xref: /openbmc/linux/fs/namei.c (revision 565d76cb)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 				__putname(tmp);
152 				result = ERR_PTR(retval);
153 			}
154 		}
155 	}
156 	audit_getname(result);
157 	return result;
158 }
159 
160 char *getname(const char __user * filename)
161 {
162 	return getname_flags(filename, 0);
163 }
164 
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 	if (unlikely(!audit_dummy_context()))
169 		audit_putname(name);
170 	else
171 		__putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175 
176 /*
177  * This does basic POSIX ACL permission checking
178  */
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 		int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
181 {
182 	umode_t			mode = inode->i_mode;
183 
184 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185 
186 	if (current_fsuid() == inode->i_uid)
187 		mode >>= 6;
188 	else {
189 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
190 			int error = check_acl(inode, mask, flags);
191 			if (error != -EAGAIN)
192 				return error;
193 		}
194 
195 		if (in_group_p(inode->i_gid))
196 			mode >>= 3;
197 	}
198 
199 	/*
200 	 * If the DACs are ok we don't need any capability check.
201 	 */
202 	if ((mask & ~mode) == 0)
203 		return 0;
204 	return -EACCES;
205 }
206 
207 /**
208  * generic_permission -  check for access rights on a Posix-like filesystem
209  * @inode:	inode to check access rights for
210  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
211  * @check_acl:	optional callback to check for Posix ACLs
212  * @flags:	IPERM_FLAG_ flags.
213  *
214  * Used to check for read/write/execute permissions on a file.
215  * We use "fsuid" for this, letting us set arbitrary permissions
216  * for filesystem access without changing the "normal" uids which
217  * are used for other things.
218  *
219  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
220  * request cannot be satisfied (eg. requires blocking or too much complexity).
221  * It would then be called again in ref-walk mode.
222  */
223 int generic_permission(struct inode *inode, int mask, unsigned int flags,
224 	int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
225 {
226 	int ret;
227 
228 	/*
229 	 * Do the basic POSIX ACL permission checks.
230 	 */
231 	ret = acl_permission_check(inode, mask, flags, check_acl);
232 	if (ret != -EACCES)
233 		return ret;
234 
235 	/*
236 	 * Read/write DACs are always overridable.
237 	 * Executable DACs are overridable if at least one exec bit is set.
238 	 */
239 	if (!(mask & MAY_EXEC) || execute_ok(inode))
240 		if (capable(CAP_DAC_OVERRIDE))
241 			return 0;
242 
243 	/*
244 	 * Searching includes executable on directories, else just read.
245 	 */
246 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
247 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
248 		if (capable(CAP_DAC_READ_SEARCH))
249 			return 0;
250 
251 	return -EACCES;
252 }
253 
254 /**
255  * inode_permission  -  check for access rights to a given inode
256  * @inode:	inode to check permission on
257  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
258  *
259  * Used to check for read/write/execute permissions on an inode.
260  * We use "fsuid" for this, letting us set arbitrary permissions
261  * for filesystem access without changing the "normal" uids which
262  * are used for other things.
263  */
264 int inode_permission(struct inode *inode, int mask)
265 {
266 	int retval;
267 
268 	if (mask & MAY_WRITE) {
269 		umode_t mode = inode->i_mode;
270 
271 		/*
272 		 * Nobody gets write access to a read-only fs.
273 		 */
274 		if (IS_RDONLY(inode) &&
275 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
276 			return -EROFS;
277 
278 		/*
279 		 * Nobody gets write access to an immutable file.
280 		 */
281 		if (IS_IMMUTABLE(inode))
282 			return -EACCES;
283 	}
284 
285 	if (inode->i_op->permission)
286 		retval = inode->i_op->permission(inode, mask, 0);
287 	else
288 		retval = generic_permission(inode, mask, 0,
289 				inode->i_op->check_acl);
290 
291 	if (retval)
292 		return retval;
293 
294 	retval = devcgroup_inode_permission(inode, mask);
295 	if (retval)
296 		return retval;
297 
298 	return security_inode_permission(inode, mask);
299 }
300 
301 /**
302  * file_permission  -  check for additional access rights to a given file
303  * @file:	file to check access rights for
304  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
305  *
306  * Used to check for read/write/execute permissions on an already opened
307  * file.
308  *
309  * Note:
310  *	Do not use this function in new code.  All access checks should
311  *	be done using inode_permission().
312  */
313 int file_permission(struct file *file, int mask)
314 {
315 	return inode_permission(file->f_path.dentry->d_inode, mask);
316 }
317 
318 /*
319  * get_write_access() gets write permission for a file.
320  * put_write_access() releases this write permission.
321  * This is used for regular files.
322  * We cannot support write (and maybe mmap read-write shared) accesses and
323  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
324  * can have the following values:
325  * 0: no writers, no VM_DENYWRITE mappings
326  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
327  * > 0: (i_writecount) users are writing to the file.
328  *
329  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
330  * except for the cases where we don't hold i_writecount yet. Then we need to
331  * use {get,deny}_write_access() - these functions check the sign and refuse
332  * to do the change if sign is wrong. Exclusion between them is provided by
333  * the inode->i_lock spinlock.
334  */
335 
336 int get_write_access(struct inode * inode)
337 {
338 	spin_lock(&inode->i_lock);
339 	if (atomic_read(&inode->i_writecount) < 0) {
340 		spin_unlock(&inode->i_lock);
341 		return -ETXTBSY;
342 	}
343 	atomic_inc(&inode->i_writecount);
344 	spin_unlock(&inode->i_lock);
345 
346 	return 0;
347 }
348 
349 int deny_write_access(struct file * file)
350 {
351 	struct inode *inode = file->f_path.dentry->d_inode;
352 
353 	spin_lock(&inode->i_lock);
354 	if (atomic_read(&inode->i_writecount) > 0) {
355 		spin_unlock(&inode->i_lock);
356 		return -ETXTBSY;
357 	}
358 	atomic_dec(&inode->i_writecount);
359 	spin_unlock(&inode->i_lock);
360 
361 	return 0;
362 }
363 
364 /**
365  * path_get - get a reference to a path
366  * @path: path to get the reference to
367  *
368  * Given a path increment the reference count to the dentry and the vfsmount.
369  */
370 void path_get(struct path *path)
371 {
372 	mntget(path->mnt);
373 	dget(path->dentry);
374 }
375 EXPORT_SYMBOL(path_get);
376 
377 /**
378  * path_put - put a reference to a path
379  * @path: path to put the reference to
380  *
381  * Given a path decrement the reference count to the dentry and the vfsmount.
382  */
383 void path_put(struct path *path)
384 {
385 	dput(path->dentry);
386 	mntput(path->mnt);
387 }
388 EXPORT_SYMBOL(path_put);
389 
390 /**
391  * nameidata_drop_rcu - drop this nameidata out of rcu-walk
392  * @nd: nameidata pathwalk data to drop
393  * Returns: 0 on success, -ECHILD on failure
394  *
395  * Path walking has 2 modes, rcu-walk and ref-walk (see
396  * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
397  * to drop out of rcu-walk mode and take normal reference counts on dentries
398  * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
399  * refcounts at the last known good point before rcu-walk got stuck, so
400  * ref-walk may continue from there. If this is not successful (eg. a seqcount
401  * has changed), then failure is returned and path walk restarts from the
402  * beginning in ref-walk mode.
403  *
404  * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
405  * ref-walk. Must be called from rcu-walk context.
406  */
407 static int nameidata_drop_rcu(struct nameidata *nd)
408 {
409 	struct fs_struct *fs = current->fs;
410 	struct dentry *dentry = nd->path.dentry;
411 	int want_root = 0;
412 
413 	BUG_ON(!(nd->flags & LOOKUP_RCU));
414 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
415 		want_root = 1;
416 		spin_lock(&fs->lock);
417 		if (nd->root.mnt != fs->root.mnt ||
418 				nd->root.dentry != fs->root.dentry)
419 			goto err_root;
420 	}
421 	spin_lock(&dentry->d_lock);
422 	if (!__d_rcu_to_refcount(dentry, nd->seq))
423 		goto err;
424 	BUG_ON(nd->inode != dentry->d_inode);
425 	spin_unlock(&dentry->d_lock);
426 	if (want_root) {
427 		path_get(&nd->root);
428 		spin_unlock(&fs->lock);
429 	}
430 	mntget(nd->path.mnt);
431 
432 	rcu_read_unlock();
433 	br_read_unlock(vfsmount_lock);
434 	nd->flags &= ~LOOKUP_RCU;
435 	return 0;
436 err:
437 	spin_unlock(&dentry->d_lock);
438 err_root:
439 	if (want_root)
440 		spin_unlock(&fs->lock);
441 	return -ECHILD;
442 }
443 
444 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
445 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
446 {
447 	if (nd->flags & LOOKUP_RCU)
448 		return nameidata_drop_rcu(nd);
449 	return 0;
450 }
451 
452 /**
453  * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
454  * @nd: nameidata pathwalk data to drop
455  * @dentry: dentry to drop
456  * Returns: 0 on success, -ECHILD on failure
457  *
458  * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
459  * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
460  * @nd. Must be called from rcu-walk context.
461  */
462 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
463 {
464 	struct fs_struct *fs = current->fs;
465 	struct dentry *parent = nd->path.dentry;
466 	int want_root = 0;
467 
468 	BUG_ON(!(nd->flags & LOOKUP_RCU));
469 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
470 		want_root = 1;
471 		spin_lock(&fs->lock);
472 		if (nd->root.mnt != fs->root.mnt ||
473 				nd->root.dentry != fs->root.dentry)
474 			goto err_root;
475 	}
476 	spin_lock(&parent->d_lock);
477 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
478 	if (!__d_rcu_to_refcount(dentry, nd->seq))
479 		goto err;
480 	/*
481 	 * If the sequence check on the child dentry passed, then the child has
482 	 * not been removed from its parent. This means the parent dentry must
483 	 * be valid and able to take a reference at this point.
484 	 */
485 	BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
486 	BUG_ON(!parent->d_count);
487 	parent->d_count++;
488 	spin_unlock(&dentry->d_lock);
489 	spin_unlock(&parent->d_lock);
490 	if (want_root) {
491 		path_get(&nd->root);
492 		spin_unlock(&fs->lock);
493 	}
494 	mntget(nd->path.mnt);
495 
496 	rcu_read_unlock();
497 	br_read_unlock(vfsmount_lock);
498 	nd->flags &= ~LOOKUP_RCU;
499 	return 0;
500 err:
501 	spin_unlock(&dentry->d_lock);
502 	spin_unlock(&parent->d_lock);
503 err_root:
504 	if (want_root)
505 		spin_unlock(&fs->lock);
506 	return -ECHILD;
507 }
508 
509 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
510 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
511 {
512 	if (nd->flags & LOOKUP_RCU) {
513 		if (unlikely(nameidata_dentry_drop_rcu(nd, dentry))) {
514 			nd->flags &= ~LOOKUP_RCU;
515 			if (!(nd->flags & LOOKUP_ROOT))
516 				nd->root.mnt = NULL;
517 			rcu_read_unlock();
518 			br_read_unlock(vfsmount_lock);
519 			return -ECHILD;
520 		}
521 	}
522 	return 0;
523 }
524 
525 /**
526  * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
527  * @nd: nameidata pathwalk data to drop
528  * Returns: 0 on success, -ECHILD on failure
529  *
530  * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
531  * nd->path should be the final element of the lookup, so nd->root is discarded.
532  * Must be called from rcu-walk context.
533  */
534 static int nameidata_drop_rcu_last(struct nameidata *nd)
535 {
536 	struct dentry *dentry = nd->path.dentry;
537 
538 	BUG_ON(!(nd->flags & LOOKUP_RCU));
539 	nd->flags &= ~LOOKUP_RCU;
540 	if (!(nd->flags & LOOKUP_ROOT))
541 		nd->root.mnt = NULL;
542 	spin_lock(&dentry->d_lock);
543 	if (!__d_rcu_to_refcount(dentry, nd->seq))
544 		goto err_unlock;
545 	BUG_ON(nd->inode != dentry->d_inode);
546 	spin_unlock(&dentry->d_lock);
547 
548 	mntget(nd->path.mnt);
549 
550 	rcu_read_unlock();
551 	br_read_unlock(vfsmount_lock);
552 
553 	return 0;
554 
555 err_unlock:
556 	spin_unlock(&dentry->d_lock);
557 	rcu_read_unlock();
558 	br_read_unlock(vfsmount_lock);
559 	return -ECHILD;
560 }
561 
562 /**
563  * release_open_intent - free up open intent resources
564  * @nd: pointer to nameidata
565  */
566 void release_open_intent(struct nameidata *nd)
567 {
568 	struct file *file = nd->intent.open.file;
569 
570 	if (file && !IS_ERR(file)) {
571 		if (file->f_path.dentry == NULL)
572 			put_filp(file);
573 		else
574 			fput(file);
575 	}
576 }
577 
578 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
579 {
580 	return dentry->d_op->d_revalidate(dentry, nd);
581 }
582 
583 static struct dentry *
584 do_revalidate(struct dentry *dentry, struct nameidata *nd)
585 {
586 	int status = d_revalidate(dentry, nd);
587 	if (unlikely(status <= 0)) {
588 		/*
589 		 * The dentry failed validation.
590 		 * If d_revalidate returned 0 attempt to invalidate
591 		 * the dentry otherwise d_revalidate is asking us
592 		 * to return a fail status.
593 		 */
594 		if (status < 0) {
595 			dput(dentry);
596 			dentry = ERR_PTR(status);
597 		} else if (!d_invalidate(dentry)) {
598 			dput(dentry);
599 			dentry = NULL;
600 		}
601 	}
602 	return dentry;
603 }
604 
605 /*
606  * handle_reval_path - force revalidation of a dentry
607  *
608  * In some situations the path walking code will trust dentries without
609  * revalidating them. This causes problems for filesystems that depend on
610  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
611  * (which indicates that it's possible for the dentry to go stale), force
612  * a d_revalidate call before proceeding.
613  *
614  * Returns 0 if the revalidation was successful. If the revalidation fails,
615  * either return the error returned by d_revalidate or -ESTALE if the
616  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
617  * invalidate the dentry. It's up to the caller to handle putting references
618  * to the path if necessary.
619  */
620 static inline int handle_reval_path(struct nameidata *nd)
621 {
622 	struct dentry *dentry = nd->path.dentry;
623 	int status;
624 
625 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
626 		return 0;
627 
628 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
629 		return 0;
630 
631 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
632 		return 0;
633 
634 	/* Note: we do not d_invalidate() */
635 	status = d_revalidate(dentry, nd);
636 	if (status > 0)
637 		return 0;
638 
639 	if (!status)
640 		status = -ESTALE;
641 
642 	return status;
643 }
644 
645 /*
646  * Short-cut version of permission(), for calling on directories
647  * during pathname resolution.  Combines parts of permission()
648  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
649  *
650  * If appropriate, check DAC only.  If not appropriate, or
651  * short-cut DAC fails, then call ->permission() to do more
652  * complete permission check.
653  */
654 static inline int exec_permission(struct inode *inode, unsigned int flags)
655 {
656 	int ret;
657 
658 	if (inode->i_op->permission) {
659 		ret = inode->i_op->permission(inode, MAY_EXEC, flags);
660 	} else {
661 		ret = acl_permission_check(inode, MAY_EXEC, flags,
662 				inode->i_op->check_acl);
663 	}
664 	if (likely(!ret))
665 		goto ok;
666 	if (ret == -ECHILD)
667 		return ret;
668 
669 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
670 		goto ok;
671 
672 	return ret;
673 ok:
674 	return security_inode_exec_permission(inode, flags);
675 }
676 
677 static __always_inline void set_root(struct nameidata *nd)
678 {
679 	if (!nd->root.mnt)
680 		get_fs_root(current->fs, &nd->root);
681 }
682 
683 static int link_path_walk(const char *, struct nameidata *);
684 
685 static __always_inline void set_root_rcu(struct nameidata *nd)
686 {
687 	if (!nd->root.mnt) {
688 		struct fs_struct *fs = current->fs;
689 		unsigned seq;
690 
691 		do {
692 			seq = read_seqcount_begin(&fs->seq);
693 			nd->root = fs->root;
694 		} while (read_seqcount_retry(&fs->seq, seq));
695 	}
696 }
697 
698 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
699 {
700 	int ret;
701 
702 	if (IS_ERR(link))
703 		goto fail;
704 
705 	if (*link == '/') {
706 		set_root(nd);
707 		path_put(&nd->path);
708 		nd->path = nd->root;
709 		path_get(&nd->root);
710 		nd->flags |= LOOKUP_JUMPED;
711 	}
712 	nd->inode = nd->path.dentry->d_inode;
713 
714 	ret = link_path_walk(link, nd);
715 	return ret;
716 fail:
717 	path_put(&nd->path);
718 	return PTR_ERR(link);
719 }
720 
721 static void path_put_conditional(struct path *path, struct nameidata *nd)
722 {
723 	dput(path->dentry);
724 	if (path->mnt != nd->path.mnt)
725 		mntput(path->mnt);
726 }
727 
728 static inline void path_to_nameidata(const struct path *path,
729 					struct nameidata *nd)
730 {
731 	if (!(nd->flags & LOOKUP_RCU)) {
732 		dput(nd->path.dentry);
733 		if (nd->path.mnt != path->mnt)
734 			mntput(nd->path.mnt);
735 	}
736 	nd->path.mnt = path->mnt;
737 	nd->path.dentry = path->dentry;
738 }
739 
740 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
741 {
742 	struct inode *inode = link->dentry->d_inode;
743 	if (!IS_ERR(cookie) && inode->i_op->put_link)
744 		inode->i_op->put_link(link->dentry, nd, cookie);
745 	path_put(link);
746 }
747 
748 static __always_inline int
749 follow_link(struct path *link, struct nameidata *nd, void **p)
750 {
751 	int error;
752 	struct dentry *dentry = link->dentry;
753 
754 	BUG_ON(nd->flags & LOOKUP_RCU);
755 
756 	if (link->mnt == nd->path.mnt)
757 		mntget(link->mnt);
758 
759 	if (unlikely(current->total_link_count >= 40)) {
760 		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
761 		path_put(&nd->path);
762 		return -ELOOP;
763 	}
764 	cond_resched();
765 	current->total_link_count++;
766 
767 	touch_atime(link->mnt, dentry);
768 	nd_set_link(nd, NULL);
769 
770 	error = security_inode_follow_link(link->dentry, nd);
771 	if (error) {
772 		*p = ERR_PTR(error); /* no ->put_link(), please */
773 		path_put(&nd->path);
774 		return error;
775 	}
776 
777 	nd->last_type = LAST_BIND;
778 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
779 	error = PTR_ERR(*p);
780 	if (!IS_ERR(*p)) {
781 		char *s = nd_get_link(nd);
782 		error = 0;
783 		if (s)
784 			error = __vfs_follow_link(nd, s);
785 		else if (nd->last_type == LAST_BIND) {
786 			nd->flags |= LOOKUP_JUMPED;
787 			nd->inode = nd->path.dentry->d_inode;
788 			if (nd->inode->i_op->follow_link) {
789 				/* stepped on a _really_ weird one */
790 				path_put(&nd->path);
791 				error = -ELOOP;
792 			}
793 		}
794 	}
795 	return error;
796 }
797 
798 static int follow_up_rcu(struct path *path)
799 {
800 	struct vfsmount *parent;
801 	struct dentry *mountpoint;
802 
803 	parent = path->mnt->mnt_parent;
804 	if (parent == path->mnt)
805 		return 0;
806 	mountpoint = path->mnt->mnt_mountpoint;
807 	path->dentry = mountpoint;
808 	path->mnt = parent;
809 	return 1;
810 }
811 
812 int follow_up(struct path *path)
813 {
814 	struct vfsmount *parent;
815 	struct dentry *mountpoint;
816 
817 	br_read_lock(vfsmount_lock);
818 	parent = path->mnt->mnt_parent;
819 	if (parent == path->mnt) {
820 		br_read_unlock(vfsmount_lock);
821 		return 0;
822 	}
823 	mntget(parent);
824 	mountpoint = dget(path->mnt->mnt_mountpoint);
825 	br_read_unlock(vfsmount_lock);
826 	dput(path->dentry);
827 	path->dentry = mountpoint;
828 	mntput(path->mnt);
829 	path->mnt = parent;
830 	return 1;
831 }
832 
833 /*
834  * Perform an automount
835  * - return -EISDIR to tell follow_managed() to stop and return the path we
836  *   were called with.
837  */
838 static int follow_automount(struct path *path, unsigned flags,
839 			    bool *need_mntput)
840 {
841 	struct vfsmount *mnt;
842 	int err;
843 
844 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
845 		return -EREMOTE;
846 
847 	/* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
848 	 * and this is the terminal part of the path.
849 	 */
850 	if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
851 		return -EISDIR; /* we actually want to stop here */
852 
853 	/* We want to mount if someone is trying to open/create a file of any
854 	 * type under the mountpoint, wants to traverse through the mountpoint
855 	 * or wants to open the mounted directory.
856 	 *
857 	 * We don't want to mount if someone's just doing a stat and they've
858 	 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
859 	 * appended a '/' to the name.
860 	 */
861 	if (!(flags & LOOKUP_FOLLOW) &&
862 	    !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
863 		       LOOKUP_OPEN | LOOKUP_CREATE)))
864 		return -EISDIR;
865 
866 	current->total_link_count++;
867 	if (current->total_link_count >= 40)
868 		return -ELOOP;
869 
870 	mnt = path->dentry->d_op->d_automount(path);
871 	if (IS_ERR(mnt)) {
872 		/*
873 		 * The filesystem is allowed to return -EISDIR here to indicate
874 		 * it doesn't want to automount.  For instance, autofs would do
875 		 * this so that its userspace daemon can mount on this dentry.
876 		 *
877 		 * However, we can only permit this if it's a terminal point in
878 		 * the path being looked up; if it wasn't then the remainder of
879 		 * the path is inaccessible and we should say so.
880 		 */
881 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
882 			return -EREMOTE;
883 		return PTR_ERR(mnt);
884 	}
885 
886 	if (!mnt) /* mount collision */
887 		return 0;
888 
889 	err = finish_automount(mnt, path);
890 
891 	switch (err) {
892 	case -EBUSY:
893 		/* Someone else made a mount here whilst we were busy */
894 		return 0;
895 	case 0:
896 		dput(path->dentry);
897 		if (*need_mntput)
898 			mntput(path->mnt);
899 		path->mnt = mnt;
900 		path->dentry = dget(mnt->mnt_root);
901 		*need_mntput = true;
902 		return 0;
903 	default:
904 		return err;
905 	}
906 
907 }
908 
909 /*
910  * Handle a dentry that is managed in some way.
911  * - Flagged for transit management (autofs)
912  * - Flagged as mountpoint
913  * - Flagged as automount point
914  *
915  * This may only be called in refwalk mode.
916  *
917  * Serialization is taken care of in namespace.c
918  */
919 static int follow_managed(struct path *path, unsigned flags)
920 {
921 	unsigned managed;
922 	bool need_mntput = false;
923 	int ret;
924 
925 	/* Given that we're not holding a lock here, we retain the value in a
926 	 * local variable for each dentry as we look at it so that we don't see
927 	 * the components of that value change under us */
928 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
929 	       managed &= DCACHE_MANAGED_DENTRY,
930 	       unlikely(managed != 0)) {
931 		/* Allow the filesystem to manage the transit without i_mutex
932 		 * being held. */
933 		if (managed & DCACHE_MANAGE_TRANSIT) {
934 			BUG_ON(!path->dentry->d_op);
935 			BUG_ON(!path->dentry->d_op->d_manage);
936 			ret = path->dentry->d_op->d_manage(path->dentry, false);
937 			if (ret < 0)
938 				return ret == -EISDIR ? 0 : ret;
939 		}
940 
941 		/* Transit to a mounted filesystem. */
942 		if (managed & DCACHE_MOUNTED) {
943 			struct vfsmount *mounted = lookup_mnt(path);
944 			if (mounted) {
945 				dput(path->dentry);
946 				if (need_mntput)
947 					mntput(path->mnt);
948 				path->mnt = mounted;
949 				path->dentry = dget(mounted->mnt_root);
950 				need_mntput = true;
951 				continue;
952 			}
953 
954 			/* Something is mounted on this dentry in another
955 			 * namespace and/or whatever was mounted there in this
956 			 * namespace got unmounted before we managed to get the
957 			 * vfsmount_lock */
958 		}
959 
960 		/* Handle an automount point */
961 		if (managed & DCACHE_NEED_AUTOMOUNT) {
962 			ret = follow_automount(path, flags, &need_mntput);
963 			if (ret < 0)
964 				return ret == -EISDIR ? 0 : ret;
965 			continue;
966 		}
967 
968 		/* We didn't change the current path point */
969 		break;
970 	}
971 	return 0;
972 }
973 
974 int follow_down_one(struct path *path)
975 {
976 	struct vfsmount *mounted;
977 
978 	mounted = lookup_mnt(path);
979 	if (mounted) {
980 		dput(path->dentry);
981 		mntput(path->mnt);
982 		path->mnt = mounted;
983 		path->dentry = dget(mounted->mnt_root);
984 		return 1;
985 	}
986 	return 0;
987 }
988 
989 /*
990  * Skip to top of mountpoint pile in rcuwalk mode.  We abort the rcu-walk if we
991  * meet a managed dentry and we're not walking to "..".  True is returned to
992  * continue, false to abort.
993  */
994 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
995 			       struct inode **inode, bool reverse_transit)
996 {
997 	while (d_mountpoint(path->dentry)) {
998 		struct vfsmount *mounted;
999 		if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1000 		    !reverse_transit &&
1001 		    path->dentry->d_op->d_manage(path->dentry, true) < 0)
1002 			return false;
1003 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1004 		if (!mounted)
1005 			break;
1006 		path->mnt = mounted;
1007 		path->dentry = mounted->mnt_root;
1008 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1009 		*inode = path->dentry->d_inode;
1010 	}
1011 
1012 	if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1013 		return reverse_transit;
1014 	return true;
1015 }
1016 
1017 static int follow_dotdot_rcu(struct nameidata *nd)
1018 {
1019 	struct inode *inode = nd->inode;
1020 
1021 	set_root_rcu(nd);
1022 
1023 	while (1) {
1024 		if (nd->path.dentry == nd->root.dentry &&
1025 		    nd->path.mnt == nd->root.mnt) {
1026 			break;
1027 		}
1028 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1029 			struct dentry *old = nd->path.dentry;
1030 			struct dentry *parent = old->d_parent;
1031 			unsigned seq;
1032 
1033 			seq = read_seqcount_begin(&parent->d_seq);
1034 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1035 				goto failed;
1036 			inode = parent->d_inode;
1037 			nd->path.dentry = parent;
1038 			nd->seq = seq;
1039 			break;
1040 		}
1041 		if (!follow_up_rcu(&nd->path))
1042 			break;
1043 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1044 		inode = nd->path.dentry->d_inode;
1045 	}
1046 	__follow_mount_rcu(nd, &nd->path, &inode, true);
1047 	nd->inode = inode;
1048 	return 0;
1049 
1050 failed:
1051 	nd->flags &= ~LOOKUP_RCU;
1052 	if (!(nd->flags & LOOKUP_ROOT))
1053 		nd->root.mnt = NULL;
1054 	rcu_read_unlock();
1055 	br_read_unlock(vfsmount_lock);
1056 	return -ECHILD;
1057 }
1058 
1059 /*
1060  * Follow down to the covering mount currently visible to userspace.  At each
1061  * point, the filesystem owning that dentry may be queried as to whether the
1062  * caller is permitted to proceed or not.
1063  *
1064  * Care must be taken as namespace_sem may be held (indicated by mounting_here
1065  * being true).
1066  */
1067 int follow_down(struct path *path)
1068 {
1069 	unsigned managed;
1070 	int ret;
1071 
1072 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1073 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1074 		/* Allow the filesystem to manage the transit without i_mutex
1075 		 * being held.
1076 		 *
1077 		 * We indicate to the filesystem if someone is trying to mount
1078 		 * something here.  This gives autofs the chance to deny anyone
1079 		 * other than its daemon the right to mount on its
1080 		 * superstructure.
1081 		 *
1082 		 * The filesystem may sleep at this point.
1083 		 */
1084 		if (managed & DCACHE_MANAGE_TRANSIT) {
1085 			BUG_ON(!path->dentry->d_op);
1086 			BUG_ON(!path->dentry->d_op->d_manage);
1087 			ret = path->dentry->d_op->d_manage(
1088 				path->dentry, false);
1089 			if (ret < 0)
1090 				return ret == -EISDIR ? 0 : ret;
1091 		}
1092 
1093 		/* Transit to a mounted filesystem. */
1094 		if (managed & DCACHE_MOUNTED) {
1095 			struct vfsmount *mounted = lookup_mnt(path);
1096 			if (!mounted)
1097 				break;
1098 			dput(path->dentry);
1099 			mntput(path->mnt);
1100 			path->mnt = mounted;
1101 			path->dentry = dget(mounted->mnt_root);
1102 			continue;
1103 		}
1104 
1105 		/* Don't handle automount points here */
1106 		break;
1107 	}
1108 	return 0;
1109 }
1110 
1111 /*
1112  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1113  */
1114 static void follow_mount(struct path *path)
1115 {
1116 	while (d_mountpoint(path->dentry)) {
1117 		struct vfsmount *mounted = lookup_mnt(path);
1118 		if (!mounted)
1119 			break;
1120 		dput(path->dentry);
1121 		mntput(path->mnt);
1122 		path->mnt = mounted;
1123 		path->dentry = dget(mounted->mnt_root);
1124 	}
1125 }
1126 
1127 static void follow_dotdot(struct nameidata *nd)
1128 {
1129 	set_root(nd);
1130 
1131 	while(1) {
1132 		struct dentry *old = nd->path.dentry;
1133 
1134 		if (nd->path.dentry == nd->root.dentry &&
1135 		    nd->path.mnt == nd->root.mnt) {
1136 			break;
1137 		}
1138 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1139 			/* rare case of legitimate dget_parent()... */
1140 			nd->path.dentry = dget_parent(nd->path.dentry);
1141 			dput(old);
1142 			break;
1143 		}
1144 		if (!follow_up(&nd->path))
1145 			break;
1146 	}
1147 	follow_mount(&nd->path);
1148 	nd->inode = nd->path.dentry->d_inode;
1149 }
1150 
1151 /*
1152  * Allocate a dentry with name and parent, and perform a parent
1153  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1154  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1155  * have verified that no child exists while under i_mutex.
1156  */
1157 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1158 				struct qstr *name, struct nameidata *nd)
1159 {
1160 	struct inode *inode = parent->d_inode;
1161 	struct dentry *dentry;
1162 	struct dentry *old;
1163 
1164 	/* Don't create child dentry for a dead directory. */
1165 	if (unlikely(IS_DEADDIR(inode)))
1166 		return ERR_PTR(-ENOENT);
1167 
1168 	dentry = d_alloc(parent, name);
1169 	if (unlikely(!dentry))
1170 		return ERR_PTR(-ENOMEM);
1171 
1172 	old = inode->i_op->lookup(inode, dentry, nd);
1173 	if (unlikely(old)) {
1174 		dput(dentry);
1175 		dentry = old;
1176 	}
1177 	return dentry;
1178 }
1179 
1180 /*
1181  *  It's more convoluted than I'd like it to be, but... it's still fairly
1182  *  small and for now I'd prefer to have fast path as straight as possible.
1183  *  It _is_ time-critical.
1184  */
1185 static int do_lookup(struct nameidata *nd, struct qstr *name,
1186 			struct path *path, struct inode **inode)
1187 {
1188 	struct vfsmount *mnt = nd->path.mnt;
1189 	struct dentry *dentry, *parent = nd->path.dentry;
1190 	int need_reval = 1;
1191 	int status = 1;
1192 	int err;
1193 
1194 	/*
1195 	 * Rename seqlock is not required here because in the off chance
1196 	 * of a false negative due to a concurrent rename, we're going to
1197 	 * do the non-racy lookup, below.
1198 	 */
1199 	if (nd->flags & LOOKUP_RCU) {
1200 		unsigned seq;
1201 		*inode = nd->inode;
1202 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1203 		if (!dentry)
1204 			goto unlazy;
1205 
1206 		/* Memory barrier in read_seqcount_begin of child is enough */
1207 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1208 			return -ECHILD;
1209 		nd->seq = seq;
1210 
1211 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1212 			status = d_revalidate(dentry, nd);
1213 			if (unlikely(status <= 0)) {
1214 				if (status != -ECHILD)
1215 					need_reval = 0;
1216 				goto unlazy;
1217 			}
1218 		}
1219 		path->mnt = mnt;
1220 		path->dentry = dentry;
1221 		if (likely(__follow_mount_rcu(nd, path, inode, false)))
1222 			return 0;
1223 unlazy:
1224 		if (dentry) {
1225 			if (nameidata_dentry_drop_rcu(nd, dentry))
1226 				return -ECHILD;
1227 		} else {
1228 			if (nameidata_drop_rcu(nd))
1229 				return -ECHILD;
1230 		}
1231 	} else {
1232 		dentry = __d_lookup(parent, name);
1233 	}
1234 
1235 retry:
1236 	if (unlikely(!dentry)) {
1237 		struct inode *dir = parent->d_inode;
1238 		BUG_ON(nd->inode != dir);
1239 
1240 		mutex_lock(&dir->i_mutex);
1241 		dentry = d_lookup(parent, name);
1242 		if (likely(!dentry)) {
1243 			dentry = d_alloc_and_lookup(parent, name, nd);
1244 			if (IS_ERR(dentry)) {
1245 				mutex_unlock(&dir->i_mutex);
1246 				return PTR_ERR(dentry);
1247 			}
1248 			/* known good */
1249 			need_reval = 0;
1250 			status = 1;
1251 		}
1252 		mutex_unlock(&dir->i_mutex);
1253 	}
1254 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1255 		status = d_revalidate(dentry, nd);
1256 	if (unlikely(status <= 0)) {
1257 		if (status < 0) {
1258 			dput(dentry);
1259 			return status;
1260 		}
1261 		if (!d_invalidate(dentry)) {
1262 			dput(dentry);
1263 			dentry = NULL;
1264 			need_reval = 1;
1265 			goto retry;
1266 		}
1267 	}
1268 
1269 	path->mnt = mnt;
1270 	path->dentry = dentry;
1271 	err = follow_managed(path, nd->flags);
1272 	if (unlikely(err < 0)) {
1273 		path_put_conditional(path, nd);
1274 		return err;
1275 	}
1276 	*inode = path->dentry->d_inode;
1277 	return 0;
1278 }
1279 
1280 static inline int may_lookup(struct nameidata *nd)
1281 {
1282 	if (nd->flags & LOOKUP_RCU) {
1283 		int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1284 		if (err != -ECHILD)
1285 			return err;
1286 		if (nameidata_drop_rcu(nd))
1287 			return -ECHILD;
1288 	}
1289 	return exec_permission(nd->inode, 0);
1290 }
1291 
1292 static inline int handle_dots(struct nameidata *nd, int type)
1293 {
1294 	if (type == LAST_DOTDOT) {
1295 		if (nd->flags & LOOKUP_RCU) {
1296 			if (follow_dotdot_rcu(nd))
1297 				return -ECHILD;
1298 		} else
1299 			follow_dotdot(nd);
1300 	}
1301 	return 0;
1302 }
1303 
1304 static void terminate_walk(struct nameidata *nd)
1305 {
1306 	if (!(nd->flags & LOOKUP_RCU)) {
1307 		path_put(&nd->path);
1308 	} else {
1309 		nd->flags &= ~LOOKUP_RCU;
1310 		if (!(nd->flags & LOOKUP_ROOT))
1311 			nd->root.mnt = NULL;
1312 		rcu_read_unlock();
1313 		br_read_unlock(vfsmount_lock);
1314 	}
1315 }
1316 
1317 static inline int walk_component(struct nameidata *nd, struct path *path,
1318 		struct qstr *name, int type, int follow)
1319 {
1320 	struct inode *inode;
1321 	int err;
1322 	/*
1323 	 * "." and ".." are special - ".." especially so because it has
1324 	 * to be able to know about the current root directory and
1325 	 * parent relationships.
1326 	 */
1327 	if (unlikely(type != LAST_NORM))
1328 		return handle_dots(nd, type);
1329 	err = do_lookup(nd, name, path, &inode);
1330 	if (unlikely(err)) {
1331 		terminate_walk(nd);
1332 		return err;
1333 	}
1334 	if (!inode) {
1335 		path_to_nameidata(path, nd);
1336 		terminate_walk(nd);
1337 		return -ENOENT;
1338 	}
1339 	if (unlikely(inode->i_op->follow_link) && follow) {
1340 		if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
1341 			return -ECHILD;
1342 		BUG_ON(inode != path->dentry->d_inode);
1343 		return 1;
1344 	}
1345 	path_to_nameidata(path, nd);
1346 	nd->inode = inode;
1347 	return 0;
1348 }
1349 
1350 /*
1351  * This limits recursive symlink follows to 8, while
1352  * limiting consecutive symlinks to 40.
1353  *
1354  * Without that kind of total limit, nasty chains of consecutive
1355  * symlinks can cause almost arbitrarily long lookups.
1356  */
1357 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1358 {
1359 	int res;
1360 
1361 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1362 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1363 		path_put_conditional(path, nd);
1364 		path_put(&nd->path);
1365 		return -ELOOP;
1366 	}
1367 
1368 	nd->depth++;
1369 	current->link_count++;
1370 
1371 	do {
1372 		struct path link = *path;
1373 		void *cookie;
1374 
1375 		res = follow_link(&link, nd, &cookie);
1376 		if (!res)
1377 			res = walk_component(nd, path, &nd->last,
1378 					     nd->last_type, LOOKUP_FOLLOW);
1379 		put_link(nd, &link, cookie);
1380 	} while (res > 0);
1381 
1382 	current->link_count--;
1383 	nd->depth--;
1384 	return res;
1385 }
1386 
1387 /*
1388  * Name resolution.
1389  * This is the basic name resolution function, turning a pathname into
1390  * the final dentry. We expect 'base' to be positive and a directory.
1391  *
1392  * Returns 0 and nd will have valid dentry and mnt on success.
1393  * Returns error and drops reference to input namei data on failure.
1394  */
1395 static int link_path_walk(const char *name, struct nameidata *nd)
1396 {
1397 	struct path next;
1398 	int err;
1399 	unsigned int lookup_flags = nd->flags;
1400 
1401 	while (*name=='/')
1402 		name++;
1403 	if (!*name)
1404 		return 0;
1405 
1406 	/* At this point we know we have a real path component. */
1407 	for(;;) {
1408 		unsigned long hash;
1409 		struct qstr this;
1410 		unsigned int c;
1411 		int type;
1412 
1413 		nd->flags |= LOOKUP_CONTINUE;
1414 
1415 		err = may_lookup(nd);
1416  		if (err)
1417 			break;
1418 
1419 		this.name = name;
1420 		c = *(const unsigned char *)name;
1421 
1422 		hash = init_name_hash();
1423 		do {
1424 			name++;
1425 			hash = partial_name_hash(c, hash);
1426 			c = *(const unsigned char *)name;
1427 		} while (c && (c != '/'));
1428 		this.len = name - (const char *) this.name;
1429 		this.hash = end_name_hash(hash);
1430 
1431 		type = LAST_NORM;
1432 		if (this.name[0] == '.') switch (this.len) {
1433 			case 2:
1434 				if (this.name[1] == '.') {
1435 					type = LAST_DOTDOT;
1436 					nd->flags |= LOOKUP_JUMPED;
1437 				}
1438 				break;
1439 			case 1:
1440 				type = LAST_DOT;
1441 		}
1442 		if (likely(type == LAST_NORM)) {
1443 			struct dentry *parent = nd->path.dentry;
1444 			nd->flags &= ~LOOKUP_JUMPED;
1445 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1446 				err = parent->d_op->d_hash(parent, nd->inode,
1447 							   &this);
1448 				if (err < 0)
1449 					break;
1450 			}
1451 		}
1452 
1453 		/* remove trailing slashes? */
1454 		if (!c)
1455 			goto last_component;
1456 		while (*++name == '/');
1457 		if (!*name)
1458 			goto last_component;
1459 
1460 		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1461 		if (err < 0)
1462 			return err;
1463 
1464 		if (err) {
1465 			err = nested_symlink(&next, nd);
1466 			if (err)
1467 				return err;
1468 		}
1469 		err = -ENOTDIR;
1470 		if (!nd->inode->i_op->lookup)
1471 			break;
1472 		continue;
1473 		/* here ends the main loop */
1474 
1475 last_component:
1476 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
1477 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1478 		nd->last = this;
1479 		nd->last_type = type;
1480 		return 0;
1481 	}
1482 	terminate_walk(nd);
1483 	return err;
1484 }
1485 
1486 static int path_init(int dfd, const char *name, unsigned int flags,
1487 		     struct nameidata *nd, struct file **fp)
1488 {
1489 	int retval = 0;
1490 	int fput_needed;
1491 	struct file *file;
1492 
1493 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1494 	nd->flags = flags | LOOKUP_JUMPED;
1495 	nd->depth = 0;
1496 	if (flags & LOOKUP_ROOT) {
1497 		struct inode *inode = nd->root.dentry->d_inode;
1498 		if (*name) {
1499 			if (!inode->i_op->lookup)
1500 				return -ENOTDIR;
1501 			retval = inode_permission(inode, MAY_EXEC);
1502 			if (retval)
1503 				return retval;
1504 		}
1505 		nd->path = nd->root;
1506 		nd->inode = inode;
1507 		if (flags & LOOKUP_RCU) {
1508 			br_read_lock(vfsmount_lock);
1509 			rcu_read_lock();
1510 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1511 		} else {
1512 			path_get(&nd->path);
1513 		}
1514 		return 0;
1515 	}
1516 
1517 	nd->root.mnt = NULL;
1518 
1519 	if (*name=='/') {
1520 		if (flags & LOOKUP_RCU) {
1521 			br_read_lock(vfsmount_lock);
1522 			rcu_read_lock();
1523 			set_root_rcu(nd);
1524 		} else {
1525 			set_root(nd);
1526 			path_get(&nd->root);
1527 		}
1528 		nd->path = nd->root;
1529 	} else if (dfd == AT_FDCWD) {
1530 		if (flags & LOOKUP_RCU) {
1531 			struct fs_struct *fs = current->fs;
1532 			unsigned seq;
1533 
1534 			br_read_lock(vfsmount_lock);
1535 			rcu_read_lock();
1536 
1537 			do {
1538 				seq = read_seqcount_begin(&fs->seq);
1539 				nd->path = fs->pwd;
1540 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1541 			} while (read_seqcount_retry(&fs->seq, seq));
1542 		} else {
1543 			get_fs_pwd(current->fs, &nd->path);
1544 		}
1545 	} else {
1546 		struct dentry *dentry;
1547 
1548 		file = fget_raw_light(dfd, &fput_needed);
1549 		retval = -EBADF;
1550 		if (!file)
1551 			goto out_fail;
1552 
1553 		dentry = file->f_path.dentry;
1554 
1555 		if (*name) {
1556 			retval = -ENOTDIR;
1557 			if (!S_ISDIR(dentry->d_inode->i_mode))
1558 				goto fput_fail;
1559 
1560 			retval = file_permission(file, MAY_EXEC);
1561 			if (retval)
1562 				goto fput_fail;
1563 		}
1564 
1565 		nd->path = file->f_path;
1566 		if (flags & LOOKUP_RCU) {
1567 			if (fput_needed)
1568 				*fp = file;
1569 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1570 			br_read_lock(vfsmount_lock);
1571 			rcu_read_lock();
1572 		} else {
1573 			path_get(&file->f_path);
1574 			fput_light(file, fput_needed);
1575 		}
1576 	}
1577 
1578 	nd->inode = nd->path.dentry->d_inode;
1579 	return 0;
1580 
1581 fput_fail:
1582 	fput_light(file, fput_needed);
1583 out_fail:
1584 	return retval;
1585 }
1586 
1587 static inline int lookup_last(struct nameidata *nd, struct path *path)
1588 {
1589 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1590 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1591 
1592 	nd->flags &= ~LOOKUP_PARENT;
1593 	return walk_component(nd, path, &nd->last, nd->last_type,
1594 					nd->flags & LOOKUP_FOLLOW);
1595 }
1596 
1597 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1598 static int path_lookupat(int dfd, const char *name,
1599 				unsigned int flags, struct nameidata *nd)
1600 {
1601 	struct file *base = NULL;
1602 	struct path path;
1603 	int err;
1604 
1605 	/*
1606 	 * Path walking is largely split up into 2 different synchronisation
1607 	 * schemes, rcu-walk and ref-walk (explained in
1608 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1609 	 * path walk code, but some things particularly setup, cleanup, and
1610 	 * following mounts are sufficiently divergent that functions are
1611 	 * duplicated. Typically there is a function foo(), and its RCU
1612 	 * analogue, foo_rcu().
1613 	 *
1614 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1615 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1616 	 * be handled by restarting a traditional ref-walk (which will always
1617 	 * be able to complete).
1618 	 */
1619 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1620 
1621 	if (unlikely(err))
1622 		return err;
1623 
1624 	current->total_link_count = 0;
1625 	err = link_path_walk(name, nd);
1626 
1627 	if (!err && !(flags & LOOKUP_PARENT)) {
1628 		err = lookup_last(nd, &path);
1629 		while (err > 0) {
1630 			void *cookie;
1631 			struct path link = path;
1632 			nd->flags |= LOOKUP_PARENT;
1633 			err = follow_link(&link, nd, &cookie);
1634 			if (!err)
1635 				err = lookup_last(nd, &path);
1636 			put_link(nd, &link, cookie);
1637 		}
1638 	}
1639 
1640 	if (nd->flags & LOOKUP_RCU) {
1641 		/* went all way through without dropping RCU */
1642 		BUG_ON(err);
1643 		if (nameidata_drop_rcu_last(nd))
1644 			err = -ECHILD;
1645 	}
1646 
1647 	if (!err)
1648 		err = handle_reval_path(nd);
1649 
1650 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1651 		if (!nd->inode->i_op->lookup) {
1652 			path_put(&nd->path);
1653 			return -ENOTDIR;
1654 		}
1655 	}
1656 
1657 	if (base)
1658 		fput(base);
1659 
1660 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1661 		path_put(&nd->root);
1662 		nd->root.mnt = NULL;
1663 	}
1664 	return err;
1665 }
1666 
1667 static int do_path_lookup(int dfd, const char *name,
1668 				unsigned int flags, struct nameidata *nd)
1669 {
1670 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1671 	if (unlikely(retval == -ECHILD))
1672 		retval = path_lookupat(dfd, name, flags, nd);
1673 	if (unlikely(retval == -ESTALE))
1674 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1675 
1676 	if (likely(!retval)) {
1677 		if (unlikely(!audit_dummy_context())) {
1678 			if (nd->path.dentry && nd->inode)
1679 				audit_inode(name, nd->path.dentry);
1680 		}
1681 	}
1682 	return retval;
1683 }
1684 
1685 int kern_path_parent(const char *name, struct nameidata *nd)
1686 {
1687 	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1688 }
1689 
1690 int kern_path(const char *name, unsigned int flags, struct path *path)
1691 {
1692 	struct nameidata nd;
1693 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1694 	if (!res)
1695 		*path = nd.path;
1696 	return res;
1697 }
1698 
1699 /**
1700  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1701  * @dentry:  pointer to dentry of the base directory
1702  * @mnt: pointer to vfs mount of the base directory
1703  * @name: pointer to file name
1704  * @flags: lookup flags
1705  * @nd: pointer to nameidata
1706  */
1707 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1708 		    const char *name, unsigned int flags,
1709 		    struct nameidata *nd)
1710 {
1711 	nd->root.dentry = dentry;
1712 	nd->root.mnt = mnt;
1713 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1714 	return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1715 }
1716 
1717 static struct dentry *__lookup_hash(struct qstr *name,
1718 		struct dentry *base, struct nameidata *nd)
1719 {
1720 	struct inode *inode = base->d_inode;
1721 	struct dentry *dentry;
1722 	int err;
1723 
1724 	err = exec_permission(inode, 0);
1725 	if (err)
1726 		return ERR_PTR(err);
1727 
1728 	/*
1729 	 * Don't bother with __d_lookup: callers are for creat as
1730 	 * well as unlink, so a lot of the time it would cost
1731 	 * a double lookup.
1732 	 */
1733 	dentry = d_lookup(base, name);
1734 
1735 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1736 		dentry = do_revalidate(dentry, nd);
1737 
1738 	if (!dentry)
1739 		dentry = d_alloc_and_lookup(base, name, nd);
1740 
1741 	return dentry;
1742 }
1743 
1744 /*
1745  * Restricted form of lookup. Doesn't follow links, single-component only,
1746  * needs parent already locked. Doesn't follow mounts.
1747  * SMP-safe.
1748  */
1749 static struct dentry *lookup_hash(struct nameidata *nd)
1750 {
1751 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1752 }
1753 
1754 /**
1755  * lookup_one_len - filesystem helper to lookup single pathname component
1756  * @name:	pathname component to lookup
1757  * @base:	base directory to lookup from
1758  * @len:	maximum length @len should be interpreted to
1759  *
1760  * Note that this routine is purely a helper for filesystem usage and should
1761  * not be called by generic code.  Also note that by using this function the
1762  * nameidata argument is passed to the filesystem methods and a filesystem
1763  * using this helper needs to be prepared for that.
1764  */
1765 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1766 {
1767 	struct qstr this;
1768 	unsigned long hash;
1769 	unsigned int c;
1770 
1771 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1772 
1773 	this.name = name;
1774 	this.len = len;
1775 	if (!len)
1776 		return ERR_PTR(-EACCES);
1777 
1778 	hash = init_name_hash();
1779 	while (len--) {
1780 		c = *(const unsigned char *)name++;
1781 		if (c == '/' || c == '\0')
1782 			return ERR_PTR(-EACCES);
1783 		hash = partial_name_hash(c, hash);
1784 	}
1785 	this.hash = end_name_hash(hash);
1786 	/*
1787 	 * See if the low-level filesystem might want
1788 	 * to use its own hash..
1789 	 */
1790 	if (base->d_flags & DCACHE_OP_HASH) {
1791 		int err = base->d_op->d_hash(base, base->d_inode, &this);
1792 		if (err < 0)
1793 			return ERR_PTR(err);
1794 	}
1795 
1796 	return __lookup_hash(&this, base, NULL);
1797 }
1798 
1799 int user_path_at(int dfd, const char __user *name, unsigned flags,
1800 		 struct path *path)
1801 {
1802 	struct nameidata nd;
1803 	char *tmp = getname_flags(name, flags);
1804 	int err = PTR_ERR(tmp);
1805 	if (!IS_ERR(tmp)) {
1806 
1807 		BUG_ON(flags & LOOKUP_PARENT);
1808 
1809 		err = do_path_lookup(dfd, tmp, flags, &nd);
1810 		putname(tmp);
1811 		if (!err)
1812 			*path = nd.path;
1813 	}
1814 	return err;
1815 }
1816 
1817 static int user_path_parent(int dfd, const char __user *path,
1818 			struct nameidata *nd, char **name)
1819 {
1820 	char *s = getname(path);
1821 	int error;
1822 
1823 	if (IS_ERR(s))
1824 		return PTR_ERR(s);
1825 
1826 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1827 	if (error)
1828 		putname(s);
1829 	else
1830 		*name = s;
1831 
1832 	return error;
1833 }
1834 
1835 /*
1836  * It's inline, so penalty for filesystems that don't use sticky bit is
1837  * minimal.
1838  */
1839 static inline int check_sticky(struct inode *dir, struct inode *inode)
1840 {
1841 	uid_t fsuid = current_fsuid();
1842 
1843 	if (!(dir->i_mode & S_ISVTX))
1844 		return 0;
1845 	if (inode->i_uid == fsuid)
1846 		return 0;
1847 	if (dir->i_uid == fsuid)
1848 		return 0;
1849 	return !capable(CAP_FOWNER);
1850 }
1851 
1852 /*
1853  *	Check whether we can remove a link victim from directory dir, check
1854  *  whether the type of victim is right.
1855  *  1. We can't do it if dir is read-only (done in permission())
1856  *  2. We should have write and exec permissions on dir
1857  *  3. We can't remove anything from append-only dir
1858  *  4. We can't do anything with immutable dir (done in permission())
1859  *  5. If the sticky bit on dir is set we should either
1860  *	a. be owner of dir, or
1861  *	b. be owner of victim, or
1862  *	c. have CAP_FOWNER capability
1863  *  6. If the victim is append-only or immutable we can't do antyhing with
1864  *     links pointing to it.
1865  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1866  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1867  *  9. We can't remove a root or mountpoint.
1868  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1869  *     nfs_async_unlink().
1870  */
1871 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1872 {
1873 	int error;
1874 
1875 	if (!victim->d_inode)
1876 		return -ENOENT;
1877 
1878 	BUG_ON(victim->d_parent->d_inode != dir);
1879 	audit_inode_child(victim, dir);
1880 
1881 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1882 	if (error)
1883 		return error;
1884 	if (IS_APPEND(dir))
1885 		return -EPERM;
1886 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1887 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1888 		return -EPERM;
1889 	if (isdir) {
1890 		if (!S_ISDIR(victim->d_inode->i_mode))
1891 			return -ENOTDIR;
1892 		if (IS_ROOT(victim))
1893 			return -EBUSY;
1894 	} else if (S_ISDIR(victim->d_inode->i_mode))
1895 		return -EISDIR;
1896 	if (IS_DEADDIR(dir))
1897 		return -ENOENT;
1898 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1899 		return -EBUSY;
1900 	return 0;
1901 }
1902 
1903 /*	Check whether we can create an object with dentry child in directory
1904  *  dir.
1905  *  1. We can't do it if child already exists (open has special treatment for
1906  *     this case, but since we are inlined it's OK)
1907  *  2. We can't do it if dir is read-only (done in permission())
1908  *  3. We should have write and exec permissions on dir
1909  *  4. We can't do it if dir is immutable (done in permission())
1910  */
1911 static inline int may_create(struct inode *dir, struct dentry *child)
1912 {
1913 	if (child->d_inode)
1914 		return -EEXIST;
1915 	if (IS_DEADDIR(dir))
1916 		return -ENOENT;
1917 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1918 }
1919 
1920 /*
1921  * p1 and p2 should be directories on the same fs.
1922  */
1923 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1924 {
1925 	struct dentry *p;
1926 
1927 	if (p1 == p2) {
1928 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1929 		return NULL;
1930 	}
1931 
1932 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1933 
1934 	p = d_ancestor(p2, p1);
1935 	if (p) {
1936 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1937 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1938 		return p;
1939 	}
1940 
1941 	p = d_ancestor(p1, p2);
1942 	if (p) {
1943 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1944 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1945 		return p;
1946 	}
1947 
1948 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1949 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1950 	return NULL;
1951 }
1952 
1953 void unlock_rename(struct dentry *p1, struct dentry *p2)
1954 {
1955 	mutex_unlock(&p1->d_inode->i_mutex);
1956 	if (p1 != p2) {
1957 		mutex_unlock(&p2->d_inode->i_mutex);
1958 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1959 	}
1960 }
1961 
1962 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1963 		struct nameidata *nd)
1964 {
1965 	int error = may_create(dir, dentry);
1966 
1967 	if (error)
1968 		return error;
1969 
1970 	if (!dir->i_op->create)
1971 		return -EACCES;	/* shouldn't it be ENOSYS? */
1972 	mode &= S_IALLUGO;
1973 	mode |= S_IFREG;
1974 	error = security_inode_create(dir, dentry, mode);
1975 	if (error)
1976 		return error;
1977 	error = dir->i_op->create(dir, dentry, mode, nd);
1978 	if (!error)
1979 		fsnotify_create(dir, dentry);
1980 	return error;
1981 }
1982 
1983 static int may_open(struct path *path, int acc_mode, int flag)
1984 {
1985 	struct dentry *dentry = path->dentry;
1986 	struct inode *inode = dentry->d_inode;
1987 	int error;
1988 
1989 	/* O_PATH? */
1990 	if (!acc_mode)
1991 		return 0;
1992 
1993 	if (!inode)
1994 		return -ENOENT;
1995 
1996 	switch (inode->i_mode & S_IFMT) {
1997 	case S_IFLNK:
1998 		return -ELOOP;
1999 	case S_IFDIR:
2000 		if (acc_mode & MAY_WRITE)
2001 			return -EISDIR;
2002 		break;
2003 	case S_IFBLK:
2004 	case S_IFCHR:
2005 		if (path->mnt->mnt_flags & MNT_NODEV)
2006 			return -EACCES;
2007 		/*FALLTHRU*/
2008 	case S_IFIFO:
2009 	case S_IFSOCK:
2010 		flag &= ~O_TRUNC;
2011 		break;
2012 	}
2013 
2014 	error = inode_permission(inode, acc_mode);
2015 	if (error)
2016 		return error;
2017 
2018 	/*
2019 	 * An append-only file must be opened in append mode for writing.
2020 	 */
2021 	if (IS_APPEND(inode)) {
2022 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2023 			return -EPERM;
2024 		if (flag & O_TRUNC)
2025 			return -EPERM;
2026 	}
2027 
2028 	/* O_NOATIME can only be set by the owner or superuser */
2029 	if (flag & O_NOATIME && !is_owner_or_cap(inode))
2030 		return -EPERM;
2031 
2032 	/*
2033 	 * Ensure there are no outstanding leases on the file.
2034 	 */
2035 	return break_lease(inode, flag);
2036 }
2037 
2038 static int handle_truncate(struct file *filp)
2039 {
2040 	struct path *path = &filp->f_path;
2041 	struct inode *inode = path->dentry->d_inode;
2042 	int error = get_write_access(inode);
2043 	if (error)
2044 		return error;
2045 	/*
2046 	 * Refuse to truncate files with mandatory locks held on them.
2047 	 */
2048 	error = locks_verify_locked(inode);
2049 	if (!error)
2050 		error = security_path_truncate(path);
2051 	if (!error) {
2052 		error = do_truncate(path->dentry, 0,
2053 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2054 				    filp);
2055 	}
2056 	put_write_access(inode);
2057 	return error;
2058 }
2059 
2060 /*
2061  * Note that while the flag value (low two bits) for sys_open means:
2062  *	00 - read-only
2063  *	01 - write-only
2064  *	10 - read-write
2065  *	11 - special
2066  * it is changed into
2067  *	00 - no permissions needed
2068  *	01 - read-permission
2069  *	10 - write-permission
2070  *	11 - read-write
2071  * for the internal routines (ie open_namei()/follow_link() etc)
2072  * This is more logical, and also allows the 00 "no perm needed"
2073  * to be used for symlinks (where the permissions are checked
2074  * later).
2075  *
2076 */
2077 static inline int open_to_namei_flags(int flag)
2078 {
2079 	if ((flag+1) & O_ACCMODE)
2080 		flag++;
2081 	return flag;
2082 }
2083 
2084 /*
2085  * Handle the last step of open()
2086  */
2087 static struct file *do_last(struct nameidata *nd, struct path *path,
2088 			    const struct open_flags *op, const char *pathname)
2089 {
2090 	struct dentry *dir = nd->path.dentry;
2091 	struct dentry *dentry;
2092 	int open_flag = op->open_flag;
2093 	int will_truncate = open_flag & O_TRUNC;
2094 	int want_write = 0;
2095 	int acc_mode = op->acc_mode;
2096 	struct file *filp;
2097 	int error;
2098 
2099 	nd->flags &= ~LOOKUP_PARENT;
2100 	nd->flags |= op->intent;
2101 
2102 	switch (nd->last_type) {
2103 	case LAST_DOTDOT:
2104 	case LAST_DOT:
2105 		error = handle_dots(nd, nd->last_type);
2106 		if (error)
2107 			return ERR_PTR(error);
2108 		/* fallthrough */
2109 	case LAST_ROOT:
2110 		if (nd->flags & LOOKUP_RCU) {
2111 			if (nameidata_drop_rcu_last(nd))
2112 				return ERR_PTR(-ECHILD);
2113 		}
2114 		error = handle_reval_path(nd);
2115 		if (error)
2116 			goto exit;
2117 		audit_inode(pathname, nd->path.dentry);
2118 		if (open_flag & O_CREAT) {
2119 			error = -EISDIR;
2120 			goto exit;
2121 		}
2122 		goto ok;
2123 	case LAST_BIND:
2124 		/* can't be RCU mode here */
2125 		error = handle_reval_path(nd);
2126 		if (error)
2127 			goto exit;
2128 		audit_inode(pathname, dir);
2129 		goto ok;
2130 	}
2131 
2132 	if (!(open_flag & O_CREAT)) {
2133 		int symlink_ok = 0;
2134 		if (nd->last.name[nd->last.len])
2135 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2136 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2137 			symlink_ok = 1;
2138 		/* we _can_ be in RCU mode here */
2139 		error = walk_component(nd, path, &nd->last, LAST_NORM,
2140 					!symlink_ok);
2141 		if (error < 0)
2142 			return ERR_PTR(error);
2143 		if (error) /* symlink */
2144 			return NULL;
2145 		/* sayonara */
2146 		if (nd->flags & LOOKUP_RCU) {
2147 			if (nameidata_drop_rcu_last(nd))
2148 				return ERR_PTR(-ECHILD);
2149 		}
2150 
2151 		error = -ENOTDIR;
2152 		if (nd->flags & LOOKUP_DIRECTORY) {
2153 			if (!nd->inode->i_op->lookup)
2154 				goto exit;
2155 		}
2156 		audit_inode(pathname, nd->path.dentry);
2157 		goto ok;
2158 	}
2159 
2160 	/* create side of things */
2161 
2162 	if (nd->flags & LOOKUP_RCU) {
2163 		if (nameidata_drop_rcu_last(nd))
2164 			return ERR_PTR(-ECHILD);
2165 	}
2166 
2167 	audit_inode(pathname, dir);
2168 	error = -EISDIR;
2169 	/* trailing slashes? */
2170 	if (nd->last.name[nd->last.len])
2171 		goto exit;
2172 
2173 	mutex_lock(&dir->d_inode->i_mutex);
2174 
2175 	dentry = lookup_hash(nd);
2176 	error = PTR_ERR(dentry);
2177 	if (IS_ERR(dentry)) {
2178 		mutex_unlock(&dir->d_inode->i_mutex);
2179 		goto exit;
2180 	}
2181 
2182 	path->dentry = dentry;
2183 	path->mnt = nd->path.mnt;
2184 
2185 	/* Negative dentry, just create the file */
2186 	if (!dentry->d_inode) {
2187 		int mode = op->mode;
2188 		if (!IS_POSIXACL(dir->d_inode))
2189 			mode &= ~current_umask();
2190 		/*
2191 		 * This write is needed to ensure that a
2192 		 * rw->ro transition does not occur between
2193 		 * the time when the file is created and when
2194 		 * a permanent write count is taken through
2195 		 * the 'struct file' in nameidata_to_filp().
2196 		 */
2197 		error = mnt_want_write(nd->path.mnt);
2198 		if (error)
2199 			goto exit_mutex_unlock;
2200 		want_write = 1;
2201 		/* Don't check for write permission, don't truncate */
2202 		open_flag &= ~O_TRUNC;
2203 		will_truncate = 0;
2204 		acc_mode = MAY_OPEN;
2205 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2206 		if (error)
2207 			goto exit_mutex_unlock;
2208 		error = vfs_create(dir->d_inode, dentry, mode, nd);
2209 		if (error)
2210 			goto exit_mutex_unlock;
2211 		mutex_unlock(&dir->d_inode->i_mutex);
2212 		dput(nd->path.dentry);
2213 		nd->path.dentry = dentry;
2214 		goto common;
2215 	}
2216 
2217 	/*
2218 	 * It already exists.
2219 	 */
2220 	mutex_unlock(&dir->d_inode->i_mutex);
2221 	audit_inode(pathname, path->dentry);
2222 
2223 	error = -EEXIST;
2224 	if (open_flag & O_EXCL)
2225 		goto exit_dput;
2226 
2227 	error = follow_managed(path, nd->flags);
2228 	if (error < 0)
2229 		goto exit_dput;
2230 
2231 	error = -ENOENT;
2232 	if (!path->dentry->d_inode)
2233 		goto exit_dput;
2234 
2235 	if (path->dentry->d_inode->i_op->follow_link)
2236 		return NULL;
2237 
2238 	path_to_nameidata(path, nd);
2239 	nd->inode = path->dentry->d_inode;
2240 	error = -EISDIR;
2241 	if (S_ISDIR(nd->inode->i_mode))
2242 		goto exit;
2243 ok:
2244 	if (!S_ISREG(nd->inode->i_mode))
2245 		will_truncate = 0;
2246 
2247 	if (will_truncate) {
2248 		error = mnt_want_write(nd->path.mnt);
2249 		if (error)
2250 			goto exit;
2251 		want_write = 1;
2252 	}
2253 common:
2254 	error = may_open(&nd->path, acc_mode, open_flag);
2255 	if (error)
2256 		goto exit;
2257 	filp = nameidata_to_filp(nd);
2258 	if (!IS_ERR(filp)) {
2259 		error = ima_file_check(filp, op->acc_mode);
2260 		if (error) {
2261 			fput(filp);
2262 			filp = ERR_PTR(error);
2263 		}
2264 	}
2265 	if (!IS_ERR(filp)) {
2266 		if (will_truncate) {
2267 			error = handle_truncate(filp);
2268 			if (error) {
2269 				fput(filp);
2270 				filp = ERR_PTR(error);
2271 			}
2272 		}
2273 	}
2274 out:
2275 	if (want_write)
2276 		mnt_drop_write(nd->path.mnt);
2277 	path_put(&nd->path);
2278 	return filp;
2279 
2280 exit_mutex_unlock:
2281 	mutex_unlock(&dir->d_inode->i_mutex);
2282 exit_dput:
2283 	path_put_conditional(path, nd);
2284 exit:
2285 	filp = ERR_PTR(error);
2286 	goto out;
2287 }
2288 
2289 static struct file *path_openat(int dfd, const char *pathname,
2290 		struct nameidata *nd, const struct open_flags *op, int flags)
2291 {
2292 	struct file *base = NULL;
2293 	struct file *filp;
2294 	struct path path;
2295 	int error;
2296 
2297 	filp = get_empty_filp();
2298 	if (!filp)
2299 		return ERR_PTR(-ENFILE);
2300 
2301 	filp->f_flags = op->open_flag;
2302 	nd->intent.open.file = filp;
2303 	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2304 	nd->intent.open.create_mode = op->mode;
2305 
2306 	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2307 	if (unlikely(error))
2308 		goto out_filp;
2309 
2310 	current->total_link_count = 0;
2311 	error = link_path_walk(pathname, nd);
2312 	if (unlikely(error))
2313 		goto out_filp;
2314 
2315 	filp = do_last(nd, &path, op, pathname);
2316 	while (unlikely(!filp)) { /* trailing symlink */
2317 		struct path link = path;
2318 		void *cookie;
2319 		if (!(nd->flags & LOOKUP_FOLLOW)) {
2320 			path_put_conditional(&path, nd);
2321 			path_put(&nd->path);
2322 			filp = ERR_PTR(-ELOOP);
2323 			break;
2324 		}
2325 		nd->flags |= LOOKUP_PARENT;
2326 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2327 		error = follow_link(&link, nd, &cookie);
2328 		if (unlikely(error))
2329 			filp = ERR_PTR(error);
2330 		else
2331 			filp = do_last(nd, &path, op, pathname);
2332 		put_link(nd, &link, cookie);
2333 	}
2334 out:
2335 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2336 		path_put(&nd->root);
2337 	if (base)
2338 		fput(base);
2339 	release_open_intent(nd);
2340 	return filp;
2341 
2342 out_filp:
2343 	filp = ERR_PTR(error);
2344 	goto out;
2345 }
2346 
2347 struct file *do_filp_open(int dfd, const char *pathname,
2348 		const struct open_flags *op, int flags)
2349 {
2350 	struct nameidata nd;
2351 	struct file *filp;
2352 
2353 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2354 	if (unlikely(filp == ERR_PTR(-ECHILD)))
2355 		filp = path_openat(dfd, pathname, &nd, op, flags);
2356 	if (unlikely(filp == ERR_PTR(-ESTALE)))
2357 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2358 	return filp;
2359 }
2360 
2361 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2362 		const char *name, const struct open_flags *op, int flags)
2363 {
2364 	struct nameidata nd;
2365 	struct file *file;
2366 
2367 	nd.root.mnt = mnt;
2368 	nd.root.dentry = dentry;
2369 
2370 	flags |= LOOKUP_ROOT;
2371 
2372 	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2373 		return ERR_PTR(-ELOOP);
2374 
2375 	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2376 	if (unlikely(file == ERR_PTR(-ECHILD)))
2377 		file = path_openat(-1, name, &nd, op, flags);
2378 	if (unlikely(file == ERR_PTR(-ESTALE)))
2379 		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2380 	return file;
2381 }
2382 
2383 /**
2384  * lookup_create - lookup a dentry, creating it if it doesn't exist
2385  * @nd: nameidata info
2386  * @is_dir: directory flag
2387  *
2388  * Simple function to lookup and return a dentry and create it
2389  * if it doesn't exist.  Is SMP-safe.
2390  *
2391  * Returns with nd->path.dentry->d_inode->i_mutex locked.
2392  */
2393 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2394 {
2395 	struct dentry *dentry = ERR_PTR(-EEXIST);
2396 
2397 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2398 	/*
2399 	 * Yucky last component or no last component at all?
2400 	 * (foo/., foo/.., /////)
2401 	 */
2402 	if (nd->last_type != LAST_NORM)
2403 		goto fail;
2404 	nd->flags &= ~LOOKUP_PARENT;
2405 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2406 	nd->intent.open.flags = O_EXCL;
2407 
2408 	/*
2409 	 * Do the final lookup.
2410 	 */
2411 	dentry = lookup_hash(nd);
2412 	if (IS_ERR(dentry))
2413 		goto fail;
2414 
2415 	if (dentry->d_inode)
2416 		goto eexist;
2417 	/*
2418 	 * Special case - lookup gave negative, but... we had foo/bar/
2419 	 * From the vfs_mknod() POV we just have a negative dentry -
2420 	 * all is fine. Let's be bastards - you had / on the end, you've
2421 	 * been asking for (non-existent) directory. -ENOENT for you.
2422 	 */
2423 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2424 		dput(dentry);
2425 		dentry = ERR_PTR(-ENOENT);
2426 	}
2427 	return dentry;
2428 eexist:
2429 	dput(dentry);
2430 	dentry = ERR_PTR(-EEXIST);
2431 fail:
2432 	return dentry;
2433 }
2434 EXPORT_SYMBOL_GPL(lookup_create);
2435 
2436 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2437 {
2438 	int error = may_create(dir, dentry);
2439 
2440 	if (error)
2441 		return error;
2442 
2443 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2444 		return -EPERM;
2445 
2446 	if (!dir->i_op->mknod)
2447 		return -EPERM;
2448 
2449 	error = devcgroup_inode_mknod(mode, dev);
2450 	if (error)
2451 		return error;
2452 
2453 	error = security_inode_mknod(dir, dentry, mode, dev);
2454 	if (error)
2455 		return error;
2456 
2457 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2458 	if (!error)
2459 		fsnotify_create(dir, dentry);
2460 	return error;
2461 }
2462 
2463 static int may_mknod(mode_t mode)
2464 {
2465 	switch (mode & S_IFMT) {
2466 	case S_IFREG:
2467 	case S_IFCHR:
2468 	case S_IFBLK:
2469 	case S_IFIFO:
2470 	case S_IFSOCK:
2471 	case 0: /* zero mode translates to S_IFREG */
2472 		return 0;
2473 	case S_IFDIR:
2474 		return -EPERM;
2475 	default:
2476 		return -EINVAL;
2477 	}
2478 }
2479 
2480 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2481 		unsigned, dev)
2482 {
2483 	int error;
2484 	char *tmp;
2485 	struct dentry *dentry;
2486 	struct nameidata nd;
2487 
2488 	if (S_ISDIR(mode))
2489 		return -EPERM;
2490 
2491 	error = user_path_parent(dfd, filename, &nd, &tmp);
2492 	if (error)
2493 		return error;
2494 
2495 	dentry = lookup_create(&nd, 0);
2496 	if (IS_ERR(dentry)) {
2497 		error = PTR_ERR(dentry);
2498 		goto out_unlock;
2499 	}
2500 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2501 		mode &= ~current_umask();
2502 	error = may_mknod(mode);
2503 	if (error)
2504 		goto out_dput;
2505 	error = mnt_want_write(nd.path.mnt);
2506 	if (error)
2507 		goto out_dput;
2508 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2509 	if (error)
2510 		goto out_drop_write;
2511 	switch (mode & S_IFMT) {
2512 		case 0: case S_IFREG:
2513 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2514 			break;
2515 		case S_IFCHR: case S_IFBLK:
2516 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2517 					new_decode_dev(dev));
2518 			break;
2519 		case S_IFIFO: case S_IFSOCK:
2520 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2521 			break;
2522 	}
2523 out_drop_write:
2524 	mnt_drop_write(nd.path.mnt);
2525 out_dput:
2526 	dput(dentry);
2527 out_unlock:
2528 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2529 	path_put(&nd.path);
2530 	putname(tmp);
2531 
2532 	return error;
2533 }
2534 
2535 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2536 {
2537 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2538 }
2539 
2540 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2541 {
2542 	int error = may_create(dir, dentry);
2543 
2544 	if (error)
2545 		return error;
2546 
2547 	if (!dir->i_op->mkdir)
2548 		return -EPERM;
2549 
2550 	mode &= (S_IRWXUGO|S_ISVTX);
2551 	error = security_inode_mkdir(dir, dentry, mode);
2552 	if (error)
2553 		return error;
2554 
2555 	error = dir->i_op->mkdir(dir, dentry, mode);
2556 	if (!error)
2557 		fsnotify_mkdir(dir, dentry);
2558 	return error;
2559 }
2560 
2561 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2562 {
2563 	int error = 0;
2564 	char * tmp;
2565 	struct dentry *dentry;
2566 	struct nameidata nd;
2567 
2568 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2569 	if (error)
2570 		goto out_err;
2571 
2572 	dentry = lookup_create(&nd, 1);
2573 	error = PTR_ERR(dentry);
2574 	if (IS_ERR(dentry))
2575 		goto out_unlock;
2576 
2577 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2578 		mode &= ~current_umask();
2579 	error = mnt_want_write(nd.path.mnt);
2580 	if (error)
2581 		goto out_dput;
2582 	error = security_path_mkdir(&nd.path, dentry, mode);
2583 	if (error)
2584 		goto out_drop_write;
2585 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2586 out_drop_write:
2587 	mnt_drop_write(nd.path.mnt);
2588 out_dput:
2589 	dput(dentry);
2590 out_unlock:
2591 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2592 	path_put(&nd.path);
2593 	putname(tmp);
2594 out_err:
2595 	return error;
2596 }
2597 
2598 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2599 {
2600 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2601 }
2602 
2603 /*
2604  * We try to drop the dentry early: we should have
2605  * a usage count of 2 if we're the only user of this
2606  * dentry, and if that is true (possibly after pruning
2607  * the dcache), then we drop the dentry now.
2608  *
2609  * A low-level filesystem can, if it choses, legally
2610  * do a
2611  *
2612  *	if (!d_unhashed(dentry))
2613  *		return -EBUSY;
2614  *
2615  * if it cannot handle the case of removing a directory
2616  * that is still in use by something else..
2617  */
2618 void dentry_unhash(struct dentry *dentry)
2619 {
2620 	dget(dentry);
2621 	shrink_dcache_parent(dentry);
2622 	spin_lock(&dentry->d_lock);
2623 	if (dentry->d_count == 2)
2624 		__d_drop(dentry);
2625 	spin_unlock(&dentry->d_lock);
2626 }
2627 
2628 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2629 {
2630 	int error = may_delete(dir, dentry, 1);
2631 
2632 	if (error)
2633 		return error;
2634 
2635 	if (!dir->i_op->rmdir)
2636 		return -EPERM;
2637 
2638 	mutex_lock(&dentry->d_inode->i_mutex);
2639 	dentry_unhash(dentry);
2640 	if (d_mountpoint(dentry))
2641 		error = -EBUSY;
2642 	else {
2643 		error = security_inode_rmdir(dir, dentry);
2644 		if (!error) {
2645 			error = dir->i_op->rmdir(dir, dentry);
2646 			if (!error) {
2647 				dentry->d_inode->i_flags |= S_DEAD;
2648 				dont_mount(dentry);
2649 			}
2650 		}
2651 	}
2652 	mutex_unlock(&dentry->d_inode->i_mutex);
2653 	if (!error) {
2654 		d_delete(dentry);
2655 	}
2656 	dput(dentry);
2657 
2658 	return error;
2659 }
2660 
2661 static long do_rmdir(int dfd, const char __user *pathname)
2662 {
2663 	int error = 0;
2664 	char * name;
2665 	struct dentry *dentry;
2666 	struct nameidata nd;
2667 
2668 	error = user_path_parent(dfd, pathname, &nd, &name);
2669 	if (error)
2670 		return error;
2671 
2672 	switch(nd.last_type) {
2673 	case LAST_DOTDOT:
2674 		error = -ENOTEMPTY;
2675 		goto exit1;
2676 	case LAST_DOT:
2677 		error = -EINVAL;
2678 		goto exit1;
2679 	case LAST_ROOT:
2680 		error = -EBUSY;
2681 		goto exit1;
2682 	}
2683 
2684 	nd.flags &= ~LOOKUP_PARENT;
2685 
2686 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2687 	dentry = lookup_hash(&nd);
2688 	error = PTR_ERR(dentry);
2689 	if (IS_ERR(dentry))
2690 		goto exit2;
2691 	error = mnt_want_write(nd.path.mnt);
2692 	if (error)
2693 		goto exit3;
2694 	error = security_path_rmdir(&nd.path, dentry);
2695 	if (error)
2696 		goto exit4;
2697 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2698 exit4:
2699 	mnt_drop_write(nd.path.mnt);
2700 exit3:
2701 	dput(dentry);
2702 exit2:
2703 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2704 exit1:
2705 	path_put(&nd.path);
2706 	putname(name);
2707 	return error;
2708 }
2709 
2710 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2711 {
2712 	return do_rmdir(AT_FDCWD, pathname);
2713 }
2714 
2715 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2716 {
2717 	int error = may_delete(dir, dentry, 0);
2718 
2719 	if (error)
2720 		return error;
2721 
2722 	if (!dir->i_op->unlink)
2723 		return -EPERM;
2724 
2725 	mutex_lock(&dentry->d_inode->i_mutex);
2726 	if (d_mountpoint(dentry))
2727 		error = -EBUSY;
2728 	else {
2729 		error = security_inode_unlink(dir, dentry);
2730 		if (!error) {
2731 			error = dir->i_op->unlink(dir, dentry);
2732 			if (!error)
2733 				dont_mount(dentry);
2734 		}
2735 	}
2736 	mutex_unlock(&dentry->d_inode->i_mutex);
2737 
2738 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2739 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2740 		fsnotify_link_count(dentry->d_inode);
2741 		d_delete(dentry);
2742 	}
2743 
2744 	return error;
2745 }
2746 
2747 /*
2748  * Make sure that the actual truncation of the file will occur outside its
2749  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2750  * writeout happening, and we don't want to prevent access to the directory
2751  * while waiting on the I/O.
2752  */
2753 static long do_unlinkat(int dfd, const char __user *pathname)
2754 {
2755 	int error;
2756 	char *name;
2757 	struct dentry *dentry;
2758 	struct nameidata nd;
2759 	struct inode *inode = NULL;
2760 
2761 	error = user_path_parent(dfd, pathname, &nd, &name);
2762 	if (error)
2763 		return error;
2764 
2765 	error = -EISDIR;
2766 	if (nd.last_type != LAST_NORM)
2767 		goto exit1;
2768 
2769 	nd.flags &= ~LOOKUP_PARENT;
2770 
2771 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2772 	dentry = lookup_hash(&nd);
2773 	error = PTR_ERR(dentry);
2774 	if (!IS_ERR(dentry)) {
2775 		/* Why not before? Because we want correct error value */
2776 		if (nd.last.name[nd.last.len])
2777 			goto slashes;
2778 		inode = dentry->d_inode;
2779 		if (inode)
2780 			ihold(inode);
2781 		error = mnt_want_write(nd.path.mnt);
2782 		if (error)
2783 			goto exit2;
2784 		error = security_path_unlink(&nd.path, dentry);
2785 		if (error)
2786 			goto exit3;
2787 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2788 exit3:
2789 		mnt_drop_write(nd.path.mnt);
2790 	exit2:
2791 		dput(dentry);
2792 	}
2793 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2794 	if (inode)
2795 		iput(inode);	/* truncate the inode here */
2796 exit1:
2797 	path_put(&nd.path);
2798 	putname(name);
2799 	return error;
2800 
2801 slashes:
2802 	error = !dentry->d_inode ? -ENOENT :
2803 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2804 	goto exit2;
2805 }
2806 
2807 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2808 {
2809 	if ((flag & ~AT_REMOVEDIR) != 0)
2810 		return -EINVAL;
2811 
2812 	if (flag & AT_REMOVEDIR)
2813 		return do_rmdir(dfd, pathname);
2814 
2815 	return do_unlinkat(dfd, pathname);
2816 }
2817 
2818 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2819 {
2820 	return do_unlinkat(AT_FDCWD, pathname);
2821 }
2822 
2823 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2824 {
2825 	int error = may_create(dir, dentry);
2826 
2827 	if (error)
2828 		return error;
2829 
2830 	if (!dir->i_op->symlink)
2831 		return -EPERM;
2832 
2833 	error = security_inode_symlink(dir, dentry, oldname);
2834 	if (error)
2835 		return error;
2836 
2837 	error = dir->i_op->symlink(dir, dentry, oldname);
2838 	if (!error)
2839 		fsnotify_create(dir, dentry);
2840 	return error;
2841 }
2842 
2843 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2844 		int, newdfd, const char __user *, newname)
2845 {
2846 	int error;
2847 	char *from;
2848 	char *to;
2849 	struct dentry *dentry;
2850 	struct nameidata nd;
2851 
2852 	from = getname(oldname);
2853 	if (IS_ERR(from))
2854 		return PTR_ERR(from);
2855 
2856 	error = user_path_parent(newdfd, newname, &nd, &to);
2857 	if (error)
2858 		goto out_putname;
2859 
2860 	dentry = lookup_create(&nd, 0);
2861 	error = PTR_ERR(dentry);
2862 	if (IS_ERR(dentry))
2863 		goto out_unlock;
2864 
2865 	error = mnt_want_write(nd.path.mnt);
2866 	if (error)
2867 		goto out_dput;
2868 	error = security_path_symlink(&nd.path, dentry, from);
2869 	if (error)
2870 		goto out_drop_write;
2871 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2872 out_drop_write:
2873 	mnt_drop_write(nd.path.mnt);
2874 out_dput:
2875 	dput(dentry);
2876 out_unlock:
2877 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2878 	path_put(&nd.path);
2879 	putname(to);
2880 out_putname:
2881 	putname(from);
2882 	return error;
2883 }
2884 
2885 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2886 {
2887 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2888 }
2889 
2890 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2891 {
2892 	struct inode *inode = old_dentry->d_inode;
2893 	int error;
2894 
2895 	if (!inode)
2896 		return -ENOENT;
2897 
2898 	error = may_create(dir, new_dentry);
2899 	if (error)
2900 		return error;
2901 
2902 	if (dir->i_sb != inode->i_sb)
2903 		return -EXDEV;
2904 
2905 	/*
2906 	 * A link to an append-only or immutable file cannot be created.
2907 	 */
2908 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2909 		return -EPERM;
2910 	if (!dir->i_op->link)
2911 		return -EPERM;
2912 	if (S_ISDIR(inode->i_mode))
2913 		return -EPERM;
2914 
2915 	error = security_inode_link(old_dentry, dir, new_dentry);
2916 	if (error)
2917 		return error;
2918 
2919 	mutex_lock(&inode->i_mutex);
2920 	/* Make sure we don't allow creating hardlink to an unlinked file */
2921 	if (inode->i_nlink == 0)
2922 		error =  -ENOENT;
2923 	else
2924 		error = dir->i_op->link(old_dentry, dir, new_dentry);
2925 	mutex_unlock(&inode->i_mutex);
2926 	if (!error)
2927 		fsnotify_link(dir, inode, new_dentry);
2928 	return error;
2929 }
2930 
2931 /*
2932  * Hardlinks are often used in delicate situations.  We avoid
2933  * security-related surprises by not following symlinks on the
2934  * newname.  --KAB
2935  *
2936  * We don't follow them on the oldname either to be compatible
2937  * with linux 2.0, and to avoid hard-linking to directories
2938  * and other special files.  --ADM
2939  */
2940 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2941 		int, newdfd, const char __user *, newname, int, flags)
2942 {
2943 	struct dentry *new_dentry;
2944 	struct nameidata nd;
2945 	struct path old_path;
2946 	int how = 0;
2947 	int error;
2948 	char *to;
2949 
2950 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2951 		return -EINVAL;
2952 	/*
2953 	 * To use null names we require CAP_DAC_READ_SEARCH
2954 	 * This ensures that not everyone will be able to create
2955 	 * handlink using the passed filedescriptor.
2956 	 */
2957 	if (flags & AT_EMPTY_PATH) {
2958 		if (!capable(CAP_DAC_READ_SEARCH))
2959 			return -ENOENT;
2960 		how = LOOKUP_EMPTY;
2961 	}
2962 
2963 	if (flags & AT_SYMLINK_FOLLOW)
2964 		how |= LOOKUP_FOLLOW;
2965 
2966 	error = user_path_at(olddfd, oldname, how, &old_path);
2967 	if (error)
2968 		return error;
2969 
2970 	error = user_path_parent(newdfd, newname, &nd, &to);
2971 	if (error)
2972 		goto out;
2973 	error = -EXDEV;
2974 	if (old_path.mnt != nd.path.mnt)
2975 		goto out_release;
2976 	new_dentry = lookup_create(&nd, 0);
2977 	error = PTR_ERR(new_dentry);
2978 	if (IS_ERR(new_dentry))
2979 		goto out_unlock;
2980 	error = mnt_want_write(nd.path.mnt);
2981 	if (error)
2982 		goto out_dput;
2983 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2984 	if (error)
2985 		goto out_drop_write;
2986 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2987 out_drop_write:
2988 	mnt_drop_write(nd.path.mnt);
2989 out_dput:
2990 	dput(new_dentry);
2991 out_unlock:
2992 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2993 out_release:
2994 	path_put(&nd.path);
2995 	putname(to);
2996 out:
2997 	path_put(&old_path);
2998 
2999 	return error;
3000 }
3001 
3002 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3003 {
3004 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3005 }
3006 
3007 /*
3008  * The worst of all namespace operations - renaming directory. "Perverted"
3009  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3010  * Problems:
3011  *	a) we can get into loop creation. Check is done in is_subdir().
3012  *	b) race potential - two innocent renames can create a loop together.
3013  *	   That's where 4.4 screws up. Current fix: serialization on
3014  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3015  *	   story.
3016  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3017  *	   And that - after we got ->i_mutex on parents (until then we don't know
3018  *	   whether the target exists).  Solution: try to be smart with locking
3019  *	   order for inodes.  We rely on the fact that tree topology may change
3020  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3021  *	   move will be locked.  Thus we can rank directories by the tree
3022  *	   (ancestors first) and rank all non-directories after them.
3023  *	   That works since everybody except rename does "lock parent, lookup,
3024  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3025  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3026  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3027  *	   we'd better make sure that there's no link(2) for them.
3028  *	d) some filesystems don't support opened-but-unlinked directories,
3029  *	   either because of layout or because they are not ready to deal with
3030  *	   all cases correctly. The latter will be fixed (taking this sort of
3031  *	   stuff into VFS), but the former is not going away. Solution: the same
3032  *	   trick as in rmdir().
3033  *	e) conversion from fhandle to dentry may come in the wrong moment - when
3034  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3035  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3036  *	   ->i_mutex on parents, which works but leads to some truly excessive
3037  *	   locking].
3038  */
3039 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3040 			  struct inode *new_dir, struct dentry *new_dentry)
3041 {
3042 	int error = 0;
3043 	struct inode *target;
3044 
3045 	/*
3046 	 * If we are going to change the parent - check write permissions,
3047 	 * we'll need to flip '..'.
3048 	 */
3049 	if (new_dir != old_dir) {
3050 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3051 		if (error)
3052 			return error;
3053 	}
3054 
3055 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3056 	if (error)
3057 		return error;
3058 
3059 	target = new_dentry->d_inode;
3060 	if (target)
3061 		mutex_lock(&target->i_mutex);
3062 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3063 		error = -EBUSY;
3064 	else {
3065 		if (target)
3066 			dentry_unhash(new_dentry);
3067 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3068 	}
3069 	if (target) {
3070 		if (!error) {
3071 			target->i_flags |= S_DEAD;
3072 			dont_mount(new_dentry);
3073 		}
3074 		mutex_unlock(&target->i_mutex);
3075 		if (d_unhashed(new_dentry))
3076 			d_rehash(new_dentry);
3077 		dput(new_dentry);
3078 	}
3079 	if (!error)
3080 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3081 			d_move(old_dentry,new_dentry);
3082 	return error;
3083 }
3084 
3085 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3086 			    struct inode *new_dir, struct dentry *new_dentry)
3087 {
3088 	struct inode *target;
3089 	int error;
3090 
3091 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3092 	if (error)
3093 		return error;
3094 
3095 	dget(new_dentry);
3096 	target = new_dentry->d_inode;
3097 	if (target)
3098 		mutex_lock(&target->i_mutex);
3099 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3100 		error = -EBUSY;
3101 	else
3102 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3103 	if (!error) {
3104 		if (target)
3105 			dont_mount(new_dentry);
3106 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3107 			d_move(old_dentry, new_dentry);
3108 	}
3109 	if (target)
3110 		mutex_unlock(&target->i_mutex);
3111 	dput(new_dentry);
3112 	return error;
3113 }
3114 
3115 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3116 	       struct inode *new_dir, struct dentry *new_dentry)
3117 {
3118 	int error;
3119 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3120 	const unsigned char *old_name;
3121 
3122 	if (old_dentry->d_inode == new_dentry->d_inode)
3123  		return 0;
3124 
3125 	error = may_delete(old_dir, old_dentry, is_dir);
3126 	if (error)
3127 		return error;
3128 
3129 	if (!new_dentry->d_inode)
3130 		error = may_create(new_dir, new_dentry);
3131 	else
3132 		error = may_delete(new_dir, new_dentry, is_dir);
3133 	if (error)
3134 		return error;
3135 
3136 	if (!old_dir->i_op->rename)
3137 		return -EPERM;
3138 
3139 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3140 
3141 	if (is_dir)
3142 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3143 	else
3144 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3145 	if (!error)
3146 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3147 			      new_dentry->d_inode, old_dentry);
3148 	fsnotify_oldname_free(old_name);
3149 
3150 	return error;
3151 }
3152 
3153 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3154 		int, newdfd, const char __user *, newname)
3155 {
3156 	struct dentry *old_dir, *new_dir;
3157 	struct dentry *old_dentry, *new_dentry;
3158 	struct dentry *trap;
3159 	struct nameidata oldnd, newnd;
3160 	char *from;
3161 	char *to;
3162 	int error;
3163 
3164 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3165 	if (error)
3166 		goto exit;
3167 
3168 	error = user_path_parent(newdfd, newname, &newnd, &to);
3169 	if (error)
3170 		goto exit1;
3171 
3172 	error = -EXDEV;
3173 	if (oldnd.path.mnt != newnd.path.mnt)
3174 		goto exit2;
3175 
3176 	old_dir = oldnd.path.dentry;
3177 	error = -EBUSY;
3178 	if (oldnd.last_type != LAST_NORM)
3179 		goto exit2;
3180 
3181 	new_dir = newnd.path.dentry;
3182 	if (newnd.last_type != LAST_NORM)
3183 		goto exit2;
3184 
3185 	oldnd.flags &= ~LOOKUP_PARENT;
3186 	newnd.flags &= ~LOOKUP_PARENT;
3187 	newnd.flags |= LOOKUP_RENAME_TARGET;
3188 
3189 	trap = lock_rename(new_dir, old_dir);
3190 
3191 	old_dentry = lookup_hash(&oldnd);
3192 	error = PTR_ERR(old_dentry);
3193 	if (IS_ERR(old_dentry))
3194 		goto exit3;
3195 	/* source must exist */
3196 	error = -ENOENT;
3197 	if (!old_dentry->d_inode)
3198 		goto exit4;
3199 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3200 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3201 		error = -ENOTDIR;
3202 		if (oldnd.last.name[oldnd.last.len])
3203 			goto exit4;
3204 		if (newnd.last.name[newnd.last.len])
3205 			goto exit4;
3206 	}
3207 	/* source should not be ancestor of target */
3208 	error = -EINVAL;
3209 	if (old_dentry == trap)
3210 		goto exit4;
3211 	new_dentry = lookup_hash(&newnd);
3212 	error = PTR_ERR(new_dentry);
3213 	if (IS_ERR(new_dentry))
3214 		goto exit4;
3215 	/* target should not be an ancestor of source */
3216 	error = -ENOTEMPTY;
3217 	if (new_dentry == trap)
3218 		goto exit5;
3219 
3220 	error = mnt_want_write(oldnd.path.mnt);
3221 	if (error)
3222 		goto exit5;
3223 	error = security_path_rename(&oldnd.path, old_dentry,
3224 				     &newnd.path, new_dentry);
3225 	if (error)
3226 		goto exit6;
3227 	error = vfs_rename(old_dir->d_inode, old_dentry,
3228 				   new_dir->d_inode, new_dentry);
3229 exit6:
3230 	mnt_drop_write(oldnd.path.mnt);
3231 exit5:
3232 	dput(new_dentry);
3233 exit4:
3234 	dput(old_dentry);
3235 exit3:
3236 	unlock_rename(new_dir, old_dir);
3237 exit2:
3238 	path_put(&newnd.path);
3239 	putname(to);
3240 exit1:
3241 	path_put(&oldnd.path);
3242 	putname(from);
3243 exit:
3244 	return error;
3245 }
3246 
3247 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3248 {
3249 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3250 }
3251 
3252 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3253 {
3254 	int len;
3255 
3256 	len = PTR_ERR(link);
3257 	if (IS_ERR(link))
3258 		goto out;
3259 
3260 	len = strlen(link);
3261 	if (len > (unsigned) buflen)
3262 		len = buflen;
3263 	if (copy_to_user(buffer, link, len))
3264 		len = -EFAULT;
3265 out:
3266 	return len;
3267 }
3268 
3269 /*
3270  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3271  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3272  * using) it for any given inode is up to filesystem.
3273  */
3274 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3275 {
3276 	struct nameidata nd;
3277 	void *cookie;
3278 	int res;
3279 
3280 	nd.depth = 0;
3281 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3282 	if (IS_ERR(cookie))
3283 		return PTR_ERR(cookie);
3284 
3285 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3286 	if (dentry->d_inode->i_op->put_link)
3287 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3288 	return res;
3289 }
3290 
3291 int vfs_follow_link(struct nameidata *nd, const char *link)
3292 {
3293 	return __vfs_follow_link(nd, link);
3294 }
3295 
3296 /* get the link contents into pagecache */
3297 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3298 {
3299 	char *kaddr;
3300 	struct page *page;
3301 	struct address_space *mapping = dentry->d_inode->i_mapping;
3302 	page = read_mapping_page(mapping, 0, NULL);
3303 	if (IS_ERR(page))
3304 		return (char*)page;
3305 	*ppage = page;
3306 	kaddr = kmap(page);
3307 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3308 	return kaddr;
3309 }
3310 
3311 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3312 {
3313 	struct page *page = NULL;
3314 	char *s = page_getlink(dentry, &page);
3315 	int res = vfs_readlink(dentry,buffer,buflen,s);
3316 	if (page) {
3317 		kunmap(page);
3318 		page_cache_release(page);
3319 	}
3320 	return res;
3321 }
3322 
3323 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3324 {
3325 	struct page *page = NULL;
3326 	nd_set_link(nd, page_getlink(dentry, &page));
3327 	return page;
3328 }
3329 
3330 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3331 {
3332 	struct page *page = cookie;
3333 
3334 	if (page) {
3335 		kunmap(page);
3336 		page_cache_release(page);
3337 	}
3338 }
3339 
3340 /*
3341  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3342  */
3343 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3344 {
3345 	struct address_space *mapping = inode->i_mapping;
3346 	struct page *page;
3347 	void *fsdata;
3348 	int err;
3349 	char *kaddr;
3350 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3351 	if (nofs)
3352 		flags |= AOP_FLAG_NOFS;
3353 
3354 retry:
3355 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3356 				flags, &page, &fsdata);
3357 	if (err)
3358 		goto fail;
3359 
3360 	kaddr = kmap_atomic(page, KM_USER0);
3361 	memcpy(kaddr, symname, len-1);
3362 	kunmap_atomic(kaddr, KM_USER0);
3363 
3364 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3365 							page, fsdata);
3366 	if (err < 0)
3367 		goto fail;
3368 	if (err < len-1)
3369 		goto retry;
3370 
3371 	mark_inode_dirty(inode);
3372 	return 0;
3373 fail:
3374 	return err;
3375 }
3376 
3377 int page_symlink(struct inode *inode, const char *symname, int len)
3378 {
3379 	return __page_symlink(inode, symname, len,
3380 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3381 }
3382 
3383 const struct inode_operations page_symlink_inode_operations = {
3384 	.readlink	= generic_readlink,
3385 	.follow_link	= page_follow_link_light,
3386 	.put_link	= page_put_link,
3387 };
3388 
3389 EXPORT_SYMBOL(user_path_at);
3390 EXPORT_SYMBOL(follow_down_one);
3391 EXPORT_SYMBOL(follow_down);
3392 EXPORT_SYMBOL(follow_up);
3393 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3394 EXPORT_SYMBOL(getname);
3395 EXPORT_SYMBOL(lock_rename);
3396 EXPORT_SYMBOL(lookup_one_len);
3397 EXPORT_SYMBOL(page_follow_link_light);
3398 EXPORT_SYMBOL(page_put_link);
3399 EXPORT_SYMBOL(page_readlink);
3400 EXPORT_SYMBOL(__page_symlink);
3401 EXPORT_SYMBOL(page_symlink);
3402 EXPORT_SYMBOL(page_symlink_inode_operations);
3403 EXPORT_SYMBOL(kern_path_parent);
3404 EXPORT_SYMBOL(kern_path);
3405 EXPORT_SYMBOL(vfs_path_lookup);
3406 EXPORT_SYMBOL(inode_permission);
3407 EXPORT_SYMBOL(file_permission);
3408 EXPORT_SYMBOL(unlock_rename);
3409 EXPORT_SYMBOL(vfs_create);
3410 EXPORT_SYMBOL(vfs_follow_link);
3411 EXPORT_SYMBOL(vfs_link);
3412 EXPORT_SYMBOL(vfs_mkdir);
3413 EXPORT_SYMBOL(vfs_mknod);
3414 EXPORT_SYMBOL(generic_permission);
3415 EXPORT_SYMBOL(vfs_readlink);
3416 EXPORT_SYMBOL(vfs_rename);
3417 EXPORT_SYMBOL(vfs_rmdir);
3418 EXPORT_SYMBOL(vfs_symlink);
3419 EXPORT_SYMBOL(vfs_unlink);
3420 EXPORT_SYMBOL(dentry_unhash);
3421 EXPORT_SYMBOL(generic_readlink);
3422