1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existant name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 static char *getname_flags(const char __user * filename, int flags) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 } 156 audit_getname(result); 157 return result; 158 } 159 160 char *getname(const char __user * filename) 161 { 162 return getname_flags(filename, 0); 163 } 164 165 #ifdef CONFIG_AUDITSYSCALL 166 void putname(const char *name) 167 { 168 if (unlikely(!audit_dummy_context())) 169 audit_putname(name); 170 else 171 __putname(name); 172 } 173 EXPORT_SYMBOL(putname); 174 #endif 175 176 /* 177 * This does basic POSIX ACL permission checking 178 */ 179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags, 180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 181 { 182 umode_t mode = inode->i_mode; 183 184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 185 186 if (current_fsuid() == inode->i_uid) 187 mode >>= 6; 188 else { 189 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 190 int error = check_acl(inode, mask, flags); 191 if (error != -EAGAIN) 192 return error; 193 } 194 195 if (in_group_p(inode->i_gid)) 196 mode >>= 3; 197 } 198 199 /* 200 * If the DACs are ok we don't need any capability check. 201 */ 202 if ((mask & ~mode) == 0) 203 return 0; 204 return -EACCES; 205 } 206 207 /** 208 * generic_permission - check for access rights on a Posix-like filesystem 209 * @inode: inode to check access rights for 210 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 211 * @check_acl: optional callback to check for Posix ACLs 212 * @flags: IPERM_FLAG_ flags. 213 * 214 * Used to check for read/write/execute permissions on a file. 215 * We use "fsuid" for this, letting us set arbitrary permissions 216 * for filesystem access without changing the "normal" uids which 217 * are used for other things. 218 * 219 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 220 * request cannot be satisfied (eg. requires blocking or too much complexity). 221 * It would then be called again in ref-walk mode. 222 */ 223 int generic_permission(struct inode *inode, int mask, unsigned int flags, 224 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 225 { 226 int ret; 227 228 /* 229 * Do the basic POSIX ACL permission checks. 230 */ 231 ret = acl_permission_check(inode, mask, flags, check_acl); 232 if (ret != -EACCES) 233 return ret; 234 235 /* 236 * Read/write DACs are always overridable. 237 * Executable DACs are overridable if at least one exec bit is set. 238 */ 239 if (!(mask & MAY_EXEC) || execute_ok(inode)) 240 if (capable(CAP_DAC_OVERRIDE)) 241 return 0; 242 243 /* 244 * Searching includes executable on directories, else just read. 245 */ 246 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 247 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 248 if (capable(CAP_DAC_READ_SEARCH)) 249 return 0; 250 251 return -EACCES; 252 } 253 254 /** 255 * inode_permission - check for access rights to a given inode 256 * @inode: inode to check permission on 257 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 258 * 259 * Used to check for read/write/execute permissions on an inode. 260 * We use "fsuid" for this, letting us set arbitrary permissions 261 * for filesystem access without changing the "normal" uids which 262 * are used for other things. 263 */ 264 int inode_permission(struct inode *inode, int mask) 265 { 266 int retval; 267 268 if (mask & MAY_WRITE) { 269 umode_t mode = inode->i_mode; 270 271 /* 272 * Nobody gets write access to a read-only fs. 273 */ 274 if (IS_RDONLY(inode) && 275 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 276 return -EROFS; 277 278 /* 279 * Nobody gets write access to an immutable file. 280 */ 281 if (IS_IMMUTABLE(inode)) 282 return -EACCES; 283 } 284 285 if (inode->i_op->permission) 286 retval = inode->i_op->permission(inode, mask, 0); 287 else 288 retval = generic_permission(inode, mask, 0, 289 inode->i_op->check_acl); 290 291 if (retval) 292 return retval; 293 294 retval = devcgroup_inode_permission(inode, mask); 295 if (retval) 296 return retval; 297 298 return security_inode_permission(inode, mask); 299 } 300 301 /** 302 * file_permission - check for additional access rights to a given file 303 * @file: file to check access rights for 304 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 305 * 306 * Used to check for read/write/execute permissions on an already opened 307 * file. 308 * 309 * Note: 310 * Do not use this function in new code. All access checks should 311 * be done using inode_permission(). 312 */ 313 int file_permission(struct file *file, int mask) 314 { 315 return inode_permission(file->f_path.dentry->d_inode, mask); 316 } 317 318 /* 319 * get_write_access() gets write permission for a file. 320 * put_write_access() releases this write permission. 321 * This is used for regular files. 322 * We cannot support write (and maybe mmap read-write shared) accesses and 323 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 324 * can have the following values: 325 * 0: no writers, no VM_DENYWRITE mappings 326 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 327 * > 0: (i_writecount) users are writing to the file. 328 * 329 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 330 * except for the cases where we don't hold i_writecount yet. Then we need to 331 * use {get,deny}_write_access() - these functions check the sign and refuse 332 * to do the change if sign is wrong. Exclusion between them is provided by 333 * the inode->i_lock spinlock. 334 */ 335 336 int get_write_access(struct inode * inode) 337 { 338 spin_lock(&inode->i_lock); 339 if (atomic_read(&inode->i_writecount) < 0) { 340 spin_unlock(&inode->i_lock); 341 return -ETXTBSY; 342 } 343 atomic_inc(&inode->i_writecount); 344 spin_unlock(&inode->i_lock); 345 346 return 0; 347 } 348 349 int deny_write_access(struct file * file) 350 { 351 struct inode *inode = file->f_path.dentry->d_inode; 352 353 spin_lock(&inode->i_lock); 354 if (atomic_read(&inode->i_writecount) > 0) { 355 spin_unlock(&inode->i_lock); 356 return -ETXTBSY; 357 } 358 atomic_dec(&inode->i_writecount); 359 spin_unlock(&inode->i_lock); 360 361 return 0; 362 } 363 364 /** 365 * path_get - get a reference to a path 366 * @path: path to get the reference to 367 * 368 * Given a path increment the reference count to the dentry and the vfsmount. 369 */ 370 void path_get(struct path *path) 371 { 372 mntget(path->mnt); 373 dget(path->dentry); 374 } 375 EXPORT_SYMBOL(path_get); 376 377 /** 378 * path_put - put a reference to a path 379 * @path: path to put the reference to 380 * 381 * Given a path decrement the reference count to the dentry and the vfsmount. 382 */ 383 void path_put(struct path *path) 384 { 385 dput(path->dentry); 386 mntput(path->mnt); 387 } 388 EXPORT_SYMBOL(path_put); 389 390 /** 391 * nameidata_drop_rcu - drop this nameidata out of rcu-walk 392 * @nd: nameidata pathwalk data to drop 393 * Returns: 0 on success, -ECHILD on failure 394 * 395 * Path walking has 2 modes, rcu-walk and ref-walk (see 396 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt 397 * to drop out of rcu-walk mode and take normal reference counts on dentries 398 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take 399 * refcounts at the last known good point before rcu-walk got stuck, so 400 * ref-walk may continue from there. If this is not successful (eg. a seqcount 401 * has changed), then failure is returned and path walk restarts from the 402 * beginning in ref-walk mode. 403 * 404 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into 405 * ref-walk. Must be called from rcu-walk context. 406 */ 407 static int nameidata_drop_rcu(struct nameidata *nd) 408 { 409 struct fs_struct *fs = current->fs; 410 struct dentry *dentry = nd->path.dentry; 411 int want_root = 0; 412 413 BUG_ON(!(nd->flags & LOOKUP_RCU)); 414 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 415 want_root = 1; 416 spin_lock(&fs->lock); 417 if (nd->root.mnt != fs->root.mnt || 418 nd->root.dentry != fs->root.dentry) 419 goto err_root; 420 } 421 spin_lock(&dentry->d_lock); 422 if (!__d_rcu_to_refcount(dentry, nd->seq)) 423 goto err; 424 BUG_ON(nd->inode != dentry->d_inode); 425 spin_unlock(&dentry->d_lock); 426 if (want_root) { 427 path_get(&nd->root); 428 spin_unlock(&fs->lock); 429 } 430 mntget(nd->path.mnt); 431 432 rcu_read_unlock(); 433 br_read_unlock(vfsmount_lock); 434 nd->flags &= ~LOOKUP_RCU; 435 return 0; 436 err: 437 spin_unlock(&dentry->d_lock); 438 err_root: 439 if (want_root) 440 spin_unlock(&fs->lock); 441 return -ECHILD; 442 } 443 444 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 445 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd) 446 { 447 if (nd->flags & LOOKUP_RCU) 448 return nameidata_drop_rcu(nd); 449 return 0; 450 } 451 452 /** 453 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk 454 * @nd: nameidata pathwalk data to drop 455 * @dentry: dentry to drop 456 * Returns: 0 on success, -ECHILD on failure 457 * 458 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root, 459 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on 460 * @nd. Must be called from rcu-walk context. 461 */ 462 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry) 463 { 464 struct fs_struct *fs = current->fs; 465 struct dentry *parent = nd->path.dentry; 466 int want_root = 0; 467 468 BUG_ON(!(nd->flags & LOOKUP_RCU)); 469 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 470 want_root = 1; 471 spin_lock(&fs->lock); 472 if (nd->root.mnt != fs->root.mnt || 473 nd->root.dentry != fs->root.dentry) 474 goto err_root; 475 } 476 spin_lock(&parent->d_lock); 477 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 478 if (!__d_rcu_to_refcount(dentry, nd->seq)) 479 goto err; 480 /* 481 * If the sequence check on the child dentry passed, then the child has 482 * not been removed from its parent. This means the parent dentry must 483 * be valid and able to take a reference at this point. 484 */ 485 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 486 BUG_ON(!parent->d_count); 487 parent->d_count++; 488 spin_unlock(&dentry->d_lock); 489 spin_unlock(&parent->d_lock); 490 if (want_root) { 491 path_get(&nd->root); 492 spin_unlock(&fs->lock); 493 } 494 mntget(nd->path.mnt); 495 496 rcu_read_unlock(); 497 br_read_unlock(vfsmount_lock); 498 nd->flags &= ~LOOKUP_RCU; 499 return 0; 500 err: 501 spin_unlock(&dentry->d_lock); 502 spin_unlock(&parent->d_lock); 503 err_root: 504 if (want_root) 505 spin_unlock(&fs->lock); 506 return -ECHILD; 507 } 508 509 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 510 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry) 511 { 512 if (nd->flags & LOOKUP_RCU) { 513 if (unlikely(nameidata_dentry_drop_rcu(nd, dentry))) { 514 nd->flags &= ~LOOKUP_RCU; 515 if (!(nd->flags & LOOKUP_ROOT)) 516 nd->root.mnt = NULL; 517 rcu_read_unlock(); 518 br_read_unlock(vfsmount_lock); 519 return -ECHILD; 520 } 521 } 522 return 0; 523 } 524 525 /** 526 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk 527 * @nd: nameidata pathwalk data to drop 528 * Returns: 0 on success, -ECHILD on failure 529 * 530 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk. 531 * nd->path should be the final element of the lookup, so nd->root is discarded. 532 * Must be called from rcu-walk context. 533 */ 534 static int nameidata_drop_rcu_last(struct nameidata *nd) 535 { 536 struct dentry *dentry = nd->path.dentry; 537 538 BUG_ON(!(nd->flags & LOOKUP_RCU)); 539 nd->flags &= ~LOOKUP_RCU; 540 if (!(nd->flags & LOOKUP_ROOT)) 541 nd->root.mnt = NULL; 542 spin_lock(&dentry->d_lock); 543 if (!__d_rcu_to_refcount(dentry, nd->seq)) 544 goto err_unlock; 545 BUG_ON(nd->inode != dentry->d_inode); 546 spin_unlock(&dentry->d_lock); 547 548 mntget(nd->path.mnt); 549 550 rcu_read_unlock(); 551 br_read_unlock(vfsmount_lock); 552 553 return 0; 554 555 err_unlock: 556 spin_unlock(&dentry->d_lock); 557 rcu_read_unlock(); 558 br_read_unlock(vfsmount_lock); 559 return -ECHILD; 560 } 561 562 /** 563 * release_open_intent - free up open intent resources 564 * @nd: pointer to nameidata 565 */ 566 void release_open_intent(struct nameidata *nd) 567 { 568 struct file *file = nd->intent.open.file; 569 570 if (file && !IS_ERR(file)) { 571 if (file->f_path.dentry == NULL) 572 put_filp(file); 573 else 574 fput(file); 575 } 576 } 577 578 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 579 { 580 return dentry->d_op->d_revalidate(dentry, nd); 581 } 582 583 static struct dentry * 584 do_revalidate(struct dentry *dentry, struct nameidata *nd) 585 { 586 int status = d_revalidate(dentry, nd); 587 if (unlikely(status <= 0)) { 588 /* 589 * The dentry failed validation. 590 * If d_revalidate returned 0 attempt to invalidate 591 * the dentry otherwise d_revalidate is asking us 592 * to return a fail status. 593 */ 594 if (status < 0) { 595 dput(dentry); 596 dentry = ERR_PTR(status); 597 } else if (!d_invalidate(dentry)) { 598 dput(dentry); 599 dentry = NULL; 600 } 601 } 602 return dentry; 603 } 604 605 /* 606 * handle_reval_path - force revalidation of a dentry 607 * 608 * In some situations the path walking code will trust dentries without 609 * revalidating them. This causes problems for filesystems that depend on 610 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set 611 * (which indicates that it's possible for the dentry to go stale), force 612 * a d_revalidate call before proceeding. 613 * 614 * Returns 0 if the revalidation was successful. If the revalidation fails, 615 * either return the error returned by d_revalidate or -ESTALE if the 616 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to 617 * invalidate the dentry. It's up to the caller to handle putting references 618 * to the path if necessary. 619 */ 620 static inline int handle_reval_path(struct nameidata *nd) 621 { 622 struct dentry *dentry = nd->path.dentry; 623 int status; 624 625 if (likely(!(nd->flags & LOOKUP_JUMPED))) 626 return 0; 627 628 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 629 return 0; 630 631 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 632 return 0; 633 634 /* Note: we do not d_invalidate() */ 635 status = d_revalidate(dentry, nd); 636 if (status > 0) 637 return 0; 638 639 if (!status) 640 status = -ESTALE; 641 642 return status; 643 } 644 645 /* 646 * Short-cut version of permission(), for calling on directories 647 * during pathname resolution. Combines parts of permission() 648 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 649 * 650 * If appropriate, check DAC only. If not appropriate, or 651 * short-cut DAC fails, then call ->permission() to do more 652 * complete permission check. 653 */ 654 static inline int exec_permission(struct inode *inode, unsigned int flags) 655 { 656 int ret; 657 658 if (inode->i_op->permission) { 659 ret = inode->i_op->permission(inode, MAY_EXEC, flags); 660 } else { 661 ret = acl_permission_check(inode, MAY_EXEC, flags, 662 inode->i_op->check_acl); 663 } 664 if (likely(!ret)) 665 goto ok; 666 if (ret == -ECHILD) 667 return ret; 668 669 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 670 goto ok; 671 672 return ret; 673 ok: 674 return security_inode_exec_permission(inode, flags); 675 } 676 677 static __always_inline void set_root(struct nameidata *nd) 678 { 679 if (!nd->root.mnt) 680 get_fs_root(current->fs, &nd->root); 681 } 682 683 static int link_path_walk(const char *, struct nameidata *); 684 685 static __always_inline void set_root_rcu(struct nameidata *nd) 686 { 687 if (!nd->root.mnt) { 688 struct fs_struct *fs = current->fs; 689 unsigned seq; 690 691 do { 692 seq = read_seqcount_begin(&fs->seq); 693 nd->root = fs->root; 694 } while (read_seqcount_retry(&fs->seq, seq)); 695 } 696 } 697 698 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 699 { 700 int ret; 701 702 if (IS_ERR(link)) 703 goto fail; 704 705 if (*link == '/') { 706 set_root(nd); 707 path_put(&nd->path); 708 nd->path = nd->root; 709 path_get(&nd->root); 710 nd->flags |= LOOKUP_JUMPED; 711 } 712 nd->inode = nd->path.dentry->d_inode; 713 714 ret = link_path_walk(link, nd); 715 return ret; 716 fail: 717 path_put(&nd->path); 718 return PTR_ERR(link); 719 } 720 721 static void path_put_conditional(struct path *path, struct nameidata *nd) 722 { 723 dput(path->dentry); 724 if (path->mnt != nd->path.mnt) 725 mntput(path->mnt); 726 } 727 728 static inline void path_to_nameidata(const struct path *path, 729 struct nameidata *nd) 730 { 731 if (!(nd->flags & LOOKUP_RCU)) { 732 dput(nd->path.dentry); 733 if (nd->path.mnt != path->mnt) 734 mntput(nd->path.mnt); 735 } 736 nd->path.mnt = path->mnt; 737 nd->path.dentry = path->dentry; 738 } 739 740 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 741 { 742 struct inode *inode = link->dentry->d_inode; 743 if (!IS_ERR(cookie) && inode->i_op->put_link) 744 inode->i_op->put_link(link->dentry, nd, cookie); 745 path_put(link); 746 } 747 748 static __always_inline int 749 follow_link(struct path *link, struct nameidata *nd, void **p) 750 { 751 int error; 752 struct dentry *dentry = link->dentry; 753 754 BUG_ON(nd->flags & LOOKUP_RCU); 755 756 if (link->mnt == nd->path.mnt) 757 mntget(link->mnt); 758 759 if (unlikely(current->total_link_count >= 40)) { 760 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ 761 path_put(&nd->path); 762 return -ELOOP; 763 } 764 cond_resched(); 765 current->total_link_count++; 766 767 touch_atime(link->mnt, dentry); 768 nd_set_link(nd, NULL); 769 770 error = security_inode_follow_link(link->dentry, nd); 771 if (error) { 772 *p = ERR_PTR(error); /* no ->put_link(), please */ 773 path_put(&nd->path); 774 return error; 775 } 776 777 nd->last_type = LAST_BIND; 778 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 779 error = PTR_ERR(*p); 780 if (!IS_ERR(*p)) { 781 char *s = nd_get_link(nd); 782 error = 0; 783 if (s) 784 error = __vfs_follow_link(nd, s); 785 else if (nd->last_type == LAST_BIND) { 786 nd->flags |= LOOKUP_JUMPED; 787 nd->inode = nd->path.dentry->d_inode; 788 if (nd->inode->i_op->follow_link) { 789 /* stepped on a _really_ weird one */ 790 path_put(&nd->path); 791 error = -ELOOP; 792 } 793 } 794 } 795 return error; 796 } 797 798 static int follow_up_rcu(struct path *path) 799 { 800 struct vfsmount *parent; 801 struct dentry *mountpoint; 802 803 parent = path->mnt->mnt_parent; 804 if (parent == path->mnt) 805 return 0; 806 mountpoint = path->mnt->mnt_mountpoint; 807 path->dentry = mountpoint; 808 path->mnt = parent; 809 return 1; 810 } 811 812 int follow_up(struct path *path) 813 { 814 struct vfsmount *parent; 815 struct dentry *mountpoint; 816 817 br_read_lock(vfsmount_lock); 818 parent = path->mnt->mnt_parent; 819 if (parent == path->mnt) { 820 br_read_unlock(vfsmount_lock); 821 return 0; 822 } 823 mntget(parent); 824 mountpoint = dget(path->mnt->mnt_mountpoint); 825 br_read_unlock(vfsmount_lock); 826 dput(path->dentry); 827 path->dentry = mountpoint; 828 mntput(path->mnt); 829 path->mnt = parent; 830 return 1; 831 } 832 833 /* 834 * Perform an automount 835 * - return -EISDIR to tell follow_managed() to stop and return the path we 836 * were called with. 837 */ 838 static int follow_automount(struct path *path, unsigned flags, 839 bool *need_mntput) 840 { 841 struct vfsmount *mnt; 842 int err; 843 844 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 845 return -EREMOTE; 846 847 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT 848 * and this is the terminal part of the path. 849 */ 850 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE)) 851 return -EISDIR; /* we actually want to stop here */ 852 853 /* We want to mount if someone is trying to open/create a file of any 854 * type under the mountpoint, wants to traverse through the mountpoint 855 * or wants to open the mounted directory. 856 * 857 * We don't want to mount if someone's just doing a stat and they've 858 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and 859 * appended a '/' to the name. 860 */ 861 if (!(flags & LOOKUP_FOLLOW) && 862 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY | 863 LOOKUP_OPEN | LOOKUP_CREATE))) 864 return -EISDIR; 865 866 current->total_link_count++; 867 if (current->total_link_count >= 40) 868 return -ELOOP; 869 870 mnt = path->dentry->d_op->d_automount(path); 871 if (IS_ERR(mnt)) { 872 /* 873 * The filesystem is allowed to return -EISDIR here to indicate 874 * it doesn't want to automount. For instance, autofs would do 875 * this so that its userspace daemon can mount on this dentry. 876 * 877 * However, we can only permit this if it's a terminal point in 878 * the path being looked up; if it wasn't then the remainder of 879 * the path is inaccessible and we should say so. 880 */ 881 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE)) 882 return -EREMOTE; 883 return PTR_ERR(mnt); 884 } 885 886 if (!mnt) /* mount collision */ 887 return 0; 888 889 err = finish_automount(mnt, path); 890 891 switch (err) { 892 case -EBUSY: 893 /* Someone else made a mount here whilst we were busy */ 894 return 0; 895 case 0: 896 dput(path->dentry); 897 if (*need_mntput) 898 mntput(path->mnt); 899 path->mnt = mnt; 900 path->dentry = dget(mnt->mnt_root); 901 *need_mntput = true; 902 return 0; 903 default: 904 return err; 905 } 906 907 } 908 909 /* 910 * Handle a dentry that is managed in some way. 911 * - Flagged for transit management (autofs) 912 * - Flagged as mountpoint 913 * - Flagged as automount point 914 * 915 * This may only be called in refwalk mode. 916 * 917 * Serialization is taken care of in namespace.c 918 */ 919 static int follow_managed(struct path *path, unsigned flags) 920 { 921 unsigned managed; 922 bool need_mntput = false; 923 int ret; 924 925 /* Given that we're not holding a lock here, we retain the value in a 926 * local variable for each dentry as we look at it so that we don't see 927 * the components of that value change under us */ 928 while (managed = ACCESS_ONCE(path->dentry->d_flags), 929 managed &= DCACHE_MANAGED_DENTRY, 930 unlikely(managed != 0)) { 931 /* Allow the filesystem to manage the transit without i_mutex 932 * being held. */ 933 if (managed & DCACHE_MANAGE_TRANSIT) { 934 BUG_ON(!path->dentry->d_op); 935 BUG_ON(!path->dentry->d_op->d_manage); 936 ret = path->dentry->d_op->d_manage(path->dentry, false); 937 if (ret < 0) 938 return ret == -EISDIR ? 0 : ret; 939 } 940 941 /* Transit to a mounted filesystem. */ 942 if (managed & DCACHE_MOUNTED) { 943 struct vfsmount *mounted = lookup_mnt(path); 944 if (mounted) { 945 dput(path->dentry); 946 if (need_mntput) 947 mntput(path->mnt); 948 path->mnt = mounted; 949 path->dentry = dget(mounted->mnt_root); 950 need_mntput = true; 951 continue; 952 } 953 954 /* Something is mounted on this dentry in another 955 * namespace and/or whatever was mounted there in this 956 * namespace got unmounted before we managed to get the 957 * vfsmount_lock */ 958 } 959 960 /* Handle an automount point */ 961 if (managed & DCACHE_NEED_AUTOMOUNT) { 962 ret = follow_automount(path, flags, &need_mntput); 963 if (ret < 0) 964 return ret == -EISDIR ? 0 : ret; 965 continue; 966 } 967 968 /* We didn't change the current path point */ 969 break; 970 } 971 return 0; 972 } 973 974 int follow_down_one(struct path *path) 975 { 976 struct vfsmount *mounted; 977 978 mounted = lookup_mnt(path); 979 if (mounted) { 980 dput(path->dentry); 981 mntput(path->mnt); 982 path->mnt = mounted; 983 path->dentry = dget(mounted->mnt_root); 984 return 1; 985 } 986 return 0; 987 } 988 989 /* 990 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we 991 * meet a managed dentry and we're not walking to "..". True is returned to 992 * continue, false to abort. 993 */ 994 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 995 struct inode **inode, bool reverse_transit) 996 { 997 while (d_mountpoint(path->dentry)) { 998 struct vfsmount *mounted; 999 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) && 1000 !reverse_transit && 1001 path->dentry->d_op->d_manage(path->dentry, true) < 0) 1002 return false; 1003 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 1004 if (!mounted) 1005 break; 1006 path->mnt = mounted; 1007 path->dentry = mounted->mnt_root; 1008 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1009 *inode = path->dentry->d_inode; 1010 } 1011 1012 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1013 return reverse_transit; 1014 return true; 1015 } 1016 1017 static int follow_dotdot_rcu(struct nameidata *nd) 1018 { 1019 struct inode *inode = nd->inode; 1020 1021 set_root_rcu(nd); 1022 1023 while (1) { 1024 if (nd->path.dentry == nd->root.dentry && 1025 nd->path.mnt == nd->root.mnt) { 1026 break; 1027 } 1028 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1029 struct dentry *old = nd->path.dentry; 1030 struct dentry *parent = old->d_parent; 1031 unsigned seq; 1032 1033 seq = read_seqcount_begin(&parent->d_seq); 1034 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1035 goto failed; 1036 inode = parent->d_inode; 1037 nd->path.dentry = parent; 1038 nd->seq = seq; 1039 break; 1040 } 1041 if (!follow_up_rcu(&nd->path)) 1042 break; 1043 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1044 inode = nd->path.dentry->d_inode; 1045 } 1046 __follow_mount_rcu(nd, &nd->path, &inode, true); 1047 nd->inode = inode; 1048 return 0; 1049 1050 failed: 1051 nd->flags &= ~LOOKUP_RCU; 1052 if (!(nd->flags & LOOKUP_ROOT)) 1053 nd->root.mnt = NULL; 1054 rcu_read_unlock(); 1055 br_read_unlock(vfsmount_lock); 1056 return -ECHILD; 1057 } 1058 1059 /* 1060 * Follow down to the covering mount currently visible to userspace. At each 1061 * point, the filesystem owning that dentry may be queried as to whether the 1062 * caller is permitted to proceed or not. 1063 * 1064 * Care must be taken as namespace_sem may be held (indicated by mounting_here 1065 * being true). 1066 */ 1067 int follow_down(struct path *path) 1068 { 1069 unsigned managed; 1070 int ret; 1071 1072 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1073 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1074 /* Allow the filesystem to manage the transit without i_mutex 1075 * being held. 1076 * 1077 * We indicate to the filesystem if someone is trying to mount 1078 * something here. This gives autofs the chance to deny anyone 1079 * other than its daemon the right to mount on its 1080 * superstructure. 1081 * 1082 * The filesystem may sleep at this point. 1083 */ 1084 if (managed & DCACHE_MANAGE_TRANSIT) { 1085 BUG_ON(!path->dentry->d_op); 1086 BUG_ON(!path->dentry->d_op->d_manage); 1087 ret = path->dentry->d_op->d_manage( 1088 path->dentry, false); 1089 if (ret < 0) 1090 return ret == -EISDIR ? 0 : ret; 1091 } 1092 1093 /* Transit to a mounted filesystem. */ 1094 if (managed & DCACHE_MOUNTED) { 1095 struct vfsmount *mounted = lookup_mnt(path); 1096 if (!mounted) 1097 break; 1098 dput(path->dentry); 1099 mntput(path->mnt); 1100 path->mnt = mounted; 1101 path->dentry = dget(mounted->mnt_root); 1102 continue; 1103 } 1104 1105 /* Don't handle automount points here */ 1106 break; 1107 } 1108 return 0; 1109 } 1110 1111 /* 1112 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1113 */ 1114 static void follow_mount(struct path *path) 1115 { 1116 while (d_mountpoint(path->dentry)) { 1117 struct vfsmount *mounted = lookup_mnt(path); 1118 if (!mounted) 1119 break; 1120 dput(path->dentry); 1121 mntput(path->mnt); 1122 path->mnt = mounted; 1123 path->dentry = dget(mounted->mnt_root); 1124 } 1125 } 1126 1127 static void follow_dotdot(struct nameidata *nd) 1128 { 1129 set_root(nd); 1130 1131 while(1) { 1132 struct dentry *old = nd->path.dentry; 1133 1134 if (nd->path.dentry == nd->root.dentry && 1135 nd->path.mnt == nd->root.mnt) { 1136 break; 1137 } 1138 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1139 /* rare case of legitimate dget_parent()... */ 1140 nd->path.dentry = dget_parent(nd->path.dentry); 1141 dput(old); 1142 break; 1143 } 1144 if (!follow_up(&nd->path)) 1145 break; 1146 } 1147 follow_mount(&nd->path); 1148 nd->inode = nd->path.dentry->d_inode; 1149 } 1150 1151 /* 1152 * Allocate a dentry with name and parent, and perform a parent 1153 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1154 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1155 * have verified that no child exists while under i_mutex. 1156 */ 1157 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1158 struct qstr *name, struct nameidata *nd) 1159 { 1160 struct inode *inode = parent->d_inode; 1161 struct dentry *dentry; 1162 struct dentry *old; 1163 1164 /* Don't create child dentry for a dead directory. */ 1165 if (unlikely(IS_DEADDIR(inode))) 1166 return ERR_PTR(-ENOENT); 1167 1168 dentry = d_alloc(parent, name); 1169 if (unlikely(!dentry)) 1170 return ERR_PTR(-ENOMEM); 1171 1172 old = inode->i_op->lookup(inode, dentry, nd); 1173 if (unlikely(old)) { 1174 dput(dentry); 1175 dentry = old; 1176 } 1177 return dentry; 1178 } 1179 1180 /* 1181 * It's more convoluted than I'd like it to be, but... it's still fairly 1182 * small and for now I'd prefer to have fast path as straight as possible. 1183 * It _is_ time-critical. 1184 */ 1185 static int do_lookup(struct nameidata *nd, struct qstr *name, 1186 struct path *path, struct inode **inode) 1187 { 1188 struct vfsmount *mnt = nd->path.mnt; 1189 struct dentry *dentry, *parent = nd->path.dentry; 1190 int need_reval = 1; 1191 int status = 1; 1192 int err; 1193 1194 /* 1195 * Rename seqlock is not required here because in the off chance 1196 * of a false negative due to a concurrent rename, we're going to 1197 * do the non-racy lookup, below. 1198 */ 1199 if (nd->flags & LOOKUP_RCU) { 1200 unsigned seq; 1201 *inode = nd->inode; 1202 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1203 if (!dentry) 1204 goto unlazy; 1205 1206 /* Memory barrier in read_seqcount_begin of child is enough */ 1207 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1208 return -ECHILD; 1209 nd->seq = seq; 1210 1211 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1212 status = d_revalidate(dentry, nd); 1213 if (unlikely(status <= 0)) { 1214 if (status != -ECHILD) 1215 need_reval = 0; 1216 goto unlazy; 1217 } 1218 } 1219 path->mnt = mnt; 1220 path->dentry = dentry; 1221 if (likely(__follow_mount_rcu(nd, path, inode, false))) 1222 return 0; 1223 unlazy: 1224 if (dentry) { 1225 if (nameidata_dentry_drop_rcu(nd, dentry)) 1226 return -ECHILD; 1227 } else { 1228 if (nameidata_drop_rcu(nd)) 1229 return -ECHILD; 1230 } 1231 } else { 1232 dentry = __d_lookup(parent, name); 1233 } 1234 1235 retry: 1236 if (unlikely(!dentry)) { 1237 struct inode *dir = parent->d_inode; 1238 BUG_ON(nd->inode != dir); 1239 1240 mutex_lock(&dir->i_mutex); 1241 dentry = d_lookup(parent, name); 1242 if (likely(!dentry)) { 1243 dentry = d_alloc_and_lookup(parent, name, nd); 1244 if (IS_ERR(dentry)) { 1245 mutex_unlock(&dir->i_mutex); 1246 return PTR_ERR(dentry); 1247 } 1248 /* known good */ 1249 need_reval = 0; 1250 status = 1; 1251 } 1252 mutex_unlock(&dir->i_mutex); 1253 } 1254 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1255 status = d_revalidate(dentry, nd); 1256 if (unlikely(status <= 0)) { 1257 if (status < 0) { 1258 dput(dentry); 1259 return status; 1260 } 1261 if (!d_invalidate(dentry)) { 1262 dput(dentry); 1263 dentry = NULL; 1264 need_reval = 1; 1265 goto retry; 1266 } 1267 } 1268 1269 path->mnt = mnt; 1270 path->dentry = dentry; 1271 err = follow_managed(path, nd->flags); 1272 if (unlikely(err < 0)) { 1273 path_put_conditional(path, nd); 1274 return err; 1275 } 1276 *inode = path->dentry->d_inode; 1277 return 0; 1278 } 1279 1280 static inline int may_lookup(struct nameidata *nd) 1281 { 1282 if (nd->flags & LOOKUP_RCU) { 1283 int err = exec_permission(nd->inode, IPERM_FLAG_RCU); 1284 if (err != -ECHILD) 1285 return err; 1286 if (nameidata_drop_rcu(nd)) 1287 return -ECHILD; 1288 } 1289 return exec_permission(nd->inode, 0); 1290 } 1291 1292 static inline int handle_dots(struct nameidata *nd, int type) 1293 { 1294 if (type == LAST_DOTDOT) { 1295 if (nd->flags & LOOKUP_RCU) { 1296 if (follow_dotdot_rcu(nd)) 1297 return -ECHILD; 1298 } else 1299 follow_dotdot(nd); 1300 } 1301 return 0; 1302 } 1303 1304 static void terminate_walk(struct nameidata *nd) 1305 { 1306 if (!(nd->flags & LOOKUP_RCU)) { 1307 path_put(&nd->path); 1308 } else { 1309 nd->flags &= ~LOOKUP_RCU; 1310 if (!(nd->flags & LOOKUP_ROOT)) 1311 nd->root.mnt = NULL; 1312 rcu_read_unlock(); 1313 br_read_unlock(vfsmount_lock); 1314 } 1315 } 1316 1317 static inline int walk_component(struct nameidata *nd, struct path *path, 1318 struct qstr *name, int type, int follow) 1319 { 1320 struct inode *inode; 1321 int err; 1322 /* 1323 * "." and ".." are special - ".." especially so because it has 1324 * to be able to know about the current root directory and 1325 * parent relationships. 1326 */ 1327 if (unlikely(type != LAST_NORM)) 1328 return handle_dots(nd, type); 1329 err = do_lookup(nd, name, path, &inode); 1330 if (unlikely(err)) { 1331 terminate_walk(nd); 1332 return err; 1333 } 1334 if (!inode) { 1335 path_to_nameidata(path, nd); 1336 terminate_walk(nd); 1337 return -ENOENT; 1338 } 1339 if (unlikely(inode->i_op->follow_link) && follow) { 1340 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry)) 1341 return -ECHILD; 1342 BUG_ON(inode != path->dentry->d_inode); 1343 return 1; 1344 } 1345 path_to_nameidata(path, nd); 1346 nd->inode = inode; 1347 return 0; 1348 } 1349 1350 /* 1351 * This limits recursive symlink follows to 8, while 1352 * limiting consecutive symlinks to 40. 1353 * 1354 * Without that kind of total limit, nasty chains of consecutive 1355 * symlinks can cause almost arbitrarily long lookups. 1356 */ 1357 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1358 { 1359 int res; 1360 1361 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1362 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1363 path_put_conditional(path, nd); 1364 path_put(&nd->path); 1365 return -ELOOP; 1366 } 1367 1368 nd->depth++; 1369 current->link_count++; 1370 1371 do { 1372 struct path link = *path; 1373 void *cookie; 1374 1375 res = follow_link(&link, nd, &cookie); 1376 if (!res) 1377 res = walk_component(nd, path, &nd->last, 1378 nd->last_type, LOOKUP_FOLLOW); 1379 put_link(nd, &link, cookie); 1380 } while (res > 0); 1381 1382 current->link_count--; 1383 nd->depth--; 1384 return res; 1385 } 1386 1387 /* 1388 * Name resolution. 1389 * This is the basic name resolution function, turning a pathname into 1390 * the final dentry. We expect 'base' to be positive and a directory. 1391 * 1392 * Returns 0 and nd will have valid dentry and mnt on success. 1393 * Returns error and drops reference to input namei data on failure. 1394 */ 1395 static int link_path_walk(const char *name, struct nameidata *nd) 1396 { 1397 struct path next; 1398 int err; 1399 unsigned int lookup_flags = nd->flags; 1400 1401 while (*name=='/') 1402 name++; 1403 if (!*name) 1404 return 0; 1405 1406 /* At this point we know we have a real path component. */ 1407 for(;;) { 1408 unsigned long hash; 1409 struct qstr this; 1410 unsigned int c; 1411 int type; 1412 1413 nd->flags |= LOOKUP_CONTINUE; 1414 1415 err = may_lookup(nd); 1416 if (err) 1417 break; 1418 1419 this.name = name; 1420 c = *(const unsigned char *)name; 1421 1422 hash = init_name_hash(); 1423 do { 1424 name++; 1425 hash = partial_name_hash(c, hash); 1426 c = *(const unsigned char *)name; 1427 } while (c && (c != '/')); 1428 this.len = name - (const char *) this.name; 1429 this.hash = end_name_hash(hash); 1430 1431 type = LAST_NORM; 1432 if (this.name[0] == '.') switch (this.len) { 1433 case 2: 1434 if (this.name[1] == '.') { 1435 type = LAST_DOTDOT; 1436 nd->flags |= LOOKUP_JUMPED; 1437 } 1438 break; 1439 case 1: 1440 type = LAST_DOT; 1441 } 1442 if (likely(type == LAST_NORM)) { 1443 struct dentry *parent = nd->path.dentry; 1444 nd->flags &= ~LOOKUP_JUMPED; 1445 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1446 err = parent->d_op->d_hash(parent, nd->inode, 1447 &this); 1448 if (err < 0) 1449 break; 1450 } 1451 } 1452 1453 /* remove trailing slashes? */ 1454 if (!c) 1455 goto last_component; 1456 while (*++name == '/'); 1457 if (!*name) 1458 goto last_component; 1459 1460 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); 1461 if (err < 0) 1462 return err; 1463 1464 if (err) { 1465 err = nested_symlink(&next, nd); 1466 if (err) 1467 return err; 1468 } 1469 err = -ENOTDIR; 1470 if (!nd->inode->i_op->lookup) 1471 break; 1472 continue; 1473 /* here ends the main loop */ 1474 1475 last_component: 1476 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 1477 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 1478 nd->last = this; 1479 nd->last_type = type; 1480 return 0; 1481 } 1482 terminate_walk(nd); 1483 return err; 1484 } 1485 1486 static int path_init(int dfd, const char *name, unsigned int flags, 1487 struct nameidata *nd, struct file **fp) 1488 { 1489 int retval = 0; 1490 int fput_needed; 1491 struct file *file; 1492 1493 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1494 nd->flags = flags | LOOKUP_JUMPED; 1495 nd->depth = 0; 1496 if (flags & LOOKUP_ROOT) { 1497 struct inode *inode = nd->root.dentry->d_inode; 1498 if (*name) { 1499 if (!inode->i_op->lookup) 1500 return -ENOTDIR; 1501 retval = inode_permission(inode, MAY_EXEC); 1502 if (retval) 1503 return retval; 1504 } 1505 nd->path = nd->root; 1506 nd->inode = inode; 1507 if (flags & LOOKUP_RCU) { 1508 br_read_lock(vfsmount_lock); 1509 rcu_read_lock(); 1510 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1511 } else { 1512 path_get(&nd->path); 1513 } 1514 return 0; 1515 } 1516 1517 nd->root.mnt = NULL; 1518 1519 if (*name=='/') { 1520 if (flags & LOOKUP_RCU) { 1521 br_read_lock(vfsmount_lock); 1522 rcu_read_lock(); 1523 set_root_rcu(nd); 1524 } else { 1525 set_root(nd); 1526 path_get(&nd->root); 1527 } 1528 nd->path = nd->root; 1529 } else if (dfd == AT_FDCWD) { 1530 if (flags & LOOKUP_RCU) { 1531 struct fs_struct *fs = current->fs; 1532 unsigned seq; 1533 1534 br_read_lock(vfsmount_lock); 1535 rcu_read_lock(); 1536 1537 do { 1538 seq = read_seqcount_begin(&fs->seq); 1539 nd->path = fs->pwd; 1540 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1541 } while (read_seqcount_retry(&fs->seq, seq)); 1542 } else { 1543 get_fs_pwd(current->fs, &nd->path); 1544 } 1545 } else { 1546 struct dentry *dentry; 1547 1548 file = fget_raw_light(dfd, &fput_needed); 1549 retval = -EBADF; 1550 if (!file) 1551 goto out_fail; 1552 1553 dentry = file->f_path.dentry; 1554 1555 if (*name) { 1556 retval = -ENOTDIR; 1557 if (!S_ISDIR(dentry->d_inode->i_mode)) 1558 goto fput_fail; 1559 1560 retval = file_permission(file, MAY_EXEC); 1561 if (retval) 1562 goto fput_fail; 1563 } 1564 1565 nd->path = file->f_path; 1566 if (flags & LOOKUP_RCU) { 1567 if (fput_needed) 1568 *fp = file; 1569 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1570 br_read_lock(vfsmount_lock); 1571 rcu_read_lock(); 1572 } else { 1573 path_get(&file->f_path); 1574 fput_light(file, fput_needed); 1575 } 1576 } 1577 1578 nd->inode = nd->path.dentry->d_inode; 1579 return 0; 1580 1581 fput_fail: 1582 fput_light(file, fput_needed); 1583 out_fail: 1584 return retval; 1585 } 1586 1587 static inline int lookup_last(struct nameidata *nd, struct path *path) 1588 { 1589 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1590 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1591 1592 nd->flags &= ~LOOKUP_PARENT; 1593 return walk_component(nd, path, &nd->last, nd->last_type, 1594 nd->flags & LOOKUP_FOLLOW); 1595 } 1596 1597 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1598 static int path_lookupat(int dfd, const char *name, 1599 unsigned int flags, struct nameidata *nd) 1600 { 1601 struct file *base = NULL; 1602 struct path path; 1603 int err; 1604 1605 /* 1606 * Path walking is largely split up into 2 different synchronisation 1607 * schemes, rcu-walk and ref-walk (explained in 1608 * Documentation/filesystems/path-lookup.txt). These share much of the 1609 * path walk code, but some things particularly setup, cleanup, and 1610 * following mounts are sufficiently divergent that functions are 1611 * duplicated. Typically there is a function foo(), and its RCU 1612 * analogue, foo_rcu(). 1613 * 1614 * -ECHILD is the error number of choice (just to avoid clashes) that 1615 * is returned if some aspect of an rcu-walk fails. Such an error must 1616 * be handled by restarting a traditional ref-walk (which will always 1617 * be able to complete). 1618 */ 1619 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1620 1621 if (unlikely(err)) 1622 return err; 1623 1624 current->total_link_count = 0; 1625 err = link_path_walk(name, nd); 1626 1627 if (!err && !(flags & LOOKUP_PARENT)) { 1628 err = lookup_last(nd, &path); 1629 while (err > 0) { 1630 void *cookie; 1631 struct path link = path; 1632 nd->flags |= LOOKUP_PARENT; 1633 err = follow_link(&link, nd, &cookie); 1634 if (!err) 1635 err = lookup_last(nd, &path); 1636 put_link(nd, &link, cookie); 1637 } 1638 } 1639 1640 if (nd->flags & LOOKUP_RCU) { 1641 /* went all way through without dropping RCU */ 1642 BUG_ON(err); 1643 if (nameidata_drop_rcu_last(nd)) 1644 err = -ECHILD; 1645 } 1646 1647 if (!err) 1648 err = handle_reval_path(nd); 1649 1650 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1651 if (!nd->inode->i_op->lookup) { 1652 path_put(&nd->path); 1653 return -ENOTDIR; 1654 } 1655 } 1656 1657 if (base) 1658 fput(base); 1659 1660 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1661 path_put(&nd->root); 1662 nd->root.mnt = NULL; 1663 } 1664 return err; 1665 } 1666 1667 static int do_path_lookup(int dfd, const char *name, 1668 unsigned int flags, struct nameidata *nd) 1669 { 1670 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 1671 if (unlikely(retval == -ECHILD)) 1672 retval = path_lookupat(dfd, name, flags, nd); 1673 if (unlikely(retval == -ESTALE)) 1674 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 1675 1676 if (likely(!retval)) { 1677 if (unlikely(!audit_dummy_context())) { 1678 if (nd->path.dentry && nd->inode) 1679 audit_inode(name, nd->path.dentry); 1680 } 1681 } 1682 return retval; 1683 } 1684 1685 int kern_path_parent(const char *name, struct nameidata *nd) 1686 { 1687 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); 1688 } 1689 1690 int kern_path(const char *name, unsigned int flags, struct path *path) 1691 { 1692 struct nameidata nd; 1693 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1694 if (!res) 1695 *path = nd.path; 1696 return res; 1697 } 1698 1699 /** 1700 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1701 * @dentry: pointer to dentry of the base directory 1702 * @mnt: pointer to vfs mount of the base directory 1703 * @name: pointer to file name 1704 * @flags: lookup flags 1705 * @nd: pointer to nameidata 1706 */ 1707 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1708 const char *name, unsigned int flags, 1709 struct nameidata *nd) 1710 { 1711 nd->root.dentry = dentry; 1712 nd->root.mnt = mnt; 1713 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 1714 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd); 1715 } 1716 1717 static struct dentry *__lookup_hash(struct qstr *name, 1718 struct dentry *base, struct nameidata *nd) 1719 { 1720 struct inode *inode = base->d_inode; 1721 struct dentry *dentry; 1722 int err; 1723 1724 err = exec_permission(inode, 0); 1725 if (err) 1726 return ERR_PTR(err); 1727 1728 /* 1729 * Don't bother with __d_lookup: callers are for creat as 1730 * well as unlink, so a lot of the time it would cost 1731 * a double lookup. 1732 */ 1733 dentry = d_lookup(base, name); 1734 1735 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) 1736 dentry = do_revalidate(dentry, nd); 1737 1738 if (!dentry) 1739 dentry = d_alloc_and_lookup(base, name, nd); 1740 1741 return dentry; 1742 } 1743 1744 /* 1745 * Restricted form of lookup. Doesn't follow links, single-component only, 1746 * needs parent already locked. Doesn't follow mounts. 1747 * SMP-safe. 1748 */ 1749 static struct dentry *lookup_hash(struct nameidata *nd) 1750 { 1751 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1752 } 1753 1754 /** 1755 * lookup_one_len - filesystem helper to lookup single pathname component 1756 * @name: pathname component to lookup 1757 * @base: base directory to lookup from 1758 * @len: maximum length @len should be interpreted to 1759 * 1760 * Note that this routine is purely a helper for filesystem usage and should 1761 * not be called by generic code. Also note that by using this function the 1762 * nameidata argument is passed to the filesystem methods and a filesystem 1763 * using this helper needs to be prepared for that. 1764 */ 1765 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1766 { 1767 struct qstr this; 1768 unsigned long hash; 1769 unsigned int c; 1770 1771 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1772 1773 this.name = name; 1774 this.len = len; 1775 if (!len) 1776 return ERR_PTR(-EACCES); 1777 1778 hash = init_name_hash(); 1779 while (len--) { 1780 c = *(const unsigned char *)name++; 1781 if (c == '/' || c == '\0') 1782 return ERR_PTR(-EACCES); 1783 hash = partial_name_hash(c, hash); 1784 } 1785 this.hash = end_name_hash(hash); 1786 /* 1787 * See if the low-level filesystem might want 1788 * to use its own hash.. 1789 */ 1790 if (base->d_flags & DCACHE_OP_HASH) { 1791 int err = base->d_op->d_hash(base, base->d_inode, &this); 1792 if (err < 0) 1793 return ERR_PTR(err); 1794 } 1795 1796 return __lookup_hash(&this, base, NULL); 1797 } 1798 1799 int user_path_at(int dfd, const char __user *name, unsigned flags, 1800 struct path *path) 1801 { 1802 struct nameidata nd; 1803 char *tmp = getname_flags(name, flags); 1804 int err = PTR_ERR(tmp); 1805 if (!IS_ERR(tmp)) { 1806 1807 BUG_ON(flags & LOOKUP_PARENT); 1808 1809 err = do_path_lookup(dfd, tmp, flags, &nd); 1810 putname(tmp); 1811 if (!err) 1812 *path = nd.path; 1813 } 1814 return err; 1815 } 1816 1817 static int user_path_parent(int dfd, const char __user *path, 1818 struct nameidata *nd, char **name) 1819 { 1820 char *s = getname(path); 1821 int error; 1822 1823 if (IS_ERR(s)) 1824 return PTR_ERR(s); 1825 1826 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1827 if (error) 1828 putname(s); 1829 else 1830 *name = s; 1831 1832 return error; 1833 } 1834 1835 /* 1836 * It's inline, so penalty for filesystems that don't use sticky bit is 1837 * minimal. 1838 */ 1839 static inline int check_sticky(struct inode *dir, struct inode *inode) 1840 { 1841 uid_t fsuid = current_fsuid(); 1842 1843 if (!(dir->i_mode & S_ISVTX)) 1844 return 0; 1845 if (inode->i_uid == fsuid) 1846 return 0; 1847 if (dir->i_uid == fsuid) 1848 return 0; 1849 return !capable(CAP_FOWNER); 1850 } 1851 1852 /* 1853 * Check whether we can remove a link victim from directory dir, check 1854 * whether the type of victim is right. 1855 * 1. We can't do it if dir is read-only (done in permission()) 1856 * 2. We should have write and exec permissions on dir 1857 * 3. We can't remove anything from append-only dir 1858 * 4. We can't do anything with immutable dir (done in permission()) 1859 * 5. If the sticky bit on dir is set we should either 1860 * a. be owner of dir, or 1861 * b. be owner of victim, or 1862 * c. have CAP_FOWNER capability 1863 * 6. If the victim is append-only or immutable we can't do antyhing with 1864 * links pointing to it. 1865 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1866 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1867 * 9. We can't remove a root or mountpoint. 1868 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1869 * nfs_async_unlink(). 1870 */ 1871 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1872 { 1873 int error; 1874 1875 if (!victim->d_inode) 1876 return -ENOENT; 1877 1878 BUG_ON(victim->d_parent->d_inode != dir); 1879 audit_inode_child(victim, dir); 1880 1881 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1882 if (error) 1883 return error; 1884 if (IS_APPEND(dir)) 1885 return -EPERM; 1886 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1887 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1888 return -EPERM; 1889 if (isdir) { 1890 if (!S_ISDIR(victim->d_inode->i_mode)) 1891 return -ENOTDIR; 1892 if (IS_ROOT(victim)) 1893 return -EBUSY; 1894 } else if (S_ISDIR(victim->d_inode->i_mode)) 1895 return -EISDIR; 1896 if (IS_DEADDIR(dir)) 1897 return -ENOENT; 1898 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1899 return -EBUSY; 1900 return 0; 1901 } 1902 1903 /* Check whether we can create an object with dentry child in directory 1904 * dir. 1905 * 1. We can't do it if child already exists (open has special treatment for 1906 * this case, but since we are inlined it's OK) 1907 * 2. We can't do it if dir is read-only (done in permission()) 1908 * 3. We should have write and exec permissions on dir 1909 * 4. We can't do it if dir is immutable (done in permission()) 1910 */ 1911 static inline int may_create(struct inode *dir, struct dentry *child) 1912 { 1913 if (child->d_inode) 1914 return -EEXIST; 1915 if (IS_DEADDIR(dir)) 1916 return -ENOENT; 1917 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1918 } 1919 1920 /* 1921 * p1 and p2 should be directories on the same fs. 1922 */ 1923 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1924 { 1925 struct dentry *p; 1926 1927 if (p1 == p2) { 1928 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1929 return NULL; 1930 } 1931 1932 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1933 1934 p = d_ancestor(p2, p1); 1935 if (p) { 1936 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1937 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1938 return p; 1939 } 1940 1941 p = d_ancestor(p1, p2); 1942 if (p) { 1943 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1944 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1945 return p; 1946 } 1947 1948 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1949 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1950 return NULL; 1951 } 1952 1953 void unlock_rename(struct dentry *p1, struct dentry *p2) 1954 { 1955 mutex_unlock(&p1->d_inode->i_mutex); 1956 if (p1 != p2) { 1957 mutex_unlock(&p2->d_inode->i_mutex); 1958 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1959 } 1960 } 1961 1962 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1963 struct nameidata *nd) 1964 { 1965 int error = may_create(dir, dentry); 1966 1967 if (error) 1968 return error; 1969 1970 if (!dir->i_op->create) 1971 return -EACCES; /* shouldn't it be ENOSYS? */ 1972 mode &= S_IALLUGO; 1973 mode |= S_IFREG; 1974 error = security_inode_create(dir, dentry, mode); 1975 if (error) 1976 return error; 1977 error = dir->i_op->create(dir, dentry, mode, nd); 1978 if (!error) 1979 fsnotify_create(dir, dentry); 1980 return error; 1981 } 1982 1983 static int may_open(struct path *path, int acc_mode, int flag) 1984 { 1985 struct dentry *dentry = path->dentry; 1986 struct inode *inode = dentry->d_inode; 1987 int error; 1988 1989 /* O_PATH? */ 1990 if (!acc_mode) 1991 return 0; 1992 1993 if (!inode) 1994 return -ENOENT; 1995 1996 switch (inode->i_mode & S_IFMT) { 1997 case S_IFLNK: 1998 return -ELOOP; 1999 case S_IFDIR: 2000 if (acc_mode & MAY_WRITE) 2001 return -EISDIR; 2002 break; 2003 case S_IFBLK: 2004 case S_IFCHR: 2005 if (path->mnt->mnt_flags & MNT_NODEV) 2006 return -EACCES; 2007 /*FALLTHRU*/ 2008 case S_IFIFO: 2009 case S_IFSOCK: 2010 flag &= ~O_TRUNC; 2011 break; 2012 } 2013 2014 error = inode_permission(inode, acc_mode); 2015 if (error) 2016 return error; 2017 2018 /* 2019 * An append-only file must be opened in append mode for writing. 2020 */ 2021 if (IS_APPEND(inode)) { 2022 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2023 return -EPERM; 2024 if (flag & O_TRUNC) 2025 return -EPERM; 2026 } 2027 2028 /* O_NOATIME can only be set by the owner or superuser */ 2029 if (flag & O_NOATIME && !is_owner_or_cap(inode)) 2030 return -EPERM; 2031 2032 /* 2033 * Ensure there are no outstanding leases on the file. 2034 */ 2035 return break_lease(inode, flag); 2036 } 2037 2038 static int handle_truncate(struct file *filp) 2039 { 2040 struct path *path = &filp->f_path; 2041 struct inode *inode = path->dentry->d_inode; 2042 int error = get_write_access(inode); 2043 if (error) 2044 return error; 2045 /* 2046 * Refuse to truncate files with mandatory locks held on them. 2047 */ 2048 error = locks_verify_locked(inode); 2049 if (!error) 2050 error = security_path_truncate(path); 2051 if (!error) { 2052 error = do_truncate(path->dentry, 0, 2053 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2054 filp); 2055 } 2056 put_write_access(inode); 2057 return error; 2058 } 2059 2060 /* 2061 * Note that while the flag value (low two bits) for sys_open means: 2062 * 00 - read-only 2063 * 01 - write-only 2064 * 10 - read-write 2065 * 11 - special 2066 * it is changed into 2067 * 00 - no permissions needed 2068 * 01 - read-permission 2069 * 10 - write-permission 2070 * 11 - read-write 2071 * for the internal routines (ie open_namei()/follow_link() etc) 2072 * This is more logical, and also allows the 00 "no perm needed" 2073 * to be used for symlinks (where the permissions are checked 2074 * later). 2075 * 2076 */ 2077 static inline int open_to_namei_flags(int flag) 2078 { 2079 if ((flag+1) & O_ACCMODE) 2080 flag++; 2081 return flag; 2082 } 2083 2084 /* 2085 * Handle the last step of open() 2086 */ 2087 static struct file *do_last(struct nameidata *nd, struct path *path, 2088 const struct open_flags *op, const char *pathname) 2089 { 2090 struct dentry *dir = nd->path.dentry; 2091 struct dentry *dentry; 2092 int open_flag = op->open_flag; 2093 int will_truncate = open_flag & O_TRUNC; 2094 int want_write = 0; 2095 int acc_mode = op->acc_mode; 2096 struct file *filp; 2097 int error; 2098 2099 nd->flags &= ~LOOKUP_PARENT; 2100 nd->flags |= op->intent; 2101 2102 switch (nd->last_type) { 2103 case LAST_DOTDOT: 2104 case LAST_DOT: 2105 error = handle_dots(nd, nd->last_type); 2106 if (error) 2107 return ERR_PTR(error); 2108 /* fallthrough */ 2109 case LAST_ROOT: 2110 if (nd->flags & LOOKUP_RCU) { 2111 if (nameidata_drop_rcu_last(nd)) 2112 return ERR_PTR(-ECHILD); 2113 } 2114 error = handle_reval_path(nd); 2115 if (error) 2116 goto exit; 2117 audit_inode(pathname, nd->path.dentry); 2118 if (open_flag & O_CREAT) { 2119 error = -EISDIR; 2120 goto exit; 2121 } 2122 goto ok; 2123 case LAST_BIND: 2124 /* can't be RCU mode here */ 2125 error = handle_reval_path(nd); 2126 if (error) 2127 goto exit; 2128 audit_inode(pathname, dir); 2129 goto ok; 2130 } 2131 2132 if (!(open_flag & O_CREAT)) { 2133 int symlink_ok = 0; 2134 if (nd->last.name[nd->last.len]) 2135 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2136 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2137 symlink_ok = 1; 2138 /* we _can_ be in RCU mode here */ 2139 error = walk_component(nd, path, &nd->last, LAST_NORM, 2140 !symlink_ok); 2141 if (error < 0) 2142 return ERR_PTR(error); 2143 if (error) /* symlink */ 2144 return NULL; 2145 /* sayonara */ 2146 if (nd->flags & LOOKUP_RCU) { 2147 if (nameidata_drop_rcu_last(nd)) 2148 return ERR_PTR(-ECHILD); 2149 } 2150 2151 error = -ENOTDIR; 2152 if (nd->flags & LOOKUP_DIRECTORY) { 2153 if (!nd->inode->i_op->lookup) 2154 goto exit; 2155 } 2156 audit_inode(pathname, nd->path.dentry); 2157 goto ok; 2158 } 2159 2160 /* create side of things */ 2161 2162 if (nd->flags & LOOKUP_RCU) { 2163 if (nameidata_drop_rcu_last(nd)) 2164 return ERR_PTR(-ECHILD); 2165 } 2166 2167 audit_inode(pathname, dir); 2168 error = -EISDIR; 2169 /* trailing slashes? */ 2170 if (nd->last.name[nd->last.len]) 2171 goto exit; 2172 2173 mutex_lock(&dir->d_inode->i_mutex); 2174 2175 dentry = lookup_hash(nd); 2176 error = PTR_ERR(dentry); 2177 if (IS_ERR(dentry)) { 2178 mutex_unlock(&dir->d_inode->i_mutex); 2179 goto exit; 2180 } 2181 2182 path->dentry = dentry; 2183 path->mnt = nd->path.mnt; 2184 2185 /* Negative dentry, just create the file */ 2186 if (!dentry->d_inode) { 2187 int mode = op->mode; 2188 if (!IS_POSIXACL(dir->d_inode)) 2189 mode &= ~current_umask(); 2190 /* 2191 * This write is needed to ensure that a 2192 * rw->ro transition does not occur between 2193 * the time when the file is created and when 2194 * a permanent write count is taken through 2195 * the 'struct file' in nameidata_to_filp(). 2196 */ 2197 error = mnt_want_write(nd->path.mnt); 2198 if (error) 2199 goto exit_mutex_unlock; 2200 want_write = 1; 2201 /* Don't check for write permission, don't truncate */ 2202 open_flag &= ~O_TRUNC; 2203 will_truncate = 0; 2204 acc_mode = MAY_OPEN; 2205 error = security_path_mknod(&nd->path, dentry, mode, 0); 2206 if (error) 2207 goto exit_mutex_unlock; 2208 error = vfs_create(dir->d_inode, dentry, mode, nd); 2209 if (error) 2210 goto exit_mutex_unlock; 2211 mutex_unlock(&dir->d_inode->i_mutex); 2212 dput(nd->path.dentry); 2213 nd->path.dentry = dentry; 2214 goto common; 2215 } 2216 2217 /* 2218 * It already exists. 2219 */ 2220 mutex_unlock(&dir->d_inode->i_mutex); 2221 audit_inode(pathname, path->dentry); 2222 2223 error = -EEXIST; 2224 if (open_flag & O_EXCL) 2225 goto exit_dput; 2226 2227 error = follow_managed(path, nd->flags); 2228 if (error < 0) 2229 goto exit_dput; 2230 2231 error = -ENOENT; 2232 if (!path->dentry->d_inode) 2233 goto exit_dput; 2234 2235 if (path->dentry->d_inode->i_op->follow_link) 2236 return NULL; 2237 2238 path_to_nameidata(path, nd); 2239 nd->inode = path->dentry->d_inode; 2240 error = -EISDIR; 2241 if (S_ISDIR(nd->inode->i_mode)) 2242 goto exit; 2243 ok: 2244 if (!S_ISREG(nd->inode->i_mode)) 2245 will_truncate = 0; 2246 2247 if (will_truncate) { 2248 error = mnt_want_write(nd->path.mnt); 2249 if (error) 2250 goto exit; 2251 want_write = 1; 2252 } 2253 common: 2254 error = may_open(&nd->path, acc_mode, open_flag); 2255 if (error) 2256 goto exit; 2257 filp = nameidata_to_filp(nd); 2258 if (!IS_ERR(filp)) { 2259 error = ima_file_check(filp, op->acc_mode); 2260 if (error) { 2261 fput(filp); 2262 filp = ERR_PTR(error); 2263 } 2264 } 2265 if (!IS_ERR(filp)) { 2266 if (will_truncate) { 2267 error = handle_truncate(filp); 2268 if (error) { 2269 fput(filp); 2270 filp = ERR_PTR(error); 2271 } 2272 } 2273 } 2274 out: 2275 if (want_write) 2276 mnt_drop_write(nd->path.mnt); 2277 path_put(&nd->path); 2278 return filp; 2279 2280 exit_mutex_unlock: 2281 mutex_unlock(&dir->d_inode->i_mutex); 2282 exit_dput: 2283 path_put_conditional(path, nd); 2284 exit: 2285 filp = ERR_PTR(error); 2286 goto out; 2287 } 2288 2289 static struct file *path_openat(int dfd, const char *pathname, 2290 struct nameidata *nd, const struct open_flags *op, int flags) 2291 { 2292 struct file *base = NULL; 2293 struct file *filp; 2294 struct path path; 2295 int error; 2296 2297 filp = get_empty_filp(); 2298 if (!filp) 2299 return ERR_PTR(-ENFILE); 2300 2301 filp->f_flags = op->open_flag; 2302 nd->intent.open.file = filp; 2303 nd->intent.open.flags = open_to_namei_flags(op->open_flag); 2304 nd->intent.open.create_mode = op->mode; 2305 2306 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); 2307 if (unlikely(error)) 2308 goto out_filp; 2309 2310 current->total_link_count = 0; 2311 error = link_path_walk(pathname, nd); 2312 if (unlikely(error)) 2313 goto out_filp; 2314 2315 filp = do_last(nd, &path, op, pathname); 2316 while (unlikely(!filp)) { /* trailing symlink */ 2317 struct path link = path; 2318 void *cookie; 2319 if (!(nd->flags & LOOKUP_FOLLOW)) { 2320 path_put_conditional(&path, nd); 2321 path_put(&nd->path); 2322 filp = ERR_PTR(-ELOOP); 2323 break; 2324 } 2325 nd->flags |= LOOKUP_PARENT; 2326 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 2327 error = follow_link(&link, nd, &cookie); 2328 if (unlikely(error)) 2329 filp = ERR_PTR(error); 2330 else 2331 filp = do_last(nd, &path, op, pathname); 2332 put_link(nd, &link, cookie); 2333 } 2334 out: 2335 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 2336 path_put(&nd->root); 2337 if (base) 2338 fput(base); 2339 release_open_intent(nd); 2340 return filp; 2341 2342 out_filp: 2343 filp = ERR_PTR(error); 2344 goto out; 2345 } 2346 2347 struct file *do_filp_open(int dfd, const char *pathname, 2348 const struct open_flags *op, int flags) 2349 { 2350 struct nameidata nd; 2351 struct file *filp; 2352 2353 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 2354 if (unlikely(filp == ERR_PTR(-ECHILD))) 2355 filp = path_openat(dfd, pathname, &nd, op, flags); 2356 if (unlikely(filp == ERR_PTR(-ESTALE))) 2357 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 2358 return filp; 2359 } 2360 2361 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 2362 const char *name, const struct open_flags *op, int flags) 2363 { 2364 struct nameidata nd; 2365 struct file *file; 2366 2367 nd.root.mnt = mnt; 2368 nd.root.dentry = dentry; 2369 2370 flags |= LOOKUP_ROOT; 2371 2372 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) 2373 return ERR_PTR(-ELOOP); 2374 2375 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); 2376 if (unlikely(file == ERR_PTR(-ECHILD))) 2377 file = path_openat(-1, name, &nd, op, flags); 2378 if (unlikely(file == ERR_PTR(-ESTALE))) 2379 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); 2380 return file; 2381 } 2382 2383 /** 2384 * lookup_create - lookup a dentry, creating it if it doesn't exist 2385 * @nd: nameidata info 2386 * @is_dir: directory flag 2387 * 2388 * Simple function to lookup and return a dentry and create it 2389 * if it doesn't exist. Is SMP-safe. 2390 * 2391 * Returns with nd->path.dentry->d_inode->i_mutex locked. 2392 */ 2393 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 2394 { 2395 struct dentry *dentry = ERR_PTR(-EEXIST); 2396 2397 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2398 /* 2399 * Yucky last component or no last component at all? 2400 * (foo/., foo/.., /////) 2401 */ 2402 if (nd->last_type != LAST_NORM) 2403 goto fail; 2404 nd->flags &= ~LOOKUP_PARENT; 2405 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2406 nd->intent.open.flags = O_EXCL; 2407 2408 /* 2409 * Do the final lookup. 2410 */ 2411 dentry = lookup_hash(nd); 2412 if (IS_ERR(dentry)) 2413 goto fail; 2414 2415 if (dentry->d_inode) 2416 goto eexist; 2417 /* 2418 * Special case - lookup gave negative, but... we had foo/bar/ 2419 * From the vfs_mknod() POV we just have a negative dentry - 2420 * all is fine. Let's be bastards - you had / on the end, you've 2421 * been asking for (non-existent) directory. -ENOENT for you. 2422 */ 2423 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 2424 dput(dentry); 2425 dentry = ERR_PTR(-ENOENT); 2426 } 2427 return dentry; 2428 eexist: 2429 dput(dentry); 2430 dentry = ERR_PTR(-EEXIST); 2431 fail: 2432 return dentry; 2433 } 2434 EXPORT_SYMBOL_GPL(lookup_create); 2435 2436 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2437 { 2438 int error = may_create(dir, dentry); 2439 2440 if (error) 2441 return error; 2442 2443 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 2444 return -EPERM; 2445 2446 if (!dir->i_op->mknod) 2447 return -EPERM; 2448 2449 error = devcgroup_inode_mknod(mode, dev); 2450 if (error) 2451 return error; 2452 2453 error = security_inode_mknod(dir, dentry, mode, dev); 2454 if (error) 2455 return error; 2456 2457 error = dir->i_op->mknod(dir, dentry, mode, dev); 2458 if (!error) 2459 fsnotify_create(dir, dentry); 2460 return error; 2461 } 2462 2463 static int may_mknod(mode_t mode) 2464 { 2465 switch (mode & S_IFMT) { 2466 case S_IFREG: 2467 case S_IFCHR: 2468 case S_IFBLK: 2469 case S_IFIFO: 2470 case S_IFSOCK: 2471 case 0: /* zero mode translates to S_IFREG */ 2472 return 0; 2473 case S_IFDIR: 2474 return -EPERM; 2475 default: 2476 return -EINVAL; 2477 } 2478 } 2479 2480 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2481 unsigned, dev) 2482 { 2483 int error; 2484 char *tmp; 2485 struct dentry *dentry; 2486 struct nameidata nd; 2487 2488 if (S_ISDIR(mode)) 2489 return -EPERM; 2490 2491 error = user_path_parent(dfd, filename, &nd, &tmp); 2492 if (error) 2493 return error; 2494 2495 dentry = lookup_create(&nd, 0); 2496 if (IS_ERR(dentry)) { 2497 error = PTR_ERR(dentry); 2498 goto out_unlock; 2499 } 2500 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2501 mode &= ~current_umask(); 2502 error = may_mknod(mode); 2503 if (error) 2504 goto out_dput; 2505 error = mnt_want_write(nd.path.mnt); 2506 if (error) 2507 goto out_dput; 2508 error = security_path_mknod(&nd.path, dentry, mode, dev); 2509 if (error) 2510 goto out_drop_write; 2511 switch (mode & S_IFMT) { 2512 case 0: case S_IFREG: 2513 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2514 break; 2515 case S_IFCHR: case S_IFBLK: 2516 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2517 new_decode_dev(dev)); 2518 break; 2519 case S_IFIFO: case S_IFSOCK: 2520 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2521 break; 2522 } 2523 out_drop_write: 2524 mnt_drop_write(nd.path.mnt); 2525 out_dput: 2526 dput(dentry); 2527 out_unlock: 2528 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2529 path_put(&nd.path); 2530 putname(tmp); 2531 2532 return error; 2533 } 2534 2535 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2536 { 2537 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2538 } 2539 2540 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2541 { 2542 int error = may_create(dir, dentry); 2543 2544 if (error) 2545 return error; 2546 2547 if (!dir->i_op->mkdir) 2548 return -EPERM; 2549 2550 mode &= (S_IRWXUGO|S_ISVTX); 2551 error = security_inode_mkdir(dir, dentry, mode); 2552 if (error) 2553 return error; 2554 2555 error = dir->i_op->mkdir(dir, dentry, mode); 2556 if (!error) 2557 fsnotify_mkdir(dir, dentry); 2558 return error; 2559 } 2560 2561 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2562 { 2563 int error = 0; 2564 char * tmp; 2565 struct dentry *dentry; 2566 struct nameidata nd; 2567 2568 error = user_path_parent(dfd, pathname, &nd, &tmp); 2569 if (error) 2570 goto out_err; 2571 2572 dentry = lookup_create(&nd, 1); 2573 error = PTR_ERR(dentry); 2574 if (IS_ERR(dentry)) 2575 goto out_unlock; 2576 2577 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2578 mode &= ~current_umask(); 2579 error = mnt_want_write(nd.path.mnt); 2580 if (error) 2581 goto out_dput; 2582 error = security_path_mkdir(&nd.path, dentry, mode); 2583 if (error) 2584 goto out_drop_write; 2585 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2586 out_drop_write: 2587 mnt_drop_write(nd.path.mnt); 2588 out_dput: 2589 dput(dentry); 2590 out_unlock: 2591 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2592 path_put(&nd.path); 2593 putname(tmp); 2594 out_err: 2595 return error; 2596 } 2597 2598 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2599 { 2600 return sys_mkdirat(AT_FDCWD, pathname, mode); 2601 } 2602 2603 /* 2604 * We try to drop the dentry early: we should have 2605 * a usage count of 2 if we're the only user of this 2606 * dentry, and if that is true (possibly after pruning 2607 * the dcache), then we drop the dentry now. 2608 * 2609 * A low-level filesystem can, if it choses, legally 2610 * do a 2611 * 2612 * if (!d_unhashed(dentry)) 2613 * return -EBUSY; 2614 * 2615 * if it cannot handle the case of removing a directory 2616 * that is still in use by something else.. 2617 */ 2618 void dentry_unhash(struct dentry *dentry) 2619 { 2620 dget(dentry); 2621 shrink_dcache_parent(dentry); 2622 spin_lock(&dentry->d_lock); 2623 if (dentry->d_count == 2) 2624 __d_drop(dentry); 2625 spin_unlock(&dentry->d_lock); 2626 } 2627 2628 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2629 { 2630 int error = may_delete(dir, dentry, 1); 2631 2632 if (error) 2633 return error; 2634 2635 if (!dir->i_op->rmdir) 2636 return -EPERM; 2637 2638 mutex_lock(&dentry->d_inode->i_mutex); 2639 dentry_unhash(dentry); 2640 if (d_mountpoint(dentry)) 2641 error = -EBUSY; 2642 else { 2643 error = security_inode_rmdir(dir, dentry); 2644 if (!error) { 2645 error = dir->i_op->rmdir(dir, dentry); 2646 if (!error) { 2647 dentry->d_inode->i_flags |= S_DEAD; 2648 dont_mount(dentry); 2649 } 2650 } 2651 } 2652 mutex_unlock(&dentry->d_inode->i_mutex); 2653 if (!error) { 2654 d_delete(dentry); 2655 } 2656 dput(dentry); 2657 2658 return error; 2659 } 2660 2661 static long do_rmdir(int dfd, const char __user *pathname) 2662 { 2663 int error = 0; 2664 char * name; 2665 struct dentry *dentry; 2666 struct nameidata nd; 2667 2668 error = user_path_parent(dfd, pathname, &nd, &name); 2669 if (error) 2670 return error; 2671 2672 switch(nd.last_type) { 2673 case LAST_DOTDOT: 2674 error = -ENOTEMPTY; 2675 goto exit1; 2676 case LAST_DOT: 2677 error = -EINVAL; 2678 goto exit1; 2679 case LAST_ROOT: 2680 error = -EBUSY; 2681 goto exit1; 2682 } 2683 2684 nd.flags &= ~LOOKUP_PARENT; 2685 2686 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2687 dentry = lookup_hash(&nd); 2688 error = PTR_ERR(dentry); 2689 if (IS_ERR(dentry)) 2690 goto exit2; 2691 error = mnt_want_write(nd.path.mnt); 2692 if (error) 2693 goto exit3; 2694 error = security_path_rmdir(&nd.path, dentry); 2695 if (error) 2696 goto exit4; 2697 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2698 exit4: 2699 mnt_drop_write(nd.path.mnt); 2700 exit3: 2701 dput(dentry); 2702 exit2: 2703 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2704 exit1: 2705 path_put(&nd.path); 2706 putname(name); 2707 return error; 2708 } 2709 2710 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2711 { 2712 return do_rmdir(AT_FDCWD, pathname); 2713 } 2714 2715 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2716 { 2717 int error = may_delete(dir, dentry, 0); 2718 2719 if (error) 2720 return error; 2721 2722 if (!dir->i_op->unlink) 2723 return -EPERM; 2724 2725 mutex_lock(&dentry->d_inode->i_mutex); 2726 if (d_mountpoint(dentry)) 2727 error = -EBUSY; 2728 else { 2729 error = security_inode_unlink(dir, dentry); 2730 if (!error) { 2731 error = dir->i_op->unlink(dir, dentry); 2732 if (!error) 2733 dont_mount(dentry); 2734 } 2735 } 2736 mutex_unlock(&dentry->d_inode->i_mutex); 2737 2738 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2739 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2740 fsnotify_link_count(dentry->d_inode); 2741 d_delete(dentry); 2742 } 2743 2744 return error; 2745 } 2746 2747 /* 2748 * Make sure that the actual truncation of the file will occur outside its 2749 * directory's i_mutex. Truncate can take a long time if there is a lot of 2750 * writeout happening, and we don't want to prevent access to the directory 2751 * while waiting on the I/O. 2752 */ 2753 static long do_unlinkat(int dfd, const char __user *pathname) 2754 { 2755 int error; 2756 char *name; 2757 struct dentry *dentry; 2758 struct nameidata nd; 2759 struct inode *inode = NULL; 2760 2761 error = user_path_parent(dfd, pathname, &nd, &name); 2762 if (error) 2763 return error; 2764 2765 error = -EISDIR; 2766 if (nd.last_type != LAST_NORM) 2767 goto exit1; 2768 2769 nd.flags &= ~LOOKUP_PARENT; 2770 2771 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2772 dentry = lookup_hash(&nd); 2773 error = PTR_ERR(dentry); 2774 if (!IS_ERR(dentry)) { 2775 /* Why not before? Because we want correct error value */ 2776 if (nd.last.name[nd.last.len]) 2777 goto slashes; 2778 inode = dentry->d_inode; 2779 if (inode) 2780 ihold(inode); 2781 error = mnt_want_write(nd.path.mnt); 2782 if (error) 2783 goto exit2; 2784 error = security_path_unlink(&nd.path, dentry); 2785 if (error) 2786 goto exit3; 2787 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2788 exit3: 2789 mnt_drop_write(nd.path.mnt); 2790 exit2: 2791 dput(dentry); 2792 } 2793 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2794 if (inode) 2795 iput(inode); /* truncate the inode here */ 2796 exit1: 2797 path_put(&nd.path); 2798 putname(name); 2799 return error; 2800 2801 slashes: 2802 error = !dentry->d_inode ? -ENOENT : 2803 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2804 goto exit2; 2805 } 2806 2807 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 2808 { 2809 if ((flag & ~AT_REMOVEDIR) != 0) 2810 return -EINVAL; 2811 2812 if (flag & AT_REMOVEDIR) 2813 return do_rmdir(dfd, pathname); 2814 2815 return do_unlinkat(dfd, pathname); 2816 } 2817 2818 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 2819 { 2820 return do_unlinkat(AT_FDCWD, pathname); 2821 } 2822 2823 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2824 { 2825 int error = may_create(dir, dentry); 2826 2827 if (error) 2828 return error; 2829 2830 if (!dir->i_op->symlink) 2831 return -EPERM; 2832 2833 error = security_inode_symlink(dir, dentry, oldname); 2834 if (error) 2835 return error; 2836 2837 error = dir->i_op->symlink(dir, dentry, oldname); 2838 if (!error) 2839 fsnotify_create(dir, dentry); 2840 return error; 2841 } 2842 2843 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 2844 int, newdfd, const char __user *, newname) 2845 { 2846 int error; 2847 char *from; 2848 char *to; 2849 struct dentry *dentry; 2850 struct nameidata nd; 2851 2852 from = getname(oldname); 2853 if (IS_ERR(from)) 2854 return PTR_ERR(from); 2855 2856 error = user_path_parent(newdfd, newname, &nd, &to); 2857 if (error) 2858 goto out_putname; 2859 2860 dentry = lookup_create(&nd, 0); 2861 error = PTR_ERR(dentry); 2862 if (IS_ERR(dentry)) 2863 goto out_unlock; 2864 2865 error = mnt_want_write(nd.path.mnt); 2866 if (error) 2867 goto out_dput; 2868 error = security_path_symlink(&nd.path, dentry, from); 2869 if (error) 2870 goto out_drop_write; 2871 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2872 out_drop_write: 2873 mnt_drop_write(nd.path.mnt); 2874 out_dput: 2875 dput(dentry); 2876 out_unlock: 2877 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2878 path_put(&nd.path); 2879 putname(to); 2880 out_putname: 2881 putname(from); 2882 return error; 2883 } 2884 2885 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 2886 { 2887 return sys_symlinkat(oldname, AT_FDCWD, newname); 2888 } 2889 2890 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2891 { 2892 struct inode *inode = old_dentry->d_inode; 2893 int error; 2894 2895 if (!inode) 2896 return -ENOENT; 2897 2898 error = may_create(dir, new_dentry); 2899 if (error) 2900 return error; 2901 2902 if (dir->i_sb != inode->i_sb) 2903 return -EXDEV; 2904 2905 /* 2906 * A link to an append-only or immutable file cannot be created. 2907 */ 2908 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2909 return -EPERM; 2910 if (!dir->i_op->link) 2911 return -EPERM; 2912 if (S_ISDIR(inode->i_mode)) 2913 return -EPERM; 2914 2915 error = security_inode_link(old_dentry, dir, new_dentry); 2916 if (error) 2917 return error; 2918 2919 mutex_lock(&inode->i_mutex); 2920 /* Make sure we don't allow creating hardlink to an unlinked file */ 2921 if (inode->i_nlink == 0) 2922 error = -ENOENT; 2923 else 2924 error = dir->i_op->link(old_dentry, dir, new_dentry); 2925 mutex_unlock(&inode->i_mutex); 2926 if (!error) 2927 fsnotify_link(dir, inode, new_dentry); 2928 return error; 2929 } 2930 2931 /* 2932 * Hardlinks are often used in delicate situations. We avoid 2933 * security-related surprises by not following symlinks on the 2934 * newname. --KAB 2935 * 2936 * We don't follow them on the oldname either to be compatible 2937 * with linux 2.0, and to avoid hard-linking to directories 2938 * and other special files. --ADM 2939 */ 2940 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 2941 int, newdfd, const char __user *, newname, int, flags) 2942 { 2943 struct dentry *new_dentry; 2944 struct nameidata nd; 2945 struct path old_path; 2946 int how = 0; 2947 int error; 2948 char *to; 2949 2950 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 2951 return -EINVAL; 2952 /* 2953 * To use null names we require CAP_DAC_READ_SEARCH 2954 * This ensures that not everyone will be able to create 2955 * handlink using the passed filedescriptor. 2956 */ 2957 if (flags & AT_EMPTY_PATH) { 2958 if (!capable(CAP_DAC_READ_SEARCH)) 2959 return -ENOENT; 2960 how = LOOKUP_EMPTY; 2961 } 2962 2963 if (flags & AT_SYMLINK_FOLLOW) 2964 how |= LOOKUP_FOLLOW; 2965 2966 error = user_path_at(olddfd, oldname, how, &old_path); 2967 if (error) 2968 return error; 2969 2970 error = user_path_parent(newdfd, newname, &nd, &to); 2971 if (error) 2972 goto out; 2973 error = -EXDEV; 2974 if (old_path.mnt != nd.path.mnt) 2975 goto out_release; 2976 new_dentry = lookup_create(&nd, 0); 2977 error = PTR_ERR(new_dentry); 2978 if (IS_ERR(new_dentry)) 2979 goto out_unlock; 2980 error = mnt_want_write(nd.path.mnt); 2981 if (error) 2982 goto out_dput; 2983 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 2984 if (error) 2985 goto out_drop_write; 2986 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2987 out_drop_write: 2988 mnt_drop_write(nd.path.mnt); 2989 out_dput: 2990 dput(new_dentry); 2991 out_unlock: 2992 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2993 out_release: 2994 path_put(&nd.path); 2995 putname(to); 2996 out: 2997 path_put(&old_path); 2998 2999 return error; 3000 } 3001 3002 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3003 { 3004 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3005 } 3006 3007 /* 3008 * The worst of all namespace operations - renaming directory. "Perverted" 3009 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3010 * Problems: 3011 * a) we can get into loop creation. Check is done in is_subdir(). 3012 * b) race potential - two innocent renames can create a loop together. 3013 * That's where 4.4 screws up. Current fix: serialization on 3014 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3015 * story. 3016 * c) we have to lock _three_ objects - parents and victim (if it exists). 3017 * And that - after we got ->i_mutex on parents (until then we don't know 3018 * whether the target exists). Solution: try to be smart with locking 3019 * order for inodes. We rely on the fact that tree topology may change 3020 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3021 * move will be locked. Thus we can rank directories by the tree 3022 * (ancestors first) and rank all non-directories after them. 3023 * That works since everybody except rename does "lock parent, lookup, 3024 * lock child" and rename is under ->s_vfs_rename_mutex. 3025 * HOWEVER, it relies on the assumption that any object with ->lookup() 3026 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3027 * we'd better make sure that there's no link(2) for them. 3028 * d) some filesystems don't support opened-but-unlinked directories, 3029 * either because of layout or because they are not ready to deal with 3030 * all cases correctly. The latter will be fixed (taking this sort of 3031 * stuff into VFS), but the former is not going away. Solution: the same 3032 * trick as in rmdir(). 3033 * e) conversion from fhandle to dentry may come in the wrong moment - when 3034 * we are removing the target. Solution: we will have to grab ->i_mutex 3035 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3036 * ->i_mutex on parents, which works but leads to some truly excessive 3037 * locking]. 3038 */ 3039 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3040 struct inode *new_dir, struct dentry *new_dentry) 3041 { 3042 int error = 0; 3043 struct inode *target; 3044 3045 /* 3046 * If we are going to change the parent - check write permissions, 3047 * we'll need to flip '..'. 3048 */ 3049 if (new_dir != old_dir) { 3050 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3051 if (error) 3052 return error; 3053 } 3054 3055 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3056 if (error) 3057 return error; 3058 3059 target = new_dentry->d_inode; 3060 if (target) 3061 mutex_lock(&target->i_mutex); 3062 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3063 error = -EBUSY; 3064 else { 3065 if (target) 3066 dentry_unhash(new_dentry); 3067 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3068 } 3069 if (target) { 3070 if (!error) { 3071 target->i_flags |= S_DEAD; 3072 dont_mount(new_dentry); 3073 } 3074 mutex_unlock(&target->i_mutex); 3075 if (d_unhashed(new_dentry)) 3076 d_rehash(new_dentry); 3077 dput(new_dentry); 3078 } 3079 if (!error) 3080 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3081 d_move(old_dentry,new_dentry); 3082 return error; 3083 } 3084 3085 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3086 struct inode *new_dir, struct dentry *new_dentry) 3087 { 3088 struct inode *target; 3089 int error; 3090 3091 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3092 if (error) 3093 return error; 3094 3095 dget(new_dentry); 3096 target = new_dentry->d_inode; 3097 if (target) 3098 mutex_lock(&target->i_mutex); 3099 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3100 error = -EBUSY; 3101 else 3102 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3103 if (!error) { 3104 if (target) 3105 dont_mount(new_dentry); 3106 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3107 d_move(old_dentry, new_dentry); 3108 } 3109 if (target) 3110 mutex_unlock(&target->i_mutex); 3111 dput(new_dentry); 3112 return error; 3113 } 3114 3115 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3116 struct inode *new_dir, struct dentry *new_dentry) 3117 { 3118 int error; 3119 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3120 const unsigned char *old_name; 3121 3122 if (old_dentry->d_inode == new_dentry->d_inode) 3123 return 0; 3124 3125 error = may_delete(old_dir, old_dentry, is_dir); 3126 if (error) 3127 return error; 3128 3129 if (!new_dentry->d_inode) 3130 error = may_create(new_dir, new_dentry); 3131 else 3132 error = may_delete(new_dir, new_dentry, is_dir); 3133 if (error) 3134 return error; 3135 3136 if (!old_dir->i_op->rename) 3137 return -EPERM; 3138 3139 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3140 3141 if (is_dir) 3142 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3143 else 3144 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3145 if (!error) 3146 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3147 new_dentry->d_inode, old_dentry); 3148 fsnotify_oldname_free(old_name); 3149 3150 return error; 3151 } 3152 3153 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3154 int, newdfd, const char __user *, newname) 3155 { 3156 struct dentry *old_dir, *new_dir; 3157 struct dentry *old_dentry, *new_dentry; 3158 struct dentry *trap; 3159 struct nameidata oldnd, newnd; 3160 char *from; 3161 char *to; 3162 int error; 3163 3164 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3165 if (error) 3166 goto exit; 3167 3168 error = user_path_parent(newdfd, newname, &newnd, &to); 3169 if (error) 3170 goto exit1; 3171 3172 error = -EXDEV; 3173 if (oldnd.path.mnt != newnd.path.mnt) 3174 goto exit2; 3175 3176 old_dir = oldnd.path.dentry; 3177 error = -EBUSY; 3178 if (oldnd.last_type != LAST_NORM) 3179 goto exit2; 3180 3181 new_dir = newnd.path.dentry; 3182 if (newnd.last_type != LAST_NORM) 3183 goto exit2; 3184 3185 oldnd.flags &= ~LOOKUP_PARENT; 3186 newnd.flags &= ~LOOKUP_PARENT; 3187 newnd.flags |= LOOKUP_RENAME_TARGET; 3188 3189 trap = lock_rename(new_dir, old_dir); 3190 3191 old_dentry = lookup_hash(&oldnd); 3192 error = PTR_ERR(old_dentry); 3193 if (IS_ERR(old_dentry)) 3194 goto exit3; 3195 /* source must exist */ 3196 error = -ENOENT; 3197 if (!old_dentry->d_inode) 3198 goto exit4; 3199 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3200 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3201 error = -ENOTDIR; 3202 if (oldnd.last.name[oldnd.last.len]) 3203 goto exit4; 3204 if (newnd.last.name[newnd.last.len]) 3205 goto exit4; 3206 } 3207 /* source should not be ancestor of target */ 3208 error = -EINVAL; 3209 if (old_dentry == trap) 3210 goto exit4; 3211 new_dentry = lookup_hash(&newnd); 3212 error = PTR_ERR(new_dentry); 3213 if (IS_ERR(new_dentry)) 3214 goto exit4; 3215 /* target should not be an ancestor of source */ 3216 error = -ENOTEMPTY; 3217 if (new_dentry == trap) 3218 goto exit5; 3219 3220 error = mnt_want_write(oldnd.path.mnt); 3221 if (error) 3222 goto exit5; 3223 error = security_path_rename(&oldnd.path, old_dentry, 3224 &newnd.path, new_dentry); 3225 if (error) 3226 goto exit6; 3227 error = vfs_rename(old_dir->d_inode, old_dentry, 3228 new_dir->d_inode, new_dentry); 3229 exit6: 3230 mnt_drop_write(oldnd.path.mnt); 3231 exit5: 3232 dput(new_dentry); 3233 exit4: 3234 dput(old_dentry); 3235 exit3: 3236 unlock_rename(new_dir, old_dir); 3237 exit2: 3238 path_put(&newnd.path); 3239 putname(to); 3240 exit1: 3241 path_put(&oldnd.path); 3242 putname(from); 3243 exit: 3244 return error; 3245 } 3246 3247 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3248 { 3249 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3250 } 3251 3252 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3253 { 3254 int len; 3255 3256 len = PTR_ERR(link); 3257 if (IS_ERR(link)) 3258 goto out; 3259 3260 len = strlen(link); 3261 if (len > (unsigned) buflen) 3262 len = buflen; 3263 if (copy_to_user(buffer, link, len)) 3264 len = -EFAULT; 3265 out: 3266 return len; 3267 } 3268 3269 /* 3270 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3271 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3272 * using) it for any given inode is up to filesystem. 3273 */ 3274 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3275 { 3276 struct nameidata nd; 3277 void *cookie; 3278 int res; 3279 3280 nd.depth = 0; 3281 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3282 if (IS_ERR(cookie)) 3283 return PTR_ERR(cookie); 3284 3285 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3286 if (dentry->d_inode->i_op->put_link) 3287 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3288 return res; 3289 } 3290 3291 int vfs_follow_link(struct nameidata *nd, const char *link) 3292 { 3293 return __vfs_follow_link(nd, link); 3294 } 3295 3296 /* get the link contents into pagecache */ 3297 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3298 { 3299 char *kaddr; 3300 struct page *page; 3301 struct address_space *mapping = dentry->d_inode->i_mapping; 3302 page = read_mapping_page(mapping, 0, NULL); 3303 if (IS_ERR(page)) 3304 return (char*)page; 3305 *ppage = page; 3306 kaddr = kmap(page); 3307 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3308 return kaddr; 3309 } 3310 3311 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3312 { 3313 struct page *page = NULL; 3314 char *s = page_getlink(dentry, &page); 3315 int res = vfs_readlink(dentry,buffer,buflen,s); 3316 if (page) { 3317 kunmap(page); 3318 page_cache_release(page); 3319 } 3320 return res; 3321 } 3322 3323 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3324 { 3325 struct page *page = NULL; 3326 nd_set_link(nd, page_getlink(dentry, &page)); 3327 return page; 3328 } 3329 3330 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3331 { 3332 struct page *page = cookie; 3333 3334 if (page) { 3335 kunmap(page); 3336 page_cache_release(page); 3337 } 3338 } 3339 3340 /* 3341 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3342 */ 3343 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3344 { 3345 struct address_space *mapping = inode->i_mapping; 3346 struct page *page; 3347 void *fsdata; 3348 int err; 3349 char *kaddr; 3350 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3351 if (nofs) 3352 flags |= AOP_FLAG_NOFS; 3353 3354 retry: 3355 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3356 flags, &page, &fsdata); 3357 if (err) 3358 goto fail; 3359 3360 kaddr = kmap_atomic(page, KM_USER0); 3361 memcpy(kaddr, symname, len-1); 3362 kunmap_atomic(kaddr, KM_USER0); 3363 3364 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3365 page, fsdata); 3366 if (err < 0) 3367 goto fail; 3368 if (err < len-1) 3369 goto retry; 3370 3371 mark_inode_dirty(inode); 3372 return 0; 3373 fail: 3374 return err; 3375 } 3376 3377 int page_symlink(struct inode *inode, const char *symname, int len) 3378 { 3379 return __page_symlink(inode, symname, len, 3380 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3381 } 3382 3383 const struct inode_operations page_symlink_inode_operations = { 3384 .readlink = generic_readlink, 3385 .follow_link = page_follow_link_light, 3386 .put_link = page_put_link, 3387 }; 3388 3389 EXPORT_SYMBOL(user_path_at); 3390 EXPORT_SYMBOL(follow_down_one); 3391 EXPORT_SYMBOL(follow_down); 3392 EXPORT_SYMBOL(follow_up); 3393 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3394 EXPORT_SYMBOL(getname); 3395 EXPORT_SYMBOL(lock_rename); 3396 EXPORT_SYMBOL(lookup_one_len); 3397 EXPORT_SYMBOL(page_follow_link_light); 3398 EXPORT_SYMBOL(page_put_link); 3399 EXPORT_SYMBOL(page_readlink); 3400 EXPORT_SYMBOL(__page_symlink); 3401 EXPORT_SYMBOL(page_symlink); 3402 EXPORT_SYMBOL(page_symlink_inode_operations); 3403 EXPORT_SYMBOL(kern_path_parent); 3404 EXPORT_SYMBOL(kern_path); 3405 EXPORT_SYMBOL(vfs_path_lookup); 3406 EXPORT_SYMBOL(inode_permission); 3407 EXPORT_SYMBOL(file_permission); 3408 EXPORT_SYMBOL(unlock_rename); 3409 EXPORT_SYMBOL(vfs_create); 3410 EXPORT_SYMBOL(vfs_follow_link); 3411 EXPORT_SYMBOL(vfs_link); 3412 EXPORT_SYMBOL(vfs_mkdir); 3413 EXPORT_SYMBOL(vfs_mknod); 3414 EXPORT_SYMBOL(generic_permission); 3415 EXPORT_SYMBOL(vfs_readlink); 3416 EXPORT_SYMBOL(vfs_rename); 3417 EXPORT_SYMBOL(vfs_rmdir); 3418 EXPORT_SYMBOL(vfs_symlink); 3419 EXPORT_SYMBOL(vfs_unlink); 3420 EXPORT_SYMBOL(dentry_unhash); 3421 EXPORT_SYMBOL(generic_readlink); 3422