xref: /openbmc/linux/fs/namei.c (revision 588b48ca)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	result->aname = NULL;
200 	audit_getname(result);
201 	return result;
202 
203 error:
204 	final_putname(result);
205 	return err;
206 }
207 
208 struct filename *
209 getname(const char __user * filename)
210 {
211 	return getname_flags(filename, 0, NULL);
212 }
213 
214 /*
215  * The "getname_kernel()" interface doesn't do pathnames longer
216  * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
217  */
218 struct filename *
219 getname_kernel(const char * filename)
220 {
221 	struct filename *result;
222 	char *kname;
223 	int len;
224 
225 	len = strlen(filename);
226 	if (len >= EMBEDDED_NAME_MAX)
227 		return ERR_PTR(-ENAMETOOLONG);
228 
229 	result = __getname();
230 	if (unlikely(!result))
231 		return ERR_PTR(-ENOMEM);
232 
233 	kname = (char *)result + sizeof(*result);
234 	result->name = kname;
235 	result->uptr = NULL;
236 	result->aname = NULL;
237 	result->separate = false;
238 
239 	strlcpy(kname, filename, EMBEDDED_NAME_MAX);
240 	return result;
241 }
242 
243 #ifdef CONFIG_AUDITSYSCALL
244 void putname(struct filename *name)
245 {
246 	if (unlikely(!audit_dummy_context()))
247 		return audit_putname(name);
248 	final_putname(name);
249 }
250 #endif
251 
252 static int check_acl(struct inode *inode, int mask)
253 {
254 #ifdef CONFIG_FS_POSIX_ACL
255 	struct posix_acl *acl;
256 
257 	if (mask & MAY_NOT_BLOCK) {
258 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
259 	        if (!acl)
260 	                return -EAGAIN;
261 		/* no ->get_acl() calls in RCU mode... */
262 		if (acl == ACL_NOT_CACHED)
263 			return -ECHILD;
264 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
265 	}
266 
267 	acl = get_acl(inode, ACL_TYPE_ACCESS);
268 	if (IS_ERR(acl))
269 		return PTR_ERR(acl);
270 	if (acl) {
271 	        int error = posix_acl_permission(inode, acl, mask);
272 	        posix_acl_release(acl);
273 	        return error;
274 	}
275 #endif
276 
277 	return -EAGAIN;
278 }
279 
280 /*
281  * This does the basic permission checking
282  */
283 static int acl_permission_check(struct inode *inode, int mask)
284 {
285 	unsigned int mode = inode->i_mode;
286 
287 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
288 		mode >>= 6;
289 	else {
290 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
291 			int error = check_acl(inode, mask);
292 			if (error != -EAGAIN)
293 				return error;
294 		}
295 
296 		if (in_group_p(inode->i_gid))
297 			mode >>= 3;
298 	}
299 
300 	/*
301 	 * If the DACs are ok we don't need any capability check.
302 	 */
303 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
304 		return 0;
305 	return -EACCES;
306 }
307 
308 /**
309  * generic_permission -  check for access rights on a Posix-like filesystem
310  * @inode:	inode to check access rights for
311  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
312  *
313  * Used to check for read/write/execute permissions on a file.
314  * We use "fsuid" for this, letting us set arbitrary permissions
315  * for filesystem access without changing the "normal" uids which
316  * are used for other things.
317  *
318  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
319  * request cannot be satisfied (eg. requires blocking or too much complexity).
320  * It would then be called again in ref-walk mode.
321  */
322 int generic_permission(struct inode *inode, int mask)
323 {
324 	int ret;
325 
326 	/*
327 	 * Do the basic permission checks.
328 	 */
329 	ret = acl_permission_check(inode, mask);
330 	if (ret != -EACCES)
331 		return ret;
332 
333 	if (S_ISDIR(inode->i_mode)) {
334 		/* DACs are overridable for directories */
335 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
336 			return 0;
337 		if (!(mask & MAY_WRITE))
338 			if (capable_wrt_inode_uidgid(inode,
339 						     CAP_DAC_READ_SEARCH))
340 				return 0;
341 		return -EACCES;
342 	}
343 	/*
344 	 * Read/write DACs are always overridable.
345 	 * Executable DACs are overridable when there is
346 	 * at least one exec bit set.
347 	 */
348 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
349 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 			return 0;
351 
352 	/*
353 	 * Searching includes executable on directories, else just read.
354 	 */
355 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
356 	if (mask == MAY_READ)
357 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
358 			return 0;
359 
360 	return -EACCES;
361 }
362 EXPORT_SYMBOL(generic_permission);
363 
364 /*
365  * We _really_ want to just do "generic_permission()" without
366  * even looking at the inode->i_op values. So we keep a cache
367  * flag in inode->i_opflags, that says "this has not special
368  * permission function, use the fast case".
369  */
370 static inline int do_inode_permission(struct inode *inode, int mask)
371 {
372 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
373 		if (likely(inode->i_op->permission))
374 			return inode->i_op->permission(inode, mask);
375 
376 		/* This gets set once for the inode lifetime */
377 		spin_lock(&inode->i_lock);
378 		inode->i_opflags |= IOP_FASTPERM;
379 		spin_unlock(&inode->i_lock);
380 	}
381 	return generic_permission(inode, mask);
382 }
383 
384 /**
385  * __inode_permission - Check for access rights to a given inode
386  * @inode: Inode to check permission on
387  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
388  *
389  * Check for read/write/execute permissions on an inode.
390  *
391  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
392  *
393  * This does not check for a read-only file system.  You probably want
394  * inode_permission().
395  */
396 int __inode_permission(struct inode *inode, int mask)
397 {
398 	int retval;
399 
400 	if (unlikely(mask & MAY_WRITE)) {
401 		/*
402 		 * Nobody gets write access to an immutable file.
403 		 */
404 		if (IS_IMMUTABLE(inode))
405 			return -EACCES;
406 	}
407 
408 	retval = do_inode_permission(inode, mask);
409 	if (retval)
410 		return retval;
411 
412 	retval = devcgroup_inode_permission(inode, mask);
413 	if (retval)
414 		return retval;
415 
416 	return security_inode_permission(inode, mask);
417 }
418 
419 /**
420  * sb_permission - Check superblock-level permissions
421  * @sb: Superblock of inode to check permission on
422  * @inode: Inode to check permission on
423  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
424  *
425  * Separate out file-system wide checks from inode-specific permission checks.
426  */
427 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
428 {
429 	if (unlikely(mask & MAY_WRITE)) {
430 		umode_t mode = inode->i_mode;
431 
432 		/* Nobody gets write access to a read-only fs. */
433 		if ((sb->s_flags & MS_RDONLY) &&
434 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
435 			return -EROFS;
436 	}
437 	return 0;
438 }
439 
440 /**
441  * inode_permission - Check for access rights to a given inode
442  * @inode: Inode to check permission on
443  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
444  *
445  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
446  * this, letting us set arbitrary permissions for filesystem access without
447  * changing the "normal" UIDs which are used for other things.
448  *
449  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
450  */
451 int inode_permission(struct inode *inode, int mask)
452 {
453 	int retval;
454 
455 	retval = sb_permission(inode->i_sb, inode, mask);
456 	if (retval)
457 		return retval;
458 	return __inode_permission(inode, mask);
459 }
460 EXPORT_SYMBOL(inode_permission);
461 
462 /**
463  * path_get - get a reference to a path
464  * @path: path to get the reference to
465  *
466  * Given a path increment the reference count to the dentry and the vfsmount.
467  */
468 void path_get(const struct path *path)
469 {
470 	mntget(path->mnt);
471 	dget(path->dentry);
472 }
473 EXPORT_SYMBOL(path_get);
474 
475 /**
476  * path_put - put a reference to a path
477  * @path: path to put the reference to
478  *
479  * Given a path decrement the reference count to the dentry and the vfsmount.
480  */
481 void path_put(const struct path *path)
482 {
483 	dput(path->dentry);
484 	mntput(path->mnt);
485 }
486 EXPORT_SYMBOL(path_put);
487 
488 /*
489  * Path walking has 2 modes, rcu-walk and ref-walk (see
490  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
491  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
492  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
493  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
494  * got stuck, so ref-walk may continue from there. If this is not successful
495  * (eg. a seqcount has changed), then failure is returned and it's up to caller
496  * to restart the path walk from the beginning in ref-walk mode.
497  */
498 
499 /**
500  * unlazy_walk - try to switch to ref-walk mode.
501  * @nd: nameidata pathwalk data
502  * @dentry: child of nd->path.dentry or NULL
503  * Returns: 0 on success, -ECHILD on failure
504  *
505  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
506  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
507  * @nd or NULL.  Must be called from rcu-walk context.
508  */
509 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
510 {
511 	struct fs_struct *fs = current->fs;
512 	struct dentry *parent = nd->path.dentry;
513 
514 	BUG_ON(!(nd->flags & LOOKUP_RCU));
515 
516 	/*
517 	 * After legitimizing the bastards, terminate_walk()
518 	 * will do the right thing for non-RCU mode, and all our
519 	 * subsequent exit cases should rcu_read_unlock()
520 	 * before returning.  Do vfsmount first; if dentry
521 	 * can't be legitimized, just set nd->path.dentry to NULL
522 	 * and rely on dput(NULL) being a no-op.
523 	 */
524 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
525 		return -ECHILD;
526 	nd->flags &= ~LOOKUP_RCU;
527 
528 	if (!lockref_get_not_dead(&parent->d_lockref)) {
529 		nd->path.dentry = NULL;
530 		goto out;
531 	}
532 
533 	/*
534 	 * For a negative lookup, the lookup sequence point is the parents
535 	 * sequence point, and it only needs to revalidate the parent dentry.
536 	 *
537 	 * For a positive lookup, we need to move both the parent and the
538 	 * dentry from the RCU domain to be properly refcounted. And the
539 	 * sequence number in the dentry validates *both* dentry counters,
540 	 * since we checked the sequence number of the parent after we got
541 	 * the child sequence number. So we know the parent must still
542 	 * be valid if the child sequence number is still valid.
543 	 */
544 	if (!dentry) {
545 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
546 			goto out;
547 		BUG_ON(nd->inode != parent->d_inode);
548 	} else {
549 		if (!lockref_get_not_dead(&dentry->d_lockref))
550 			goto out;
551 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
552 			goto drop_dentry;
553 	}
554 
555 	/*
556 	 * Sequence counts matched. Now make sure that the root is
557 	 * still valid and get it if required.
558 	 */
559 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
560 		spin_lock(&fs->lock);
561 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
562 			goto unlock_and_drop_dentry;
563 		path_get(&nd->root);
564 		spin_unlock(&fs->lock);
565 	}
566 
567 	rcu_read_unlock();
568 	return 0;
569 
570 unlock_and_drop_dentry:
571 	spin_unlock(&fs->lock);
572 drop_dentry:
573 	rcu_read_unlock();
574 	dput(dentry);
575 	goto drop_root_mnt;
576 out:
577 	rcu_read_unlock();
578 drop_root_mnt:
579 	if (!(nd->flags & LOOKUP_ROOT))
580 		nd->root.mnt = NULL;
581 	return -ECHILD;
582 }
583 
584 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
585 {
586 	return dentry->d_op->d_revalidate(dentry, flags);
587 }
588 
589 /**
590  * complete_walk - successful completion of path walk
591  * @nd:  pointer nameidata
592  *
593  * If we had been in RCU mode, drop out of it and legitimize nd->path.
594  * Revalidate the final result, unless we'd already done that during
595  * the path walk or the filesystem doesn't ask for it.  Return 0 on
596  * success, -error on failure.  In case of failure caller does not
597  * need to drop nd->path.
598  */
599 static int complete_walk(struct nameidata *nd)
600 {
601 	struct dentry *dentry = nd->path.dentry;
602 	int status;
603 
604 	if (nd->flags & LOOKUP_RCU) {
605 		nd->flags &= ~LOOKUP_RCU;
606 		if (!(nd->flags & LOOKUP_ROOT))
607 			nd->root.mnt = NULL;
608 
609 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
610 			rcu_read_unlock();
611 			return -ECHILD;
612 		}
613 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
614 			rcu_read_unlock();
615 			mntput(nd->path.mnt);
616 			return -ECHILD;
617 		}
618 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
619 			rcu_read_unlock();
620 			dput(dentry);
621 			mntput(nd->path.mnt);
622 			return -ECHILD;
623 		}
624 		rcu_read_unlock();
625 	}
626 
627 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
628 		return 0;
629 
630 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
631 		return 0;
632 
633 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
634 	if (status > 0)
635 		return 0;
636 
637 	if (!status)
638 		status = -ESTALE;
639 
640 	path_put(&nd->path);
641 	return status;
642 }
643 
644 static __always_inline void set_root(struct nameidata *nd)
645 {
646 	if (!nd->root.mnt)
647 		get_fs_root(current->fs, &nd->root);
648 }
649 
650 static int link_path_walk(const char *, struct nameidata *);
651 
652 static __always_inline void set_root_rcu(struct nameidata *nd)
653 {
654 	if (!nd->root.mnt) {
655 		struct fs_struct *fs = current->fs;
656 		unsigned seq;
657 
658 		do {
659 			seq = read_seqcount_begin(&fs->seq);
660 			nd->root = fs->root;
661 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
662 		} while (read_seqcount_retry(&fs->seq, seq));
663 	}
664 }
665 
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 	dput(path->dentry);
669 	if (path->mnt != nd->path.mnt)
670 		mntput(path->mnt);
671 }
672 
673 static inline void path_to_nameidata(const struct path *path,
674 					struct nameidata *nd)
675 {
676 	if (!(nd->flags & LOOKUP_RCU)) {
677 		dput(nd->path.dentry);
678 		if (nd->path.mnt != path->mnt)
679 			mntput(nd->path.mnt);
680 	}
681 	nd->path.mnt = path->mnt;
682 	nd->path.dentry = path->dentry;
683 }
684 
685 /*
686  * Helper to directly jump to a known parsed path from ->follow_link,
687  * caller must have taken a reference to path beforehand.
688  */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 	path_put(&nd->path);
692 
693 	nd->path = *path;
694 	nd->inode = nd->path.dentry->d_inode;
695 	nd->flags |= LOOKUP_JUMPED;
696 }
697 
698 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
699 {
700 	struct inode *inode = link->dentry->d_inode;
701 	if (inode->i_op->put_link)
702 		inode->i_op->put_link(link->dentry, nd, cookie);
703 	path_put(link);
704 }
705 
706 int sysctl_protected_symlinks __read_mostly = 0;
707 int sysctl_protected_hardlinks __read_mostly = 0;
708 
709 /**
710  * may_follow_link - Check symlink following for unsafe situations
711  * @link: The path of the symlink
712  * @nd: nameidata pathwalk data
713  *
714  * In the case of the sysctl_protected_symlinks sysctl being enabled,
715  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
716  * in a sticky world-writable directory. This is to protect privileged
717  * processes from failing races against path names that may change out
718  * from under them by way of other users creating malicious symlinks.
719  * It will permit symlinks to be followed only when outside a sticky
720  * world-writable directory, or when the uid of the symlink and follower
721  * match, or when the directory owner matches the symlink's owner.
722  *
723  * Returns 0 if following the symlink is allowed, -ve on error.
724  */
725 static inline int may_follow_link(struct path *link, struct nameidata *nd)
726 {
727 	const struct inode *inode;
728 	const struct inode *parent;
729 
730 	if (!sysctl_protected_symlinks)
731 		return 0;
732 
733 	/* Allowed if owner and follower match. */
734 	inode = link->dentry->d_inode;
735 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
736 		return 0;
737 
738 	/* Allowed if parent directory not sticky and world-writable. */
739 	parent = nd->path.dentry->d_inode;
740 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
741 		return 0;
742 
743 	/* Allowed if parent directory and link owner match. */
744 	if (uid_eq(parent->i_uid, inode->i_uid))
745 		return 0;
746 
747 	audit_log_link_denied("follow_link", link);
748 	path_put_conditional(link, nd);
749 	path_put(&nd->path);
750 	return -EACCES;
751 }
752 
753 /**
754  * safe_hardlink_source - Check for safe hardlink conditions
755  * @inode: the source inode to hardlink from
756  *
757  * Return false if at least one of the following conditions:
758  *    - inode is not a regular file
759  *    - inode is setuid
760  *    - inode is setgid and group-exec
761  *    - access failure for read and write
762  *
763  * Otherwise returns true.
764  */
765 static bool safe_hardlink_source(struct inode *inode)
766 {
767 	umode_t mode = inode->i_mode;
768 
769 	/* Special files should not get pinned to the filesystem. */
770 	if (!S_ISREG(mode))
771 		return false;
772 
773 	/* Setuid files should not get pinned to the filesystem. */
774 	if (mode & S_ISUID)
775 		return false;
776 
777 	/* Executable setgid files should not get pinned to the filesystem. */
778 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
779 		return false;
780 
781 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
782 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
783 		return false;
784 
785 	return true;
786 }
787 
788 /**
789  * may_linkat - Check permissions for creating a hardlink
790  * @link: the source to hardlink from
791  *
792  * Block hardlink when all of:
793  *  - sysctl_protected_hardlinks enabled
794  *  - fsuid does not match inode
795  *  - hardlink source is unsafe (see safe_hardlink_source() above)
796  *  - not CAP_FOWNER
797  *
798  * Returns 0 if successful, -ve on error.
799  */
800 static int may_linkat(struct path *link)
801 {
802 	const struct cred *cred;
803 	struct inode *inode;
804 
805 	if (!sysctl_protected_hardlinks)
806 		return 0;
807 
808 	cred = current_cred();
809 	inode = link->dentry->d_inode;
810 
811 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
812 	 * otherwise, it must be a safe source.
813 	 */
814 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
815 	    capable(CAP_FOWNER))
816 		return 0;
817 
818 	audit_log_link_denied("linkat", link);
819 	return -EPERM;
820 }
821 
822 static __always_inline int
823 follow_link(struct path *link, struct nameidata *nd, void **p)
824 {
825 	struct dentry *dentry = link->dentry;
826 	int error;
827 	char *s;
828 
829 	BUG_ON(nd->flags & LOOKUP_RCU);
830 
831 	if (link->mnt == nd->path.mnt)
832 		mntget(link->mnt);
833 
834 	error = -ELOOP;
835 	if (unlikely(current->total_link_count >= 40))
836 		goto out_put_nd_path;
837 
838 	cond_resched();
839 	current->total_link_count++;
840 
841 	touch_atime(link);
842 	nd_set_link(nd, NULL);
843 
844 	error = security_inode_follow_link(link->dentry, nd);
845 	if (error)
846 		goto out_put_nd_path;
847 
848 	nd->last_type = LAST_BIND;
849 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
850 	error = PTR_ERR(*p);
851 	if (IS_ERR(*p))
852 		goto out_put_nd_path;
853 
854 	error = 0;
855 	s = nd_get_link(nd);
856 	if (s) {
857 		if (unlikely(IS_ERR(s))) {
858 			path_put(&nd->path);
859 			put_link(nd, link, *p);
860 			return PTR_ERR(s);
861 		}
862 		if (*s == '/') {
863 			set_root(nd);
864 			path_put(&nd->path);
865 			nd->path = nd->root;
866 			path_get(&nd->root);
867 			nd->flags |= LOOKUP_JUMPED;
868 		}
869 		nd->inode = nd->path.dentry->d_inode;
870 		error = link_path_walk(s, nd);
871 		if (unlikely(error))
872 			put_link(nd, link, *p);
873 	}
874 
875 	return error;
876 
877 out_put_nd_path:
878 	*p = NULL;
879 	path_put(&nd->path);
880 	path_put(link);
881 	return error;
882 }
883 
884 static int follow_up_rcu(struct path *path)
885 {
886 	struct mount *mnt = real_mount(path->mnt);
887 	struct mount *parent;
888 	struct dentry *mountpoint;
889 
890 	parent = mnt->mnt_parent;
891 	if (&parent->mnt == path->mnt)
892 		return 0;
893 	mountpoint = mnt->mnt_mountpoint;
894 	path->dentry = mountpoint;
895 	path->mnt = &parent->mnt;
896 	return 1;
897 }
898 
899 /*
900  * follow_up - Find the mountpoint of path's vfsmount
901  *
902  * Given a path, find the mountpoint of its source file system.
903  * Replace @path with the path of the mountpoint in the parent mount.
904  * Up is towards /.
905  *
906  * Return 1 if we went up a level and 0 if we were already at the
907  * root.
908  */
909 int follow_up(struct path *path)
910 {
911 	struct mount *mnt = real_mount(path->mnt);
912 	struct mount *parent;
913 	struct dentry *mountpoint;
914 
915 	read_seqlock_excl(&mount_lock);
916 	parent = mnt->mnt_parent;
917 	if (parent == mnt) {
918 		read_sequnlock_excl(&mount_lock);
919 		return 0;
920 	}
921 	mntget(&parent->mnt);
922 	mountpoint = dget(mnt->mnt_mountpoint);
923 	read_sequnlock_excl(&mount_lock);
924 	dput(path->dentry);
925 	path->dentry = mountpoint;
926 	mntput(path->mnt);
927 	path->mnt = &parent->mnt;
928 	return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931 
932 /*
933  * Perform an automount
934  * - return -EISDIR to tell follow_managed() to stop and return the path we
935  *   were called with.
936  */
937 static int follow_automount(struct path *path, unsigned flags,
938 			    bool *need_mntput)
939 {
940 	struct vfsmount *mnt;
941 	int err;
942 
943 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 		return -EREMOTE;
945 
946 	/* We don't want to mount if someone's just doing a stat -
947 	 * unless they're stat'ing a directory and appended a '/' to
948 	 * the name.
949 	 *
950 	 * We do, however, want to mount if someone wants to open or
951 	 * create a file of any type under the mountpoint, wants to
952 	 * traverse through the mountpoint or wants to open the
953 	 * mounted directory.  Also, autofs may mark negative dentries
954 	 * as being automount points.  These will need the attentions
955 	 * of the daemon to instantiate them before they can be used.
956 	 */
957 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 	    path->dentry->d_inode)
960 		return -EISDIR;
961 
962 	current->total_link_count++;
963 	if (current->total_link_count >= 40)
964 		return -ELOOP;
965 
966 	mnt = path->dentry->d_op->d_automount(path);
967 	if (IS_ERR(mnt)) {
968 		/*
969 		 * The filesystem is allowed to return -EISDIR here to indicate
970 		 * it doesn't want to automount.  For instance, autofs would do
971 		 * this so that its userspace daemon can mount on this dentry.
972 		 *
973 		 * However, we can only permit this if it's a terminal point in
974 		 * the path being looked up; if it wasn't then the remainder of
975 		 * the path is inaccessible and we should say so.
976 		 */
977 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 			return -EREMOTE;
979 		return PTR_ERR(mnt);
980 	}
981 
982 	if (!mnt) /* mount collision */
983 		return 0;
984 
985 	if (!*need_mntput) {
986 		/* lock_mount() may release path->mnt on error */
987 		mntget(path->mnt);
988 		*need_mntput = true;
989 	}
990 	err = finish_automount(mnt, path);
991 
992 	switch (err) {
993 	case -EBUSY:
994 		/* Someone else made a mount here whilst we were busy */
995 		return 0;
996 	case 0:
997 		path_put(path);
998 		path->mnt = mnt;
999 		path->dentry = dget(mnt->mnt_root);
1000 		return 0;
1001 	default:
1002 		return err;
1003 	}
1004 
1005 }
1006 
1007 /*
1008  * Handle a dentry that is managed in some way.
1009  * - Flagged for transit management (autofs)
1010  * - Flagged as mountpoint
1011  * - Flagged as automount point
1012  *
1013  * This may only be called in refwalk mode.
1014  *
1015  * Serialization is taken care of in namespace.c
1016  */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 	unsigned managed;
1021 	bool need_mntput = false;
1022 	int ret = 0;
1023 
1024 	/* Given that we're not holding a lock here, we retain the value in a
1025 	 * local variable for each dentry as we look at it so that we don't see
1026 	 * the components of that value change under us */
1027 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 	       managed &= DCACHE_MANAGED_DENTRY,
1029 	       unlikely(managed != 0)) {
1030 		/* Allow the filesystem to manage the transit without i_mutex
1031 		 * being held. */
1032 		if (managed & DCACHE_MANAGE_TRANSIT) {
1033 			BUG_ON(!path->dentry->d_op);
1034 			BUG_ON(!path->dentry->d_op->d_manage);
1035 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 			if (ret < 0)
1037 				break;
1038 		}
1039 
1040 		/* Transit to a mounted filesystem. */
1041 		if (managed & DCACHE_MOUNTED) {
1042 			struct vfsmount *mounted = lookup_mnt(path);
1043 			if (mounted) {
1044 				dput(path->dentry);
1045 				if (need_mntput)
1046 					mntput(path->mnt);
1047 				path->mnt = mounted;
1048 				path->dentry = dget(mounted->mnt_root);
1049 				need_mntput = true;
1050 				continue;
1051 			}
1052 
1053 			/* Something is mounted on this dentry in another
1054 			 * namespace and/or whatever was mounted there in this
1055 			 * namespace got unmounted before lookup_mnt() could
1056 			 * get it */
1057 		}
1058 
1059 		/* Handle an automount point */
1060 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 			ret = follow_automount(path, flags, &need_mntput);
1062 			if (ret < 0)
1063 				break;
1064 			continue;
1065 		}
1066 
1067 		/* We didn't change the current path point */
1068 		break;
1069 	}
1070 
1071 	if (need_mntput && path->mnt == mnt)
1072 		mntput(path->mnt);
1073 	if (ret == -EISDIR)
1074 		ret = 0;
1075 	return ret < 0 ? ret : need_mntput;
1076 }
1077 
1078 int follow_down_one(struct path *path)
1079 {
1080 	struct vfsmount *mounted;
1081 
1082 	mounted = lookup_mnt(path);
1083 	if (mounted) {
1084 		dput(path->dentry);
1085 		mntput(path->mnt);
1086 		path->mnt = mounted;
1087 		path->dentry = dget(mounted->mnt_root);
1088 		return 1;
1089 	}
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093 
1094 static inline int managed_dentry_rcu(struct dentry *dentry)
1095 {
1096 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1097 		dentry->d_op->d_manage(dentry, true) : 0;
1098 }
1099 
1100 /*
1101  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1102  * we meet a managed dentry that would need blocking.
1103  */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 			       struct inode **inode)
1106 {
1107 	for (;;) {
1108 		struct mount *mounted;
1109 		/*
1110 		 * Don't forget we might have a non-mountpoint managed dentry
1111 		 * that wants to block transit.
1112 		 */
1113 		switch (managed_dentry_rcu(path->dentry)) {
1114 		case -ECHILD:
1115 		default:
1116 			return false;
1117 		case -EISDIR:
1118 			return true;
1119 		case 0:
1120 			break;
1121 		}
1122 
1123 		if (!d_mountpoint(path->dentry))
1124 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1125 
1126 		mounted = __lookup_mnt(path->mnt, path->dentry);
1127 		if (!mounted)
1128 			break;
1129 		path->mnt = &mounted->mnt;
1130 		path->dentry = mounted->mnt.mnt_root;
1131 		nd->flags |= LOOKUP_JUMPED;
1132 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1133 		/*
1134 		 * Update the inode too. We don't need to re-check the
1135 		 * dentry sequence number here after this d_inode read,
1136 		 * because a mount-point is always pinned.
1137 		 */
1138 		*inode = path->dentry->d_inode;
1139 	}
1140 	return read_seqretry(&mount_lock, nd->m_seq) &&
1141 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1142 }
1143 
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 	set_root_rcu(nd);
1147 
1148 	while (1) {
1149 		if (nd->path.dentry == nd->root.dentry &&
1150 		    nd->path.mnt == nd->root.mnt) {
1151 			break;
1152 		}
1153 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1154 			struct dentry *old = nd->path.dentry;
1155 			struct dentry *parent = old->d_parent;
1156 			unsigned seq;
1157 
1158 			seq = read_seqcount_begin(&parent->d_seq);
1159 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1160 				goto failed;
1161 			nd->path.dentry = parent;
1162 			nd->seq = seq;
1163 			break;
1164 		}
1165 		if (!follow_up_rcu(&nd->path))
1166 			break;
1167 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1168 	}
1169 	while (d_mountpoint(nd->path.dentry)) {
1170 		struct mount *mounted;
1171 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1172 		if (!mounted)
1173 			break;
1174 		nd->path.mnt = &mounted->mnt;
1175 		nd->path.dentry = mounted->mnt.mnt_root;
1176 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1177 		if (!read_seqretry(&mount_lock, nd->m_seq))
1178 			goto failed;
1179 	}
1180 	nd->inode = nd->path.dentry->d_inode;
1181 	return 0;
1182 
1183 failed:
1184 	nd->flags &= ~LOOKUP_RCU;
1185 	if (!(nd->flags & LOOKUP_ROOT))
1186 		nd->root.mnt = NULL;
1187 	rcu_read_unlock();
1188 	return -ECHILD;
1189 }
1190 
1191 /*
1192  * Follow down to the covering mount currently visible to userspace.  At each
1193  * point, the filesystem owning that dentry may be queried as to whether the
1194  * caller is permitted to proceed or not.
1195  */
1196 int follow_down(struct path *path)
1197 {
1198 	unsigned managed;
1199 	int ret;
1200 
1201 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1202 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1203 		/* Allow the filesystem to manage the transit without i_mutex
1204 		 * being held.
1205 		 *
1206 		 * We indicate to the filesystem if someone is trying to mount
1207 		 * something here.  This gives autofs the chance to deny anyone
1208 		 * other than its daemon the right to mount on its
1209 		 * superstructure.
1210 		 *
1211 		 * The filesystem may sleep at this point.
1212 		 */
1213 		if (managed & DCACHE_MANAGE_TRANSIT) {
1214 			BUG_ON(!path->dentry->d_op);
1215 			BUG_ON(!path->dentry->d_op->d_manage);
1216 			ret = path->dentry->d_op->d_manage(
1217 				path->dentry, false);
1218 			if (ret < 0)
1219 				return ret == -EISDIR ? 0 : ret;
1220 		}
1221 
1222 		/* Transit to a mounted filesystem. */
1223 		if (managed & DCACHE_MOUNTED) {
1224 			struct vfsmount *mounted = lookup_mnt(path);
1225 			if (!mounted)
1226 				break;
1227 			dput(path->dentry);
1228 			mntput(path->mnt);
1229 			path->mnt = mounted;
1230 			path->dentry = dget(mounted->mnt_root);
1231 			continue;
1232 		}
1233 
1234 		/* Don't handle automount points here */
1235 		break;
1236 	}
1237 	return 0;
1238 }
1239 EXPORT_SYMBOL(follow_down);
1240 
1241 /*
1242  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1243  */
1244 static void follow_mount(struct path *path)
1245 {
1246 	while (d_mountpoint(path->dentry)) {
1247 		struct vfsmount *mounted = lookup_mnt(path);
1248 		if (!mounted)
1249 			break;
1250 		dput(path->dentry);
1251 		mntput(path->mnt);
1252 		path->mnt = mounted;
1253 		path->dentry = dget(mounted->mnt_root);
1254 	}
1255 }
1256 
1257 static void follow_dotdot(struct nameidata *nd)
1258 {
1259 	set_root(nd);
1260 
1261 	while(1) {
1262 		struct dentry *old = nd->path.dentry;
1263 
1264 		if (nd->path.dentry == nd->root.dentry &&
1265 		    nd->path.mnt == nd->root.mnt) {
1266 			break;
1267 		}
1268 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1269 			/* rare case of legitimate dget_parent()... */
1270 			nd->path.dentry = dget_parent(nd->path.dentry);
1271 			dput(old);
1272 			break;
1273 		}
1274 		if (!follow_up(&nd->path))
1275 			break;
1276 	}
1277 	follow_mount(&nd->path);
1278 	nd->inode = nd->path.dentry->d_inode;
1279 }
1280 
1281 /*
1282  * This looks up the name in dcache, possibly revalidates the old dentry and
1283  * allocates a new one if not found or not valid.  In the need_lookup argument
1284  * returns whether i_op->lookup is necessary.
1285  *
1286  * dir->d_inode->i_mutex must be held
1287  */
1288 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1289 				    unsigned int flags, bool *need_lookup)
1290 {
1291 	struct dentry *dentry;
1292 	int error;
1293 
1294 	*need_lookup = false;
1295 	dentry = d_lookup(dir, name);
1296 	if (dentry) {
1297 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1298 			error = d_revalidate(dentry, flags);
1299 			if (unlikely(error <= 0)) {
1300 				if (error < 0) {
1301 					dput(dentry);
1302 					return ERR_PTR(error);
1303 				} else if (!d_invalidate(dentry)) {
1304 					dput(dentry);
1305 					dentry = NULL;
1306 				}
1307 			}
1308 		}
1309 	}
1310 
1311 	if (!dentry) {
1312 		dentry = d_alloc(dir, name);
1313 		if (unlikely(!dentry))
1314 			return ERR_PTR(-ENOMEM);
1315 
1316 		*need_lookup = true;
1317 	}
1318 	return dentry;
1319 }
1320 
1321 /*
1322  * Call i_op->lookup on the dentry.  The dentry must be negative and
1323  * unhashed.
1324  *
1325  * dir->d_inode->i_mutex must be held
1326  */
1327 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1328 				  unsigned int flags)
1329 {
1330 	struct dentry *old;
1331 
1332 	/* Don't create child dentry for a dead directory. */
1333 	if (unlikely(IS_DEADDIR(dir))) {
1334 		dput(dentry);
1335 		return ERR_PTR(-ENOENT);
1336 	}
1337 
1338 	old = dir->i_op->lookup(dir, dentry, flags);
1339 	if (unlikely(old)) {
1340 		dput(dentry);
1341 		dentry = old;
1342 	}
1343 	return dentry;
1344 }
1345 
1346 static struct dentry *__lookup_hash(struct qstr *name,
1347 		struct dentry *base, unsigned int flags)
1348 {
1349 	bool need_lookup;
1350 	struct dentry *dentry;
1351 
1352 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1353 	if (!need_lookup)
1354 		return dentry;
1355 
1356 	return lookup_real(base->d_inode, dentry, flags);
1357 }
1358 
1359 /*
1360  *  It's more convoluted than I'd like it to be, but... it's still fairly
1361  *  small and for now I'd prefer to have fast path as straight as possible.
1362  *  It _is_ time-critical.
1363  */
1364 static int lookup_fast(struct nameidata *nd,
1365 		       struct path *path, struct inode **inode)
1366 {
1367 	struct vfsmount *mnt = nd->path.mnt;
1368 	struct dentry *dentry, *parent = nd->path.dentry;
1369 	int need_reval = 1;
1370 	int status = 1;
1371 	int err;
1372 
1373 	/*
1374 	 * Rename seqlock is not required here because in the off chance
1375 	 * of a false negative due to a concurrent rename, we're going to
1376 	 * do the non-racy lookup, below.
1377 	 */
1378 	if (nd->flags & LOOKUP_RCU) {
1379 		unsigned seq;
1380 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1381 		if (!dentry)
1382 			goto unlazy;
1383 
1384 		/*
1385 		 * This sequence count validates that the inode matches
1386 		 * the dentry name information from lookup.
1387 		 */
1388 		*inode = dentry->d_inode;
1389 		if (read_seqcount_retry(&dentry->d_seq, seq))
1390 			return -ECHILD;
1391 
1392 		/*
1393 		 * This sequence count validates that the parent had no
1394 		 * changes while we did the lookup of the dentry above.
1395 		 *
1396 		 * The memory barrier in read_seqcount_begin of child is
1397 		 *  enough, we can use __read_seqcount_retry here.
1398 		 */
1399 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1400 			return -ECHILD;
1401 		nd->seq = seq;
1402 
1403 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1404 			status = d_revalidate(dentry, nd->flags);
1405 			if (unlikely(status <= 0)) {
1406 				if (status != -ECHILD)
1407 					need_reval = 0;
1408 				goto unlazy;
1409 			}
1410 		}
1411 		path->mnt = mnt;
1412 		path->dentry = dentry;
1413 		if (likely(__follow_mount_rcu(nd, path, inode)))
1414 			return 0;
1415 unlazy:
1416 		if (unlazy_walk(nd, dentry))
1417 			return -ECHILD;
1418 	} else {
1419 		dentry = __d_lookup(parent, &nd->last);
1420 	}
1421 
1422 	if (unlikely(!dentry))
1423 		goto need_lookup;
1424 
1425 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1426 		status = d_revalidate(dentry, nd->flags);
1427 	if (unlikely(status <= 0)) {
1428 		if (status < 0) {
1429 			dput(dentry);
1430 			return status;
1431 		}
1432 		if (!d_invalidate(dentry)) {
1433 			dput(dentry);
1434 			goto need_lookup;
1435 		}
1436 	}
1437 
1438 	path->mnt = mnt;
1439 	path->dentry = dentry;
1440 	err = follow_managed(path, nd->flags);
1441 	if (unlikely(err < 0)) {
1442 		path_put_conditional(path, nd);
1443 		return err;
1444 	}
1445 	if (err)
1446 		nd->flags |= LOOKUP_JUMPED;
1447 	*inode = path->dentry->d_inode;
1448 	return 0;
1449 
1450 need_lookup:
1451 	return 1;
1452 }
1453 
1454 /* Fast lookup failed, do it the slow way */
1455 static int lookup_slow(struct nameidata *nd, struct path *path)
1456 {
1457 	struct dentry *dentry, *parent;
1458 	int err;
1459 
1460 	parent = nd->path.dentry;
1461 	BUG_ON(nd->inode != parent->d_inode);
1462 
1463 	mutex_lock(&parent->d_inode->i_mutex);
1464 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1465 	mutex_unlock(&parent->d_inode->i_mutex);
1466 	if (IS_ERR(dentry))
1467 		return PTR_ERR(dentry);
1468 	path->mnt = nd->path.mnt;
1469 	path->dentry = dentry;
1470 	err = follow_managed(path, nd->flags);
1471 	if (unlikely(err < 0)) {
1472 		path_put_conditional(path, nd);
1473 		return err;
1474 	}
1475 	if (err)
1476 		nd->flags |= LOOKUP_JUMPED;
1477 	return 0;
1478 }
1479 
1480 static inline int may_lookup(struct nameidata *nd)
1481 {
1482 	if (nd->flags & LOOKUP_RCU) {
1483 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1484 		if (err != -ECHILD)
1485 			return err;
1486 		if (unlazy_walk(nd, NULL))
1487 			return -ECHILD;
1488 	}
1489 	return inode_permission(nd->inode, MAY_EXEC);
1490 }
1491 
1492 static inline int handle_dots(struct nameidata *nd, int type)
1493 {
1494 	if (type == LAST_DOTDOT) {
1495 		if (nd->flags & LOOKUP_RCU) {
1496 			if (follow_dotdot_rcu(nd))
1497 				return -ECHILD;
1498 		} else
1499 			follow_dotdot(nd);
1500 	}
1501 	return 0;
1502 }
1503 
1504 static void terminate_walk(struct nameidata *nd)
1505 {
1506 	if (!(nd->flags & LOOKUP_RCU)) {
1507 		path_put(&nd->path);
1508 	} else {
1509 		nd->flags &= ~LOOKUP_RCU;
1510 		if (!(nd->flags & LOOKUP_ROOT))
1511 			nd->root.mnt = NULL;
1512 		rcu_read_unlock();
1513 	}
1514 }
1515 
1516 /*
1517  * Do we need to follow links? We _really_ want to be able
1518  * to do this check without having to look at inode->i_op,
1519  * so we keep a cache of "no, this doesn't need follow_link"
1520  * for the common case.
1521  */
1522 static inline int should_follow_link(struct dentry *dentry, int follow)
1523 {
1524 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1525 }
1526 
1527 static inline int walk_component(struct nameidata *nd, struct path *path,
1528 		int follow)
1529 {
1530 	struct inode *inode;
1531 	int err;
1532 	/*
1533 	 * "." and ".." are special - ".." especially so because it has
1534 	 * to be able to know about the current root directory and
1535 	 * parent relationships.
1536 	 */
1537 	if (unlikely(nd->last_type != LAST_NORM))
1538 		return handle_dots(nd, nd->last_type);
1539 	err = lookup_fast(nd, path, &inode);
1540 	if (unlikely(err)) {
1541 		if (err < 0)
1542 			goto out_err;
1543 
1544 		err = lookup_slow(nd, path);
1545 		if (err < 0)
1546 			goto out_err;
1547 
1548 		inode = path->dentry->d_inode;
1549 	}
1550 	err = -ENOENT;
1551 	if (!inode || d_is_negative(path->dentry))
1552 		goto out_path_put;
1553 
1554 	if (should_follow_link(path->dentry, follow)) {
1555 		if (nd->flags & LOOKUP_RCU) {
1556 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1557 				err = -ECHILD;
1558 				goto out_err;
1559 			}
1560 		}
1561 		BUG_ON(inode != path->dentry->d_inode);
1562 		return 1;
1563 	}
1564 	path_to_nameidata(path, nd);
1565 	nd->inode = inode;
1566 	return 0;
1567 
1568 out_path_put:
1569 	path_to_nameidata(path, nd);
1570 out_err:
1571 	terminate_walk(nd);
1572 	return err;
1573 }
1574 
1575 /*
1576  * This limits recursive symlink follows to 8, while
1577  * limiting consecutive symlinks to 40.
1578  *
1579  * Without that kind of total limit, nasty chains of consecutive
1580  * symlinks can cause almost arbitrarily long lookups.
1581  */
1582 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1583 {
1584 	int res;
1585 
1586 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1587 		path_put_conditional(path, nd);
1588 		path_put(&nd->path);
1589 		return -ELOOP;
1590 	}
1591 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1592 
1593 	nd->depth++;
1594 	current->link_count++;
1595 
1596 	do {
1597 		struct path link = *path;
1598 		void *cookie;
1599 
1600 		res = follow_link(&link, nd, &cookie);
1601 		if (res)
1602 			break;
1603 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1604 		put_link(nd, &link, cookie);
1605 	} while (res > 0);
1606 
1607 	current->link_count--;
1608 	nd->depth--;
1609 	return res;
1610 }
1611 
1612 /*
1613  * We can do the critical dentry name comparison and hashing
1614  * operations one word at a time, but we are limited to:
1615  *
1616  * - Architectures with fast unaligned word accesses. We could
1617  *   do a "get_unaligned()" if this helps and is sufficiently
1618  *   fast.
1619  *
1620  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1621  *   do not trap on the (extremely unlikely) case of a page
1622  *   crossing operation.
1623  *
1624  * - Furthermore, we need an efficient 64-bit compile for the
1625  *   64-bit case in order to generate the "number of bytes in
1626  *   the final mask". Again, that could be replaced with a
1627  *   efficient population count instruction or similar.
1628  */
1629 #ifdef CONFIG_DCACHE_WORD_ACCESS
1630 
1631 #include <asm/word-at-a-time.h>
1632 
1633 #ifdef CONFIG_64BIT
1634 
1635 static inline unsigned int fold_hash(unsigned long hash)
1636 {
1637 	hash += hash >> (8*sizeof(int));
1638 	return hash;
1639 }
1640 
1641 #else	/* 32-bit case */
1642 
1643 #define fold_hash(x) (x)
1644 
1645 #endif
1646 
1647 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1648 {
1649 	unsigned long a, mask;
1650 	unsigned long hash = 0;
1651 
1652 	for (;;) {
1653 		a = load_unaligned_zeropad(name);
1654 		if (len < sizeof(unsigned long))
1655 			break;
1656 		hash += a;
1657 		hash *= 9;
1658 		name += sizeof(unsigned long);
1659 		len -= sizeof(unsigned long);
1660 		if (!len)
1661 			goto done;
1662 	}
1663 	mask = bytemask_from_count(len);
1664 	hash += mask & a;
1665 done:
1666 	return fold_hash(hash);
1667 }
1668 EXPORT_SYMBOL(full_name_hash);
1669 
1670 /*
1671  * Calculate the length and hash of the path component, and
1672  * return the length of the component;
1673  */
1674 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1675 {
1676 	unsigned long a, b, adata, bdata, mask, hash, len;
1677 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1678 
1679 	hash = a = 0;
1680 	len = -sizeof(unsigned long);
1681 	do {
1682 		hash = (hash + a) * 9;
1683 		len += sizeof(unsigned long);
1684 		a = load_unaligned_zeropad(name+len);
1685 		b = a ^ REPEAT_BYTE('/');
1686 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1687 
1688 	adata = prep_zero_mask(a, adata, &constants);
1689 	bdata = prep_zero_mask(b, bdata, &constants);
1690 
1691 	mask = create_zero_mask(adata | bdata);
1692 
1693 	hash += a & zero_bytemask(mask);
1694 	*hashp = fold_hash(hash);
1695 
1696 	return len + find_zero(mask);
1697 }
1698 
1699 #else
1700 
1701 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1702 {
1703 	unsigned long hash = init_name_hash();
1704 	while (len--)
1705 		hash = partial_name_hash(*name++, hash);
1706 	return end_name_hash(hash);
1707 }
1708 EXPORT_SYMBOL(full_name_hash);
1709 
1710 /*
1711  * We know there's a real path component here of at least
1712  * one character.
1713  */
1714 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1715 {
1716 	unsigned long hash = init_name_hash();
1717 	unsigned long len = 0, c;
1718 
1719 	c = (unsigned char)*name;
1720 	do {
1721 		len++;
1722 		hash = partial_name_hash(c, hash);
1723 		c = (unsigned char)name[len];
1724 	} while (c && c != '/');
1725 	*hashp = end_name_hash(hash);
1726 	return len;
1727 }
1728 
1729 #endif
1730 
1731 /*
1732  * Name resolution.
1733  * This is the basic name resolution function, turning a pathname into
1734  * the final dentry. We expect 'base' to be positive and a directory.
1735  *
1736  * Returns 0 and nd will have valid dentry and mnt on success.
1737  * Returns error and drops reference to input namei data on failure.
1738  */
1739 static int link_path_walk(const char *name, struct nameidata *nd)
1740 {
1741 	struct path next;
1742 	int err;
1743 
1744 	while (*name=='/')
1745 		name++;
1746 	if (!*name)
1747 		return 0;
1748 
1749 	/* At this point we know we have a real path component. */
1750 	for(;;) {
1751 		struct qstr this;
1752 		long len;
1753 		int type;
1754 
1755 		err = may_lookup(nd);
1756  		if (err)
1757 			break;
1758 
1759 		len = hash_name(name, &this.hash);
1760 		this.name = name;
1761 		this.len = len;
1762 
1763 		type = LAST_NORM;
1764 		if (name[0] == '.') switch (len) {
1765 			case 2:
1766 				if (name[1] == '.') {
1767 					type = LAST_DOTDOT;
1768 					nd->flags |= LOOKUP_JUMPED;
1769 				}
1770 				break;
1771 			case 1:
1772 				type = LAST_DOT;
1773 		}
1774 		if (likely(type == LAST_NORM)) {
1775 			struct dentry *parent = nd->path.dentry;
1776 			nd->flags &= ~LOOKUP_JUMPED;
1777 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1778 				err = parent->d_op->d_hash(parent, &this);
1779 				if (err < 0)
1780 					break;
1781 			}
1782 		}
1783 
1784 		nd->last = this;
1785 		nd->last_type = type;
1786 
1787 		if (!name[len])
1788 			return 0;
1789 		/*
1790 		 * If it wasn't NUL, we know it was '/'. Skip that
1791 		 * slash, and continue until no more slashes.
1792 		 */
1793 		do {
1794 			len++;
1795 		} while (unlikely(name[len] == '/'));
1796 		if (!name[len])
1797 			return 0;
1798 
1799 		name += len;
1800 
1801 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1802 		if (err < 0)
1803 			return err;
1804 
1805 		if (err) {
1806 			err = nested_symlink(&next, nd);
1807 			if (err)
1808 				return err;
1809 		}
1810 		if (!d_can_lookup(nd->path.dentry)) {
1811 			err = -ENOTDIR;
1812 			break;
1813 		}
1814 	}
1815 	terminate_walk(nd);
1816 	return err;
1817 }
1818 
1819 static int path_init(int dfd, const char *name, unsigned int flags,
1820 		     struct nameidata *nd, struct file **fp)
1821 {
1822 	int retval = 0;
1823 
1824 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1825 	nd->flags = flags | LOOKUP_JUMPED;
1826 	nd->depth = 0;
1827 	if (flags & LOOKUP_ROOT) {
1828 		struct dentry *root = nd->root.dentry;
1829 		struct inode *inode = root->d_inode;
1830 		if (*name) {
1831 			if (!d_can_lookup(root))
1832 				return -ENOTDIR;
1833 			retval = inode_permission(inode, MAY_EXEC);
1834 			if (retval)
1835 				return retval;
1836 		}
1837 		nd->path = nd->root;
1838 		nd->inode = inode;
1839 		if (flags & LOOKUP_RCU) {
1840 			rcu_read_lock();
1841 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1842 			nd->m_seq = read_seqbegin(&mount_lock);
1843 		} else {
1844 			path_get(&nd->path);
1845 		}
1846 		return 0;
1847 	}
1848 
1849 	nd->root.mnt = NULL;
1850 
1851 	nd->m_seq = read_seqbegin(&mount_lock);
1852 	if (*name=='/') {
1853 		if (flags & LOOKUP_RCU) {
1854 			rcu_read_lock();
1855 			set_root_rcu(nd);
1856 		} else {
1857 			set_root(nd);
1858 			path_get(&nd->root);
1859 		}
1860 		nd->path = nd->root;
1861 	} else if (dfd == AT_FDCWD) {
1862 		if (flags & LOOKUP_RCU) {
1863 			struct fs_struct *fs = current->fs;
1864 			unsigned seq;
1865 
1866 			rcu_read_lock();
1867 
1868 			do {
1869 				seq = read_seqcount_begin(&fs->seq);
1870 				nd->path = fs->pwd;
1871 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1872 			} while (read_seqcount_retry(&fs->seq, seq));
1873 		} else {
1874 			get_fs_pwd(current->fs, &nd->path);
1875 		}
1876 	} else {
1877 		/* Caller must check execute permissions on the starting path component */
1878 		struct fd f = fdget_raw(dfd);
1879 		struct dentry *dentry;
1880 
1881 		if (!f.file)
1882 			return -EBADF;
1883 
1884 		dentry = f.file->f_path.dentry;
1885 
1886 		if (*name) {
1887 			if (!d_can_lookup(dentry)) {
1888 				fdput(f);
1889 				return -ENOTDIR;
1890 			}
1891 		}
1892 
1893 		nd->path = f.file->f_path;
1894 		if (flags & LOOKUP_RCU) {
1895 			if (f.flags & FDPUT_FPUT)
1896 				*fp = f.file;
1897 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1898 			rcu_read_lock();
1899 		} else {
1900 			path_get(&nd->path);
1901 			fdput(f);
1902 		}
1903 	}
1904 
1905 	nd->inode = nd->path.dentry->d_inode;
1906 	return 0;
1907 }
1908 
1909 static inline int lookup_last(struct nameidata *nd, struct path *path)
1910 {
1911 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1912 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1913 
1914 	nd->flags &= ~LOOKUP_PARENT;
1915 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1916 }
1917 
1918 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1919 static int path_lookupat(int dfd, const char *name,
1920 				unsigned int flags, struct nameidata *nd)
1921 {
1922 	struct file *base = NULL;
1923 	struct path path;
1924 	int err;
1925 
1926 	/*
1927 	 * Path walking is largely split up into 2 different synchronisation
1928 	 * schemes, rcu-walk and ref-walk (explained in
1929 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1930 	 * path walk code, but some things particularly setup, cleanup, and
1931 	 * following mounts are sufficiently divergent that functions are
1932 	 * duplicated. Typically there is a function foo(), and its RCU
1933 	 * analogue, foo_rcu().
1934 	 *
1935 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1936 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1937 	 * be handled by restarting a traditional ref-walk (which will always
1938 	 * be able to complete).
1939 	 */
1940 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1941 
1942 	if (unlikely(err))
1943 		return err;
1944 
1945 	current->total_link_count = 0;
1946 	err = link_path_walk(name, nd);
1947 
1948 	if (!err && !(flags & LOOKUP_PARENT)) {
1949 		err = lookup_last(nd, &path);
1950 		while (err > 0) {
1951 			void *cookie;
1952 			struct path link = path;
1953 			err = may_follow_link(&link, nd);
1954 			if (unlikely(err))
1955 				break;
1956 			nd->flags |= LOOKUP_PARENT;
1957 			err = follow_link(&link, nd, &cookie);
1958 			if (err)
1959 				break;
1960 			err = lookup_last(nd, &path);
1961 			put_link(nd, &link, cookie);
1962 		}
1963 	}
1964 
1965 	if (!err)
1966 		err = complete_walk(nd);
1967 
1968 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1969 		if (!d_can_lookup(nd->path.dentry)) {
1970 			path_put(&nd->path);
1971 			err = -ENOTDIR;
1972 		}
1973 	}
1974 
1975 	if (base)
1976 		fput(base);
1977 
1978 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1979 		path_put(&nd->root);
1980 		nd->root.mnt = NULL;
1981 	}
1982 	return err;
1983 }
1984 
1985 static int filename_lookup(int dfd, struct filename *name,
1986 				unsigned int flags, struct nameidata *nd)
1987 {
1988 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1989 	if (unlikely(retval == -ECHILD))
1990 		retval = path_lookupat(dfd, name->name, flags, nd);
1991 	if (unlikely(retval == -ESTALE))
1992 		retval = path_lookupat(dfd, name->name,
1993 						flags | LOOKUP_REVAL, nd);
1994 
1995 	if (likely(!retval))
1996 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1997 	return retval;
1998 }
1999 
2000 static int do_path_lookup(int dfd, const char *name,
2001 				unsigned int flags, struct nameidata *nd)
2002 {
2003 	struct filename filename = { .name = name };
2004 
2005 	return filename_lookup(dfd, &filename, flags, nd);
2006 }
2007 
2008 /* does lookup, returns the object with parent locked */
2009 struct dentry *kern_path_locked(const char *name, struct path *path)
2010 {
2011 	struct nameidata nd;
2012 	struct dentry *d;
2013 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2014 	if (err)
2015 		return ERR_PTR(err);
2016 	if (nd.last_type != LAST_NORM) {
2017 		path_put(&nd.path);
2018 		return ERR_PTR(-EINVAL);
2019 	}
2020 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2021 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2022 	if (IS_ERR(d)) {
2023 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2024 		path_put(&nd.path);
2025 		return d;
2026 	}
2027 	*path = nd.path;
2028 	return d;
2029 }
2030 
2031 int kern_path(const char *name, unsigned int flags, struct path *path)
2032 {
2033 	struct nameidata nd;
2034 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2035 	if (!res)
2036 		*path = nd.path;
2037 	return res;
2038 }
2039 EXPORT_SYMBOL(kern_path);
2040 
2041 /**
2042  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2043  * @dentry:  pointer to dentry of the base directory
2044  * @mnt: pointer to vfs mount of the base directory
2045  * @name: pointer to file name
2046  * @flags: lookup flags
2047  * @path: pointer to struct path to fill
2048  */
2049 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2050 		    const char *name, unsigned int flags,
2051 		    struct path *path)
2052 {
2053 	struct nameidata nd;
2054 	int err;
2055 	nd.root.dentry = dentry;
2056 	nd.root.mnt = mnt;
2057 	BUG_ON(flags & LOOKUP_PARENT);
2058 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2059 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2060 	if (!err)
2061 		*path = nd.path;
2062 	return err;
2063 }
2064 EXPORT_SYMBOL(vfs_path_lookup);
2065 
2066 /*
2067  * Restricted form of lookup. Doesn't follow links, single-component only,
2068  * needs parent already locked. Doesn't follow mounts.
2069  * SMP-safe.
2070  */
2071 static struct dentry *lookup_hash(struct nameidata *nd)
2072 {
2073 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2074 }
2075 
2076 /**
2077  * lookup_one_len - filesystem helper to lookup single pathname component
2078  * @name:	pathname component to lookup
2079  * @base:	base directory to lookup from
2080  * @len:	maximum length @len should be interpreted to
2081  *
2082  * Note that this routine is purely a helper for filesystem usage and should
2083  * not be called by generic code.  Also note that by using this function the
2084  * nameidata argument is passed to the filesystem methods and a filesystem
2085  * using this helper needs to be prepared for that.
2086  */
2087 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2088 {
2089 	struct qstr this;
2090 	unsigned int c;
2091 	int err;
2092 
2093 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2094 
2095 	this.name = name;
2096 	this.len = len;
2097 	this.hash = full_name_hash(name, len);
2098 	if (!len)
2099 		return ERR_PTR(-EACCES);
2100 
2101 	if (unlikely(name[0] == '.')) {
2102 		if (len < 2 || (len == 2 && name[1] == '.'))
2103 			return ERR_PTR(-EACCES);
2104 	}
2105 
2106 	while (len--) {
2107 		c = *(const unsigned char *)name++;
2108 		if (c == '/' || c == '\0')
2109 			return ERR_PTR(-EACCES);
2110 	}
2111 	/*
2112 	 * See if the low-level filesystem might want
2113 	 * to use its own hash..
2114 	 */
2115 	if (base->d_flags & DCACHE_OP_HASH) {
2116 		int err = base->d_op->d_hash(base, &this);
2117 		if (err < 0)
2118 			return ERR_PTR(err);
2119 	}
2120 
2121 	err = inode_permission(base->d_inode, MAY_EXEC);
2122 	if (err)
2123 		return ERR_PTR(err);
2124 
2125 	return __lookup_hash(&this, base, 0);
2126 }
2127 EXPORT_SYMBOL(lookup_one_len);
2128 
2129 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2130 		 struct path *path, int *empty)
2131 {
2132 	struct nameidata nd;
2133 	struct filename *tmp = getname_flags(name, flags, empty);
2134 	int err = PTR_ERR(tmp);
2135 	if (!IS_ERR(tmp)) {
2136 
2137 		BUG_ON(flags & LOOKUP_PARENT);
2138 
2139 		err = filename_lookup(dfd, tmp, flags, &nd);
2140 		putname(tmp);
2141 		if (!err)
2142 			*path = nd.path;
2143 	}
2144 	return err;
2145 }
2146 
2147 int user_path_at(int dfd, const char __user *name, unsigned flags,
2148 		 struct path *path)
2149 {
2150 	return user_path_at_empty(dfd, name, flags, path, NULL);
2151 }
2152 EXPORT_SYMBOL(user_path_at);
2153 
2154 /*
2155  * NB: most callers don't do anything directly with the reference to the
2156  *     to struct filename, but the nd->last pointer points into the name string
2157  *     allocated by getname. So we must hold the reference to it until all
2158  *     path-walking is complete.
2159  */
2160 static struct filename *
2161 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2162 		 unsigned int flags)
2163 {
2164 	struct filename *s = getname(path);
2165 	int error;
2166 
2167 	/* only LOOKUP_REVAL is allowed in extra flags */
2168 	flags &= LOOKUP_REVAL;
2169 
2170 	if (IS_ERR(s))
2171 		return s;
2172 
2173 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2174 	if (error) {
2175 		putname(s);
2176 		return ERR_PTR(error);
2177 	}
2178 
2179 	return s;
2180 }
2181 
2182 /**
2183  * mountpoint_last - look up last component for umount
2184  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2185  * @path: pointer to container for result
2186  *
2187  * This is a special lookup_last function just for umount. In this case, we
2188  * need to resolve the path without doing any revalidation.
2189  *
2190  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2191  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2192  * in almost all cases, this lookup will be served out of the dcache. The only
2193  * cases where it won't are if nd->last refers to a symlink or the path is
2194  * bogus and it doesn't exist.
2195  *
2196  * Returns:
2197  * -error: if there was an error during lookup. This includes -ENOENT if the
2198  *         lookup found a negative dentry. The nd->path reference will also be
2199  *         put in this case.
2200  *
2201  * 0:      if we successfully resolved nd->path and found it to not to be a
2202  *         symlink that needs to be followed. "path" will also be populated.
2203  *         The nd->path reference will also be put.
2204  *
2205  * 1:      if we successfully resolved nd->last and found it to be a symlink
2206  *         that needs to be followed. "path" will be populated with the path
2207  *         to the link, and nd->path will *not* be put.
2208  */
2209 static int
2210 mountpoint_last(struct nameidata *nd, struct path *path)
2211 {
2212 	int error = 0;
2213 	struct dentry *dentry;
2214 	struct dentry *dir = nd->path.dentry;
2215 
2216 	/* If we're in rcuwalk, drop out of it to handle last component */
2217 	if (nd->flags & LOOKUP_RCU) {
2218 		if (unlazy_walk(nd, NULL)) {
2219 			error = -ECHILD;
2220 			goto out;
2221 		}
2222 	}
2223 
2224 	nd->flags &= ~LOOKUP_PARENT;
2225 
2226 	if (unlikely(nd->last_type != LAST_NORM)) {
2227 		error = handle_dots(nd, nd->last_type);
2228 		if (error)
2229 			goto out;
2230 		dentry = dget(nd->path.dentry);
2231 		goto done;
2232 	}
2233 
2234 	mutex_lock(&dir->d_inode->i_mutex);
2235 	dentry = d_lookup(dir, &nd->last);
2236 	if (!dentry) {
2237 		/*
2238 		 * No cached dentry. Mounted dentries are pinned in the cache,
2239 		 * so that means that this dentry is probably a symlink or the
2240 		 * path doesn't actually point to a mounted dentry.
2241 		 */
2242 		dentry = d_alloc(dir, &nd->last);
2243 		if (!dentry) {
2244 			error = -ENOMEM;
2245 			mutex_unlock(&dir->d_inode->i_mutex);
2246 			goto out;
2247 		}
2248 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2249 		error = PTR_ERR(dentry);
2250 		if (IS_ERR(dentry)) {
2251 			mutex_unlock(&dir->d_inode->i_mutex);
2252 			goto out;
2253 		}
2254 	}
2255 	mutex_unlock(&dir->d_inode->i_mutex);
2256 
2257 done:
2258 	if (!dentry->d_inode || d_is_negative(dentry)) {
2259 		error = -ENOENT;
2260 		dput(dentry);
2261 		goto out;
2262 	}
2263 	path->dentry = dentry;
2264 	path->mnt = nd->path.mnt;
2265 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2266 		return 1;
2267 	mntget(path->mnt);
2268 	follow_mount(path);
2269 	error = 0;
2270 out:
2271 	terminate_walk(nd);
2272 	return error;
2273 }
2274 
2275 /**
2276  * path_mountpoint - look up a path to be umounted
2277  * @dfd:	directory file descriptor to start walk from
2278  * @name:	full pathname to walk
2279  * @path:	pointer to container for result
2280  * @flags:	lookup flags
2281  *
2282  * Look up the given name, but don't attempt to revalidate the last component.
2283  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2284  */
2285 static int
2286 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2287 {
2288 	struct file *base = NULL;
2289 	struct nameidata nd;
2290 	int err;
2291 
2292 	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2293 	if (unlikely(err))
2294 		return err;
2295 
2296 	current->total_link_count = 0;
2297 	err = link_path_walk(name, &nd);
2298 	if (err)
2299 		goto out;
2300 
2301 	err = mountpoint_last(&nd, path);
2302 	while (err > 0) {
2303 		void *cookie;
2304 		struct path link = *path;
2305 		err = may_follow_link(&link, &nd);
2306 		if (unlikely(err))
2307 			break;
2308 		nd.flags |= LOOKUP_PARENT;
2309 		err = follow_link(&link, &nd, &cookie);
2310 		if (err)
2311 			break;
2312 		err = mountpoint_last(&nd, path);
2313 		put_link(&nd, &link, cookie);
2314 	}
2315 out:
2316 	if (base)
2317 		fput(base);
2318 
2319 	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2320 		path_put(&nd.root);
2321 
2322 	return err;
2323 }
2324 
2325 static int
2326 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2327 			unsigned int flags)
2328 {
2329 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2330 	if (unlikely(error == -ECHILD))
2331 		error = path_mountpoint(dfd, s->name, path, flags);
2332 	if (unlikely(error == -ESTALE))
2333 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2334 	if (likely(!error))
2335 		audit_inode(s, path->dentry, 0);
2336 	return error;
2337 }
2338 
2339 /**
2340  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2341  * @dfd:	directory file descriptor
2342  * @name:	pathname from userland
2343  * @flags:	lookup flags
2344  * @path:	pointer to container to hold result
2345  *
2346  * A umount is a special case for path walking. We're not actually interested
2347  * in the inode in this situation, and ESTALE errors can be a problem. We
2348  * simply want track down the dentry and vfsmount attached at the mountpoint
2349  * and avoid revalidating the last component.
2350  *
2351  * Returns 0 and populates "path" on success.
2352  */
2353 int
2354 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2355 			struct path *path)
2356 {
2357 	struct filename *s = getname(name);
2358 	int error;
2359 	if (IS_ERR(s))
2360 		return PTR_ERR(s);
2361 	error = filename_mountpoint(dfd, s, path, flags);
2362 	putname(s);
2363 	return error;
2364 }
2365 
2366 int
2367 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2368 			unsigned int flags)
2369 {
2370 	struct filename s = {.name = name};
2371 	return filename_mountpoint(dfd, &s, path, flags);
2372 }
2373 EXPORT_SYMBOL(kern_path_mountpoint);
2374 
2375 /*
2376  * It's inline, so penalty for filesystems that don't use sticky bit is
2377  * minimal.
2378  */
2379 static inline int check_sticky(struct inode *dir, struct inode *inode)
2380 {
2381 	kuid_t fsuid = current_fsuid();
2382 
2383 	if (!(dir->i_mode & S_ISVTX))
2384 		return 0;
2385 	if (uid_eq(inode->i_uid, fsuid))
2386 		return 0;
2387 	if (uid_eq(dir->i_uid, fsuid))
2388 		return 0;
2389 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2390 }
2391 
2392 /*
2393  *	Check whether we can remove a link victim from directory dir, check
2394  *  whether the type of victim is right.
2395  *  1. We can't do it if dir is read-only (done in permission())
2396  *  2. We should have write and exec permissions on dir
2397  *  3. We can't remove anything from append-only dir
2398  *  4. We can't do anything with immutable dir (done in permission())
2399  *  5. If the sticky bit on dir is set we should either
2400  *	a. be owner of dir, or
2401  *	b. be owner of victim, or
2402  *	c. have CAP_FOWNER capability
2403  *  6. If the victim is append-only or immutable we can't do antyhing with
2404  *     links pointing to it.
2405  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2406  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2407  *  9. We can't remove a root or mountpoint.
2408  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2409  *     nfs_async_unlink().
2410  */
2411 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2412 {
2413 	struct inode *inode = victim->d_inode;
2414 	int error;
2415 
2416 	if (d_is_negative(victim))
2417 		return -ENOENT;
2418 	BUG_ON(!inode);
2419 
2420 	BUG_ON(victim->d_parent->d_inode != dir);
2421 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2422 
2423 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2424 	if (error)
2425 		return error;
2426 	if (IS_APPEND(dir))
2427 		return -EPERM;
2428 
2429 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2430 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2431 		return -EPERM;
2432 	if (isdir) {
2433 		if (!d_is_dir(victim))
2434 			return -ENOTDIR;
2435 		if (IS_ROOT(victim))
2436 			return -EBUSY;
2437 	} else if (d_is_dir(victim))
2438 		return -EISDIR;
2439 	if (IS_DEADDIR(dir))
2440 		return -ENOENT;
2441 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2442 		return -EBUSY;
2443 	return 0;
2444 }
2445 
2446 /*	Check whether we can create an object with dentry child in directory
2447  *  dir.
2448  *  1. We can't do it if child already exists (open has special treatment for
2449  *     this case, but since we are inlined it's OK)
2450  *  2. We can't do it if dir is read-only (done in permission())
2451  *  3. We should have write and exec permissions on dir
2452  *  4. We can't do it if dir is immutable (done in permission())
2453  */
2454 static inline int may_create(struct inode *dir, struct dentry *child)
2455 {
2456 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2457 	if (child->d_inode)
2458 		return -EEXIST;
2459 	if (IS_DEADDIR(dir))
2460 		return -ENOENT;
2461 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2462 }
2463 
2464 /*
2465  * p1 and p2 should be directories on the same fs.
2466  */
2467 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2468 {
2469 	struct dentry *p;
2470 
2471 	if (p1 == p2) {
2472 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2473 		return NULL;
2474 	}
2475 
2476 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2477 
2478 	p = d_ancestor(p2, p1);
2479 	if (p) {
2480 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2481 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2482 		return p;
2483 	}
2484 
2485 	p = d_ancestor(p1, p2);
2486 	if (p) {
2487 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2488 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2489 		return p;
2490 	}
2491 
2492 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2493 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2494 	return NULL;
2495 }
2496 EXPORT_SYMBOL(lock_rename);
2497 
2498 void unlock_rename(struct dentry *p1, struct dentry *p2)
2499 {
2500 	mutex_unlock(&p1->d_inode->i_mutex);
2501 	if (p1 != p2) {
2502 		mutex_unlock(&p2->d_inode->i_mutex);
2503 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2504 	}
2505 }
2506 EXPORT_SYMBOL(unlock_rename);
2507 
2508 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2509 		bool want_excl)
2510 {
2511 	int error = may_create(dir, dentry);
2512 	if (error)
2513 		return error;
2514 
2515 	if (!dir->i_op->create)
2516 		return -EACCES;	/* shouldn't it be ENOSYS? */
2517 	mode &= S_IALLUGO;
2518 	mode |= S_IFREG;
2519 	error = security_inode_create(dir, dentry, mode);
2520 	if (error)
2521 		return error;
2522 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2523 	if (!error)
2524 		fsnotify_create(dir, dentry);
2525 	return error;
2526 }
2527 EXPORT_SYMBOL(vfs_create);
2528 
2529 static int may_open(struct path *path, int acc_mode, int flag)
2530 {
2531 	struct dentry *dentry = path->dentry;
2532 	struct inode *inode = dentry->d_inode;
2533 	int error;
2534 
2535 	/* O_PATH? */
2536 	if (!acc_mode)
2537 		return 0;
2538 
2539 	if (!inode)
2540 		return -ENOENT;
2541 
2542 	switch (inode->i_mode & S_IFMT) {
2543 	case S_IFLNK:
2544 		return -ELOOP;
2545 	case S_IFDIR:
2546 		if (acc_mode & MAY_WRITE)
2547 			return -EISDIR;
2548 		break;
2549 	case S_IFBLK:
2550 	case S_IFCHR:
2551 		if (path->mnt->mnt_flags & MNT_NODEV)
2552 			return -EACCES;
2553 		/*FALLTHRU*/
2554 	case S_IFIFO:
2555 	case S_IFSOCK:
2556 		flag &= ~O_TRUNC;
2557 		break;
2558 	}
2559 
2560 	error = inode_permission(inode, acc_mode);
2561 	if (error)
2562 		return error;
2563 
2564 	/*
2565 	 * An append-only file must be opened in append mode for writing.
2566 	 */
2567 	if (IS_APPEND(inode)) {
2568 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2569 			return -EPERM;
2570 		if (flag & O_TRUNC)
2571 			return -EPERM;
2572 	}
2573 
2574 	/* O_NOATIME can only be set by the owner or superuser */
2575 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2576 		return -EPERM;
2577 
2578 	return 0;
2579 }
2580 
2581 static int handle_truncate(struct file *filp)
2582 {
2583 	struct path *path = &filp->f_path;
2584 	struct inode *inode = path->dentry->d_inode;
2585 	int error = get_write_access(inode);
2586 	if (error)
2587 		return error;
2588 	/*
2589 	 * Refuse to truncate files with mandatory locks held on them.
2590 	 */
2591 	error = locks_verify_locked(filp);
2592 	if (!error)
2593 		error = security_path_truncate(path);
2594 	if (!error) {
2595 		error = do_truncate(path->dentry, 0,
2596 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2597 				    filp);
2598 	}
2599 	put_write_access(inode);
2600 	return error;
2601 }
2602 
2603 static inline int open_to_namei_flags(int flag)
2604 {
2605 	if ((flag & O_ACCMODE) == 3)
2606 		flag--;
2607 	return flag;
2608 }
2609 
2610 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2611 {
2612 	int error = security_path_mknod(dir, dentry, mode, 0);
2613 	if (error)
2614 		return error;
2615 
2616 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2617 	if (error)
2618 		return error;
2619 
2620 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2621 }
2622 
2623 /*
2624  * Attempt to atomically look up, create and open a file from a negative
2625  * dentry.
2626  *
2627  * Returns 0 if successful.  The file will have been created and attached to
2628  * @file by the filesystem calling finish_open().
2629  *
2630  * Returns 1 if the file was looked up only or didn't need creating.  The
2631  * caller will need to perform the open themselves.  @path will have been
2632  * updated to point to the new dentry.  This may be negative.
2633  *
2634  * Returns an error code otherwise.
2635  */
2636 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2637 			struct path *path, struct file *file,
2638 			const struct open_flags *op,
2639 			bool got_write, bool need_lookup,
2640 			int *opened)
2641 {
2642 	struct inode *dir =  nd->path.dentry->d_inode;
2643 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2644 	umode_t mode;
2645 	int error;
2646 	int acc_mode;
2647 	int create_error = 0;
2648 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2649 	bool excl;
2650 
2651 	BUG_ON(dentry->d_inode);
2652 
2653 	/* Don't create child dentry for a dead directory. */
2654 	if (unlikely(IS_DEADDIR(dir))) {
2655 		error = -ENOENT;
2656 		goto out;
2657 	}
2658 
2659 	mode = op->mode;
2660 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2661 		mode &= ~current_umask();
2662 
2663 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2664 	if (excl)
2665 		open_flag &= ~O_TRUNC;
2666 
2667 	/*
2668 	 * Checking write permission is tricky, bacuse we don't know if we are
2669 	 * going to actually need it: O_CREAT opens should work as long as the
2670 	 * file exists.  But checking existence breaks atomicity.  The trick is
2671 	 * to check access and if not granted clear O_CREAT from the flags.
2672 	 *
2673 	 * Another problem is returing the "right" error value (e.g. for an
2674 	 * O_EXCL open we want to return EEXIST not EROFS).
2675 	 */
2676 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2677 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2678 		if (!(open_flag & O_CREAT)) {
2679 			/*
2680 			 * No O_CREATE -> atomicity not a requirement -> fall
2681 			 * back to lookup + open
2682 			 */
2683 			goto no_open;
2684 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2685 			/* Fall back and fail with the right error */
2686 			create_error = -EROFS;
2687 			goto no_open;
2688 		} else {
2689 			/* No side effects, safe to clear O_CREAT */
2690 			create_error = -EROFS;
2691 			open_flag &= ~O_CREAT;
2692 		}
2693 	}
2694 
2695 	if (open_flag & O_CREAT) {
2696 		error = may_o_create(&nd->path, dentry, mode);
2697 		if (error) {
2698 			create_error = error;
2699 			if (open_flag & O_EXCL)
2700 				goto no_open;
2701 			open_flag &= ~O_CREAT;
2702 		}
2703 	}
2704 
2705 	if (nd->flags & LOOKUP_DIRECTORY)
2706 		open_flag |= O_DIRECTORY;
2707 
2708 	file->f_path.dentry = DENTRY_NOT_SET;
2709 	file->f_path.mnt = nd->path.mnt;
2710 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2711 				      opened);
2712 	if (error < 0) {
2713 		if (create_error && error == -ENOENT)
2714 			error = create_error;
2715 		goto out;
2716 	}
2717 
2718 	if (error) {	/* returned 1, that is */
2719 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2720 			error = -EIO;
2721 			goto out;
2722 		}
2723 		if (file->f_path.dentry) {
2724 			dput(dentry);
2725 			dentry = file->f_path.dentry;
2726 		}
2727 		if (*opened & FILE_CREATED)
2728 			fsnotify_create(dir, dentry);
2729 		if (!dentry->d_inode) {
2730 			WARN_ON(*opened & FILE_CREATED);
2731 			if (create_error) {
2732 				error = create_error;
2733 				goto out;
2734 			}
2735 		} else {
2736 			if (excl && !(*opened & FILE_CREATED)) {
2737 				error = -EEXIST;
2738 				goto out;
2739 			}
2740 		}
2741 		goto looked_up;
2742 	}
2743 
2744 	/*
2745 	 * We didn't have the inode before the open, so check open permission
2746 	 * here.
2747 	 */
2748 	acc_mode = op->acc_mode;
2749 	if (*opened & FILE_CREATED) {
2750 		WARN_ON(!(open_flag & O_CREAT));
2751 		fsnotify_create(dir, dentry);
2752 		acc_mode = MAY_OPEN;
2753 	}
2754 	error = may_open(&file->f_path, acc_mode, open_flag);
2755 	if (error)
2756 		fput(file);
2757 
2758 out:
2759 	dput(dentry);
2760 	return error;
2761 
2762 no_open:
2763 	if (need_lookup) {
2764 		dentry = lookup_real(dir, dentry, nd->flags);
2765 		if (IS_ERR(dentry))
2766 			return PTR_ERR(dentry);
2767 
2768 		if (create_error) {
2769 			int open_flag = op->open_flag;
2770 
2771 			error = create_error;
2772 			if ((open_flag & O_EXCL)) {
2773 				if (!dentry->d_inode)
2774 					goto out;
2775 			} else if (!dentry->d_inode) {
2776 				goto out;
2777 			} else if ((open_flag & O_TRUNC) &&
2778 				   S_ISREG(dentry->d_inode->i_mode)) {
2779 				goto out;
2780 			}
2781 			/* will fail later, go on to get the right error */
2782 		}
2783 	}
2784 looked_up:
2785 	path->dentry = dentry;
2786 	path->mnt = nd->path.mnt;
2787 	return 1;
2788 }
2789 
2790 /*
2791  * Look up and maybe create and open the last component.
2792  *
2793  * Must be called with i_mutex held on parent.
2794  *
2795  * Returns 0 if the file was successfully atomically created (if necessary) and
2796  * opened.  In this case the file will be returned attached to @file.
2797  *
2798  * Returns 1 if the file was not completely opened at this time, though lookups
2799  * and creations will have been performed and the dentry returned in @path will
2800  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2801  * specified then a negative dentry may be returned.
2802  *
2803  * An error code is returned otherwise.
2804  *
2805  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2806  * cleared otherwise prior to returning.
2807  */
2808 static int lookup_open(struct nameidata *nd, struct path *path,
2809 			struct file *file,
2810 			const struct open_flags *op,
2811 			bool got_write, int *opened)
2812 {
2813 	struct dentry *dir = nd->path.dentry;
2814 	struct inode *dir_inode = dir->d_inode;
2815 	struct dentry *dentry;
2816 	int error;
2817 	bool need_lookup;
2818 
2819 	*opened &= ~FILE_CREATED;
2820 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2821 	if (IS_ERR(dentry))
2822 		return PTR_ERR(dentry);
2823 
2824 	/* Cached positive dentry: will open in f_op->open */
2825 	if (!need_lookup && dentry->d_inode)
2826 		goto out_no_open;
2827 
2828 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2829 		return atomic_open(nd, dentry, path, file, op, got_write,
2830 				   need_lookup, opened);
2831 	}
2832 
2833 	if (need_lookup) {
2834 		BUG_ON(dentry->d_inode);
2835 
2836 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2837 		if (IS_ERR(dentry))
2838 			return PTR_ERR(dentry);
2839 	}
2840 
2841 	/* Negative dentry, just create the file */
2842 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2843 		umode_t mode = op->mode;
2844 		if (!IS_POSIXACL(dir->d_inode))
2845 			mode &= ~current_umask();
2846 		/*
2847 		 * This write is needed to ensure that a
2848 		 * rw->ro transition does not occur between
2849 		 * the time when the file is created and when
2850 		 * a permanent write count is taken through
2851 		 * the 'struct file' in finish_open().
2852 		 */
2853 		if (!got_write) {
2854 			error = -EROFS;
2855 			goto out_dput;
2856 		}
2857 		*opened |= FILE_CREATED;
2858 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2859 		if (error)
2860 			goto out_dput;
2861 		error = vfs_create(dir->d_inode, dentry, mode,
2862 				   nd->flags & LOOKUP_EXCL);
2863 		if (error)
2864 			goto out_dput;
2865 	}
2866 out_no_open:
2867 	path->dentry = dentry;
2868 	path->mnt = nd->path.mnt;
2869 	return 1;
2870 
2871 out_dput:
2872 	dput(dentry);
2873 	return error;
2874 }
2875 
2876 /*
2877  * Handle the last step of open()
2878  */
2879 static int do_last(struct nameidata *nd, struct path *path,
2880 		   struct file *file, const struct open_flags *op,
2881 		   int *opened, struct filename *name)
2882 {
2883 	struct dentry *dir = nd->path.dentry;
2884 	int open_flag = op->open_flag;
2885 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2886 	bool got_write = false;
2887 	int acc_mode = op->acc_mode;
2888 	struct inode *inode;
2889 	bool symlink_ok = false;
2890 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2891 	bool retried = false;
2892 	int error;
2893 
2894 	nd->flags &= ~LOOKUP_PARENT;
2895 	nd->flags |= op->intent;
2896 
2897 	if (nd->last_type != LAST_NORM) {
2898 		error = handle_dots(nd, nd->last_type);
2899 		if (error)
2900 			return error;
2901 		goto finish_open;
2902 	}
2903 
2904 	if (!(open_flag & O_CREAT)) {
2905 		if (nd->last.name[nd->last.len])
2906 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2907 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2908 			symlink_ok = true;
2909 		/* we _can_ be in RCU mode here */
2910 		error = lookup_fast(nd, path, &inode);
2911 		if (likely(!error))
2912 			goto finish_lookup;
2913 
2914 		if (error < 0)
2915 			goto out;
2916 
2917 		BUG_ON(nd->inode != dir->d_inode);
2918 	} else {
2919 		/* create side of things */
2920 		/*
2921 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2922 		 * has been cleared when we got to the last component we are
2923 		 * about to look up
2924 		 */
2925 		error = complete_walk(nd);
2926 		if (error)
2927 			return error;
2928 
2929 		audit_inode(name, dir, LOOKUP_PARENT);
2930 		error = -EISDIR;
2931 		/* trailing slashes? */
2932 		if (nd->last.name[nd->last.len])
2933 			goto out;
2934 	}
2935 
2936 retry_lookup:
2937 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2938 		error = mnt_want_write(nd->path.mnt);
2939 		if (!error)
2940 			got_write = true;
2941 		/*
2942 		 * do _not_ fail yet - we might not need that or fail with
2943 		 * a different error; let lookup_open() decide; we'll be
2944 		 * dropping this one anyway.
2945 		 */
2946 	}
2947 	mutex_lock(&dir->d_inode->i_mutex);
2948 	error = lookup_open(nd, path, file, op, got_write, opened);
2949 	mutex_unlock(&dir->d_inode->i_mutex);
2950 
2951 	if (error <= 0) {
2952 		if (error)
2953 			goto out;
2954 
2955 		if ((*opened & FILE_CREATED) ||
2956 		    !S_ISREG(file_inode(file)->i_mode))
2957 			will_truncate = false;
2958 
2959 		audit_inode(name, file->f_path.dentry, 0);
2960 		goto opened;
2961 	}
2962 
2963 	if (*opened & FILE_CREATED) {
2964 		/* Don't check for write permission, don't truncate */
2965 		open_flag &= ~O_TRUNC;
2966 		will_truncate = false;
2967 		acc_mode = MAY_OPEN;
2968 		path_to_nameidata(path, nd);
2969 		goto finish_open_created;
2970 	}
2971 
2972 	/*
2973 	 * create/update audit record if it already exists.
2974 	 */
2975 	if (d_is_positive(path->dentry))
2976 		audit_inode(name, path->dentry, 0);
2977 
2978 	/*
2979 	 * If atomic_open() acquired write access it is dropped now due to
2980 	 * possible mount and symlink following (this might be optimized away if
2981 	 * necessary...)
2982 	 */
2983 	if (got_write) {
2984 		mnt_drop_write(nd->path.mnt);
2985 		got_write = false;
2986 	}
2987 
2988 	error = -EEXIST;
2989 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2990 		goto exit_dput;
2991 
2992 	error = follow_managed(path, nd->flags);
2993 	if (error < 0)
2994 		goto exit_dput;
2995 
2996 	if (error)
2997 		nd->flags |= LOOKUP_JUMPED;
2998 
2999 	BUG_ON(nd->flags & LOOKUP_RCU);
3000 	inode = path->dentry->d_inode;
3001 finish_lookup:
3002 	/* we _can_ be in RCU mode here */
3003 	error = -ENOENT;
3004 	if (!inode || d_is_negative(path->dentry)) {
3005 		path_to_nameidata(path, nd);
3006 		goto out;
3007 	}
3008 
3009 	if (should_follow_link(path->dentry, !symlink_ok)) {
3010 		if (nd->flags & LOOKUP_RCU) {
3011 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3012 				error = -ECHILD;
3013 				goto out;
3014 			}
3015 		}
3016 		BUG_ON(inode != path->dentry->d_inode);
3017 		return 1;
3018 	}
3019 
3020 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3021 		path_to_nameidata(path, nd);
3022 	} else {
3023 		save_parent.dentry = nd->path.dentry;
3024 		save_parent.mnt = mntget(path->mnt);
3025 		nd->path.dentry = path->dentry;
3026 
3027 	}
3028 	nd->inode = inode;
3029 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3030 finish_open:
3031 	error = complete_walk(nd);
3032 	if (error) {
3033 		path_put(&save_parent);
3034 		return error;
3035 	}
3036 	audit_inode(name, nd->path.dentry, 0);
3037 	error = -EISDIR;
3038 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3039 		goto out;
3040 	error = -ENOTDIR;
3041 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3042 		goto out;
3043 	if (!S_ISREG(nd->inode->i_mode))
3044 		will_truncate = false;
3045 
3046 	if (will_truncate) {
3047 		error = mnt_want_write(nd->path.mnt);
3048 		if (error)
3049 			goto out;
3050 		got_write = true;
3051 	}
3052 finish_open_created:
3053 	error = may_open(&nd->path, acc_mode, open_flag);
3054 	if (error)
3055 		goto out;
3056 	file->f_path.mnt = nd->path.mnt;
3057 	error = finish_open(file, nd->path.dentry, NULL, opened);
3058 	if (error) {
3059 		if (error == -EOPENSTALE)
3060 			goto stale_open;
3061 		goto out;
3062 	}
3063 opened:
3064 	error = open_check_o_direct(file);
3065 	if (error)
3066 		goto exit_fput;
3067 	error = ima_file_check(file, op->acc_mode);
3068 	if (error)
3069 		goto exit_fput;
3070 
3071 	if (will_truncate) {
3072 		error = handle_truncate(file);
3073 		if (error)
3074 			goto exit_fput;
3075 	}
3076 out:
3077 	if (got_write)
3078 		mnt_drop_write(nd->path.mnt);
3079 	path_put(&save_parent);
3080 	terminate_walk(nd);
3081 	return error;
3082 
3083 exit_dput:
3084 	path_put_conditional(path, nd);
3085 	goto out;
3086 exit_fput:
3087 	fput(file);
3088 	goto out;
3089 
3090 stale_open:
3091 	/* If no saved parent or already retried then can't retry */
3092 	if (!save_parent.dentry || retried)
3093 		goto out;
3094 
3095 	BUG_ON(save_parent.dentry != dir);
3096 	path_put(&nd->path);
3097 	nd->path = save_parent;
3098 	nd->inode = dir->d_inode;
3099 	save_parent.mnt = NULL;
3100 	save_parent.dentry = NULL;
3101 	if (got_write) {
3102 		mnt_drop_write(nd->path.mnt);
3103 		got_write = false;
3104 	}
3105 	retried = true;
3106 	goto retry_lookup;
3107 }
3108 
3109 static int do_tmpfile(int dfd, struct filename *pathname,
3110 		struct nameidata *nd, int flags,
3111 		const struct open_flags *op,
3112 		struct file *file, int *opened)
3113 {
3114 	static const struct qstr name = QSTR_INIT("/", 1);
3115 	struct dentry *dentry, *child;
3116 	struct inode *dir;
3117 	int error = path_lookupat(dfd, pathname->name,
3118 				  flags | LOOKUP_DIRECTORY, nd);
3119 	if (unlikely(error))
3120 		return error;
3121 	error = mnt_want_write(nd->path.mnt);
3122 	if (unlikely(error))
3123 		goto out;
3124 	/* we want directory to be writable */
3125 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3126 	if (error)
3127 		goto out2;
3128 	dentry = nd->path.dentry;
3129 	dir = dentry->d_inode;
3130 	if (!dir->i_op->tmpfile) {
3131 		error = -EOPNOTSUPP;
3132 		goto out2;
3133 	}
3134 	child = d_alloc(dentry, &name);
3135 	if (unlikely(!child)) {
3136 		error = -ENOMEM;
3137 		goto out2;
3138 	}
3139 	nd->flags &= ~LOOKUP_DIRECTORY;
3140 	nd->flags |= op->intent;
3141 	dput(nd->path.dentry);
3142 	nd->path.dentry = child;
3143 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3144 	if (error)
3145 		goto out2;
3146 	audit_inode(pathname, nd->path.dentry, 0);
3147 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
3148 	if (error)
3149 		goto out2;
3150 	file->f_path.mnt = nd->path.mnt;
3151 	error = finish_open(file, nd->path.dentry, NULL, opened);
3152 	if (error)
3153 		goto out2;
3154 	error = open_check_o_direct(file);
3155 	if (error) {
3156 		fput(file);
3157 	} else if (!(op->open_flag & O_EXCL)) {
3158 		struct inode *inode = file_inode(file);
3159 		spin_lock(&inode->i_lock);
3160 		inode->i_state |= I_LINKABLE;
3161 		spin_unlock(&inode->i_lock);
3162 	}
3163 out2:
3164 	mnt_drop_write(nd->path.mnt);
3165 out:
3166 	path_put(&nd->path);
3167 	return error;
3168 }
3169 
3170 static struct file *path_openat(int dfd, struct filename *pathname,
3171 		struct nameidata *nd, const struct open_flags *op, int flags)
3172 {
3173 	struct file *base = NULL;
3174 	struct file *file;
3175 	struct path path;
3176 	int opened = 0;
3177 	int error;
3178 
3179 	file = get_empty_filp();
3180 	if (IS_ERR(file))
3181 		return file;
3182 
3183 	file->f_flags = op->open_flag;
3184 
3185 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3186 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3187 		goto out;
3188 	}
3189 
3190 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3191 	if (unlikely(error))
3192 		goto out;
3193 
3194 	current->total_link_count = 0;
3195 	error = link_path_walk(pathname->name, nd);
3196 	if (unlikely(error))
3197 		goto out;
3198 
3199 	error = do_last(nd, &path, file, op, &opened, pathname);
3200 	while (unlikely(error > 0)) { /* trailing symlink */
3201 		struct path link = path;
3202 		void *cookie;
3203 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3204 			path_put_conditional(&path, nd);
3205 			path_put(&nd->path);
3206 			error = -ELOOP;
3207 			break;
3208 		}
3209 		error = may_follow_link(&link, nd);
3210 		if (unlikely(error))
3211 			break;
3212 		nd->flags |= LOOKUP_PARENT;
3213 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3214 		error = follow_link(&link, nd, &cookie);
3215 		if (unlikely(error))
3216 			break;
3217 		error = do_last(nd, &path, file, op, &opened, pathname);
3218 		put_link(nd, &link, cookie);
3219 	}
3220 out:
3221 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3222 		path_put(&nd->root);
3223 	if (base)
3224 		fput(base);
3225 	if (!(opened & FILE_OPENED)) {
3226 		BUG_ON(!error);
3227 		put_filp(file);
3228 	}
3229 	if (unlikely(error)) {
3230 		if (error == -EOPENSTALE) {
3231 			if (flags & LOOKUP_RCU)
3232 				error = -ECHILD;
3233 			else
3234 				error = -ESTALE;
3235 		}
3236 		file = ERR_PTR(error);
3237 	}
3238 	return file;
3239 }
3240 
3241 struct file *do_filp_open(int dfd, struct filename *pathname,
3242 		const struct open_flags *op)
3243 {
3244 	struct nameidata nd;
3245 	int flags = op->lookup_flags;
3246 	struct file *filp;
3247 
3248 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3249 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3250 		filp = path_openat(dfd, pathname, &nd, op, flags);
3251 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3252 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3253 	return filp;
3254 }
3255 
3256 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3257 		const char *name, const struct open_flags *op)
3258 {
3259 	struct nameidata nd;
3260 	struct file *file;
3261 	struct filename filename = { .name = name };
3262 	int flags = op->lookup_flags | LOOKUP_ROOT;
3263 
3264 	nd.root.mnt = mnt;
3265 	nd.root.dentry = dentry;
3266 
3267 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3268 		return ERR_PTR(-ELOOP);
3269 
3270 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3271 	if (unlikely(file == ERR_PTR(-ECHILD)))
3272 		file = path_openat(-1, &filename, &nd, op, flags);
3273 	if (unlikely(file == ERR_PTR(-ESTALE)))
3274 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3275 	return file;
3276 }
3277 
3278 struct dentry *kern_path_create(int dfd, const char *pathname,
3279 				struct path *path, unsigned int lookup_flags)
3280 {
3281 	struct dentry *dentry = ERR_PTR(-EEXIST);
3282 	struct nameidata nd;
3283 	int err2;
3284 	int error;
3285 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3286 
3287 	/*
3288 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3289 	 * other flags passed in are ignored!
3290 	 */
3291 	lookup_flags &= LOOKUP_REVAL;
3292 
3293 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3294 	if (error)
3295 		return ERR_PTR(error);
3296 
3297 	/*
3298 	 * Yucky last component or no last component at all?
3299 	 * (foo/., foo/.., /////)
3300 	 */
3301 	if (nd.last_type != LAST_NORM)
3302 		goto out;
3303 	nd.flags &= ~LOOKUP_PARENT;
3304 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3305 
3306 	/* don't fail immediately if it's r/o, at least try to report other errors */
3307 	err2 = mnt_want_write(nd.path.mnt);
3308 	/*
3309 	 * Do the final lookup.
3310 	 */
3311 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3312 	dentry = lookup_hash(&nd);
3313 	if (IS_ERR(dentry))
3314 		goto unlock;
3315 
3316 	error = -EEXIST;
3317 	if (d_is_positive(dentry))
3318 		goto fail;
3319 
3320 	/*
3321 	 * Special case - lookup gave negative, but... we had foo/bar/
3322 	 * From the vfs_mknod() POV we just have a negative dentry -
3323 	 * all is fine. Let's be bastards - you had / on the end, you've
3324 	 * been asking for (non-existent) directory. -ENOENT for you.
3325 	 */
3326 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3327 		error = -ENOENT;
3328 		goto fail;
3329 	}
3330 	if (unlikely(err2)) {
3331 		error = err2;
3332 		goto fail;
3333 	}
3334 	*path = nd.path;
3335 	return dentry;
3336 fail:
3337 	dput(dentry);
3338 	dentry = ERR_PTR(error);
3339 unlock:
3340 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3341 	if (!err2)
3342 		mnt_drop_write(nd.path.mnt);
3343 out:
3344 	path_put(&nd.path);
3345 	return dentry;
3346 }
3347 EXPORT_SYMBOL(kern_path_create);
3348 
3349 void done_path_create(struct path *path, struct dentry *dentry)
3350 {
3351 	dput(dentry);
3352 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3353 	mnt_drop_write(path->mnt);
3354 	path_put(path);
3355 }
3356 EXPORT_SYMBOL(done_path_create);
3357 
3358 struct dentry *user_path_create(int dfd, const char __user *pathname,
3359 				struct path *path, unsigned int lookup_flags)
3360 {
3361 	struct filename *tmp = getname(pathname);
3362 	struct dentry *res;
3363 	if (IS_ERR(tmp))
3364 		return ERR_CAST(tmp);
3365 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3366 	putname(tmp);
3367 	return res;
3368 }
3369 EXPORT_SYMBOL(user_path_create);
3370 
3371 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3372 {
3373 	int error = may_create(dir, dentry);
3374 
3375 	if (error)
3376 		return error;
3377 
3378 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3379 		return -EPERM;
3380 
3381 	if (!dir->i_op->mknod)
3382 		return -EPERM;
3383 
3384 	error = devcgroup_inode_mknod(mode, dev);
3385 	if (error)
3386 		return error;
3387 
3388 	error = security_inode_mknod(dir, dentry, mode, dev);
3389 	if (error)
3390 		return error;
3391 
3392 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3393 	if (!error)
3394 		fsnotify_create(dir, dentry);
3395 	return error;
3396 }
3397 EXPORT_SYMBOL(vfs_mknod);
3398 
3399 static int may_mknod(umode_t mode)
3400 {
3401 	switch (mode & S_IFMT) {
3402 	case S_IFREG:
3403 	case S_IFCHR:
3404 	case S_IFBLK:
3405 	case S_IFIFO:
3406 	case S_IFSOCK:
3407 	case 0: /* zero mode translates to S_IFREG */
3408 		return 0;
3409 	case S_IFDIR:
3410 		return -EPERM;
3411 	default:
3412 		return -EINVAL;
3413 	}
3414 }
3415 
3416 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3417 		unsigned, dev)
3418 {
3419 	struct dentry *dentry;
3420 	struct path path;
3421 	int error;
3422 	unsigned int lookup_flags = 0;
3423 
3424 	error = may_mknod(mode);
3425 	if (error)
3426 		return error;
3427 retry:
3428 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3429 	if (IS_ERR(dentry))
3430 		return PTR_ERR(dentry);
3431 
3432 	if (!IS_POSIXACL(path.dentry->d_inode))
3433 		mode &= ~current_umask();
3434 	error = security_path_mknod(&path, dentry, mode, dev);
3435 	if (error)
3436 		goto out;
3437 	switch (mode & S_IFMT) {
3438 		case 0: case S_IFREG:
3439 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3440 			break;
3441 		case S_IFCHR: case S_IFBLK:
3442 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3443 					new_decode_dev(dev));
3444 			break;
3445 		case S_IFIFO: case S_IFSOCK:
3446 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3447 			break;
3448 	}
3449 out:
3450 	done_path_create(&path, dentry);
3451 	if (retry_estale(error, lookup_flags)) {
3452 		lookup_flags |= LOOKUP_REVAL;
3453 		goto retry;
3454 	}
3455 	return error;
3456 }
3457 
3458 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3459 {
3460 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3461 }
3462 
3463 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3464 {
3465 	int error = may_create(dir, dentry);
3466 	unsigned max_links = dir->i_sb->s_max_links;
3467 
3468 	if (error)
3469 		return error;
3470 
3471 	if (!dir->i_op->mkdir)
3472 		return -EPERM;
3473 
3474 	mode &= (S_IRWXUGO|S_ISVTX);
3475 	error = security_inode_mkdir(dir, dentry, mode);
3476 	if (error)
3477 		return error;
3478 
3479 	if (max_links && dir->i_nlink >= max_links)
3480 		return -EMLINK;
3481 
3482 	error = dir->i_op->mkdir(dir, dentry, mode);
3483 	if (!error)
3484 		fsnotify_mkdir(dir, dentry);
3485 	return error;
3486 }
3487 EXPORT_SYMBOL(vfs_mkdir);
3488 
3489 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3490 {
3491 	struct dentry *dentry;
3492 	struct path path;
3493 	int error;
3494 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3495 
3496 retry:
3497 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3498 	if (IS_ERR(dentry))
3499 		return PTR_ERR(dentry);
3500 
3501 	if (!IS_POSIXACL(path.dentry->d_inode))
3502 		mode &= ~current_umask();
3503 	error = security_path_mkdir(&path, dentry, mode);
3504 	if (!error)
3505 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3506 	done_path_create(&path, dentry);
3507 	if (retry_estale(error, lookup_flags)) {
3508 		lookup_flags |= LOOKUP_REVAL;
3509 		goto retry;
3510 	}
3511 	return error;
3512 }
3513 
3514 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3515 {
3516 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3517 }
3518 
3519 /*
3520  * The dentry_unhash() helper will try to drop the dentry early: we
3521  * should have a usage count of 1 if we're the only user of this
3522  * dentry, and if that is true (possibly after pruning the dcache),
3523  * then we drop the dentry now.
3524  *
3525  * A low-level filesystem can, if it choses, legally
3526  * do a
3527  *
3528  *	if (!d_unhashed(dentry))
3529  *		return -EBUSY;
3530  *
3531  * if it cannot handle the case of removing a directory
3532  * that is still in use by something else..
3533  */
3534 void dentry_unhash(struct dentry *dentry)
3535 {
3536 	shrink_dcache_parent(dentry);
3537 	spin_lock(&dentry->d_lock);
3538 	if (dentry->d_lockref.count == 1)
3539 		__d_drop(dentry);
3540 	spin_unlock(&dentry->d_lock);
3541 }
3542 EXPORT_SYMBOL(dentry_unhash);
3543 
3544 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3545 {
3546 	int error = may_delete(dir, dentry, 1);
3547 
3548 	if (error)
3549 		return error;
3550 
3551 	if (!dir->i_op->rmdir)
3552 		return -EPERM;
3553 
3554 	dget(dentry);
3555 	mutex_lock(&dentry->d_inode->i_mutex);
3556 
3557 	error = -EBUSY;
3558 	if (d_mountpoint(dentry))
3559 		goto out;
3560 
3561 	error = security_inode_rmdir(dir, dentry);
3562 	if (error)
3563 		goto out;
3564 
3565 	shrink_dcache_parent(dentry);
3566 	error = dir->i_op->rmdir(dir, dentry);
3567 	if (error)
3568 		goto out;
3569 
3570 	dentry->d_inode->i_flags |= S_DEAD;
3571 	dont_mount(dentry);
3572 
3573 out:
3574 	mutex_unlock(&dentry->d_inode->i_mutex);
3575 	dput(dentry);
3576 	if (!error)
3577 		d_delete(dentry);
3578 	return error;
3579 }
3580 EXPORT_SYMBOL(vfs_rmdir);
3581 
3582 static long do_rmdir(int dfd, const char __user *pathname)
3583 {
3584 	int error = 0;
3585 	struct filename *name;
3586 	struct dentry *dentry;
3587 	struct nameidata nd;
3588 	unsigned int lookup_flags = 0;
3589 retry:
3590 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3591 	if (IS_ERR(name))
3592 		return PTR_ERR(name);
3593 
3594 	switch(nd.last_type) {
3595 	case LAST_DOTDOT:
3596 		error = -ENOTEMPTY;
3597 		goto exit1;
3598 	case LAST_DOT:
3599 		error = -EINVAL;
3600 		goto exit1;
3601 	case LAST_ROOT:
3602 		error = -EBUSY;
3603 		goto exit1;
3604 	}
3605 
3606 	nd.flags &= ~LOOKUP_PARENT;
3607 	error = mnt_want_write(nd.path.mnt);
3608 	if (error)
3609 		goto exit1;
3610 
3611 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3612 	dentry = lookup_hash(&nd);
3613 	error = PTR_ERR(dentry);
3614 	if (IS_ERR(dentry))
3615 		goto exit2;
3616 	if (!dentry->d_inode) {
3617 		error = -ENOENT;
3618 		goto exit3;
3619 	}
3620 	error = security_path_rmdir(&nd.path, dentry);
3621 	if (error)
3622 		goto exit3;
3623 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3624 exit3:
3625 	dput(dentry);
3626 exit2:
3627 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3628 	mnt_drop_write(nd.path.mnt);
3629 exit1:
3630 	path_put(&nd.path);
3631 	putname(name);
3632 	if (retry_estale(error, lookup_flags)) {
3633 		lookup_flags |= LOOKUP_REVAL;
3634 		goto retry;
3635 	}
3636 	return error;
3637 }
3638 
3639 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3640 {
3641 	return do_rmdir(AT_FDCWD, pathname);
3642 }
3643 
3644 /**
3645  * vfs_unlink - unlink a filesystem object
3646  * @dir:	parent directory
3647  * @dentry:	victim
3648  * @delegated_inode: returns victim inode, if the inode is delegated.
3649  *
3650  * The caller must hold dir->i_mutex.
3651  *
3652  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3653  * return a reference to the inode in delegated_inode.  The caller
3654  * should then break the delegation on that inode and retry.  Because
3655  * breaking a delegation may take a long time, the caller should drop
3656  * dir->i_mutex before doing so.
3657  *
3658  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3659  * be appropriate for callers that expect the underlying filesystem not
3660  * to be NFS exported.
3661  */
3662 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3663 {
3664 	struct inode *target = dentry->d_inode;
3665 	int error = may_delete(dir, dentry, 0);
3666 
3667 	if (error)
3668 		return error;
3669 
3670 	if (!dir->i_op->unlink)
3671 		return -EPERM;
3672 
3673 	mutex_lock(&target->i_mutex);
3674 	if (d_mountpoint(dentry))
3675 		error = -EBUSY;
3676 	else {
3677 		error = security_inode_unlink(dir, dentry);
3678 		if (!error) {
3679 			error = try_break_deleg(target, delegated_inode);
3680 			if (error)
3681 				goto out;
3682 			error = dir->i_op->unlink(dir, dentry);
3683 			if (!error)
3684 				dont_mount(dentry);
3685 		}
3686 	}
3687 out:
3688 	mutex_unlock(&target->i_mutex);
3689 
3690 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3691 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3692 		fsnotify_link_count(target);
3693 		d_delete(dentry);
3694 	}
3695 
3696 	return error;
3697 }
3698 EXPORT_SYMBOL(vfs_unlink);
3699 
3700 /*
3701  * Make sure that the actual truncation of the file will occur outside its
3702  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3703  * writeout happening, and we don't want to prevent access to the directory
3704  * while waiting on the I/O.
3705  */
3706 static long do_unlinkat(int dfd, const char __user *pathname)
3707 {
3708 	int error;
3709 	struct filename *name;
3710 	struct dentry *dentry;
3711 	struct nameidata nd;
3712 	struct inode *inode = NULL;
3713 	struct inode *delegated_inode = NULL;
3714 	unsigned int lookup_flags = 0;
3715 retry:
3716 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3717 	if (IS_ERR(name))
3718 		return PTR_ERR(name);
3719 
3720 	error = -EISDIR;
3721 	if (nd.last_type != LAST_NORM)
3722 		goto exit1;
3723 
3724 	nd.flags &= ~LOOKUP_PARENT;
3725 	error = mnt_want_write(nd.path.mnt);
3726 	if (error)
3727 		goto exit1;
3728 retry_deleg:
3729 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3730 	dentry = lookup_hash(&nd);
3731 	error = PTR_ERR(dentry);
3732 	if (!IS_ERR(dentry)) {
3733 		/* Why not before? Because we want correct error value */
3734 		if (nd.last.name[nd.last.len])
3735 			goto slashes;
3736 		inode = dentry->d_inode;
3737 		if (d_is_negative(dentry))
3738 			goto slashes;
3739 		ihold(inode);
3740 		error = security_path_unlink(&nd.path, dentry);
3741 		if (error)
3742 			goto exit2;
3743 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3744 exit2:
3745 		dput(dentry);
3746 	}
3747 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3748 	if (inode)
3749 		iput(inode);	/* truncate the inode here */
3750 	inode = NULL;
3751 	if (delegated_inode) {
3752 		error = break_deleg_wait(&delegated_inode);
3753 		if (!error)
3754 			goto retry_deleg;
3755 	}
3756 	mnt_drop_write(nd.path.mnt);
3757 exit1:
3758 	path_put(&nd.path);
3759 	putname(name);
3760 	if (retry_estale(error, lookup_flags)) {
3761 		lookup_flags |= LOOKUP_REVAL;
3762 		inode = NULL;
3763 		goto retry;
3764 	}
3765 	return error;
3766 
3767 slashes:
3768 	if (d_is_negative(dentry))
3769 		error = -ENOENT;
3770 	else if (d_is_dir(dentry))
3771 		error = -EISDIR;
3772 	else
3773 		error = -ENOTDIR;
3774 	goto exit2;
3775 }
3776 
3777 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3778 {
3779 	if ((flag & ~AT_REMOVEDIR) != 0)
3780 		return -EINVAL;
3781 
3782 	if (flag & AT_REMOVEDIR)
3783 		return do_rmdir(dfd, pathname);
3784 
3785 	return do_unlinkat(dfd, pathname);
3786 }
3787 
3788 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3789 {
3790 	return do_unlinkat(AT_FDCWD, pathname);
3791 }
3792 
3793 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3794 {
3795 	int error = may_create(dir, dentry);
3796 
3797 	if (error)
3798 		return error;
3799 
3800 	if (!dir->i_op->symlink)
3801 		return -EPERM;
3802 
3803 	error = security_inode_symlink(dir, dentry, oldname);
3804 	if (error)
3805 		return error;
3806 
3807 	error = dir->i_op->symlink(dir, dentry, oldname);
3808 	if (!error)
3809 		fsnotify_create(dir, dentry);
3810 	return error;
3811 }
3812 EXPORT_SYMBOL(vfs_symlink);
3813 
3814 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3815 		int, newdfd, const char __user *, newname)
3816 {
3817 	int error;
3818 	struct filename *from;
3819 	struct dentry *dentry;
3820 	struct path path;
3821 	unsigned int lookup_flags = 0;
3822 
3823 	from = getname(oldname);
3824 	if (IS_ERR(from))
3825 		return PTR_ERR(from);
3826 retry:
3827 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3828 	error = PTR_ERR(dentry);
3829 	if (IS_ERR(dentry))
3830 		goto out_putname;
3831 
3832 	error = security_path_symlink(&path, dentry, from->name);
3833 	if (!error)
3834 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3835 	done_path_create(&path, dentry);
3836 	if (retry_estale(error, lookup_flags)) {
3837 		lookup_flags |= LOOKUP_REVAL;
3838 		goto retry;
3839 	}
3840 out_putname:
3841 	putname(from);
3842 	return error;
3843 }
3844 
3845 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3846 {
3847 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3848 }
3849 
3850 /**
3851  * vfs_link - create a new link
3852  * @old_dentry:	object to be linked
3853  * @dir:	new parent
3854  * @new_dentry:	where to create the new link
3855  * @delegated_inode: returns inode needing a delegation break
3856  *
3857  * The caller must hold dir->i_mutex
3858  *
3859  * If vfs_link discovers a delegation on the to-be-linked file in need
3860  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3861  * inode in delegated_inode.  The caller should then break the delegation
3862  * and retry.  Because breaking a delegation may take a long time, the
3863  * caller should drop the i_mutex before doing so.
3864  *
3865  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3866  * be appropriate for callers that expect the underlying filesystem not
3867  * to be NFS exported.
3868  */
3869 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3870 {
3871 	struct inode *inode = old_dentry->d_inode;
3872 	unsigned max_links = dir->i_sb->s_max_links;
3873 	int error;
3874 
3875 	if (!inode)
3876 		return -ENOENT;
3877 
3878 	error = may_create(dir, new_dentry);
3879 	if (error)
3880 		return error;
3881 
3882 	if (dir->i_sb != inode->i_sb)
3883 		return -EXDEV;
3884 
3885 	/*
3886 	 * A link to an append-only or immutable file cannot be created.
3887 	 */
3888 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3889 		return -EPERM;
3890 	if (!dir->i_op->link)
3891 		return -EPERM;
3892 	if (S_ISDIR(inode->i_mode))
3893 		return -EPERM;
3894 
3895 	error = security_inode_link(old_dentry, dir, new_dentry);
3896 	if (error)
3897 		return error;
3898 
3899 	mutex_lock(&inode->i_mutex);
3900 	/* Make sure we don't allow creating hardlink to an unlinked file */
3901 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3902 		error =  -ENOENT;
3903 	else if (max_links && inode->i_nlink >= max_links)
3904 		error = -EMLINK;
3905 	else {
3906 		error = try_break_deleg(inode, delegated_inode);
3907 		if (!error)
3908 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3909 	}
3910 
3911 	if (!error && (inode->i_state & I_LINKABLE)) {
3912 		spin_lock(&inode->i_lock);
3913 		inode->i_state &= ~I_LINKABLE;
3914 		spin_unlock(&inode->i_lock);
3915 	}
3916 	mutex_unlock(&inode->i_mutex);
3917 	if (!error)
3918 		fsnotify_link(dir, inode, new_dentry);
3919 	return error;
3920 }
3921 EXPORT_SYMBOL(vfs_link);
3922 
3923 /*
3924  * Hardlinks are often used in delicate situations.  We avoid
3925  * security-related surprises by not following symlinks on the
3926  * newname.  --KAB
3927  *
3928  * We don't follow them on the oldname either to be compatible
3929  * with linux 2.0, and to avoid hard-linking to directories
3930  * and other special files.  --ADM
3931  */
3932 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3933 		int, newdfd, const char __user *, newname, int, flags)
3934 {
3935 	struct dentry *new_dentry;
3936 	struct path old_path, new_path;
3937 	struct inode *delegated_inode = NULL;
3938 	int how = 0;
3939 	int error;
3940 
3941 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3942 		return -EINVAL;
3943 	/*
3944 	 * To use null names we require CAP_DAC_READ_SEARCH
3945 	 * This ensures that not everyone will be able to create
3946 	 * handlink using the passed filedescriptor.
3947 	 */
3948 	if (flags & AT_EMPTY_PATH) {
3949 		if (!capable(CAP_DAC_READ_SEARCH))
3950 			return -ENOENT;
3951 		how = LOOKUP_EMPTY;
3952 	}
3953 
3954 	if (flags & AT_SYMLINK_FOLLOW)
3955 		how |= LOOKUP_FOLLOW;
3956 retry:
3957 	error = user_path_at(olddfd, oldname, how, &old_path);
3958 	if (error)
3959 		return error;
3960 
3961 	new_dentry = user_path_create(newdfd, newname, &new_path,
3962 					(how & LOOKUP_REVAL));
3963 	error = PTR_ERR(new_dentry);
3964 	if (IS_ERR(new_dentry))
3965 		goto out;
3966 
3967 	error = -EXDEV;
3968 	if (old_path.mnt != new_path.mnt)
3969 		goto out_dput;
3970 	error = may_linkat(&old_path);
3971 	if (unlikely(error))
3972 		goto out_dput;
3973 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3974 	if (error)
3975 		goto out_dput;
3976 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3977 out_dput:
3978 	done_path_create(&new_path, new_dentry);
3979 	if (delegated_inode) {
3980 		error = break_deleg_wait(&delegated_inode);
3981 		if (!error) {
3982 			path_put(&old_path);
3983 			goto retry;
3984 		}
3985 	}
3986 	if (retry_estale(error, how)) {
3987 		path_put(&old_path);
3988 		how |= LOOKUP_REVAL;
3989 		goto retry;
3990 	}
3991 out:
3992 	path_put(&old_path);
3993 
3994 	return error;
3995 }
3996 
3997 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3998 {
3999 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4000 }
4001 
4002 /**
4003  * vfs_rename - rename a filesystem object
4004  * @old_dir:	parent of source
4005  * @old_dentry:	source
4006  * @new_dir:	parent of destination
4007  * @new_dentry:	destination
4008  * @delegated_inode: returns an inode needing a delegation break
4009  * @flags:	rename flags
4010  *
4011  * The caller must hold multiple mutexes--see lock_rename()).
4012  *
4013  * If vfs_rename discovers a delegation in need of breaking at either
4014  * the source or destination, it will return -EWOULDBLOCK and return a
4015  * reference to the inode in delegated_inode.  The caller should then
4016  * break the delegation and retry.  Because breaking a delegation may
4017  * take a long time, the caller should drop all locks before doing
4018  * so.
4019  *
4020  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4021  * be appropriate for callers that expect the underlying filesystem not
4022  * to be NFS exported.
4023  *
4024  * The worst of all namespace operations - renaming directory. "Perverted"
4025  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4026  * Problems:
4027  *	a) we can get into loop creation.
4028  *	b) race potential - two innocent renames can create a loop together.
4029  *	   That's where 4.4 screws up. Current fix: serialization on
4030  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4031  *	   story.
4032  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4033  *	   and source (if it is not a directory).
4034  *	   And that - after we got ->i_mutex on parents (until then we don't know
4035  *	   whether the target exists).  Solution: try to be smart with locking
4036  *	   order for inodes.  We rely on the fact that tree topology may change
4037  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4038  *	   move will be locked.  Thus we can rank directories by the tree
4039  *	   (ancestors first) and rank all non-directories after them.
4040  *	   That works since everybody except rename does "lock parent, lookup,
4041  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4042  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4043  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4044  *	   we'd better make sure that there's no link(2) for them.
4045  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4046  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4047  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4048  *	   ->i_mutex on parents, which works but leads to some truly excessive
4049  *	   locking].
4050  */
4051 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4052 	       struct inode *new_dir, struct dentry *new_dentry,
4053 	       struct inode **delegated_inode, unsigned int flags)
4054 {
4055 	int error;
4056 	bool is_dir = d_is_dir(old_dentry);
4057 	const unsigned char *old_name;
4058 	struct inode *source = old_dentry->d_inode;
4059 	struct inode *target = new_dentry->d_inode;
4060 	bool new_is_dir = false;
4061 	unsigned max_links = new_dir->i_sb->s_max_links;
4062 
4063 	if (source == target)
4064 		return 0;
4065 
4066 	error = may_delete(old_dir, old_dentry, is_dir);
4067 	if (error)
4068 		return error;
4069 
4070 	if (!target) {
4071 		error = may_create(new_dir, new_dentry);
4072 	} else {
4073 		new_is_dir = d_is_dir(new_dentry);
4074 
4075 		if (!(flags & RENAME_EXCHANGE))
4076 			error = may_delete(new_dir, new_dentry, is_dir);
4077 		else
4078 			error = may_delete(new_dir, new_dentry, new_is_dir);
4079 	}
4080 	if (error)
4081 		return error;
4082 
4083 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4084 		return -EPERM;
4085 
4086 	if (flags && !old_dir->i_op->rename2)
4087 		return -EINVAL;
4088 
4089 	/*
4090 	 * If we are going to change the parent - check write permissions,
4091 	 * we'll need to flip '..'.
4092 	 */
4093 	if (new_dir != old_dir) {
4094 		if (is_dir) {
4095 			error = inode_permission(source, MAY_WRITE);
4096 			if (error)
4097 				return error;
4098 		}
4099 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4100 			error = inode_permission(target, MAY_WRITE);
4101 			if (error)
4102 				return error;
4103 		}
4104 	}
4105 
4106 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4107 				      flags);
4108 	if (error)
4109 		return error;
4110 
4111 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4112 	dget(new_dentry);
4113 	if (!is_dir || (flags & RENAME_EXCHANGE))
4114 		lock_two_nondirectories(source, target);
4115 	else if (target)
4116 		mutex_lock(&target->i_mutex);
4117 
4118 	error = -EBUSY;
4119 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4120 		goto out;
4121 
4122 	if (max_links && new_dir != old_dir) {
4123 		error = -EMLINK;
4124 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4125 			goto out;
4126 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4127 		    old_dir->i_nlink >= max_links)
4128 			goto out;
4129 	}
4130 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4131 		shrink_dcache_parent(new_dentry);
4132 	if (!is_dir) {
4133 		error = try_break_deleg(source, delegated_inode);
4134 		if (error)
4135 			goto out;
4136 	}
4137 	if (target && !new_is_dir) {
4138 		error = try_break_deleg(target, delegated_inode);
4139 		if (error)
4140 			goto out;
4141 	}
4142 	if (!old_dir->i_op->rename2) {
4143 		error = old_dir->i_op->rename(old_dir, old_dentry,
4144 					      new_dir, new_dentry);
4145 	} else {
4146 		WARN_ON(old_dir->i_op->rename != NULL);
4147 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4148 					       new_dir, new_dentry, flags);
4149 	}
4150 	if (error)
4151 		goto out;
4152 
4153 	if (!(flags & RENAME_EXCHANGE) && target) {
4154 		if (is_dir)
4155 			target->i_flags |= S_DEAD;
4156 		dont_mount(new_dentry);
4157 	}
4158 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4159 		if (!(flags & RENAME_EXCHANGE))
4160 			d_move(old_dentry, new_dentry);
4161 		else
4162 			d_exchange(old_dentry, new_dentry);
4163 	}
4164 out:
4165 	if (!is_dir || (flags & RENAME_EXCHANGE))
4166 		unlock_two_nondirectories(source, target);
4167 	else if (target)
4168 		mutex_unlock(&target->i_mutex);
4169 	dput(new_dentry);
4170 	if (!error) {
4171 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4172 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4173 		if (flags & RENAME_EXCHANGE) {
4174 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4175 				      new_is_dir, NULL, new_dentry);
4176 		}
4177 	}
4178 	fsnotify_oldname_free(old_name);
4179 
4180 	return error;
4181 }
4182 EXPORT_SYMBOL(vfs_rename);
4183 
4184 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4185 		int, newdfd, const char __user *, newname, unsigned int, flags)
4186 {
4187 	struct dentry *old_dir, *new_dir;
4188 	struct dentry *old_dentry, *new_dentry;
4189 	struct dentry *trap;
4190 	struct nameidata oldnd, newnd;
4191 	struct inode *delegated_inode = NULL;
4192 	struct filename *from;
4193 	struct filename *to;
4194 	unsigned int lookup_flags = 0;
4195 	bool should_retry = false;
4196 	int error;
4197 
4198 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4199 		return -EINVAL;
4200 
4201 	if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4202 		return -EINVAL;
4203 
4204 retry:
4205 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4206 	if (IS_ERR(from)) {
4207 		error = PTR_ERR(from);
4208 		goto exit;
4209 	}
4210 
4211 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4212 	if (IS_ERR(to)) {
4213 		error = PTR_ERR(to);
4214 		goto exit1;
4215 	}
4216 
4217 	error = -EXDEV;
4218 	if (oldnd.path.mnt != newnd.path.mnt)
4219 		goto exit2;
4220 
4221 	old_dir = oldnd.path.dentry;
4222 	error = -EBUSY;
4223 	if (oldnd.last_type != LAST_NORM)
4224 		goto exit2;
4225 
4226 	new_dir = newnd.path.dentry;
4227 	if (flags & RENAME_NOREPLACE)
4228 		error = -EEXIST;
4229 	if (newnd.last_type != LAST_NORM)
4230 		goto exit2;
4231 
4232 	error = mnt_want_write(oldnd.path.mnt);
4233 	if (error)
4234 		goto exit2;
4235 
4236 	oldnd.flags &= ~LOOKUP_PARENT;
4237 	newnd.flags &= ~LOOKUP_PARENT;
4238 	if (!(flags & RENAME_EXCHANGE))
4239 		newnd.flags |= LOOKUP_RENAME_TARGET;
4240 
4241 retry_deleg:
4242 	trap = lock_rename(new_dir, old_dir);
4243 
4244 	old_dentry = lookup_hash(&oldnd);
4245 	error = PTR_ERR(old_dentry);
4246 	if (IS_ERR(old_dentry))
4247 		goto exit3;
4248 	/* source must exist */
4249 	error = -ENOENT;
4250 	if (d_is_negative(old_dentry))
4251 		goto exit4;
4252 	new_dentry = lookup_hash(&newnd);
4253 	error = PTR_ERR(new_dentry);
4254 	if (IS_ERR(new_dentry))
4255 		goto exit4;
4256 	error = -EEXIST;
4257 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4258 		goto exit5;
4259 	if (flags & RENAME_EXCHANGE) {
4260 		error = -ENOENT;
4261 		if (d_is_negative(new_dentry))
4262 			goto exit5;
4263 
4264 		if (!d_is_dir(new_dentry)) {
4265 			error = -ENOTDIR;
4266 			if (newnd.last.name[newnd.last.len])
4267 				goto exit5;
4268 		}
4269 	}
4270 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4271 	if (!d_is_dir(old_dentry)) {
4272 		error = -ENOTDIR;
4273 		if (oldnd.last.name[oldnd.last.len])
4274 			goto exit5;
4275 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4276 			goto exit5;
4277 	}
4278 	/* source should not be ancestor of target */
4279 	error = -EINVAL;
4280 	if (old_dentry == trap)
4281 		goto exit5;
4282 	/* target should not be an ancestor of source */
4283 	if (!(flags & RENAME_EXCHANGE))
4284 		error = -ENOTEMPTY;
4285 	if (new_dentry == trap)
4286 		goto exit5;
4287 
4288 	error = security_path_rename(&oldnd.path, old_dentry,
4289 				     &newnd.path, new_dentry, flags);
4290 	if (error)
4291 		goto exit5;
4292 	error = vfs_rename(old_dir->d_inode, old_dentry,
4293 			   new_dir->d_inode, new_dentry,
4294 			   &delegated_inode, flags);
4295 exit5:
4296 	dput(new_dentry);
4297 exit4:
4298 	dput(old_dentry);
4299 exit3:
4300 	unlock_rename(new_dir, old_dir);
4301 	if (delegated_inode) {
4302 		error = break_deleg_wait(&delegated_inode);
4303 		if (!error)
4304 			goto retry_deleg;
4305 	}
4306 	mnt_drop_write(oldnd.path.mnt);
4307 exit2:
4308 	if (retry_estale(error, lookup_flags))
4309 		should_retry = true;
4310 	path_put(&newnd.path);
4311 	putname(to);
4312 exit1:
4313 	path_put(&oldnd.path);
4314 	putname(from);
4315 	if (should_retry) {
4316 		should_retry = false;
4317 		lookup_flags |= LOOKUP_REVAL;
4318 		goto retry;
4319 	}
4320 exit:
4321 	return error;
4322 }
4323 
4324 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4325 		int, newdfd, const char __user *, newname)
4326 {
4327 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4328 }
4329 
4330 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4331 {
4332 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4333 }
4334 
4335 int readlink_copy(char __user *buffer, int buflen, const char *link)
4336 {
4337 	int len = PTR_ERR(link);
4338 	if (IS_ERR(link))
4339 		goto out;
4340 
4341 	len = strlen(link);
4342 	if (len > (unsigned) buflen)
4343 		len = buflen;
4344 	if (copy_to_user(buffer, link, len))
4345 		len = -EFAULT;
4346 out:
4347 	return len;
4348 }
4349 EXPORT_SYMBOL(readlink_copy);
4350 
4351 /*
4352  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4353  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4354  * using) it for any given inode is up to filesystem.
4355  */
4356 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4357 {
4358 	struct nameidata nd;
4359 	void *cookie;
4360 	int res;
4361 
4362 	nd.depth = 0;
4363 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4364 	if (IS_ERR(cookie))
4365 		return PTR_ERR(cookie);
4366 
4367 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4368 	if (dentry->d_inode->i_op->put_link)
4369 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4370 	return res;
4371 }
4372 EXPORT_SYMBOL(generic_readlink);
4373 
4374 /* get the link contents into pagecache */
4375 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4376 {
4377 	char *kaddr;
4378 	struct page *page;
4379 	struct address_space *mapping = dentry->d_inode->i_mapping;
4380 	page = read_mapping_page(mapping, 0, NULL);
4381 	if (IS_ERR(page))
4382 		return (char*)page;
4383 	*ppage = page;
4384 	kaddr = kmap(page);
4385 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4386 	return kaddr;
4387 }
4388 
4389 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4390 {
4391 	struct page *page = NULL;
4392 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4393 	if (page) {
4394 		kunmap(page);
4395 		page_cache_release(page);
4396 	}
4397 	return res;
4398 }
4399 EXPORT_SYMBOL(page_readlink);
4400 
4401 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4402 {
4403 	struct page *page = NULL;
4404 	nd_set_link(nd, page_getlink(dentry, &page));
4405 	return page;
4406 }
4407 EXPORT_SYMBOL(page_follow_link_light);
4408 
4409 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4410 {
4411 	struct page *page = cookie;
4412 
4413 	if (page) {
4414 		kunmap(page);
4415 		page_cache_release(page);
4416 	}
4417 }
4418 EXPORT_SYMBOL(page_put_link);
4419 
4420 /*
4421  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4422  */
4423 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4424 {
4425 	struct address_space *mapping = inode->i_mapping;
4426 	struct page *page;
4427 	void *fsdata;
4428 	int err;
4429 	char *kaddr;
4430 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4431 	if (nofs)
4432 		flags |= AOP_FLAG_NOFS;
4433 
4434 retry:
4435 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4436 				flags, &page, &fsdata);
4437 	if (err)
4438 		goto fail;
4439 
4440 	kaddr = kmap_atomic(page);
4441 	memcpy(kaddr, symname, len-1);
4442 	kunmap_atomic(kaddr);
4443 
4444 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4445 							page, fsdata);
4446 	if (err < 0)
4447 		goto fail;
4448 	if (err < len-1)
4449 		goto retry;
4450 
4451 	mark_inode_dirty(inode);
4452 	return 0;
4453 fail:
4454 	return err;
4455 }
4456 EXPORT_SYMBOL(__page_symlink);
4457 
4458 int page_symlink(struct inode *inode, const char *symname, int len)
4459 {
4460 	return __page_symlink(inode, symname, len,
4461 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4462 }
4463 EXPORT_SYMBOL(page_symlink);
4464 
4465 const struct inode_operations page_symlink_inode_operations = {
4466 	.readlink	= generic_readlink,
4467 	.follow_link	= page_follow_link_light,
4468 	.put_link	= page_put_link,
4469 };
4470 EXPORT_SYMBOL(page_symlink_inode_operations);
4471