xref: /openbmc/linux/fs/namei.c (revision 62eab49f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 /**
263  * check_acl - perform ACL permission checking
264  * @mnt_userns:	user namespace of the mount the inode was found from
265  * @inode:	inode to check permissions on
266  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
267  *
268  * This function performs the ACL permission checking. Since this function
269  * retrieve POSIX acls it needs to know whether it is called from a blocking or
270  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
271  *
272  * If the inode has been found through an idmapped mount the user namespace of
273  * the vfsmount must be passed through @mnt_userns. This function will then take
274  * care to map the inode according to @mnt_userns before checking permissions.
275  * On non-idmapped mounts or if permission checking is to be performed on the
276  * raw inode simply passs init_user_ns.
277  */
278 static int check_acl(struct user_namespace *mnt_userns,
279 		     struct inode *inode, int mask)
280 {
281 #ifdef CONFIG_FS_POSIX_ACL
282 	struct posix_acl *acl;
283 
284 	if (mask & MAY_NOT_BLOCK) {
285 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
286 	        if (!acl)
287 	                return -EAGAIN;
288 		/* no ->get_acl() calls in RCU mode... */
289 		if (is_uncached_acl(acl))
290 			return -ECHILD;
291 	        return posix_acl_permission(mnt_userns, inode, acl, mask);
292 	}
293 
294 	acl = get_acl(inode, ACL_TYPE_ACCESS);
295 	if (IS_ERR(acl))
296 		return PTR_ERR(acl);
297 	if (acl) {
298 	        int error = posix_acl_permission(mnt_userns, inode, acl, mask);
299 	        posix_acl_release(acl);
300 	        return error;
301 	}
302 #endif
303 
304 	return -EAGAIN;
305 }
306 
307 /**
308  * acl_permission_check - perform basic UNIX permission checking
309  * @mnt_userns:	user namespace of the mount the inode was found from
310  * @inode:	inode to check permissions on
311  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
312  *
313  * This function performs the basic UNIX permission checking. Since this
314  * function may retrieve POSIX acls it needs to know whether it is called from a
315  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
316  *
317  * If the inode has been found through an idmapped mount the user namespace of
318  * the vfsmount must be passed through @mnt_userns. This function will then take
319  * care to map the inode according to @mnt_userns before checking permissions.
320  * On non-idmapped mounts or if permission checking is to be performed on the
321  * raw inode simply passs init_user_ns.
322  */
323 static int acl_permission_check(struct user_namespace *mnt_userns,
324 				struct inode *inode, int mask)
325 {
326 	unsigned int mode = inode->i_mode;
327 	kuid_t i_uid;
328 
329 	/* Are we the owner? If so, ACL's don't matter */
330 	i_uid = i_uid_into_mnt(mnt_userns, inode);
331 	if (likely(uid_eq(current_fsuid(), i_uid))) {
332 		mask &= 7;
333 		mode >>= 6;
334 		return (mask & ~mode) ? -EACCES : 0;
335 	}
336 
337 	/* Do we have ACL's? */
338 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
339 		int error = check_acl(mnt_userns, inode, mask);
340 		if (error != -EAGAIN)
341 			return error;
342 	}
343 
344 	/* Only RWX matters for group/other mode bits */
345 	mask &= 7;
346 
347 	/*
348 	 * Are the group permissions different from
349 	 * the other permissions in the bits we care
350 	 * about? Need to check group ownership if so.
351 	 */
352 	if (mask & (mode ^ (mode >> 3))) {
353 		kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
354 		if (in_group_p(kgid))
355 			mode >>= 3;
356 	}
357 
358 	/* Bits in 'mode' clear that we require? */
359 	return (mask & ~mode) ? -EACCES : 0;
360 }
361 
362 /**
363  * generic_permission -  check for access rights on a Posix-like filesystem
364  * @mnt_userns:	user namespace of the mount the inode was found from
365  * @inode:	inode to check access rights for
366  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
367  *		%MAY_NOT_BLOCK ...)
368  *
369  * Used to check for read/write/execute permissions on a file.
370  * We use "fsuid" for this, letting us set arbitrary permissions
371  * for filesystem access without changing the "normal" uids which
372  * are used for other things.
373  *
374  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
375  * request cannot be satisfied (eg. requires blocking or too much complexity).
376  * It would then be called again in ref-walk mode.
377  *
378  * If the inode has been found through an idmapped mount the user namespace of
379  * the vfsmount must be passed through @mnt_userns. This function will then take
380  * care to map the inode according to @mnt_userns before checking permissions.
381  * On non-idmapped mounts or if permission checking is to be performed on the
382  * raw inode simply passs init_user_ns.
383  */
384 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
385 		       int mask)
386 {
387 	int ret;
388 
389 	/*
390 	 * Do the basic permission checks.
391 	 */
392 	ret = acl_permission_check(mnt_userns, inode, mask);
393 	if (ret != -EACCES)
394 		return ret;
395 
396 	if (S_ISDIR(inode->i_mode)) {
397 		/* DACs are overridable for directories */
398 		if (!(mask & MAY_WRITE))
399 			if (capable_wrt_inode_uidgid(mnt_userns, inode,
400 						     CAP_DAC_READ_SEARCH))
401 				return 0;
402 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
403 					     CAP_DAC_OVERRIDE))
404 			return 0;
405 		return -EACCES;
406 	}
407 
408 	/*
409 	 * Searching includes executable on directories, else just read.
410 	 */
411 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
412 	if (mask == MAY_READ)
413 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
414 					     CAP_DAC_READ_SEARCH))
415 			return 0;
416 	/*
417 	 * Read/write DACs are always overridable.
418 	 * Executable DACs are overridable when there is
419 	 * at least one exec bit set.
420 	 */
421 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
422 		if (capable_wrt_inode_uidgid(mnt_userns, inode,
423 					     CAP_DAC_OVERRIDE))
424 			return 0;
425 
426 	return -EACCES;
427 }
428 EXPORT_SYMBOL(generic_permission);
429 
430 /**
431  * do_inode_permission - UNIX permission checking
432  * @mnt_userns:	user namespace of the mount the inode was found from
433  * @inode:	inode to check permissions on
434  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
435  *
436  * We _really_ want to just do "generic_permission()" without
437  * even looking at the inode->i_op values. So we keep a cache
438  * flag in inode->i_opflags, that says "this has not special
439  * permission function, use the fast case".
440  */
441 static inline int do_inode_permission(struct user_namespace *mnt_userns,
442 				      struct inode *inode, int mask)
443 {
444 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
445 		if (likely(inode->i_op->permission))
446 			return inode->i_op->permission(mnt_userns, inode, mask);
447 
448 		/* This gets set once for the inode lifetime */
449 		spin_lock(&inode->i_lock);
450 		inode->i_opflags |= IOP_FASTPERM;
451 		spin_unlock(&inode->i_lock);
452 	}
453 	return generic_permission(mnt_userns, inode, mask);
454 }
455 
456 /**
457  * sb_permission - Check superblock-level permissions
458  * @sb: Superblock of inode to check permission on
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Separate out file-system wide checks from inode-specific permission checks.
463  */
464 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
465 {
466 	if (unlikely(mask & MAY_WRITE)) {
467 		umode_t mode = inode->i_mode;
468 
469 		/* Nobody gets write access to a read-only fs. */
470 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
471 			return -EROFS;
472 	}
473 	return 0;
474 }
475 
476 /**
477  * inode_permission - Check for access rights to a given inode
478  * @mnt_userns:	User namespace of the mount the inode was found from
479  * @inode:	Inode to check permission on
480  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
481  *
482  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
483  * this, letting us set arbitrary permissions for filesystem access without
484  * changing the "normal" UIDs which are used for other things.
485  *
486  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
487  */
488 int inode_permission(struct user_namespace *mnt_userns,
489 		     struct inode *inode, int mask)
490 {
491 	int retval;
492 
493 	retval = sb_permission(inode->i_sb, inode, mask);
494 	if (retval)
495 		return retval;
496 
497 	if (unlikely(mask & MAY_WRITE)) {
498 		/*
499 		 * Nobody gets write access to an immutable file.
500 		 */
501 		if (IS_IMMUTABLE(inode))
502 			return -EPERM;
503 
504 		/*
505 		 * Updating mtime will likely cause i_uid and i_gid to be
506 		 * written back improperly if their true value is unknown
507 		 * to the vfs.
508 		 */
509 		if (HAS_UNMAPPED_ID(mnt_userns, inode))
510 			return -EACCES;
511 	}
512 
513 	retval = do_inode_permission(mnt_userns, inode, mask);
514 	if (retval)
515 		return retval;
516 
517 	retval = devcgroup_inode_permission(inode, mask);
518 	if (retval)
519 		return retval;
520 
521 	return security_inode_permission(inode, mask);
522 }
523 EXPORT_SYMBOL(inode_permission);
524 
525 /**
526  * path_get - get a reference to a path
527  * @path: path to get the reference to
528  *
529  * Given a path increment the reference count to the dentry and the vfsmount.
530  */
531 void path_get(const struct path *path)
532 {
533 	mntget(path->mnt);
534 	dget(path->dentry);
535 }
536 EXPORT_SYMBOL(path_get);
537 
538 /**
539  * path_put - put a reference to a path
540  * @path: path to put the reference to
541  *
542  * Given a path decrement the reference count to the dentry and the vfsmount.
543  */
544 void path_put(const struct path *path)
545 {
546 	dput(path->dentry);
547 	mntput(path->mnt);
548 }
549 EXPORT_SYMBOL(path_put);
550 
551 #define EMBEDDED_LEVELS 2
552 struct nameidata {
553 	struct path	path;
554 	struct qstr	last;
555 	struct path	root;
556 	struct inode	*inode; /* path.dentry.d_inode */
557 	unsigned int	flags;
558 	unsigned	seq, m_seq, r_seq;
559 	int		last_type;
560 	unsigned	depth;
561 	int		total_link_count;
562 	struct saved {
563 		struct path link;
564 		struct delayed_call done;
565 		const char *name;
566 		unsigned seq;
567 	} *stack, internal[EMBEDDED_LEVELS];
568 	struct filename	*name;
569 	struct nameidata *saved;
570 	unsigned	root_seq;
571 	int		dfd;
572 	kuid_t		dir_uid;
573 	umode_t		dir_mode;
574 } __randomize_layout;
575 
576 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
577 {
578 	struct nameidata *old = current->nameidata;
579 	p->stack = p->internal;
580 	p->dfd = dfd;
581 	p->name = name;
582 	p->total_link_count = old ? old->total_link_count : 0;
583 	p->saved = old;
584 	current->nameidata = p;
585 }
586 
587 static void restore_nameidata(void)
588 {
589 	struct nameidata *now = current->nameidata, *old = now->saved;
590 
591 	current->nameidata = old;
592 	if (old)
593 		old->total_link_count = now->total_link_count;
594 	if (now->stack != now->internal)
595 		kfree(now->stack);
596 }
597 
598 static bool nd_alloc_stack(struct nameidata *nd)
599 {
600 	struct saved *p;
601 
602 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
603 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
604 	if (unlikely(!p))
605 		return false;
606 	memcpy(p, nd->internal, sizeof(nd->internal));
607 	nd->stack = p;
608 	return true;
609 }
610 
611 /**
612  * path_connected - Verify that a dentry is below mnt.mnt_root
613  *
614  * Rename can sometimes move a file or directory outside of a bind
615  * mount, path_connected allows those cases to be detected.
616  */
617 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
618 {
619 	struct super_block *sb = mnt->mnt_sb;
620 
621 	/* Bind mounts can have disconnected paths */
622 	if (mnt->mnt_root == sb->s_root)
623 		return true;
624 
625 	return is_subdir(dentry, mnt->mnt_root);
626 }
627 
628 static void drop_links(struct nameidata *nd)
629 {
630 	int i = nd->depth;
631 	while (i--) {
632 		struct saved *last = nd->stack + i;
633 		do_delayed_call(&last->done);
634 		clear_delayed_call(&last->done);
635 	}
636 }
637 
638 static void terminate_walk(struct nameidata *nd)
639 {
640 	drop_links(nd);
641 	if (!(nd->flags & LOOKUP_RCU)) {
642 		int i;
643 		path_put(&nd->path);
644 		for (i = 0; i < nd->depth; i++)
645 			path_put(&nd->stack[i].link);
646 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
647 			path_put(&nd->root);
648 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
649 		}
650 	} else {
651 		nd->flags &= ~LOOKUP_RCU;
652 		rcu_read_unlock();
653 	}
654 	nd->depth = 0;
655 }
656 
657 /* path_put is needed afterwards regardless of success or failure */
658 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
659 {
660 	int res = __legitimize_mnt(path->mnt, mseq);
661 	if (unlikely(res)) {
662 		if (res > 0)
663 			path->mnt = NULL;
664 		path->dentry = NULL;
665 		return false;
666 	}
667 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
668 		path->dentry = NULL;
669 		return false;
670 	}
671 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
672 }
673 
674 static inline bool legitimize_path(struct nameidata *nd,
675 			    struct path *path, unsigned seq)
676 {
677 	return __legitimize_path(path, seq, nd->m_seq);
678 }
679 
680 static bool legitimize_links(struct nameidata *nd)
681 {
682 	int i;
683 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
684 		drop_links(nd);
685 		nd->depth = 0;
686 		return false;
687 	}
688 	for (i = 0; i < nd->depth; i++) {
689 		struct saved *last = nd->stack + i;
690 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
691 			drop_links(nd);
692 			nd->depth = i + 1;
693 			return false;
694 		}
695 	}
696 	return true;
697 }
698 
699 static bool legitimize_root(struct nameidata *nd)
700 {
701 	/*
702 	 * For scoped-lookups (where nd->root has been zeroed), we need to
703 	 * restart the whole lookup from scratch -- because set_root() is wrong
704 	 * for these lookups (nd->dfd is the root, not the filesystem root).
705 	 */
706 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
707 		return false;
708 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
709 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
710 		return true;
711 	nd->flags |= LOOKUP_ROOT_GRABBED;
712 	return legitimize_path(nd, &nd->root, nd->root_seq);
713 }
714 
715 /*
716  * Path walking has 2 modes, rcu-walk and ref-walk (see
717  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
718  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
719  * normal reference counts on dentries and vfsmounts to transition to ref-walk
720  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
721  * got stuck, so ref-walk may continue from there. If this is not successful
722  * (eg. a seqcount has changed), then failure is returned and it's up to caller
723  * to restart the path walk from the beginning in ref-walk mode.
724  */
725 
726 /**
727  * try_to_unlazy - try to switch to ref-walk mode.
728  * @nd: nameidata pathwalk data
729  * Returns: true on success, false on failure
730  *
731  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
732  * for ref-walk mode.
733  * Must be called from rcu-walk context.
734  * Nothing should touch nameidata between try_to_unlazy() failure and
735  * terminate_walk().
736  */
737 static bool try_to_unlazy(struct nameidata *nd)
738 {
739 	struct dentry *parent = nd->path.dentry;
740 
741 	BUG_ON(!(nd->flags & LOOKUP_RCU));
742 
743 	nd->flags &= ~LOOKUP_RCU;
744 	if (unlikely(!legitimize_links(nd)))
745 		goto out1;
746 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
747 		goto out;
748 	if (unlikely(!legitimize_root(nd)))
749 		goto out;
750 	rcu_read_unlock();
751 	BUG_ON(nd->inode != parent->d_inode);
752 	return true;
753 
754 out1:
755 	nd->path.mnt = NULL;
756 	nd->path.dentry = NULL;
757 out:
758 	rcu_read_unlock();
759 	return false;
760 }
761 
762 /**
763  * try_to_unlazy_next - try to switch to ref-walk mode.
764  * @nd: nameidata pathwalk data
765  * @dentry: next dentry to step into
766  * @seq: seq number to check @dentry against
767  * Returns: true on success, false on failure
768  *
769  * Similar to to try_to_unlazy(), but here we have the next dentry already
770  * picked by rcu-walk and want to legitimize that in addition to the current
771  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
772  * Nothing should touch nameidata between try_to_unlazy_next() failure and
773  * terminate_walk().
774  */
775 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
776 {
777 	BUG_ON(!(nd->flags & LOOKUP_RCU));
778 
779 	nd->flags &= ~LOOKUP_RCU;
780 	if (unlikely(!legitimize_links(nd)))
781 		goto out2;
782 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
783 		goto out2;
784 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
785 		goto out1;
786 
787 	/*
788 	 * We need to move both the parent and the dentry from the RCU domain
789 	 * to be properly refcounted. And the sequence number in the dentry
790 	 * validates *both* dentry counters, since we checked the sequence
791 	 * number of the parent after we got the child sequence number. So we
792 	 * know the parent must still be valid if the child sequence number is
793 	 */
794 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
795 		goto out;
796 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
797 		goto out_dput;
798 	/*
799 	 * Sequence counts matched. Now make sure that the root is
800 	 * still valid and get it if required.
801 	 */
802 	if (unlikely(!legitimize_root(nd)))
803 		goto out_dput;
804 	rcu_read_unlock();
805 	return true;
806 
807 out2:
808 	nd->path.mnt = NULL;
809 out1:
810 	nd->path.dentry = NULL;
811 out:
812 	rcu_read_unlock();
813 	return false;
814 out_dput:
815 	rcu_read_unlock();
816 	dput(dentry);
817 	return false;
818 }
819 
820 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
821 {
822 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
823 		return dentry->d_op->d_revalidate(dentry, flags);
824 	else
825 		return 1;
826 }
827 
828 /**
829  * complete_walk - successful completion of path walk
830  * @nd:  pointer nameidata
831  *
832  * If we had been in RCU mode, drop out of it and legitimize nd->path.
833  * Revalidate the final result, unless we'd already done that during
834  * the path walk or the filesystem doesn't ask for it.  Return 0 on
835  * success, -error on failure.  In case of failure caller does not
836  * need to drop nd->path.
837  */
838 static int complete_walk(struct nameidata *nd)
839 {
840 	struct dentry *dentry = nd->path.dentry;
841 	int status;
842 
843 	if (nd->flags & LOOKUP_RCU) {
844 		/*
845 		 * We don't want to zero nd->root for scoped-lookups or
846 		 * externally-managed nd->root.
847 		 */
848 		if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
849 			nd->root.mnt = NULL;
850 		nd->flags &= ~LOOKUP_CACHED;
851 		if (!try_to_unlazy(nd))
852 			return -ECHILD;
853 	}
854 
855 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
856 		/*
857 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
858 		 * ever step outside the root during lookup" and should already
859 		 * be guaranteed by the rest of namei, we want to avoid a namei
860 		 * BUG resulting in userspace being given a path that was not
861 		 * scoped within the root at some point during the lookup.
862 		 *
863 		 * So, do a final sanity-check to make sure that in the
864 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
865 		 * we won't silently return an fd completely outside of the
866 		 * requested root to userspace.
867 		 *
868 		 * Userspace could move the path outside the root after this
869 		 * check, but as discussed elsewhere this is not a concern (the
870 		 * resolved file was inside the root at some point).
871 		 */
872 		if (!path_is_under(&nd->path, &nd->root))
873 			return -EXDEV;
874 	}
875 
876 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
877 		return 0;
878 
879 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
880 		return 0;
881 
882 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
883 	if (status > 0)
884 		return 0;
885 
886 	if (!status)
887 		status = -ESTALE;
888 
889 	return status;
890 }
891 
892 static int set_root(struct nameidata *nd)
893 {
894 	struct fs_struct *fs = current->fs;
895 
896 	/*
897 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
898 	 * still have to ensure it doesn't happen because it will cause a breakout
899 	 * from the dirfd.
900 	 */
901 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
902 		return -ENOTRECOVERABLE;
903 
904 	if (nd->flags & LOOKUP_RCU) {
905 		unsigned seq;
906 
907 		do {
908 			seq = read_seqcount_begin(&fs->seq);
909 			nd->root = fs->root;
910 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
911 		} while (read_seqcount_retry(&fs->seq, seq));
912 	} else {
913 		get_fs_root(fs, &nd->root);
914 		nd->flags |= LOOKUP_ROOT_GRABBED;
915 	}
916 	return 0;
917 }
918 
919 static int nd_jump_root(struct nameidata *nd)
920 {
921 	if (unlikely(nd->flags & LOOKUP_BENEATH))
922 		return -EXDEV;
923 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
924 		/* Absolute path arguments to path_init() are allowed. */
925 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
926 			return -EXDEV;
927 	}
928 	if (!nd->root.mnt) {
929 		int error = set_root(nd);
930 		if (error)
931 			return error;
932 	}
933 	if (nd->flags & LOOKUP_RCU) {
934 		struct dentry *d;
935 		nd->path = nd->root;
936 		d = nd->path.dentry;
937 		nd->inode = d->d_inode;
938 		nd->seq = nd->root_seq;
939 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
940 			return -ECHILD;
941 	} else {
942 		path_put(&nd->path);
943 		nd->path = nd->root;
944 		path_get(&nd->path);
945 		nd->inode = nd->path.dentry->d_inode;
946 	}
947 	nd->flags |= LOOKUP_JUMPED;
948 	return 0;
949 }
950 
951 /*
952  * Helper to directly jump to a known parsed path from ->get_link,
953  * caller must have taken a reference to path beforehand.
954  */
955 int nd_jump_link(struct path *path)
956 {
957 	int error = -ELOOP;
958 	struct nameidata *nd = current->nameidata;
959 
960 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
961 		goto err;
962 
963 	error = -EXDEV;
964 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
965 		if (nd->path.mnt != path->mnt)
966 			goto err;
967 	}
968 	/* Not currently safe for scoped-lookups. */
969 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
970 		goto err;
971 
972 	path_put(&nd->path);
973 	nd->path = *path;
974 	nd->inode = nd->path.dentry->d_inode;
975 	nd->flags |= LOOKUP_JUMPED;
976 	return 0;
977 
978 err:
979 	path_put(path);
980 	return error;
981 }
982 
983 static inline void put_link(struct nameidata *nd)
984 {
985 	struct saved *last = nd->stack + --nd->depth;
986 	do_delayed_call(&last->done);
987 	if (!(nd->flags & LOOKUP_RCU))
988 		path_put(&last->link);
989 }
990 
991 int sysctl_protected_symlinks __read_mostly = 0;
992 int sysctl_protected_hardlinks __read_mostly = 0;
993 int sysctl_protected_fifos __read_mostly;
994 int sysctl_protected_regular __read_mostly;
995 
996 /**
997  * may_follow_link - Check symlink following for unsafe situations
998  * @nd: nameidata pathwalk data
999  *
1000  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1001  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1002  * in a sticky world-writable directory. This is to protect privileged
1003  * processes from failing races against path names that may change out
1004  * from under them by way of other users creating malicious symlinks.
1005  * It will permit symlinks to be followed only when outside a sticky
1006  * world-writable directory, or when the uid of the symlink and follower
1007  * match, or when the directory owner matches the symlink's owner.
1008  *
1009  * Returns 0 if following the symlink is allowed, -ve on error.
1010  */
1011 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1012 {
1013 	struct user_namespace *mnt_userns;
1014 	kuid_t i_uid;
1015 
1016 	if (!sysctl_protected_symlinks)
1017 		return 0;
1018 
1019 	mnt_userns = mnt_user_ns(nd->path.mnt);
1020 	i_uid = i_uid_into_mnt(mnt_userns, inode);
1021 	/* Allowed if owner and follower match. */
1022 	if (uid_eq(current_cred()->fsuid, i_uid))
1023 		return 0;
1024 
1025 	/* Allowed if parent directory not sticky and world-writable. */
1026 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1027 		return 0;
1028 
1029 	/* Allowed if parent directory and link owner match. */
1030 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1031 		return 0;
1032 
1033 	if (nd->flags & LOOKUP_RCU)
1034 		return -ECHILD;
1035 
1036 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1037 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1038 	return -EACCES;
1039 }
1040 
1041 /**
1042  * safe_hardlink_source - Check for safe hardlink conditions
1043  * @mnt_userns:	user namespace of the mount the inode was found from
1044  * @inode: the source inode to hardlink from
1045  *
1046  * Return false if at least one of the following conditions:
1047  *    - inode is not a regular file
1048  *    - inode is setuid
1049  *    - inode is setgid and group-exec
1050  *    - access failure for read and write
1051  *
1052  * Otherwise returns true.
1053  */
1054 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1055 				 struct inode *inode)
1056 {
1057 	umode_t mode = inode->i_mode;
1058 
1059 	/* Special files should not get pinned to the filesystem. */
1060 	if (!S_ISREG(mode))
1061 		return false;
1062 
1063 	/* Setuid files should not get pinned to the filesystem. */
1064 	if (mode & S_ISUID)
1065 		return false;
1066 
1067 	/* Executable setgid files should not get pinned to the filesystem. */
1068 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1069 		return false;
1070 
1071 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1072 	if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1073 		return false;
1074 
1075 	return true;
1076 }
1077 
1078 /**
1079  * may_linkat - Check permissions for creating a hardlink
1080  * @mnt_userns:	user namespace of the mount the inode was found from
1081  * @link: the source to hardlink from
1082  *
1083  * Block hardlink when all of:
1084  *  - sysctl_protected_hardlinks enabled
1085  *  - fsuid does not match inode
1086  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1087  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1088  *
1089  * If the inode has been found through an idmapped mount the user namespace of
1090  * the vfsmount must be passed through @mnt_userns. This function will then take
1091  * care to map the inode according to @mnt_userns before checking permissions.
1092  * On non-idmapped mounts or if permission checking is to be performed on the
1093  * raw inode simply passs init_user_ns.
1094  *
1095  * Returns 0 if successful, -ve on error.
1096  */
1097 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1098 {
1099 	struct inode *inode = link->dentry->d_inode;
1100 
1101 	/* Inode writeback is not safe when the uid or gid are invalid. */
1102 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1103 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1104 		return -EOVERFLOW;
1105 
1106 	if (!sysctl_protected_hardlinks)
1107 		return 0;
1108 
1109 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1110 	 * otherwise, it must be a safe source.
1111 	 */
1112 	if (safe_hardlink_source(mnt_userns, inode) ||
1113 	    inode_owner_or_capable(mnt_userns, inode))
1114 		return 0;
1115 
1116 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1117 	return -EPERM;
1118 }
1119 
1120 /**
1121  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1122  *			  should be allowed, or not, on files that already
1123  *			  exist.
1124  * @mnt_userns:	user namespace of the mount the inode was found from
1125  * @dir_mode: mode bits of directory
1126  * @dir_uid: owner of directory
1127  * @inode: the inode of the file to open
1128  *
1129  * Block an O_CREAT open of a FIFO (or a regular file) when:
1130  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1131  *   - the file already exists
1132  *   - we are in a sticky directory
1133  *   - we don't own the file
1134  *   - the owner of the directory doesn't own the file
1135  *   - the directory is world writable
1136  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1137  * the directory doesn't have to be world writable: being group writable will
1138  * be enough.
1139  *
1140  * If the inode has been found through an idmapped mount the user namespace of
1141  * the vfsmount must be passed through @mnt_userns. This function will then take
1142  * care to map the inode according to @mnt_userns before checking permissions.
1143  * On non-idmapped mounts or if permission checking is to be performed on the
1144  * raw inode simply passs init_user_ns.
1145  *
1146  * Returns 0 if the open is allowed, -ve on error.
1147  */
1148 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1149 				struct nameidata *nd, struct inode *const inode)
1150 {
1151 	umode_t dir_mode = nd->dir_mode;
1152 	kuid_t dir_uid = nd->dir_uid;
1153 
1154 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1155 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1156 	    likely(!(dir_mode & S_ISVTX)) ||
1157 	    uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1158 	    uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1159 		return 0;
1160 
1161 	if (likely(dir_mode & 0002) ||
1162 	    (dir_mode & 0020 &&
1163 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1164 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1165 		const char *operation = S_ISFIFO(inode->i_mode) ?
1166 					"sticky_create_fifo" :
1167 					"sticky_create_regular";
1168 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1169 		return -EACCES;
1170 	}
1171 	return 0;
1172 }
1173 
1174 /*
1175  * follow_up - Find the mountpoint of path's vfsmount
1176  *
1177  * Given a path, find the mountpoint of its source file system.
1178  * Replace @path with the path of the mountpoint in the parent mount.
1179  * Up is towards /.
1180  *
1181  * Return 1 if we went up a level and 0 if we were already at the
1182  * root.
1183  */
1184 int follow_up(struct path *path)
1185 {
1186 	struct mount *mnt = real_mount(path->mnt);
1187 	struct mount *parent;
1188 	struct dentry *mountpoint;
1189 
1190 	read_seqlock_excl(&mount_lock);
1191 	parent = mnt->mnt_parent;
1192 	if (parent == mnt) {
1193 		read_sequnlock_excl(&mount_lock);
1194 		return 0;
1195 	}
1196 	mntget(&parent->mnt);
1197 	mountpoint = dget(mnt->mnt_mountpoint);
1198 	read_sequnlock_excl(&mount_lock);
1199 	dput(path->dentry);
1200 	path->dentry = mountpoint;
1201 	mntput(path->mnt);
1202 	path->mnt = &parent->mnt;
1203 	return 1;
1204 }
1205 EXPORT_SYMBOL(follow_up);
1206 
1207 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1208 				  struct path *path, unsigned *seqp)
1209 {
1210 	while (mnt_has_parent(m)) {
1211 		struct dentry *mountpoint = m->mnt_mountpoint;
1212 
1213 		m = m->mnt_parent;
1214 		if (unlikely(root->dentry == mountpoint &&
1215 			     root->mnt == &m->mnt))
1216 			break;
1217 		if (mountpoint != m->mnt.mnt_root) {
1218 			path->mnt = &m->mnt;
1219 			path->dentry = mountpoint;
1220 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1221 			return true;
1222 		}
1223 	}
1224 	return false;
1225 }
1226 
1227 static bool choose_mountpoint(struct mount *m, const struct path *root,
1228 			      struct path *path)
1229 {
1230 	bool found;
1231 
1232 	rcu_read_lock();
1233 	while (1) {
1234 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1235 
1236 		found = choose_mountpoint_rcu(m, root, path, &seq);
1237 		if (unlikely(!found)) {
1238 			if (!read_seqretry(&mount_lock, mseq))
1239 				break;
1240 		} else {
1241 			if (likely(__legitimize_path(path, seq, mseq)))
1242 				break;
1243 			rcu_read_unlock();
1244 			path_put(path);
1245 			rcu_read_lock();
1246 		}
1247 	}
1248 	rcu_read_unlock();
1249 	return found;
1250 }
1251 
1252 /*
1253  * Perform an automount
1254  * - return -EISDIR to tell follow_managed() to stop and return the path we
1255  *   were called with.
1256  */
1257 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1258 {
1259 	struct dentry *dentry = path->dentry;
1260 
1261 	/* We don't want to mount if someone's just doing a stat -
1262 	 * unless they're stat'ing a directory and appended a '/' to
1263 	 * the name.
1264 	 *
1265 	 * We do, however, want to mount if someone wants to open or
1266 	 * create a file of any type under the mountpoint, wants to
1267 	 * traverse through the mountpoint or wants to open the
1268 	 * mounted directory.  Also, autofs may mark negative dentries
1269 	 * as being automount points.  These will need the attentions
1270 	 * of the daemon to instantiate them before they can be used.
1271 	 */
1272 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1273 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1274 	    dentry->d_inode)
1275 		return -EISDIR;
1276 
1277 	if (count && (*count)++ >= MAXSYMLINKS)
1278 		return -ELOOP;
1279 
1280 	return finish_automount(dentry->d_op->d_automount(path), path);
1281 }
1282 
1283 /*
1284  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1285  * dentries are pinned but not locked here, so negative dentry can go
1286  * positive right under us.  Use of smp_load_acquire() provides a barrier
1287  * sufficient for ->d_inode and ->d_flags consistency.
1288  */
1289 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1290 			     int *count, unsigned lookup_flags)
1291 {
1292 	struct vfsmount *mnt = path->mnt;
1293 	bool need_mntput = false;
1294 	int ret = 0;
1295 
1296 	while (flags & DCACHE_MANAGED_DENTRY) {
1297 		/* Allow the filesystem to manage the transit without i_mutex
1298 		 * being held. */
1299 		if (flags & DCACHE_MANAGE_TRANSIT) {
1300 			ret = path->dentry->d_op->d_manage(path, false);
1301 			flags = smp_load_acquire(&path->dentry->d_flags);
1302 			if (ret < 0)
1303 				break;
1304 		}
1305 
1306 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1307 			struct vfsmount *mounted = lookup_mnt(path);
1308 			if (mounted) {		// ... in our namespace
1309 				dput(path->dentry);
1310 				if (need_mntput)
1311 					mntput(path->mnt);
1312 				path->mnt = mounted;
1313 				path->dentry = dget(mounted->mnt_root);
1314 				// here we know it's positive
1315 				flags = path->dentry->d_flags;
1316 				need_mntput = true;
1317 				continue;
1318 			}
1319 		}
1320 
1321 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1322 			break;
1323 
1324 		// uncovered automount point
1325 		ret = follow_automount(path, count, lookup_flags);
1326 		flags = smp_load_acquire(&path->dentry->d_flags);
1327 		if (ret < 0)
1328 			break;
1329 	}
1330 
1331 	if (ret == -EISDIR)
1332 		ret = 0;
1333 	// possible if you race with several mount --move
1334 	if (need_mntput && path->mnt == mnt)
1335 		mntput(path->mnt);
1336 	if (!ret && unlikely(d_flags_negative(flags)))
1337 		ret = -ENOENT;
1338 	*jumped = need_mntput;
1339 	return ret;
1340 }
1341 
1342 static inline int traverse_mounts(struct path *path, bool *jumped,
1343 				  int *count, unsigned lookup_flags)
1344 {
1345 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1346 
1347 	/* fastpath */
1348 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1349 		*jumped = false;
1350 		if (unlikely(d_flags_negative(flags)))
1351 			return -ENOENT;
1352 		return 0;
1353 	}
1354 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1355 }
1356 
1357 int follow_down_one(struct path *path)
1358 {
1359 	struct vfsmount *mounted;
1360 
1361 	mounted = lookup_mnt(path);
1362 	if (mounted) {
1363 		dput(path->dentry);
1364 		mntput(path->mnt);
1365 		path->mnt = mounted;
1366 		path->dentry = dget(mounted->mnt_root);
1367 		return 1;
1368 	}
1369 	return 0;
1370 }
1371 EXPORT_SYMBOL(follow_down_one);
1372 
1373 /*
1374  * Follow down to the covering mount currently visible to userspace.  At each
1375  * point, the filesystem owning that dentry may be queried as to whether the
1376  * caller is permitted to proceed or not.
1377  */
1378 int follow_down(struct path *path)
1379 {
1380 	struct vfsmount *mnt = path->mnt;
1381 	bool jumped;
1382 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1383 
1384 	if (path->mnt != mnt)
1385 		mntput(mnt);
1386 	return ret;
1387 }
1388 EXPORT_SYMBOL(follow_down);
1389 
1390 /*
1391  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1392  * we meet a managed dentry that would need blocking.
1393  */
1394 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1395 			       struct inode **inode, unsigned *seqp)
1396 {
1397 	struct dentry *dentry = path->dentry;
1398 	unsigned int flags = dentry->d_flags;
1399 
1400 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1401 		return true;
1402 
1403 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1404 		return false;
1405 
1406 	for (;;) {
1407 		/*
1408 		 * Don't forget we might have a non-mountpoint managed dentry
1409 		 * that wants to block transit.
1410 		 */
1411 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1412 			int res = dentry->d_op->d_manage(path, true);
1413 			if (res)
1414 				return res == -EISDIR;
1415 			flags = dentry->d_flags;
1416 		}
1417 
1418 		if (flags & DCACHE_MOUNTED) {
1419 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1420 			if (mounted) {
1421 				path->mnt = &mounted->mnt;
1422 				dentry = path->dentry = mounted->mnt.mnt_root;
1423 				nd->flags |= LOOKUP_JUMPED;
1424 				*seqp = read_seqcount_begin(&dentry->d_seq);
1425 				*inode = dentry->d_inode;
1426 				/*
1427 				 * We don't need to re-check ->d_seq after this
1428 				 * ->d_inode read - there will be an RCU delay
1429 				 * between mount hash removal and ->mnt_root
1430 				 * becoming unpinned.
1431 				 */
1432 				flags = dentry->d_flags;
1433 				continue;
1434 			}
1435 			if (read_seqretry(&mount_lock, nd->m_seq))
1436 				return false;
1437 		}
1438 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1439 	}
1440 }
1441 
1442 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1443 			  struct path *path, struct inode **inode,
1444 			  unsigned int *seqp)
1445 {
1446 	bool jumped;
1447 	int ret;
1448 
1449 	path->mnt = nd->path.mnt;
1450 	path->dentry = dentry;
1451 	if (nd->flags & LOOKUP_RCU) {
1452 		unsigned int seq = *seqp;
1453 		if (unlikely(!*inode))
1454 			return -ENOENT;
1455 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1456 			return 0;
1457 		if (!try_to_unlazy_next(nd, dentry, seq))
1458 			return -ECHILD;
1459 		// *path might've been clobbered by __follow_mount_rcu()
1460 		path->mnt = nd->path.mnt;
1461 		path->dentry = dentry;
1462 	}
1463 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1464 	if (jumped) {
1465 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1466 			ret = -EXDEV;
1467 		else
1468 			nd->flags |= LOOKUP_JUMPED;
1469 	}
1470 	if (unlikely(ret)) {
1471 		dput(path->dentry);
1472 		if (path->mnt != nd->path.mnt)
1473 			mntput(path->mnt);
1474 	} else {
1475 		*inode = d_backing_inode(path->dentry);
1476 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1477 	}
1478 	return ret;
1479 }
1480 
1481 /*
1482  * This looks up the name in dcache and possibly revalidates the found dentry.
1483  * NULL is returned if the dentry does not exist in the cache.
1484  */
1485 static struct dentry *lookup_dcache(const struct qstr *name,
1486 				    struct dentry *dir,
1487 				    unsigned int flags)
1488 {
1489 	struct dentry *dentry = d_lookup(dir, name);
1490 	if (dentry) {
1491 		int error = d_revalidate(dentry, flags);
1492 		if (unlikely(error <= 0)) {
1493 			if (!error)
1494 				d_invalidate(dentry);
1495 			dput(dentry);
1496 			return ERR_PTR(error);
1497 		}
1498 	}
1499 	return dentry;
1500 }
1501 
1502 /*
1503  * Parent directory has inode locked exclusive.  This is one
1504  * and only case when ->lookup() gets called on non in-lookup
1505  * dentries - as the matter of fact, this only gets called
1506  * when directory is guaranteed to have no in-lookup children
1507  * at all.
1508  */
1509 static struct dentry *__lookup_hash(const struct qstr *name,
1510 		struct dentry *base, unsigned int flags)
1511 {
1512 	struct dentry *dentry = lookup_dcache(name, base, flags);
1513 	struct dentry *old;
1514 	struct inode *dir = base->d_inode;
1515 
1516 	if (dentry)
1517 		return dentry;
1518 
1519 	/* Don't create child dentry for a dead directory. */
1520 	if (unlikely(IS_DEADDIR(dir)))
1521 		return ERR_PTR(-ENOENT);
1522 
1523 	dentry = d_alloc(base, name);
1524 	if (unlikely(!dentry))
1525 		return ERR_PTR(-ENOMEM);
1526 
1527 	old = dir->i_op->lookup(dir, dentry, flags);
1528 	if (unlikely(old)) {
1529 		dput(dentry);
1530 		dentry = old;
1531 	}
1532 	return dentry;
1533 }
1534 
1535 static struct dentry *lookup_fast(struct nameidata *nd,
1536 				  struct inode **inode,
1537 			          unsigned *seqp)
1538 {
1539 	struct dentry *dentry, *parent = nd->path.dentry;
1540 	int status = 1;
1541 
1542 	/*
1543 	 * Rename seqlock is not required here because in the off chance
1544 	 * of a false negative due to a concurrent rename, the caller is
1545 	 * going to fall back to non-racy lookup.
1546 	 */
1547 	if (nd->flags & LOOKUP_RCU) {
1548 		unsigned seq;
1549 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1550 		if (unlikely(!dentry)) {
1551 			if (!try_to_unlazy(nd))
1552 				return ERR_PTR(-ECHILD);
1553 			return NULL;
1554 		}
1555 
1556 		/*
1557 		 * This sequence count validates that the inode matches
1558 		 * the dentry name information from lookup.
1559 		 */
1560 		*inode = d_backing_inode(dentry);
1561 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1562 			return ERR_PTR(-ECHILD);
1563 
1564 		/*
1565 		 * This sequence count validates that the parent had no
1566 		 * changes while we did the lookup of the dentry above.
1567 		 *
1568 		 * The memory barrier in read_seqcount_begin of child is
1569 		 *  enough, we can use __read_seqcount_retry here.
1570 		 */
1571 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1572 			return ERR_PTR(-ECHILD);
1573 
1574 		*seqp = seq;
1575 		status = d_revalidate(dentry, nd->flags);
1576 		if (likely(status > 0))
1577 			return dentry;
1578 		if (!try_to_unlazy_next(nd, dentry, seq))
1579 			return ERR_PTR(-ECHILD);
1580 		if (status == -ECHILD)
1581 			/* we'd been told to redo it in non-rcu mode */
1582 			status = d_revalidate(dentry, nd->flags);
1583 	} else {
1584 		dentry = __d_lookup(parent, &nd->last);
1585 		if (unlikely(!dentry))
1586 			return NULL;
1587 		status = d_revalidate(dentry, nd->flags);
1588 	}
1589 	if (unlikely(status <= 0)) {
1590 		if (!status)
1591 			d_invalidate(dentry);
1592 		dput(dentry);
1593 		return ERR_PTR(status);
1594 	}
1595 	return dentry;
1596 }
1597 
1598 /* Fast lookup failed, do it the slow way */
1599 static struct dentry *__lookup_slow(const struct qstr *name,
1600 				    struct dentry *dir,
1601 				    unsigned int flags)
1602 {
1603 	struct dentry *dentry, *old;
1604 	struct inode *inode = dir->d_inode;
1605 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1606 
1607 	/* Don't go there if it's already dead */
1608 	if (unlikely(IS_DEADDIR(inode)))
1609 		return ERR_PTR(-ENOENT);
1610 again:
1611 	dentry = d_alloc_parallel(dir, name, &wq);
1612 	if (IS_ERR(dentry))
1613 		return dentry;
1614 	if (unlikely(!d_in_lookup(dentry))) {
1615 		int error = d_revalidate(dentry, flags);
1616 		if (unlikely(error <= 0)) {
1617 			if (!error) {
1618 				d_invalidate(dentry);
1619 				dput(dentry);
1620 				goto again;
1621 			}
1622 			dput(dentry);
1623 			dentry = ERR_PTR(error);
1624 		}
1625 	} else {
1626 		old = inode->i_op->lookup(inode, dentry, flags);
1627 		d_lookup_done(dentry);
1628 		if (unlikely(old)) {
1629 			dput(dentry);
1630 			dentry = old;
1631 		}
1632 	}
1633 	return dentry;
1634 }
1635 
1636 static struct dentry *lookup_slow(const struct qstr *name,
1637 				  struct dentry *dir,
1638 				  unsigned int flags)
1639 {
1640 	struct inode *inode = dir->d_inode;
1641 	struct dentry *res;
1642 	inode_lock_shared(inode);
1643 	res = __lookup_slow(name, dir, flags);
1644 	inode_unlock_shared(inode);
1645 	return res;
1646 }
1647 
1648 static inline int may_lookup(struct user_namespace *mnt_userns,
1649 			     struct nameidata *nd)
1650 {
1651 	if (nd->flags & LOOKUP_RCU) {
1652 		int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1653 		if (err != -ECHILD || !try_to_unlazy(nd))
1654 			return err;
1655 	}
1656 	return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1657 }
1658 
1659 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1660 {
1661 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1662 		return -ELOOP;
1663 
1664 	if (likely(nd->depth != EMBEDDED_LEVELS))
1665 		return 0;
1666 	if (likely(nd->stack != nd->internal))
1667 		return 0;
1668 	if (likely(nd_alloc_stack(nd)))
1669 		return 0;
1670 
1671 	if (nd->flags & LOOKUP_RCU) {
1672 		// we need to grab link before we do unlazy.  And we can't skip
1673 		// unlazy even if we fail to grab the link - cleanup needs it
1674 		bool grabbed_link = legitimize_path(nd, link, seq);
1675 
1676 		if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1677 			return -ECHILD;
1678 
1679 		if (nd_alloc_stack(nd))
1680 			return 0;
1681 	}
1682 	return -ENOMEM;
1683 }
1684 
1685 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1686 
1687 static const char *pick_link(struct nameidata *nd, struct path *link,
1688 		     struct inode *inode, unsigned seq, int flags)
1689 {
1690 	struct saved *last;
1691 	const char *res;
1692 	int error = reserve_stack(nd, link, seq);
1693 
1694 	if (unlikely(error)) {
1695 		if (!(nd->flags & LOOKUP_RCU))
1696 			path_put(link);
1697 		return ERR_PTR(error);
1698 	}
1699 	last = nd->stack + nd->depth++;
1700 	last->link = *link;
1701 	clear_delayed_call(&last->done);
1702 	last->seq = seq;
1703 
1704 	if (flags & WALK_TRAILING) {
1705 		error = may_follow_link(nd, inode);
1706 		if (unlikely(error))
1707 			return ERR_PTR(error);
1708 	}
1709 
1710 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1711 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1712 		return ERR_PTR(-ELOOP);
1713 
1714 	if (!(nd->flags & LOOKUP_RCU)) {
1715 		touch_atime(&last->link);
1716 		cond_resched();
1717 	} else if (atime_needs_update(&last->link, inode)) {
1718 		if (!try_to_unlazy(nd))
1719 			return ERR_PTR(-ECHILD);
1720 		touch_atime(&last->link);
1721 	}
1722 
1723 	error = security_inode_follow_link(link->dentry, inode,
1724 					   nd->flags & LOOKUP_RCU);
1725 	if (unlikely(error))
1726 		return ERR_PTR(error);
1727 
1728 	res = READ_ONCE(inode->i_link);
1729 	if (!res) {
1730 		const char * (*get)(struct dentry *, struct inode *,
1731 				struct delayed_call *);
1732 		get = inode->i_op->get_link;
1733 		if (nd->flags & LOOKUP_RCU) {
1734 			res = get(NULL, inode, &last->done);
1735 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1736 				res = get(link->dentry, inode, &last->done);
1737 		} else {
1738 			res = get(link->dentry, inode, &last->done);
1739 		}
1740 		if (!res)
1741 			goto all_done;
1742 		if (IS_ERR(res))
1743 			return res;
1744 	}
1745 	if (*res == '/') {
1746 		error = nd_jump_root(nd);
1747 		if (unlikely(error))
1748 			return ERR_PTR(error);
1749 		while (unlikely(*++res == '/'))
1750 			;
1751 	}
1752 	if (*res)
1753 		return res;
1754 all_done: // pure jump
1755 	put_link(nd);
1756 	return NULL;
1757 }
1758 
1759 /*
1760  * Do we need to follow links? We _really_ want to be able
1761  * to do this check without having to look at inode->i_op,
1762  * so we keep a cache of "no, this doesn't need follow_link"
1763  * for the common case.
1764  */
1765 static const char *step_into(struct nameidata *nd, int flags,
1766 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1767 {
1768 	struct path path;
1769 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1770 
1771 	if (err < 0)
1772 		return ERR_PTR(err);
1773 	if (likely(!d_is_symlink(path.dentry)) ||
1774 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1775 	   (flags & WALK_NOFOLLOW)) {
1776 		/* not a symlink or should not follow */
1777 		if (!(nd->flags & LOOKUP_RCU)) {
1778 			dput(nd->path.dentry);
1779 			if (nd->path.mnt != path.mnt)
1780 				mntput(nd->path.mnt);
1781 		}
1782 		nd->path = path;
1783 		nd->inode = inode;
1784 		nd->seq = seq;
1785 		return NULL;
1786 	}
1787 	if (nd->flags & LOOKUP_RCU) {
1788 		/* make sure that d_is_symlink above matches inode */
1789 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1790 			return ERR_PTR(-ECHILD);
1791 	} else {
1792 		if (path.mnt == nd->path.mnt)
1793 			mntget(path.mnt);
1794 	}
1795 	return pick_link(nd, &path, inode, seq, flags);
1796 }
1797 
1798 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1799 					struct inode **inodep,
1800 					unsigned *seqp)
1801 {
1802 	struct dentry *parent, *old;
1803 
1804 	if (path_equal(&nd->path, &nd->root))
1805 		goto in_root;
1806 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1807 		struct path path;
1808 		unsigned seq;
1809 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1810 					   &nd->root, &path, &seq))
1811 			goto in_root;
1812 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1813 			return ERR_PTR(-ECHILD);
1814 		nd->path = path;
1815 		nd->inode = path.dentry->d_inode;
1816 		nd->seq = seq;
1817 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1818 			return ERR_PTR(-ECHILD);
1819 		/* we know that mountpoint was pinned */
1820 	}
1821 	old = nd->path.dentry;
1822 	parent = old->d_parent;
1823 	*inodep = parent->d_inode;
1824 	*seqp = read_seqcount_begin(&parent->d_seq);
1825 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1826 		return ERR_PTR(-ECHILD);
1827 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1828 		return ERR_PTR(-ECHILD);
1829 	return parent;
1830 in_root:
1831 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1832 		return ERR_PTR(-ECHILD);
1833 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1834 		return ERR_PTR(-ECHILD);
1835 	return NULL;
1836 }
1837 
1838 static struct dentry *follow_dotdot(struct nameidata *nd,
1839 				 struct inode **inodep,
1840 				 unsigned *seqp)
1841 {
1842 	struct dentry *parent;
1843 
1844 	if (path_equal(&nd->path, &nd->root))
1845 		goto in_root;
1846 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1847 		struct path path;
1848 
1849 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1850 				       &nd->root, &path))
1851 			goto in_root;
1852 		path_put(&nd->path);
1853 		nd->path = path;
1854 		nd->inode = path.dentry->d_inode;
1855 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1856 			return ERR_PTR(-EXDEV);
1857 	}
1858 	/* rare case of legitimate dget_parent()... */
1859 	parent = dget_parent(nd->path.dentry);
1860 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1861 		dput(parent);
1862 		return ERR_PTR(-ENOENT);
1863 	}
1864 	*seqp = 0;
1865 	*inodep = parent->d_inode;
1866 	return parent;
1867 
1868 in_root:
1869 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1870 		return ERR_PTR(-EXDEV);
1871 	dget(nd->path.dentry);
1872 	return NULL;
1873 }
1874 
1875 static const char *handle_dots(struct nameidata *nd, int type)
1876 {
1877 	if (type == LAST_DOTDOT) {
1878 		const char *error = NULL;
1879 		struct dentry *parent;
1880 		struct inode *inode;
1881 		unsigned seq;
1882 
1883 		if (!nd->root.mnt) {
1884 			error = ERR_PTR(set_root(nd));
1885 			if (error)
1886 				return error;
1887 		}
1888 		if (nd->flags & LOOKUP_RCU)
1889 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1890 		else
1891 			parent = follow_dotdot(nd, &inode, &seq);
1892 		if (IS_ERR(parent))
1893 			return ERR_CAST(parent);
1894 		if (unlikely(!parent))
1895 			error = step_into(nd, WALK_NOFOLLOW,
1896 					 nd->path.dentry, nd->inode, nd->seq);
1897 		else
1898 			error = step_into(nd, WALK_NOFOLLOW,
1899 					 parent, inode, seq);
1900 		if (unlikely(error))
1901 			return error;
1902 
1903 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1904 			/*
1905 			 * If there was a racing rename or mount along our
1906 			 * path, then we can't be sure that ".." hasn't jumped
1907 			 * above nd->root (and so userspace should retry or use
1908 			 * some fallback).
1909 			 */
1910 			smp_rmb();
1911 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1912 				return ERR_PTR(-EAGAIN);
1913 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1914 				return ERR_PTR(-EAGAIN);
1915 		}
1916 	}
1917 	return NULL;
1918 }
1919 
1920 static const char *walk_component(struct nameidata *nd, int flags)
1921 {
1922 	struct dentry *dentry;
1923 	struct inode *inode;
1924 	unsigned seq;
1925 	/*
1926 	 * "." and ".." are special - ".." especially so because it has
1927 	 * to be able to know about the current root directory and
1928 	 * parent relationships.
1929 	 */
1930 	if (unlikely(nd->last_type != LAST_NORM)) {
1931 		if (!(flags & WALK_MORE) && nd->depth)
1932 			put_link(nd);
1933 		return handle_dots(nd, nd->last_type);
1934 	}
1935 	dentry = lookup_fast(nd, &inode, &seq);
1936 	if (IS_ERR(dentry))
1937 		return ERR_CAST(dentry);
1938 	if (unlikely(!dentry)) {
1939 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1940 		if (IS_ERR(dentry))
1941 			return ERR_CAST(dentry);
1942 	}
1943 	if (!(flags & WALK_MORE) && nd->depth)
1944 		put_link(nd);
1945 	return step_into(nd, flags, dentry, inode, seq);
1946 }
1947 
1948 /*
1949  * We can do the critical dentry name comparison and hashing
1950  * operations one word at a time, but we are limited to:
1951  *
1952  * - Architectures with fast unaligned word accesses. We could
1953  *   do a "get_unaligned()" if this helps and is sufficiently
1954  *   fast.
1955  *
1956  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1957  *   do not trap on the (extremely unlikely) case of a page
1958  *   crossing operation.
1959  *
1960  * - Furthermore, we need an efficient 64-bit compile for the
1961  *   64-bit case in order to generate the "number of bytes in
1962  *   the final mask". Again, that could be replaced with a
1963  *   efficient population count instruction or similar.
1964  */
1965 #ifdef CONFIG_DCACHE_WORD_ACCESS
1966 
1967 #include <asm/word-at-a-time.h>
1968 
1969 #ifdef HASH_MIX
1970 
1971 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1972 
1973 #elif defined(CONFIG_64BIT)
1974 /*
1975  * Register pressure in the mixing function is an issue, particularly
1976  * on 32-bit x86, but almost any function requires one state value and
1977  * one temporary.  Instead, use a function designed for two state values
1978  * and no temporaries.
1979  *
1980  * This function cannot create a collision in only two iterations, so
1981  * we have two iterations to achieve avalanche.  In those two iterations,
1982  * we have six layers of mixing, which is enough to spread one bit's
1983  * influence out to 2^6 = 64 state bits.
1984  *
1985  * Rotate constants are scored by considering either 64 one-bit input
1986  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1987  * probability of that delta causing a change to each of the 128 output
1988  * bits, using a sample of random initial states.
1989  *
1990  * The Shannon entropy of the computed probabilities is then summed
1991  * to produce a score.  Ideally, any input change has a 50% chance of
1992  * toggling any given output bit.
1993  *
1994  * Mixing scores (in bits) for (12,45):
1995  * Input delta: 1-bit      2-bit
1996  * 1 round:     713.3    42542.6
1997  * 2 rounds:   2753.7   140389.8
1998  * 3 rounds:   5954.1   233458.2
1999  * 4 rounds:   7862.6   256672.2
2000  * Perfect:    8192     258048
2001  *            (64*128) (64*63/2 * 128)
2002  */
2003 #define HASH_MIX(x, y, a)	\
2004 	(	x ^= (a),	\
2005 	y ^= x,	x = rol64(x,12),\
2006 	x += y,	y = rol64(y,45),\
2007 	y *= 9			)
2008 
2009 /*
2010  * Fold two longs into one 32-bit hash value.  This must be fast, but
2011  * latency isn't quite as critical, as there is a fair bit of additional
2012  * work done before the hash value is used.
2013  */
2014 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2015 {
2016 	y ^= x * GOLDEN_RATIO_64;
2017 	y *= GOLDEN_RATIO_64;
2018 	return y >> 32;
2019 }
2020 
2021 #else	/* 32-bit case */
2022 
2023 /*
2024  * Mixing scores (in bits) for (7,20):
2025  * Input delta: 1-bit      2-bit
2026  * 1 round:     330.3     9201.6
2027  * 2 rounds:   1246.4    25475.4
2028  * 3 rounds:   1907.1    31295.1
2029  * 4 rounds:   2042.3    31718.6
2030  * Perfect:    2048      31744
2031  *            (32*64)   (32*31/2 * 64)
2032  */
2033 #define HASH_MIX(x, y, a)	\
2034 	(	x ^= (a),	\
2035 	y ^= x,	x = rol32(x, 7),\
2036 	x += y,	y = rol32(y,20),\
2037 	y *= 9			)
2038 
2039 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2040 {
2041 	/* Use arch-optimized multiply if one exists */
2042 	return __hash_32(y ^ __hash_32(x));
2043 }
2044 
2045 #endif
2046 
2047 /*
2048  * Return the hash of a string of known length.  This is carfully
2049  * designed to match hash_name(), which is the more critical function.
2050  * In particular, we must end by hashing a final word containing 0..7
2051  * payload bytes, to match the way that hash_name() iterates until it
2052  * finds the delimiter after the name.
2053  */
2054 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2055 {
2056 	unsigned long a, x = 0, y = (unsigned long)salt;
2057 
2058 	for (;;) {
2059 		if (!len)
2060 			goto done;
2061 		a = load_unaligned_zeropad(name);
2062 		if (len < sizeof(unsigned long))
2063 			break;
2064 		HASH_MIX(x, y, a);
2065 		name += sizeof(unsigned long);
2066 		len -= sizeof(unsigned long);
2067 	}
2068 	x ^= a & bytemask_from_count(len);
2069 done:
2070 	return fold_hash(x, y);
2071 }
2072 EXPORT_SYMBOL(full_name_hash);
2073 
2074 /* Return the "hash_len" (hash and length) of a null-terminated string */
2075 u64 hashlen_string(const void *salt, const char *name)
2076 {
2077 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2078 	unsigned long adata, mask, len;
2079 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2080 
2081 	len = 0;
2082 	goto inside;
2083 
2084 	do {
2085 		HASH_MIX(x, y, a);
2086 		len += sizeof(unsigned long);
2087 inside:
2088 		a = load_unaligned_zeropad(name+len);
2089 	} while (!has_zero(a, &adata, &constants));
2090 
2091 	adata = prep_zero_mask(a, adata, &constants);
2092 	mask = create_zero_mask(adata);
2093 	x ^= a & zero_bytemask(mask);
2094 
2095 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2096 }
2097 EXPORT_SYMBOL(hashlen_string);
2098 
2099 /*
2100  * Calculate the length and hash of the path component, and
2101  * return the "hash_len" as the result.
2102  */
2103 static inline u64 hash_name(const void *salt, const char *name)
2104 {
2105 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2106 	unsigned long adata, bdata, mask, len;
2107 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2108 
2109 	len = 0;
2110 	goto inside;
2111 
2112 	do {
2113 		HASH_MIX(x, y, a);
2114 		len += sizeof(unsigned long);
2115 inside:
2116 		a = load_unaligned_zeropad(name+len);
2117 		b = a ^ REPEAT_BYTE('/');
2118 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2119 
2120 	adata = prep_zero_mask(a, adata, &constants);
2121 	bdata = prep_zero_mask(b, bdata, &constants);
2122 	mask = create_zero_mask(adata | bdata);
2123 	x ^= a & zero_bytemask(mask);
2124 
2125 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2126 }
2127 
2128 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2129 
2130 /* Return the hash of a string of known length */
2131 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2132 {
2133 	unsigned long hash = init_name_hash(salt);
2134 	while (len--)
2135 		hash = partial_name_hash((unsigned char)*name++, hash);
2136 	return end_name_hash(hash);
2137 }
2138 EXPORT_SYMBOL(full_name_hash);
2139 
2140 /* Return the "hash_len" (hash and length) of a null-terminated string */
2141 u64 hashlen_string(const void *salt, const char *name)
2142 {
2143 	unsigned long hash = init_name_hash(salt);
2144 	unsigned long len = 0, c;
2145 
2146 	c = (unsigned char)*name;
2147 	while (c) {
2148 		len++;
2149 		hash = partial_name_hash(c, hash);
2150 		c = (unsigned char)name[len];
2151 	}
2152 	return hashlen_create(end_name_hash(hash), len);
2153 }
2154 EXPORT_SYMBOL(hashlen_string);
2155 
2156 /*
2157  * We know there's a real path component here of at least
2158  * one character.
2159  */
2160 static inline u64 hash_name(const void *salt, const char *name)
2161 {
2162 	unsigned long hash = init_name_hash(salt);
2163 	unsigned long len = 0, c;
2164 
2165 	c = (unsigned char)*name;
2166 	do {
2167 		len++;
2168 		hash = partial_name_hash(c, hash);
2169 		c = (unsigned char)name[len];
2170 	} while (c && c != '/');
2171 	return hashlen_create(end_name_hash(hash), len);
2172 }
2173 
2174 #endif
2175 
2176 /*
2177  * Name resolution.
2178  * This is the basic name resolution function, turning a pathname into
2179  * the final dentry. We expect 'base' to be positive and a directory.
2180  *
2181  * Returns 0 and nd will have valid dentry and mnt on success.
2182  * Returns error and drops reference to input namei data on failure.
2183  */
2184 static int link_path_walk(const char *name, struct nameidata *nd)
2185 {
2186 	int depth = 0; // depth <= nd->depth
2187 	int err;
2188 
2189 	nd->last_type = LAST_ROOT;
2190 	nd->flags |= LOOKUP_PARENT;
2191 	if (IS_ERR(name))
2192 		return PTR_ERR(name);
2193 	while (*name=='/')
2194 		name++;
2195 	if (!*name) {
2196 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2197 		return 0;
2198 	}
2199 
2200 	/* At this point we know we have a real path component. */
2201 	for(;;) {
2202 		struct user_namespace *mnt_userns;
2203 		const char *link;
2204 		u64 hash_len;
2205 		int type;
2206 
2207 		mnt_userns = mnt_user_ns(nd->path.mnt);
2208 		err = may_lookup(mnt_userns, nd);
2209 		if (err)
2210 			return err;
2211 
2212 		hash_len = hash_name(nd->path.dentry, name);
2213 
2214 		type = LAST_NORM;
2215 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2216 			case 2:
2217 				if (name[1] == '.') {
2218 					type = LAST_DOTDOT;
2219 					nd->flags |= LOOKUP_JUMPED;
2220 				}
2221 				break;
2222 			case 1:
2223 				type = LAST_DOT;
2224 		}
2225 		if (likely(type == LAST_NORM)) {
2226 			struct dentry *parent = nd->path.dentry;
2227 			nd->flags &= ~LOOKUP_JUMPED;
2228 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2229 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2230 				err = parent->d_op->d_hash(parent, &this);
2231 				if (err < 0)
2232 					return err;
2233 				hash_len = this.hash_len;
2234 				name = this.name;
2235 			}
2236 		}
2237 
2238 		nd->last.hash_len = hash_len;
2239 		nd->last.name = name;
2240 		nd->last_type = type;
2241 
2242 		name += hashlen_len(hash_len);
2243 		if (!*name)
2244 			goto OK;
2245 		/*
2246 		 * If it wasn't NUL, we know it was '/'. Skip that
2247 		 * slash, and continue until no more slashes.
2248 		 */
2249 		do {
2250 			name++;
2251 		} while (unlikely(*name == '/'));
2252 		if (unlikely(!*name)) {
2253 OK:
2254 			/* pathname or trailing symlink, done */
2255 			if (!depth) {
2256 				nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2257 				nd->dir_mode = nd->inode->i_mode;
2258 				nd->flags &= ~LOOKUP_PARENT;
2259 				return 0;
2260 			}
2261 			/* last component of nested symlink */
2262 			name = nd->stack[--depth].name;
2263 			link = walk_component(nd, 0);
2264 		} else {
2265 			/* not the last component */
2266 			link = walk_component(nd, WALK_MORE);
2267 		}
2268 		if (unlikely(link)) {
2269 			if (IS_ERR(link))
2270 				return PTR_ERR(link);
2271 			/* a symlink to follow */
2272 			nd->stack[depth++].name = name;
2273 			name = link;
2274 			continue;
2275 		}
2276 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2277 			if (nd->flags & LOOKUP_RCU) {
2278 				if (!try_to_unlazy(nd))
2279 					return -ECHILD;
2280 			}
2281 			return -ENOTDIR;
2282 		}
2283 	}
2284 }
2285 
2286 /* must be paired with terminate_walk() */
2287 static const char *path_init(struct nameidata *nd, unsigned flags)
2288 {
2289 	int error;
2290 	const char *s = nd->name->name;
2291 
2292 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2293 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2294 		return ERR_PTR(-EAGAIN);
2295 
2296 	if (!*s)
2297 		flags &= ~LOOKUP_RCU;
2298 	if (flags & LOOKUP_RCU)
2299 		rcu_read_lock();
2300 
2301 	nd->flags = flags | LOOKUP_JUMPED;
2302 	nd->depth = 0;
2303 
2304 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2305 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2306 	smp_rmb();
2307 
2308 	if (flags & LOOKUP_ROOT) {
2309 		struct dentry *root = nd->root.dentry;
2310 		struct inode *inode = root->d_inode;
2311 		if (*s && unlikely(!d_can_lookup(root)))
2312 			return ERR_PTR(-ENOTDIR);
2313 		nd->path = nd->root;
2314 		nd->inode = inode;
2315 		if (flags & LOOKUP_RCU) {
2316 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2317 			nd->root_seq = nd->seq;
2318 		} else {
2319 			path_get(&nd->path);
2320 		}
2321 		return s;
2322 	}
2323 
2324 	nd->root.mnt = NULL;
2325 	nd->path.mnt = NULL;
2326 	nd->path.dentry = NULL;
2327 
2328 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2329 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2330 		error = nd_jump_root(nd);
2331 		if (unlikely(error))
2332 			return ERR_PTR(error);
2333 		return s;
2334 	}
2335 
2336 	/* Relative pathname -- get the starting-point it is relative to. */
2337 	if (nd->dfd == AT_FDCWD) {
2338 		if (flags & LOOKUP_RCU) {
2339 			struct fs_struct *fs = current->fs;
2340 			unsigned seq;
2341 
2342 			do {
2343 				seq = read_seqcount_begin(&fs->seq);
2344 				nd->path = fs->pwd;
2345 				nd->inode = nd->path.dentry->d_inode;
2346 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2347 			} while (read_seqcount_retry(&fs->seq, seq));
2348 		} else {
2349 			get_fs_pwd(current->fs, &nd->path);
2350 			nd->inode = nd->path.dentry->d_inode;
2351 		}
2352 	} else {
2353 		/* Caller must check execute permissions on the starting path component */
2354 		struct fd f = fdget_raw(nd->dfd);
2355 		struct dentry *dentry;
2356 
2357 		if (!f.file)
2358 			return ERR_PTR(-EBADF);
2359 
2360 		dentry = f.file->f_path.dentry;
2361 
2362 		if (*s && unlikely(!d_can_lookup(dentry))) {
2363 			fdput(f);
2364 			return ERR_PTR(-ENOTDIR);
2365 		}
2366 
2367 		nd->path = f.file->f_path;
2368 		if (flags & LOOKUP_RCU) {
2369 			nd->inode = nd->path.dentry->d_inode;
2370 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2371 		} else {
2372 			path_get(&nd->path);
2373 			nd->inode = nd->path.dentry->d_inode;
2374 		}
2375 		fdput(f);
2376 	}
2377 
2378 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2379 	if (flags & LOOKUP_IS_SCOPED) {
2380 		nd->root = nd->path;
2381 		if (flags & LOOKUP_RCU) {
2382 			nd->root_seq = nd->seq;
2383 		} else {
2384 			path_get(&nd->root);
2385 			nd->flags |= LOOKUP_ROOT_GRABBED;
2386 		}
2387 	}
2388 	return s;
2389 }
2390 
2391 static inline const char *lookup_last(struct nameidata *nd)
2392 {
2393 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2394 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2395 
2396 	return walk_component(nd, WALK_TRAILING);
2397 }
2398 
2399 static int handle_lookup_down(struct nameidata *nd)
2400 {
2401 	if (!(nd->flags & LOOKUP_RCU))
2402 		dget(nd->path.dentry);
2403 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2404 			nd->path.dentry, nd->inode, nd->seq));
2405 }
2406 
2407 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2408 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2409 {
2410 	const char *s = path_init(nd, flags);
2411 	int err;
2412 
2413 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2414 		err = handle_lookup_down(nd);
2415 		if (unlikely(err < 0))
2416 			s = ERR_PTR(err);
2417 	}
2418 
2419 	while (!(err = link_path_walk(s, nd)) &&
2420 	       (s = lookup_last(nd)) != NULL)
2421 		;
2422 	if (!err)
2423 		err = complete_walk(nd);
2424 
2425 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2426 		if (!d_can_lookup(nd->path.dentry))
2427 			err = -ENOTDIR;
2428 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2429 		err = handle_lookup_down(nd);
2430 		nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2431 	}
2432 	if (!err) {
2433 		*path = nd->path;
2434 		nd->path.mnt = NULL;
2435 		nd->path.dentry = NULL;
2436 	}
2437 	terminate_walk(nd);
2438 	return err;
2439 }
2440 
2441 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2442 		    struct path *path, struct path *root)
2443 {
2444 	int retval;
2445 	struct nameidata nd;
2446 	if (IS_ERR(name))
2447 		return PTR_ERR(name);
2448 	if (unlikely(root)) {
2449 		nd.root = *root;
2450 		flags |= LOOKUP_ROOT;
2451 	}
2452 	set_nameidata(&nd, dfd, name);
2453 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2454 	if (unlikely(retval == -ECHILD))
2455 		retval = path_lookupat(&nd, flags, path);
2456 	if (unlikely(retval == -ESTALE))
2457 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2458 
2459 	if (likely(!retval))
2460 		audit_inode(name, path->dentry,
2461 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2462 	restore_nameidata();
2463 	putname(name);
2464 	return retval;
2465 }
2466 
2467 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2468 static int path_parentat(struct nameidata *nd, unsigned flags,
2469 				struct path *parent)
2470 {
2471 	const char *s = path_init(nd, flags);
2472 	int err = link_path_walk(s, nd);
2473 	if (!err)
2474 		err = complete_walk(nd);
2475 	if (!err) {
2476 		*parent = nd->path;
2477 		nd->path.mnt = NULL;
2478 		nd->path.dentry = NULL;
2479 	}
2480 	terminate_walk(nd);
2481 	return err;
2482 }
2483 
2484 static struct filename *filename_parentat(int dfd, struct filename *name,
2485 				unsigned int flags, struct path *parent,
2486 				struct qstr *last, int *type)
2487 {
2488 	int retval;
2489 	struct nameidata nd;
2490 
2491 	if (IS_ERR(name))
2492 		return name;
2493 	set_nameidata(&nd, dfd, name);
2494 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2495 	if (unlikely(retval == -ECHILD))
2496 		retval = path_parentat(&nd, flags, parent);
2497 	if (unlikely(retval == -ESTALE))
2498 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2499 	if (likely(!retval)) {
2500 		*last = nd.last;
2501 		*type = nd.last_type;
2502 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2503 	} else {
2504 		putname(name);
2505 		name = ERR_PTR(retval);
2506 	}
2507 	restore_nameidata();
2508 	return name;
2509 }
2510 
2511 /* does lookup, returns the object with parent locked */
2512 struct dentry *kern_path_locked(const char *name, struct path *path)
2513 {
2514 	struct filename *filename;
2515 	struct dentry *d;
2516 	struct qstr last;
2517 	int type;
2518 
2519 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2520 				    &last, &type);
2521 	if (IS_ERR(filename))
2522 		return ERR_CAST(filename);
2523 	if (unlikely(type != LAST_NORM)) {
2524 		path_put(path);
2525 		putname(filename);
2526 		return ERR_PTR(-EINVAL);
2527 	}
2528 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2529 	d = __lookup_hash(&last, path->dentry, 0);
2530 	if (IS_ERR(d)) {
2531 		inode_unlock(path->dentry->d_inode);
2532 		path_put(path);
2533 	}
2534 	putname(filename);
2535 	return d;
2536 }
2537 
2538 int kern_path(const char *name, unsigned int flags, struct path *path)
2539 {
2540 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2541 			       flags, path, NULL);
2542 }
2543 EXPORT_SYMBOL(kern_path);
2544 
2545 /**
2546  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2547  * @dentry:  pointer to dentry of the base directory
2548  * @mnt: pointer to vfs mount of the base directory
2549  * @name: pointer to file name
2550  * @flags: lookup flags
2551  * @path: pointer to struct path to fill
2552  */
2553 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2554 		    const char *name, unsigned int flags,
2555 		    struct path *path)
2556 {
2557 	struct path root = {.mnt = mnt, .dentry = dentry};
2558 	/* the first argument of filename_lookup() is ignored with root */
2559 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2560 			       flags , path, &root);
2561 }
2562 EXPORT_SYMBOL(vfs_path_lookup);
2563 
2564 static int lookup_one_len_common(const char *name, struct dentry *base,
2565 				 int len, struct qstr *this)
2566 {
2567 	this->name = name;
2568 	this->len = len;
2569 	this->hash = full_name_hash(base, name, len);
2570 	if (!len)
2571 		return -EACCES;
2572 
2573 	if (unlikely(name[0] == '.')) {
2574 		if (len < 2 || (len == 2 && name[1] == '.'))
2575 			return -EACCES;
2576 	}
2577 
2578 	while (len--) {
2579 		unsigned int c = *(const unsigned char *)name++;
2580 		if (c == '/' || c == '\0')
2581 			return -EACCES;
2582 	}
2583 	/*
2584 	 * See if the low-level filesystem might want
2585 	 * to use its own hash..
2586 	 */
2587 	if (base->d_flags & DCACHE_OP_HASH) {
2588 		int err = base->d_op->d_hash(base, this);
2589 		if (err < 0)
2590 			return err;
2591 	}
2592 
2593 	return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC);
2594 }
2595 
2596 /**
2597  * try_lookup_one_len - filesystem helper to lookup single pathname component
2598  * @name:	pathname component to lookup
2599  * @base:	base directory to lookup from
2600  * @len:	maximum length @len should be interpreted to
2601  *
2602  * Look up a dentry by name in the dcache, returning NULL if it does not
2603  * currently exist.  The function does not try to create a dentry.
2604  *
2605  * Note that this routine is purely a helper for filesystem usage and should
2606  * not be called by generic code.
2607  *
2608  * The caller must hold base->i_mutex.
2609  */
2610 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2611 {
2612 	struct qstr this;
2613 	int err;
2614 
2615 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2616 
2617 	err = lookup_one_len_common(name, base, len, &this);
2618 	if (err)
2619 		return ERR_PTR(err);
2620 
2621 	return lookup_dcache(&this, base, 0);
2622 }
2623 EXPORT_SYMBOL(try_lookup_one_len);
2624 
2625 /**
2626  * lookup_one_len - filesystem helper to lookup single pathname component
2627  * @name:	pathname component to lookup
2628  * @base:	base directory to lookup from
2629  * @len:	maximum length @len should be interpreted to
2630  *
2631  * Note that this routine is purely a helper for filesystem usage and should
2632  * not be called by generic code.
2633  *
2634  * The caller must hold base->i_mutex.
2635  */
2636 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2637 {
2638 	struct dentry *dentry;
2639 	struct qstr this;
2640 	int err;
2641 
2642 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2643 
2644 	err = lookup_one_len_common(name, base, len, &this);
2645 	if (err)
2646 		return ERR_PTR(err);
2647 
2648 	dentry = lookup_dcache(&this, base, 0);
2649 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2650 }
2651 EXPORT_SYMBOL(lookup_one_len);
2652 
2653 /**
2654  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2655  * @name:	pathname component to lookup
2656  * @base:	base directory to lookup from
2657  * @len:	maximum length @len should be interpreted to
2658  *
2659  * Note that this routine is purely a helper for filesystem usage and should
2660  * not be called by generic code.
2661  *
2662  * Unlike lookup_one_len, it should be called without the parent
2663  * i_mutex held, and will take the i_mutex itself if necessary.
2664  */
2665 struct dentry *lookup_one_len_unlocked(const char *name,
2666 				       struct dentry *base, int len)
2667 {
2668 	struct qstr this;
2669 	int err;
2670 	struct dentry *ret;
2671 
2672 	err = lookup_one_len_common(name, base, len, &this);
2673 	if (err)
2674 		return ERR_PTR(err);
2675 
2676 	ret = lookup_dcache(&this, base, 0);
2677 	if (!ret)
2678 		ret = lookup_slow(&this, base, 0);
2679 	return ret;
2680 }
2681 EXPORT_SYMBOL(lookup_one_len_unlocked);
2682 
2683 /*
2684  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2685  * on negatives.  Returns known positive or ERR_PTR(); that's what
2686  * most of the users want.  Note that pinned negative with unlocked parent
2687  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2688  * need to be very careful; pinned positives have ->d_inode stable, so
2689  * this one avoids such problems.
2690  */
2691 struct dentry *lookup_positive_unlocked(const char *name,
2692 				       struct dentry *base, int len)
2693 {
2694 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2695 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2696 		dput(ret);
2697 		ret = ERR_PTR(-ENOENT);
2698 	}
2699 	return ret;
2700 }
2701 EXPORT_SYMBOL(lookup_positive_unlocked);
2702 
2703 #ifdef CONFIG_UNIX98_PTYS
2704 int path_pts(struct path *path)
2705 {
2706 	/* Find something mounted on "pts" in the same directory as
2707 	 * the input path.
2708 	 */
2709 	struct dentry *parent = dget_parent(path->dentry);
2710 	struct dentry *child;
2711 	struct qstr this = QSTR_INIT("pts", 3);
2712 
2713 	if (unlikely(!path_connected(path->mnt, parent))) {
2714 		dput(parent);
2715 		return -ENOENT;
2716 	}
2717 	dput(path->dentry);
2718 	path->dentry = parent;
2719 	child = d_hash_and_lookup(parent, &this);
2720 	if (!child)
2721 		return -ENOENT;
2722 
2723 	path->dentry = child;
2724 	dput(parent);
2725 	follow_down(path);
2726 	return 0;
2727 }
2728 #endif
2729 
2730 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2731 		 struct path *path, int *empty)
2732 {
2733 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2734 			       flags, path, NULL);
2735 }
2736 EXPORT_SYMBOL(user_path_at_empty);
2737 
2738 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2739 		   struct inode *inode)
2740 {
2741 	kuid_t fsuid = current_fsuid();
2742 
2743 	if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2744 		return 0;
2745 	if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2746 		return 0;
2747 	return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2748 }
2749 EXPORT_SYMBOL(__check_sticky);
2750 
2751 /*
2752  *	Check whether we can remove a link victim from directory dir, check
2753  *  whether the type of victim is right.
2754  *  1. We can't do it if dir is read-only (done in permission())
2755  *  2. We should have write and exec permissions on dir
2756  *  3. We can't remove anything from append-only dir
2757  *  4. We can't do anything with immutable dir (done in permission())
2758  *  5. If the sticky bit on dir is set we should either
2759  *	a. be owner of dir, or
2760  *	b. be owner of victim, or
2761  *	c. have CAP_FOWNER capability
2762  *  6. If the victim is append-only or immutable we can't do antyhing with
2763  *     links pointing to it.
2764  *  7. If the victim has an unknown uid or gid we can't change the inode.
2765  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2766  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2767  * 10. We can't remove a root or mountpoint.
2768  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2769  *     nfs_async_unlink().
2770  */
2771 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2772 		      struct dentry *victim, bool isdir)
2773 {
2774 	struct inode *inode = d_backing_inode(victim);
2775 	int error;
2776 
2777 	if (d_is_negative(victim))
2778 		return -ENOENT;
2779 	BUG_ON(!inode);
2780 
2781 	BUG_ON(victim->d_parent->d_inode != dir);
2782 
2783 	/* Inode writeback is not safe when the uid or gid are invalid. */
2784 	if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2785 	    !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2786 		return -EOVERFLOW;
2787 
2788 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2789 
2790 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2791 	if (error)
2792 		return error;
2793 	if (IS_APPEND(dir))
2794 		return -EPERM;
2795 
2796 	if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2797 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2798 	    HAS_UNMAPPED_ID(mnt_userns, inode))
2799 		return -EPERM;
2800 	if (isdir) {
2801 		if (!d_is_dir(victim))
2802 			return -ENOTDIR;
2803 		if (IS_ROOT(victim))
2804 			return -EBUSY;
2805 	} else if (d_is_dir(victim))
2806 		return -EISDIR;
2807 	if (IS_DEADDIR(dir))
2808 		return -ENOENT;
2809 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2810 		return -EBUSY;
2811 	return 0;
2812 }
2813 
2814 /*	Check whether we can create an object with dentry child in directory
2815  *  dir.
2816  *  1. We can't do it if child already exists (open has special treatment for
2817  *     this case, but since we are inlined it's OK)
2818  *  2. We can't do it if dir is read-only (done in permission())
2819  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2820  *  4. We should have write and exec permissions on dir
2821  *  5. We can't do it if dir is immutable (done in permission())
2822  */
2823 static inline int may_create(struct user_namespace *mnt_userns,
2824 			     struct inode *dir, struct dentry *child)
2825 {
2826 	struct user_namespace *s_user_ns;
2827 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2828 	if (child->d_inode)
2829 		return -EEXIST;
2830 	if (IS_DEADDIR(dir))
2831 		return -ENOENT;
2832 	s_user_ns = dir->i_sb->s_user_ns;
2833 	if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) ||
2834 	    !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns)))
2835 		return -EOVERFLOW;
2836 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2837 }
2838 
2839 /*
2840  * p1 and p2 should be directories on the same fs.
2841  */
2842 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2843 {
2844 	struct dentry *p;
2845 
2846 	if (p1 == p2) {
2847 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2848 		return NULL;
2849 	}
2850 
2851 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2852 
2853 	p = d_ancestor(p2, p1);
2854 	if (p) {
2855 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2856 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2857 		return p;
2858 	}
2859 
2860 	p = d_ancestor(p1, p2);
2861 	if (p) {
2862 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2863 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2864 		return p;
2865 	}
2866 
2867 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2869 	return NULL;
2870 }
2871 EXPORT_SYMBOL(lock_rename);
2872 
2873 void unlock_rename(struct dentry *p1, struct dentry *p2)
2874 {
2875 	inode_unlock(p1->d_inode);
2876 	if (p1 != p2) {
2877 		inode_unlock(p2->d_inode);
2878 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2879 	}
2880 }
2881 EXPORT_SYMBOL(unlock_rename);
2882 
2883 /**
2884  * vfs_create - create new file
2885  * @mnt_userns:	user namespace of the mount the inode was found from
2886  * @dir:	inode of @dentry
2887  * @dentry:	pointer to dentry of the base directory
2888  * @mode:	mode of the new file
2889  * @want_excl:	whether the file must not yet exist
2890  *
2891  * Create a new file.
2892  *
2893  * If the inode has been found through an idmapped mount the user namespace of
2894  * the vfsmount must be passed through @mnt_userns. This function will then take
2895  * care to map the inode according to @mnt_userns before checking permissions.
2896  * On non-idmapped mounts or if permission checking is to be performed on the
2897  * raw inode simply passs init_user_ns.
2898  */
2899 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2900 	       struct dentry *dentry, umode_t mode, bool want_excl)
2901 {
2902 	int error = may_create(mnt_userns, dir, dentry);
2903 	if (error)
2904 		return error;
2905 
2906 	if (!dir->i_op->create)
2907 		return -EACCES;	/* shouldn't it be ENOSYS? */
2908 	mode &= S_IALLUGO;
2909 	mode |= S_IFREG;
2910 	error = security_inode_create(dir, dentry, mode);
2911 	if (error)
2912 		return error;
2913 	error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
2914 	if (!error)
2915 		fsnotify_create(dir, dentry);
2916 	return error;
2917 }
2918 EXPORT_SYMBOL(vfs_create);
2919 
2920 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2921 		int (*f)(struct dentry *, umode_t, void *),
2922 		void *arg)
2923 {
2924 	struct inode *dir = dentry->d_parent->d_inode;
2925 	int error = may_create(&init_user_ns, dir, dentry);
2926 	if (error)
2927 		return error;
2928 
2929 	mode &= S_IALLUGO;
2930 	mode |= S_IFREG;
2931 	error = security_inode_create(dir, dentry, mode);
2932 	if (error)
2933 		return error;
2934 	error = f(dentry, mode, arg);
2935 	if (!error)
2936 		fsnotify_create(dir, dentry);
2937 	return error;
2938 }
2939 EXPORT_SYMBOL(vfs_mkobj);
2940 
2941 bool may_open_dev(const struct path *path)
2942 {
2943 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2944 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2945 }
2946 
2947 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
2948 		    int acc_mode, int flag)
2949 {
2950 	struct dentry *dentry = path->dentry;
2951 	struct inode *inode = dentry->d_inode;
2952 	int error;
2953 
2954 	if (!inode)
2955 		return -ENOENT;
2956 
2957 	switch (inode->i_mode & S_IFMT) {
2958 	case S_IFLNK:
2959 		return -ELOOP;
2960 	case S_IFDIR:
2961 		if (acc_mode & MAY_WRITE)
2962 			return -EISDIR;
2963 		if (acc_mode & MAY_EXEC)
2964 			return -EACCES;
2965 		break;
2966 	case S_IFBLK:
2967 	case S_IFCHR:
2968 		if (!may_open_dev(path))
2969 			return -EACCES;
2970 		fallthrough;
2971 	case S_IFIFO:
2972 	case S_IFSOCK:
2973 		if (acc_mode & MAY_EXEC)
2974 			return -EACCES;
2975 		flag &= ~O_TRUNC;
2976 		break;
2977 	case S_IFREG:
2978 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
2979 			return -EACCES;
2980 		break;
2981 	}
2982 
2983 	error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
2984 	if (error)
2985 		return error;
2986 
2987 	/*
2988 	 * An append-only file must be opened in append mode for writing.
2989 	 */
2990 	if (IS_APPEND(inode)) {
2991 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2992 			return -EPERM;
2993 		if (flag & O_TRUNC)
2994 			return -EPERM;
2995 	}
2996 
2997 	/* O_NOATIME can only be set by the owner or superuser */
2998 	if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
2999 		return -EPERM;
3000 
3001 	return 0;
3002 }
3003 
3004 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3005 {
3006 	const struct path *path = &filp->f_path;
3007 	struct inode *inode = path->dentry->d_inode;
3008 	int error = get_write_access(inode);
3009 	if (error)
3010 		return error;
3011 	/*
3012 	 * Refuse to truncate files with mandatory locks held on them.
3013 	 */
3014 	error = locks_verify_locked(filp);
3015 	if (!error)
3016 		error = security_path_truncate(path);
3017 	if (!error) {
3018 		error = do_truncate(mnt_userns, path->dentry, 0,
3019 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3020 				    filp);
3021 	}
3022 	put_write_access(inode);
3023 	return error;
3024 }
3025 
3026 static inline int open_to_namei_flags(int flag)
3027 {
3028 	if ((flag & O_ACCMODE) == 3)
3029 		flag--;
3030 	return flag;
3031 }
3032 
3033 static int may_o_create(struct user_namespace *mnt_userns,
3034 			const struct path *dir, struct dentry *dentry,
3035 			umode_t mode)
3036 {
3037 	struct user_namespace *s_user_ns;
3038 	int error = security_path_mknod(dir, dentry, mode, 0);
3039 	if (error)
3040 		return error;
3041 
3042 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3043 	if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) ||
3044 	    !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns)))
3045 		return -EOVERFLOW;
3046 
3047 	error = inode_permission(mnt_userns, dir->dentry->d_inode,
3048 				 MAY_WRITE | MAY_EXEC);
3049 	if (error)
3050 		return error;
3051 
3052 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3053 }
3054 
3055 /*
3056  * Attempt to atomically look up, create and open a file from a negative
3057  * dentry.
3058  *
3059  * Returns 0 if successful.  The file will have been created and attached to
3060  * @file by the filesystem calling finish_open().
3061  *
3062  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3063  * be set.  The caller will need to perform the open themselves.  @path will
3064  * have been updated to point to the new dentry.  This may be negative.
3065  *
3066  * Returns an error code otherwise.
3067  */
3068 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3069 				  struct file *file,
3070 				  int open_flag, umode_t mode)
3071 {
3072 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3073 	struct inode *dir =  nd->path.dentry->d_inode;
3074 	int error;
3075 
3076 	if (nd->flags & LOOKUP_DIRECTORY)
3077 		open_flag |= O_DIRECTORY;
3078 
3079 	file->f_path.dentry = DENTRY_NOT_SET;
3080 	file->f_path.mnt = nd->path.mnt;
3081 	error = dir->i_op->atomic_open(dir, dentry, file,
3082 				       open_to_namei_flags(open_flag), mode);
3083 	d_lookup_done(dentry);
3084 	if (!error) {
3085 		if (file->f_mode & FMODE_OPENED) {
3086 			if (unlikely(dentry != file->f_path.dentry)) {
3087 				dput(dentry);
3088 				dentry = dget(file->f_path.dentry);
3089 			}
3090 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3091 			error = -EIO;
3092 		} else {
3093 			if (file->f_path.dentry) {
3094 				dput(dentry);
3095 				dentry = file->f_path.dentry;
3096 			}
3097 			if (unlikely(d_is_negative(dentry)))
3098 				error = -ENOENT;
3099 		}
3100 	}
3101 	if (error) {
3102 		dput(dentry);
3103 		dentry = ERR_PTR(error);
3104 	}
3105 	return dentry;
3106 }
3107 
3108 /*
3109  * Look up and maybe create and open the last component.
3110  *
3111  * Must be called with parent locked (exclusive in O_CREAT case).
3112  *
3113  * Returns 0 on success, that is, if
3114  *  the file was successfully atomically created (if necessary) and opened, or
3115  *  the file was not completely opened at this time, though lookups and
3116  *  creations were performed.
3117  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3118  * In the latter case dentry returned in @path might be negative if O_CREAT
3119  * hadn't been specified.
3120  *
3121  * An error code is returned on failure.
3122  */
3123 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3124 				  const struct open_flags *op,
3125 				  bool got_write)
3126 {
3127 	struct user_namespace *mnt_userns;
3128 	struct dentry *dir = nd->path.dentry;
3129 	struct inode *dir_inode = dir->d_inode;
3130 	int open_flag = op->open_flag;
3131 	struct dentry *dentry;
3132 	int error, create_error = 0;
3133 	umode_t mode = op->mode;
3134 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3135 
3136 	if (unlikely(IS_DEADDIR(dir_inode)))
3137 		return ERR_PTR(-ENOENT);
3138 
3139 	file->f_mode &= ~FMODE_CREATED;
3140 	dentry = d_lookup(dir, &nd->last);
3141 	for (;;) {
3142 		if (!dentry) {
3143 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3144 			if (IS_ERR(dentry))
3145 				return dentry;
3146 		}
3147 		if (d_in_lookup(dentry))
3148 			break;
3149 
3150 		error = d_revalidate(dentry, nd->flags);
3151 		if (likely(error > 0))
3152 			break;
3153 		if (error)
3154 			goto out_dput;
3155 		d_invalidate(dentry);
3156 		dput(dentry);
3157 		dentry = NULL;
3158 	}
3159 	if (dentry->d_inode) {
3160 		/* Cached positive dentry: will open in f_op->open */
3161 		return dentry;
3162 	}
3163 
3164 	/*
3165 	 * Checking write permission is tricky, bacuse we don't know if we are
3166 	 * going to actually need it: O_CREAT opens should work as long as the
3167 	 * file exists.  But checking existence breaks atomicity.  The trick is
3168 	 * to check access and if not granted clear O_CREAT from the flags.
3169 	 *
3170 	 * Another problem is returing the "right" error value (e.g. for an
3171 	 * O_EXCL open we want to return EEXIST not EROFS).
3172 	 */
3173 	if (unlikely(!got_write))
3174 		open_flag &= ~O_TRUNC;
3175 	mnt_userns = mnt_user_ns(nd->path.mnt);
3176 	if (open_flag & O_CREAT) {
3177 		if (open_flag & O_EXCL)
3178 			open_flag &= ~O_TRUNC;
3179 		if (!IS_POSIXACL(dir->d_inode))
3180 			mode &= ~current_umask();
3181 		if (likely(got_write))
3182 			create_error = may_o_create(mnt_userns, &nd->path,
3183 						    dentry, mode);
3184 		else
3185 			create_error = -EROFS;
3186 	}
3187 	if (create_error)
3188 		open_flag &= ~O_CREAT;
3189 	if (dir_inode->i_op->atomic_open) {
3190 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3191 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3192 			dentry = ERR_PTR(create_error);
3193 		return dentry;
3194 	}
3195 
3196 	if (d_in_lookup(dentry)) {
3197 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3198 							     nd->flags);
3199 		d_lookup_done(dentry);
3200 		if (unlikely(res)) {
3201 			if (IS_ERR(res)) {
3202 				error = PTR_ERR(res);
3203 				goto out_dput;
3204 			}
3205 			dput(dentry);
3206 			dentry = res;
3207 		}
3208 	}
3209 
3210 	/* Negative dentry, just create the file */
3211 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3212 		file->f_mode |= FMODE_CREATED;
3213 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3214 		if (!dir_inode->i_op->create) {
3215 			error = -EACCES;
3216 			goto out_dput;
3217 		}
3218 
3219 		error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3220 						mode, open_flag & O_EXCL);
3221 		if (error)
3222 			goto out_dput;
3223 	}
3224 	if (unlikely(create_error) && !dentry->d_inode) {
3225 		error = create_error;
3226 		goto out_dput;
3227 	}
3228 	return dentry;
3229 
3230 out_dput:
3231 	dput(dentry);
3232 	return ERR_PTR(error);
3233 }
3234 
3235 static const char *open_last_lookups(struct nameidata *nd,
3236 		   struct file *file, const struct open_flags *op)
3237 {
3238 	struct dentry *dir = nd->path.dentry;
3239 	int open_flag = op->open_flag;
3240 	bool got_write = false;
3241 	unsigned seq;
3242 	struct inode *inode;
3243 	struct dentry *dentry;
3244 	const char *res;
3245 
3246 	nd->flags |= op->intent;
3247 
3248 	if (nd->last_type != LAST_NORM) {
3249 		if (nd->depth)
3250 			put_link(nd);
3251 		return handle_dots(nd, nd->last_type);
3252 	}
3253 
3254 	if (!(open_flag & O_CREAT)) {
3255 		if (nd->last.name[nd->last.len])
3256 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3257 		/* we _can_ be in RCU mode here */
3258 		dentry = lookup_fast(nd, &inode, &seq);
3259 		if (IS_ERR(dentry))
3260 			return ERR_CAST(dentry);
3261 		if (likely(dentry))
3262 			goto finish_lookup;
3263 
3264 		BUG_ON(nd->flags & LOOKUP_RCU);
3265 	} else {
3266 		/* create side of things */
3267 		if (nd->flags & LOOKUP_RCU) {
3268 			if (!try_to_unlazy(nd))
3269 				return ERR_PTR(-ECHILD);
3270 		}
3271 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3272 		/* trailing slashes? */
3273 		if (unlikely(nd->last.name[nd->last.len]))
3274 			return ERR_PTR(-EISDIR);
3275 	}
3276 
3277 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3278 		got_write = !mnt_want_write(nd->path.mnt);
3279 		/*
3280 		 * do _not_ fail yet - we might not need that or fail with
3281 		 * a different error; let lookup_open() decide; we'll be
3282 		 * dropping this one anyway.
3283 		 */
3284 	}
3285 	if (open_flag & O_CREAT)
3286 		inode_lock(dir->d_inode);
3287 	else
3288 		inode_lock_shared(dir->d_inode);
3289 	dentry = lookup_open(nd, file, op, got_write);
3290 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3291 		fsnotify_create(dir->d_inode, dentry);
3292 	if (open_flag & O_CREAT)
3293 		inode_unlock(dir->d_inode);
3294 	else
3295 		inode_unlock_shared(dir->d_inode);
3296 
3297 	if (got_write)
3298 		mnt_drop_write(nd->path.mnt);
3299 
3300 	if (IS_ERR(dentry))
3301 		return ERR_CAST(dentry);
3302 
3303 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3304 		dput(nd->path.dentry);
3305 		nd->path.dentry = dentry;
3306 		return NULL;
3307 	}
3308 
3309 finish_lookup:
3310 	if (nd->depth)
3311 		put_link(nd);
3312 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3313 	if (unlikely(res))
3314 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3315 	return res;
3316 }
3317 
3318 /*
3319  * Handle the last step of open()
3320  */
3321 static int do_open(struct nameidata *nd,
3322 		   struct file *file, const struct open_flags *op)
3323 {
3324 	struct user_namespace *mnt_userns;
3325 	int open_flag = op->open_flag;
3326 	bool do_truncate;
3327 	int acc_mode;
3328 	int error;
3329 
3330 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3331 		error = complete_walk(nd);
3332 		if (error)
3333 			return error;
3334 	}
3335 	if (!(file->f_mode & FMODE_CREATED))
3336 		audit_inode(nd->name, nd->path.dentry, 0);
3337 	mnt_userns = mnt_user_ns(nd->path.mnt);
3338 	if (open_flag & O_CREAT) {
3339 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3340 			return -EEXIST;
3341 		if (d_is_dir(nd->path.dentry))
3342 			return -EISDIR;
3343 		error = may_create_in_sticky(mnt_userns, nd,
3344 					     d_backing_inode(nd->path.dentry));
3345 		if (unlikely(error))
3346 			return error;
3347 	}
3348 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3349 		return -ENOTDIR;
3350 
3351 	do_truncate = false;
3352 	acc_mode = op->acc_mode;
3353 	if (file->f_mode & FMODE_CREATED) {
3354 		/* Don't check for write permission, don't truncate */
3355 		open_flag &= ~O_TRUNC;
3356 		acc_mode = 0;
3357 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3358 		error = mnt_want_write(nd->path.mnt);
3359 		if (error)
3360 			return error;
3361 		do_truncate = true;
3362 	}
3363 	error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3364 	if (!error && !(file->f_mode & FMODE_OPENED))
3365 		error = vfs_open(&nd->path, file);
3366 	if (!error)
3367 		error = ima_file_check(file, op->acc_mode);
3368 	if (!error && do_truncate)
3369 		error = handle_truncate(mnt_userns, file);
3370 	if (unlikely(error > 0)) {
3371 		WARN_ON(1);
3372 		error = -EINVAL;
3373 	}
3374 	if (do_truncate)
3375 		mnt_drop_write(nd->path.mnt);
3376 	return error;
3377 }
3378 
3379 /**
3380  * vfs_tmpfile - create tmpfile
3381  * @mnt_userns:	user namespace of the mount the inode was found from
3382  * @dentry:	pointer to dentry of the base directory
3383  * @mode:	mode of the new tmpfile
3384  * @open_flags:	flags
3385  *
3386  * Create a temporary file.
3387  *
3388  * If the inode has been found through an idmapped mount the user namespace of
3389  * the vfsmount must be passed through @mnt_userns. This function will then take
3390  * care to map the inode according to @mnt_userns before checking permissions.
3391  * On non-idmapped mounts or if permission checking is to be performed on the
3392  * raw inode simply passs init_user_ns.
3393  */
3394 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3395 			   struct dentry *dentry, umode_t mode, int open_flag)
3396 {
3397 	struct dentry *child = NULL;
3398 	struct inode *dir = dentry->d_inode;
3399 	struct inode *inode;
3400 	int error;
3401 
3402 	/* we want directory to be writable */
3403 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3404 	if (error)
3405 		goto out_err;
3406 	error = -EOPNOTSUPP;
3407 	if (!dir->i_op->tmpfile)
3408 		goto out_err;
3409 	error = -ENOMEM;
3410 	child = d_alloc(dentry, &slash_name);
3411 	if (unlikely(!child))
3412 		goto out_err;
3413 	error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3414 	if (error)
3415 		goto out_err;
3416 	error = -ENOENT;
3417 	inode = child->d_inode;
3418 	if (unlikely(!inode))
3419 		goto out_err;
3420 	if (!(open_flag & O_EXCL)) {
3421 		spin_lock(&inode->i_lock);
3422 		inode->i_state |= I_LINKABLE;
3423 		spin_unlock(&inode->i_lock);
3424 	}
3425 	ima_post_create_tmpfile(mnt_userns, inode);
3426 	return child;
3427 
3428 out_err:
3429 	dput(child);
3430 	return ERR_PTR(error);
3431 }
3432 EXPORT_SYMBOL(vfs_tmpfile);
3433 
3434 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3435 		const struct open_flags *op,
3436 		struct file *file)
3437 {
3438 	struct user_namespace *mnt_userns;
3439 	struct dentry *child;
3440 	struct path path;
3441 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3442 	if (unlikely(error))
3443 		return error;
3444 	error = mnt_want_write(path.mnt);
3445 	if (unlikely(error))
3446 		goto out;
3447 	mnt_userns = mnt_user_ns(path.mnt);
3448 	child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3449 	error = PTR_ERR(child);
3450 	if (IS_ERR(child))
3451 		goto out2;
3452 	dput(path.dentry);
3453 	path.dentry = child;
3454 	audit_inode(nd->name, child, 0);
3455 	/* Don't check for other permissions, the inode was just created */
3456 	error = may_open(mnt_userns, &path, 0, op->open_flag);
3457 	if (!error)
3458 		error = vfs_open(&path, file);
3459 out2:
3460 	mnt_drop_write(path.mnt);
3461 out:
3462 	path_put(&path);
3463 	return error;
3464 }
3465 
3466 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3467 {
3468 	struct path path;
3469 	int error = path_lookupat(nd, flags, &path);
3470 	if (!error) {
3471 		audit_inode(nd->name, path.dentry, 0);
3472 		error = vfs_open(&path, file);
3473 		path_put(&path);
3474 	}
3475 	return error;
3476 }
3477 
3478 static struct file *path_openat(struct nameidata *nd,
3479 			const struct open_flags *op, unsigned flags)
3480 {
3481 	struct file *file;
3482 	int error;
3483 
3484 	file = alloc_empty_file(op->open_flag, current_cred());
3485 	if (IS_ERR(file))
3486 		return file;
3487 
3488 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3489 		error = do_tmpfile(nd, flags, op, file);
3490 	} else if (unlikely(file->f_flags & O_PATH)) {
3491 		error = do_o_path(nd, flags, file);
3492 	} else {
3493 		const char *s = path_init(nd, flags);
3494 		while (!(error = link_path_walk(s, nd)) &&
3495 		       (s = open_last_lookups(nd, file, op)) != NULL)
3496 			;
3497 		if (!error)
3498 			error = do_open(nd, file, op);
3499 		terminate_walk(nd);
3500 	}
3501 	if (likely(!error)) {
3502 		if (likely(file->f_mode & FMODE_OPENED))
3503 			return file;
3504 		WARN_ON(1);
3505 		error = -EINVAL;
3506 	}
3507 	fput(file);
3508 	if (error == -EOPENSTALE) {
3509 		if (flags & LOOKUP_RCU)
3510 			error = -ECHILD;
3511 		else
3512 			error = -ESTALE;
3513 	}
3514 	return ERR_PTR(error);
3515 }
3516 
3517 struct file *do_filp_open(int dfd, struct filename *pathname,
3518 		const struct open_flags *op)
3519 {
3520 	struct nameidata nd;
3521 	int flags = op->lookup_flags;
3522 	struct file *filp;
3523 
3524 	set_nameidata(&nd, dfd, pathname);
3525 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3526 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3527 		filp = path_openat(&nd, op, flags);
3528 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3529 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3530 	restore_nameidata();
3531 	return filp;
3532 }
3533 
3534 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3535 		const char *name, const struct open_flags *op)
3536 {
3537 	struct nameidata nd;
3538 	struct file *file;
3539 	struct filename *filename;
3540 	int flags = op->lookup_flags | LOOKUP_ROOT;
3541 
3542 	nd.root.mnt = mnt;
3543 	nd.root.dentry = dentry;
3544 
3545 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3546 		return ERR_PTR(-ELOOP);
3547 
3548 	filename = getname_kernel(name);
3549 	if (IS_ERR(filename))
3550 		return ERR_CAST(filename);
3551 
3552 	set_nameidata(&nd, -1, filename);
3553 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3554 	if (unlikely(file == ERR_PTR(-ECHILD)))
3555 		file = path_openat(&nd, op, flags);
3556 	if (unlikely(file == ERR_PTR(-ESTALE)))
3557 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3558 	restore_nameidata();
3559 	putname(filename);
3560 	return file;
3561 }
3562 
3563 static struct dentry *filename_create(int dfd, struct filename *name,
3564 				struct path *path, unsigned int lookup_flags)
3565 {
3566 	struct dentry *dentry = ERR_PTR(-EEXIST);
3567 	struct qstr last;
3568 	int type;
3569 	int err2;
3570 	int error;
3571 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3572 
3573 	/*
3574 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3575 	 * other flags passed in are ignored!
3576 	 */
3577 	lookup_flags &= LOOKUP_REVAL;
3578 
3579 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3580 	if (IS_ERR(name))
3581 		return ERR_CAST(name);
3582 
3583 	/*
3584 	 * Yucky last component or no last component at all?
3585 	 * (foo/., foo/.., /////)
3586 	 */
3587 	if (unlikely(type != LAST_NORM))
3588 		goto out;
3589 
3590 	/* don't fail immediately if it's r/o, at least try to report other errors */
3591 	err2 = mnt_want_write(path->mnt);
3592 	/*
3593 	 * Do the final lookup.
3594 	 */
3595 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3596 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3597 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3598 	if (IS_ERR(dentry))
3599 		goto unlock;
3600 
3601 	error = -EEXIST;
3602 	if (d_is_positive(dentry))
3603 		goto fail;
3604 
3605 	/*
3606 	 * Special case - lookup gave negative, but... we had foo/bar/
3607 	 * From the vfs_mknod() POV we just have a negative dentry -
3608 	 * all is fine. Let's be bastards - you had / on the end, you've
3609 	 * been asking for (non-existent) directory. -ENOENT for you.
3610 	 */
3611 	if (unlikely(!is_dir && last.name[last.len])) {
3612 		error = -ENOENT;
3613 		goto fail;
3614 	}
3615 	if (unlikely(err2)) {
3616 		error = err2;
3617 		goto fail;
3618 	}
3619 	putname(name);
3620 	return dentry;
3621 fail:
3622 	dput(dentry);
3623 	dentry = ERR_PTR(error);
3624 unlock:
3625 	inode_unlock(path->dentry->d_inode);
3626 	if (!err2)
3627 		mnt_drop_write(path->mnt);
3628 out:
3629 	path_put(path);
3630 	putname(name);
3631 	return dentry;
3632 }
3633 
3634 struct dentry *kern_path_create(int dfd, const char *pathname,
3635 				struct path *path, unsigned int lookup_flags)
3636 {
3637 	return filename_create(dfd, getname_kernel(pathname),
3638 				path, lookup_flags);
3639 }
3640 EXPORT_SYMBOL(kern_path_create);
3641 
3642 void done_path_create(struct path *path, struct dentry *dentry)
3643 {
3644 	dput(dentry);
3645 	inode_unlock(path->dentry->d_inode);
3646 	mnt_drop_write(path->mnt);
3647 	path_put(path);
3648 }
3649 EXPORT_SYMBOL(done_path_create);
3650 
3651 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3652 				struct path *path, unsigned int lookup_flags)
3653 {
3654 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3655 }
3656 EXPORT_SYMBOL(user_path_create);
3657 
3658 /**
3659  * vfs_mknod - create device node or file
3660  * @mnt_userns:	user namespace of the mount the inode was found from
3661  * @dir:	inode of @dentry
3662  * @dentry:	pointer to dentry of the base directory
3663  * @mode:	mode of the new device node or file
3664  * @dev:	device number of device to create
3665  *
3666  * Create a device node or file.
3667  *
3668  * If the inode has been found through an idmapped mount the user namespace of
3669  * the vfsmount must be passed through @mnt_userns. This function will then take
3670  * care to map the inode according to @mnt_userns before checking permissions.
3671  * On non-idmapped mounts or if permission checking is to be performed on the
3672  * raw inode simply passs init_user_ns.
3673  */
3674 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3675 	      struct dentry *dentry, umode_t mode, dev_t dev)
3676 {
3677 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3678 	int error = may_create(mnt_userns, dir, dentry);
3679 
3680 	if (error)
3681 		return error;
3682 
3683 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3684 	    !capable(CAP_MKNOD))
3685 		return -EPERM;
3686 
3687 	if (!dir->i_op->mknod)
3688 		return -EPERM;
3689 
3690 	error = devcgroup_inode_mknod(mode, dev);
3691 	if (error)
3692 		return error;
3693 
3694 	error = security_inode_mknod(dir, dentry, mode, dev);
3695 	if (error)
3696 		return error;
3697 
3698 	error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3699 	if (!error)
3700 		fsnotify_create(dir, dentry);
3701 	return error;
3702 }
3703 EXPORT_SYMBOL(vfs_mknod);
3704 
3705 static int may_mknod(umode_t mode)
3706 {
3707 	switch (mode & S_IFMT) {
3708 	case S_IFREG:
3709 	case S_IFCHR:
3710 	case S_IFBLK:
3711 	case S_IFIFO:
3712 	case S_IFSOCK:
3713 	case 0: /* zero mode translates to S_IFREG */
3714 		return 0;
3715 	case S_IFDIR:
3716 		return -EPERM;
3717 	default:
3718 		return -EINVAL;
3719 	}
3720 }
3721 
3722 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3723 		unsigned int dev)
3724 {
3725 	struct user_namespace *mnt_userns;
3726 	struct dentry *dentry;
3727 	struct path path;
3728 	int error;
3729 	unsigned int lookup_flags = 0;
3730 
3731 	error = may_mknod(mode);
3732 	if (error)
3733 		return error;
3734 retry:
3735 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3736 	if (IS_ERR(dentry))
3737 		return PTR_ERR(dentry);
3738 
3739 	if (!IS_POSIXACL(path.dentry->d_inode))
3740 		mode &= ~current_umask();
3741 	error = security_path_mknod(&path, dentry, mode, dev);
3742 	if (error)
3743 		goto out;
3744 
3745 	mnt_userns = mnt_user_ns(path.mnt);
3746 	switch (mode & S_IFMT) {
3747 		case 0: case S_IFREG:
3748 			error = vfs_create(mnt_userns, path.dentry->d_inode,
3749 					   dentry, mode, true);
3750 			if (!error)
3751 				ima_post_path_mknod(mnt_userns, dentry);
3752 			break;
3753 		case S_IFCHR: case S_IFBLK:
3754 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3755 					  dentry, mode, new_decode_dev(dev));
3756 			break;
3757 		case S_IFIFO: case S_IFSOCK:
3758 			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3759 					  dentry, mode, 0);
3760 			break;
3761 	}
3762 out:
3763 	done_path_create(&path, dentry);
3764 	if (retry_estale(error, lookup_flags)) {
3765 		lookup_flags |= LOOKUP_REVAL;
3766 		goto retry;
3767 	}
3768 	return error;
3769 }
3770 
3771 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3772 		unsigned int, dev)
3773 {
3774 	return do_mknodat(dfd, filename, mode, dev);
3775 }
3776 
3777 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3778 {
3779 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3780 }
3781 
3782 /**
3783  * vfs_mkdir - create directory
3784  * @mnt_userns:	user namespace of the mount the inode was found from
3785  * @dir:	inode of @dentry
3786  * @dentry:	pointer to dentry of the base directory
3787  * @mode:	mode of the new directory
3788  *
3789  * Create a directory.
3790  *
3791  * If the inode has been found through an idmapped mount the user namespace of
3792  * the vfsmount must be passed through @mnt_userns. This function will then take
3793  * care to map the inode according to @mnt_userns before checking permissions.
3794  * On non-idmapped mounts or if permission checking is to be performed on the
3795  * raw inode simply passs init_user_ns.
3796  */
3797 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3798 	      struct dentry *dentry, umode_t mode)
3799 {
3800 	int error = may_create(mnt_userns, dir, dentry);
3801 	unsigned max_links = dir->i_sb->s_max_links;
3802 
3803 	if (error)
3804 		return error;
3805 
3806 	if (!dir->i_op->mkdir)
3807 		return -EPERM;
3808 
3809 	mode &= (S_IRWXUGO|S_ISVTX);
3810 	error = security_inode_mkdir(dir, dentry, mode);
3811 	if (error)
3812 		return error;
3813 
3814 	if (max_links && dir->i_nlink >= max_links)
3815 		return -EMLINK;
3816 
3817 	error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
3818 	if (!error)
3819 		fsnotify_mkdir(dir, dentry);
3820 	return error;
3821 }
3822 EXPORT_SYMBOL(vfs_mkdir);
3823 
3824 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3825 {
3826 	struct dentry *dentry;
3827 	struct path path;
3828 	int error;
3829 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3830 
3831 retry:
3832 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3833 	if (IS_ERR(dentry))
3834 		return PTR_ERR(dentry);
3835 
3836 	if (!IS_POSIXACL(path.dentry->d_inode))
3837 		mode &= ~current_umask();
3838 	error = security_path_mkdir(&path, dentry, mode);
3839 	if (!error) {
3840 		struct user_namespace *mnt_userns;
3841 		mnt_userns = mnt_user_ns(path.mnt);
3842 		error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
3843 				  mode);
3844 	}
3845 	done_path_create(&path, dentry);
3846 	if (retry_estale(error, lookup_flags)) {
3847 		lookup_flags |= LOOKUP_REVAL;
3848 		goto retry;
3849 	}
3850 	return error;
3851 }
3852 
3853 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3854 {
3855 	return do_mkdirat(dfd, pathname, mode);
3856 }
3857 
3858 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3859 {
3860 	return do_mkdirat(AT_FDCWD, pathname, mode);
3861 }
3862 
3863 /**
3864  * vfs_rmdir - remove directory
3865  * @mnt_userns:	user namespace of the mount the inode was found from
3866  * @dir:	inode of @dentry
3867  * @dentry:	pointer to dentry of the base directory
3868  *
3869  * Remove a directory.
3870  *
3871  * If the inode has been found through an idmapped mount the user namespace of
3872  * the vfsmount must be passed through @mnt_userns. This function will then take
3873  * care to map the inode according to @mnt_userns before checking permissions.
3874  * On non-idmapped mounts or if permission checking is to be performed on the
3875  * raw inode simply passs init_user_ns.
3876  */
3877 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
3878 		     struct dentry *dentry)
3879 {
3880 	int error = may_delete(mnt_userns, dir, dentry, 1);
3881 
3882 	if (error)
3883 		return error;
3884 
3885 	if (!dir->i_op->rmdir)
3886 		return -EPERM;
3887 
3888 	dget(dentry);
3889 	inode_lock(dentry->d_inode);
3890 
3891 	error = -EBUSY;
3892 	if (is_local_mountpoint(dentry))
3893 		goto out;
3894 
3895 	error = security_inode_rmdir(dir, dentry);
3896 	if (error)
3897 		goto out;
3898 
3899 	error = dir->i_op->rmdir(dir, dentry);
3900 	if (error)
3901 		goto out;
3902 
3903 	shrink_dcache_parent(dentry);
3904 	dentry->d_inode->i_flags |= S_DEAD;
3905 	dont_mount(dentry);
3906 	detach_mounts(dentry);
3907 	fsnotify_rmdir(dir, dentry);
3908 
3909 out:
3910 	inode_unlock(dentry->d_inode);
3911 	dput(dentry);
3912 	if (!error)
3913 		d_delete(dentry);
3914 	return error;
3915 }
3916 EXPORT_SYMBOL(vfs_rmdir);
3917 
3918 long do_rmdir(int dfd, struct filename *name)
3919 {
3920 	struct user_namespace *mnt_userns;
3921 	int error = 0;
3922 	struct dentry *dentry;
3923 	struct path path;
3924 	struct qstr last;
3925 	int type;
3926 	unsigned int lookup_flags = 0;
3927 retry:
3928 	name = filename_parentat(dfd, name, lookup_flags,
3929 				&path, &last, &type);
3930 	if (IS_ERR(name))
3931 		return PTR_ERR(name);
3932 
3933 	switch (type) {
3934 	case LAST_DOTDOT:
3935 		error = -ENOTEMPTY;
3936 		goto exit1;
3937 	case LAST_DOT:
3938 		error = -EINVAL;
3939 		goto exit1;
3940 	case LAST_ROOT:
3941 		error = -EBUSY;
3942 		goto exit1;
3943 	}
3944 
3945 	error = mnt_want_write(path.mnt);
3946 	if (error)
3947 		goto exit1;
3948 
3949 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3950 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3951 	error = PTR_ERR(dentry);
3952 	if (IS_ERR(dentry))
3953 		goto exit2;
3954 	if (!dentry->d_inode) {
3955 		error = -ENOENT;
3956 		goto exit3;
3957 	}
3958 	error = security_path_rmdir(&path, dentry);
3959 	if (error)
3960 		goto exit3;
3961 	mnt_userns = mnt_user_ns(path.mnt);
3962 	error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
3963 exit3:
3964 	dput(dentry);
3965 exit2:
3966 	inode_unlock(path.dentry->d_inode);
3967 	mnt_drop_write(path.mnt);
3968 exit1:
3969 	path_put(&path);
3970 	if (retry_estale(error, lookup_flags)) {
3971 		lookup_flags |= LOOKUP_REVAL;
3972 		goto retry;
3973 	}
3974 	putname(name);
3975 	return error;
3976 }
3977 
3978 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3979 {
3980 	return do_rmdir(AT_FDCWD, getname(pathname));
3981 }
3982 
3983 /**
3984  * vfs_unlink - unlink a filesystem object
3985  * @mnt_userns:	user namespace of the mount the inode was found from
3986  * @dir:	parent directory
3987  * @dentry:	victim
3988  * @delegated_inode: returns victim inode, if the inode is delegated.
3989  *
3990  * The caller must hold dir->i_mutex.
3991  *
3992  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3993  * return a reference to the inode in delegated_inode.  The caller
3994  * should then break the delegation on that inode and retry.  Because
3995  * breaking a delegation may take a long time, the caller should drop
3996  * dir->i_mutex before doing so.
3997  *
3998  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3999  * be appropriate for callers that expect the underlying filesystem not
4000  * to be NFS exported.
4001  *
4002  * If the inode has been found through an idmapped mount the user namespace of
4003  * the vfsmount must be passed through @mnt_userns. This function will then take
4004  * care to map the inode according to @mnt_userns before checking permissions.
4005  * On non-idmapped mounts or if permission checking is to be performed on the
4006  * raw inode simply passs init_user_ns.
4007  */
4008 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4009 	       struct dentry *dentry, struct inode **delegated_inode)
4010 {
4011 	struct inode *target = dentry->d_inode;
4012 	int error = may_delete(mnt_userns, dir, dentry, 0);
4013 
4014 	if (error)
4015 		return error;
4016 
4017 	if (!dir->i_op->unlink)
4018 		return -EPERM;
4019 
4020 	inode_lock(target);
4021 	if (is_local_mountpoint(dentry))
4022 		error = -EBUSY;
4023 	else {
4024 		error = security_inode_unlink(dir, dentry);
4025 		if (!error) {
4026 			error = try_break_deleg(target, delegated_inode);
4027 			if (error)
4028 				goto out;
4029 			error = dir->i_op->unlink(dir, dentry);
4030 			if (!error) {
4031 				dont_mount(dentry);
4032 				detach_mounts(dentry);
4033 				fsnotify_unlink(dir, dentry);
4034 			}
4035 		}
4036 	}
4037 out:
4038 	inode_unlock(target);
4039 
4040 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4041 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4042 		fsnotify_link_count(target);
4043 		d_delete(dentry);
4044 	}
4045 
4046 	return error;
4047 }
4048 EXPORT_SYMBOL(vfs_unlink);
4049 
4050 /*
4051  * Make sure that the actual truncation of the file will occur outside its
4052  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4053  * writeout happening, and we don't want to prevent access to the directory
4054  * while waiting on the I/O.
4055  */
4056 long do_unlinkat(int dfd, struct filename *name)
4057 {
4058 	int error;
4059 	struct dentry *dentry;
4060 	struct path path;
4061 	struct qstr last;
4062 	int type;
4063 	struct inode *inode = NULL;
4064 	struct inode *delegated_inode = NULL;
4065 	unsigned int lookup_flags = 0;
4066 retry:
4067 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4068 	if (IS_ERR(name))
4069 		return PTR_ERR(name);
4070 
4071 	error = -EISDIR;
4072 	if (type != LAST_NORM)
4073 		goto exit1;
4074 
4075 	error = mnt_want_write(path.mnt);
4076 	if (error)
4077 		goto exit1;
4078 retry_deleg:
4079 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4080 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4081 	error = PTR_ERR(dentry);
4082 	if (!IS_ERR(dentry)) {
4083 		struct user_namespace *mnt_userns;
4084 
4085 		/* Why not before? Because we want correct error value */
4086 		if (last.name[last.len])
4087 			goto slashes;
4088 		inode = dentry->d_inode;
4089 		if (d_is_negative(dentry))
4090 			goto slashes;
4091 		ihold(inode);
4092 		error = security_path_unlink(&path, dentry);
4093 		if (error)
4094 			goto exit2;
4095 		mnt_userns = mnt_user_ns(path.mnt);
4096 		error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4097 				   &delegated_inode);
4098 exit2:
4099 		dput(dentry);
4100 	}
4101 	inode_unlock(path.dentry->d_inode);
4102 	if (inode)
4103 		iput(inode);	/* truncate the inode here */
4104 	inode = NULL;
4105 	if (delegated_inode) {
4106 		error = break_deleg_wait(&delegated_inode);
4107 		if (!error)
4108 			goto retry_deleg;
4109 	}
4110 	mnt_drop_write(path.mnt);
4111 exit1:
4112 	path_put(&path);
4113 	if (retry_estale(error, lookup_flags)) {
4114 		lookup_flags |= LOOKUP_REVAL;
4115 		inode = NULL;
4116 		goto retry;
4117 	}
4118 	putname(name);
4119 	return error;
4120 
4121 slashes:
4122 	if (d_is_negative(dentry))
4123 		error = -ENOENT;
4124 	else if (d_is_dir(dentry))
4125 		error = -EISDIR;
4126 	else
4127 		error = -ENOTDIR;
4128 	goto exit2;
4129 }
4130 
4131 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4132 {
4133 	if ((flag & ~AT_REMOVEDIR) != 0)
4134 		return -EINVAL;
4135 
4136 	if (flag & AT_REMOVEDIR)
4137 		return do_rmdir(dfd, getname(pathname));
4138 	return do_unlinkat(dfd, getname(pathname));
4139 }
4140 
4141 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4142 {
4143 	return do_unlinkat(AT_FDCWD, getname(pathname));
4144 }
4145 
4146 /**
4147  * vfs_symlink - create symlink
4148  * @mnt_userns:	user namespace of the mount the inode was found from
4149  * @dir:	inode of @dentry
4150  * @dentry:	pointer to dentry of the base directory
4151  * @oldname:	name of the file to link to
4152  *
4153  * Create a symlink.
4154  *
4155  * If the inode has been found through an idmapped mount the user namespace of
4156  * the vfsmount must be passed through @mnt_userns. This function will then take
4157  * care to map the inode according to @mnt_userns before checking permissions.
4158  * On non-idmapped mounts or if permission checking is to be performed on the
4159  * raw inode simply passs init_user_ns.
4160  */
4161 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4162 		struct dentry *dentry, const char *oldname)
4163 {
4164 	int error = may_create(mnt_userns, dir, dentry);
4165 
4166 	if (error)
4167 		return error;
4168 
4169 	if (!dir->i_op->symlink)
4170 		return -EPERM;
4171 
4172 	error = security_inode_symlink(dir, dentry, oldname);
4173 	if (error)
4174 		return error;
4175 
4176 	error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4177 	if (!error)
4178 		fsnotify_create(dir, dentry);
4179 	return error;
4180 }
4181 EXPORT_SYMBOL(vfs_symlink);
4182 
4183 static long do_symlinkat(const char __user *oldname, int newdfd,
4184 		  const char __user *newname)
4185 {
4186 	int error;
4187 	struct filename *from;
4188 	struct dentry *dentry;
4189 	struct path path;
4190 	unsigned int lookup_flags = 0;
4191 
4192 	from = getname(oldname);
4193 	if (IS_ERR(from))
4194 		return PTR_ERR(from);
4195 retry:
4196 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4197 	error = PTR_ERR(dentry);
4198 	if (IS_ERR(dentry))
4199 		goto out_putname;
4200 
4201 	error = security_path_symlink(&path, dentry, from->name);
4202 	if (!error) {
4203 		struct user_namespace *mnt_userns;
4204 
4205 		mnt_userns = mnt_user_ns(path.mnt);
4206 		error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4207 				    from->name);
4208 	}
4209 	done_path_create(&path, dentry);
4210 	if (retry_estale(error, lookup_flags)) {
4211 		lookup_flags |= LOOKUP_REVAL;
4212 		goto retry;
4213 	}
4214 out_putname:
4215 	putname(from);
4216 	return error;
4217 }
4218 
4219 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4220 		int, newdfd, const char __user *, newname)
4221 {
4222 	return do_symlinkat(oldname, newdfd, newname);
4223 }
4224 
4225 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4226 {
4227 	return do_symlinkat(oldname, AT_FDCWD, newname);
4228 }
4229 
4230 /**
4231  * vfs_link - create a new link
4232  * @old_dentry:	object to be linked
4233  * @mnt_userns:	the user namespace of the mount
4234  * @dir:	new parent
4235  * @new_dentry:	where to create the new link
4236  * @delegated_inode: returns inode needing a delegation break
4237  *
4238  * The caller must hold dir->i_mutex
4239  *
4240  * If vfs_link discovers a delegation on the to-be-linked file in need
4241  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4242  * inode in delegated_inode.  The caller should then break the delegation
4243  * and retry.  Because breaking a delegation may take a long time, the
4244  * caller should drop the i_mutex before doing so.
4245  *
4246  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4247  * be appropriate for callers that expect the underlying filesystem not
4248  * to be NFS exported.
4249  *
4250  * If the inode has been found through an idmapped mount the user namespace of
4251  * the vfsmount must be passed through @mnt_userns. This function will then take
4252  * care to map the inode according to @mnt_userns before checking permissions.
4253  * On non-idmapped mounts or if permission checking is to be performed on the
4254  * raw inode simply passs init_user_ns.
4255  */
4256 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4257 	     struct inode *dir, struct dentry *new_dentry,
4258 	     struct inode **delegated_inode)
4259 {
4260 	struct inode *inode = old_dentry->d_inode;
4261 	unsigned max_links = dir->i_sb->s_max_links;
4262 	int error;
4263 
4264 	if (!inode)
4265 		return -ENOENT;
4266 
4267 	error = may_create(mnt_userns, dir, new_dentry);
4268 	if (error)
4269 		return error;
4270 
4271 	if (dir->i_sb != inode->i_sb)
4272 		return -EXDEV;
4273 
4274 	/*
4275 	 * A link to an append-only or immutable file cannot be created.
4276 	 */
4277 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4278 		return -EPERM;
4279 	/*
4280 	 * Updating the link count will likely cause i_uid and i_gid to
4281 	 * be writen back improperly if their true value is unknown to
4282 	 * the vfs.
4283 	 */
4284 	if (HAS_UNMAPPED_ID(mnt_userns, inode))
4285 		return -EPERM;
4286 	if (!dir->i_op->link)
4287 		return -EPERM;
4288 	if (S_ISDIR(inode->i_mode))
4289 		return -EPERM;
4290 
4291 	error = security_inode_link(old_dentry, dir, new_dentry);
4292 	if (error)
4293 		return error;
4294 
4295 	inode_lock(inode);
4296 	/* Make sure we don't allow creating hardlink to an unlinked file */
4297 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4298 		error =  -ENOENT;
4299 	else if (max_links && inode->i_nlink >= max_links)
4300 		error = -EMLINK;
4301 	else {
4302 		error = try_break_deleg(inode, delegated_inode);
4303 		if (!error)
4304 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4305 	}
4306 
4307 	if (!error && (inode->i_state & I_LINKABLE)) {
4308 		spin_lock(&inode->i_lock);
4309 		inode->i_state &= ~I_LINKABLE;
4310 		spin_unlock(&inode->i_lock);
4311 	}
4312 	inode_unlock(inode);
4313 	if (!error)
4314 		fsnotify_link(dir, inode, new_dentry);
4315 	return error;
4316 }
4317 EXPORT_SYMBOL(vfs_link);
4318 
4319 /*
4320  * Hardlinks are often used in delicate situations.  We avoid
4321  * security-related surprises by not following symlinks on the
4322  * newname.  --KAB
4323  *
4324  * We don't follow them on the oldname either to be compatible
4325  * with linux 2.0, and to avoid hard-linking to directories
4326  * and other special files.  --ADM
4327  */
4328 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4329 	      const char __user *newname, int flags)
4330 {
4331 	struct user_namespace *mnt_userns;
4332 	struct dentry *new_dentry;
4333 	struct path old_path, new_path;
4334 	struct inode *delegated_inode = NULL;
4335 	int how = 0;
4336 	int error;
4337 
4338 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4339 		return -EINVAL;
4340 	/*
4341 	 * To use null names we require CAP_DAC_READ_SEARCH
4342 	 * This ensures that not everyone will be able to create
4343 	 * handlink using the passed filedescriptor.
4344 	 */
4345 	if (flags & AT_EMPTY_PATH) {
4346 		if (!capable(CAP_DAC_READ_SEARCH))
4347 			return -ENOENT;
4348 		how = LOOKUP_EMPTY;
4349 	}
4350 
4351 	if (flags & AT_SYMLINK_FOLLOW)
4352 		how |= LOOKUP_FOLLOW;
4353 retry:
4354 	error = user_path_at(olddfd, oldname, how, &old_path);
4355 	if (error)
4356 		return error;
4357 
4358 	new_dentry = user_path_create(newdfd, newname, &new_path,
4359 					(how & LOOKUP_REVAL));
4360 	error = PTR_ERR(new_dentry);
4361 	if (IS_ERR(new_dentry))
4362 		goto out;
4363 
4364 	error = -EXDEV;
4365 	if (old_path.mnt != new_path.mnt)
4366 		goto out_dput;
4367 	mnt_userns = mnt_user_ns(new_path.mnt);
4368 	error = may_linkat(mnt_userns, &old_path);
4369 	if (unlikely(error))
4370 		goto out_dput;
4371 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4372 	if (error)
4373 		goto out_dput;
4374 	error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4375 			 new_dentry, &delegated_inode);
4376 out_dput:
4377 	done_path_create(&new_path, new_dentry);
4378 	if (delegated_inode) {
4379 		error = break_deleg_wait(&delegated_inode);
4380 		if (!error) {
4381 			path_put(&old_path);
4382 			goto retry;
4383 		}
4384 	}
4385 	if (retry_estale(error, how)) {
4386 		path_put(&old_path);
4387 		how |= LOOKUP_REVAL;
4388 		goto retry;
4389 	}
4390 out:
4391 	path_put(&old_path);
4392 
4393 	return error;
4394 }
4395 
4396 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4397 		int, newdfd, const char __user *, newname, int, flags)
4398 {
4399 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4400 }
4401 
4402 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4403 {
4404 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4405 }
4406 
4407 /**
4408  * vfs_rename - rename a filesystem object
4409  * @old_mnt_userns:	old user namespace of the mount the inode was found from
4410  * @old_dir:		parent of source
4411  * @old_dentry:		source
4412  * @new_mnt_userns:	new user namespace of the mount the inode was found from
4413  * @new_dir:		parent of destination
4414  * @new_dentry:		destination
4415  * @delegated_inode:	returns an inode needing a delegation break
4416  * @flags:		rename flags
4417  *
4418  * The caller must hold multiple mutexes--see lock_rename()).
4419  *
4420  * If vfs_rename discovers a delegation in need of breaking at either
4421  * the source or destination, it will return -EWOULDBLOCK and return a
4422  * reference to the inode in delegated_inode.  The caller should then
4423  * break the delegation and retry.  Because breaking a delegation may
4424  * take a long time, the caller should drop all locks before doing
4425  * so.
4426  *
4427  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4428  * be appropriate for callers that expect the underlying filesystem not
4429  * to be NFS exported.
4430  *
4431  * The worst of all namespace operations - renaming directory. "Perverted"
4432  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4433  * Problems:
4434  *
4435  *	a) we can get into loop creation.
4436  *	b) race potential - two innocent renames can create a loop together.
4437  *	   That's where 4.4 screws up. Current fix: serialization on
4438  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4439  *	   story.
4440  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4441  *	   and source (if it is not a directory).
4442  *	   And that - after we got ->i_mutex on parents (until then we don't know
4443  *	   whether the target exists).  Solution: try to be smart with locking
4444  *	   order for inodes.  We rely on the fact that tree topology may change
4445  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4446  *	   move will be locked.  Thus we can rank directories by the tree
4447  *	   (ancestors first) and rank all non-directories after them.
4448  *	   That works since everybody except rename does "lock parent, lookup,
4449  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4450  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4451  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4452  *	   we'd better make sure that there's no link(2) for them.
4453  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4454  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4455  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4456  *	   ->i_mutex on parents, which works but leads to some truly excessive
4457  *	   locking].
4458  */
4459 int vfs_rename(struct renamedata *rd)
4460 {
4461 	int error;
4462 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4463 	struct dentry *old_dentry = rd->old_dentry;
4464 	struct dentry *new_dentry = rd->new_dentry;
4465 	struct inode **delegated_inode = rd->delegated_inode;
4466 	unsigned int flags = rd->flags;
4467 	bool is_dir = d_is_dir(old_dentry);
4468 	struct inode *source = old_dentry->d_inode;
4469 	struct inode *target = new_dentry->d_inode;
4470 	bool new_is_dir = false;
4471 	unsigned max_links = new_dir->i_sb->s_max_links;
4472 	struct name_snapshot old_name;
4473 
4474 	if (source == target)
4475 		return 0;
4476 
4477 	error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4478 	if (error)
4479 		return error;
4480 
4481 	if (!target) {
4482 		error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4483 	} else {
4484 		new_is_dir = d_is_dir(new_dentry);
4485 
4486 		if (!(flags & RENAME_EXCHANGE))
4487 			error = may_delete(rd->new_mnt_userns, new_dir,
4488 					   new_dentry, is_dir);
4489 		else
4490 			error = may_delete(rd->new_mnt_userns, new_dir,
4491 					   new_dentry, new_is_dir);
4492 	}
4493 	if (error)
4494 		return error;
4495 
4496 	if (!old_dir->i_op->rename)
4497 		return -EPERM;
4498 
4499 	/*
4500 	 * If we are going to change the parent - check write permissions,
4501 	 * we'll need to flip '..'.
4502 	 */
4503 	if (new_dir != old_dir) {
4504 		if (is_dir) {
4505 			error = inode_permission(rd->old_mnt_userns, source,
4506 						 MAY_WRITE);
4507 			if (error)
4508 				return error;
4509 		}
4510 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4511 			error = inode_permission(rd->new_mnt_userns, target,
4512 						 MAY_WRITE);
4513 			if (error)
4514 				return error;
4515 		}
4516 	}
4517 
4518 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4519 				      flags);
4520 	if (error)
4521 		return error;
4522 
4523 	take_dentry_name_snapshot(&old_name, old_dentry);
4524 	dget(new_dentry);
4525 	if (!is_dir || (flags & RENAME_EXCHANGE))
4526 		lock_two_nondirectories(source, target);
4527 	else if (target)
4528 		inode_lock(target);
4529 
4530 	error = -EBUSY;
4531 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4532 		goto out;
4533 
4534 	if (max_links && new_dir != old_dir) {
4535 		error = -EMLINK;
4536 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4537 			goto out;
4538 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4539 		    old_dir->i_nlink >= max_links)
4540 			goto out;
4541 	}
4542 	if (!is_dir) {
4543 		error = try_break_deleg(source, delegated_inode);
4544 		if (error)
4545 			goto out;
4546 	}
4547 	if (target && !new_is_dir) {
4548 		error = try_break_deleg(target, delegated_inode);
4549 		if (error)
4550 			goto out;
4551 	}
4552 	error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4553 				      new_dir, new_dentry, flags);
4554 	if (error)
4555 		goto out;
4556 
4557 	if (!(flags & RENAME_EXCHANGE) && target) {
4558 		if (is_dir) {
4559 			shrink_dcache_parent(new_dentry);
4560 			target->i_flags |= S_DEAD;
4561 		}
4562 		dont_mount(new_dentry);
4563 		detach_mounts(new_dentry);
4564 	}
4565 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4566 		if (!(flags & RENAME_EXCHANGE))
4567 			d_move(old_dentry, new_dentry);
4568 		else
4569 			d_exchange(old_dentry, new_dentry);
4570 	}
4571 out:
4572 	if (!is_dir || (flags & RENAME_EXCHANGE))
4573 		unlock_two_nondirectories(source, target);
4574 	else if (target)
4575 		inode_unlock(target);
4576 	dput(new_dentry);
4577 	if (!error) {
4578 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4579 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4580 		if (flags & RENAME_EXCHANGE) {
4581 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4582 				      new_is_dir, NULL, new_dentry);
4583 		}
4584 	}
4585 	release_dentry_name_snapshot(&old_name);
4586 
4587 	return error;
4588 }
4589 EXPORT_SYMBOL(vfs_rename);
4590 
4591 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4592 		 struct filename *to, unsigned int flags)
4593 {
4594 	struct renamedata rd;
4595 	struct dentry *old_dentry, *new_dentry;
4596 	struct dentry *trap;
4597 	struct path old_path, new_path;
4598 	struct qstr old_last, new_last;
4599 	int old_type, new_type;
4600 	struct inode *delegated_inode = NULL;
4601 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4602 	bool should_retry = false;
4603 	int error = -EINVAL;
4604 
4605 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4606 		goto put_both;
4607 
4608 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4609 	    (flags & RENAME_EXCHANGE))
4610 		goto put_both;
4611 
4612 	if (flags & RENAME_EXCHANGE)
4613 		target_flags = 0;
4614 
4615 retry:
4616 	from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4617 					&old_last, &old_type);
4618 	if (IS_ERR(from)) {
4619 		error = PTR_ERR(from);
4620 		goto put_new;
4621 	}
4622 
4623 	to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4624 				&new_type);
4625 	if (IS_ERR(to)) {
4626 		error = PTR_ERR(to);
4627 		goto exit1;
4628 	}
4629 
4630 	error = -EXDEV;
4631 	if (old_path.mnt != new_path.mnt)
4632 		goto exit2;
4633 
4634 	error = -EBUSY;
4635 	if (old_type != LAST_NORM)
4636 		goto exit2;
4637 
4638 	if (flags & RENAME_NOREPLACE)
4639 		error = -EEXIST;
4640 	if (new_type != LAST_NORM)
4641 		goto exit2;
4642 
4643 	error = mnt_want_write(old_path.mnt);
4644 	if (error)
4645 		goto exit2;
4646 
4647 retry_deleg:
4648 	trap = lock_rename(new_path.dentry, old_path.dentry);
4649 
4650 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4651 	error = PTR_ERR(old_dentry);
4652 	if (IS_ERR(old_dentry))
4653 		goto exit3;
4654 	/* source must exist */
4655 	error = -ENOENT;
4656 	if (d_is_negative(old_dentry))
4657 		goto exit4;
4658 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4659 	error = PTR_ERR(new_dentry);
4660 	if (IS_ERR(new_dentry))
4661 		goto exit4;
4662 	error = -EEXIST;
4663 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4664 		goto exit5;
4665 	if (flags & RENAME_EXCHANGE) {
4666 		error = -ENOENT;
4667 		if (d_is_negative(new_dentry))
4668 			goto exit5;
4669 
4670 		if (!d_is_dir(new_dentry)) {
4671 			error = -ENOTDIR;
4672 			if (new_last.name[new_last.len])
4673 				goto exit5;
4674 		}
4675 	}
4676 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4677 	if (!d_is_dir(old_dentry)) {
4678 		error = -ENOTDIR;
4679 		if (old_last.name[old_last.len])
4680 			goto exit5;
4681 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4682 			goto exit5;
4683 	}
4684 	/* source should not be ancestor of target */
4685 	error = -EINVAL;
4686 	if (old_dentry == trap)
4687 		goto exit5;
4688 	/* target should not be an ancestor of source */
4689 	if (!(flags & RENAME_EXCHANGE))
4690 		error = -ENOTEMPTY;
4691 	if (new_dentry == trap)
4692 		goto exit5;
4693 
4694 	error = security_path_rename(&old_path, old_dentry,
4695 				     &new_path, new_dentry, flags);
4696 	if (error)
4697 		goto exit5;
4698 
4699 	rd.old_dir	   = old_path.dentry->d_inode;
4700 	rd.old_dentry	   = old_dentry;
4701 	rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4702 	rd.new_dir	   = new_path.dentry->d_inode;
4703 	rd.new_dentry	   = new_dentry;
4704 	rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4705 	rd.delegated_inode = &delegated_inode;
4706 	rd.flags	   = flags;
4707 	error = vfs_rename(&rd);
4708 exit5:
4709 	dput(new_dentry);
4710 exit4:
4711 	dput(old_dentry);
4712 exit3:
4713 	unlock_rename(new_path.dentry, old_path.dentry);
4714 	if (delegated_inode) {
4715 		error = break_deleg_wait(&delegated_inode);
4716 		if (!error)
4717 			goto retry_deleg;
4718 	}
4719 	mnt_drop_write(old_path.mnt);
4720 exit2:
4721 	if (retry_estale(error, lookup_flags))
4722 		should_retry = true;
4723 	path_put(&new_path);
4724 exit1:
4725 	path_put(&old_path);
4726 	if (should_retry) {
4727 		should_retry = false;
4728 		lookup_flags |= LOOKUP_REVAL;
4729 		goto retry;
4730 	}
4731 put_both:
4732 	if (!IS_ERR(from))
4733 		putname(from);
4734 put_new:
4735 	if (!IS_ERR(to))
4736 		putname(to);
4737 	return error;
4738 }
4739 
4740 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4741 		int, newdfd, const char __user *, newname, unsigned int, flags)
4742 {
4743 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4744 				flags);
4745 }
4746 
4747 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4748 		int, newdfd, const char __user *, newname)
4749 {
4750 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4751 				0);
4752 }
4753 
4754 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4755 {
4756 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4757 				getname(newname), 0);
4758 }
4759 
4760 int readlink_copy(char __user *buffer, int buflen, const char *link)
4761 {
4762 	int len = PTR_ERR(link);
4763 	if (IS_ERR(link))
4764 		goto out;
4765 
4766 	len = strlen(link);
4767 	if (len > (unsigned) buflen)
4768 		len = buflen;
4769 	if (copy_to_user(buffer, link, len))
4770 		len = -EFAULT;
4771 out:
4772 	return len;
4773 }
4774 
4775 /**
4776  * vfs_readlink - copy symlink body into userspace buffer
4777  * @dentry: dentry on which to get symbolic link
4778  * @buffer: user memory pointer
4779  * @buflen: size of buffer
4780  *
4781  * Does not touch atime.  That's up to the caller if necessary
4782  *
4783  * Does not call security hook.
4784  */
4785 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4786 {
4787 	struct inode *inode = d_inode(dentry);
4788 	DEFINE_DELAYED_CALL(done);
4789 	const char *link;
4790 	int res;
4791 
4792 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4793 		if (unlikely(inode->i_op->readlink))
4794 			return inode->i_op->readlink(dentry, buffer, buflen);
4795 
4796 		if (!d_is_symlink(dentry))
4797 			return -EINVAL;
4798 
4799 		spin_lock(&inode->i_lock);
4800 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4801 		spin_unlock(&inode->i_lock);
4802 	}
4803 
4804 	link = READ_ONCE(inode->i_link);
4805 	if (!link) {
4806 		link = inode->i_op->get_link(dentry, inode, &done);
4807 		if (IS_ERR(link))
4808 			return PTR_ERR(link);
4809 	}
4810 	res = readlink_copy(buffer, buflen, link);
4811 	do_delayed_call(&done);
4812 	return res;
4813 }
4814 EXPORT_SYMBOL(vfs_readlink);
4815 
4816 /**
4817  * vfs_get_link - get symlink body
4818  * @dentry: dentry on which to get symbolic link
4819  * @done: caller needs to free returned data with this
4820  *
4821  * Calls security hook and i_op->get_link() on the supplied inode.
4822  *
4823  * It does not touch atime.  That's up to the caller if necessary.
4824  *
4825  * Does not work on "special" symlinks like /proc/$$/fd/N
4826  */
4827 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4828 {
4829 	const char *res = ERR_PTR(-EINVAL);
4830 	struct inode *inode = d_inode(dentry);
4831 
4832 	if (d_is_symlink(dentry)) {
4833 		res = ERR_PTR(security_inode_readlink(dentry));
4834 		if (!res)
4835 			res = inode->i_op->get_link(dentry, inode, done);
4836 	}
4837 	return res;
4838 }
4839 EXPORT_SYMBOL(vfs_get_link);
4840 
4841 /* get the link contents into pagecache */
4842 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4843 			  struct delayed_call *callback)
4844 {
4845 	char *kaddr;
4846 	struct page *page;
4847 	struct address_space *mapping = inode->i_mapping;
4848 
4849 	if (!dentry) {
4850 		page = find_get_page(mapping, 0);
4851 		if (!page)
4852 			return ERR_PTR(-ECHILD);
4853 		if (!PageUptodate(page)) {
4854 			put_page(page);
4855 			return ERR_PTR(-ECHILD);
4856 		}
4857 	} else {
4858 		page = read_mapping_page(mapping, 0, NULL);
4859 		if (IS_ERR(page))
4860 			return (char*)page;
4861 	}
4862 	set_delayed_call(callback, page_put_link, page);
4863 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4864 	kaddr = page_address(page);
4865 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4866 	return kaddr;
4867 }
4868 
4869 EXPORT_SYMBOL(page_get_link);
4870 
4871 void page_put_link(void *arg)
4872 {
4873 	put_page(arg);
4874 }
4875 EXPORT_SYMBOL(page_put_link);
4876 
4877 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4878 {
4879 	DEFINE_DELAYED_CALL(done);
4880 	int res = readlink_copy(buffer, buflen,
4881 				page_get_link(dentry, d_inode(dentry),
4882 					      &done));
4883 	do_delayed_call(&done);
4884 	return res;
4885 }
4886 EXPORT_SYMBOL(page_readlink);
4887 
4888 /*
4889  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4890  */
4891 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4892 {
4893 	struct address_space *mapping = inode->i_mapping;
4894 	struct page *page;
4895 	void *fsdata;
4896 	int err;
4897 	unsigned int flags = 0;
4898 	if (nofs)
4899 		flags |= AOP_FLAG_NOFS;
4900 
4901 retry:
4902 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4903 				flags, &page, &fsdata);
4904 	if (err)
4905 		goto fail;
4906 
4907 	memcpy(page_address(page), symname, len-1);
4908 
4909 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4910 							page, fsdata);
4911 	if (err < 0)
4912 		goto fail;
4913 	if (err < len-1)
4914 		goto retry;
4915 
4916 	mark_inode_dirty(inode);
4917 	return 0;
4918 fail:
4919 	return err;
4920 }
4921 EXPORT_SYMBOL(__page_symlink);
4922 
4923 int page_symlink(struct inode *inode, const char *symname, int len)
4924 {
4925 	return __page_symlink(inode, symname, len,
4926 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4927 }
4928 EXPORT_SYMBOL(page_symlink);
4929 
4930 const struct inode_operations page_symlink_inode_operations = {
4931 	.get_link	= page_get_link,
4932 };
4933 EXPORT_SYMBOL(page_symlink_inode_operations);
4934