1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 void final_putname(struct filename *name) 122 { 123 if (name->separate) { 124 __putname(name->name); 125 kfree(name); 126 } else { 127 __putname(name); 128 } 129 } 130 131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 132 133 static struct filename * 134 getname_flags(const char __user *filename, int flags, int *empty) 135 { 136 struct filename *result, *err; 137 int len; 138 long max; 139 char *kname; 140 141 result = audit_reusename(filename); 142 if (result) 143 return result; 144 145 result = __getname(); 146 if (unlikely(!result)) 147 return ERR_PTR(-ENOMEM); 148 149 /* 150 * First, try to embed the struct filename inside the names_cache 151 * allocation 152 */ 153 kname = (char *)result + sizeof(*result); 154 result->name = kname; 155 result->separate = false; 156 max = EMBEDDED_NAME_MAX; 157 158 recopy: 159 len = strncpy_from_user(kname, filename, max); 160 if (unlikely(len < 0)) { 161 err = ERR_PTR(len); 162 goto error; 163 } 164 165 /* 166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 167 * separate struct filename so we can dedicate the entire 168 * names_cache allocation for the pathname, and re-do the copy from 169 * userland. 170 */ 171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 172 kname = (char *)result; 173 174 result = kzalloc(sizeof(*result), GFP_KERNEL); 175 if (!result) { 176 err = ERR_PTR(-ENOMEM); 177 result = (struct filename *)kname; 178 goto error; 179 } 180 result->name = kname; 181 result->separate = true; 182 max = PATH_MAX; 183 goto recopy; 184 } 185 186 /* The empty path is special. */ 187 if (unlikely(!len)) { 188 if (empty) 189 *empty = 1; 190 err = ERR_PTR(-ENOENT); 191 if (!(flags & LOOKUP_EMPTY)) 192 goto error; 193 } 194 195 err = ERR_PTR(-ENAMETOOLONG); 196 if (unlikely(len >= PATH_MAX)) 197 goto error; 198 199 result->uptr = filename; 200 result->aname = NULL; 201 audit_getname(result); 202 return result; 203 204 error: 205 final_putname(result); 206 return err; 207 } 208 209 struct filename * 210 getname(const char __user * filename) 211 { 212 return getname_flags(filename, 0, NULL); 213 } 214 215 /* 216 * The "getname_kernel()" interface doesn't do pathnames longer 217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user. 218 */ 219 struct filename * 220 getname_kernel(const char * filename) 221 { 222 struct filename *result; 223 char *kname; 224 int len; 225 226 len = strlen(filename); 227 if (len >= EMBEDDED_NAME_MAX) 228 return ERR_PTR(-ENAMETOOLONG); 229 230 result = __getname(); 231 if (unlikely(!result)) 232 return ERR_PTR(-ENOMEM); 233 234 kname = (char *)result + sizeof(*result); 235 result->name = kname; 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->separate = false; 239 240 strlcpy(kname, filename, EMBEDDED_NAME_MAX); 241 return result; 242 } 243 244 #ifdef CONFIG_AUDITSYSCALL 245 void putname(struct filename *name) 246 { 247 if (unlikely(!audit_dummy_context())) 248 return audit_putname(name); 249 final_putname(name); 250 } 251 #endif 252 253 static int check_acl(struct inode *inode, int mask) 254 { 255 #ifdef CONFIG_FS_POSIX_ACL 256 struct posix_acl *acl; 257 258 if (mask & MAY_NOT_BLOCK) { 259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 260 if (!acl) 261 return -EAGAIN; 262 /* no ->get_acl() calls in RCU mode... */ 263 if (acl == ACL_NOT_CACHED) 264 return -ECHILD; 265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 266 } 267 268 acl = get_acl(inode, ACL_TYPE_ACCESS); 269 if (IS_ERR(acl)) 270 return PTR_ERR(acl); 271 if (acl) { 272 int error = posix_acl_permission(inode, acl, mask); 273 posix_acl_release(acl); 274 return error; 275 } 276 #endif 277 278 return -EAGAIN; 279 } 280 281 /* 282 * This does the basic permission checking 283 */ 284 static int acl_permission_check(struct inode *inode, int mask) 285 { 286 unsigned int mode = inode->i_mode; 287 288 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 289 mode >>= 6; 290 else { 291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 292 int error = check_acl(inode, mask); 293 if (error != -EAGAIN) 294 return error; 295 } 296 297 if (in_group_p(inode->i_gid)) 298 mode >>= 3; 299 } 300 301 /* 302 * If the DACs are ok we don't need any capability check. 303 */ 304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 305 return 0; 306 return -EACCES; 307 } 308 309 /** 310 * generic_permission - check for access rights on a Posix-like filesystem 311 * @inode: inode to check access rights for 312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 313 * 314 * Used to check for read/write/execute permissions on a file. 315 * We use "fsuid" for this, letting us set arbitrary permissions 316 * for filesystem access without changing the "normal" uids which 317 * are used for other things. 318 * 319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 320 * request cannot be satisfied (eg. requires blocking or too much complexity). 321 * It would then be called again in ref-walk mode. 322 */ 323 int generic_permission(struct inode *inode, int mask) 324 { 325 int ret; 326 327 /* 328 * Do the basic permission checks. 329 */ 330 ret = acl_permission_check(inode, mask); 331 if (ret != -EACCES) 332 return ret; 333 334 if (S_ISDIR(inode->i_mode)) { 335 /* DACs are overridable for directories */ 336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 337 return 0; 338 if (!(mask & MAY_WRITE)) 339 if (capable_wrt_inode_uidgid(inode, 340 CAP_DAC_READ_SEARCH)) 341 return 0; 342 return -EACCES; 343 } 344 /* 345 * Read/write DACs are always overridable. 346 * Executable DACs are overridable when there is 347 * at least one exec bit set. 348 */ 349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 351 return 0; 352 353 /* 354 * Searching includes executable on directories, else just read. 355 */ 356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 357 if (mask == MAY_READ) 358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 359 return 0; 360 361 return -EACCES; 362 } 363 EXPORT_SYMBOL(generic_permission); 364 365 /* 366 * We _really_ want to just do "generic_permission()" without 367 * even looking at the inode->i_op values. So we keep a cache 368 * flag in inode->i_opflags, that says "this has not special 369 * permission function, use the fast case". 370 */ 371 static inline int do_inode_permission(struct inode *inode, int mask) 372 { 373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 374 if (likely(inode->i_op->permission)) 375 return inode->i_op->permission(inode, mask); 376 377 /* This gets set once for the inode lifetime */ 378 spin_lock(&inode->i_lock); 379 inode->i_opflags |= IOP_FASTPERM; 380 spin_unlock(&inode->i_lock); 381 } 382 return generic_permission(inode, mask); 383 } 384 385 /** 386 * __inode_permission - Check for access rights to a given inode 387 * @inode: Inode to check permission on 388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 389 * 390 * Check for read/write/execute permissions on an inode. 391 * 392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 393 * 394 * This does not check for a read-only file system. You probably want 395 * inode_permission(). 396 */ 397 int __inode_permission(struct inode *inode, int mask) 398 { 399 int retval; 400 401 if (unlikely(mask & MAY_WRITE)) { 402 /* 403 * Nobody gets write access to an immutable file. 404 */ 405 if (IS_IMMUTABLE(inode)) 406 return -EACCES; 407 } 408 409 retval = do_inode_permission(inode, mask); 410 if (retval) 411 return retval; 412 413 retval = devcgroup_inode_permission(inode, mask); 414 if (retval) 415 return retval; 416 417 return security_inode_permission(inode, mask); 418 } 419 420 /** 421 * sb_permission - Check superblock-level permissions 422 * @sb: Superblock of inode to check permission on 423 * @inode: Inode to check permission on 424 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 425 * 426 * Separate out file-system wide checks from inode-specific permission checks. 427 */ 428 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 429 { 430 if (unlikely(mask & MAY_WRITE)) { 431 umode_t mode = inode->i_mode; 432 433 /* Nobody gets write access to a read-only fs. */ 434 if ((sb->s_flags & MS_RDONLY) && 435 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 436 return -EROFS; 437 } 438 return 0; 439 } 440 441 /** 442 * inode_permission - Check for access rights to a given inode 443 * @inode: Inode to check permission on 444 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 445 * 446 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 447 * this, letting us set arbitrary permissions for filesystem access without 448 * changing the "normal" UIDs which are used for other things. 449 * 450 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 451 */ 452 int inode_permission(struct inode *inode, int mask) 453 { 454 int retval; 455 456 retval = sb_permission(inode->i_sb, inode, mask); 457 if (retval) 458 return retval; 459 return __inode_permission(inode, mask); 460 } 461 EXPORT_SYMBOL(inode_permission); 462 463 /** 464 * path_get - get a reference to a path 465 * @path: path to get the reference to 466 * 467 * Given a path increment the reference count to the dentry and the vfsmount. 468 */ 469 void path_get(const struct path *path) 470 { 471 mntget(path->mnt); 472 dget(path->dentry); 473 } 474 EXPORT_SYMBOL(path_get); 475 476 /** 477 * path_put - put a reference to a path 478 * @path: path to put the reference to 479 * 480 * Given a path decrement the reference count to the dentry and the vfsmount. 481 */ 482 void path_put(const struct path *path) 483 { 484 dput(path->dentry); 485 mntput(path->mnt); 486 } 487 EXPORT_SYMBOL(path_put); 488 489 /* 490 * Path walking has 2 modes, rcu-walk and ref-walk (see 491 * Documentation/filesystems/path-lookup.txt). In situations when we can't 492 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 493 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 494 * mode. Refcounts are grabbed at the last known good point before rcu-walk 495 * got stuck, so ref-walk may continue from there. If this is not successful 496 * (eg. a seqcount has changed), then failure is returned and it's up to caller 497 * to restart the path walk from the beginning in ref-walk mode. 498 */ 499 500 /** 501 * unlazy_walk - try to switch to ref-walk mode. 502 * @nd: nameidata pathwalk data 503 * @dentry: child of nd->path.dentry or NULL 504 * Returns: 0 on success, -ECHILD on failure 505 * 506 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 507 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 508 * @nd or NULL. Must be called from rcu-walk context. 509 */ 510 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 511 { 512 struct fs_struct *fs = current->fs; 513 struct dentry *parent = nd->path.dentry; 514 515 BUG_ON(!(nd->flags & LOOKUP_RCU)); 516 517 /* 518 * After legitimizing the bastards, terminate_walk() 519 * will do the right thing for non-RCU mode, and all our 520 * subsequent exit cases should rcu_read_unlock() 521 * before returning. Do vfsmount first; if dentry 522 * can't be legitimized, just set nd->path.dentry to NULL 523 * and rely on dput(NULL) being a no-op. 524 */ 525 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 526 return -ECHILD; 527 nd->flags &= ~LOOKUP_RCU; 528 529 if (!lockref_get_not_dead(&parent->d_lockref)) { 530 nd->path.dentry = NULL; 531 goto out; 532 } 533 534 /* 535 * For a negative lookup, the lookup sequence point is the parents 536 * sequence point, and it only needs to revalidate the parent dentry. 537 * 538 * For a positive lookup, we need to move both the parent and the 539 * dentry from the RCU domain to be properly refcounted. And the 540 * sequence number in the dentry validates *both* dentry counters, 541 * since we checked the sequence number of the parent after we got 542 * the child sequence number. So we know the parent must still 543 * be valid if the child sequence number is still valid. 544 */ 545 if (!dentry) { 546 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 547 goto out; 548 BUG_ON(nd->inode != parent->d_inode); 549 } else { 550 if (!lockref_get_not_dead(&dentry->d_lockref)) 551 goto out; 552 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 553 goto drop_dentry; 554 } 555 556 /* 557 * Sequence counts matched. Now make sure that the root is 558 * still valid and get it if required. 559 */ 560 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 561 spin_lock(&fs->lock); 562 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 563 goto unlock_and_drop_dentry; 564 path_get(&nd->root); 565 spin_unlock(&fs->lock); 566 } 567 568 rcu_read_unlock(); 569 return 0; 570 571 unlock_and_drop_dentry: 572 spin_unlock(&fs->lock); 573 drop_dentry: 574 rcu_read_unlock(); 575 dput(dentry); 576 goto drop_root_mnt; 577 out: 578 rcu_read_unlock(); 579 drop_root_mnt: 580 if (!(nd->flags & LOOKUP_ROOT)) 581 nd->root.mnt = NULL; 582 return -ECHILD; 583 } 584 585 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 586 { 587 return dentry->d_op->d_revalidate(dentry, flags); 588 } 589 590 /** 591 * complete_walk - successful completion of path walk 592 * @nd: pointer nameidata 593 * 594 * If we had been in RCU mode, drop out of it and legitimize nd->path. 595 * Revalidate the final result, unless we'd already done that during 596 * the path walk or the filesystem doesn't ask for it. Return 0 on 597 * success, -error on failure. In case of failure caller does not 598 * need to drop nd->path. 599 */ 600 static int complete_walk(struct nameidata *nd) 601 { 602 struct dentry *dentry = nd->path.dentry; 603 int status; 604 605 if (nd->flags & LOOKUP_RCU) { 606 nd->flags &= ~LOOKUP_RCU; 607 if (!(nd->flags & LOOKUP_ROOT)) 608 nd->root.mnt = NULL; 609 610 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 611 rcu_read_unlock(); 612 return -ECHILD; 613 } 614 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 615 rcu_read_unlock(); 616 mntput(nd->path.mnt); 617 return -ECHILD; 618 } 619 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 620 rcu_read_unlock(); 621 dput(dentry); 622 mntput(nd->path.mnt); 623 return -ECHILD; 624 } 625 rcu_read_unlock(); 626 } 627 628 if (likely(!(nd->flags & LOOKUP_JUMPED))) 629 return 0; 630 631 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 632 return 0; 633 634 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 635 if (status > 0) 636 return 0; 637 638 if (!status) 639 status = -ESTALE; 640 641 path_put(&nd->path); 642 return status; 643 } 644 645 static __always_inline void set_root(struct nameidata *nd) 646 { 647 get_fs_root(current->fs, &nd->root); 648 } 649 650 static int link_path_walk(const char *, struct nameidata *); 651 652 static __always_inline unsigned set_root_rcu(struct nameidata *nd) 653 { 654 struct fs_struct *fs = current->fs; 655 unsigned seq, res; 656 657 do { 658 seq = read_seqcount_begin(&fs->seq); 659 nd->root = fs->root; 660 res = __read_seqcount_begin(&nd->root.dentry->d_seq); 661 } while (read_seqcount_retry(&fs->seq, seq)); 662 return res; 663 } 664 665 static void path_put_conditional(struct path *path, struct nameidata *nd) 666 { 667 dput(path->dentry); 668 if (path->mnt != nd->path.mnt) 669 mntput(path->mnt); 670 } 671 672 static inline void path_to_nameidata(const struct path *path, 673 struct nameidata *nd) 674 { 675 if (!(nd->flags & LOOKUP_RCU)) { 676 dput(nd->path.dentry); 677 if (nd->path.mnt != path->mnt) 678 mntput(nd->path.mnt); 679 } 680 nd->path.mnt = path->mnt; 681 nd->path.dentry = path->dentry; 682 } 683 684 /* 685 * Helper to directly jump to a known parsed path from ->follow_link, 686 * caller must have taken a reference to path beforehand. 687 */ 688 void nd_jump_link(struct nameidata *nd, struct path *path) 689 { 690 path_put(&nd->path); 691 692 nd->path = *path; 693 nd->inode = nd->path.dentry->d_inode; 694 nd->flags |= LOOKUP_JUMPED; 695 } 696 697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 698 { 699 struct inode *inode = link->dentry->d_inode; 700 if (inode->i_op->put_link) 701 inode->i_op->put_link(link->dentry, nd, cookie); 702 path_put(link); 703 } 704 705 int sysctl_protected_symlinks __read_mostly = 0; 706 int sysctl_protected_hardlinks __read_mostly = 0; 707 708 /** 709 * may_follow_link - Check symlink following for unsafe situations 710 * @link: The path of the symlink 711 * @nd: nameidata pathwalk data 712 * 713 * In the case of the sysctl_protected_symlinks sysctl being enabled, 714 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 715 * in a sticky world-writable directory. This is to protect privileged 716 * processes from failing races against path names that may change out 717 * from under them by way of other users creating malicious symlinks. 718 * It will permit symlinks to be followed only when outside a sticky 719 * world-writable directory, or when the uid of the symlink and follower 720 * match, or when the directory owner matches the symlink's owner. 721 * 722 * Returns 0 if following the symlink is allowed, -ve on error. 723 */ 724 static inline int may_follow_link(struct path *link, struct nameidata *nd) 725 { 726 const struct inode *inode; 727 const struct inode *parent; 728 729 if (!sysctl_protected_symlinks) 730 return 0; 731 732 /* Allowed if owner and follower match. */ 733 inode = link->dentry->d_inode; 734 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 735 return 0; 736 737 /* Allowed if parent directory not sticky and world-writable. */ 738 parent = nd->path.dentry->d_inode; 739 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 740 return 0; 741 742 /* Allowed if parent directory and link owner match. */ 743 if (uid_eq(parent->i_uid, inode->i_uid)) 744 return 0; 745 746 audit_log_link_denied("follow_link", link); 747 path_put_conditional(link, nd); 748 path_put(&nd->path); 749 return -EACCES; 750 } 751 752 /** 753 * safe_hardlink_source - Check for safe hardlink conditions 754 * @inode: the source inode to hardlink from 755 * 756 * Return false if at least one of the following conditions: 757 * - inode is not a regular file 758 * - inode is setuid 759 * - inode is setgid and group-exec 760 * - access failure for read and write 761 * 762 * Otherwise returns true. 763 */ 764 static bool safe_hardlink_source(struct inode *inode) 765 { 766 umode_t mode = inode->i_mode; 767 768 /* Special files should not get pinned to the filesystem. */ 769 if (!S_ISREG(mode)) 770 return false; 771 772 /* Setuid files should not get pinned to the filesystem. */ 773 if (mode & S_ISUID) 774 return false; 775 776 /* Executable setgid files should not get pinned to the filesystem. */ 777 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 778 return false; 779 780 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 781 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 782 return false; 783 784 return true; 785 } 786 787 /** 788 * may_linkat - Check permissions for creating a hardlink 789 * @link: the source to hardlink from 790 * 791 * Block hardlink when all of: 792 * - sysctl_protected_hardlinks enabled 793 * - fsuid does not match inode 794 * - hardlink source is unsafe (see safe_hardlink_source() above) 795 * - not CAP_FOWNER 796 * 797 * Returns 0 if successful, -ve on error. 798 */ 799 static int may_linkat(struct path *link) 800 { 801 const struct cred *cred; 802 struct inode *inode; 803 804 if (!sysctl_protected_hardlinks) 805 return 0; 806 807 cred = current_cred(); 808 inode = link->dentry->d_inode; 809 810 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 811 * otherwise, it must be a safe source. 812 */ 813 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 814 capable(CAP_FOWNER)) 815 return 0; 816 817 audit_log_link_denied("linkat", link); 818 return -EPERM; 819 } 820 821 static __always_inline int 822 follow_link(struct path *link, struct nameidata *nd, void **p) 823 { 824 struct dentry *dentry = link->dentry; 825 int error; 826 char *s; 827 828 BUG_ON(nd->flags & LOOKUP_RCU); 829 830 if (link->mnt == nd->path.mnt) 831 mntget(link->mnt); 832 833 error = -ELOOP; 834 if (unlikely(current->total_link_count >= 40)) 835 goto out_put_nd_path; 836 837 cond_resched(); 838 current->total_link_count++; 839 840 touch_atime(link); 841 nd_set_link(nd, NULL); 842 843 error = security_inode_follow_link(link->dentry, nd); 844 if (error) 845 goto out_put_nd_path; 846 847 nd->last_type = LAST_BIND; 848 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 849 error = PTR_ERR(*p); 850 if (IS_ERR(*p)) 851 goto out_put_nd_path; 852 853 error = 0; 854 s = nd_get_link(nd); 855 if (s) { 856 if (unlikely(IS_ERR(s))) { 857 path_put(&nd->path); 858 put_link(nd, link, *p); 859 return PTR_ERR(s); 860 } 861 if (*s == '/') { 862 if (!nd->root.mnt) 863 set_root(nd); 864 path_put(&nd->path); 865 nd->path = nd->root; 866 path_get(&nd->root); 867 nd->flags |= LOOKUP_JUMPED; 868 } 869 nd->inode = nd->path.dentry->d_inode; 870 error = link_path_walk(s, nd); 871 if (unlikely(error)) 872 put_link(nd, link, *p); 873 } 874 875 return error; 876 877 out_put_nd_path: 878 *p = NULL; 879 path_put(&nd->path); 880 path_put(link); 881 return error; 882 } 883 884 static int follow_up_rcu(struct path *path) 885 { 886 struct mount *mnt = real_mount(path->mnt); 887 struct mount *parent; 888 struct dentry *mountpoint; 889 890 parent = mnt->mnt_parent; 891 if (&parent->mnt == path->mnt) 892 return 0; 893 mountpoint = mnt->mnt_mountpoint; 894 path->dentry = mountpoint; 895 path->mnt = &parent->mnt; 896 return 1; 897 } 898 899 /* 900 * follow_up - Find the mountpoint of path's vfsmount 901 * 902 * Given a path, find the mountpoint of its source file system. 903 * Replace @path with the path of the mountpoint in the parent mount. 904 * Up is towards /. 905 * 906 * Return 1 if we went up a level and 0 if we were already at the 907 * root. 908 */ 909 int follow_up(struct path *path) 910 { 911 struct mount *mnt = real_mount(path->mnt); 912 struct mount *parent; 913 struct dentry *mountpoint; 914 915 read_seqlock_excl(&mount_lock); 916 parent = mnt->mnt_parent; 917 if (parent == mnt) { 918 read_sequnlock_excl(&mount_lock); 919 return 0; 920 } 921 mntget(&parent->mnt); 922 mountpoint = dget(mnt->mnt_mountpoint); 923 read_sequnlock_excl(&mount_lock); 924 dput(path->dentry); 925 path->dentry = mountpoint; 926 mntput(path->mnt); 927 path->mnt = &parent->mnt; 928 return 1; 929 } 930 EXPORT_SYMBOL(follow_up); 931 932 /* 933 * Perform an automount 934 * - return -EISDIR to tell follow_managed() to stop and return the path we 935 * were called with. 936 */ 937 static int follow_automount(struct path *path, unsigned flags, 938 bool *need_mntput) 939 { 940 struct vfsmount *mnt; 941 int err; 942 943 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 944 return -EREMOTE; 945 946 /* We don't want to mount if someone's just doing a stat - 947 * unless they're stat'ing a directory and appended a '/' to 948 * the name. 949 * 950 * We do, however, want to mount if someone wants to open or 951 * create a file of any type under the mountpoint, wants to 952 * traverse through the mountpoint or wants to open the 953 * mounted directory. Also, autofs may mark negative dentries 954 * as being automount points. These will need the attentions 955 * of the daemon to instantiate them before they can be used. 956 */ 957 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 958 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 959 path->dentry->d_inode) 960 return -EISDIR; 961 962 current->total_link_count++; 963 if (current->total_link_count >= 40) 964 return -ELOOP; 965 966 mnt = path->dentry->d_op->d_automount(path); 967 if (IS_ERR(mnt)) { 968 /* 969 * The filesystem is allowed to return -EISDIR here to indicate 970 * it doesn't want to automount. For instance, autofs would do 971 * this so that its userspace daemon can mount on this dentry. 972 * 973 * However, we can only permit this if it's a terminal point in 974 * the path being looked up; if it wasn't then the remainder of 975 * the path is inaccessible and we should say so. 976 */ 977 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 978 return -EREMOTE; 979 return PTR_ERR(mnt); 980 } 981 982 if (!mnt) /* mount collision */ 983 return 0; 984 985 if (!*need_mntput) { 986 /* lock_mount() may release path->mnt on error */ 987 mntget(path->mnt); 988 *need_mntput = true; 989 } 990 err = finish_automount(mnt, path); 991 992 switch (err) { 993 case -EBUSY: 994 /* Someone else made a mount here whilst we were busy */ 995 return 0; 996 case 0: 997 path_put(path); 998 path->mnt = mnt; 999 path->dentry = dget(mnt->mnt_root); 1000 return 0; 1001 default: 1002 return err; 1003 } 1004 1005 } 1006 1007 /* 1008 * Handle a dentry that is managed in some way. 1009 * - Flagged for transit management (autofs) 1010 * - Flagged as mountpoint 1011 * - Flagged as automount point 1012 * 1013 * This may only be called in refwalk mode. 1014 * 1015 * Serialization is taken care of in namespace.c 1016 */ 1017 static int follow_managed(struct path *path, unsigned flags) 1018 { 1019 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1020 unsigned managed; 1021 bool need_mntput = false; 1022 int ret = 0; 1023 1024 /* Given that we're not holding a lock here, we retain the value in a 1025 * local variable for each dentry as we look at it so that we don't see 1026 * the components of that value change under us */ 1027 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1028 managed &= DCACHE_MANAGED_DENTRY, 1029 unlikely(managed != 0)) { 1030 /* Allow the filesystem to manage the transit without i_mutex 1031 * being held. */ 1032 if (managed & DCACHE_MANAGE_TRANSIT) { 1033 BUG_ON(!path->dentry->d_op); 1034 BUG_ON(!path->dentry->d_op->d_manage); 1035 ret = path->dentry->d_op->d_manage(path->dentry, false); 1036 if (ret < 0) 1037 break; 1038 } 1039 1040 /* Transit to a mounted filesystem. */ 1041 if (managed & DCACHE_MOUNTED) { 1042 struct vfsmount *mounted = lookup_mnt(path); 1043 if (mounted) { 1044 dput(path->dentry); 1045 if (need_mntput) 1046 mntput(path->mnt); 1047 path->mnt = mounted; 1048 path->dentry = dget(mounted->mnt_root); 1049 need_mntput = true; 1050 continue; 1051 } 1052 1053 /* Something is mounted on this dentry in another 1054 * namespace and/or whatever was mounted there in this 1055 * namespace got unmounted before lookup_mnt() could 1056 * get it */ 1057 } 1058 1059 /* Handle an automount point */ 1060 if (managed & DCACHE_NEED_AUTOMOUNT) { 1061 ret = follow_automount(path, flags, &need_mntput); 1062 if (ret < 0) 1063 break; 1064 continue; 1065 } 1066 1067 /* We didn't change the current path point */ 1068 break; 1069 } 1070 1071 if (need_mntput && path->mnt == mnt) 1072 mntput(path->mnt); 1073 if (ret == -EISDIR) 1074 ret = 0; 1075 return ret < 0 ? ret : need_mntput; 1076 } 1077 1078 int follow_down_one(struct path *path) 1079 { 1080 struct vfsmount *mounted; 1081 1082 mounted = lookup_mnt(path); 1083 if (mounted) { 1084 dput(path->dentry); 1085 mntput(path->mnt); 1086 path->mnt = mounted; 1087 path->dentry = dget(mounted->mnt_root); 1088 return 1; 1089 } 1090 return 0; 1091 } 1092 EXPORT_SYMBOL(follow_down_one); 1093 1094 static inline int managed_dentry_rcu(struct dentry *dentry) 1095 { 1096 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1097 dentry->d_op->d_manage(dentry, true) : 0; 1098 } 1099 1100 /* 1101 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1102 * we meet a managed dentry that would need blocking. 1103 */ 1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1105 struct inode **inode) 1106 { 1107 for (;;) { 1108 struct mount *mounted; 1109 /* 1110 * Don't forget we might have a non-mountpoint managed dentry 1111 * that wants to block transit. 1112 */ 1113 switch (managed_dentry_rcu(path->dentry)) { 1114 case -ECHILD: 1115 default: 1116 return false; 1117 case -EISDIR: 1118 return true; 1119 case 0: 1120 break; 1121 } 1122 1123 if (!d_mountpoint(path->dentry)) 1124 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1125 1126 mounted = __lookup_mnt(path->mnt, path->dentry); 1127 if (!mounted) 1128 break; 1129 path->mnt = &mounted->mnt; 1130 path->dentry = mounted->mnt.mnt_root; 1131 nd->flags |= LOOKUP_JUMPED; 1132 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1133 /* 1134 * Update the inode too. We don't need to re-check the 1135 * dentry sequence number here after this d_inode read, 1136 * because a mount-point is always pinned. 1137 */ 1138 *inode = path->dentry->d_inode; 1139 } 1140 return !read_seqretry(&mount_lock, nd->m_seq) && 1141 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1142 } 1143 1144 static int follow_dotdot_rcu(struct nameidata *nd) 1145 { 1146 struct inode *inode = nd->inode; 1147 if (!nd->root.mnt) 1148 set_root_rcu(nd); 1149 1150 while (1) { 1151 if (nd->path.dentry == nd->root.dentry && 1152 nd->path.mnt == nd->root.mnt) { 1153 break; 1154 } 1155 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1156 struct dentry *old = nd->path.dentry; 1157 struct dentry *parent = old->d_parent; 1158 unsigned seq; 1159 1160 inode = parent->d_inode; 1161 seq = read_seqcount_begin(&parent->d_seq); 1162 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1163 goto failed; 1164 nd->path.dentry = parent; 1165 nd->seq = seq; 1166 break; 1167 } 1168 if (!follow_up_rcu(&nd->path)) 1169 break; 1170 inode = nd->path.dentry->d_inode; 1171 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1172 } 1173 while (d_mountpoint(nd->path.dentry)) { 1174 struct mount *mounted; 1175 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1176 if (!mounted) 1177 break; 1178 nd->path.mnt = &mounted->mnt; 1179 nd->path.dentry = mounted->mnt.mnt_root; 1180 inode = nd->path.dentry->d_inode; 1181 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1182 if (read_seqretry(&mount_lock, nd->m_seq)) 1183 goto failed; 1184 } 1185 nd->inode = inode; 1186 return 0; 1187 1188 failed: 1189 nd->flags &= ~LOOKUP_RCU; 1190 if (!(nd->flags & LOOKUP_ROOT)) 1191 nd->root.mnt = NULL; 1192 rcu_read_unlock(); 1193 return -ECHILD; 1194 } 1195 1196 /* 1197 * Follow down to the covering mount currently visible to userspace. At each 1198 * point, the filesystem owning that dentry may be queried as to whether the 1199 * caller is permitted to proceed or not. 1200 */ 1201 int follow_down(struct path *path) 1202 { 1203 unsigned managed; 1204 int ret; 1205 1206 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1207 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1208 /* Allow the filesystem to manage the transit without i_mutex 1209 * being held. 1210 * 1211 * We indicate to the filesystem if someone is trying to mount 1212 * something here. This gives autofs the chance to deny anyone 1213 * other than its daemon the right to mount on its 1214 * superstructure. 1215 * 1216 * The filesystem may sleep at this point. 1217 */ 1218 if (managed & DCACHE_MANAGE_TRANSIT) { 1219 BUG_ON(!path->dentry->d_op); 1220 BUG_ON(!path->dentry->d_op->d_manage); 1221 ret = path->dentry->d_op->d_manage( 1222 path->dentry, false); 1223 if (ret < 0) 1224 return ret == -EISDIR ? 0 : ret; 1225 } 1226 1227 /* Transit to a mounted filesystem. */ 1228 if (managed & DCACHE_MOUNTED) { 1229 struct vfsmount *mounted = lookup_mnt(path); 1230 if (!mounted) 1231 break; 1232 dput(path->dentry); 1233 mntput(path->mnt); 1234 path->mnt = mounted; 1235 path->dentry = dget(mounted->mnt_root); 1236 continue; 1237 } 1238 1239 /* Don't handle automount points here */ 1240 break; 1241 } 1242 return 0; 1243 } 1244 EXPORT_SYMBOL(follow_down); 1245 1246 /* 1247 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1248 */ 1249 static void follow_mount(struct path *path) 1250 { 1251 while (d_mountpoint(path->dentry)) { 1252 struct vfsmount *mounted = lookup_mnt(path); 1253 if (!mounted) 1254 break; 1255 dput(path->dentry); 1256 mntput(path->mnt); 1257 path->mnt = mounted; 1258 path->dentry = dget(mounted->mnt_root); 1259 } 1260 } 1261 1262 static void follow_dotdot(struct nameidata *nd) 1263 { 1264 if (!nd->root.mnt) 1265 set_root(nd); 1266 1267 while(1) { 1268 struct dentry *old = nd->path.dentry; 1269 1270 if (nd->path.dentry == nd->root.dentry && 1271 nd->path.mnt == nd->root.mnt) { 1272 break; 1273 } 1274 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1275 /* rare case of legitimate dget_parent()... */ 1276 nd->path.dentry = dget_parent(nd->path.dentry); 1277 dput(old); 1278 break; 1279 } 1280 if (!follow_up(&nd->path)) 1281 break; 1282 } 1283 follow_mount(&nd->path); 1284 nd->inode = nd->path.dentry->d_inode; 1285 } 1286 1287 /* 1288 * This looks up the name in dcache, possibly revalidates the old dentry and 1289 * allocates a new one if not found or not valid. In the need_lookup argument 1290 * returns whether i_op->lookup is necessary. 1291 * 1292 * dir->d_inode->i_mutex must be held 1293 */ 1294 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1295 unsigned int flags, bool *need_lookup) 1296 { 1297 struct dentry *dentry; 1298 int error; 1299 1300 *need_lookup = false; 1301 dentry = d_lookup(dir, name); 1302 if (dentry) { 1303 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1304 error = d_revalidate(dentry, flags); 1305 if (unlikely(error <= 0)) { 1306 if (error < 0) { 1307 dput(dentry); 1308 return ERR_PTR(error); 1309 } else { 1310 d_invalidate(dentry); 1311 dput(dentry); 1312 dentry = NULL; 1313 } 1314 } 1315 } 1316 } 1317 1318 if (!dentry) { 1319 dentry = d_alloc(dir, name); 1320 if (unlikely(!dentry)) 1321 return ERR_PTR(-ENOMEM); 1322 1323 *need_lookup = true; 1324 } 1325 return dentry; 1326 } 1327 1328 /* 1329 * Call i_op->lookup on the dentry. The dentry must be negative and 1330 * unhashed. 1331 * 1332 * dir->d_inode->i_mutex must be held 1333 */ 1334 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1335 unsigned int flags) 1336 { 1337 struct dentry *old; 1338 1339 /* Don't create child dentry for a dead directory. */ 1340 if (unlikely(IS_DEADDIR(dir))) { 1341 dput(dentry); 1342 return ERR_PTR(-ENOENT); 1343 } 1344 1345 old = dir->i_op->lookup(dir, dentry, flags); 1346 if (unlikely(old)) { 1347 dput(dentry); 1348 dentry = old; 1349 } 1350 return dentry; 1351 } 1352 1353 static struct dentry *__lookup_hash(struct qstr *name, 1354 struct dentry *base, unsigned int flags) 1355 { 1356 bool need_lookup; 1357 struct dentry *dentry; 1358 1359 dentry = lookup_dcache(name, base, flags, &need_lookup); 1360 if (!need_lookup) 1361 return dentry; 1362 1363 return lookup_real(base->d_inode, dentry, flags); 1364 } 1365 1366 /* 1367 * It's more convoluted than I'd like it to be, but... it's still fairly 1368 * small and for now I'd prefer to have fast path as straight as possible. 1369 * It _is_ time-critical. 1370 */ 1371 static int lookup_fast(struct nameidata *nd, 1372 struct path *path, struct inode **inode) 1373 { 1374 struct vfsmount *mnt = nd->path.mnt; 1375 struct dentry *dentry, *parent = nd->path.dentry; 1376 int need_reval = 1; 1377 int status = 1; 1378 int err; 1379 1380 /* 1381 * Rename seqlock is not required here because in the off chance 1382 * of a false negative due to a concurrent rename, we're going to 1383 * do the non-racy lookup, below. 1384 */ 1385 if (nd->flags & LOOKUP_RCU) { 1386 unsigned seq; 1387 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1388 if (!dentry) 1389 goto unlazy; 1390 1391 /* 1392 * This sequence count validates that the inode matches 1393 * the dentry name information from lookup. 1394 */ 1395 *inode = dentry->d_inode; 1396 if (read_seqcount_retry(&dentry->d_seq, seq)) 1397 return -ECHILD; 1398 1399 /* 1400 * This sequence count validates that the parent had no 1401 * changes while we did the lookup of the dentry above. 1402 * 1403 * The memory barrier in read_seqcount_begin of child is 1404 * enough, we can use __read_seqcount_retry here. 1405 */ 1406 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1407 return -ECHILD; 1408 nd->seq = seq; 1409 1410 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1411 status = d_revalidate(dentry, nd->flags); 1412 if (unlikely(status <= 0)) { 1413 if (status != -ECHILD) 1414 need_reval = 0; 1415 goto unlazy; 1416 } 1417 } 1418 path->mnt = mnt; 1419 path->dentry = dentry; 1420 if (likely(__follow_mount_rcu(nd, path, inode))) 1421 return 0; 1422 unlazy: 1423 if (unlazy_walk(nd, dentry)) 1424 return -ECHILD; 1425 } else { 1426 dentry = __d_lookup(parent, &nd->last); 1427 } 1428 1429 if (unlikely(!dentry)) 1430 goto need_lookup; 1431 1432 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1433 status = d_revalidate(dentry, nd->flags); 1434 if (unlikely(status <= 0)) { 1435 if (status < 0) { 1436 dput(dentry); 1437 return status; 1438 } 1439 d_invalidate(dentry); 1440 dput(dentry); 1441 goto need_lookup; 1442 } 1443 1444 path->mnt = mnt; 1445 path->dentry = dentry; 1446 err = follow_managed(path, nd->flags); 1447 if (unlikely(err < 0)) { 1448 path_put_conditional(path, nd); 1449 return err; 1450 } 1451 if (err) 1452 nd->flags |= LOOKUP_JUMPED; 1453 *inode = path->dentry->d_inode; 1454 return 0; 1455 1456 need_lookup: 1457 return 1; 1458 } 1459 1460 /* Fast lookup failed, do it the slow way */ 1461 static int lookup_slow(struct nameidata *nd, struct path *path) 1462 { 1463 struct dentry *dentry, *parent; 1464 int err; 1465 1466 parent = nd->path.dentry; 1467 BUG_ON(nd->inode != parent->d_inode); 1468 1469 mutex_lock(&parent->d_inode->i_mutex); 1470 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1471 mutex_unlock(&parent->d_inode->i_mutex); 1472 if (IS_ERR(dentry)) 1473 return PTR_ERR(dentry); 1474 path->mnt = nd->path.mnt; 1475 path->dentry = dentry; 1476 err = follow_managed(path, nd->flags); 1477 if (unlikely(err < 0)) { 1478 path_put_conditional(path, nd); 1479 return err; 1480 } 1481 if (err) 1482 nd->flags |= LOOKUP_JUMPED; 1483 return 0; 1484 } 1485 1486 static inline int may_lookup(struct nameidata *nd) 1487 { 1488 if (nd->flags & LOOKUP_RCU) { 1489 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1490 if (err != -ECHILD) 1491 return err; 1492 if (unlazy_walk(nd, NULL)) 1493 return -ECHILD; 1494 } 1495 return inode_permission(nd->inode, MAY_EXEC); 1496 } 1497 1498 static inline int handle_dots(struct nameidata *nd, int type) 1499 { 1500 if (type == LAST_DOTDOT) { 1501 if (nd->flags & LOOKUP_RCU) { 1502 if (follow_dotdot_rcu(nd)) 1503 return -ECHILD; 1504 } else 1505 follow_dotdot(nd); 1506 } 1507 return 0; 1508 } 1509 1510 static void terminate_walk(struct nameidata *nd) 1511 { 1512 if (!(nd->flags & LOOKUP_RCU)) { 1513 path_put(&nd->path); 1514 } else { 1515 nd->flags &= ~LOOKUP_RCU; 1516 if (!(nd->flags & LOOKUP_ROOT)) 1517 nd->root.mnt = NULL; 1518 rcu_read_unlock(); 1519 } 1520 } 1521 1522 /* 1523 * Do we need to follow links? We _really_ want to be able 1524 * to do this check without having to look at inode->i_op, 1525 * so we keep a cache of "no, this doesn't need follow_link" 1526 * for the common case. 1527 */ 1528 static inline int should_follow_link(struct dentry *dentry, int follow) 1529 { 1530 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1531 } 1532 1533 static inline int walk_component(struct nameidata *nd, struct path *path, 1534 int follow) 1535 { 1536 struct inode *inode; 1537 int err; 1538 /* 1539 * "." and ".." are special - ".." especially so because it has 1540 * to be able to know about the current root directory and 1541 * parent relationships. 1542 */ 1543 if (unlikely(nd->last_type != LAST_NORM)) 1544 return handle_dots(nd, nd->last_type); 1545 err = lookup_fast(nd, path, &inode); 1546 if (unlikely(err)) { 1547 if (err < 0) 1548 goto out_err; 1549 1550 err = lookup_slow(nd, path); 1551 if (err < 0) 1552 goto out_err; 1553 1554 inode = path->dentry->d_inode; 1555 } 1556 err = -ENOENT; 1557 if (!inode || d_is_negative(path->dentry)) 1558 goto out_path_put; 1559 1560 if (should_follow_link(path->dentry, follow)) { 1561 if (nd->flags & LOOKUP_RCU) { 1562 if (unlikely(unlazy_walk(nd, path->dentry))) { 1563 err = -ECHILD; 1564 goto out_err; 1565 } 1566 } 1567 BUG_ON(inode != path->dentry->d_inode); 1568 return 1; 1569 } 1570 path_to_nameidata(path, nd); 1571 nd->inode = inode; 1572 return 0; 1573 1574 out_path_put: 1575 path_to_nameidata(path, nd); 1576 out_err: 1577 terminate_walk(nd); 1578 return err; 1579 } 1580 1581 /* 1582 * This limits recursive symlink follows to 8, while 1583 * limiting consecutive symlinks to 40. 1584 * 1585 * Without that kind of total limit, nasty chains of consecutive 1586 * symlinks can cause almost arbitrarily long lookups. 1587 */ 1588 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1589 { 1590 int res; 1591 1592 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1593 path_put_conditional(path, nd); 1594 path_put(&nd->path); 1595 return -ELOOP; 1596 } 1597 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1598 1599 nd->depth++; 1600 current->link_count++; 1601 1602 do { 1603 struct path link = *path; 1604 void *cookie; 1605 1606 res = follow_link(&link, nd, &cookie); 1607 if (res) 1608 break; 1609 res = walk_component(nd, path, LOOKUP_FOLLOW); 1610 put_link(nd, &link, cookie); 1611 } while (res > 0); 1612 1613 current->link_count--; 1614 nd->depth--; 1615 return res; 1616 } 1617 1618 /* 1619 * We can do the critical dentry name comparison and hashing 1620 * operations one word at a time, but we are limited to: 1621 * 1622 * - Architectures with fast unaligned word accesses. We could 1623 * do a "get_unaligned()" if this helps and is sufficiently 1624 * fast. 1625 * 1626 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1627 * do not trap on the (extremely unlikely) case of a page 1628 * crossing operation. 1629 * 1630 * - Furthermore, we need an efficient 64-bit compile for the 1631 * 64-bit case in order to generate the "number of bytes in 1632 * the final mask". Again, that could be replaced with a 1633 * efficient population count instruction or similar. 1634 */ 1635 #ifdef CONFIG_DCACHE_WORD_ACCESS 1636 1637 #include <asm/word-at-a-time.h> 1638 1639 #ifdef CONFIG_64BIT 1640 1641 static inline unsigned int fold_hash(unsigned long hash) 1642 { 1643 return hash_64(hash, 32); 1644 } 1645 1646 #else /* 32-bit case */ 1647 1648 #define fold_hash(x) (x) 1649 1650 #endif 1651 1652 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1653 { 1654 unsigned long a, mask; 1655 unsigned long hash = 0; 1656 1657 for (;;) { 1658 a = load_unaligned_zeropad(name); 1659 if (len < sizeof(unsigned long)) 1660 break; 1661 hash += a; 1662 hash *= 9; 1663 name += sizeof(unsigned long); 1664 len -= sizeof(unsigned long); 1665 if (!len) 1666 goto done; 1667 } 1668 mask = bytemask_from_count(len); 1669 hash += mask & a; 1670 done: 1671 return fold_hash(hash); 1672 } 1673 EXPORT_SYMBOL(full_name_hash); 1674 1675 /* 1676 * Calculate the length and hash of the path component, and 1677 * return the "hash_len" as the result. 1678 */ 1679 static inline u64 hash_name(const char *name) 1680 { 1681 unsigned long a, b, adata, bdata, mask, hash, len; 1682 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1683 1684 hash = a = 0; 1685 len = -sizeof(unsigned long); 1686 do { 1687 hash = (hash + a) * 9; 1688 len += sizeof(unsigned long); 1689 a = load_unaligned_zeropad(name+len); 1690 b = a ^ REPEAT_BYTE('/'); 1691 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1692 1693 adata = prep_zero_mask(a, adata, &constants); 1694 bdata = prep_zero_mask(b, bdata, &constants); 1695 1696 mask = create_zero_mask(adata | bdata); 1697 1698 hash += a & zero_bytemask(mask); 1699 len += find_zero(mask); 1700 return hashlen_create(fold_hash(hash), len); 1701 } 1702 1703 #else 1704 1705 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1706 { 1707 unsigned long hash = init_name_hash(); 1708 while (len--) 1709 hash = partial_name_hash(*name++, hash); 1710 return end_name_hash(hash); 1711 } 1712 EXPORT_SYMBOL(full_name_hash); 1713 1714 /* 1715 * We know there's a real path component here of at least 1716 * one character. 1717 */ 1718 static inline u64 hash_name(const char *name) 1719 { 1720 unsigned long hash = init_name_hash(); 1721 unsigned long len = 0, c; 1722 1723 c = (unsigned char)*name; 1724 do { 1725 len++; 1726 hash = partial_name_hash(c, hash); 1727 c = (unsigned char)name[len]; 1728 } while (c && c != '/'); 1729 return hashlen_create(end_name_hash(hash), len); 1730 } 1731 1732 #endif 1733 1734 /* 1735 * Name resolution. 1736 * This is the basic name resolution function, turning a pathname into 1737 * the final dentry. We expect 'base' to be positive and a directory. 1738 * 1739 * Returns 0 and nd will have valid dentry and mnt on success. 1740 * Returns error and drops reference to input namei data on failure. 1741 */ 1742 static int link_path_walk(const char *name, struct nameidata *nd) 1743 { 1744 struct path next; 1745 int err; 1746 1747 while (*name=='/') 1748 name++; 1749 if (!*name) 1750 return 0; 1751 1752 /* At this point we know we have a real path component. */ 1753 for(;;) { 1754 u64 hash_len; 1755 int type; 1756 1757 err = may_lookup(nd); 1758 if (err) 1759 break; 1760 1761 hash_len = hash_name(name); 1762 1763 type = LAST_NORM; 1764 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1765 case 2: 1766 if (name[1] == '.') { 1767 type = LAST_DOTDOT; 1768 nd->flags |= LOOKUP_JUMPED; 1769 } 1770 break; 1771 case 1: 1772 type = LAST_DOT; 1773 } 1774 if (likely(type == LAST_NORM)) { 1775 struct dentry *parent = nd->path.dentry; 1776 nd->flags &= ~LOOKUP_JUMPED; 1777 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1778 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1779 err = parent->d_op->d_hash(parent, &this); 1780 if (err < 0) 1781 break; 1782 hash_len = this.hash_len; 1783 name = this.name; 1784 } 1785 } 1786 1787 nd->last.hash_len = hash_len; 1788 nd->last.name = name; 1789 nd->last_type = type; 1790 1791 name += hashlen_len(hash_len); 1792 if (!*name) 1793 return 0; 1794 /* 1795 * If it wasn't NUL, we know it was '/'. Skip that 1796 * slash, and continue until no more slashes. 1797 */ 1798 do { 1799 name++; 1800 } while (unlikely(*name == '/')); 1801 if (!*name) 1802 return 0; 1803 1804 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1805 if (err < 0) 1806 return err; 1807 1808 if (err) { 1809 err = nested_symlink(&next, nd); 1810 if (err) 1811 return err; 1812 } 1813 if (!d_can_lookup(nd->path.dentry)) { 1814 err = -ENOTDIR; 1815 break; 1816 } 1817 } 1818 terminate_walk(nd); 1819 return err; 1820 } 1821 1822 static int path_init(int dfd, const char *name, unsigned int flags, 1823 struct nameidata *nd, struct file **fp) 1824 { 1825 int retval = 0; 1826 1827 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1828 nd->flags = flags | LOOKUP_JUMPED; 1829 nd->depth = 0; 1830 if (flags & LOOKUP_ROOT) { 1831 struct dentry *root = nd->root.dentry; 1832 struct inode *inode = root->d_inode; 1833 if (*name) { 1834 if (!d_can_lookup(root)) 1835 return -ENOTDIR; 1836 retval = inode_permission(inode, MAY_EXEC); 1837 if (retval) 1838 return retval; 1839 } 1840 nd->path = nd->root; 1841 nd->inode = inode; 1842 if (flags & LOOKUP_RCU) { 1843 rcu_read_lock(); 1844 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1845 nd->m_seq = read_seqbegin(&mount_lock); 1846 } else { 1847 path_get(&nd->path); 1848 } 1849 return 0; 1850 } 1851 1852 nd->root.mnt = NULL; 1853 1854 nd->m_seq = read_seqbegin(&mount_lock); 1855 if (*name=='/') { 1856 if (flags & LOOKUP_RCU) { 1857 rcu_read_lock(); 1858 nd->seq = set_root_rcu(nd); 1859 } else { 1860 set_root(nd); 1861 path_get(&nd->root); 1862 } 1863 nd->path = nd->root; 1864 } else if (dfd == AT_FDCWD) { 1865 if (flags & LOOKUP_RCU) { 1866 struct fs_struct *fs = current->fs; 1867 unsigned seq; 1868 1869 rcu_read_lock(); 1870 1871 do { 1872 seq = read_seqcount_begin(&fs->seq); 1873 nd->path = fs->pwd; 1874 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1875 } while (read_seqcount_retry(&fs->seq, seq)); 1876 } else { 1877 get_fs_pwd(current->fs, &nd->path); 1878 } 1879 } else { 1880 /* Caller must check execute permissions on the starting path component */ 1881 struct fd f = fdget_raw(dfd); 1882 struct dentry *dentry; 1883 1884 if (!f.file) 1885 return -EBADF; 1886 1887 dentry = f.file->f_path.dentry; 1888 1889 if (*name) { 1890 if (!d_can_lookup(dentry)) { 1891 fdput(f); 1892 return -ENOTDIR; 1893 } 1894 } 1895 1896 nd->path = f.file->f_path; 1897 if (flags & LOOKUP_RCU) { 1898 if (f.flags & FDPUT_FPUT) 1899 *fp = f.file; 1900 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1901 rcu_read_lock(); 1902 } else { 1903 path_get(&nd->path); 1904 fdput(f); 1905 } 1906 } 1907 1908 nd->inode = nd->path.dentry->d_inode; 1909 if (!(flags & LOOKUP_RCU)) 1910 return 0; 1911 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 1912 return 0; 1913 if (!(nd->flags & LOOKUP_ROOT)) 1914 nd->root.mnt = NULL; 1915 rcu_read_unlock(); 1916 return -ECHILD; 1917 } 1918 1919 static inline int lookup_last(struct nameidata *nd, struct path *path) 1920 { 1921 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1922 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1923 1924 nd->flags &= ~LOOKUP_PARENT; 1925 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1926 } 1927 1928 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1929 static int path_lookupat(int dfd, const char *name, 1930 unsigned int flags, struct nameidata *nd) 1931 { 1932 struct file *base = NULL; 1933 struct path path; 1934 int err; 1935 1936 /* 1937 * Path walking is largely split up into 2 different synchronisation 1938 * schemes, rcu-walk and ref-walk (explained in 1939 * Documentation/filesystems/path-lookup.txt). These share much of the 1940 * path walk code, but some things particularly setup, cleanup, and 1941 * following mounts are sufficiently divergent that functions are 1942 * duplicated. Typically there is a function foo(), and its RCU 1943 * analogue, foo_rcu(). 1944 * 1945 * -ECHILD is the error number of choice (just to avoid clashes) that 1946 * is returned if some aspect of an rcu-walk fails. Such an error must 1947 * be handled by restarting a traditional ref-walk (which will always 1948 * be able to complete). 1949 */ 1950 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1951 1952 if (unlikely(err)) 1953 goto out; 1954 1955 current->total_link_count = 0; 1956 err = link_path_walk(name, nd); 1957 1958 if (!err && !(flags & LOOKUP_PARENT)) { 1959 err = lookup_last(nd, &path); 1960 while (err > 0) { 1961 void *cookie; 1962 struct path link = path; 1963 err = may_follow_link(&link, nd); 1964 if (unlikely(err)) 1965 break; 1966 nd->flags |= LOOKUP_PARENT; 1967 err = follow_link(&link, nd, &cookie); 1968 if (err) 1969 break; 1970 err = lookup_last(nd, &path); 1971 put_link(nd, &link, cookie); 1972 } 1973 } 1974 1975 if (!err) 1976 err = complete_walk(nd); 1977 1978 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1979 if (!d_can_lookup(nd->path.dentry)) { 1980 path_put(&nd->path); 1981 err = -ENOTDIR; 1982 } 1983 } 1984 1985 out: 1986 if (base) 1987 fput(base); 1988 1989 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1990 path_put(&nd->root); 1991 nd->root.mnt = NULL; 1992 } 1993 return err; 1994 } 1995 1996 static int filename_lookup(int dfd, struct filename *name, 1997 unsigned int flags, struct nameidata *nd) 1998 { 1999 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 2000 if (unlikely(retval == -ECHILD)) 2001 retval = path_lookupat(dfd, name->name, flags, nd); 2002 if (unlikely(retval == -ESTALE)) 2003 retval = path_lookupat(dfd, name->name, 2004 flags | LOOKUP_REVAL, nd); 2005 2006 if (likely(!retval)) 2007 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2008 return retval; 2009 } 2010 2011 static int do_path_lookup(int dfd, const char *name, 2012 unsigned int flags, struct nameidata *nd) 2013 { 2014 struct filename filename = { .name = name }; 2015 2016 return filename_lookup(dfd, &filename, flags, nd); 2017 } 2018 2019 /* does lookup, returns the object with parent locked */ 2020 struct dentry *kern_path_locked(const char *name, struct path *path) 2021 { 2022 struct nameidata nd; 2023 struct dentry *d; 2024 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 2025 if (err) 2026 return ERR_PTR(err); 2027 if (nd.last_type != LAST_NORM) { 2028 path_put(&nd.path); 2029 return ERR_PTR(-EINVAL); 2030 } 2031 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2032 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2033 if (IS_ERR(d)) { 2034 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2035 path_put(&nd.path); 2036 return d; 2037 } 2038 *path = nd.path; 2039 return d; 2040 } 2041 2042 int kern_path(const char *name, unsigned int flags, struct path *path) 2043 { 2044 struct nameidata nd; 2045 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2046 if (!res) 2047 *path = nd.path; 2048 return res; 2049 } 2050 EXPORT_SYMBOL(kern_path); 2051 2052 /** 2053 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2054 * @dentry: pointer to dentry of the base directory 2055 * @mnt: pointer to vfs mount of the base directory 2056 * @name: pointer to file name 2057 * @flags: lookup flags 2058 * @path: pointer to struct path to fill 2059 */ 2060 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2061 const char *name, unsigned int flags, 2062 struct path *path) 2063 { 2064 struct nameidata nd; 2065 int err; 2066 nd.root.dentry = dentry; 2067 nd.root.mnt = mnt; 2068 BUG_ON(flags & LOOKUP_PARENT); 2069 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2070 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2071 if (!err) 2072 *path = nd.path; 2073 return err; 2074 } 2075 EXPORT_SYMBOL(vfs_path_lookup); 2076 2077 /* 2078 * Restricted form of lookup. Doesn't follow links, single-component only, 2079 * needs parent already locked. Doesn't follow mounts. 2080 * SMP-safe. 2081 */ 2082 static struct dentry *lookup_hash(struct nameidata *nd) 2083 { 2084 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2085 } 2086 2087 /** 2088 * lookup_one_len - filesystem helper to lookup single pathname component 2089 * @name: pathname component to lookup 2090 * @base: base directory to lookup from 2091 * @len: maximum length @len should be interpreted to 2092 * 2093 * Note that this routine is purely a helper for filesystem usage and should 2094 * not be called by generic code. Also note that by using this function the 2095 * nameidata argument is passed to the filesystem methods and a filesystem 2096 * using this helper needs to be prepared for that. 2097 */ 2098 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2099 { 2100 struct qstr this; 2101 unsigned int c; 2102 int err; 2103 2104 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2105 2106 this.name = name; 2107 this.len = len; 2108 this.hash = full_name_hash(name, len); 2109 if (!len) 2110 return ERR_PTR(-EACCES); 2111 2112 if (unlikely(name[0] == '.')) { 2113 if (len < 2 || (len == 2 && name[1] == '.')) 2114 return ERR_PTR(-EACCES); 2115 } 2116 2117 while (len--) { 2118 c = *(const unsigned char *)name++; 2119 if (c == '/' || c == '\0') 2120 return ERR_PTR(-EACCES); 2121 } 2122 /* 2123 * See if the low-level filesystem might want 2124 * to use its own hash.. 2125 */ 2126 if (base->d_flags & DCACHE_OP_HASH) { 2127 int err = base->d_op->d_hash(base, &this); 2128 if (err < 0) 2129 return ERR_PTR(err); 2130 } 2131 2132 err = inode_permission(base->d_inode, MAY_EXEC); 2133 if (err) 2134 return ERR_PTR(err); 2135 2136 return __lookup_hash(&this, base, 0); 2137 } 2138 EXPORT_SYMBOL(lookup_one_len); 2139 2140 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2141 struct path *path, int *empty) 2142 { 2143 struct nameidata nd; 2144 struct filename *tmp = getname_flags(name, flags, empty); 2145 int err = PTR_ERR(tmp); 2146 if (!IS_ERR(tmp)) { 2147 2148 BUG_ON(flags & LOOKUP_PARENT); 2149 2150 err = filename_lookup(dfd, tmp, flags, &nd); 2151 putname(tmp); 2152 if (!err) 2153 *path = nd.path; 2154 } 2155 return err; 2156 } 2157 2158 int user_path_at(int dfd, const char __user *name, unsigned flags, 2159 struct path *path) 2160 { 2161 return user_path_at_empty(dfd, name, flags, path, NULL); 2162 } 2163 EXPORT_SYMBOL(user_path_at); 2164 2165 /* 2166 * NB: most callers don't do anything directly with the reference to the 2167 * to struct filename, but the nd->last pointer points into the name string 2168 * allocated by getname. So we must hold the reference to it until all 2169 * path-walking is complete. 2170 */ 2171 static struct filename * 2172 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2173 unsigned int flags) 2174 { 2175 struct filename *s = getname(path); 2176 int error; 2177 2178 /* only LOOKUP_REVAL is allowed in extra flags */ 2179 flags &= LOOKUP_REVAL; 2180 2181 if (IS_ERR(s)) 2182 return s; 2183 2184 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2185 if (error) { 2186 putname(s); 2187 return ERR_PTR(error); 2188 } 2189 2190 return s; 2191 } 2192 2193 /** 2194 * mountpoint_last - look up last component for umount 2195 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2196 * @path: pointer to container for result 2197 * 2198 * This is a special lookup_last function just for umount. In this case, we 2199 * need to resolve the path without doing any revalidation. 2200 * 2201 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2202 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2203 * in almost all cases, this lookup will be served out of the dcache. The only 2204 * cases where it won't are if nd->last refers to a symlink or the path is 2205 * bogus and it doesn't exist. 2206 * 2207 * Returns: 2208 * -error: if there was an error during lookup. This includes -ENOENT if the 2209 * lookup found a negative dentry. The nd->path reference will also be 2210 * put in this case. 2211 * 2212 * 0: if we successfully resolved nd->path and found it to not to be a 2213 * symlink that needs to be followed. "path" will also be populated. 2214 * The nd->path reference will also be put. 2215 * 2216 * 1: if we successfully resolved nd->last and found it to be a symlink 2217 * that needs to be followed. "path" will be populated with the path 2218 * to the link, and nd->path will *not* be put. 2219 */ 2220 static int 2221 mountpoint_last(struct nameidata *nd, struct path *path) 2222 { 2223 int error = 0; 2224 struct dentry *dentry; 2225 struct dentry *dir = nd->path.dentry; 2226 2227 /* If we're in rcuwalk, drop out of it to handle last component */ 2228 if (nd->flags & LOOKUP_RCU) { 2229 if (unlazy_walk(nd, NULL)) { 2230 error = -ECHILD; 2231 goto out; 2232 } 2233 } 2234 2235 nd->flags &= ~LOOKUP_PARENT; 2236 2237 if (unlikely(nd->last_type != LAST_NORM)) { 2238 error = handle_dots(nd, nd->last_type); 2239 if (error) 2240 goto out; 2241 dentry = dget(nd->path.dentry); 2242 goto done; 2243 } 2244 2245 mutex_lock(&dir->d_inode->i_mutex); 2246 dentry = d_lookup(dir, &nd->last); 2247 if (!dentry) { 2248 /* 2249 * No cached dentry. Mounted dentries are pinned in the cache, 2250 * so that means that this dentry is probably a symlink or the 2251 * path doesn't actually point to a mounted dentry. 2252 */ 2253 dentry = d_alloc(dir, &nd->last); 2254 if (!dentry) { 2255 error = -ENOMEM; 2256 mutex_unlock(&dir->d_inode->i_mutex); 2257 goto out; 2258 } 2259 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2260 error = PTR_ERR(dentry); 2261 if (IS_ERR(dentry)) { 2262 mutex_unlock(&dir->d_inode->i_mutex); 2263 goto out; 2264 } 2265 } 2266 mutex_unlock(&dir->d_inode->i_mutex); 2267 2268 done: 2269 if (!dentry->d_inode || d_is_negative(dentry)) { 2270 error = -ENOENT; 2271 dput(dentry); 2272 goto out; 2273 } 2274 path->dentry = dentry; 2275 path->mnt = nd->path.mnt; 2276 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2277 return 1; 2278 mntget(path->mnt); 2279 follow_mount(path); 2280 error = 0; 2281 out: 2282 terminate_walk(nd); 2283 return error; 2284 } 2285 2286 /** 2287 * path_mountpoint - look up a path to be umounted 2288 * @dfd: directory file descriptor to start walk from 2289 * @name: full pathname to walk 2290 * @path: pointer to container for result 2291 * @flags: lookup flags 2292 * 2293 * Look up the given name, but don't attempt to revalidate the last component. 2294 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2295 */ 2296 static int 2297 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2298 { 2299 struct file *base = NULL; 2300 struct nameidata nd; 2301 int err; 2302 2303 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base); 2304 if (unlikely(err)) 2305 goto out; 2306 2307 current->total_link_count = 0; 2308 err = link_path_walk(name, &nd); 2309 if (err) 2310 goto out; 2311 2312 err = mountpoint_last(&nd, path); 2313 while (err > 0) { 2314 void *cookie; 2315 struct path link = *path; 2316 err = may_follow_link(&link, &nd); 2317 if (unlikely(err)) 2318 break; 2319 nd.flags |= LOOKUP_PARENT; 2320 err = follow_link(&link, &nd, &cookie); 2321 if (err) 2322 break; 2323 err = mountpoint_last(&nd, path); 2324 put_link(&nd, &link, cookie); 2325 } 2326 out: 2327 if (base) 2328 fput(base); 2329 2330 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT)) 2331 path_put(&nd.root); 2332 2333 return err; 2334 } 2335 2336 static int 2337 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2338 unsigned int flags) 2339 { 2340 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2341 if (unlikely(error == -ECHILD)) 2342 error = path_mountpoint(dfd, s->name, path, flags); 2343 if (unlikely(error == -ESTALE)) 2344 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2345 if (likely(!error)) 2346 audit_inode(s, path->dentry, 0); 2347 return error; 2348 } 2349 2350 /** 2351 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2352 * @dfd: directory file descriptor 2353 * @name: pathname from userland 2354 * @flags: lookup flags 2355 * @path: pointer to container to hold result 2356 * 2357 * A umount is a special case for path walking. We're not actually interested 2358 * in the inode in this situation, and ESTALE errors can be a problem. We 2359 * simply want track down the dentry and vfsmount attached at the mountpoint 2360 * and avoid revalidating the last component. 2361 * 2362 * Returns 0 and populates "path" on success. 2363 */ 2364 int 2365 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2366 struct path *path) 2367 { 2368 struct filename *s = getname(name); 2369 int error; 2370 if (IS_ERR(s)) 2371 return PTR_ERR(s); 2372 error = filename_mountpoint(dfd, s, path, flags); 2373 putname(s); 2374 return error; 2375 } 2376 2377 int 2378 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2379 unsigned int flags) 2380 { 2381 struct filename s = {.name = name}; 2382 return filename_mountpoint(dfd, &s, path, flags); 2383 } 2384 EXPORT_SYMBOL(kern_path_mountpoint); 2385 2386 /* 2387 * It's inline, so penalty for filesystems that don't use sticky bit is 2388 * minimal. 2389 */ 2390 static inline int check_sticky(struct inode *dir, struct inode *inode) 2391 { 2392 kuid_t fsuid = current_fsuid(); 2393 2394 if (!(dir->i_mode & S_ISVTX)) 2395 return 0; 2396 if (uid_eq(inode->i_uid, fsuid)) 2397 return 0; 2398 if (uid_eq(dir->i_uid, fsuid)) 2399 return 0; 2400 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2401 } 2402 2403 /* 2404 * Check whether we can remove a link victim from directory dir, check 2405 * whether the type of victim is right. 2406 * 1. We can't do it if dir is read-only (done in permission()) 2407 * 2. We should have write and exec permissions on dir 2408 * 3. We can't remove anything from append-only dir 2409 * 4. We can't do anything with immutable dir (done in permission()) 2410 * 5. If the sticky bit on dir is set we should either 2411 * a. be owner of dir, or 2412 * b. be owner of victim, or 2413 * c. have CAP_FOWNER capability 2414 * 6. If the victim is append-only or immutable we can't do antyhing with 2415 * links pointing to it. 2416 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2417 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2418 * 9. We can't remove a root or mountpoint. 2419 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2420 * nfs_async_unlink(). 2421 */ 2422 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2423 { 2424 struct inode *inode = victim->d_inode; 2425 int error; 2426 2427 if (d_is_negative(victim)) 2428 return -ENOENT; 2429 BUG_ON(!inode); 2430 2431 BUG_ON(victim->d_parent->d_inode != dir); 2432 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2433 2434 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2435 if (error) 2436 return error; 2437 if (IS_APPEND(dir)) 2438 return -EPERM; 2439 2440 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2441 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2442 return -EPERM; 2443 if (isdir) { 2444 if (!d_is_dir(victim)) 2445 return -ENOTDIR; 2446 if (IS_ROOT(victim)) 2447 return -EBUSY; 2448 } else if (d_is_dir(victim)) 2449 return -EISDIR; 2450 if (IS_DEADDIR(dir)) 2451 return -ENOENT; 2452 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2453 return -EBUSY; 2454 return 0; 2455 } 2456 2457 /* Check whether we can create an object with dentry child in directory 2458 * dir. 2459 * 1. We can't do it if child already exists (open has special treatment for 2460 * this case, but since we are inlined it's OK) 2461 * 2. We can't do it if dir is read-only (done in permission()) 2462 * 3. We should have write and exec permissions on dir 2463 * 4. We can't do it if dir is immutable (done in permission()) 2464 */ 2465 static inline int may_create(struct inode *dir, struct dentry *child) 2466 { 2467 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2468 if (child->d_inode) 2469 return -EEXIST; 2470 if (IS_DEADDIR(dir)) 2471 return -ENOENT; 2472 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2473 } 2474 2475 /* 2476 * p1 and p2 should be directories on the same fs. 2477 */ 2478 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2479 { 2480 struct dentry *p; 2481 2482 if (p1 == p2) { 2483 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2484 return NULL; 2485 } 2486 2487 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2488 2489 p = d_ancestor(p2, p1); 2490 if (p) { 2491 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2492 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2493 return p; 2494 } 2495 2496 p = d_ancestor(p1, p2); 2497 if (p) { 2498 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2499 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2500 return p; 2501 } 2502 2503 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2504 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2505 return NULL; 2506 } 2507 EXPORT_SYMBOL(lock_rename); 2508 2509 void unlock_rename(struct dentry *p1, struct dentry *p2) 2510 { 2511 mutex_unlock(&p1->d_inode->i_mutex); 2512 if (p1 != p2) { 2513 mutex_unlock(&p2->d_inode->i_mutex); 2514 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2515 } 2516 } 2517 EXPORT_SYMBOL(unlock_rename); 2518 2519 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2520 bool want_excl) 2521 { 2522 int error = may_create(dir, dentry); 2523 if (error) 2524 return error; 2525 2526 if (!dir->i_op->create) 2527 return -EACCES; /* shouldn't it be ENOSYS? */ 2528 mode &= S_IALLUGO; 2529 mode |= S_IFREG; 2530 error = security_inode_create(dir, dentry, mode); 2531 if (error) 2532 return error; 2533 error = dir->i_op->create(dir, dentry, mode, want_excl); 2534 if (!error) 2535 fsnotify_create(dir, dentry); 2536 return error; 2537 } 2538 EXPORT_SYMBOL(vfs_create); 2539 2540 static int may_open(struct path *path, int acc_mode, int flag) 2541 { 2542 struct dentry *dentry = path->dentry; 2543 struct inode *inode = dentry->d_inode; 2544 int error; 2545 2546 /* O_PATH? */ 2547 if (!acc_mode) 2548 return 0; 2549 2550 if (!inode) 2551 return -ENOENT; 2552 2553 switch (inode->i_mode & S_IFMT) { 2554 case S_IFLNK: 2555 return -ELOOP; 2556 case S_IFDIR: 2557 if (acc_mode & MAY_WRITE) 2558 return -EISDIR; 2559 break; 2560 case S_IFBLK: 2561 case S_IFCHR: 2562 if (path->mnt->mnt_flags & MNT_NODEV) 2563 return -EACCES; 2564 /*FALLTHRU*/ 2565 case S_IFIFO: 2566 case S_IFSOCK: 2567 flag &= ~O_TRUNC; 2568 break; 2569 } 2570 2571 error = inode_permission(inode, acc_mode); 2572 if (error) 2573 return error; 2574 2575 /* 2576 * An append-only file must be opened in append mode for writing. 2577 */ 2578 if (IS_APPEND(inode)) { 2579 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2580 return -EPERM; 2581 if (flag & O_TRUNC) 2582 return -EPERM; 2583 } 2584 2585 /* O_NOATIME can only be set by the owner or superuser */ 2586 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2587 return -EPERM; 2588 2589 return 0; 2590 } 2591 2592 static int handle_truncate(struct file *filp) 2593 { 2594 struct path *path = &filp->f_path; 2595 struct inode *inode = path->dentry->d_inode; 2596 int error = get_write_access(inode); 2597 if (error) 2598 return error; 2599 /* 2600 * Refuse to truncate files with mandatory locks held on them. 2601 */ 2602 error = locks_verify_locked(filp); 2603 if (!error) 2604 error = security_path_truncate(path); 2605 if (!error) { 2606 error = do_truncate(path->dentry, 0, 2607 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2608 filp); 2609 } 2610 put_write_access(inode); 2611 return error; 2612 } 2613 2614 static inline int open_to_namei_flags(int flag) 2615 { 2616 if ((flag & O_ACCMODE) == 3) 2617 flag--; 2618 return flag; 2619 } 2620 2621 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2622 { 2623 int error = security_path_mknod(dir, dentry, mode, 0); 2624 if (error) 2625 return error; 2626 2627 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2628 if (error) 2629 return error; 2630 2631 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2632 } 2633 2634 /* 2635 * Attempt to atomically look up, create and open a file from a negative 2636 * dentry. 2637 * 2638 * Returns 0 if successful. The file will have been created and attached to 2639 * @file by the filesystem calling finish_open(). 2640 * 2641 * Returns 1 if the file was looked up only or didn't need creating. The 2642 * caller will need to perform the open themselves. @path will have been 2643 * updated to point to the new dentry. This may be negative. 2644 * 2645 * Returns an error code otherwise. 2646 */ 2647 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2648 struct path *path, struct file *file, 2649 const struct open_flags *op, 2650 bool got_write, bool need_lookup, 2651 int *opened) 2652 { 2653 struct inode *dir = nd->path.dentry->d_inode; 2654 unsigned open_flag = open_to_namei_flags(op->open_flag); 2655 umode_t mode; 2656 int error; 2657 int acc_mode; 2658 int create_error = 0; 2659 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2660 bool excl; 2661 2662 BUG_ON(dentry->d_inode); 2663 2664 /* Don't create child dentry for a dead directory. */ 2665 if (unlikely(IS_DEADDIR(dir))) { 2666 error = -ENOENT; 2667 goto out; 2668 } 2669 2670 mode = op->mode; 2671 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2672 mode &= ~current_umask(); 2673 2674 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2675 if (excl) 2676 open_flag &= ~O_TRUNC; 2677 2678 /* 2679 * Checking write permission is tricky, bacuse we don't know if we are 2680 * going to actually need it: O_CREAT opens should work as long as the 2681 * file exists. But checking existence breaks atomicity. The trick is 2682 * to check access and if not granted clear O_CREAT from the flags. 2683 * 2684 * Another problem is returing the "right" error value (e.g. for an 2685 * O_EXCL open we want to return EEXIST not EROFS). 2686 */ 2687 if (((open_flag & (O_CREAT | O_TRUNC)) || 2688 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2689 if (!(open_flag & O_CREAT)) { 2690 /* 2691 * No O_CREATE -> atomicity not a requirement -> fall 2692 * back to lookup + open 2693 */ 2694 goto no_open; 2695 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2696 /* Fall back and fail with the right error */ 2697 create_error = -EROFS; 2698 goto no_open; 2699 } else { 2700 /* No side effects, safe to clear O_CREAT */ 2701 create_error = -EROFS; 2702 open_flag &= ~O_CREAT; 2703 } 2704 } 2705 2706 if (open_flag & O_CREAT) { 2707 error = may_o_create(&nd->path, dentry, mode); 2708 if (error) { 2709 create_error = error; 2710 if (open_flag & O_EXCL) 2711 goto no_open; 2712 open_flag &= ~O_CREAT; 2713 } 2714 } 2715 2716 if (nd->flags & LOOKUP_DIRECTORY) 2717 open_flag |= O_DIRECTORY; 2718 2719 file->f_path.dentry = DENTRY_NOT_SET; 2720 file->f_path.mnt = nd->path.mnt; 2721 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2722 opened); 2723 if (error < 0) { 2724 if (create_error && error == -ENOENT) 2725 error = create_error; 2726 goto out; 2727 } 2728 2729 if (error) { /* returned 1, that is */ 2730 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2731 error = -EIO; 2732 goto out; 2733 } 2734 if (file->f_path.dentry) { 2735 dput(dentry); 2736 dentry = file->f_path.dentry; 2737 } 2738 if (*opened & FILE_CREATED) 2739 fsnotify_create(dir, dentry); 2740 if (!dentry->d_inode) { 2741 WARN_ON(*opened & FILE_CREATED); 2742 if (create_error) { 2743 error = create_error; 2744 goto out; 2745 } 2746 } else { 2747 if (excl && !(*opened & FILE_CREATED)) { 2748 error = -EEXIST; 2749 goto out; 2750 } 2751 } 2752 goto looked_up; 2753 } 2754 2755 /* 2756 * We didn't have the inode before the open, so check open permission 2757 * here. 2758 */ 2759 acc_mode = op->acc_mode; 2760 if (*opened & FILE_CREATED) { 2761 WARN_ON(!(open_flag & O_CREAT)); 2762 fsnotify_create(dir, dentry); 2763 acc_mode = MAY_OPEN; 2764 } 2765 error = may_open(&file->f_path, acc_mode, open_flag); 2766 if (error) 2767 fput(file); 2768 2769 out: 2770 dput(dentry); 2771 return error; 2772 2773 no_open: 2774 if (need_lookup) { 2775 dentry = lookup_real(dir, dentry, nd->flags); 2776 if (IS_ERR(dentry)) 2777 return PTR_ERR(dentry); 2778 2779 if (create_error) { 2780 int open_flag = op->open_flag; 2781 2782 error = create_error; 2783 if ((open_flag & O_EXCL)) { 2784 if (!dentry->d_inode) 2785 goto out; 2786 } else if (!dentry->d_inode) { 2787 goto out; 2788 } else if ((open_flag & O_TRUNC) && 2789 S_ISREG(dentry->d_inode->i_mode)) { 2790 goto out; 2791 } 2792 /* will fail later, go on to get the right error */ 2793 } 2794 } 2795 looked_up: 2796 path->dentry = dentry; 2797 path->mnt = nd->path.mnt; 2798 return 1; 2799 } 2800 2801 /* 2802 * Look up and maybe create and open the last component. 2803 * 2804 * Must be called with i_mutex held on parent. 2805 * 2806 * Returns 0 if the file was successfully atomically created (if necessary) and 2807 * opened. In this case the file will be returned attached to @file. 2808 * 2809 * Returns 1 if the file was not completely opened at this time, though lookups 2810 * and creations will have been performed and the dentry returned in @path will 2811 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2812 * specified then a negative dentry may be returned. 2813 * 2814 * An error code is returned otherwise. 2815 * 2816 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2817 * cleared otherwise prior to returning. 2818 */ 2819 static int lookup_open(struct nameidata *nd, struct path *path, 2820 struct file *file, 2821 const struct open_flags *op, 2822 bool got_write, int *opened) 2823 { 2824 struct dentry *dir = nd->path.dentry; 2825 struct inode *dir_inode = dir->d_inode; 2826 struct dentry *dentry; 2827 int error; 2828 bool need_lookup; 2829 2830 *opened &= ~FILE_CREATED; 2831 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2832 if (IS_ERR(dentry)) 2833 return PTR_ERR(dentry); 2834 2835 /* Cached positive dentry: will open in f_op->open */ 2836 if (!need_lookup && dentry->d_inode) 2837 goto out_no_open; 2838 2839 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2840 return atomic_open(nd, dentry, path, file, op, got_write, 2841 need_lookup, opened); 2842 } 2843 2844 if (need_lookup) { 2845 BUG_ON(dentry->d_inode); 2846 2847 dentry = lookup_real(dir_inode, dentry, nd->flags); 2848 if (IS_ERR(dentry)) 2849 return PTR_ERR(dentry); 2850 } 2851 2852 /* Negative dentry, just create the file */ 2853 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2854 umode_t mode = op->mode; 2855 if (!IS_POSIXACL(dir->d_inode)) 2856 mode &= ~current_umask(); 2857 /* 2858 * This write is needed to ensure that a 2859 * rw->ro transition does not occur between 2860 * the time when the file is created and when 2861 * a permanent write count is taken through 2862 * the 'struct file' in finish_open(). 2863 */ 2864 if (!got_write) { 2865 error = -EROFS; 2866 goto out_dput; 2867 } 2868 *opened |= FILE_CREATED; 2869 error = security_path_mknod(&nd->path, dentry, mode, 0); 2870 if (error) 2871 goto out_dput; 2872 error = vfs_create(dir->d_inode, dentry, mode, 2873 nd->flags & LOOKUP_EXCL); 2874 if (error) 2875 goto out_dput; 2876 } 2877 out_no_open: 2878 path->dentry = dentry; 2879 path->mnt = nd->path.mnt; 2880 return 1; 2881 2882 out_dput: 2883 dput(dentry); 2884 return error; 2885 } 2886 2887 /* 2888 * Handle the last step of open() 2889 */ 2890 static int do_last(struct nameidata *nd, struct path *path, 2891 struct file *file, const struct open_flags *op, 2892 int *opened, struct filename *name) 2893 { 2894 struct dentry *dir = nd->path.dentry; 2895 int open_flag = op->open_flag; 2896 bool will_truncate = (open_flag & O_TRUNC) != 0; 2897 bool got_write = false; 2898 int acc_mode = op->acc_mode; 2899 struct inode *inode; 2900 bool symlink_ok = false; 2901 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2902 bool retried = false; 2903 int error; 2904 2905 nd->flags &= ~LOOKUP_PARENT; 2906 nd->flags |= op->intent; 2907 2908 if (nd->last_type != LAST_NORM) { 2909 error = handle_dots(nd, nd->last_type); 2910 if (error) 2911 return error; 2912 goto finish_open; 2913 } 2914 2915 if (!(open_flag & O_CREAT)) { 2916 if (nd->last.name[nd->last.len]) 2917 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2918 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2919 symlink_ok = true; 2920 /* we _can_ be in RCU mode here */ 2921 error = lookup_fast(nd, path, &inode); 2922 if (likely(!error)) 2923 goto finish_lookup; 2924 2925 if (error < 0) 2926 goto out; 2927 2928 BUG_ON(nd->inode != dir->d_inode); 2929 } else { 2930 /* create side of things */ 2931 /* 2932 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2933 * has been cleared when we got to the last component we are 2934 * about to look up 2935 */ 2936 error = complete_walk(nd); 2937 if (error) 2938 return error; 2939 2940 audit_inode(name, dir, LOOKUP_PARENT); 2941 error = -EISDIR; 2942 /* trailing slashes? */ 2943 if (nd->last.name[nd->last.len]) 2944 goto out; 2945 } 2946 2947 retry_lookup: 2948 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2949 error = mnt_want_write(nd->path.mnt); 2950 if (!error) 2951 got_write = true; 2952 /* 2953 * do _not_ fail yet - we might not need that or fail with 2954 * a different error; let lookup_open() decide; we'll be 2955 * dropping this one anyway. 2956 */ 2957 } 2958 mutex_lock(&dir->d_inode->i_mutex); 2959 error = lookup_open(nd, path, file, op, got_write, opened); 2960 mutex_unlock(&dir->d_inode->i_mutex); 2961 2962 if (error <= 0) { 2963 if (error) 2964 goto out; 2965 2966 if ((*opened & FILE_CREATED) || 2967 !S_ISREG(file_inode(file)->i_mode)) 2968 will_truncate = false; 2969 2970 audit_inode(name, file->f_path.dentry, 0); 2971 goto opened; 2972 } 2973 2974 if (*opened & FILE_CREATED) { 2975 /* Don't check for write permission, don't truncate */ 2976 open_flag &= ~O_TRUNC; 2977 will_truncate = false; 2978 acc_mode = MAY_OPEN; 2979 path_to_nameidata(path, nd); 2980 goto finish_open_created; 2981 } 2982 2983 /* 2984 * create/update audit record if it already exists. 2985 */ 2986 if (d_is_positive(path->dentry)) 2987 audit_inode(name, path->dentry, 0); 2988 2989 /* 2990 * If atomic_open() acquired write access it is dropped now due to 2991 * possible mount and symlink following (this might be optimized away if 2992 * necessary...) 2993 */ 2994 if (got_write) { 2995 mnt_drop_write(nd->path.mnt); 2996 got_write = false; 2997 } 2998 2999 error = -EEXIST; 3000 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 3001 goto exit_dput; 3002 3003 error = follow_managed(path, nd->flags); 3004 if (error < 0) 3005 goto exit_dput; 3006 3007 if (error) 3008 nd->flags |= LOOKUP_JUMPED; 3009 3010 BUG_ON(nd->flags & LOOKUP_RCU); 3011 inode = path->dentry->d_inode; 3012 finish_lookup: 3013 /* we _can_ be in RCU mode here */ 3014 error = -ENOENT; 3015 if (!inode || d_is_negative(path->dentry)) { 3016 path_to_nameidata(path, nd); 3017 goto out; 3018 } 3019 3020 if (should_follow_link(path->dentry, !symlink_ok)) { 3021 if (nd->flags & LOOKUP_RCU) { 3022 if (unlikely(unlazy_walk(nd, path->dentry))) { 3023 error = -ECHILD; 3024 goto out; 3025 } 3026 } 3027 BUG_ON(inode != path->dentry->d_inode); 3028 return 1; 3029 } 3030 3031 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3032 path_to_nameidata(path, nd); 3033 } else { 3034 save_parent.dentry = nd->path.dentry; 3035 save_parent.mnt = mntget(path->mnt); 3036 nd->path.dentry = path->dentry; 3037 3038 } 3039 nd->inode = inode; 3040 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3041 finish_open: 3042 error = complete_walk(nd); 3043 if (error) { 3044 path_put(&save_parent); 3045 return error; 3046 } 3047 audit_inode(name, nd->path.dentry, 0); 3048 error = -EISDIR; 3049 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3050 goto out; 3051 error = -ENOTDIR; 3052 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3053 goto out; 3054 if (!S_ISREG(nd->inode->i_mode)) 3055 will_truncate = false; 3056 3057 if (will_truncate) { 3058 error = mnt_want_write(nd->path.mnt); 3059 if (error) 3060 goto out; 3061 got_write = true; 3062 } 3063 finish_open_created: 3064 error = may_open(&nd->path, acc_mode, open_flag); 3065 if (error) 3066 goto out; 3067 file->f_path.mnt = nd->path.mnt; 3068 error = finish_open(file, nd->path.dentry, NULL, opened); 3069 if (error) { 3070 if (error == -EOPENSTALE) 3071 goto stale_open; 3072 goto out; 3073 } 3074 opened: 3075 error = open_check_o_direct(file); 3076 if (error) 3077 goto exit_fput; 3078 error = ima_file_check(file, op->acc_mode, *opened); 3079 if (error) 3080 goto exit_fput; 3081 3082 if (will_truncate) { 3083 error = handle_truncate(file); 3084 if (error) 3085 goto exit_fput; 3086 } 3087 out: 3088 if (got_write) 3089 mnt_drop_write(nd->path.mnt); 3090 path_put(&save_parent); 3091 terminate_walk(nd); 3092 return error; 3093 3094 exit_dput: 3095 path_put_conditional(path, nd); 3096 goto out; 3097 exit_fput: 3098 fput(file); 3099 goto out; 3100 3101 stale_open: 3102 /* If no saved parent or already retried then can't retry */ 3103 if (!save_parent.dentry || retried) 3104 goto out; 3105 3106 BUG_ON(save_parent.dentry != dir); 3107 path_put(&nd->path); 3108 nd->path = save_parent; 3109 nd->inode = dir->d_inode; 3110 save_parent.mnt = NULL; 3111 save_parent.dentry = NULL; 3112 if (got_write) { 3113 mnt_drop_write(nd->path.mnt); 3114 got_write = false; 3115 } 3116 retried = true; 3117 goto retry_lookup; 3118 } 3119 3120 static int do_tmpfile(int dfd, struct filename *pathname, 3121 struct nameidata *nd, int flags, 3122 const struct open_flags *op, 3123 struct file *file, int *opened) 3124 { 3125 static const struct qstr name = QSTR_INIT("/", 1); 3126 struct dentry *dentry, *child; 3127 struct inode *dir; 3128 int error = path_lookupat(dfd, pathname->name, 3129 flags | LOOKUP_DIRECTORY, nd); 3130 if (unlikely(error)) 3131 return error; 3132 error = mnt_want_write(nd->path.mnt); 3133 if (unlikely(error)) 3134 goto out; 3135 /* we want directory to be writable */ 3136 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3137 if (error) 3138 goto out2; 3139 dentry = nd->path.dentry; 3140 dir = dentry->d_inode; 3141 if (!dir->i_op->tmpfile) { 3142 error = -EOPNOTSUPP; 3143 goto out2; 3144 } 3145 child = d_alloc(dentry, &name); 3146 if (unlikely(!child)) { 3147 error = -ENOMEM; 3148 goto out2; 3149 } 3150 nd->flags &= ~LOOKUP_DIRECTORY; 3151 nd->flags |= op->intent; 3152 dput(nd->path.dentry); 3153 nd->path.dentry = child; 3154 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3155 if (error) 3156 goto out2; 3157 audit_inode(pathname, nd->path.dentry, 0); 3158 error = may_open(&nd->path, op->acc_mode, op->open_flag); 3159 if (error) 3160 goto out2; 3161 file->f_path.mnt = nd->path.mnt; 3162 error = finish_open(file, nd->path.dentry, NULL, opened); 3163 if (error) 3164 goto out2; 3165 error = open_check_o_direct(file); 3166 if (error) { 3167 fput(file); 3168 } else if (!(op->open_flag & O_EXCL)) { 3169 struct inode *inode = file_inode(file); 3170 spin_lock(&inode->i_lock); 3171 inode->i_state |= I_LINKABLE; 3172 spin_unlock(&inode->i_lock); 3173 } 3174 out2: 3175 mnt_drop_write(nd->path.mnt); 3176 out: 3177 path_put(&nd->path); 3178 return error; 3179 } 3180 3181 static struct file *path_openat(int dfd, struct filename *pathname, 3182 struct nameidata *nd, const struct open_flags *op, int flags) 3183 { 3184 struct file *base = NULL; 3185 struct file *file; 3186 struct path path; 3187 int opened = 0; 3188 int error; 3189 3190 file = get_empty_filp(); 3191 if (IS_ERR(file)) 3192 return file; 3193 3194 file->f_flags = op->open_flag; 3195 3196 if (unlikely(file->f_flags & __O_TMPFILE)) { 3197 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3198 goto out; 3199 } 3200 3201 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 3202 if (unlikely(error)) 3203 goto out; 3204 3205 current->total_link_count = 0; 3206 error = link_path_walk(pathname->name, nd); 3207 if (unlikely(error)) 3208 goto out; 3209 3210 error = do_last(nd, &path, file, op, &opened, pathname); 3211 while (unlikely(error > 0)) { /* trailing symlink */ 3212 struct path link = path; 3213 void *cookie; 3214 if (!(nd->flags & LOOKUP_FOLLOW)) { 3215 path_put_conditional(&path, nd); 3216 path_put(&nd->path); 3217 error = -ELOOP; 3218 break; 3219 } 3220 error = may_follow_link(&link, nd); 3221 if (unlikely(error)) 3222 break; 3223 nd->flags |= LOOKUP_PARENT; 3224 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3225 error = follow_link(&link, nd, &cookie); 3226 if (unlikely(error)) 3227 break; 3228 error = do_last(nd, &path, file, op, &opened, pathname); 3229 put_link(nd, &link, cookie); 3230 } 3231 out: 3232 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 3233 path_put(&nd->root); 3234 if (base) 3235 fput(base); 3236 if (!(opened & FILE_OPENED)) { 3237 BUG_ON(!error); 3238 put_filp(file); 3239 } 3240 if (unlikely(error)) { 3241 if (error == -EOPENSTALE) { 3242 if (flags & LOOKUP_RCU) 3243 error = -ECHILD; 3244 else 3245 error = -ESTALE; 3246 } 3247 file = ERR_PTR(error); 3248 } 3249 return file; 3250 } 3251 3252 struct file *do_filp_open(int dfd, struct filename *pathname, 3253 const struct open_flags *op) 3254 { 3255 struct nameidata nd; 3256 int flags = op->lookup_flags; 3257 struct file *filp; 3258 3259 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3260 if (unlikely(filp == ERR_PTR(-ECHILD))) 3261 filp = path_openat(dfd, pathname, &nd, op, flags); 3262 if (unlikely(filp == ERR_PTR(-ESTALE))) 3263 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3264 return filp; 3265 } 3266 3267 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3268 const char *name, const struct open_flags *op) 3269 { 3270 struct nameidata nd; 3271 struct file *file; 3272 struct filename filename = { .name = name }; 3273 int flags = op->lookup_flags | LOOKUP_ROOT; 3274 3275 nd.root.mnt = mnt; 3276 nd.root.dentry = dentry; 3277 3278 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3279 return ERR_PTR(-ELOOP); 3280 3281 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3282 if (unlikely(file == ERR_PTR(-ECHILD))) 3283 file = path_openat(-1, &filename, &nd, op, flags); 3284 if (unlikely(file == ERR_PTR(-ESTALE))) 3285 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3286 return file; 3287 } 3288 3289 struct dentry *kern_path_create(int dfd, const char *pathname, 3290 struct path *path, unsigned int lookup_flags) 3291 { 3292 struct dentry *dentry = ERR_PTR(-EEXIST); 3293 struct nameidata nd; 3294 int err2; 3295 int error; 3296 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3297 3298 /* 3299 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3300 * other flags passed in are ignored! 3301 */ 3302 lookup_flags &= LOOKUP_REVAL; 3303 3304 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3305 if (error) 3306 return ERR_PTR(error); 3307 3308 /* 3309 * Yucky last component or no last component at all? 3310 * (foo/., foo/.., /////) 3311 */ 3312 if (nd.last_type != LAST_NORM) 3313 goto out; 3314 nd.flags &= ~LOOKUP_PARENT; 3315 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3316 3317 /* don't fail immediately if it's r/o, at least try to report other errors */ 3318 err2 = mnt_want_write(nd.path.mnt); 3319 /* 3320 * Do the final lookup. 3321 */ 3322 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3323 dentry = lookup_hash(&nd); 3324 if (IS_ERR(dentry)) 3325 goto unlock; 3326 3327 error = -EEXIST; 3328 if (d_is_positive(dentry)) 3329 goto fail; 3330 3331 /* 3332 * Special case - lookup gave negative, but... we had foo/bar/ 3333 * From the vfs_mknod() POV we just have a negative dentry - 3334 * all is fine. Let's be bastards - you had / on the end, you've 3335 * been asking for (non-existent) directory. -ENOENT for you. 3336 */ 3337 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3338 error = -ENOENT; 3339 goto fail; 3340 } 3341 if (unlikely(err2)) { 3342 error = err2; 3343 goto fail; 3344 } 3345 *path = nd.path; 3346 return dentry; 3347 fail: 3348 dput(dentry); 3349 dentry = ERR_PTR(error); 3350 unlock: 3351 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3352 if (!err2) 3353 mnt_drop_write(nd.path.mnt); 3354 out: 3355 path_put(&nd.path); 3356 return dentry; 3357 } 3358 EXPORT_SYMBOL(kern_path_create); 3359 3360 void done_path_create(struct path *path, struct dentry *dentry) 3361 { 3362 dput(dentry); 3363 mutex_unlock(&path->dentry->d_inode->i_mutex); 3364 mnt_drop_write(path->mnt); 3365 path_put(path); 3366 } 3367 EXPORT_SYMBOL(done_path_create); 3368 3369 struct dentry *user_path_create(int dfd, const char __user *pathname, 3370 struct path *path, unsigned int lookup_flags) 3371 { 3372 struct filename *tmp = getname(pathname); 3373 struct dentry *res; 3374 if (IS_ERR(tmp)) 3375 return ERR_CAST(tmp); 3376 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3377 putname(tmp); 3378 return res; 3379 } 3380 EXPORT_SYMBOL(user_path_create); 3381 3382 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3383 { 3384 int error = may_create(dir, dentry); 3385 3386 if (error) 3387 return error; 3388 3389 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3390 return -EPERM; 3391 3392 if (!dir->i_op->mknod) 3393 return -EPERM; 3394 3395 error = devcgroup_inode_mknod(mode, dev); 3396 if (error) 3397 return error; 3398 3399 error = security_inode_mknod(dir, dentry, mode, dev); 3400 if (error) 3401 return error; 3402 3403 error = dir->i_op->mknod(dir, dentry, mode, dev); 3404 if (!error) 3405 fsnotify_create(dir, dentry); 3406 return error; 3407 } 3408 EXPORT_SYMBOL(vfs_mknod); 3409 3410 static int may_mknod(umode_t mode) 3411 { 3412 switch (mode & S_IFMT) { 3413 case S_IFREG: 3414 case S_IFCHR: 3415 case S_IFBLK: 3416 case S_IFIFO: 3417 case S_IFSOCK: 3418 case 0: /* zero mode translates to S_IFREG */ 3419 return 0; 3420 case S_IFDIR: 3421 return -EPERM; 3422 default: 3423 return -EINVAL; 3424 } 3425 } 3426 3427 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3428 unsigned, dev) 3429 { 3430 struct dentry *dentry; 3431 struct path path; 3432 int error; 3433 unsigned int lookup_flags = 0; 3434 3435 error = may_mknod(mode); 3436 if (error) 3437 return error; 3438 retry: 3439 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3440 if (IS_ERR(dentry)) 3441 return PTR_ERR(dentry); 3442 3443 if (!IS_POSIXACL(path.dentry->d_inode)) 3444 mode &= ~current_umask(); 3445 error = security_path_mknod(&path, dentry, mode, dev); 3446 if (error) 3447 goto out; 3448 switch (mode & S_IFMT) { 3449 case 0: case S_IFREG: 3450 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3451 break; 3452 case S_IFCHR: case S_IFBLK: 3453 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3454 new_decode_dev(dev)); 3455 break; 3456 case S_IFIFO: case S_IFSOCK: 3457 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3458 break; 3459 } 3460 out: 3461 done_path_create(&path, dentry); 3462 if (retry_estale(error, lookup_flags)) { 3463 lookup_flags |= LOOKUP_REVAL; 3464 goto retry; 3465 } 3466 return error; 3467 } 3468 3469 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3470 { 3471 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3472 } 3473 3474 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3475 { 3476 int error = may_create(dir, dentry); 3477 unsigned max_links = dir->i_sb->s_max_links; 3478 3479 if (error) 3480 return error; 3481 3482 if (!dir->i_op->mkdir) 3483 return -EPERM; 3484 3485 mode &= (S_IRWXUGO|S_ISVTX); 3486 error = security_inode_mkdir(dir, dentry, mode); 3487 if (error) 3488 return error; 3489 3490 if (max_links && dir->i_nlink >= max_links) 3491 return -EMLINK; 3492 3493 error = dir->i_op->mkdir(dir, dentry, mode); 3494 if (!error) 3495 fsnotify_mkdir(dir, dentry); 3496 return error; 3497 } 3498 EXPORT_SYMBOL(vfs_mkdir); 3499 3500 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3501 { 3502 struct dentry *dentry; 3503 struct path path; 3504 int error; 3505 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3506 3507 retry: 3508 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3509 if (IS_ERR(dentry)) 3510 return PTR_ERR(dentry); 3511 3512 if (!IS_POSIXACL(path.dentry->d_inode)) 3513 mode &= ~current_umask(); 3514 error = security_path_mkdir(&path, dentry, mode); 3515 if (!error) 3516 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3517 done_path_create(&path, dentry); 3518 if (retry_estale(error, lookup_flags)) { 3519 lookup_flags |= LOOKUP_REVAL; 3520 goto retry; 3521 } 3522 return error; 3523 } 3524 3525 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3526 { 3527 return sys_mkdirat(AT_FDCWD, pathname, mode); 3528 } 3529 3530 /* 3531 * The dentry_unhash() helper will try to drop the dentry early: we 3532 * should have a usage count of 1 if we're the only user of this 3533 * dentry, and if that is true (possibly after pruning the dcache), 3534 * then we drop the dentry now. 3535 * 3536 * A low-level filesystem can, if it choses, legally 3537 * do a 3538 * 3539 * if (!d_unhashed(dentry)) 3540 * return -EBUSY; 3541 * 3542 * if it cannot handle the case of removing a directory 3543 * that is still in use by something else.. 3544 */ 3545 void dentry_unhash(struct dentry *dentry) 3546 { 3547 shrink_dcache_parent(dentry); 3548 spin_lock(&dentry->d_lock); 3549 if (dentry->d_lockref.count == 1) 3550 __d_drop(dentry); 3551 spin_unlock(&dentry->d_lock); 3552 } 3553 EXPORT_SYMBOL(dentry_unhash); 3554 3555 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3556 { 3557 int error = may_delete(dir, dentry, 1); 3558 3559 if (error) 3560 return error; 3561 3562 if (!dir->i_op->rmdir) 3563 return -EPERM; 3564 3565 dget(dentry); 3566 mutex_lock(&dentry->d_inode->i_mutex); 3567 3568 error = -EBUSY; 3569 if (is_local_mountpoint(dentry)) 3570 goto out; 3571 3572 error = security_inode_rmdir(dir, dentry); 3573 if (error) 3574 goto out; 3575 3576 shrink_dcache_parent(dentry); 3577 error = dir->i_op->rmdir(dir, dentry); 3578 if (error) 3579 goto out; 3580 3581 dentry->d_inode->i_flags |= S_DEAD; 3582 dont_mount(dentry); 3583 detach_mounts(dentry); 3584 3585 out: 3586 mutex_unlock(&dentry->d_inode->i_mutex); 3587 dput(dentry); 3588 if (!error) 3589 d_delete(dentry); 3590 return error; 3591 } 3592 EXPORT_SYMBOL(vfs_rmdir); 3593 3594 static long do_rmdir(int dfd, const char __user *pathname) 3595 { 3596 int error = 0; 3597 struct filename *name; 3598 struct dentry *dentry; 3599 struct nameidata nd; 3600 unsigned int lookup_flags = 0; 3601 retry: 3602 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3603 if (IS_ERR(name)) 3604 return PTR_ERR(name); 3605 3606 switch(nd.last_type) { 3607 case LAST_DOTDOT: 3608 error = -ENOTEMPTY; 3609 goto exit1; 3610 case LAST_DOT: 3611 error = -EINVAL; 3612 goto exit1; 3613 case LAST_ROOT: 3614 error = -EBUSY; 3615 goto exit1; 3616 } 3617 3618 nd.flags &= ~LOOKUP_PARENT; 3619 error = mnt_want_write(nd.path.mnt); 3620 if (error) 3621 goto exit1; 3622 3623 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3624 dentry = lookup_hash(&nd); 3625 error = PTR_ERR(dentry); 3626 if (IS_ERR(dentry)) 3627 goto exit2; 3628 if (!dentry->d_inode) { 3629 error = -ENOENT; 3630 goto exit3; 3631 } 3632 error = security_path_rmdir(&nd.path, dentry); 3633 if (error) 3634 goto exit3; 3635 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3636 exit3: 3637 dput(dentry); 3638 exit2: 3639 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3640 mnt_drop_write(nd.path.mnt); 3641 exit1: 3642 path_put(&nd.path); 3643 putname(name); 3644 if (retry_estale(error, lookup_flags)) { 3645 lookup_flags |= LOOKUP_REVAL; 3646 goto retry; 3647 } 3648 return error; 3649 } 3650 3651 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3652 { 3653 return do_rmdir(AT_FDCWD, pathname); 3654 } 3655 3656 /** 3657 * vfs_unlink - unlink a filesystem object 3658 * @dir: parent directory 3659 * @dentry: victim 3660 * @delegated_inode: returns victim inode, if the inode is delegated. 3661 * 3662 * The caller must hold dir->i_mutex. 3663 * 3664 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3665 * return a reference to the inode in delegated_inode. The caller 3666 * should then break the delegation on that inode and retry. Because 3667 * breaking a delegation may take a long time, the caller should drop 3668 * dir->i_mutex before doing so. 3669 * 3670 * Alternatively, a caller may pass NULL for delegated_inode. This may 3671 * be appropriate for callers that expect the underlying filesystem not 3672 * to be NFS exported. 3673 */ 3674 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3675 { 3676 struct inode *target = dentry->d_inode; 3677 int error = may_delete(dir, dentry, 0); 3678 3679 if (error) 3680 return error; 3681 3682 if (!dir->i_op->unlink) 3683 return -EPERM; 3684 3685 mutex_lock(&target->i_mutex); 3686 if (is_local_mountpoint(dentry)) 3687 error = -EBUSY; 3688 else { 3689 error = security_inode_unlink(dir, dentry); 3690 if (!error) { 3691 error = try_break_deleg(target, delegated_inode); 3692 if (error) 3693 goto out; 3694 error = dir->i_op->unlink(dir, dentry); 3695 if (!error) { 3696 dont_mount(dentry); 3697 detach_mounts(dentry); 3698 } 3699 } 3700 } 3701 out: 3702 mutex_unlock(&target->i_mutex); 3703 3704 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3705 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3706 fsnotify_link_count(target); 3707 d_delete(dentry); 3708 } 3709 3710 return error; 3711 } 3712 EXPORT_SYMBOL(vfs_unlink); 3713 3714 /* 3715 * Make sure that the actual truncation of the file will occur outside its 3716 * directory's i_mutex. Truncate can take a long time if there is a lot of 3717 * writeout happening, and we don't want to prevent access to the directory 3718 * while waiting on the I/O. 3719 */ 3720 static long do_unlinkat(int dfd, const char __user *pathname) 3721 { 3722 int error; 3723 struct filename *name; 3724 struct dentry *dentry; 3725 struct nameidata nd; 3726 struct inode *inode = NULL; 3727 struct inode *delegated_inode = NULL; 3728 unsigned int lookup_flags = 0; 3729 retry: 3730 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3731 if (IS_ERR(name)) 3732 return PTR_ERR(name); 3733 3734 error = -EISDIR; 3735 if (nd.last_type != LAST_NORM) 3736 goto exit1; 3737 3738 nd.flags &= ~LOOKUP_PARENT; 3739 error = mnt_want_write(nd.path.mnt); 3740 if (error) 3741 goto exit1; 3742 retry_deleg: 3743 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3744 dentry = lookup_hash(&nd); 3745 error = PTR_ERR(dentry); 3746 if (!IS_ERR(dentry)) { 3747 /* Why not before? Because we want correct error value */ 3748 if (nd.last.name[nd.last.len]) 3749 goto slashes; 3750 inode = dentry->d_inode; 3751 if (d_is_negative(dentry)) 3752 goto slashes; 3753 ihold(inode); 3754 error = security_path_unlink(&nd.path, dentry); 3755 if (error) 3756 goto exit2; 3757 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3758 exit2: 3759 dput(dentry); 3760 } 3761 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3762 if (inode) 3763 iput(inode); /* truncate the inode here */ 3764 inode = NULL; 3765 if (delegated_inode) { 3766 error = break_deleg_wait(&delegated_inode); 3767 if (!error) 3768 goto retry_deleg; 3769 } 3770 mnt_drop_write(nd.path.mnt); 3771 exit1: 3772 path_put(&nd.path); 3773 putname(name); 3774 if (retry_estale(error, lookup_flags)) { 3775 lookup_flags |= LOOKUP_REVAL; 3776 inode = NULL; 3777 goto retry; 3778 } 3779 return error; 3780 3781 slashes: 3782 if (d_is_negative(dentry)) 3783 error = -ENOENT; 3784 else if (d_is_dir(dentry)) 3785 error = -EISDIR; 3786 else 3787 error = -ENOTDIR; 3788 goto exit2; 3789 } 3790 3791 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3792 { 3793 if ((flag & ~AT_REMOVEDIR) != 0) 3794 return -EINVAL; 3795 3796 if (flag & AT_REMOVEDIR) 3797 return do_rmdir(dfd, pathname); 3798 3799 return do_unlinkat(dfd, pathname); 3800 } 3801 3802 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3803 { 3804 return do_unlinkat(AT_FDCWD, pathname); 3805 } 3806 3807 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3808 { 3809 int error = may_create(dir, dentry); 3810 3811 if (error) 3812 return error; 3813 3814 if (!dir->i_op->symlink) 3815 return -EPERM; 3816 3817 error = security_inode_symlink(dir, dentry, oldname); 3818 if (error) 3819 return error; 3820 3821 error = dir->i_op->symlink(dir, dentry, oldname); 3822 if (!error) 3823 fsnotify_create(dir, dentry); 3824 return error; 3825 } 3826 EXPORT_SYMBOL(vfs_symlink); 3827 3828 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3829 int, newdfd, const char __user *, newname) 3830 { 3831 int error; 3832 struct filename *from; 3833 struct dentry *dentry; 3834 struct path path; 3835 unsigned int lookup_flags = 0; 3836 3837 from = getname(oldname); 3838 if (IS_ERR(from)) 3839 return PTR_ERR(from); 3840 retry: 3841 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3842 error = PTR_ERR(dentry); 3843 if (IS_ERR(dentry)) 3844 goto out_putname; 3845 3846 error = security_path_symlink(&path, dentry, from->name); 3847 if (!error) 3848 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3849 done_path_create(&path, dentry); 3850 if (retry_estale(error, lookup_flags)) { 3851 lookup_flags |= LOOKUP_REVAL; 3852 goto retry; 3853 } 3854 out_putname: 3855 putname(from); 3856 return error; 3857 } 3858 3859 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3860 { 3861 return sys_symlinkat(oldname, AT_FDCWD, newname); 3862 } 3863 3864 /** 3865 * vfs_link - create a new link 3866 * @old_dentry: object to be linked 3867 * @dir: new parent 3868 * @new_dentry: where to create the new link 3869 * @delegated_inode: returns inode needing a delegation break 3870 * 3871 * The caller must hold dir->i_mutex 3872 * 3873 * If vfs_link discovers a delegation on the to-be-linked file in need 3874 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3875 * inode in delegated_inode. The caller should then break the delegation 3876 * and retry. Because breaking a delegation may take a long time, the 3877 * caller should drop the i_mutex before doing so. 3878 * 3879 * Alternatively, a caller may pass NULL for delegated_inode. This may 3880 * be appropriate for callers that expect the underlying filesystem not 3881 * to be NFS exported. 3882 */ 3883 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3884 { 3885 struct inode *inode = old_dentry->d_inode; 3886 unsigned max_links = dir->i_sb->s_max_links; 3887 int error; 3888 3889 if (!inode) 3890 return -ENOENT; 3891 3892 error = may_create(dir, new_dentry); 3893 if (error) 3894 return error; 3895 3896 if (dir->i_sb != inode->i_sb) 3897 return -EXDEV; 3898 3899 /* 3900 * A link to an append-only or immutable file cannot be created. 3901 */ 3902 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3903 return -EPERM; 3904 if (!dir->i_op->link) 3905 return -EPERM; 3906 if (S_ISDIR(inode->i_mode)) 3907 return -EPERM; 3908 3909 error = security_inode_link(old_dentry, dir, new_dentry); 3910 if (error) 3911 return error; 3912 3913 mutex_lock(&inode->i_mutex); 3914 /* Make sure we don't allow creating hardlink to an unlinked file */ 3915 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3916 error = -ENOENT; 3917 else if (max_links && inode->i_nlink >= max_links) 3918 error = -EMLINK; 3919 else { 3920 error = try_break_deleg(inode, delegated_inode); 3921 if (!error) 3922 error = dir->i_op->link(old_dentry, dir, new_dentry); 3923 } 3924 3925 if (!error && (inode->i_state & I_LINKABLE)) { 3926 spin_lock(&inode->i_lock); 3927 inode->i_state &= ~I_LINKABLE; 3928 spin_unlock(&inode->i_lock); 3929 } 3930 mutex_unlock(&inode->i_mutex); 3931 if (!error) 3932 fsnotify_link(dir, inode, new_dentry); 3933 return error; 3934 } 3935 EXPORT_SYMBOL(vfs_link); 3936 3937 /* 3938 * Hardlinks are often used in delicate situations. We avoid 3939 * security-related surprises by not following symlinks on the 3940 * newname. --KAB 3941 * 3942 * We don't follow them on the oldname either to be compatible 3943 * with linux 2.0, and to avoid hard-linking to directories 3944 * and other special files. --ADM 3945 */ 3946 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3947 int, newdfd, const char __user *, newname, int, flags) 3948 { 3949 struct dentry *new_dentry; 3950 struct path old_path, new_path; 3951 struct inode *delegated_inode = NULL; 3952 int how = 0; 3953 int error; 3954 3955 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3956 return -EINVAL; 3957 /* 3958 * To use null names we require CAP_DAC_READ_SEARCH 3959 * This ensures that not everyone will be able to create 3960 * handlink using the passed filedescriptor. 3961 */ 3962 if (flags & AT_EMPTY_PATH) { 3963 if (!capable(CAP_DAC_READ_SEARCH)) 3964 return -ENOENT; 3965 how = LOOKUP_EMPTY; 3966 } 3967 3968 if (flags & AT_SYMLINK_FOLLOW) 3969 how |= LOOKUP_FOLLOW; 3970 retry: 3971 error = user_path_at(olddfd, oldname, how, &old_path); 3972 if (error) 3973 return error; 3974 3975 new_dentry = user_path_create(newdfd, newname, &new_path, 3976 (how & LOOKUP_REVAL)); 3977 error = PTR_ERR(new_dentry); 3978 if (IS_ERR(new_dentry)) 3979 goto out; 3980 3981 error = -EXDEV; 3982 if (old_path.mnt != new_path.mnt) 3983 goto out_dput; 3984 error = may_linkat(&old_path); 3985 if (unlikely(error)) 3986 goto out_dput; 3987 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3988 if (error) 3989 goto out_dput; 3990 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 3991 out_dput: 3992 done_path_create(&new_path, new_dentry); 3993 if (delegated_inode) { 3994 error = break_deleg_wait(&delegated_inode); 3995 if (!error) { 3996 path_put(&old_path); 3997 goto retry; 3998 } 3999 } 4000 if (retry_estale(error, how)) { 4001 path_put(&old_path); 4002 how |= LOOKUP_REVAL; 4003 goto retry; 4004 } 4005 out: 4006 path_put(&old_path); 4007 4008 return error; 4009 } 4010 4011 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4012 { 4013 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4014 } 4015 4016 /** 4017 * vfs_rename - rename a filesystem object 4018 * @old_dir: parent of source 4019 * @old_dentry: source 4020 * @new_dir: parent of destination 4021 * @new_dentry: destination 4022 * @delegated_inode: returns an inode needing a delegation break 4023 * @flags: rename flags 4024 * 4025 * The caller must hold multiple mutexes--see lock_rename()). 4026 * 4027 * If vfs_rename discovers a delegation in need of breaking at either 4028 * the source or destination, it will return -EWOULDBLOCK and return a 4029 * reference to the inode in delegated_inode. The caller should then 4030 * break the delegation and retry. Because breaking a delegation may 4031 * take a long time, the caller should drop all locks before doing 4032 * so. 4033 * 4034 * Alternatively, a caller may pass NULL for delegated_inode. This may 4035 * be appropriate for callers that expect the underlying filesystem not 4036 * to be NFS exported. 4037 * 4038 * The worst of all namespace operations - renaming directory. "Perverted" 4039 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4040 * Problems: 4041 * a) we can get into loop creation. 4042 * b) race potential - two innocent renames can create a loop together. 4043 * That's where 4.4 screws up. Current fix: serialization on 4044 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4045 * story. 4046 * c) we have to lock _four_ objects - parents and victim (if it exists), 4047 * and source (if it is not a directory). 4048 * And that - after we got ->i_mutex on parents (until then we don't know 4049 * whether the target exists). Solution: try to be smart with locking 4050 * order for inodes. We rely on the fact that tree topology may change 4051 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4052 * move will be locked. Thus we can rank directories by the tree 4053 * (ancestors first) and rank all non-directories after them. 4054 * That works since everybody except rename does "lock parent, lookup, 4055 * lock child" and rename is under ->s_vfs_rename_mutex. 4056 * HOWEVER, it relies on the assumption that any object with ->lookup() 4057 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4058 * we'd better make sure that there's no link(2) for them. 4059 * d) conversion from fhandle to dentry may come in the wrong moment - when 4060 * we are removing the target. Solution: we will have to grab ->i_mutex 4061 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4062 * ->i_mutex on parents, which works but leads to some truly excessive 4063 * locking]. 4064 */ 4065 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4066 struct inode *new_dir, struct dentry *new_dentry, 4067 struct inode **delegated_inode, unsigned int flags) 4068 { 4069 int error; 4070 bool is_dir = d_is_dir(old_dentry); 4071 const unsigned char *old_name; 4072 struct inode *source = old_dentry->d_inode; 4073 struct inode *target = new_dentry->d_inode; 4074 bool new_is_dir = false; 4075 unsigned max_links = new_dir->i_sb->s_max_links; 4076 4077 if (source == target) 4078 return 0; 4079 4080 error = may_delete(old_dir, old_dentry, is_dir); 4081 if (error) 4082 return error; 4083 4084 if (!target) { 4085 error = may_create(new_dir, new_dentry); 4086 } else { 4087 new_is_dir = d_is_dir(new_dentry); 4088 4089 if (!(flags & RENAME_EXCHANGE)) 4090 error = may_delete(new_dir, new_dentry, is_dir); 4091 else 4092 error = may_delete(new_dir, new_dentry, new_is_dir); 4093 } 4094 if (error) 4095 return error; 4096 4097 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4098 return -EPERM; 4099 4100 if (flags && !old_dir->i_op->rename2) 4101 return -EINVAL; 4102 4103 /* 4104 * If we are going to change the parent - check write permissions, 4105 * we'll need to flip '..'. 4106 */ 4107 if (new_dir != old_dir) { 4108 if (is_dir) { 4109 error = inode_permission(source, MAY_WRITE); 4110 if (error) 4111 return error; 4112 } 4113 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4114 error = inode_permission(target, MAY_WRITE); 4115 if (error) 4116 return error; 4117 } 4118 } 4119 4120 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4121 flags); 4122 if (error) 4123 return error; 4124 4125 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4126 dget(new_dentry); 4127 if (!is_dir || (flags & RENAME_EXCHANGE)) 4128 lock_two_nondirectories(source, target); 4129 else if (target) 4130 mutex_lock(&target->i_mutex); 4131 4132 error = -EBUSY; 4133 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4134 goto out; 4135 4136 if (max_links && new_dir != old_dir) { 4137 error = -EMLINK; 4138 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4139 goto out; 4140 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4141 old_dir->i_nlink >= max_links) 4142 goto out; 4143 } 4144 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4145 shrink_dcache_parent(new_dentry); 4146 if (!is_dir) { 4147 error = try_break_deleg(source, delegated_inode); 4148 if (error) 4149 goto out; 4150 } 4151 if (target && !new_is_dir) { 4152 error = try_break_deleg(target, delegated_inode); 4153 if (error) 4154 goto out; 4155 } 4156 if (!old_dir->i_op->rename2) { 4157 error = old_dir->i_op->rename(old_dir, old_dentry, 4158 new_dir, new_dentry); 4159 } else { 4160 WARN_ON(old_dir->i_op->rename != NULL); 4161 error = old_dir->i_op->rename2(old_dir, old_dentry, 4162 new_dir, new_dentry, flags); 4163 } 4164 if (error) 4165 goto out; 4166 4167 if (!(flags & RENAME_EXCHANGE) && target) { 4168 if (is_dir) 4169 target->i_flags |= S_DEAD; 4170 dont_mount(new_dentry); 4171 detach_mounts(new_dentry); 4172 } 4173 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4174 if (!(flags & RENAME_EXCHANGE)) 4175 d_move(old_dentry, new_dentry); 4176 else 4177 d_exchange(old_dentry, new_dentry); 4178 } 4179 out: 4180 if (!is_dir || (flags & RENAME_EXCHANGE)) 4181 unlock_two_nondirectories(source, target); 4182 else if (target) 4183 mutex_unlock(&target->i_mutex); 4184 dput(new_dentry); 4185 if (!error) { 4186 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4187 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4188 if (flags & RENAME_EXCHANGE) { 4189 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4190 new_is_dir, NULL, new_dentry); 4191 } 4192 } 4193 fsnotify_oldname_free(old_name); 4194 4195 return error; 4196 } 4197 EXPORT_SYMBOL(vfs_rename); 4198 4199 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4200 int, newdfd, const char __user *, newname, unsigned int, flags) 4201 { 4202 struct dentry *old_dir, *new_dir; 4203 struct dentry *old_dentry, *new_dentry; 4204 struct dentry *trap; 4205 struct nameidata oldnd, newnd; 4206 struct inode *delegated_inode = NULL; 4207 struct filename *from; 4208 struct filename *to; 4209 unsigned int lookup_flags = 0; 4210 bool should_retry = false; 4211 int error; 4212 4213 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 4214 return -EINVAL; 4215 4216 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE)) 4217 return -EINVAL; 4218 4219 retry: 4220 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4221 if (IS_ERR(from)) { 4222 error = PTR_ERR(from); 4223 goto exit; 4224 } 4225 4226 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4227 if (IS_ERR(to)) { 4228 error = PTR_ERR(to); 4229 goto exit1; 4230 } 4231 4232 error = -EXDEV; 4233 if (oldnd.path.mnt != newnd.path.mnt) 4234 goto exit2; 4235 4236 old_dir = oldnd.path.dentry; 4237 error = -EBUSY; 4238 if (oldnd.last_type != LAST_NORM) 4239 goto exit2; 4240 4241 new_dir = newnd.path.dentry; 4242 if (flags & RENAME_NOREPLACE) 4243 error = -EEXIST; 4244 if (newnd.last_type != LAST_NORM) 4245 goto exit2; 4246 4247 error = mnt_want_write(oldnd.path.mnt); 4248 if (error) 4249 goto exit2; 4250 4251 oldnd.flags &= ~LOOKUP_PARENT; 4252 newnd.flags &= ~LOOKUP_PARENT; 4253 if (!(flags & RENAME_EXCHANGE)) 4254 newnd.flags |= LOOKUP_RENAME_TARGET; 4255 4256 retry_deleg: 4257 trap = lock_rename(new_dir, old_dir); 4258 4259 old_dentry = lookup_hash(&oldnd); 4260 error = PTR_ERR(old_dentry); 4261 if (IS_ERR(old_dentry)) 4262 goto exit3; 4263 /* source must exist */ 4264 error = -ENOENT; 4265 if (d_is_negative(old_dentry)) 4266 goto exit4; 4267 new_dentry = lookup_hash(&newnd); 4268 error = PTR_ERR(new_dentry); 4269 if (IS_ERR(new_dentry)) 4270 goto exit4; 4271 error = -EEXIST; 4272 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4273 goto exit5; 4274 if (flags & RENAME_EXCHANGE) { 4275 error = -ENOENT; 4276 if (d_is_negative(new_dentry)) 4277 goto exit5; 4278 4279 if (!d_is_dir(new_dentry)) { 4280 error = -ENOTDIR; 4281 if (newnd.last.name[newnd.last.len]) 4282 goto exit5; 4283 } 4284 } 4285 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4286 if (!d_is_dir(old_dentry)) { 4287 error = -ENOTDIR; 4288 if (oldnd.last.name[oldnd.last.len]) 4289 goto exit5; 4290 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len]) 4291 goto exit5; 4292 } 4293 /* source should not be ancestor of target */ 4294 error = -EINVAL; 4295 if (old_dentry == trap) 4296 goto exit5; 4297 /* target should not be an ancestor of source */ 4298 if (!(flags & RENAME_EXCHANGE)) 4299 error = -ENOTEMPTY; 4300 if (new_dentry == trap) 4301 goto exit5; 4302 4303 error = security_path_rename(&oldnd.path, old_dentry, 4304 &newnd.path, new_dentry, flags); 4305 if (error) 4306 goto exit5; 4307 error = vfs_rename(old_dir->d_inode, old_dentry, 4308 new_dir->d_inode, new_dentry, 4309 &delegated_inode, flags); 4310 exit5: 4311 dput(new_dentry); 4312 exit4: 4313 dput(old_dentry); 4314 exit3: 4315 unlock_rename(new_dir, old_dir); 4316 if (delegated_inode) { 4317 error = break_deleg_wait(&delegated_inode); 4318 if (!error) 4319 goto retry_deleg; 4320 } 4321 mnt_drop_write(oldnd.path.mnt); 4322 exit2: 4323 if (retry_estale(error, lookup_flags)) 4324 should_retry = true; 4325 path_put(&newnd.path); 4326 putname(to); 4327 exit1: 4328 path_put(&oldnd.path); 4329 putname(from); 4330 if (should_retry) { 4331 should_retry = false; 4332 lookup_flags |= LOOKUP_REVAL; 4333 goto retry; 4334 } 4335 exit: 4336 return error; 4337 } 4338 4339 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4340 int, newdfd, const char __user *, newname) 4341 { 4342 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4343 } 4344 4345 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4346 { 4347 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4348 } 4349 4350 int readlink_copy(char __user *buffer, int buflen, const char *link) 4351 { 4352 int len = PTR_ERR(link); 4353 if (IS_ERR(link)) 4354 goto out; 4355 4356 len = strlen(link); 4357 if (len > (unsigned) buflen) 4358 len = buflen; 4359 if (copy_to_user(buffer, link, len)) 4360 len = -EFAULT; 4361 out: 4362 return len; 4363 } 4364 EXPORT_SYMBOL(readlink_copy); 4365 4366 /* 4367 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4368 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4369 * using) it for any given inode is up to filesystem. 4370 */ 4371 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4372 { 4373 struct nameidata nd; 4374 void *cookie; 4375 int res; 4376 4377 nd.depth = 0; 4378 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4379 if (IS_ERR(cookie)) 4380 return PTR_ERR(cookie); 4381 4382 res = readlink_copy(buffer, buflen, nd_get_link(&nd)); 4383 if (dentry->d_inode->i_op->put_link) 4384 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4385 return res; 4386 } 4387 EXPORT_SYMBOL(generic_readlink); 4388 4389 /* get the link contents into pagecache */ 4390 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4391 { 4392 char *kaddr; 4393 struct page *page; 4394 struct address_space *mapping = dentry->d_inode->i_mapping; 4395 page = read_mapping_page(mapping, 0, NULL); 4396 if (IS_ERR(page)) 4397 return (char*)page; 4398 *ppage = page; 4399 kaddr = kmap(page); 4400 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4401 return kaddr; 4402 } 4403 4404 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4405 { 4406 struct page *page = NULL; 4407 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4408 if (page) { 4409 kunmap(page); 4410 page_cache_release(page); 4411 } 4412 return res; 4413 } 4414 EXPORT_SYMBOL(page_readlink); 4415 4416 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4417 { 4418 struct page *page = NULL; 4419 nd_set_link(nd, page_getlink(dentry, &page)); 4420 return page; 4421 } 4422 EXPORT_SYMBOL(page_follow_link_light); 4423 4424 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4425 { 4426 struct page *page = cookie; 4427 4428 if (page) { 4429 kunmap(page); 4430 page_cache_release(page); 4431 } 4432 } 4433 EXPORT_SYMBOL(page_put_link); 4434 4435 /* 4436 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4437 */ 4438 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4439 { 4440 struct address_space *mapping = inode->i_mapping; 4441 struct page *page; 4442 void *fsdata; 4443 int err; 4444 char *kaddr; 4445 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4446 if (nofs) 4447 flags |= AOP_FLAG_NOFS; 4448 4449 retry: 4450 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4451 flags, &page, &fsdata); 4452 if (err) 4453 goto fail; 4454 4455 kaddr = kmap_atomic(page); 4456 memcpy(kaddr, symname, len-1); 4457 kunmap_atomic(kaddr); 4458 4459 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4460 page, fsdata); 4461 if (err < 0) 4462 goto fail; 4463 if (err < len-1) 4464 goto retry; 4465 4466 mark_inode_dirty(inode); 4467 return 0; 4468 fail: 4469 return err; 4470 } 4471 EXPORT_SYMBOL(__page_symlink); 4472 4473 int page_symlink(struct inode *inode, const char *symname, int len) 4474 { 4475 return __page_symlink(inode, symname, len, 4476 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4477 } 4478 EXPORT_SYMBOL(page_symlink); 4479 4480 const struct inode_operations page_symlink_inode_operations = { 4481 .readlink = generic_readlink, 4482 .follow_link = page_follow_link_light, 4483 .put_link = page_put_link, 4484 }; 4485 EXPORT_SYMBOL(page_symlink_inode_operations); 4486