2095 * not be called by generic code. Also note that by using this function the 2096 * nameidata argument is passed to the filesystem methods and a filesystem 2097 * using this helper needs to be prepared for that. 2098 */ 2099 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2100 { 2101 struct qstr this; 2102 unsigned int c; 2103 int err; 2104 2105 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2106 2107 this.name = name; 2108 this.len = len; 2109 this.hash = full_name_hash(name, len); 2110 if (!len) 2111 return ERR_PTR(-EACCES); 2112 2113 if (unlikely(name[0] == '.')) { 2114 if (len < 2 || (len == 2 && name[1] == '.')) 2115 return ERR_PTR(-EACCES); 2116 } 2117 2118 while (len--) { 2119 c = *(const unsigned char *)name++; 2120 if (c == '/' || c == '\0') 2121 return ERR_PTR(-EACCES); 2122 } 2123 /* 2124 * See if the low-level filesystem might want 2125 * to use its own hash.. 2126 */ 2127 if (base->d_flags & DCACHE_OP_HASH) { 2128 int err = base->d_op->d_hash(base, &this); 2129 if (err < 0) 2130 return ERR_PTR(err); 2131 } 2132 2133 err = inode_permission(base->d_inode, MAY_EXEC); 2134 if (err) 2135 return ERR_PTR(err); 2136 2137 return __lookup_hash(&this, base, 0); 2138 } 2139 EXPORT_SYMBOL(lookup_one_len); 2140 2141 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2142 struct path *path, int *empty) 2143 { 2144 struct nameidata nd; 2145 struct filename *tmp = getname_flags(name, flags, empty); 2146 int err = PTR_ERR(tmp); 2147 if (!IS_ERR(tmp)) { 2148 2149 BUG_ON(flags & LOOKUP_PARENT); 2150 2151 err = filename_lookup(dfd, tmp, flags, &nd); 2152 putname(tmp); 2153 if (!err) 2154 *path = nd.path; 2155 } 2156 return err; 2157 } 2158 2159 int user_path_at(int dfd, const char __user *name, unsigned flags, 2160 struct path *path) 2161 { 2162 return user_path_at_empty(dfd, name, flags, path, NULL); 2163 } 2164 EXPORT_SYMBOL(user_path_at); 2165 2166 /* 2167 * NB: most callers don't do anything directly with the reference to the 2168 * to struct filename, but the nd->last pointer points into the name string 2169 * allocated by getname. So we must hold the reference to it until all 2170 * path-walking is complete. 2171 */ 2172 static struct filename * 2173 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2174 unsigned int flags) 2175 { 2176 struct filename *s = getname(path); 2177 int error; 2178 2179 /* only LOOKUP_REVAL is allowed in extra flags */ 2180 flags &= LOOKUP_REVAL; 2181 2182 if (IS_ERR(s)) 2183 return s; 2184 2185 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2186 if (error) { 2187 putname(s); 2188 return ERR_PTR(error); 2189 } 2190 2191 return s; 2192 } 2193 2194 /** 2195 * mountpoint_last - look up last component for umount 2196 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2197 * @path: pointer to container for result 2198 * 2199 * This is a special lookup_last function just for umount. In this case, we 2200 * need to resolve the path without doing any revalidation. 2201 * 2202 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2203 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2204 * in almost all cases, this lookup will be served out of the dcache. The only 2205 * cases where it won't are if nd->last refers to a symlink or the path is 2206 * bogus and it doesn't exist. 2207 * 2208 * Returns: 2209 * -error: if there was an error during lookup. This includes -ENOENT if the 2210 * lookup found a negative dentry. The nd->path reference will also be 2211 * put in this case. 2212 * 2213 * 0: if we successfully resolved nd->path and found it to not to be a 2214 * symlink that needs to be followed. "path" will also be populated. 2215 * The nd->path reference will also be put. 2216 * 2217 * 1: if we successfully resolved nd->last and found it to be a symlink 2218 * that needs to be followed. "path" will be populated with the path 2219 * to the link, and nd->path will *not* be put. 2220 */ 2221 static int 2222 mountpoint_last(struct nameidata *nd, struct path *path) 2223 { 2224 int error = 0; 2225 struct dentry *dentry; 2226 struct dentry *dir = nd->path.dentry; 2227 2228 /* If we're in rcuwalk, drop out of it to handle last component */ 2229 if (nd->flags & LOOKUP_RCU) { 2230 if (unlazy_walk(nd, NULL)) { 2231 error = -ECHILD; 2232 goto out; 2233 } 2234 } 2235 2236 nd->flags &= ~LOOKUP_PARENT; 2237 2238 if (unlikely(nd->last_type != LAST_NORM)) { 2239 error = handle_dots(nd, nd->last_type); 2240 if (error) 2241 goto out; 2242 dentry = dget(nd->path.dentry); 2243 goto done; 2244 } 2245 2246 mutex_lock(&dir->d_inode->i_mutex); 2247 dentry = d_lookup(dir, &nd->last); 2248 if (!dentry) { 2249 /* 2250 * No cached dentry. Mounted dentries are pinned in the cache, 2251 * so that means that this dentry is probably a symlink or the 2252 * path doesn't actually point to a mounted dentry. 2253 */ 2254 dentry = d_alloc(dir, &nd->last); 2255 if (!dentry) { 2256 error = -ENOMEM; 2257 mutex_unlock(&dir->d_inode->i_mutex); 2258 goto out; 2259 } 2260 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2261 error = PTR_ERR(dentry); 2262 if (IS_ERR(dentry)) { 2263 mutex_unlock(&dir->d_inode->i_mutex); 2264 goto out; 2265 } 2266 } 2267 mutex_unlock(&dir->d_inode->i_mutex); 2268 2269 done: 2270 if (!dentry->d_inode || d_is_negative(dentry)) { 2271 error = -ENOENT; 2272 dput(dentry); 2273 goto out; 2274 } 2275 path->dentry = dentry; 2276 path->mnt = nd->path.mnt; 2277 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2278 return 1; 2279 mntget(path->mnt); 2280 follow_mount(path); 2281 error = 0; 2282 out: 2283 terminate_walk(nd); 2284 return error; 2285 } 2286 2287 /** 2288 * path_mountpoint - look up a path to be umounted 2289 * @dfd: directory file descriptor to start walk from 2290 * @name: full pathname to walk 2291 * @path: pointer to container for result 2292 * @flags: lookup flags 2293 * 2294 * Look up the given name, but don't attempt to revalidate the last component. 2295 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2296 */ 2297 static int 2298 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2299 { 2300 struct file *base = NULL; 2301 struct nameidata nd; 2302 int err; 2303 2304 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base); 2305 if (unlikely(err)) 2306 goto out; 2307 2308 current->total_link_count = 0; 2309 err = link_path_walk(name, &nd); 2310 if (err) 2311 goto out; 2312 2313 err = mountpoint_last(&nd, path); 2314 while (err > 0) { 2315 void *cookie; 2316 struct path link = *path; 2317 err = may_follow_link(&link, &nd); 2318 if (unlikely(err)) 2319 break; 2320 nd.flags |= LOOKUP_PARENT; 2321 err = follow_link(&link, &nd, &cookie); 2322 if (err) 2323 break; 2324 err = mountpoint_last(&nd, path); 2325 put_link(&nd, &link, cookie); 2326 } 2327 out: 2328 if (base) 2329 fput(base); 2330 2331 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT)) 2332 path_put(&nd.root); 2333 2334 return err; 2335 } 2336 2337 static int 2338 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2339 unsigned int flags) 2340 { 2341 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2342 if (unlikely(error == -ECHILD)) 2343 error = path_mountpoint(dfd, s->name, path, flags); 2344 if (unlikely(error == -ESTALE)) 2345 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2346 if (likely(!error)) 2347 audit_inode(s, path->dentry, 0); 2348 return error; 2349 } 2350 2351 /** 2352 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2353 * @dfd: directory file descriptor 2354 * @name: pathname from userland 2355 * @flags: lookup flags 2356 * @path: pointer to container to hold result 2357 * 2358 * A umount is a special case for path walking. We're not actually interested 2359 * in the inode in this situation, and ESTALE errors can be a problem. We 2360 * simply want track down the dentry and vfsmount attached at the mountpoint 2361 * and avoid revalidating the last component. 2362 * 2363 * Returns 0 and populates "path" on success. 2364 */ 2365 int 2366 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2367 struct path *path) 2368 { 2369 struct filename *s = getname(name); 2370 int error; 2371 if (IS_ERR(s)) 2372 return PTR_ERR(s); 2373 error = filename_mountpoint(dfd, s, path, flags); 2374 putname(s); 2375 return error; 2376 } 2377 2378 int 2379 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2380 unsigned int flags) 2381 { 2382 struct filename s = {.name = name}; 2383 return filename_mountpoint(dfd, &s, path, flags); 2384 } 2385 EXPORT_SYMBOL(kern_path_mountpoint); 2386 2387 int __check_sticky(struct inode *dir, struct inode *inode) 2388 { 2389 kuid_t fsuid = current_fsuid(); 2390 2391 if (uid_eq(inode->i_uid, fsuid)) 2392 return 0; 2393 if (uid_eq(dir->i_uid, fsuid)) 2394 return 0; 2395 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2396 } 2397 EXPORT_SYMBOL(__check_sticky); 2398 2399 /* 2400 * Check whether we can remove a link victim from directory dir, check 2401 * whether the type of victim is right. 2402 * 1. We can't do it if dir is read-only (done in permission()) 2403 * 2. We should have write and exec permissions on dir 2404 * 3. We can't remove anything from append-only dir 2405 * 4. We can't do anything with immutable dir (done in permission()) 2406 * 5. If the sticky bit on dir is set we should either 2407 * a. be owner of dir, or 2408 * b. be owner of victim, or 2409 * c. have CAP_FOWNER capability 2410 * 6. If the victim is append-only or immutable we can't do antyhing with 2411 * links pointing to it. 2412 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2413 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2414 * 9. We can't remove a root or mountpoint. 2415 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2416 * nfs_async_unlink(). 2417 */ 2418 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2419 { 2420 struct inode *inode = victim->d_inode; 2421 int error; 2422 2423 if (d_is_negative(victim)) 2424 return -ENOENT; 2425 BUG_ON(!inode); 2426 2427 BUG_ON(victim->d_parent->d_inode != dir); 2428 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2429 2430 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2431 if (error) 2432 return error; 2433 if (IS_APPEND(dir)) 2434 return -EPERM; 2435 2436 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2437 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2438 return -EPERM; 2439 if (isdir) { 2440 if (!d_is_dir(victim)) 2441 return -ENOTDIR; 2442 if (IS_ROOT(victim)) 2443 return -EBUSY; 2444 } else if (d_is_dir(victim)) 2445 return -EISDIR; 2446 if (IS_DEADDIR(dir)) 2447 return -ENOENT; 2448 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2449 return -EBUSY; 2450 return 0; 2451 } 2452 2453 /* Check whether we can create an object with dentry child in directory 2454 * dir. 2455 * 1. We can't do it if child already exists (open has special treatment for 2456 * this case, but since we are inlined it's OK) 2457 * 2. We can't do it if dir is read-only (done in permission()) 2458 * 3. We should have write and exec permissions on dir 2459 * 4. We can't do it if dir is immutable (done in permission()) 2460 */ 2461 static inline int may_create(struct inode *dir, struct dentry *child) 2462 { 2463 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2464 if (child->d_inode) 2465 return -EEXIST; 2466 if (IS_DEADDIR(dir)) 2467 return -ENOENT; 2468 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2469 } 2470 2471 /* 2472 * p1 and p2 should be directories on the same fs. 2473 */ 2474 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2475 { 2476 struct dentry *p; 2477 2478 if (p1 == p2) { 2479 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2480 return NULL; 2481 } 2482 2483 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2484 2485 p = d_ancestor(p2, p1); 2486 if (p) { 2487 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2488 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2489 return p; 2490 } 2491 2492 p = d_ancestor(p1, p2); 2493 if (p) { 2494 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2495 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2496 return p; 2497 } 2498 2499 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2500 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2); 2501 return NULL; 2502 } 2503 EXPORT_SYMBOL(lock_rename); 2504 2505 void unlock_rename(struct dentry *p1, struct dentry *p2) 2506 { 2507 mutex_unlock(&p1->d_inode->i_mutex); 2508 if (p1 != p2) { 2509 mutex_unlock(&p2->d_inode->i_mutex); 2510 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2511 } 2512 } 2513 EXPORT_SYMBOL(unlock_rename); 2514 2515 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2516 bool want_excl) 2517 { 2518 int error = may_create(dir, dentry); 2519 if (error) 2520 return error; 2521 2522 if (!dir->i_op->create) 2523 return -EACCES; /* shouldn't it be ENOSYS? */ 2524 mode &= S_IALLUGO; 2525 mode |= S_IFREG; 2526 error = security_inode_create(dir, dentry, mode); 2527 if (error) 2528 return error; 2529 error = dir->i_op->create(dir, dentry, mode, want_excl); 2530 if (!error) 2531 fsnotify_create(dir, dentry); 2532 return error; 2533 } 2534 EXPORT_SYMBOL(vfs_create); 2535 2536 static int may_open(struct path *path, int acc_mode, int flag) 2537 { 2538 struct dentry *dentry = path->dentry; 2539 struct inode *inode = dentry->d_inode; 2540 int error; 2541 2542 /* O_PATH? */ 2543 if (!acc_mode) 2544 return 0; 2545 2546 if (!inode) 2547 return -ENOENT; 2548 2549 switch (inode->i_mode & S_IFMT) { 2550 case S_IFLNK: 2551 return -ELOOP; 2552 case S_IFDIR: 2553 if (acc_mode & MAY_WRITE) 2554 return -EISDIR; 2555 break; 2556 case S_IFBLK: 2557 case S_IFCHR: 2558 if (path->mnt->mnt_flags & MNT_NODEV) 2559 return -EACCES; 2560 /*FALLTHRU*/ 2561 case S_IFIFO: 2562 case S_IFSOCK: 2563 flag &= ~O_TRUNC; 2564 break; 2565 } 2566 2567 error = inode_permission(inode, acc_mode); 2568 if (error) 2569 return error; 2570 2571 /* 2572 * An append-only file must be opened in append mode for writing. 2573 */ 2574 if (IS_APPEND(inode)) { 2575 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2576 return -EPERM; 2577 if (flag & O_TRUNC) 2578 return -EPERM; 2579 } 2580 2581 /* O_NOATIME can only be set by the owner or superuser */ 2582 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2583 return -EPERM; 2584 2585 return 0; 2586 } 2587 2588 static int handle_truncate(struct file *filp) 2589 { 2590 struct path *path = &filp->f_path; 2591 struct inode *inode = path->dentry->d_inode; 2592 int error = get_write_access(inode); 2593 if (error) 2594 return error; 2595 /* 2596 * Refuse to truncate files with mandatory locks held on them. 2597 */ 2598 error = locks_verify_locked(filp); 2599 if (!error) 2600 error = security_path_truncate(path); 2601 if (!error) { 2602 error = do_truncate(path->dentry, 0, 2603 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2604 filp); 2605 } 2606 put_write_access(inode); 2607 return error; 2608 } 2609 2610 static inline int open_to_namei_flags(int flag) 2611 { 2612 if ((flag & O_ACCMODE) == 3) 2613 flag--; 2614 return flag; 2615 } 2616 2617 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2618 { 2619 int error = security_path_mknod(dir, dentry, mode, 0); 2620 if (error) 2621 return error; 2622 2623 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2624 if (error) 2625 return error; 2626 2627 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2628 } 2629 2630 /* 2631 * Attempt to atomically look up, create and open a file from a negative 2632 * dentry. 2633 * 2634 * Returns 0 if successful. The file will have been created and attached to 2635 * @file by the filesystem calling finish_open(). 2636 * 2637 * Returns 1 if the file was looked up only or didn't need creating. The 2638 * caller will need to perform the open themselves. @path will have been 2639 * updated to point to the new dentry. This may be negative. 2640 * 2641 * Returns an error code otherwise. 2642 */ 2643 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2644 struct path *path, struct file *file, 2645 const struct open_flags *op, 2646 bool got_write, bool need_lookup, 2647 int *opened) 2648 { 2649 struct inode *dir = nd->path.dentry->d_inode; 2650 unsigned open_flag = open_to_namei_flags(op->open_flag); 2651 umode_t mode; 2652 int error; 2653 int acc_mode; 2654 int create_error = 0; 2655 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2656 bool excl; 2657 2658 BUG_ON(dentry->d_inode); 2659 2660 /* Don't create child dentry for a dead directory. */ 2661 if (unlikely(IS_DEADDIR(dir))) { 2662 error = -ENOENT; 2663 goto out; 2664 } 2665 2666 mode = op->mode; 2667 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2668 mode &= ~current_umask(); 2669 2670 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2671 if (excl) 2672 open_flag &= ~O_TRUNC; 2673 2674 /* 2675 * Checking write permission is tricky, bacuse we don't know if we are 2676 * going to actually need it: O_CREAT opens should work as long as the 2677 * file exists. But checking existence breaks atomicity. The trick is 2678 * to check access and if not granted clear O_CREAT from the flags. 2679 * 2680 * Another problem is returing the "right" error value (e.g. for an 2681 * O_EXCL open we want to return EEXIST not EROFS). 2682 */ 2683 if (((open_flag & (O_CREAT | O_TRUNC)) || 2684 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2685 if (!(open_flag & O_CREAT)) { 2686 /* 2687 * No O_CREATE -> atomicity not a requirement -> fall 2688 * back to lookup + open 2689 */ 2690 goto no_open; 2691 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2692 /* Fall back and fail with the right error */ 2693 create_error = -EROFS; 2694 goto no_open; 2695 } else { 2696 /* No side effects, safe to clear O_CREAT */ 2697 create_error = -EROFS; 2698 open_flag &= ~O_CREAT; 2699 } 2700 } 2701 2702 if (open_flag & O_CREAT) { 2703 error = may_o_create(&nd->path, dentry, mode); 2704 if (error) { 2705 create_error = error; 2706 if (open_flag & O_EXCL) 2707 goto no_open; 2708 open_flag &= ~O_CREAT; 2709 } 2710 } 2711 2712 if (nd->flags & LOOKUP_DIRECTORY) 2713 open_flag |= O_DIRECTORY; 2714 2715 file->f_path.dentry = DENTRY_NOT_SET; 2716 file->f_path.mnt = nd->path.mnt; 2717 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2718 opened); 2719 if (error < 0) { 2720 if (create_error && error == -ENOENT) 2721 error = create_error; 2722 goto out; 2723 } 2724 2725 if (error) { /* returned 1, that is */ 2726 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2727 error = -EIO; 2728 goto out; 2729 } 2730 if (file->f_path.dentry) { 2731 dput(dentry); 2732 dentry = file->f_path.dentry; 2733 } 2734 if (*opened & FILE_CREATED) 2735 fsnotify_create(dir, dentry); 2736 if (!dentry->d_inode) { 2737 WARN_ON(*opened & FILE_CREATED); 2738 if (create_error) { 2739 error = create_error; 2740 goto out; 2741 } 2742 } else { 2743 if (excl && !(*opened & FILE_CREATED)) { 2744 error = -EEXIST; 2745 goto out; 2746 } 2747 } 2748 goto looked_up; 2749 } 2750 2751 /* 2752 * We didn't have the inode before the open, so check open permission 2753 * here. 2754 */ 2755 acc_mode = op->acc_mode; 2756 if (*opened & FILE_CREATED) { 2757 WARN_ON(!(open_flag & O_CREAT)); 2758 fsnotify_create(dir, dentry); 2759 acc_mode = MAY_OPEN; 2760 } 2761 error = may_open(&file->f_path, acc_mode, open_flag); 2762 if (error) 2763 fput(file); 2764 2765 out: 2766 dput(dentry); 2767 return error; 2768 2769 no_open: 2770 if (need_lookup) { 2771 dentry = lookup_real(dir, dentry, nd->flags); 2772 if (IS_ERR(dentry)) 2773 return PTR_ERR(dentry); 2774 2775 if (create_error) { 2776 int open_flag = op->open_flag; 2777 2778 error = create_error; 2779 if ((open_flag & O_EXCL)) { 2780 if (!dentry->d_inode) 2781 goto out; 2782 } else if (!dentry->d_inode) { 2783 goto out; 2784 } else if ((open_flag & O_TRUNC) && 2785 S_ISREG(dentry->d_inode->i_mode)) { 2786 goto out; 2787 } 2788 /* will fail later, go on to get the right error */ 2789 } 2790 } 2791 looked_up: 2792 path->dentry = dentry; 2793 path->mnt = nd->path.mnt; 2794 return 1; 2795 } 2796 2797 /* 2798 * Look up and maybe create and open the last component. 2799 * 2800 * Must be called with i_mutex held on parent. 2801 * 2802 * Returns 0 if the file was successfully atomically created (if necessary) and 2803 * opened. In this case the file will be returned attached to @file. 2804 * 2805 * Returns 1 if the file was not completely opened at this time, though lookups 2806 * and creations will have been performed and the dentry returned in @path will 2807 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2808 * specified then a negative dentry may be returned. 2809 * 2810 * An error code is returned otherwise. 2811 * 2812 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2813 * cleared otherwise prior to returning. 2814 */ 2815 static int lookup_open(struct nameidata *nd, struct path *path, 2816 struct file *file, 2817 const struct open_flags *op, 2818 bool got_write, int *opened) 2819 { 2820 struct dentry *dir = nd->path.dentry; 2821 struct inode *dir_inode = dir->d_inode; 2822 struct dentry *dentry; 2823 int error; 2824 bool need_lookup; 2825 2826 *opened &= ~FILE_CREATED; 2827 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2828 if (IS_ERR(dentry)) 2829 return PTR_ERR(dentry); 2830 2831 /* Cached positive dentry: will open in f_op->open */ 2832 if (!need_lookup && dentry->d_inode) 2833 goto out_no_open; 2834 2835 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2836 return atomic_open(nd, dentry, path, file, op, got_write, 2837 need_lookup, opened); 2838 } 2839 2840 if (need_lookup) { 2841 BUG_ON(dentry->d_inode); 2842 2843 dentry = lookup_real(dir_inode, dentry, nd->flags); 2844 if (IS_ERR(dentry)) 2845 return PTR_ERR(dentry); 2846 } 2847 2848 /* Negative dentry, just create the file */ 2849 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2850 umode_t mode = op->mode; 2851 if (!IS_POSIXACL(dir->d_inode)) 2852 mode &= ~current_umask(); 2853 /* 2854 * This write is needed to ensure that a 2855 * rw->ro transition does not occur between 2856 * the time when the file is created and when 2857 * a permanent write count is taken through 2858 * the 'struct file' in finish_open(). 2859 */ 2860 if (!got_write) { 2861 error = -EROFS; 2862 goto out_dput; 2863 } 2864 *opened |= FILE_CREATED; 2865 error = security_path_mknod(&nd->path, dentry, mode, 0); 2866 if (error) 2867 goto out_dput; 2868 error = vfs_create(dir->d_inode, dentry, mode, 2869 nd->flags & LOOKUP_EXCL); 2870 if (error) 2871 goto out_dput; 2872 } 2873 out_no_open: 2874 path->dentry = dentry; 2875 path->mnt = nd->path.mnt; 2876 return 1; 2877 2878 out_dput: 2879 dput(dentry); 2880 return error; 2881 } 2882 2883 /* 2884 * Handle the last step of open() 2885 */ 2886 static int do_last(struct nameidata *nd, struct path *path, 2887 struct file *file, const struct open_flags *op, 2888 int *opened, struct filename *name) 2889 { 2890 struct dentry *dir = nd->path.dentry; 2891 int open_flag = op->open_flag; 2892 bool will_truncate = (open_flag & O_TRUNC) != 0; 2893 bool got_write = false; 2894 int acc_mode = op->acc_mode; 2895 struct inode *inode; 2896 bool symlink_ok = false; 2897 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2898 bool retried = false; 2899 int error; 2900 2901 nd->flags &= ~LOOKUP_PARENT; 2902 nd->flags |= op->intent; 2903 2904 if (nd->last_type != LAST_NORM) { 2905 error = handle_dots(nd, nd->last_type); 2906 if (error) 2907 return error; 2908 goto finish_open; 2909 } 2910 2911 if (!(open_flag & O_CREAT)) { 2912 if (nd->last.name[nd->last.len]) 2913 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2914 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2915 symlink_ok = true; 2916 /* we _can_ be in RCU mode here */ 2917 error = lookup_fast(nd, path, &inode); 2918 if (likely(!error)) 2919 goto finish_lookup; 2920 2921 if (error < 0) 2922 goto out; 2923 2924 BUG_ON(nd->inode != dir->d_inode); 2925 } else { 2926 /* create side of things */ 2927 /* 2928 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2929 * has been cleared when we got to the last component we are 2930 * about to look up 2931 */ 2932 error = complete_walk(nd); 2933 if (error) 2934 return error; 2935 2936 audit_inode(name, dir, LOOKUP_PARENT); 2937 error = -EISDIR; 2938 /* trailing slashes? */ 2939 if (nd->last.name[nd->last.len]) 2940 goto out; 2941 } 2942 2943 retry_lookup: 2944 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2945 error = mnt_want_write(nd->path.mnt); 2946 if (!error) 2947 got_write = true; 2948 /* 2949 * do _not_ fail yet - we might not need that or fail with 2950 * a different error; let lookup_open() decide; we'll be 2951 * dropping this one anyway. 2952 */ 2953 } 2954 mutex_lock(&dir->d_inode->i_mutex); 2955 error = lookup_open(nd, path, file, op, got_write, opened); 2956 mutex_unlock(&dir->d_inode->i_mutex); 2957 2958 if (error <= 0) { 2959 if (error) 2960 goto out; 2961 2962 if ((*opened & FILE_CREATED) || 2963 !S_ISREG(file_inode(file)->i_mode)) 2964 will_truncate = false; 2965 2966 audit_inode(name, file->f_path.dentry, 0); 2967 goto opened; 2968 } 2969 2970 if (*opened & FILE_CREATED) { 2971 /* Don't check for write permission, don't truncate */ 2972 open_flag &= ~O_TRUNC; 2973 will_truncate = false; 2974 acc_mode = MAY_OPEN; 2975 path_to_nameidata(path, nd); 2976 goto finish_open_created; 2977 } 2978 2979 /* 2980 * create/update audit record if it already exists. 2981 */ 2982 if (d_is_positive(path->dentry)) 2983 audit_inode(name, path->dentry, 0); 2984 2985 /* 2986 * If atomic_open() acquired write access it is dropped now due to 2987 * possible mount and symlink following (this might be optimized away if 2988 * necessary...) 2989 */ 2990 if (got_write) { 2991 mnt_drop_write(nd->path.mnt); 2992 got_write = false; 2993 } 2994 2995 error = -EEXIST; 2996 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 2997 goto exit_dput; 2998 2999 error = follow_managed(path, nd->flags); 3000 if (error < 0) 3001 goto exit_dput; 3002 3003 if (error) 3004 nd->flags |= LOOKUP_JUMPED; 3005 3006 BUG_ON(nd->flags & LOOKUP_RCU); 3007 inode = path->dentry->d_inode; 3008 finish_lookup: 3009 /* we _can_ be in RCU mode here */ 3010 error = -ENOENT; 3011 if (!inode || d_is_negative(path->dentry)) { 3012 path_to_nameidata(path, nd); 3013 goto out; 3014 } 3015 3016 if (should_follow_link(path->dentry, !symlink_ok)) { 3017 if (nd->flags & LOOKUP_RCU) { 3018 if (unlikely(unlazy_walk(nd, path->dentry))) { 3019 error = -ECHILD; 3020 goto out; 3021 } 3022 } 3023 BUG_ON(inode != path->dentry->d_inode); 3024 return 1; 3025 } 3026 3027 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3028 path_to_nameidata(path, nd); 3029 } else { 3030 save_parent.dentry = nd->path.dentry; 3031 save_parent.mnt = mntget(path->mnt); 3032 nd->path.dentry = path->dentry; 3033 3034 } 3035 nd->inode = inode; 3036 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3037 finish_open: 3038 error = complete_walk(nd); 3039 if (error) { 3040 path_put(&save_parent); 3041 return error; 3042 } 3043 audit_inode(name, nd->path.dentry, 0); 3044 error = -EISDIR; 3045 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3046 goto out; 3047 error = -ENOTDIR; 3048 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3049 goto out; 3050 if (!S_ISREG(nd->inode->i_mode)) 3051 will_truncate = false; 3052 3053 if (will_truncate) { 3054 error = mnt_want_write(nd->path.mnt); 3055 if (error) 3056 goto out; 3057 got_write = true; 3058 } 3059 finish_open_created: 3060 error = may_open(&nd->path, acc_mode, open_flag); 3061 if (error) 3062 goto out; 3063 3064 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3065 error = vfs_open(&nd->path, file, current_cred()); 3066 if (!error) { 3067 *opened |= FILE_OPENED; 3068 } else { 3069 if (error == -EOPENSTALE) 3070 goto stale_open; 3071 goto out; 3072 } 3073 opened: 3074 error = open_check_o_direct(file); 3075 if (error) 3076 goto exit_fput; 3077 error = ima_file_check(file, op->acc_mode, *opened); 3078 if (error) 3079 goto exit_fput; 3080 3081 if (will_truncate) { 3082 error = handle_truncate(file); 3083 if (error) 3084 goto exit_fput; 3085 } 3086 out: 3087 if (got_write) 3088 mnt_drop_write(nd->path.mnt); 3089 path_put(&save_parent); 3090 terminate_walk(nd); 3091 return error; 3092 3093 exit_dput: 3094 path_put_conditional(path, nd); 3095 goto out; 3096 exit_fput: 3097 fput(file); 3098 goto out; 3099 3100 stale_open: 3101 /* If no saved parent or already retried then can't retry */ 3102 if (!save_parent.dentry || retried) 3103 goto out; 3104 3105 BUG_ON(save_parent.dentry != dir); 3106 path_put(&nd->path); 3107 nd->path = save_parent; 3108 nd->inode = dir->d_inode; 3109 save_parent.mnt = NULL; 3110 save_parent.dentry = NULL; 3111 if (got_write) { 3112 mnt_drop_write(nd->path.mnt); 3113 got_write = false; 3114 } 3115 retried = true; 3116 goto retry_lookup; 3117 } 3118 3119 static int do_tmpfile(int dfd, struct filename *pathname, 3120 struct nameidata *nd, int flags, 3121 const struct open_flags *op, 3122 struct file *file, int *opened) 3123 { 3124 static const struct qstr name = QSTR_INIT("/", 1); 3125 struct dentry *dentry, *child; 3126 struct inode *dir; 3127 int error = path_lookupat(dfd, pathname->name, 3128 flags | LOOKUP_DIRECTORY, nd); 3129 if (unlikely(error)) 3130 return error; 3131 error = mnt_want_write(nd->path.mnt); 3132 if (unlikely(error)) 3133 goto out; 3134 /* we want directory to be writable */ 3135 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3136 if (error) 3137 goto out2; 3138 dentry = nd->path.dentry; 3139 dir = dentry->d_inode; 3140 if (!dir->i_op->tmpfile) { 3141 error = -EOPNOTSUPP; 3142 goto out2; 3143 } 3144 child = d_alloc(dentry, &name); 3145 if (unlikely(!child)) { 3146 error = -ENOMEM; 3147 goto out2; 3148 } 3149 nd->flags &= ~LOOKUP_DIRECTORY; 3150 nd->flags |= op->intent; 3151 dput(nd->path.dentry); 3152 nd->path.dentry = child; 3153 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3154 if (error) 3155 goto out2; 3156 audit_inode(pathname, nd->path.dentry, 0); 3157 /* Don't check for other permissions, the inode was just created */ 3158 error = may_open(&nd->path, MAY_OPEN, op->open_flag); 3159 if (error) 3160 goto out2; 3161 file->f_path.mnt = nd->path.mnt; 3162 error = finish_open(file, nd->path.dentry, NULL, opened); 3163 if (error) 3164 goto out2; 3165 error = open_check_o_direct(file); 3166 if (error) { 3167 fput(file); 3168 } else if (!(op->open_flag & O_EXCL)) { 3169 struct inode *inode = file_inode(file); 3170 spin_lock(&inode->i_lock); 3171 inode->i_state |= I_LINKABLE; 3172 spin_unlock(&inode->i_lock); 3173 } 3174 out2: 3175 mnt_drop_write(nd->path.mnt); 3176 out: 3177 path_put(&nd->path); 3178 return error; 3179 } 3180 3181 static struct file *path_openat(int dfd, struct filename *pathname, 3182 struct nameidata *nd, const struct open_flags *op, int flags) 3183 { 3184 struct file *base = NULL; 3185 struct file *file; 3186 struct path path; 3187 int opened = 0; 3188 int error; 3189 3190 file = get_empty_filp(); 3191 if (IS_ERR(file)) 3192 return file; 3193 3194 file->f_flags = op->open_flag; 3195 3196 if (unlikely(file->f_flags & __O_TMPFILE)) { 3197 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3198 goto out; 3199 } 3200 3201 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 3202 if (unlikely(error)) 3203 goto out; 3204 3205 current->total_link_count = 0; 3206 error = link_path_walk(pathname->name, nd); 3207 if (unlikely(error)) 3208 goto out; 3209 3210 error = do_last(nd, &path, file, op, &opened, pathname); 3211 while (unlikely(error > 0)) { /* trailing symlink */ 3212 struct path link = path; 3213 void *cookie; 3214 if (!(nd->flags & LOOKUP_FOLLOW)) { 3215 path_put_conditional(&path, nd); 3216 path_put(&nd->path); 3217 error = -ELOOP; 3218 break; 3219 } 3220 error = may_follow_link(&link, nd); 3221 if (unlikely(error)) 3222 break; 3223 nd->flags |= LOOKUP_PARENT; 3224 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3225 error = follow_link(&link, nd, &cookie); 3226 if (unlikely(error)) 3227 break; 3228 error = do_last(nd, &path, file, op, &opened, pathname); 3229 put_link(nd, &link, cookie); 3230 } 3231 out: 3232 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 3233 path_put(&nd->root); 3234 if (base) 3235 fput(base); 3236 if (!(opened & FILE_OPENED)) { 3237 BUG_ON(!error); 3238 put_filp(file); 3239 } 3240 if (unlikely(error)) { 3241 if (error == -EOPENSTALE) { 3242 if (flags & LOOKUP_RCU) 3243 error = -ECHILD; 3244 else 3245 error = -ESTALE; 3246 } 3247 file = ERR_PTR(error); 3248 } 3249 return file; 3250 } 3251 3252 struct file *do_filp_open(int dfd, struct filename *pathname, 3253 const struct open_flags *op) 3254 { 3255 struct nameidata nd; 3256 int flags = op->lookup_flags; 3257 struct file *filp; 3258 3259 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3260 if (unlikely(filp == ERR_PTR(-ECHILD))) 3261 filp = path_openat(dfd, pathname, &nd, op, flags); 3262 if (unlikely(filp == ERR_PTR(-ESTALE))) 3263 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3264 return filp; 3265 } 3266 3267 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3268 const char *name, const struct open_flags *op) 3269 { 3270 struct nameidata nd; 3271 struct file *file; 3272 struct filename filename = { .name = name }; 3273 int flags = op->lookup_flags | LOOKUP_ROOT; 3274 3275 nd.root.mnt = mnt; 3276 nd.root.dentry = dentry; 3277 3278 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3279 return ERR_PTR(-ELOOP); 3280 3281 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3282 if (unlikely(file == ERR_PTR(-ECHILD))) 3283 file = path_openat(-1, &filename, &nd, op, flags); 3284 if (unlikely(file == ERR_PTR(-ESTALE))) 3285 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3286 return file; 3287 } 3288 3289 struct dentry *kern_path_create(int dfd, const char *pathname, 3290 struct path *path, unsigned int lookup_flags) 3291 { 3292 struct dentry *dentry = ERR_PTR(-EEXIST); 3293 struct nameidata nd; 3294 int err2; 3295 int error; 3296 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3297 3298 /* 3299 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3300 * other flags passed in are ignored! 3301 */ 3302 lookup_flags &= LOOKUP_REVAL; 3303 3304 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3305 if (error) 3306 return ERR_PTR(error); 3307 3308 /* 3309 * Yucky last component or no last component at all? 3310 * (foo/., foo/.., /////) 3311 */ 3312 if (nd.last_type != LAST_NORM) 3313 goto out; 3314 nd.flags &= ~LOOKUP_PARENT; 3315 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3316 3317 /* don't fail immediately if it's r/o, at least try to report other errors */ 3318 err2 = mnt_want_write(nd.path.mnt); 3319 /* 3320 * Do the final lookup. 3321 */ 3322 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3323 dentry = lookup_hash(&nd); 3324 if (IS_ERR(dentry)) 3325 goto unlock; 3326 3327 error = -EEXIST; 3328 if (d_is_positive(dentry)) 3329 goto fail; 3330 3331 /* 3332 * Special case - lookup gave negative, but... we had foo/bar/ 3333 * From the vfs_mknod() POV we just have a negative dentry - 3334 * all is fine. Let's be bastards - you had / on the end, you've 3335 * been asking for (non-existent) directory. -ENOENT for you. 3336 */ 3337 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3338 error = -ENOENT; 3339 goto fail; 3340 } 3341 if (unlikely(err2)) { 3342 error = err2; 3343 goto fail; 3344 } 3345 *path = nd.path; 3346 return dentry; 3347 fail: 3348 dput(dentry); 3349 dentry = ERR_PTR(error); 3350 unlock: 3351 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3352 if (!err2) 3353 mnt_drop_write(nd.path.mnt); 3354 out: 3355 path_put(&nd.path); 3356 return dentry; 3357 } 3358 EXPORT_SYMBOL(kern_path_create); 3359 3360 void done_path_create(struct path *path, struct dentry *dentry) 3361 { 3362 dput(dentry); 3363 mutex_unlock(&path->dentry->d_inode->i_mutex); 3364 mnt_drop_write(path->mnt); 3365 path_put(path); 3366 } 3367 EXPORT_SYMBOL(done_path_create); 3368 3369 struct dentry *user_path_create(int dfd, const char __user *pathname, 3370 struct path *path, unsigned int lookup_flags) 3371 { 3372 struct filename *tmp = getname(pathname); 3373 struct dentry *res; 3374 if (IS_ERR(tmp)) 3375 return ERR_CAST(tmp); 3376 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3377 putname(tmp); 3378 return res; 3379 } 3380 EXPORT_SYMBOL(user_path_create); 3381 3382 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3383 { 3384 int error = may_create(dir, dentry); 3385 3386 if (error) 3387 return error; 3388 3389 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3390 return -EPERM; 3391 3392 if (!dir->i_op->mknod) 3393 return -EPERM; 3394 3395 error = devcgroup_inode_mknod(mode, dev); 3396 if (error) 3397 return error; 3398 3399 error = security_inode_mknod(dir, dentry, mode, dev); 3400 if (error) 3401 return error; 3402 3403 error = dir->i_op->mknod(dir, dentry, mode, dev); 3404 if (!error) 3405 fsnotify_create(dir, dentry); 3406 return error; 3407 } 3408 EXPORT_SYMBOL(vfs_mknod); 3409 3410 static int may_mknod(umode_t mode) 3411 { 3412 switch (mode & S_IFMT) { 3413 case S_IFREG: 3414 case S_IFCHR: 3415 case S_IFBLK: 3416 case S_IFIFO: 3417 case S_IFSOCK: 3418 case 0: /* zero mode translates to S_IFREG */ 3419 return 0; 3420 case S_IFDIR: 3421 return -EPERM; 3422 default: 3423 return -EINVAL; 3424 } 3425 } 3426 3427 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3428 unsigned, dev) 3429 { 3430 struct dentry *dentry; 3431 struct path path; 3432 int error; 3433 unsigned int lookup_flags = 0; 3434 3435 error = may_mknod(mode); 3436 if (error) 3437 return error; 3438 retry: 3439 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3440 if (IS_ERR(dentry)) 3441 return PTR_ERR(dentry); 3442 3443 if (!IS_POSIXACL(path.dentry->d_inode)) 3444 mode &= ~current_umask(); 3445 error = security_path_mknod(&path, dentry, mode, dev); 3446 if (error) 3447 goto out; 3448 switch (mode & S_IFMT) { 3449 case 0: case S_IFREG: 3450 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3451 break; 3452 case S_IFCHR: case S_IFBLK: 3453 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3454 new_decode_dev(dev)); 3455 break; 3456 case S_IFIFO: case S_IFSOCK: 3457 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3458 break; 3459 } 3460 out: 3461 done_path_create(&path, dentry); 3462 if (retry_estale(error, lookup_flags)) { 3463 lookup_flags |= LOOKUP_REVAL; 3464 goto retry; 3465 } 3466 return error; 3467 } 3468 3469 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3470 { 3471 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3472 } 3473 3474 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3475 { 3476 int error = may_create(dir, dentry); 3477 unsigned max_links = dir->i_sb->s_max_links; 3478 3479 if (error) 3480 return error; 3481 3482 if (!dir->i_op->mkdir) 3483 return -EPERM; 3484 3485 mode &= (S_IRWXUGO|S_ISVTX); 3486 error = security_inode_mkdir(dir, dentry, mode); 3487 if (error) 3488 return error; 3489 3490 if (max_links && dir->i_nlink >= max_links) 3491 return -EMLINK; 3492 3493 error = dir->i_op->mkdir(dir, dentry, mode); 3494 if (!error) 3495 fsnotify_mkdir(dir, dentry); 3496 return error; 3497 } 3498 EXPORT_SYMBOL(vfs_mkdir); 3499 3500 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3501 { 3502 struct dentry *dentry; 3503 struct path path; 3504 int error; 3505 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3506 3507 retry: 3508 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3509 if (IS_ERR(dentry)) 3510 return PTR_ERR(dentry); 3511 3512 if (!IS_POSIXACL(path.dentry->d_inode)) 3513 mode &= ~current_umask(); 3514 error = security_path_mkdir(&path, dentry, mode); 3515 if (!error) 3516 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3517 done_path_create(&path, dentry); 3518 if (retry_estale(error, lookup_flags)) { 3519 lookup_flags |= LOOKUP_REVAL; 3520 goto retry; 3521 } 3522 return error; 3523 } 3524 3525 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3526 { 3527 return sys_mkdirat(AT_FDCWD, pathname, mode); 3528 } 3529 3530 /* 3531 * The dentry_unhash() helper will try to drop the dentry early: we 3532 * should have a usage count of 1 if we're the only user of this 3533 * dentry, and if that is true (possibly after pruning the dcache), 3534 * then we drop the dentry now. 3535 * 3536 * A low-level filesystem can, if it choses, legally 3537 * do a 3538 * 3539 * if (!d_unhashed(dentry)) 3540 * return -EBUSY; 3541 * 3542 * if it cannot handle the case of removing a directory 3543 * that is still in use by something else.. 3544 */ 3545 void dentry_unhash(struct dentry *dentry) 3546 { 3547 shrink_dcache_parent(dentry); 3548 spin_lock(&dentry->d_lock); 3549 if (dentry->d_lockref.count == 1) 3550 __d_drop(dentry); 3551 spin_unlock(&dentry->d_lock); 3552 } 3553 EXPORT_SYMBOL(dentry_unhash); 3554 3555 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3556 { 3557 int error = may_delete(dir, dentry, 1); 3558 3559 if (error) 3560 return error; 3561 3562 if (!dir->i_op->rmdir) 3563 return -EPERM; 3564 3565 dget(dentry); 3566 mutex_lock(&dentry->d_inode->i_mutex); 3567 3568 error = -EBUSY; 3569 if (is_local_mountpoint(dentry)) 3570 goto out; 3571 3572 error = security_inode_rmdir(dir, dentry); 3573 if (error) 3574 goto out; 3575 3576 shrink_dcache_parent(dentry); 3577 error = dir->i_op->rmdir(dir, dentry); 3578 if (error) 3579 goto out; 3580 3581 dentry->d_inode->i_flags |= S_DEAD; 3582 dont_mount(dentry); 3583 detach_mounts(dentry); 3584 3585 out: 3586 mutex_unlock(&dentry->d_inode->i_mutex); 3587 dput(dentry); 3588 if (!error) 3589 d_delete(dentry); 3590 return error; 3591 } 3592 EXPORT_SYMBOL(vfs_rmdir); 3593 3594 static long do_rmdir(int dfd, const char __user *pathname) 3595 { 3596 int error = 0; 3597 struct filename *name; 3598 struct dentry *dentry; 3599 struct nameidata nd; 3600 unsigned int lookup_flags = 0; 3601 retry: 3602 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3603 if (IS_ERR(name)) 3604 return PTR_ERR(name); 3605 3606 switch(nd.last_type) { 3607 case LAST_DOTDOT: 3608 error = -ENOTEMPTY; 3609 goto exit1; 3610 case LAST_DOT: 3611 error = -EINVAL; 3612 goto exit1; 3613 case LAST_ROOT: 3614 error = -EBUSY; 3615 goto exit1; 3616 } 3617 3618 nd.flags &= ~LOOKUP_PARENT; 3619 error = mnt_want_write(nd.path.mnt); 3620 if (error) 3621 goto exit1; 3622 3623 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3624 dentry = lookup_hash(&nd); 3625 error = PTR_ERR(dentry); 3626 if (IS_ERR(dentry)) 3627 goto exit2; 3628 if (!dentry->d_inode) { 3629 error = -ENOENT; 3630 goto exit3; 3631 } 3632 error = security_path_rmdir(&nd.path, dentry); 3633 if (error) 3634 goto exit3; 3635 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3636 exit3: 3637 dput(dentry); 3638 exit2: 3639 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3640 mnt_drop_write(nd.path.mnt); 3641 exit1: 3642 path_put(&nd.path); 3643 putname(name); 3644 if (retry_estale(error, lookup_flags)) { 3645 lookup_flags |= LOOKUP_REVAL; 3646 goto retry; 3647 } 3648 return error; 3649 } 3650 3651 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3652 { 3653 return do_rmdir(AT_FDCWD, pathname); 3654 } 3655 3656 /** 3657 * vfs_unlink - unlink a filesystem object 3658 * @dir: parent directory 3659 * @dentry: victim 3660 * @delegated_inode: returns victim inode, if the inode is delegated. 3661 * 3662 * The caller must hold dir->i_mutex. 3663 * 3664 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3665 * return a reference to the inode in delegated_inode. The caller 3666 * should then break the delegation on that inode and retry. Because 3667 * breaking a delegation may take a long time, the caller should drop 3668 * dir->i_mutex before doing so. 3669 * 3670 * Alternatively, a caller may pass NULL for delegated_inode. This may 3671 * be appropriate for callers that expect the underlying filesystem not 3672 * to be NFS exported. 3673 */ 3674 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3675 { 3676 struct inode *target = dentry->d_inode; 3677 int error = may_delete(dir, dentry, 0); 3678 3679 if (error) 3680 return error; 3681 3682 if (!dir->i_op->unlink) 3683 return -EPERM; 3684 3685 mutex_lock(&target->i_mutex); 3686 if (is_local_mountpoint(dentry)) 3687 error = -EBUSY; 3688 else { 3689 error = security_inode_unlink(dir, dentry); 3690 if (!error) { 3691 error = try_break_deleg(target, delegated_inode); 3692 if (error) 3693 goto out; 3694 error = dir->i_op->unlink(dir, dentry); 3695 if (!error) { 3696 dont_mount(dentry); 3697 detach_mounts(dentry); 3698 } 3699 } 3700 } 3701 out: 3702 mutex_unlock(&target->i_mutex); 3703 3704 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3705 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3706 fsnotify_link_count(target); 3707 d_delete(dentry); 3708 } 3709 3710 return error; 3711 } 3712 EXPORT_SYMBOL(vfs_unlink); 3713 3714 /* 3715 * Make sure that the actual truncation of the file will occur outside its 3716 * directory's i_mutex. Truncate can take a long time if there is a lot of 3717 * writeout happening, and we don't want to prevent access to the directory 3718 * while waiting on the I/O. 3719 */ 3720 static long do_unlinkat(int dfd, const char __user *pathname) 3721 { 3722 int error; 3723 struct filename *name; 3724 struct dentry *dentry; 3725 struct nameidata nd; 3726 struct inode *inode = NULL; 3727 struct inode *delegated_inode = NULL; 3728 unsigned int lookup_flags = 0; 3729 retry: 3730 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3731 if (IS_ERR(name)) 3732 return PTR_ERR(name); 3733 3734 error = -EISDIR; 3735 if (nd.last_type != LAST_NORM) 3736 goto exit1; 3737 3738 nd.flags &= ~LOOKUP_PARENT; 3739 error = mnt_want_write(nd.path.mnt); 3740 if (error) 3741 goto exit1; 3742 retry_deleg: 3743 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3744 dentry = lookup_hash(&nd); 3745 error = PTR_ERR(dentry); 3746 if (!IS_ERR(dentry)) { 3747 /* Why not before? Because we want correct error value */ 3748 if (nd.last.name[nd.last.len]) 3749 goto slashes; 3750 inode = dentry->d_inode; 3751 if (d_is_negative(dentry)) 3752 goto slashes; 3753 ihold(inode); 3754 error = security_path_unlink(&nd.path, dentry); 3755 if (error) 3756 goto exit2; 3757 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3758 exit2: 3759 dput(dentry); 3760 } 3761 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3762 if (inode) 3763 iput(inode); /* truncate the inode here */ 3764 inode = NULL; 3765 if (delegated_inode) { 3766 error = break_deleg_wait(&delegated_inode); 3767 if (!error) 3768 goto retry_deleg; 3769 } 3770 mnt_drop_write(nd.path.mnt); 3771 exit1: 3772 path_put(&nd.path); 3773 putname(name); 3774 if (retry_estale(error, lookup_flags)) { 3775 lookup_flags |= LOOKUP_REVAL; 3776 inode = NULL; 3777 goto retry; 3778 } 3779 return error; 3780 3781 slashes: 3782 if (d_is_negative(dentry)) 3783 error = -ENOENT; 3784 else if (d_is_dir(dentry)) 3785 error = -EISDIR; 3786 else 3787 error = -ENOTDIR; 3788 goto exit2; 3789 } 3790 3791 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3792 { 3793 if ((flag & ~AT_REMOVEDIR) != 0) 3794 return -EINVAL; 3795 3796 if (flag & AT_REMOVEDIR) 3797 return do_rmdir(dfd, pathname); 3798 3799 return do_unlinkat(dfd, pathname); 3800 } 3801 3802 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3803 { 3804 return do_unlinkat(AT_FDCWD, pathname); 3805 } 3806 3807 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3808 { 3809 int error = may_create(dir, dentry); 3810 3811 if (error) 3812 return error; 3813 3814 if (!dir->i_op->symlink) 3815 return -EPERM; 3816 3817 error = security_inode_symlink(dir, dentry, oldname); 3818 if (error) 3819 return error; 3820 3821 error = dir->i_op->symlink(dir, dentry, oldname); 3822 if (!error) 3823 fsnotify_create(dir, dentry); 3824 return error; 3825 } 3826 EXPORT_SYMBOL(vfs_symlink); 3827 3828 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3829 int, newdfd, const char __user *, newname) 3830 { 3831 int error; 3832 struct filename *from; 3833 struct dentry *dentry; 3834 struct path path; 3835 unsigned int lookup_flags = 0; 3836 3837 from = getname(oldname); 3838 if (IS_ERR(from)) 3839 return PTR_ERR(from); 3840 retry: 3841 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3842 error = PTR_ERR(dentry); 3843 if (IS_ERR(dentry)) 3844 goto out_putname; 3845 3846 error = security_path_symlink(&path, dentry, from->name); 3847 if (!error) 3848 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3849 done_path_create(&path, dentry); 3850 if (retry_estale(error, lookup_flags)) { 3851 lookup_flags |= LOOKUP_REVAL; 3852 goto retry; 3853 } 3854 out_putname: 3855 putname(from); 3856 return error; 3857 } 3858 3859 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3860 { 3861 return sys_symlinkat(oldname, AT_FDCWD, newname); 3862 } 3863 3864 /** 3865 * vfs_link - create a new link 3866 * @old_dentry: object to be linked 3867 * @dir: new parent 3868 * @new_dentry: where to create the new link 3869 * @delegated_inode: returns inode needing a delegation break 3870 * 3871 * The caller must hold dir->i_mutex 3872 * 3873 * If vfs_link discovers a delegation on the to-be-linked file in need 3874 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3875 * inode in delegated_inode. The caller should then break the delegation 3876 * and retry. Because breaking a delegation may take a long time, the 3877 * caller should drop the i_mutex before doing so. 3878 * 3879 * Alternatively, a caller may pass NULL for delegated_inode. This may 3880 * be appropriate for callers that expect the underlying filesystem not 3881 * to be NFS exported. 3882 */ 3883 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3884 { 3885 struct inode *inode = old_dentry->d_inode; 3886 unsigned max_links = dir->i_sb->s_max_links; 3887 int error; 3888 3889 if (!inode) 3890 return -ENOENT; 3891 3892 error = may_create(dir, new_dentry); 3893 if (error) 3894 return error; 3895 3896 if (dir->i_sb != inode->i_sb) 3897 return -EXDEV; 3898 3899 /* 3900 * A link to an append-only or immutable file cannot be created. 3901 */ 3902 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3903 return -EPERM; 3904 if (!dir->i_op->link) 3905 return -EPERM; 3906 if (S_ISDIR(inode->i_mode)) 3907 return -EPERM; 3908 3909 error = security_inode_link(old_dentry, dir, new_dentry); 3910 if (error) 3911 return error; 3912 3913 mutex_lock(&inode->i_mutex); 3914 /* Make sure we don't allow creating hardlink to an unlinked file */ 3915 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3916 error = -ENOENT; 3917 else if (max_links && inode->i_nlink >= max_links) 3918 error = -EMLINK; 3919 else { 3920 error = try_break_deleg(inode, delegated_inode); 3921 if (!error) 3922 error = dir->i_op->link(old_dentry, dir, new_dentry); 3923 } 3924 3925 if (!error && (inode->i_state & I_LINKABLE)) { 3926 spin_lock(&inode->i_lock); 3927 inode->i_state &= ~I_LINKABLE; 3928 spin_unlock(&inode->i_lock); 3929 } 3930 mutex_unlock(&inode->i_mutex); 3931 if (!error) 3932 fsnotify_link(dir, inode, new_dentry); 3933 return error; 3934 } 3935 EXPORT_SYMBOL(vfs_link); 3936 3937 /* 3938 * Hardlinks are often used in delicate situations. We avoid 3939 * security-related surprises by not following symlinks on the 3940 * newname. --KAB 3941 * 3942 * We don't follow them on the oldname either to be compatible 3943 * with linux 2.0, and to avoid hard-linking to directories 3944 * and other special files. --ADM 3945 */ 3946 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3947 int, newdfd, const char __user *, newname, int, flags) 3948 { 3949 struct dentry *new_dentry; 3950 struct path old_path, new_path; 3951 struct inode *delegated_inode = NULL; 3952 int how = 0; 3953 int error; 3954 3955 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3956 return -EINVAL; 3957 /* 3958 * To use null names we require CAP_DAC_READ_SEARCH 3959 * This ensures that not everyone will be able to create 3960 * handlink using the passed filedescriptor. 3961 */ 3962 if (flags & AT_EMPTY_PATH) { 3963 if (!capable(CAP_DAC_READ_SEARCH)) 3964 return -ENOENT; 3965 how = LOOKUP_EMPTY; 3966 } 3967 3968 if (flags & AT_SYMLINK_FOLLOW) 3969 how |= LOOKUP_FOLLOW; 3970 retry: 3971 error = user_path_at(olddfd, oldname, how, &old_path); 3972 if (error) 3973 return error; 3974 3975 new_dentry = user_path_create(newdfd, newname, &new_path, 3976 (how & LOOKUP_REVAL)); 3977 error = PTR_ERR(new_dentry); 3978 if (IS_ERR(new_dentry)) 3979 goto out; 3980 3981 error = -EXDEV; 3982 if (old_path.mnt != new_path.mnt) 3983 goto out_dput; 3984 error = may_linkat(&old_path); 3985 if (unlikely(error)) 3986 goto out_dput; 3987 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3988 if (error) 3989 goto out_dput; 3990 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 3991 out_dput: 3992 done_path_create(&new_path, new_dentry); 3993 if (delegated_inode) { 3994 error = break_deleg_wait(&delegated_inode); 3995 if (!error) { 3996 path_put(&old_path); 3997 goto retry; 3998 } 3999 } 4000 if (retry_estale(error, how)) { 4001 path_put(&old_path); 4002 how |= LOOKUP_REVAL; 4003 goto retry; 4004 } 4005 out: 4006 path_put(&old_path); 4007 4008 return error; 4009 } 4010 4011 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4012 { 4013 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4014 } 4015 4016 /** 4017 * vfs_rename - rename a filesystem object 4018 * @old_dir: parent of source 4019 * @old_dentry: source 4020 * @new_dir: parent of destination 4021 * @new_dentry: destination 4022 * @delegated_inode: returns an inode needing a delegation break 4023 * @flags: rename flags 4024 * 4025 * The caller must hold multiple mutexes--see lock_rename()). 4026 * 4027 * If vfs_rename discovers a delegation in need of breaking at either 4028 * the source or destination, it will return -EWOULDBLOCK and return a 4029 * reference to the inode in delegated_inode. The caller should then 4030 * break the delegation and retry. Because breaking a delegation may 4031 * take a long time, the caller should drop all locks before doing 4032 * so. 4033 * 4034 * Alternatively, a caller may pass NULL for delegated_inode. This may 4035 * be appropriate for callers that expect the underlying filesystem not 4036 * to be NFS exported. 4037 * 4038 * The worst of all namespace operations - renaming directory. "Perverted" 4039 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4040 * Problems: 4041 * a) we can get into loop creation. 4042 * b) race potential - two innocent renames can create a loop together. 4043 * That's where 4.4 screws up. Current fix: serialization on 4044 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4045 * story. 4046 * c) we have to lock _four_ objects - parents and victim (if it exists), 4047 * and source (if it is not a directory). 4048 * And that - after we got ->i_mutex on parents (until then we don't know 4049 * whether the target exists). Solution: try to be smart with locking 4050 * order for inodes. We rely on the fact that tree topology may change 4051 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4052 * move will be locked. Thus we can rank directories by the tree 4053 * (ancestors first) and rank all non-directories after them. 4054 * That works since everybody except rename does "lock parent, lookup, 4055 * lock child" and rename is under ->s_vfs_rename_mutex. 4056 * HOWEVER, it relies on the assumption that any object with ->lookup() 4057 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4058 * we'd better make sure that there's no link(2) for them. 4059 * d) conversion from fhandle to dentry may come in the wrong moment - when 4060 * we are removing the target. Solution: we will have to grab ->i_mutex 4061 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4062 * ->i_mutex on parents, which works but leads to some truly excessive 4063 * locking]. 4064 */ 4065 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4066 struct inode *new_dir, struct dentry *new_dentry, 4067 struct inode **delegated_inode, unsigned int flags) 4068 { 4069 int error; 4070 bool is_dir = d_is_dir(old_dentry); 4071 const unsigned char *old_name; 4072 struct inode *source = old_dentry->d_inode; 4073 struct inode *target = new_dentry->d_inode; 4074 bool new_is_dir = false; 4075 unsigned max_links = new_dir->i_sb->s_max_links; 4076 4077 if (source == target) 4078 return 0; 4079 4080 error = may_delete(old_dir, old_dentry, is_dir); 4081 if (error) 4082 return error; 4083 4084 if (!target) { 4085 error = may_create(new_dir, new_dentry); 4086 } else { 4087 new_is_dir = d_is_dir(new_dentry); 4088 4089 if (!(flags & RENAME_EXCHANGE)) 4090 error = may_delete(new_dir, new_dentry, is_dir); 4091 else 4092 error = may_delete(new_dir, new_dentry, new_is_dir); 4093 } 4094 if (error) 4095 return error; 4096 4097 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4098 return -EPERM; 4099 4100 if (flags && !old_dir->i_op->rename2) 4101 return -EINVAL; 4102 4103 /* 4104 * If we are going to change the parent - check write permissions, 4105 * we'll need to flip '..'. 4106 */ 4107 if (new_dir != old_dir) { 4108 if (is_dir) { 4109 error = inode_permission(source, MAY_WRITE); 4110 if (error) 4111 return error; 4112 } 4113 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4114 error = inode_permission(target, MAY_WRITE); 4115 if (error) 4116 return error; 4117 } 4118 } 4119 4120 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4121 flags); 4122 if (error) 4123 return error; 4124 4125 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4126 dget(new_dentry); 4127 if (!is_dir || (flags & RENAME_EXCHANGE)) 4128 lock_two_nondirectories(source, target); 4129 else if (target) 4130 mutex_lock(&target->i_mutex); 4131 4132 error = -EBUSY; 4133 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4134 goto out; 4135 4136 if (max_links && new_dir != old_dir) { 4137 error = -EMLINK; 4138 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4139 goto out; 4140 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4141 old_dir->i_nlink >= max_links) 4142 goto out; 4143 } 4144 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4145 shrink_dcache_parent(new_dentry); 4146 if (!is_dir) { 4147 error = try_break_deleg(source, delegated_inode); 4148 if (error) 4149 goto out; 4150 } 4151 if (target && !new_is_dir) { 4152 error = try_break_deleg(target, delegated_inode); 4153 if (error) 4154 goto out; 4155 } 4156 if (!old_dir->i_op->rename2) { 4157 error = old_dir->i_op->rename(old_dir, old_dentry, 4158 new_dir, new_dentry); 4159 } else { 4160 WARN_ON(old_dir->i_op->rename != NULL); 4161 error = old_dir->i_op->rename2(old_dir, old_dentry, 4162 new_dir, new_dentry, flags); 4163 } 4164 if (error) 4165 goto out; 4166 4167 if (!(flags & RENAME_EXCHANGE) && target) { 4168 if (is_dir) 4169 target->i_flags |= S_DEAD; 4170 dont_mount(new_dentry); 4171 detach_mounts(new_dentry); 4172 } 4173 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4174 if (!(flags & RENAME_EXCHANGE)) 4175 d_move(old_dentry, new_dentry); 4176 else 4177 d_exchange(old_dentry, new_dentry); 4178 } 4179 out: 4180 if (!is_dir || (flags & RENAME_EXCHANGE)) 4181 unlock_two_nondirectories(source, target); 4182 else if (target) 4183 mutex_unlock(&target->i_mutex); 4184 dput(new_dentry); 4185 if (!error) { 4186 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4187 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4188 if (flags & RENAME_EXCHANGE) { 4189 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4190 new_is_dir, NULL, new_dentry); 4191 } 4192 } 4193 fsnotify_oldname_free(old_name); 4194 4195 return error; 4196 } 4197 EXPORT_SYMBOL(vfs_rename); 4198 4199 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4200 int, newdfd, const char __user *, newname, unsigned int, flags) 4201 { 4202 struct dentry *old_dir, *new_dir; 4203 struct dentry *old_dentry, *new_dentry; 4204 struct dentry *trap; 4205 struct nameidata oldnd, newnd; 4206 struct inode *delegated_inode = NULL; 4207 struct filename *from; 4208 struct filename *to; 4209 unsigned int lookup_flags = 0; 4210 bool should_retry = false; 4211 int error; 4212 4213 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4214 return -EINVAL; 4215 4216 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4217 (flags & RENAME_EXCHANGE)) 4218 return -EINVAL; 4219 4220 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4221 return -EPERM; 4222 4223 retry: 4224 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4225 if (IS_ERR(from)) { 4226 error = PTR_ERR(from); 4227 goto exit; 4228 } 4229 4230 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4231 if (IS_ERR(to)) { 4232 error = PTR_ERR(to); 4233 goto exit1; 4234 } 4235 4236 error = -EXDEV; 4237 if (oldnd.path.mnt != newnd.path.mnt) 4238 goto exit2; 4239 4240 old_dir = oldnd.path.dentry; 4241 error = -EBUSY; 4242 if (oldnd.last_type != LAST_NORM) 4243 goto exit2; 4244 4245 new_dir = newnd.path.dentry; 4246 if (flags & RENAME_NOREPLACE) 4247 error = -EEXIST; 4248 if (newnd.last_type != LAST_NORM) 4249 goto exit2; 4250 4251 error = mnt_want_write(oldnd.path.mnt); 4252 if (error) 4253 goto exit2; 4254 4255 oldnd.flags &= ~LOOKUP_PARENT; 4256 newnd.flags &= ~LOOKUP_PARENT; 4257 if (!(flags & RENAME_EXCHANGE)) 4258 newnd.flags |= LOOKUP_RENAME_TARGET; 4259 4260 retry_deleg: 4261 trap = lock_rename(new_dir, old_dir); 4262 4263 old_dentry = lookup_hash(&oldnd); 4264 error = PTR_ERR(old_dentry); 4265 if (IS_ERR(old_dentry)) 4266 goto exit3; 4267 /* source must exist */ 4268 error = -ENOENT; 4269 if (d_is_negative(old_dentry)) 4270 goto exit4; 4271 new_dentry = lookup_hash(&newnd); 4272 error = PTR_ERR(new_dentry); 4273 if (IS_ERR(new_dentry)) 4274 goto exit4; 4275 error = -EEXIST; 4276 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4277 goto exit5; 4278 if (flags & RENAME_EXCHANGE) { 4279 error = -ENOENT; 4280 if (d_is_negative(new_dentry)) 4281 goto exit5; 4282 4283 if (!d_is_dir(new_dentry)) { 4284 error = -ENOTDIR; 4285 if (newnd.last.name[newnd.last.len]) 4286 goto exit5; 4287 } 4288 } 4289 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4290 if (!d_is_dir(old_dentry)) { 4291 error = -ENOTDIR; 4292 if (oldnd.last.name[oldnd.last.len]) 4293 goto exit5; 4294 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len]) 4295 goto exit5; 4296 } 4297 /* source should not be ancestor of target */ 4298 error = -EINVAL; 4299 if (old_dentry == trap) 4300 goto exit5; 4301 /* target should not be an ancestor of source */ 4302 if (!(flags & RENAME_EXCHANGE)) 4303 error = -ENOTEMPTY; 4304 if (new_dentry == trap) 4305 goto exit5; 4306 4307 error = security_path_rename(&oldnd.path, old_dentry, 4308 &newnd.path, new_dentry, flags); 4309 if (error) 4310 goto exit5; 4311 error = vfs_rename(old_dir->d_inode, old_dentry, 4312 new_dir->d_inode, new_dentry, 4313 &delegated_inode, flags); 4314 exit5: 4315 dput(new_dentry); 4316 exit4: 4317 dput(old_dentry); 4318 exit3: 4319 unlock_rename(new_dir, old_dir); 4320 if (delegated_inode) { 4321 error = break_deleg_wait(&delegated_inode); 4322 if (!error) 4323 goto retry_deleg; 4324 } 4325 mnt_drop_write(oldnd.path.mnt); 4326 exit2: 4327 if (retry_estale(error, lookup_flags)) 4328 should_retry = true; 4329 path_put(&newnd.path); 4330 putname(to); 4331 exit1: 4332 path_put(&oldnd.path); 4333 putname(from); 4334 if (should_retry) { 4335 should_retry = false; 4336 lookup_flags |= LOOKUP_REVAL; 4337 goto retry; 4338 } 4339 exit: 4340 return error; 4341 } 4342 4343 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4344 int, newdfd, const char __user *, newname) 4345 { 4346 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4347 } 4348 4349 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4350 { 4351 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4352 } 4353 4354 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4355 { 4356 int error = may_create(dir, dentry); 4357 if (error) 4358 return error; 4359 4360 if (!dir->i_op->mknod) 4361 return -EPERM; 4362 4363 return dir->i_op->mknod(dir, dentry, 4364 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4365 } 4366 EXPORT_SYMBOL(vfs_whiteout); 4367 4368 int readlink_copy(char __user *buffer, int buflen, const char *link) 4369 { 4370 int len = PTR_ERR(link); 4371 if (IS_ERR(link)) 4372 goto out; 4373 4374 len = strlen(link); 4375 if (len > (unsigned) buflen) 4376 len = buflen; 4377 if (copy_to_user(buffer, link, len)) 4378 len = -EFAULT; 4379 out: 4380 return len; 4381 } 4382 EXPORT_SYMBOL(readlink_copy); 4383 4384 /* 4385 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4386 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4387 * using) it for any given inode is up to filesystem. 4388 */ 4389 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4390 { 4391 struct nameidata nd; 4392 void *cookie; 4393 int res; 4394 4395 nd.depth = 0; 4396 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4397 if (IS_ERR(cookie)) 4398 return PTR_ERR(cookie); 4399 4400 res = readlink_copy(buffer, buflen, nd_get_link(&nd)); 4401 if (dentry->d_inode->i_op->put_link) 4402 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4403 return res; 4404 } 4405 EXPORT_SYMBOL(generic_readlink); 4406 4407 /* get the link contents into pagecache */ 4408 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4409 { 4410 char *kaddr; 4411 struct page *page; 4412 struct address_space *mapping = dentry->d_inode->i_mapping; 4413 page = read_mapping_page(mapping, 0, NULL); 4414 if (IS_ERR(page)) 4415 return (char*)page; 4416 *ppage = page; 4417 kaddr = kmap(page); 4418 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4419 return kaddr; 4420 } 4421 4422 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4423 { 4424 struct page *page = NULL; 4425 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4426 if (page) { 4427 kunmap(page); 4428 page_cache_release(page); 4429 } 4430 return res; 4431 } 4432 EXPORT_SYMBOL(page_readlink); 4433 4434 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4435 { 4436 struct page *page = NULL; 4437 nd_set_link(nd, page_getlink(dentry, &page)); 4438 return page; 4439 } 4440 EXPORT_SYMBOL(page_follow_link_light); 4441 4442 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4443 { 4444 struct page *page = cookie; 4445 4446 if (page) { 4447 kunmap(page); 4448 page_cache_release(page); 4449 } 4450 } 4451 EXPORT_SYMBOL(page_put_link); 4452 4453 /* 4454 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4455 */ 4456 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4457 { 4458 struct address_space *mapping = inode->i_mapping; 4459 struct page *page; 4460 void *fsdata; 4461 int err; 4462 char *kaddr; 4463 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4464 if (nofs) 4465 flags |= AOP_FLAG_NOFS; 4466 4467 retry: 4468 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4469 flags, &page, &fsdata); 4470 if (err) 4471 goto fail; 4472 4473 kaddr = kmap_atomic(page); 4474 memcpy(kaddr, symname, len-1); 4475 kunmap_atomic(kaddr); 4476 4477 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4478 page, fsdata); 4479 if (err < 0) 4480 goto fail; 4481 if (err < len-1) 4482 goto retry; 4483 4484 mark_inode_dirty(inode); 4485 return 0; 4486 fail: 4487 return err; 4488 } 4489 EXPORT_SYMBOL(__page_symlink); 4490 4491 int page_symlink(struct inode *inode, const char *symname, int len) 4492 { 4493 return __page_symlink(inode, symname, len, 4494 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4495 } 4496 EXPORT_SYMBOL(page_symlink); 4497 4498 const struct inode_operations page_symlink_inode_operations = { 4499 .readlink = generic_readlink, 4500 .follow_link = page_follow_link_light, 4501 .put_link = page_put_link, 4502 }; 4503 EXPORT_SYMBOL(page_symlink_inode_operations); 4504