xref: /openbmc/linux/fs/namei.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic UNIX permission checking.
292  *
293  * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294  * for RCU walking.
295  */
296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 	unsigned int mode = inode->i_mode;
299 
300 	/* Are we the owner? If so, ACL's don't matter */
301 	if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302 		mask &= 7;
303 		mode >>= 6;
304 		return (mask & ~mode) ? -EACCES : 0;
305 	}
306 
307 	/* Do we have ACL's? */
308 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309 		int error = check_acl(inode, mask);
310 		if (error != -EAGAIN)
311 			return error;
312 	}
313 
314 	/* Only RWX matters for group/other mode bits */
315 	mask &= 7;
316 
317 	/*
318 	 * Are the group permissions different from
319 	 * the other permissions in the bits we care
320 	 * about? Need to check group ownership if so.
321 	 */
322 	if (mask & (mode ^ (mode >> 3))) {
323 		if (in_group_p(inode->i_gid))
324 			mode >>= 3;
325 	}
326 
327 	/* Bits in 'mode' clear that we require? */
328 	return (mask & ~mode) ? -EACCES : 0;
329 }
330 
331 /**
332  * generic_permission -  check for access rights on a Posix-like filesystem
333  * @inode:	inode to check access rights for
334  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335  *		%MAY_NOT_BLOCK ...)
336  *
337  * Used to check for read/write/execute permissions on a file.
338  * We use "fsuid" for this, letting us set arbitrary permissions
339  * for filesystem access without changing the "normal" uids which
340  * are used for other things.
341  *
342  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343  * request cannot be satisfied (eg. requires blocking or too much complexity).
344  * It would then be called again in ref-walk mode.
345  */
346 int generic_permission(struct inode *inode, int mask)
347 {
348 	int ret;
349 
350 	/*
351 	 * Do the basic permission checks.
352 	 */
353 	ret = acl_permission_check(inode, mask);
354 	if (ret != -EACCES)
355 		return ret;
356 
357 	if (S_ISDIR(inode->i_mode)) {
358 		/* DACs are overridable for directories */
359 		if (!(mask & MAY_WRITE))
360 			if (capable_wrt_inode_uidgid(inode,
361 						     CAP_DAC_READ_SEARCH))
362 				return 0;
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364 			return 0;
365 		return -EACCES;
366 	}
367 
368 	/*
369 	 * Searching includes executable on directories, else just read.
370 	 */
371 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372 	if (mask == MAY_READ)
373 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374 			return 0;
375 	/*
376 	 * Read/write DACs are always overridable.
377 	 * Executable DACs are overridable when there is
378 	 * at least one exec bit set.
379 	 */
380 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382 			return 0;
383 
384 	return -EACCES;
385 }
386 EXPORT_SYMBOL(generic_permission);
387 
388 /*
389  * We _really_ want to just do "generic_permission()" without
390  * even looking at the inode->i_op values. So we keep a cache
391  * flag in inode->i_opflags, that says "this has not special
392  * permission function, use the fast case".
393  */
394 static inline int do_inode_permission(struct inode *inode, int mask)
395 {
396 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397 		if (likely(inode->i_op->permission))
398 			return inode->i_op->permission(inode, mask);
399 
400 		/* This gets set once for the inode lifetime */
401 		spin_lock(&inode->i_lock);
402 		inode->i_opflags |= IOP_FASTPERM;
403 		spin_unlock(&inode->i_lock);
404 	}
405 	return generic_permission(inode, mask);
406 }
407 
408 /**
409  * sb_permission - Check superblock-level permissions
410  * @sb: Superblock of inode to check permission on
411  * @inode: Inode to check permission on
412  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413  *
414  * Separate out file-system wide checks from inode-specific permission checks.
415  */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 	if (unlikely(mask & MAY_WRITE)) {
419 		umode_t mode = inode->i_mode;
420 
421 		/* Nobody gets write access to a read-only fs. */
422 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423 			return -EROFS;
424 	}
425 	return 0;
426 }
427 
428 /**
429  * inode_permission - Check for access rights to a given inode
430  * @inode: Inode to check permission on
431  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432  *
433  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
434  * this, letting us set arbitrary permissions for filesystem access without
435  * changing the "normal" UIDs which are used for other things.
436  *
437  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438  */
439 int inode_permission(struct inode *inode, int mask)
440 {
441 	int retval;
442 
443 	retval = sb_permission(inode->i_sb, inode, mask);
444 	if (retval)
445 		return retval;
446 
447 	if (unlikely(mask & MAY_WRITE)) {
448 		/*
449 		 * Nobody gets write access to an immutable file.
450 		 */
451 		if (IS_IMMUTABLE(inode))
452 			return -EPERM;
453 
454 		/*
455 		 * Updating mtime will likely cause i_uid and i_gid to be
456 		 * written back improperly if their true value is unknown
457 		 * to the vfs.
458 		 */
459 		if (HAS_UNMAPPED_ID(inode))
460 			return -EACCES;
461 	}
462 
463 	retval = do_inode_permission(inode, mask);
464 	if (retval)
465 		return retval;
466 
467 	retval = devcgroup_inode_permission(inode, mask);
468 	if (retval)
469 		return retval;
470 
471 	return security_inode_permission(inode, mask);
472 }
473 EXPORT_SYMBOL(inode_permission);
474 
475 /**
476  * path_get - get a reference to a path
477  * @path: path to get the reference to
478  *
479  * Given a path increment the reference count to the dentry and the vfsmount.
480  */
481 void path_get(const struct path *path)
482 {
483 	mntget(path->mnt);
484 	dget(path->dentry);
485 }
486 EXPORT_SYMBOL(path_get);
487 
488 /**
489  * path_put - put a reference to a path
490  * @path: path to put the reference to
491  *
492  * Given a path decrement the reference count to the dentry and the vfsmount.
493  */
494 void path_put(const struct path *path)
495 {
496 	dput(path->dentry);
497 	mntput(path->mnt);
498 }
499 EXPORT_SYMBOL(path_put);
500 
501 #define EMBEDDED_LEVELS 2
502 struct nameidata {
503 	struct path	path;
504 	struct qstr	last;
505 	struct path	root;
506 	struct inode	*inode; /* path.dentry.d_inode */
507 	unsigned int	flags;
508 	unsigned	seq, m_seq, r_seq;
509 	int		last_type;
510 	unsigned	depth;
511 	int		total_link_count;
512 	struct saved {
513 		struct path link;
514 		struct delayed_call done;
515 		const char *name;
516 		unsigned seq;
517 	} *stack, internal[EMBEDDED_LEVELS];
518 	struct filename	*name;
519 	struct nameidata *saved;
520 	unsigned	root_seq;
521 	int		dfd;
522 	kuid_t		dir_uid;
523 	umode_t		dir_mode;
524 } __randomize_layout;
525 
526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
527 {
528 	struct nameidata *old = current->nameidata;
529 	p->stack = p->internal;
530 	p->dfd = dfd;
531 	p->name = name;
532 	p->total_link_count = old ? old->total_link_count : 0;
533 	p->saved = old;
534 	current->nameidata = p;
535 }
536 
537 static void restore_nameidata(void)
538 {
539 	struct nameidata *now = current->nameidata, *old = now->saved;
540 
541 	current->nameidata = old;
542 	if (old)
543 		old->total_link_count = now->total_link_count;
544 	if (now->stack != now->internal)
545 		kfree(now->stack);
546 }
547 
548 static bool nd_alloc_stack(struct nameidata *nd)
549 {
550 	struct saved *p;
551 
552 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
553 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
554 	if (unlikely(!p))
555 		return false;
556 	memcpy(p, nd->internal, sizeof(nd->internal));
557 	nd->stack = p;
558 	return true;
559 }
560 
561 /**
562  * path_connected - Verify that a dentry is below mnt.mnt_root
563  *
564  * Rename can sometimes move a file or directory outside of a bind
565  * mount, path_connected allows those cases to be detected.
566  */
567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
568 {
569 	struct super_block *sb = mnt->mnt_sb;
570 
571 	/* Bind mounts and multi-root filesystems can have disconnected paths */
572 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
573 		return true;
574 
575 	return is_subdir(dentry, mnt->mnt_root);
576 }
577 
578 static void drop_links(struct nameidata *nd)
579 {
580 	int i = nd->depth;
581 	while (i--) {
582 		struct saved *last = nd->stack + i;
583 		do_delayed_call(&last->done);
584 		clear_delayed_call(&last->done);
585 	}
586 }
587 
588 static void terminate_walk(struct nameidata *nd)
589 {
590 	drop_links(nd);
591 	if (!(nd->flags & LOOKUP_RCU)) {
592 		int i;
593 		path_put(&nd->path);
594 		for (i = 0; i < nd->depth; i++)
595 			path_put(&nd->stack[i].link);
596 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
597 			path_put(&nd->root);
598 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
599 		}
600 	} else {
601 		nd->flags &= ~LOOKUP_RCU;
602 		rcu_read_unlock();
603 	}
604 	nd->depth = 0;
605 }
606 
607 /* path_put is needed afterwards regardless of success or failure */
608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
609 {
610 	int res = __legitimize_mnt(path->mnt, mseq);
611 	if (unlikely(res)) {
612 		if (res > 0)
613 			path->mnt = NULL;
614 		path->dentry = NULL;
615 		return false;
616 	}
617 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623 
624 static inline bool legitimize_path(struct nameidata *nd,
625 			    struct path *path, unsigned seq)
626 {
627 	return __legitimize_path(path, seq, nd->m_seq);
628 }
629 
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 	int i;
633 	for (i = 0; i < nd->depth; i++) {
634 		struct saved *last = nd->stack + i;
635 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
636 			drop_links(nd);
637 			nd->depth = i + 1;
638 			return false;
639 		}
640 	}
641 	return true;
642 }
643 
644 static bool legitimize_root(struct nameidata *nd)
645 {
646 	/*
647 	 * For scoped-lookups (where nd->root has been zeroed), we need to
648 	 * restart the whole lookup from scratch -- because set_root() is wrong
649 	 * for these lookups (nd->dfd is the root, not the filesystem root).
650 	 */
651 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
652 		return false;
653 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
654 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
655 		return true;
656 	nd->flags |= LOOKUP_ROOT_GRABBED;
657 	return legitimize_path(nd, &nd->root, nd->root_seq);
658 }
659 
660 /*
661  * Path walking has 2 modes, rcu-walk and ref-walk (see
662  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
663  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664  * normal reference counts on dentries and vfsmounts to transition to ref-walk
665  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
666  * got stuck, so ref-walk may continue from there. If this is not successful
667  * (eg. a seqcount has changed), then failure is returned and it's up to caller
668  * to restart the path walk from the beginning in ref-walk mode.
669  */
670 
671 /**
672  * unlazy_walk - try to switch to ref-walk mode.
673  * @nd: nameidata pathwalk data
674  * Returns: 0 on success, -ECHILD on failure
675  *
676  * unlazy_walk attempts to legitimize the current nd->path and nd->root
677  * for ref-walk mode.
678  * Must be called from rcu-walk context.
679  * Nothing should touch nameidata between unlazy_walk() failure and
680  * terminate_walk().
681  */
682 static int unlazy_walk(struct nameidata *nd)
683 {
684 	struct dentry *parent = nd->path.dentry;
685 
686 	BUG_ON(!(nd->flags & LOOKUP_RCU));
687 
688 	nd->flags &= ~LOOKUP_RCU;
689 	if (unlikely(!legitimize_links(nd)))
690 		goto out1;
691 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
692 		goto out;
693 	if (unlikely(!legitimize_root(nd)))
694 		goto out;
695 	rcu_read_unlock();
696 	BUG_ON(nd->inode != parent->d_inode);
697 	return 0;
698 
699 out1:
700 	nd->path.mnt = NULL;
701 	nd->path.dentry = NULL;
702 out:
703 	rcu_read_unlock();
704 	return -ECHILD;
705 }
706 
707 /**
708  * unlazy_child - try to switch to ref-walk mode.
709  * @nd: nameidata pathwalk data
710  * @dentry: child of nd->path.dentry
711  * @seq: seq number to check dentry against
712  * Returns: 0 on success, -ECHILD on failure
713  *
714  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
715  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
716  * @nd.  Must be called from rcu-walk context.
717  * Nothing should touch nameidata between unlazy_child() failure and
718  * terminate_walk().
719  */
720 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
721 {
722 	BUG_ON(!(nd->flags & LOOKUP_RCU));
723 
724 	nd->flags &= ~LOOKUP_RCU;
725 	if (unlikely(!legitimize_links(nd)))
726 		goto out2;
727 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
728 		goto out2;
729 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
730 		goto out1;
731 
732 	/*
733 	 * We need to move both the parent and the dentry from the RCU domain
734 	 * to be properly refcounted. And the sequence number in the dentry
735 	 * validates *both* dentry counters, since we checked the sequence
736 	 * number of the parent after we got the child sequence number. So we
737 	 * know the parent must still be valid if the child sequence number is
738 	 */
739 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
740 		goto out;
741 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
742 		goto out_dput;
743 	/*
744 	 * Sequence counts matched. Now make sure that the root is
745 	 * still valid and get it if required.
746 	 */
747 	if (unlikely(!legitimize_root(nd)))
748 		goto out_dput;
749 	rcu_read_unlock();
750 	return 0;
751 
752 out2:
753 	nd->path.mnt = NULL;
754 out1:
755 	nd->path.dentry = NULL;
756 out:
757 	rcu_read_unlock();
758 	return -ECHILD;
759 out_dput:
760 	rcu_read_unlock();
761 	dput(dentry);
762 	return -ECHILD;
763 }
764 
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
768 		return dentry->d_op->d_revalidate(dentry, flags);
769 	else
770 		return 1;
771 }
772 
773 /**
774  * complete_walk - successful completion of path walk
775  * @nd:  pointer nameidata
776  *
777  * If we had been in RCU mode, drop out of it and legitimize nd->path.
778  * Revalidate the final result, unless we'd already done that during
779  * the path walk or the filesystem doesn't ask for it.  Return 0 on
780  * success, -error on failure.  In case of failure caller does not
781  * need to drop nd->path.
782  */
783 static int complete_walk(struct nameidata *nd)
784 {
785 	struct dentry *dentry = nd->path.dentry;
786 	int status;
787 
788 	if (nd->flags & LOOKUP_RCU) {
789 		/*
790 		 * We don't want to zero nd->root for scoped-lookups or
791 		 * externally-managed nd->root.
792 		 */
793 		if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
794 			nd->root.mnt = NULL;
795 		if (unlikely(unlazy_walk(nd)))
796 			return -ECHILD;
797 	}
798 
799 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
800 		/*
801 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
802 		 * ever step outside the root during lookup" and should already
803 		 * be guaranteed by the rest of namei, we want to avoid a namei
804 		 * BUG resulting in userspace being given a path that was not
805 		 * scoped within the root at some point during the lookup.
806 		 *
807 		 * So, do a final sanity-check to make sure that in the
808 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
809 		 * we won't silently return an fd completely outside of the
810 		 * requested root to userspace.
811 		 *
812 		 * Userspace could move the path outside the root after this
813 		 * check, but as discussed elsewhere this is not a concern (the
814 		 * resolved file was inside the root at some point).
815 		 */
816 		if (!path_is_under(&nd->path, &nd->root))
817 			return -EXDEV;
818 	}
819 
820 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
821 		return 0;
822 
823 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
824 		return 0;
825 
826 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
827 	if (status > 0)
828 		return 0;
829 
830 	if (!status)
831 		status = -ESTALE;
832 
833 	return status;
834 }
835 
836 static int set_root(struct nameidata *nd)
837 {
838 	struct fs_struct *fs = current->fs;
839 
840 	/*
841 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
842 	 * still have to ensure it doesn't happen because it will cause a breakout
843 	 * from the dirfd.
844 	 */
845 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
846 		return -ENOTRECOVERABLE;
847 
848 	if (nd->flags & LOOKUP_RCU) {
849 		unsigned seq;
850 
851 		do {
852 			seq = read_seqcount_begin(&fs->seq);
853 			nd->root = fs->root;
854 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
855 		} while (read_seqcount_retry(&fs->seq, seq));
856 	} else {
857 		get_fs_root(fs, &nd->root);
858 		nd->flags |= LOOKUP_ROOT_GRABBED;
859 	}
860 	return 0;
861 }
862 
863 static int nd_jump_root(struct nameidata *nd)
864 {
865 	if (unlikely(nd->flags & LOOKUP_BENEATH))
866 		return -EXDEV;
867 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
868 		/* Absolute path arguments to path_init() are allowed. */
869 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
870 			return -EXDEV;
871 	}
872 	if (!nd->root.mnt) {
873 		int error = set_root(nd);
874 		if (error)
875 			return error;
876 	}
877 	if (nd->flags & LOOKUP_RCU) {
878 		struct dentry *d;
879 		nd->path = nd->root;
880 		d = nd->path.dentry;
881 		nd->inode = d->d_inode;
882 		nd->seq = nd->root_seq;
883 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
884 			return -ECHILD;
885 	} else {
886 		path_put(&nd->path);
887 		nd->path = nd->root;
888 		path_get(&nd->path);
889 		nd->inode = nd->path.dentry->d_inode;
890 	}
891 	nd->flags |= LOOKUP_JUMPED;
892 	return 0;
893 }
894 
895 /*
896  * Helper to directly jump to a known parsed path from ->get_link,
897  * caller must have taken a reference to path beforehand.
898  */
899 int nd_jump_link(struct path *path)
900 {
901 	int error = -ELOOP;
902 	struct nameidata *nd = current->nameidata;
903 
904 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
905 		goto err;
906 
907 	error = -EXDEV;
908 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
909 		if (nd->path.mnt != path->mnt)
910 			goto err;
911 	}
912 	/* Not currently safe for scoped-lookups. */
913 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
914 		goto err;
915 
916 	path_put(&nd->path);
917 	nd->path = *path;
918 	nd->inode = nd->path.dentry->d_inode;
919 	nd->flags |= LOOKUP_JUMPED;
920 	return 0;
921 
922 err:
923 	path_put(path);
924 	return error;
925 }
926 
927 static inline void put_link(struct nameidata *nd)
928 {
929 	struct saved *last = nd->stack + --nd->depth;
930 	do_delayed_call(&last->done);
931 	if (!(nd->flags & LOOKUP_RCU))
932 		path_put(&last->link);
933 }
934 
935 int sysctl_protected_symlinks __read_mostly = 0;
936 int sysctl_protected_hardlinks __read_mostly = 0;
937 int sysctl_protected_fifos __read_mostly;
938 int sysctl_protected_regular __read_mostly;
939 
940 /**
941  * may_follow_link - Check symlink following for unsafe situations
942  * @nd: nameidata pathwalk data
943  *
944  * In the case of the sysctl_protected_symlinks sysctl being enabled,
945  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
946  * in a sticky world-writable directory. This is to protect privileged
947  * processes from failing races against path names that may change out
948  * from under them by way of other users creating malicious symlinks.
949  * It will permit symlinks to be followed only when outside a sticky
950  * world-writable directory, or when the uid of the symlink and follower
951  * match, or when the directory owner matches the symlink's owner.
952  *
953  * Returns 0 if following the symlink is allowed, -ve on error.
954  */
955 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
956 {
957 	if (!sysctl_protected_symlinks)
958 		return 0;
959 
960 	/* Allowed if owner and follower match. */
961 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
962 		return 0;
963 
964 	/* Allowed if parent directory not sticky and world-writable. */
965 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
966 		return 0;
967 
968 	/* Allowed if parent directory and link owner match. */
969 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
970 		return 0;
971 
972 	if (nd->flags & LOOKUP_RCU)
973 		return -ECHILD;
974 
975 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
976 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
977 	return -EACCES;
978 }
979 
980 /**
981  * safe_hardlink_source - Check for safe hardlink conditions
982  * @inode: the source inode to hardlink from
983  *
984  * Return false if at least one of the following conditions:
985  *    - inode is not a regular file
986  *    - inode is setuid
987  *    - inode is setgid and group-exec
988  *    - access failure for read and write
989  *
990  * Otherwise returns true.
991  */
992 static bool safe_hardlink_source(struct inode *inode)
993 {
994 	umode_t mode = inode->i_mode;
995 
996 	/* Special files should not get pinned to the filesystem. */
997 	if (!S_ISREG(mode))
998 		return false;
999 
1000 	/* Setuid files should not get pinned to the filesystem. */
1001 	if (mode & S_ISUID)
1002 		return false;
1003 
1004 	/* Executable setgid files should not get pinned to the filesystem. */
1005 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1006 		return false;
1007 
1008 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1009 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
1010 		return false;
1011 
1012 	return true;
1013 }
1014 
1015 /**
1016  * may_linkat - Check permissions for creating a hardlink
1017  * @link: the source to hardlink from
1018  *
1019  * Block hardlink when all of:
1020  *  - sysctl_protected_hardlinks enabled
1021  *  - fsuid does not match inode
1022  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1023  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1024  *
1025  * Returns 0 if successful, -ve on error.
1026  */
1027 static int may_linkat(struct path *link)
1028 {
1029 	struct inode *inode = link->dentry->d_inode;
1030 
1031 	/* Inode writeback is not safe when the uid or gid are invalid. */
1032 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1033 		return -EOVERFLOW;
1034 
1035 	if (!sysctl_protected_hardlinks)
1036 		return 0;
1037 
1038 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1039 	 * otherwise, it must be a safe source.
1040 	 */
1041 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1042 		return 0;
1043 
1044 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1045 	return -EPERM;
1046 }
1047 
1048 /**
1049  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1050  *			  should be allowed, or not, on files that already
1051  *			  exist.
1052  * @dir_mode: mode bits of directory
1053  * @dir_uid: owner of directory
1054  * @inode: the inode of the file to open
1055  *
1056  * Block an O_CREAT open of a FIFO (or a regular file) when:
1057  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1058  *   - the file already exists
1059  *   - we are in a sticky directory
1060  *   - we don't own the file
1061  *   - the owner of the directory doesn't own the file
1062  *   - the directory is world writable
1063  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1064  * the directory doesn't have to be world writable: being group writable will
1065  * be enough.
1066  *
1067  * Returns 0 if the open is allowed, -ve on error.
1068  */
1069 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1070 				struct inode * const inode)
1071 {
1072 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1073 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1074 	    likely(!(dir_mode & S_ISVTX)) ||
1075 	    uid_eq(inode->i_uid, dir_uid) ||
1076 	    uid_eq(current_fsuid(), inode->i_uid))
1077 		return 0;
1078 
1079 	if (likely(dir_mode & 0002) ||
1080 	    (dir_mode & 0020 &&
1081 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1082 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1083 		const char *operation = S_ISFIFO(inode->i_mode) ?
1084 					"sticky_create_fifo" :
1085 					"sticky_create_regular";
1086 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1087 		return -EACCES;
1088 	}
1089 	return 0;
1090 }
1091 
1092 /*
1093  * follow_up - Find the mountpoint of path's vfsmount
1094  *
1095  * Given a path, find the mountpoint of its source file system.
1096  * Replace @path with the path of the mountpoint in the parent mount.
1097  * Up is towards /.
1098  *
1099  * Return 1 if we went up a level and 0 if we were already at the
1100  * root.
1101  */
1102 int follow_up(struct path *path)
1103 {
1104 	struct mount *mnt = real_mount(path->mnt);
1105 	struct mount *parent;
1106 	struct dentry *mountpoint;
1107 
1108 	read_seqlock_excl(&mount_lock);
1109 	parent = mnt->mnt_parent;
1110 	if (parent == mnt) {
1111 		read_sequnlock_excl(&mount_lock);
1112 		return 0;
1113 	}
1114 	mntget(&parent->mnt);
1115 	mountpoint = dget(mnt->mnt_mountpoint);
1116 	read_sequnlock_excl(&mount_lock);
1117 	dput(path->dentry);
1118 	path->dentry = mountpoint;
1119 	mntput(path->mnt);
1120 	path->mnt = &parent->mnt;
1121 	return 1;
1122 }
1123 EXPORT_SYMBOL(follow_up);
1124 
1125 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1126 				  struct path *path, unsigned *seqp)
1127 {
1128 	while (mnt_has_parent(m)) {
1129 		struct dentry *mountpoint = m->mnt_mountpoint;
1130 
1131 		m = m->mnt_parent;
1132 		if (unlikely(root->dentry == mountpoint &&
1133 			     root->mnt == &m->mnt))
1134 			break;
1135 		if (mountpoint != m->mnt.mnt_root) {
1136 			path->mnt = &m->mnt;
1137 			path->dentry = mountpoint;
1138 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1139 			return true;
1140 		}
1141 	}
1142 	return false;
1143 }
1144 
1145 static bool choose_mountpoint(struct mount *m, const struct path *root,
1146 			      struct path *path)
1147 {
1148 	bool found;
1149 
1150 	rcu_read_lock();
1151 	while (1) {
1152 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1153 
1154 		found = choose_mountpoint_rcu(m, root, path, &seq);
1155 		if (unlikely(!found)) {
1156 			if (!read_seqretry(&mount_lock, mseq))
1157 				break;
1158 		} else {
1159 			if (likely(__legitimize_path(path, seq, mseq)))
1160 				break;
1161 			rcu_read_unlock();
1162 			path_put(path);
1163 			rcu_read_lock();
1164 		}
1165 	}
1166 	rcu_read_unlock();
1167 	return found;
1168 }
1169 
1170 /*
1171  * Perform an automount
1172  * - return -EISDIR to tell follow_managed() to stop and return the path we
1173  *   were called with.
1174  */
1175 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1176 {
1177 	struct dentry *dentry = path->dentry;
1178 
1179 	/* We don't want to mount if someone's just doing a stat -
1180 	 * unless they're stat'ing a directory and appended a '/' to
1181 	 * the name.
1182 	 *
1183 	 * We do, however, want to mount if someone wants to open or
1184 	 * create a file of any type under the mountpoint, wants to
1185 	 * traverse through the mountpoint or wants to open the
1186 	 * mounted directory.  Also, autofs may mark negative dentries
1187 	 * as being automount points.  These will need the attentions
1188 	 * of the daemon to instantiate them before they can be used.
1189 	 */
1190 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1191 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1192 	    dentry->d_inode)
1193 		return -EISDIR;
1194 
1195 	if (count && (*count)++ >= MAXSYMLINKS)
1196 		return -ELOOP;
1197 
1198 	return finish_automount(dentry->d_op->d_automount(path), path);
1199 }
1200 
1201 /*
1202  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1203  * dentries are pinned but not locked here, so negative dentry can go
1204  * positive right under us.  Use of smp_load_acquire() provides a barrier
1205  * sufficient for ->d_inode and ->d_flags consistency.
1206  */
1207 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1208 			     int *count, unsigned lookup_flags)
1209 {
1210 	struct vfsmount *mnt = path->mnt;
1211 	bool need_mntput = false;
1212 	int ret = 0;
1213 
1214 	while (flags & DCACHE_MANAGED_DENTRY) {
1215 		/* Allow the filesystem to manage the transit without i_mutex
1216 		 * being held. */
1217 		if (flags & DCACHE_MANAGE_TRANSIT) {
1218 			ret = path->dentry->d_op->d_manage(path, false);
1219 			flags = smp_load_acquire(&path->dentry->d_flags);
1220 			if (ret < 0)
1221 				break;
1222 		}
1223 
1224 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1225 			struct vfsmount *mounted = lookup_mnt(path);
1226 			if (mounted) {		// ... in our namespace
1227 				dput(path->dentry);
1228 				if (need_mntput)
1229 					mntput(path->mnt);
1230 				path->mnt = mounted;
1231 				path->dentry = dget(mounted->mnt_root);
1232 				// here we know it's positive
1233 				flags = path->dentry->d_flags;
1234 				need_mntput = true;
1235 				continue;
1236 			}
1237 		}
1238 
1239 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1240 			break;
1241 
1242 		// uncovered automount point
1243 		ret = follow_automount(path, count, lookup_flags);
1244 		flags = smp_load_acquire(&path->dentry->d_flags);
1245 		if (ret < 0)
1246 			break;
1247 	}
1248 
1249 	if (ret == -EISDIR)
1250 		ret = 0;
1251 	// possible if you race with several mount --move
1252 	if (need_mntput && path->mnt == mnt)
1253 		mntput(path->mnt);
1254 	if (!ret && unlikely(d_flags_negative(flags)))
1255 		ret = -ENOENT;
1256 	*jumped = need_mntput;
1257 	return ret;
1258 }
1259 
1260 static inline int traverse_mounts(struct path *path, bool *jumped,
1261 				  int *count, unsigned lookup_flags)
1262 {
1263 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1264 
1265 	/* fastpath */
1266 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1267 		*jumped = false;
1268 		if (unlikely(d_flags_negative(flags)))
1269 			return -ENOENT;
1270 		return 0;
1271 	}
1272 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1273 }
1274 
1275 int follow_down_one(struct path *path)
1276 {
1277 	struct vfsmount *mounted;
1278 
1279 	mounted = lookup_mnt(path);
1280 	if (mounted) {
1281 		dput(path->dentry);
1282 		mntput(path->mnt);
1283 		path->mnt = mounted;
1284 		path->dentry = dget(mounted->mnt_root);
1285 		return 1;
1286 	}
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL(follow_down_one);
1290 
1291 /*
1292  * Follow down to the covering mount currently visible to userspace.  At each
1293  * point, the filesystem owning that dentry may be queried as to whether the
1294  * caller is permitted to proceed or not.
1295  */
1296 int follow_down(struct path *path)
1297 {
1298 	struct vfsmount *mnt = path->mnt;
1299 	bool jumped;
1300 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1301 
1302 	if (path->mnt != mnt)
1303 		mntput(mnt);
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL(follow_down);
1307 
1308 /*
1309  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1310  * we meet a managed dentry that would need blocking.
1311  */
1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 			       struct inode **inode, unsigned *seqp)
1314 {
1315 	struct dentry *dentry = path->dentry;
1316 	unsigned int flags = dentry->d_flags;
1317 
1318 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1319 		return true;
1320 
1321 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1322 		return false;
1323 
1324 	for (;;) {
1325 		/*
1326 		 * Don't forget we might have a non-mountpoint managed dentry
1327 		 * that wants to block transit.
1328 		 */
1329 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1330 			int res = dentry->d_op->d_manage(path, true);
1331 			if (res)
1332 				return res == -EISDIR;
1333 			flags = dentry->d_flags;
1334 		}
1335 
1336 		if (flags & DCACHE_MOUNTED) {
1337 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1338 			if (mounted) {
1339 				path->mnt = &mounted->mnt;
1340 				dentry = path->dentry = mounted->mnt.mnt_root;
1341 				nd->flags |= LOOKUP_JUMPED;
1342 				*seqp = read_seqcount_begin(&dentry->d_seq);
1343 				*inode = dentry->d_inode;
1344 				/*
1345 				 * We don't need to re-check ->d_seq after this
1346 				 * ->d_inode read - there will be an RCU delay
1347 				 * between mount hash removal and ->mnt_root
1348 				 * becoming unpinned.
1349 				 */
1350 				flags = dentry->d_flags;
1351 				continue;
1352 			}
1353 			if (read_seqretry(&mount_lock, nd->m_seq))
1354 				return false;
1355 		}
1356 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1357 	}
1358 }
1359 
1360 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1361 			  struct path *path, struct inode **inode,
1362 			  unsigned int *seqp)
1363 {
1364 	bool jumped;
1365 	int ret;
1366 
1367 	path->mnt = nd->path.mnt;
1368 	path->dentry = dentry;
1369 	if (nd->flags & LOOKUP_RCU) {
1370 		unsigned int seq = *seqp;
1371 		if (unlikely(!*inode))
1372 			return -ENOENT;
1373 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1374 			return 0;
1375 		if (unlazy_child(nd, dentry, seq))
1376 			return -ECHILD;
1377 		// *path might've been clobbered by __follow_mount_rcu()
1378 		path->mnt = nd->path.mnt;
1379 		path->dentry = dentry;
1380 	}
1381 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1382 	if (jumped) {
1383 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1384 			ret = -EXDEV;
1385 		else
1386 			nd->flags |= LOOKUP_JUMPED;
1387 	}
1388 	if (unlikely(ret)) {
1389 		dput(path->dentry);
1390 		if (path->mnt != nd->path.mnt)
1391 			mntput(path->mnt);
1392 	} else {
1393 		*inode = d_backing_inode(path->dentry);
1394 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1395 	}
1396 	return ret;
1397 }
1398 
1399 /*
1400  * This looks up the name in dcache and possibly revalidates the found dentry.
1401  * NULL is returned if the dentry does not exist in the cache.
1402  */
1403 static struct dentry *lookup_dcache(const struct qstr *name,
1404 				    struct dentry *dir,
1405 				    unsigned int flags)
1406 {
1407 	struct dentry *dentry = d_lookup(dir, name);
1408 	if (dentry) {
1409 		int error = d_revalidate(dentry, flags);
1410 		if (unlikely(error <= 0)) {
1411 			if (!error)
1412 				d_invalidate(dentry);
1413 			dput(dentry);
1414 			return ERR_PTR(error);
1415 		}
1416 	}
1417 	return dentry;
1418 }
1419 
1420 /*
1421  * Parent directory has inode locked exclusive.  This is one
1422  * and only case when ->lookup() gets called on non in-lookup
1423  * dentries - as the matter of fact, this only gets called
1424  * when directory is guaranteed to have no in-lookup children
1425  * at all.
1426  */
1427 static struct dentry *__lookup_hash(const struct qstr *name,
1428 		struct dentry *base, unsigned int flags)
1429 {
1430 	struct dentry *dentry = lookup_dcache(name, base, flags);
1431 	struct dentry *old;
1432 	struct inode *dir = base->d_inode;
1433 
1434 	if (dentry)
1435 		return dentry;
1436 
1437 	/* Don't create child dentry for a dead directory. */
1438 	if (unlikely(IS_DEADDIR(dir)))
1439 		return ERR_PTR(-ENOENT);
1440 
1441 	dentry = d_alloc(base, name);
1442 	if (unlikely(!dentry))
1443 		return ERR_PTR(-ENOMEM);
1444 
1445 	old = dir->i_op->lookup(dir, dentry, flags);
1446 	if (unlikely(old)) {
1447 		dput(dentry);
1448 		dentry = old;
1449 	}
1450 	return dentry;
1451 }
1452 
1453 static struct dentry *lookup_fast(struct nameidata *nd,
1454 				  struct inode **inode,
1455 			          unsigned *seqp)
1456 {
1457 	struct dentry *dentry, *parent = nd->path.dentry;
1458 	int status = 1;
1459 
1460 	/*
1461 	 * Rename seqlock is not required here because in the off chance
1462 	 * of a false negative due to a concurrent rename, the caller is
1463 	 * going to fall back to non-racy lookup.
1464 	 */
1465 	if (nd->flags & LOOKUP_RCU) {
1466 		unsigned seq;
1467 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1468 		if (unlikely(!dentry)) {
1469 			if (unlazy_walk(nd))
1470 				return ERR_PTR(-ECHILD);
1471 			return NULL;
1472 		}
1473 
1474 		/*
1475 		 * This sequence count validates that the inode matches
1476 		 * the dentry name information from lookup.
1477 		 */
1478 		*inode = d_backing_inode(dentry);
1479 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1480 			return ERR_PTR(-ECHILD);
1481 
1482 		/*
1483 		 * This sequence count validates that the parent had no
1484 		 * changes while we did the lookup of the dentry above.
1485 		 *
1486 		 * The memory barrier in read_seqcount_begin of child is
1487 		 *  enough, we can use __read_seqcount_retry here.
1488 		 */
1489 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1490 			return ERR_PTR(-ECHILD);
1491 
1492 		*seqp = seq;
1493 		status = d_revalidate(dentry, nd->flags);
1494 		if (likely(status > 0))
1495 			return dentry;
1496 		if (unlazy_child(nd, dentry, seq))
1497 			return ERR_PTR(-ECHILD);
1498 		if (unlikely(status == -ECHILD))
1499 			/* we'd been told to redo it in non-rcu mode */
1500 			status = d_revalidate(dentry, nd->flags);
1501 	} else {
1502 		dentry = __d_lookup(parent, &nd->last);
1503 		if (unlikely(!dentry))
1504 			return NULL;
1505 		status = d_revalidate(dentry, nd->flags);
1506 	}
1507 	if (unlikely(status <= 0)) {
1508 		if (!status)
1509 			d_invalidate(dentry);
1510 		dput(dentry);
1511 		return ERR_PTR(status);
1512 	}
1513 	return dentry;
1514 }
1515 
1516 /* Fast lookup failed, do it the slow way */
1517 static struct dentry *__lookup_slow(const struct qstr *name,
1518 				    struct dentry *dir,
1519 				    unsigned int flags)
1520 {
1521 	struct dentry *dentry, *old;
1522 	struct inode *inode = dir->d_inode;
1523 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1524 
1525 	/* Don't go there if it's already dead */
1526 	if (unlikely(IS_DEADDIR(inode)))
1527 		return ERR_PTR(-ENOENT);
1528 again:
1529 	dentry = d_alloc_parallel(dir, name, &wq);
1530 	if (IS_ERR(dentry))
1531 		return dentry;
1532 	if (unlikely(!d_in_lookup(dentry))) {
1533 		int error = d_revalidate(dentry, flags);
1534 		if (unlikely(error <= 0)) {
1535 			if (!error) {
1536 				d_invalidate(dentry);
1537 				dput(dentry);
1538 				goto again;
1539 			}
1540 			dput(dentry);
1541 			dentry = ERR_PTR(error);
1542 		}
1543 	} else {
1544 		old = inode->i_op->lookup(inode, dentry, flags);
1545 		d_lookup_done(dentry);
1546 		if (unlikely(old)) {
1547 			dput(dentry);
1548 			dentry = old;
1549 		}
1550 	}
1551 	return dentry;
1552 }
1553 
1554 static struct dentry *lookup_slow(const struct qstr *name,
1555 				  struct dentry *dir,
1556 				  unsigned int flags)
1557 {
1558 	struct inode *inode = dir->d_inode;
1559 	struct dentry *res;
1560 	inode_lock_shared(inode);
1561 	res = __lookup_slow(name, dir, flags);
1562 	inode_unlock_shared(inode);
1563 	return res;
1564 }
1565 
1566 static inline int may_lookup(struct nameidata *nd)
1567 {
1568 	if (nd->flags & LOOKUP_RCU) {
1569 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1570 		if (err != -ECHILD)
1571 			return err;
1572 		if (unlazy_walk(nd))
1573 			return -ECHILD;
1574 	}
1575 	return inode_permission(nd->inode, MAY_EXEC);
1576 }
1577 
1578 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1579 {
1580 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1581 		return -ELOOP;
1582 
1583 	if (likely(nd->depth != EMBEDDED_LEVELS))
1584 		return 0;
1585 	if (likely(nd->stack != nd->internal))
1586 		return 0;
1587 	if (likely(nd_alloc_stack(nd)))
1588 		return 0;
1589 
1590 	if (nd->flags & LOOKUP_RCU) {
1591 		// we need to grab link before we do unlazy.  And we can't skip
1592 		// unlazy even if we fail to grab the link - cleanup needs it
1593 		bool grabbed_link = legitimize_path(nd, link, seq);
1594 
1595 		if (unlazy_walk(nd) != 0 || !grabbed_link)
1596 			return -ECHILD;
1597 
1598 		if (nd_alloc_stack(nd))
1599 			return 0;
1600 	}
1601 	return -ENOMEM;
1602 }
1603 
1604 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1605 
1606 static const char *pick_link(struct nameidata *nd, struct path *link,
1607 		     struct inode *inode, unsigned seq, int flags)
1608 {
1609 	struct saved *last;
1610 	const char *res;
1611 	int error = reserve_stack(nd, link, seq);
1612 
1613 	if (unlikely(error)) {
1614 		if (!(nd->flags & LOOKUP_RCU))
1615 			path_put(link);
1616 		return ERR_PTR(error);
1617 	}
1618 	last = nd->stack + nd->depth++;
1619 	last->link = *link;
1620 	clear_delayed_call(&last->done);
1621 	last->seq = seq;
1622 
1623 	if (flags & WALK_TRAILING) {
1624 		error = may_follow_link(nd, inode);
1625 		if (unlikely(error))
1626 			return ERR_PTR(error);
1627 	}
1628 
1629 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS))
1630 		return ERR_PTR(-ELOOP);
1631 
1632 	if (!(nd->flags & LOOKUP_RCU)) {
1633 		touch_atime(&last->link);
1634 		cond_resched();
1635 	} else if (atime_needs_update(&last->link, inode)) {
1636 		if (unlikely(unlazy_walk(nd)))
1637 			return ERR_PTR(-ECHILD);
1638 		touch_atime(&last->link);
1639 	}
1640 
1641 	error = security_inode_follow_link(link->dentry, inode,
1642 					   nd->flags & LOOKUP_RCU);
1643 	if (unlikely(error))
1644 		return ERR_PTR(error);
1645 
1646 	res = READ_ONCE(inode->i_link);
1647 	if (!res) {
1648 		const char * (*get)(struct dentry *, struct inode *,
1649 				struct delayed_call *);
1650 		get = inode->i_op->get_link;
1651 		if (nd->flags & LOOKUP_RCU) {
1652 			res = get(NULL, inode, &last->done);
1653 			if (res == ERR_PTR(-ECHILD)) {
1654 				if (unlikely(unlazy_walk(nd)))
1655 					return ERR_PTR(-ECHILD);
1656 				res = get(link->dentry, inode, &last->done);
1657 			}
1658 		} else {
1659 			res = get(link->dentry, inode, &last->done);
1660 		}
1661 		if (!res)
1662 			goto all_done;
1663 		if (IS_ERR(res))
1664 			return res;
1665 	}
1666 	if (*res == '/') {
1667 		error = nd_jump_root(nd);
1668 		if (unlikely(error))
1669 			return ERR_PTR(error);
1670 		while (unlikely(*++res == '/'))
1671 			;
1672 	}
1673 	if (*res)
1674 		return res;
1675 all_done: // pure jump
1676 	put_link(nd);
1677 	return NULL;
1678 }
1679 
1680 /*
1681  * Do we need to follow links? We _really_ want to be able
1682  * to do this check without having to look at inode->i_op,
1683  * so we keep a cache of "no, this doesn't need follow_link"
1684  * for the common case.
1685  */
1686 static const char *step_into(struct nameidata *nd, int flags,
1687 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1688 {
1689 	struct path path;
1690 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1691 
1692 	if (err < 0)
1693 		return ERR_PTR(err);
1694 	if (likely(!d_is_symlink(path.dentry)) ||
1695 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1696 	   (flags & WALK_NOFOLLOW)) {
1697 		/* not a symlink or should not follow */
1698 		if (!(nd->flags & LOOKUP_RCU)) {
1699 			dput(nd->path.dentry);
1700 			if (nd->path.mnt != path.mnt)
1701 				mntput(nd->path.mnt);
1702 		}
1703 		nd->path = path;
1704 		nd->inode = inode;
1705 		nd->seq = seq;
1706 		return NULL;
1707 	}
1708 	if (nd->flags & LOOKUP_RCU) {
1709 		/* make sure that d_is_symlink above matches inode */
1710 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1711 			return ERR_PTR(-ECHILD);
1712 	} else {
1713 		if (path.mnt == nd->path.mnt)
1714 			mntget(path.mnt);
1715 	}
1716 	return pick_link(nd, &path, inode, seq, flags);
1717 }
1718 
1719 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1720 					struct inode **inodep,
1721 					unsigned *seqp)
1722 {
1723 	struct dentry *parent, *old;
1724 
1725 	if (path_equal(&nd->path, &nd->root))
1726 		goto in_root;
1727 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1728 		struct path path;
1729 		unsigned seq;
1730 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1731 					   &nd->root, &path, &seq))
1732 			goto in_root;
1733 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1734 			return ERR_PTR(-ECHILD);
1735 		nd->path = path;
1736 		nd->inode = path.dentry->d_inode;
1737 		nd->seq = seq;
1738 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1739 			return ERR_PTR(-ECHILD);
1740 		/* we know that mountpoint was pinned */
1741 	}
1742 	old = nd->path.dentry;
1743 	parent = old->d_parent;
1744 	*inodep = parent->d_inode;
1745 	*seqp = read_seqcount_begin(&parent->d_seq);
1746 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1747 		return ERR_PTR(-ECHILD);
1748 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1749 		return ERR_PTR(-ECHILD);
1750 	return parent;
1751 in_root:
1752 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1753 		return ERR_PTR(-ECHILD);
1754 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1755 		return ERR_PTR(-ECHILD);
1756 	return NULL;
1757 }
1758 
1759 static struct dentry *follow_dotdot(struct nameidata *nd,
1760 				 struct inode **inodep,
1761 				 unsigned *seqp)
1762 {
1763 	struct dentry *parent;
1764 
1765 	if (path_equal(&nd->path, &nd->root))
1766 		goto in_root;
1767 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1768 		struct path path;
1769 
1770 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1771 				       &nd->root, &path))
1772 			goto in_root;
1773 		path_put(&nd->path);
1774 		nd->path = path;
1775 		nd->inode = path.dentry->d_inode;
1776 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1777 			return ERR_PTR(-EXDEV);
1778 	}
1779 	/* rare case of legitimate dget_parent()... */
1780 	parent = dget_parent(nd->path.dentry);
1781 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1782 		dput(parent);
1783 		return ERR_PTR(-ENOENT);
1784 	}
1785 	*seqp = 0;
1786 	*inodep = parent->d_inode;
1787 	return parent;
1788 
1789 in_root:
1790 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1791 		return ERR_PTR(-EXDEV);
1792 	dget(nd->path.dentry);
1793 	return NULL;
1794 }
1795 
1796 static const char *handle_dots(struct nameidata *nd, int type)
1797 {
1798 	if (type == LAST_DOTDOT) {
1799 		const char *error = NULL;
1800 		struct dentry *parent;
1801 		struct inode *inode;
1802 		unsigned seq;
1803 
1804 		if (!nd->root.mnt) {
1805 			error = ERR_PTR(set_root(nd));
1806 			if (error)
1807 				return error;
1808 		}
1809 		if (nd->flags & LOOKUP_RCU)
1810 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1811 		else
1812 			parent = follow_dotdot(nd, &inode, &seq);
1813 		if (IS_ERR(parent))
1814 			return ERR_CAST(parent);
1815 		if (unlikely(!parent))
1816 			error = step_into(nd, WALK_NOFOLLOW,
1817 					 nd->path.dentry, nd->inode, nd->seq);
1818 		else
1819 			error = step_into(nd, WALK_NOFOLLOW,
1820 					 parent, inode, seq);
1821 		if (unlikely(error))
1822 			return error;
1823 
1824 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1825 			/*
1826 			 * If there was a racing rename or mount along our
1827 			 * path, then we can't be sure that ".." hasn't jumped
1828 			 * above nd->root (and so userspace should retry or use
1829 			 * some fallback).
1830 			 */
1831 			smp_rmb();
1832 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1833 				return ERR_PTR(-EAGAIN);
1834 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1835 				return ERR_PTR(-EAGAIN);
1836 		}
1837 	}
1838 	return NULL;
1839 }
1840 
1841 static const char *walk_component(struct nameidata *nd, int flags)
1842 {
1843 	struct dentry *dentry;
1844 	struct inode *inode;
1845 	unsigned seq;
1846 	/*
1847 	 * "." and ".." are special - ".." especially so because it has
1848 	 * to be able to know about the current root directory and
1849 	 * parent relationships.
1850 	 */
1851 	if (unlikely(nd->last_type != LAST_NORM)) {
1852 		if (!(flags & WALK_MORE) && nd->depth)
1853 			put_link(nd);
1854 		return handle_dots(nd, nd->last_type);
1855 	}
1856 	dentry = lookup_fast(nd, &inode, &seq);
1857 	if (IS_ERR(dentry))
1858 		return ERR_CAST(dentry);
1859 	if (unlikely(!dentry)) {
1860 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1861 		if (IS_ERR(dentry))
1862 			return ERR_CAST(dentry);
1863 	}
1864 	if (!(flags & WALK_MORE) && nd->depth)
1865 		put_link(nd);
1866 	return step_into(nd, flags, dentry, inode, seq);
1867 }
1868 
1869 /*
1870  * We can do the critical dentry name comparison and hashing
1871  * operations one word at a time, but we are limited to:
1872  *
1873  * - Architectures with fast unaligned word accesses. We could
1874  *   do a "get_unaligned()" if this helps and is sufficiently
1875  *   fast.
1876  *
1877  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1878  *   do not trap on the (extremely unlikely) case of a page
1879  *   crossing operation.
1880  *
1881  * - Furthermore, we need an efficient 64-bit compile for the
1882  *   64-bit case in order to generate the "number of bytes in
1883  *   the final mask". Again, that could be replaced with a
1884  *   efficient population count instruction or similar.
1885  */
1886 #ifdef CONFIG_DCACHE_WORD_ACCESS
1887 
1888 #include <asm/word-at-a-time.h>
1889 
1890 #ifdef HASH_MIX
1891 
1892 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1893 
1894 #elif defined(CONFIG_64BIT)
1895 /*
1896  * Register pressure in the mixing function is an issue, particularly
1897  * on 32-bit x86, but almost any function requires one state value and
1898  * one temporary.  Instead, use a function designed for two state values
1899  * and no temporaries.
1900  *
1901  * This function cannot create a collision in only two iterations, so
1902  * we have two iterations to achieve avalanche.  In those two iterations,
1903  * we have six layers of mixing, which is enough to spread one bit's
1904  * influence out to 2^6 = 64 state bits.
1905  *
1906  * Rotate constants are scored by considering either 64 one-bit input
1907  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1908  * probability of that delta causing a change to each of the 128 output
1909  * bits, using a sample of random initial states.
1910  *
1911  * The Shannon entropy of the computed probabilities is then summed
1912  * to produce a score.  Ideally, any input change has a 50% chance of
1913  * toggling any given output bit.
1914  *
1915  * Mixing scores (in bits) for (12,45):
1916  * Input delta: 1-bit      2-bit
1917  * 1 round:     713.3    42542.6
1918  * 2 rounds:   2753.7   140389.8
1919  * 3 rounds:   5954.1   233458.2
1920  * 4 rounds:   7862.6   256672.2
1921  * Perfect:    8192     258048
1922  *            (64*128) (64*63/2 * 128)
1923  */
1924 #define HASH_MIX(x, y, a)	\
1925 	(	x ^= (a),	\
1926 	y ^= x,	x = rol64(x,12),\
1927 	x += y,	y = rol64(y,45),\
1928 	y *= 9			)
1929 
1930 /*
1931  * Fold two longs into one 32-bit hash value.  This must be fast, but
1932  * latency isn't quite as critical, as there is a fair bit of additional
1933  * work done before the hash value is used.
1934  */
1935 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1936 {
1937 	y ^= x * GOLDEN_RATIO_64;
1938 	y *= GOLDEN_RATIO_64;
1939 	return y >> 32;
1940 }
1941 
1942 #else	/* 32-bit case */
1943 
1944 /*
1945  * Mixing scores (in bits) for (7,20):
1946  * Input delta: 1-bit      2-bit
1947  * 1 round:     330.3     9201.6
1948  * 2 rounds:   1246.4    25475.4
1949  * 3 rounds:   1907.1    31295.1
1950  * 4 rounds:   2042.3    31718.6
1951  * Perfect:    2048      31744
1952  *            (32*64)   (32*31/2 * 64)
1953  */
1954 #define HASH_MIX(x, y, a)	\
1955 	(	x ^= (a),	\
1956 	y ^= x,	x = rol32(x, 7),\
1957 	x += y,	y = rol32(y,20),\
1958 	y *= 9			)
1959 
1960 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1961 {
1962 	/* Use arch-optimized multiply if one exists */
1963 	return __hash_32(y ^ __hash_32(x));
1964 }
1965 
1966 #endif
1967 
1968 /*
1969  * Return the hash of a string of known length.  This is carfully
1970  * designed to match hash_name(), which is the more critical function.
1971  * In particular, we must end by hashing a final word containing 0..7
1972  * payload bytes, to match the way that hash_name() iterates until it
1973  * finds the delimiter after the name.
1974  */
1975 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1976 {
1977 	unsigned long a, x = 0, y = (unsigned long)salt;
1978 
1979 	for (;;) {
1980 		if (!len)
1981 			goto done;
1982 		a = load_unaligned_zeropad(name);
1983 		if (len < sizeof(unsigned long))
1984 			break;
1985 		HASH_MIX(x, y, a);
1986 		name += sizeof(unsigned long);
1987 		len -= sizeof(unsigned long);
1988 	}
1989 	x ^= a & bytemask_from_count(len);
1990 done:
1991 	return fold_hash(x, y);
1992 }
1993 EXPORT_SYMBOL(full_name_hash);
1994 
1995 /* Return the "hash_len" (hash and length) of a null-terminated string */
1996 u64 hashlen_string(const void *salt, const char *name)
1997 {
1998 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1999 	unsigned long adata, mask, len;
2000 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2001 
2002 	len = 0;
2003 	goto inside;
2004 
2005 	do {
2006 		HASH_MIX(x, y, a);
2007 		len += sizeof(unsigned long);
2008 inside:
2009 		a = load_unaligned_zeropad(name+len);
2010 	} while (!has_zero(a, &adata, &constants));
2011 
2012 	adata = prep_zero_mask(a, adata, &constants);
2013 	mask = create_zero_mask(adata);
2014 	x ^= a & zero_bytemask(mask);
2015 
2016 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2017 }
2018 EXPORT_SYMBOL(hashlen_string);
2019 
2020 /*
2021  * Calculate the length and hash of the path component, and
2022  * return the "hash_len" as the result.
2023  */
2024 static inline u64 hash_name(const void *salt, const char *name)
2025 {
2026 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2027 	unsigned long adata, bdata, mask, len;
2028 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2029 
2030 	len = 0;
2031 	goto inside;
2032 
2033 	do {
2034 		HASH_MIX(x, y, a);
2035 		len += sizeof(unsigned long);
2036 inside:
2037 		a = load_unaligned_zeropad(name+len);
2038 		b = a ^ REPEAT_BYTE('/');
2039 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2040 
2041 	adata = prep_zero_mask(a, adata, &constants);
2042 	bdata = prep_zero_mask(b, bdata, &constants);
2043 	mask = create_zero_mask(adata | bdata);
2044 	x ^= a & zero_bytemask(mask);
2045 
2046 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2047 }
2048 
2049 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2050 
2051 /* Return the hash of a string of known length */
2052 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2053 {
2054 	unsigned long hash = init_name_hash(salt);
2055 	while (len--)
2056 		hash = partial_name_hash((unsigned char)*name++, hash);
2057 	return end_name_hash(hash);
2058 }
2059 EXPORT_SYMBOL(full_name_hash);
2060 
2061 /* Return the "hash_len" (hash and length) of a null-terminated string */
2062 u64 hashlen_string(const void *salt, const char *name)
2063 {
2064 	unsigned long hash = init_name_hash(salt);
2065 	unsigned long len = 0, c;
2066 
2067 	c = (unsigned char)*name;
2068 	while (c) {
2069 		len++;
2070 		hash = partial_name_hash(c, hash);
2071 		c = (unsigned char)name[len];
2072 	}
2073 	return hashlen_create(end_name_hash(hash), len);
2074 }
2075 EXPORT_SYMBOL(hashlen_string);
2076 
2077 /*
2078  * We know there's a real path component here of at least
2079  * one character.
2080  */
2081 static inline u64 hash_name(const void *salt, const char *name)
2082 {
2083 	unsigned long hash = init_name_hash(salt);
2084 	unsigned long len = 0, c;
2085 
2086 	c = (unsigned char)*name;
2087 	do {
2088 		len++;
2089 		hash = partial_name_hash(c, hash);
2090 		c = (unsigned char)name[len];
2091 	} while (c && c != '/');
2092 	return hashlen_create(end_name_hash(hash), len);
2093 }
2094 
2095 #endif
2096 
2097 /*
2098  * Name resolution.
2099  * This is the basic name resolution function, turning a pathname into
2100  * the final dentry. We expect 'base' to be positive and a directory.
2101  *
2102  * Returns 0 and nd will have valid dentry and mnt on success.
2103  * Returns error and drops reference to input namei data on failure.
2104  */
2105 static int link_path_walk(const char *name, struct nameidata *nd)
2106 {
2107 	int depth = 0; // depth <= nd->depth
2108 	int err;
2109 
2110 	nd->last_type = LAST_ROOT;
2111 	nd->flags |= LOOKUP_PARENT;
2112 	if (IS_ERR(name))
2113 		return PTR_ERR(name);
2114 	while (*name=='/')
2115 		name++;
2116 	if (!*name)
2117 		return 0;
2118 
2119 	/* At this point we know we have a real path component. */
2120 	for(;;) {
2121 		const char *link;
2122 		u64 hash_len;
2123 		int type;
2124 
2125 		err = may_lookup(nd);
2126 		if (err)
2127 			return err;
2128 
2129 		hash_len = hash_name(nd->path.dentry, name);
2130 
2131 		type = LAST_NORM;
2132 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2133 			case 2:
2134 				if (name[1] == '.') {
2135 					type = LAST_DOTDOT;
2136 					nd->flags |= LOOKUP_JUMPED;
2137 				}
2138 				break;
2139 			case 1:
2140 				type = LAST_DOT;
2141 		}
2142 		if (likely(type == LAST_NORM)) {
2143 			struct dentry *parent = nd->path.dentry;
2144 			nd->flags &= ~LOOKUP_JUMPED;
2145 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2146 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2147 				err = parent->d_op->d_hash(parent, &this);
2148 				if (err < 0)
2149 					return err;
2150 				hash_len = this.hash_len;
2151 				name = this.name;
2152 			}
2153 		}
2154 
2155 		nd->last.hash_len = hash_len;
2156 		nd->last.name = name;
2157 		nd->last_type = type;
2158 
2159 		name += hashlen_len(hash_len);
2160 		if (!*name)
2161 			goto OK;
2162 		/*
2163 		 * If it wasn't NUL, we know it was '/'. Skip that
2164 		 * slash, and continue until no more slashes.
2165 		 */
2166 		do {
2167 			name++;
2168 		} while (unlikely(*name == '/'));
2169 		if (unlikely(!*name)) {
2170 OK:
2171 			/* pathname or trailing symlink, done */
2172 			if (!depth) {
2173 				nd->dir_uid = nd->inode->i_uid;
2174 				nd->dir_mode = nd->inode->i_mode;
2175 				nd->flags &= ~LOOKUP_PARENT;
2176 				return 0;
2177 			}
2178 			/* last component of nested symlink */
2179 			name = nd->stack[--depth].name;
2180 			link = walk_component(nd, 0);
2181 		} else {
2182 			/* not the last component */
2183 			link = walk_component(nd, WALK_MORE);
2184 		}
2185 		if (unlikely(link)) {
2186 			if (IS_ERR(link))
2187 				return PTR_ERR(link);
2188 			/* a symlink to follow */
2189 			nd->stack[depth++].name = name;
2190 			name = link;
2191 			continue;
2192 		}
2193 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2194 			if (nd->flags & LOOKUP_RCU) {
2195 				if (unlazy_walk(nd))
2196 					return -ECHILD;
2197 			}
2198 			return -ENOTDIR;
2199 		}
2200 	}
2201 }
2202 
2203 /* must be paired with terminate_walk() */
2204 static const char *path_init(struct nameidata *nd, unsigned flags)
2205 {
2206 	int error;
2207 	const char *s = nd->name->name;
2208 
2209 	if (!*s)
2210 		flags &= ~LOOKUP_RCU;
2211 	if (flags & LOOKUP_RCU)
2212 		rcu_read_lock();
2213 
2214 	nd->flags = flags | LOOKUP_JUMPED;
2215 	nd->depth = 0;
2216 
2217 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2218 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2219 	smp_rmb();
2220 
2221 	if (flags & LOOKUP_ROOT) {
2222 		struct dentry *root = nd->root.dentry;
2223 		struct inode *inode = root->d_inode;
2224 		if (*s && unlikely(!d_can_lookup(root)))
2225 			return ERR_PTR(-ENOTDIR);
2226 		nd->path = nd->root;
2227 		nd->inode = inode;
2228 		if (flags & LOOKUP_RCU) {
2229 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2230 			nd->root_seq = nd->seq;
2231 		} else {
2232 			path_get(&nd->path);
2233 		}
2234 		return s;
2235 	}
2236 
2237 	nd->root.mnt = NULL;
2238 	nd->path.mnt = NULL;
2239 	nd->path.dentry = NULL;
2240 
2241 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2242 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2243 		error = nd_jump_root(nd);
2244 		if (unlikely(error))
2245 			return ERR_PTR(error);
2246 		return s;
2247 	}
2248 
2249 	/* Relative pathname -- get the starting-point it is relative to. */
2250 	if (nd->dfd == AT_FDCWD) {
2251 		if (flags & LOOKUP_RCU) {
2252 			struct fs_struct *fs = current->fs;
2253 			unsigned seq;
2254 
2255 			do {
2256 				seq = read_seqcount_begin(&fs->seq);
2257 				nd->path = fs->pwd;
2258 				nd->inode = nd->path.dentry->d_inode;
2259 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2260 			} while (read_seqcount_retry(&fs->seq, seq));
2261 		} else {
2262 			get_fs_pwd(current->fs, &nd->path);
2263 			nd->inode = nd->path.dentry->d_inode;
2264 		}
2265 	} else {
2266 		/* Caller must check execute permissions on the starting path component */
2267 		struct fd f = fdget_raw(nd->dfd);
2268 		struct dentry *dentry;
2269 
2270 		if (!f.file)
2271 			return ERR_PTR(-EBADF);
2272 
2273 		dentry = f.file->f_path.dentry;
2274 
2275 		if (*s && unlikely(!d_can_lookup(dentry))) {
2276 			fdput(f);
2277 			return ERR_PTR(-ENOTDIR);
2278 		}
2279 
2280 		nd->path = f.file->f_path;
2281 		if (flags & LOOKUP_RCU) {
2282 			nd->inode = nd->path.dentry->d_inode;
2283 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2284 		} else {
2285 			path_get(&nd->path);
2286 			nd->inode = nd->path.dentry->d_inode;
2287 		}
2288 		fdput(f);
2289 	}
2290 
2291 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2292 	if (flags & LOOKUP_IS_SCOPED) {
2293 		nd->root = nd->path;
2294 		if (flags & LOOKUP_RCU) {
2295 			nd->root_seq = nd->seq;
2296 		} else {
2297 			path_get(&nd->root);
2298 			nd->flags |= LOOKUP_ROOT_GRABBED;
2299 		}
2300 	}
2301 	return s;
2302 }
2303 
2304 static inline const char *lookup_last(struct nameidata *nd)
2305 {
2306 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2307 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2308 
2309 	return walk_component(nd, WALK_TRAILING);
2310 }
2311 
2312 static int handle_lookup_down(struct nameidata *nd)
2313 {
2314 	if (!(nd->flags & LOOKUP_RCU))
2315 		dget(nd->path.dentry);
2316 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2317 			nd->path.dentry, nd->inode, nd->seq));
2318 }
2319 
2320 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2321 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2322 {
2323 	const char *s = path_init(nd, flags);
2324 	int err;
2325 
2326 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2327 		err = handle_lookup_down(nd);
2328 		if (unlikely(err < 0))
2329 			s = ERR_PTR(err);
2330 	}
2331 
2332 	while (!(err = link_path_walk(s, nd)) &&
2333 	       (s = lookup_last(nd)) != NULL)
2334 		;
2335 	if (!err)
2336 		err = complete_walk(nd);
2337 
2338 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2339 		if (!d_can_lookup(nd->path.dentry))
2340 			err = -ENOTDIR;
2341 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2342 		err = handle_lookup_down(nd);
2343 		nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2344 	}
2345 	if (!err) {
2346 		*path = nd->path;
2347 		nd->path.mnt = NULL;
2348 		nd->path.dentry = NULL;
2349 	}
2350 	terminate_walk(nd);
2351 	return err;
2352 }
2353 
2354 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2355 		    struct path *path, struct path *root)
2356 {
2357 	int retval;
2358 	struct nameidata nd;
2359 	if (IS_ERR(name))
2360 		return PTR_ERR(name);
2361 	if (unlikely(root)) {
2362 		nd.root = *root;
2363 		flags |= LOOKUP_ROOT;
2364 	}
2365 	set_nameidata(&nd, dfd, name);
2366 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2367 	if (unlikely(retval == -ECHILD))
2368 		retval = path_lookupat(&nd, flags, path);
2369 	if (unlikely(retval == -ESTALE))
2370 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2371 
2372 	if (likely(!retval))
2373 		audit_inode(name, path->dentry,
2374 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2375 	restore_nameidata();
2376 	putname(name);
2377 	return retval;
2378 }
2379 
2380 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2381 static int path_parentat(struct nameidata *nd, unsigned flags,
2382 				struct path *parent)
2383 {
2384 	const char *s = path_init(nd, flags);
2385 	int err = link_path_walk(s, nd);
2386 	if (!err)
2387 		err = complete_walk(nd);
2388 	if (!err) {
2389 		*parent = nd->path;
2390 		nd->path.mnt = NULL;
2391 		nd->path.dentry = NULL;
2392 	}
2393 	terminate_walk(nd);
2394 	return err;
2395 }
2396 
2397 static struct filename *filename_parentat(int dfd, struct filename *name,
2398 				unsigned int flags, struct path *parent,
2399 				struct qstr *last, int *type)
2400 {
2401 	int retval;
2402 	struct nameidata nd;
2403 
2404 	if (IS_ERR(name))
2405 		return name;
2406 	set_nameidata(&nd, dfd, name);
2407 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2408 	if (unlikely(retval == -ECHILD))
2409 		retval = path_parentat(&nd, flags, parent);
2410 	if (unlikely(retval == -ESTALE))
2411 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2412 	if (likely(!retval)) {
2413 		*last = nd.last;
2414 		*type = nd.last_type;
2415 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2416 	} else {
2417 		putname(name);
2418 		name = ERR_PTR(retval);
2419 	}
2420 	restore_nameidata();
2421 	return name;
2422 }
2423 
2424 /* does lookup, returns the object with parent locked */
2425 struct dentry *kern_path_locked(const char *name, struct path *path)
2426 {
2427 	struct filename *filename;
2428 	struct dentry *d;
2429 	struct qstr last;
2430 	int type;
2431 
2432 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2433 				    &last, &type);
2434 	if (IS_ERR(filename))
2435 		return ERR_CAST(filename);
2436 	if (unlikely(type != LAST_NORM)) {
2437 		path_put(path);
2438 		putname(filename);
2439 		return ERR_PTR(-EINVAL);
2440 	}
2441 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2442 	d = __lookup_hash(&last, path->dentry, 0);
2443 	if (IS_ERR(d)) {
2444 		inode_unlock(path->dentry->d_inode);
2445 		path_put(path);
2446 	}
2447 	putname(filename);
2448 	return d;
2449 }
2450 
2451 int kern_path(const char *name, unsigned int flags, struct path *path)
2452 {
2453 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2454 			       flags, path, NULL);
2455 }
2456 EXPORT_SYMBOL(kern_path);
2457 
2458 /**
2459  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2460  * @dentry:  pointer to dentry of the base directory
2461  * @mnt: pointer to vfs mount of the base directory
2462  * @name: pointer to file name
2463  * @flags: lookup flags
2464  * @path: pointer to struct path to fill
2465  */
2466 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2467 		    const char *name, unsigned int flags,
2468 		    struct path *path)
2469 {
2470 	struct path root = {.mnt = mnt, .dentry = dentry};
2471 	/* the first argument of filename_lookup() is ignored with root */
2472 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2473 			       flags , path, &root);
2474 }
2475 EXPORT_SYMBOL(vfs_path_lookup);
2476 
2477 static int lookup_one_len_common(const char *name, struct dentry *base,
2478 				 int len, struct qstr *this)
2479 {
2480 	this->name = name;
2481 	this->len = len;
2482 	this->hash = full_name_hash(base, name, len);
2483 	if (!len)
2484 		return -EACCES;
2485 
2486 	if (unlikely(name[0] == '.')) {
2487 		if (len < 2 || (len == 2 && name[1] == '.'))
2488 			return -EACCES;
2489 	}
2490 
2491 	while (len--) {
2492 		unsigned int c = *(const unsigned char *)name++;
2493 		if (c == '/' || c == '\0')
2494 			return -EACCES;
2495 	}
2496 	/*
2497 	 * See if the low-level filesystem might want
2498 	 * to use its own hash..
2499 	 */
2500 	if (base->d_flags & DCACHE_OP_HASH) {
2501 		int err = base->d_op->d_hash(base, this);
2502 		if (err < 0)
2503 			return err;
2504 	}
2505 
2506 	return inode_permission(base->d_inode, MAY_EXEC);
2507 }
2508 
2509 /**
2510  * try_lookup_one_len - filesystem helper to lookup single pathname component
2511  * @name:	pathname component to lookup
2512  * @base:	base directory to lookup from
2513  * @len:	maximum length @len should be interpreted to
2514  *
2515  * Look up a dentry by name in the dcache, returning NULL if it does not
2516  * currently exist.  The function does not try to create a dentry.
2517  *
2518  * Note that this routine is purely a helper for filesystem usage and should
2519  * not be called by generic code.
2520  *
2521  * The caller must hold base->i_mutex.
2522  */
2523 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2524 {
2525 	struct qstr this;
2526 	int err;
2527 
2528 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2529 
2530 	err = lookup_one_len_common(name, base, len, &this);
2531 	if (err)
2532 		return ERR_PTR(err);
2533 
2534 	return lookup_dcache(&this, base, 0);
2535 }
2536 EXPORT_SYMBOL(try_lookup_one_len);
2537 
2538 /**
2539  * lookup_one_len - filesystem helper to lookup single pathname component
2540  * @name:	pathname component to lookup
2541  * @base:	base directory to lookup from
2542  * @len:	maximum length @len should be interpreted to
2543  *
2544  * Note that this routine is purely a helper for filesystem usage and should
2545  * not be called by generic code.
2546  *
2547  * The caller must hold base->i_mutex.
2548  */
2549 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2550 {
2551 	struct dentry *dentry;
2552 	struct qstr this;
2553 	int err;
2554 
2555 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2556 
2557 	err = lookup_one_len_common(name, base, len, &this);
2558 	if (err)
2559 		return ERR_PTR(err);
2560 
2561 	dentry = lookup_dcache(&this, base, 0);
2562 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2563 }
2564 EXPORT_SYMBOL(lookup_one_len);
2565 
2566 /**
2567  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2568  * @name:	pathname component to lookup
2569  * @base:	base directory to lookup from
2570  * @len:	maximum length @len should be interpreted to
2571  *
2572  * Note that this routine is purely a helper for filesystem usage and should
2573  * not be called by generic code.
2574  *
2575  * Unlike lookup_one_len, it should be called without the parent
2576  * i_mutex held, and will take the i_mutex itself if necessary.
2577  */
2578 struct dentry *lookup_one_len_unlocked(const char *name,
2579 				       struct dentry *base, int len)
2580 {
2581 	struct qstr this;
2582 	int err;
2583 	struct dentry *ret;
2584 
2585 	err = lookup_one_len_common(name, base, len, &this);
2586 	if (err)
2587 		return ERR_PTR(err);
2588 
2589 	ret = lookup_dcache(&this, base, 0);
2590 	if (!ret)
2591 		ret = lookup_slow(&this, base, 0);
2592 	return ret;
2593 }
2594 EXPORT_SYMBOL(lookup_one_len_unlocked);
2595 
2596 /*
2597  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2598  * on negatives.  Returns known positive or ERR_PTR(); that's what
2599  * most of the users want.  Note that pinned negative with unlocked parent
2600  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2601  * need to be very careful; pinned positives have ->d_inode stable, so
2602  * this one avoids such problems.
2603  */
2604 struct dentry *lookup_positive_unlocked(const char *name,
2605 				       struct dentry *base, int len)
2606 {
2607 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2608 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2609 		dput(ret);
2610 		ret = ERR_PTR(-ENOENT);
2611 	}
2612 	return ret;
2613 }
2614 EXPORT_SYMBOL(lookup_positive_unlocked);
2615 
2616 #ifdef CONFIG_UNIX98_PTYS
2617 int path_pts(struct path *path)
2618 {
2619 	/* Find something mounted on "pts" in the same directory as
2620 	 * the input path.
2621 	 */
2622 	struct dentry *parent = dget_parent(path->dentry);
2623 	struct dentry *child;
2624 	struct qstr this = QSTR_INIT("pts", 3);
2625 
2626 	if (unlikely(!path_connected(path->mnt, parent))) {
2627 		dput(parent);
2628 		return -ENOENT;
2629 	}
2630 	dput(path->dentry);
2631 	path->dentry = parent;
2632 	child = d_hash_and_lookup(parent, &this);
2633 	if (!child)
2634 		return -ENOENT;
2635 
2636 	path->dentry = child;
2637 	dput(parent);
2638 	follow_down(path);
2639 	return 0;
2640 }
2641 #endif
2642 
2643 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2644 		 struct path *path, int *empty)
2645 {
2646 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2647 			       flags, path, NULL);
2648 }
2649 EXPORT_SYMBOL(user_path_at_empty);
2650 
2651 int __check_sticky(struct inode *dir, struct inode *inode)
2652 {
2653 	kuid_t fsuid = current_fsuid();
2654 
2655 	if (uid_eq(inode->i_uid, fsuid))
2656 		return 0;
2657 	if (uid_eq(dir->i_uid, fsuid))
2658 		return 0;
2659 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2660 }
2661 EXPORT_SYMBOL(__check_sticky);
2662 
2663 /*
2664  *	Check whether we can remove a link victim from directory dir, check
2665  *  whether the type of victim is right.
2666  *  1. We can't do it if dir is read-only (done in permission())
2667  *  2. We should have write and exec permissions on dir
2668  *  3. We can't remove anything from append-only dir
2669  *  4. We can't do anything with immutable dir (done in permission())
2670  *  5. If the sticky bit on dir is set we should either
2671  *	a. be owner of dir, or
2672  *	b. be owner of victim, or
2673  *	c. have CAP_FOWNER capability
2674  *  6. If the victim is append-only or immutable we can't do antyhing with
2675  *     links pointing to it.
2676  *  7. If the victim has an unknown uid or gid we can't change the inode.
2677  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2678  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2679  * 10. We can't remove a root or mountpoint.
2680  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2681  *     nfs_async_unlink().
2682  */
2683 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2684 {
2685 	struct inode *inode = d_backing_inode(victim);
2686 	int error;
2687 
2688 	if (d_is_negative(victim))
2689 		return -ENOENT;
2690 	BUG_ON(!inode);
2691 
2692 	BUG_ON(victim->d_parent->d_inode != dir);
2693 
2694 	/* Inode writeback is not safe when the uid or gid are invalid. */
2695 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2696 		return -EOVERFLOW;
2697 
2698 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2699 
2700 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2701 	if (error)
2702 		return error;
2703 	if (IS_APPEND(dir))
2704 		return -EPERM;
2705 
2706 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2707 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2708 		return -EPERM;
2709 	if (isdir) {
2710 		if (!d_is_dir(victim))
2711 			return -ENOTDIR;
2712 		if (IS_ROOT(victim))
2713 			return -EBUSY;
2714 	} else if (d_is_dir(victim))
2715 		return -EISDIR;
2716 	if (IS_DEADDIR(dir))
2717 		return -ENOENT;
2718 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2719 		return -EBUSY;
2720 	return 0;
2721 }
2722 
2723 /*	Check whether we can create an object with dentry child in directory
2724  *  dir.
2725  *  1. We can't do it if child already exists (open has special treatment for
2726  *     this case, but since we are inlined it's OK)
2727  *  2. We can't do it if dir is read-only (done in permission())
2728  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2729  *  4. We should have write and exec permissions on dir
2730  *  5. We can't do it if dir is immutable (done in permission())
2731  */
2732 static inline int may_create(struct inode *dir, struct dentry *child)
2733 {
2734 	struct user_namespace *s_user_ns;
2735 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2736 	if (child->d_inode)
2737 		return -EEXIST;
2738 	if (IS_DEADDIR(dir))
2739 		return -ENOENT;
2740 	s_user_ns = dir->i_sb->s_user_ns;
2741 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2742 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2743 		return -EOVERFLOW;
2744 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2745 }
2746 
2747 /*
2748  * p1 and p2 should be directories on the same fs.
2749  */
2750 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2751 {
2752 	struct dentry *p;
2753 
2754 	if (p1 == p2) {
2755 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2756 		return NULL;
2757 	}
2758 
2759 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2760 
2761 	p = d_ancestor(p2, p1);
2762 	if (p) {
2763 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2764 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2765 		return p;
2766 	}
2767 
2768 	p = d_ancestor(p1, p2);
2769 	if (p) {
2770 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2771 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2772 		return p;
2773 	}
2774 
2775 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2776 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2777 	return NULL;
2778 }
2779 EXPORT_SYMBOL(lock_rename);
2780 
2781 void unlock_rename(struct dentry *p1, struct dentry *p2)
2782 {
2783 	inode_unlock(p1->d_inode);
2784 	if (p1 != p2) {
2785 		inode_unlock(p2->d_inode);
2786 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2787 	}
2788 }
2789 EXPORT_SYMBOL(unlock_rename);
2790 
2791 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2792 		bool want_excl)
2793 {
2794 	int error = may_create(dir, dentry);
2795 	if (error)
2796 		return error;
2797 
2798 	if (!dir->i_op->create)
2799 		return -EACCES;	/* shouldn't it be ENOSYS? */
2800 	mode &= S_IALLUGO;
2801 	mode |= S_IFREG;
2802 	error = security_inode_create(dir, dentry, mode);
2803 	if (error)
2804 		return error;
2805 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2806 	if (!error)
2807 		fsnotify_create(dir, dentry);
2808 	return error;
2809 }
2810 EXPORT_SYMBOL(vfs_create);
2811 
2812 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2813 		int (*f)(struct dentry *, umode_t, void *),
2814 		void *arg)
2815 {
2816 	struct inode *dir = dentry->d_parent->d_inode;
2817 	int error = may_create(dir, dentry);
2818 	if (error)
2819 		return error;
2820 
2821 	mode &= S_IALLUGO;
2822 	mode |= S_IFREG;
2823 	error = security_inode_create(dir, dentry, mode);
2824 	if (error)
2825 		return error;
2826 	error = f(dentry, mode, arg);
2827 	if (!error)
2828 		fsnotify_create(dir, dentry);
2829 	return error;
2830 }
2831 EXPORT_SYMBOL(vfs_mkobj);
2832 
2833 bool may_open_dev(const struct path *path)
2834 {
2835 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2836 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2837 }
2838 
2839 static int may_open(const struct path *path, int acc_mode, int flag)
2840 {
2841 	struct dentry *dentry = path->dentry;
2842 	struct inode *inode = dentry->d_inode;
2843 	int error;
2844 
2845 	if (!inode)
2846 		return -ENOENT;
2847 
2848 	switch (inode->i_mode & S_IFMT) {
2849 	case S_IFLNK:
2850 		return -ELOOP;
2851 	case S_IFDIR:
2852 		if (acc_mode & MAY_WRITE)
2853 			return -EISDIR;
2854 		break;
2855 	case S_IFBLK:
2856 	case S_IFCHR:
2857 		if (!may_open_dev(path))
2858 			return -EACCES;
2859 		/*FALLTHRU*/
2860 	case S_IFIFO:
2861 	case S_IFSOCK:
2862 		flag &= ~O_TRUNC;
2863 		break;
2864 	}
2865 
2866 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2867 	if (error)
2868 		return error;
2869 
2870 	/*
2871 	 * An append-only file must be opened in append mode for writing.
2872 	 */
2873 	if (IS_APPEND(inode)) {
2874 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2875 			return -EPERM;
2876 		if (flag & O_TRUNC)
2877 			return -EPERM;
2878 	}
2879 
2880 	/* O_NOATIME can only be set by the owner or superuser */
2881 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2882 		return -EPERM;
2883 
2884 	return 0;
2885 }
2886 
2887 static int handle_truncate(struct file *filp)
2888 {
2889 	const struct path *path = &filp->f_path;
2890 	struct inode *inode = path->dentry->d_inode;
2891 	int error = get_write_access(inode);
2892 	if (error)
2893 		return error;
2894 	/*
2895 	 * Refuse to truncate files with mandatory locks held on them.
2896 	 */
2897 	error = locks_verify_locked(filp);
2898 	if (!error)
2899 		error = security_path_truncate(path);
2900 	if (!error) {
2901 		error = do_truncate(path->dentry, 0,
2902 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2903 				    filp);
2904 	}
2905 	put_write_access(inode);
2906 	return error;
2907 }
2908 
2909 static inline int open_to_namei_flags(int flag)
2910 {
2911 	if ((flag & O_ACCMODE) == 3)
2912 		flag--;
2913 	return flag;
2914 }
2915 
2916 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2917 {
2918 	struct user_namespace *s_user_ns;
2919 	int error = security_path_mknod(dir, dentry, mode, 0);
2920 	if (error)
2921 		return error;
2922 
2923 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2924 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2925 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2926 		return -EOVERFLOW;
2927 
2928 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2929 	if (error)
2930 		return error;
2931 
2932 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2933 }
2934 
2935 /*
2936  * Attempt to atomically look up, create and open a file from a negative
2937  * dentry.
2938  *
2939  * Returns 0 if successful.  The file will have been created and attached to
2940  * @file by the filesystem calling finish_open().
2941  *
2942  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2943  * be set.  The caller will need to perform the open themselves.  @path will
2944  * have been updated to point to the new dentry.  This may be negative.
2945  *
2946  * Returns an error code otherwise.
2947  */
2948 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2949 				  struct file *file,
2950 				  int open_flag, umode_t mode)
2951 {
2952 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2953 	struct inode *dir =  nd->path.dentry->d_inode;
2954 	int error;
2955 
2956 	if (nd->flags & LOOKUP_DIRECTORY)
2957 		open_flag |= O_DIRECTORY;
2958 
2959 	file->f_path.dentry = DENTRY_NOT_SET;
2960 	file->f_path.mnt = nd->path.mnt;
2961 	error = dir->i_op->atomic_open(dir, dentry, file,
2962 				       open_to_namei_flags(open_flag), mode);
2963 	d_lookup_done(dentry);
2964 	if (!error) {
2965 		if (file->f_mode & FMODE_OPENED) {
2966 			if (unlikely(dentry != file->f_path.dentry)) {
2967 				dput(dentry);
2968 				dentry = dget(file->f_path.dentry);
2969 			}
2970 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2971 			error = -EIO;
2972 		} else {
2973 			if (file->f_path.dentry) {
2974 				dput(dentry);
2975 				dentry = file->f_path.dentry;
2976 			}
2977 			if (unlikely(d_is_negative(dentry)))
2978 				error = -ENOENT;
2979 		}
2980 	}
2981 	if (error) {
2982 		dput(dentry);
2983 		dentry = ERR_PTR(error);
2984 	}
2985 	return dentry;
2986 }
2987 
2988 /*
2989  * Look up and maybe create and open the last component.
2990  *
2991  * Must be called with parent locked (exclusive in O_CREAT case).
2992  *
2993  * Returns 0 on success, that is, if
2994  *  the file was successfully atomically created (if necessary) and opened, or
2995  *  the file was not completely opened at this time, though lookups and
2996  *  creations were performed.
2997  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
2998  * In the latter case dentry returned in @path might be negative if O_CREAT
2999  * hadn't been specified.
3000  *
3001  * An error code is returned on failure.
3002  */
3003 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3004 				  const struct open_flags *op,
3005 				  bool got_write)
3006 {
3007 	struct dentry *dir = nd->path.dentry;
3008 	struct inode *dir_inode = dir->d_inode;
3009 	int open_flag = op->open_flag;
3010 	struct dentry *dentry;
3011 	int error, create_error = 0;
3012 	umode_t mode = op->mode;
3013 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3014 
3015 	if (unlikely(IS_DEADDIR(dir_inode)))
3016 		return ERR_PTR(-ENOENT);
3017 
3018 	file->f_mode &= ~FMODE_CREATED;
3019 	dentry = d_lookup(dir, &nd->last);
3020 	for (;;) {
3021 		if (!dentry) {
3022 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3023 			if (IS_ERR(dentry))
3024 				return dentry;
3025 		}
3026 		if (d_in_lookup(dentry))
3027 			break;
3028 
3029 		error = d_revalidate(dentry, nd->flags);
3030 		if (likely(error > 0))
3031 			break;
3032 		if (error)
3033 			goto out_dput;
3034 		d_invalidate(dentry);
3035 		dput(dentry);
3036 		dentry = NULL;
3037 	}
3038 	if (dentry->d_inode) {
3039 		/* Cached positive dentry: will open in f_op->open */
3040 		return dentry;
3041 	}
3042 
3043 	/*
3044 	 * Checking write permission is tricky, bacuse we don't know if we are
3045 	 * going to actually need it: O_CREAT opens should work as long as the
3046 	 * file exists.  But checking existence breaks atomicity.  The trick is
3047 	 * to check access and if not granted clear O_CREAT from the flags.
3048 	 *
3049 	 * Another problem is returing the "right" error value (e.g. for an
3050 	 * O_EXCL open we want to return EEXIST not EROFS).
3051 	 */
3052 	if (unlikely(!got_write))
3053 		open_flag &= ~O_TRUNC;
3054 	if (open_flag & O_CREAT) {
3055 		if (open_flag & O_EXCL)
3056 			open_flag &= ~O_TRUNC;
3057 		if (!IS_POSIXACL(dir->d_inode))
3058 			mode &= ~current_umask();
3059 		if (likely(got_write))
3060 			create_error = may_o_create(&nd->path, dentry, mode);
3061 		else
3062 			create_error = -EROFS;
3063 	}
3064 	if (create_error)
3065 		open_flag &= ~O_CREAT;
3066 	if (dir_inode->i_op->atomic_open) {
3067 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3068 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3069 			dentry = ERR_PTR(create_error);
3070 		return dentry;
3071 	}
3072 
3073 	if (d_in_lookup(dentry)) {
3074 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3075 							     nd->flags);
3076 		d_lookup_done(dentry);
3077 		if (unlikely(res)) {
3078 			if (IS_ERR(res)) {
3079 				error = PTR_ERR(res);
3080 				goto out_dput;
3081 			}
3082 			dput(dentry);
3083 			dentry = res;
3084 		}
3085 	}
3086 
3087 	/* Negative dentry, just create the file */
3088 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3089 		file->f_mode |= FMODE_CREATED;
3090 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3091 		if (!dir_inode->i_op->create) {
3092 			error = -EACCES;
3093 			goto out_dput;
3094 		}
3095 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3096 						open_flag & O_EXCL);
3097 		if (error)
3098 			goto out_dput;
3099 	}
3100 	if (unlikely(create_error) && !dentry->d_inode) {
3101 		error = create_error;
3102 		goto out_dput;
3103 	}
3104 	return dentry;
3105 
3106 out_dput:
3107 	dput(dentry);
3108 	return ERR_PTR(error);
3109 }
3110 
3111 static const char *open_last_lookups(struct nameidata *nd,
3112 		   struct file *file, const struct open_flags *op)
3113 {
3114 	struct dentry *dir = nd->path.dentry;
3115 	int open_flag = op->open_flag;
3116 	bool got_write = false;
3117 	unsigned seq;
3118 	struct inode *inode;
3119 	struct dentry *dentry;
3120 	const char *res;
3121 	int error;
3122 
3123 	nd->flags |= op->intent;
3124 
3125 	if (nd->last_type != LAST_NORM) {
3126 		if (nd->depth)
3127 			put_link(nd);
3128 		return handle_dots(nd, nd->last_type);
3129 	}
3130 
3131 	if (!(open_flag & O_CREAT)) {
3132 		if (nd->last.name[nd->last.len])
3133 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3134 		/* we _can_ be in RCU mode here */
3135 		dentry = lookup_fast(nd, &inode, &seq);
3136 		if (IS_ERR(dentry))
3137 			return ERR_CAST(dentry);
3138 		if (likely(dentry))
3139 			goto finish_lookup;
3140 
3141 		BUG_ON(nd->flags & LOOKUP_RCU);
3142 	} else {
3143 		/* create side of things */
3144 		if (nd->flags & LOOKUP_RCU) {
3145 			error = unlazy_walk(nd);
3146 			if (unlikely(error))
3147 				return ERR_PTR(error);
3148 		}
3149 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3150 		/* trailing slashes? */
3151 		if (unlikely(nd->last.name[nd->last.len]))
3152 			return ERR_PTR(-EISDIR);
3153 	}
3154 
3155 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3156 		error = mnt_want_write(nd->path.mnt);
3157 		if (!error)
3158 			got_write = true;
3159 		/*
3160 		 * do _not_ fail yet - we might not need that or fail with
3161 		 * a different error; let lookup_open() decide; we'll be
3162 		 * dropping this one anyway.
3163 		 */
3164 	}
3165 	if (open_flag & O_CREAT)
3166 		inode_lock(dir->d_inode);
3167 	else
3168 		inode_lock_shared(dir->d_inode);
3169 	dentry = lookup_open(nd, file, op, got_write);
3170 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3171 		fsnotify_create(dir->d_inode, dentry);
3172 	if (open_flag & O_CREAT)
3173 		inode_unlock(dir->d_inode);
3174 	else
3175 		inode_unlock_shared(dir->d_inode);
3176 
3177 	if (got_write)
3178 		mnt_drop_write(nd->path.mnt);
3179 
3180 	if (IS_ERR(dentry))
3181 		return ERR_CAST(dentry);
3182 
3183 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3184 		dput(nd->path.dentry);
3185 		nd->path.dentry = dentry;
3186 		return NULL;
3187 	}
3188 
3189 finish_lookup:
3190 	if (nd->depth)
3191 		put_link(nd);
3192 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3193 	if (unlikely(res))
3194 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3195 	return res;
3196 }
3197 
3198 /*
3199  * Handle the last step of open()
3200  */
3201 static int do_open(struct nameidata *nd,
3202 		   struct file *file, const struct open_flags *op)
3203 {
3204 	int open_flag = op->open_flag;
3205 	bool do_truncate;
3206 	int acc_mode;
3207 	int error;
3208 
3209 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3210 		error = complete_walk(nd);
3211 		if (error)
3212 			return error;
3213 	}
3214 	if (!(file->f_mode & FMODE_CREATED))
3215 		audit_inode(nd->name, nd->path.dentry, 0);
3216 	if (open_flag & O_CREAT) {
3217 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3218 			return -EEXIST;
3219 		if (d_is_dir(nd->path.dentry))
3220 			return -EISDIR;
3221 		error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3222 					     d_backing_inode(nd->path.dentry));
3223 		if (unlikely(error))
3224 			return error;
3225 	}
3226 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3227 		return -ENOTDIR;
3228 
3229 	do_truncate = false;
3230 	acc_mode = op->acc_mode;
3231 	if (file->f_mode & FMODE_CREATED) {
3232 		/* Don't check for write permission, don't truncate */
3233 		open_flag &= ~O_TRUNC;
3234 		acc_mode = 0;
3235 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3236 		error = mnt_want_write(nd->path.mnt);
3237 		if (error)
3238 			return error;
3239 		do_truncate = true;
3240 	}
3241 	error = may_open(&nd->path, acc_mode, open_flag);
3242 	if (!error && !(file->f_mode & FMODE_OPENED))
3243 		error = vfs_open(&nd->path, file);
3244 	if (!error)
3245 		error = ima_file_check(file, op->acc_mode);
3246 	if (!error && do_truncate)
3247 		error = handle_truncate(file);
3248 	if (unlikely(error > 0)) {
3249 		WARN_ON(1);
3250 		error = -EINVAL;
3251 	}
3252 	if (do_truncate)
3253 		mnt_drop_write(nd->path.mnt);
3254 	return error;
3255 }
3256 
3257 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3258 {
3259 	struct dentry *child = NULL;
3260 	struct inode *dir = dentry->d_inode;
3261 	struct inode *inode;
3262 	int error;
3263 
3264 	/* we want directory to be writable */
3265 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3266 	if (error)
3267 		goto out_err;
3268 	error = -EOPNOTSUPP;
3269 	if (!dir->i_op->tmpfile)
3270 		goto out_err;
3271 	error = -ENOMEM;
3272 	child = d_alloc(dentry, &slash_name);
3273 	if (unlikely(!child))
3274 		goto out_err;
3275 	error = dir->i_op->tmpfile(dir, child, mode);
3276 	if (error)
3277 		goto out_err;
3278 	error = -ENOENT;
3279 	inode = child->d_inode;
3280 	if (unlikely(!inode))
3281 		goto out_err;
3282 	if (!(open_flag & O_EXCL)) {
3283 		spin_lock(&inode->i_lock);
3284 		inode->i_state |= I_LINKABLE;
3285 		spin_unlock(&inode->i_lock);
3286 	}
3287 	ima_post_create_tmpfile(inode);
3288 	return child;
3289 
3290 out_err:
3291 	dput(child);
3292 	return ERR_PTR(error);
3293 }
3294 EXPORT_SYMBOL(vfs_tmpfile);
3295 
3296 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3297 		const struct open_flags *op,
3298 		struct file *file)
3299 {
3300 	struct dentry *child;
3301 	struct path path;
3302 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3303 	if (unlikely(error))
3304 		return error;
3305 	error = mnt_want_write(path.mnt);
3306 	if (unlikely(error))
3307 		goto out;
3308 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3309 	error = PTR_ERR(child);
3310 	if (IS_ERR(child))
3311 		goto out2;
3312 	dput(path.dentry);
3313 	path.dentry = child;
3314 	audit_inode(nd->name, child, 0);
3315 	/* Don't check for other permissions, the inode was just created */
3316 	error = may_open(&path, 0, op->open_flag);
3317 	if (error)
3318 		goto out2;
3319 	file->f_path.mnt = path.mnt;
3320 	error = finish_open(file, child, NULL);
3321 out2:
3322 	mnt_drop_write(path.mnt);
3323 out:
3324 	path_put(&path);
3325 	return error;
3326 }
3327 
3328 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3329 {
3330 	struct path path;
3331 	int error = path_lookupat(nd, flags, &path);
3332 	if (!error) {
3333 		audit_inode(nd->name, path.dentry, 0);
3334 		error = vfs_open(&path, file);
3335 		path_put(&path);
3336 	}
3337 	return error;
3338 }
3339 
3340 static struct file *path_openat(struct nameidata *nd,
3341 			const struct open_flags *op, unsigned flags)
3342 {
3343 	struct file *file;
3344 	int error;
3345 
3346 	file = alloc_empty_file(op->open_flag, current_cred());
3347 	if (IS_ERR(file))
3348 		return file;
3349 
3350 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3351 		error = do_tmpfile(nd, flags, op, file);
3352 	} else if (unlikely(file->f_flags & O_PATH)) {
3353 		error = do_o_path(nd, flags, file);
3354 	} else {
3355 		const char *s = path_init(nd, flags);
3356 		while (!(error = link_path_walk(s, nd)) &&
3357 		       (s = open_last_lookups(nd, file, op)) != NULL)
3358 			;
3359 		if (!error)
3360 			error = do_open(nd, file, op);
3361 		terminate_walk(nd);
3362 	}
3363 	if (likely(!error)) {
3364 		if (likely(file->f_mode & FMODE_OPENED))
3365 			return file;
3366 		WARN_ON(1);
3367 		error = -EINVAL;
3368 	}
3369 	fput(file);
3370 	if (error == -EOPENSTALE) {
3371 		if (flags & LOOKUP_RCU)
3372 			error = -ECHILD;
3373 		else
3374 			error = -ESTALE;
3375 	}
3376 	return ERR_PTR(error);
3377 }
3378 
3379 struct file *do_filp_open(int dfd, struct filename *pathname,
3380 		const struct open_flags *op)
3381 {
3382 	struct nameidata nd;
3383 	int flags = op->lookup_flags;
3384 	struct file *filp;
3385 
3386 	set_nameidata(&nd, dfd, pathname);
3387 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3388 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3389 		filp = path_openat(&nd, op, flags);
3390 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3391 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3392 	restore_nameidata();
3393 	return filp;
3394 }
3395 
3396 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3397 		const char *name, const struct open_flags *op)
3398 {
3399 	struct nameidata nd;
3400 	struct file *file;
3401 	struct filename *filename;
3402 	int flags = op->lookup_flags | LOOKUP_ROOT;
3403 
3404 	nd.root.mnt = mnt;
3405 	nd.root.dentry = dentry;
3406 
3407 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3408 		return ERR_PTR(-ELOOP);
3409 
3410 	filename = getname_kernel(name);
3411 	if (IS_ERR(filename))
3412 		return ERR_CAST(filename);
3413 
3414 	set_nameidata(&nd, -1, filename);
3415 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3416 	if (unlikely(file == ERR_PTR(-ECHILD)))
3417 		file = path_openat(&nd, op, flags);
3418 	if (unlikely(file == ERR_PTR(-ESTALE)))
3419 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3420 	restore_nameidata();
3421 	putname(filename);
3422 	return file;
3423 }
3424 
3425 static struct dentry *filename_create(int dfd, struct filename *name,
3426 				struct path *path, unsigned int lookup_flags)
3427 {
3428 	struct dentry *dentry = ERR_PTR(-EEXIST);
3429 	struct qstr last;
3430 	int type;
3431 	int err2;
3432 	int error;
3433 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3434 
3435 	/*
3436 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3437 	 * other flags passed in are ignored!
3438 	 */
3439 	lookup_flags &= LOOKUP_REVAL;
3440 
3441 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3442 	if (IS_ERR(name))
3443 		return ERR_CAST(name);
3444 
3445 	/*
3446 	 * Yucky last component or no last component at all?
3447 	 * (foo/., foo/.., /////)
3448 	 */
3449 	if (unlikely(type != LAST_NORM))
3450 		goto out;
3451 
3452 	/* don't fail immediately if it's r/o, at least try to report other errors */
3453 	err2 = mnt_want_write(path->mnt);
3454 	/*
3455 	 * Do the final lookup.
3456 	 */
3457 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3458 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3459 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3460 	if (IS_ERR(dentry))
3461 		goto unlock;
3462 
3463 	error = -EEXIST;
3464 	if (d_is_positive(dentry))
3465 		goto fail;
3466 
3467 	/*
3468 	 * Special case - lookup gave negative, but... we had foo/bar/
3469 	 * From the vfs_mknod() POV we just have a negative dentry -
3470 	 * all is fine. Let's be bastards - you had / on the end, you've
3471 	 * been asking for (non-existent) directory. -ENOENT for you.
3472 	 */
3473 	if (unlikely(!is_dir && last.name[last.len])) {
3474 		error = -ENOENT;
3475 		goto fail;
3476 	}
3477 	if (unlikely(err2)) {
3478 		error = err2;
3479 		goto fail;
3480 	}
3481 	putname(name);
3482 	return dentry;
3483 fail:
3484 	dput(dentry);
3485 	dentry = ERR_PTR(error);
3486 unlock:
3487 	inode_unlock(path->dentry->d_inode);
3488 	if (!err2)
3489 		mnt_drop_write(path->mnt);
3490 out:
3491 	path_put(path);
3492 	putname(name);
3493 	return dentry;
3494 }
3495 
3496 struct dentry *kern_path_create(int dfd, const char *pathname,
3497 				struct path *path, unsigned int lookup_flags)
3498 {
3499 	return filename_create(dfd, getname_kernel(pathname),
3500 				path, lookup_flags);
3501 }
3502 EXPORT_SYMBOL(kern_path_create);
3503 
3504 void done_path_create(struct path *path, struct dentry *dentry)
3505 {
3506 	dput(dentry);
3507 	inode_unlock(path->dentry->d_inode);
3508 	mnt_drop_write(path->mnt);
3509 	path_put(path);
3510 }
3511 EXPORT_SYMBOL(done_path_create);
3512 
3513 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3514 				struct path *path, unsigned int lookup_flags)
3515 {
3516 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3517 }
3518 EXPORT_SYMBOL(user_path_create);
3519 
3520 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3521 {
3522 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3523 	int error = may_create(dir, dentry);
3524 
3525 	if (error)
3526 		return error;
3527 
3528 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3529 	    !capable(CAP_MKNOD))
3530 		return -EPERM;
3531 
3532 	if (!dir->i_op->mknod)
3533 		return -EPERM;
3534 
3535 	error = devcgroup_inode_mknod(mode, dev);
3536 	if (error)
3537 		return error;
3538 
3539 	error = security_inode_mknod(dir, dentry, mode, dev);
3540 	if (error)
3541 		return error;
3542 
3543 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3544 	if (!error)
3545 		fsnotify_create(dir, dentry);
3546 	return error;
3547 }
3548 EXPORT_SYMBOL(vfs_mknod);
3549 
3550 static int may_mknod(umode_t mode)
3551 {
3552 	switch (mode & S_IFMT) {
3553 	case S_IFREG:
3554 	case S_IFCHR:
3555 	case S_IFBLK:
3556 	case S_IFIFO:
3557 	case S_IFSOCK:
3558 	case 0: /* zero mode translates to S_IFREG */
3559 		return 0;
3560 	case S_IFDIR:
3561 		return -EPERM;
3562 	default:
3563 		return -EINVAL;
3564 	}
3565 }
3566 
3567 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3568 		unsigned int dev)
3569 {
3570 	struct dentry *dentry;
3571 	struct path path;
3572 	int error;
3573 	unsigned int lookup_flags = 0;
3574 
3575 	error = may_mknod(mode);
3576 	if (error)
3577 		return error;
3578 retry:
3579 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3580 	if (IS_ERR(dentry))
3581 		return PTR_ERR(dentry);
3582 
3583 	if (!IS_POSIXACL(path.dentry->d_inode))
3584 		mode &= ~current_umask();
3585 	error = security_path_mknod(&path, dentry, mode, dev);
3586 	if (error)
3587 		goto out;
3588 	switch (mode & S_IFMT) {
3589 		case 0: case S_IFREG:
3590 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3591 			if (!error)
3592 				ima_post_path_mknod(dentry);
3593 			break;
3594 		case S_IFCHR: case S_IFBLK:
3595 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3596 					new_decode_dev(dev));
3597 			break;
3598 		case S_IFIFO: case S_IFSOCK:
3599 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3600 			break;
3601 	}
3602 out:
3603 	done_path_create(&path, dentry);
3604 	if (retry_estale(error, lookup_flags)) {
3605 		lookup_flags |= LOOKUP_REVAL;
3606 		goto retry;
3607 	}
3608 	return error;
3609 }
3610 
3611 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3612 		unsigned int, dev)
3613 {
3614 	return do_mknodat(dfd, filename, mode, dev);
3615 }
3616 
3617 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3618 {
3619 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3620 }
3621 
3622 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3623 {
3624 	int error = may_create(dir, dentry);
3625 	unsigned max_links = dir->i_sb->s_max_links;
3626 
3627 	if (error)
3628 		return error;
3629 
3630 	if (!dir->i_op->mkdir)
3631 		return -EPERM;
3632 
3633 	mode &= (S_IRWXUGO|S_ISVTX);
3634 	error = security_inode_mkdir(dir, dentry, mode);
3635 	if (error)
3636 		return error;
3637 
3638 	if (max_links && dir->i_nlink >= max_links)
3639 		return -EMLINK;
3640 
3641 	error = dir->i_op->mkdir(dir, dentry, mode);
3642 	if (!error)
3643 		fsnotify_mkdir(dir, dentry);
3644 	return error;
3645 }
3646 EXPORT_SYMBOL(vfs_mkdir);
3647 
3648 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3649 {
3650 	struct dentry *dentry;
3651 	struct path path;
3652 	int error;
3653 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3654 
3655 retry:
3656 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3657 	if (IS_ERR(dentry))
3658 		return PTR_ERR(dentry);
3659 
3660 	if (!IS_POSIXACL(path.dentry->d_inode))
3661 		mode &= ~current_umask();
3662 	error = security_path_mkdir(&path, dentry, mode);
3663 	if (!error)
3664 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3665 	done_path_create(&path, dentry);
3666 	if (retry_estale(error, lookup_flags)) {
3667 		lookup_flags |= LOOKUP_REVAL;
3668 		goto retry;
3669 	}
3670 	return error;
3671 }
3672 
3673 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3674 {
3675 	return do_mkdirat(dfd, pathname, mode);
3676 }
3677 
3678 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3679 {
3680 	return do_mkdirat(AT_FDCWD, pathname, mode);
3681 }
3682 
3683 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3684 {
3685 	int error = may_delete(dir, dentry, 1);
3686 
3687 	if (error)
3688 		return error;
3689 
3690 	if (!dir->i_op->rmdir)
3691 		return -EPERM;
3692 
3693 	dget(dentry);
3694 	inode_lock(dentry->d_inode);
3695 
3696 	error = -EBUSY;
3697 	if (is_local_mountpoint(dentry))
3698 		goto out;
3699 
3700 	error = security_inode_rmdir(dir, dentry);
3701 	if (error)
3702 		goto out;
3703 
3704 	error = dir->i_op->rmdir(dir, dentry);
3705 	if (error)
3706 		goto out;
3707 
3708 	shrink_dcache_parent(dentry);
3709 	dentry->d_inode->i_flags |= S_DEAD;
3710 	dont_mount(dentry);
3711 	detach_mounts(dentry);
3712 	fsnotify_rmdir(dir, dentry);
3713 
3714 out:
3715 	inode_unlock(dentry->d_inode);
3716 	dput(dentry);
3717 	if (!error)
3718 		d_delete(dentry);
3719 	return error;
3720 }
3721 EXPORT_SYMBOL(vfs_rmdir);
3722 
3723 long do_rmdir(int dfd, const char __user *pathname)
3724 {
3725 	int error = 0;
3726 	struct filename *name;
3727 	struct dentry *dentry;
3728 	struct path path;
3729 	struct qstr last;
3730 	int type;
3731 	unsigned int lookup_flags = 0;
3732 retry:
3733 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3734 				&path, &last, &type);
3735 	if (IS_ERR(name))
3736 		return PTR_ERR(name);
3737 
3738 	switch (type) {
3739 	case LAST_DOTDOT:
3740 		error = -ENOTEMPTY;
3741 		goto exit1;
3742 	case LAST_DOT:
3743 		error = -EINVAL;
3744 		goto exit1;
3745 	case LAST_ROOT:
3746 		error = -EBUSY;
3747 		goto exit1;
3748 	}
3749 
3750 	error = mnt_want_write(path.mnt);
3751 	if (error)
3752 		goto exit1;
3753 
3754 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3755 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3756 	error = PTR_ERR(dentry);
3757 	if (IS_ERR(dentry))
3758 		goto exit2;
3759 	if (!dentry->d_inode) {
3760 		error = -ENOENT;
3761 		goto exit3;
3762 	}
3763 	error = security_path_rmdir(&path, dentry);
3764 	if (error)
3765 		goto exit3;
3766 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3767 exit3:
3768 	dput(dentry);
3769 exit2:
3770 	inode_unlock(path.dentry->d_inode);
3771 	mnt_drop_write(path.mnt);
3772 exit1:
3773 	path_put(&path);
3774 	putname(name);
3775 	if (retry_estale(error, lookup_flags)) {
3776 		lookup_flags |= LOOKUP_REVAL;
3777 		goto retry;
3778 	}
3779 	return error;
3780 }
3781 
3782 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3783 {
3784 	return do_rmdir(AT_FDCWD, pathname);
3785 }
3786 
3787 /**
3788  * vfs_unlink - unlink a filesystem object
3789  * @dir:	parent directory
3790  * @dentry:	victim
3791  * @delegated_inode: returns victim inode, if the inode is delegated.
3792  *
3793  * The caller must hold dir->i_mutex.
3794  *
3795  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3796  * return a reference to the inode in delegated_inode.  The caller
3797  * should then break the delegation on that inode and retry.  Because
3798  * breaking a delegation may take a long time, the caller should drop
3799  * dir->i_mutex before doing so.
3800  *
3801  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3802  * be appropriate for callers that expect the underlying filesystem not
3803  * to be NFS exported.
3804  */
3805 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3806 {
3807 	struct inode *target = dentry->d_inode;
3808 	int error = may_delete(dir, dentry, 0);
3809 
3810 	if (error)
3811 		return error;
3812 
3813 	if (!dir->i_op->unlink)
3814 		return -EPERM;
3815 
3816 	inode_lock(target);
3817 	if (is_local_mountpoint(dentry))
3818 		error = -EBUSY;
3819 	else {
3820 		error = security_inode_unlink(dir, dentry);
3821 		if (!error) {
3822 			error = try_break_deleg(target, delegated_inode);
3823 			if (error)
3824 				goto out;
3825 			error = dir->i_op->unlink(dir, dentry);
3826 			if (!error) {
3827 				dont_mount(dentry);
3828 				detach_mounts(dentry);
3829 				fsnotify_unlink(dir, dentry);
3830 			}
3831 		}
3832 	}
3833 out:
3834 	inode_unlock(target);
3835 
3836 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3837 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3838 		fsnotify_link_count(target);
3839 		d_delete(dentry);
3840 	}
3841 
3842 	return error;
3843 }
3844 EXPORT_SYMBOL(vfs_unlink);
3845 
3846 /*
3847  * Make sure that the actual truncation of the file will occur outside its
3848  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3849  * writeout happening, and we don't want to prevent access to the directory
3850  * while waiting on the I/O.
3851  */
3852 long do_unlinkat(int dfd, struct filename *name)
3853 {
3854 	int error;
3855 	struct dentry *dentry;
3856 	struct path path;
3857 	struct qstr last;
3858 	int type;
3859 	struct inode *inode = NULL;
3860 	struct inode *delegated_inode = NULL;
3861 	unsigned int lookup_flags = 0;
3862 retry:
3863 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3864 	if (IS_ERR(name))
3865 		return PTR_ERR(name);
3866 
3867 	error = -EISDIR;
3868 	if (type != LAST_NORM)
3869 		goto exit1;
3870 
3871 	error = mnt_want_write(path.mnt);
3872 	if (error)
3873 		goto exit1;
3874 retry_deleg:
3875 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3876 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3877 	error = PTR_ERR(dentry);
3878 	if (!IS_ERR(dentry)) {
3879 		/* Why not before? Because we want correct error value */
3880 		if (last.name[last.len])
3881 			goto slashes;
3882 		inode = dentry->d_inode;
3883 		if (d_is_negative(dentry))
3884 			goto slashes;
3885 		ihold(inode);
3886 		error = security_path_unlink(&path, dentry);
3887 		if (error)
3888 			goto exit2;
3889 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3890 exit2:
3891 		dput(dentry);
3892 	}
3893 	inode_unlock(path.dentry->d_inode);
3894 	if (inode)
3895 		iput(inode);	/* truncate the inode here */
3896 	inode = NULL;
3897 	if (delegated_inode) {
3898 		error = break_deleg_wait(&delegated_inode);
3899 		if (!error)
3900 			goto retry_deleg;
3901 	}
3902 	mnt_drop_write(path.mnt);
3903 exit1:
3904 	path_put(&path);
3905 	if (retry_estale(error, lookup_flags)) {
3906 		lookup_flags |= LOOKUP_REVAL;
3907 		inode = NULL;
3908 		goto retry;
3909 	}
3910 	putname(name);
3911 	return error;
3912 
3913 slashes:
3914 	if (d_is_negative(dentry))
3915 		error = -ENOENT;
3916 	else if (d_is_dir(dentry))
3917 		error = -EISDIR;
3918 	else
3919 		error = -ENOTDIR;
3920 	goto exit2;
3921 }
3922 
3923 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3924 {
3925 	if ((flag & ~AT_REMOVEDIR) != 0)
3926 		return -EINVAL;
3927 
3928 	if (flag & AT_REMOVEDIR)
3929 		return do_rmdir(dfd, pathname);
3930 
3931 	return do_unlinkat(dfd, getname(pathname));
3932 }
3933 
3934 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3935 {
3936 	return do_unlinkat(AT_FDCWD, getname(pathname));
3937 }
3938 
3939 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3940 {
3941 	int error = may_create(dir, dentry);
3942 
3943 	if (error)
3944 		return error;
3945 
3946 	if (!dir->i_op->symlink)
3947 		return -EPERM;
3948 
3949 	error = security_inode_symlink(dir, dentry, oldname);
3950 	if (error)
3951 		return error;
3952 
3953 	error = dir->i_op->symlink(dir, dentry, oldname);
3954 	if (!error)
3955 		fsnotify_create(dir, dentry);
3956 	return error;
3957 }
3958 EXPORT_SYMBOL(vfs_symlink);
3959 
3960 long do_symlinkat(const char __user *oldname, int newdfd,
3961 		  const char __user *newname)
3962 {
3963 	int error;
3964 	struct filename *from;
3965 	struct dentry *dentry;
3966 	struct path path;
3967 	unsigned int lookup_flags = 0;
3968 
3969 	from = getname(oldname);
3970 	if (IS_ERR(from))
3971 		return PTR_ERR(from);
3972 retry:
3973 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3974 	error = PTR_ERR(dentry);
3975 	if (IS_ERR(dentry))
3976 		goto out_putname;
3977 
3978 	error = security_path_symlink(&path, dentry, from->name);
3979 	if (!error)
3980 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3981 	done_path_create(&path, dentry);
3982 	if (retry_estale(error, lookup_flags)) {
3983 		lookup_flags |= LOOKUP_REVAL;
3984 		goto retry;
3985 	}
3986 out_putname:
3987 	putname(from);
3988 	return error;
3989 }
3990 
3991 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3992 		int, newdfd, const char __user *, newname)
3993 {
3994 	return do_symlinkat(oldname, newdfd, newname);
3995 }
3996 
3997 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3998 {
3999 	return do_symlinkat(oldname, AT_FDCWD, newname);
4000 }
4001 
4002 /**
4003  * vfs_link - create a new link
4004  * @old_dentry:	object to be linked
4005  * @dir:	new parent
4006  * @new_dentry:	where to create the new link
4007  * @delegated_inode: returns inode needing a delegation break
4008  *
4009  * The caller must hold dir->i_mutex
4010  *
4011  * If vfs_link discovers a delegation on the to-be-linked file in need
4012  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4013  * inode in delegated_inode.  The caller should then break the delegation
4014  * and retry.  Because breaking a delegation may take a long time, the
4015  * caller should drop the i_mutex before doing so.
4016  *
4017  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4018  * be appropriate for callers that expect the underlying filesystem not
4019  * to be NFS exported.
4020  */
4021 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4022 {
4023 	struct inode *inode = old_dentry->d_inode;
4024 	unsigned max_links = dir->i_sb->s_max_links;
4025 	int error;
4026 
4027 	if (!inode)
4028 		return -ENOENT;
4029 
4030 	error = may_create(dir, new_dentry);
4031 	if (error)
4032 		return error;
4033 
4034 	if (dir->i_sb != inode->i_sb)
4035 		return -EXDEV;
4036 
4037 	/*
4038 	 * A link to an append-only or immutable file cannot be created.
4039 	 */
4040 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4041 		return -EPERM;
4042 	/*
4043 	 * Updating the link count will likely cause i_uid and i_gid to
4044 	 * be writen back improperly if their true value is unknown to
4045 	 * the vfs.
4046 	 */
4047 	if (HAS_UNMAPPED_ID(inode))
4048 		return -EPERM;
4049 	if (!dir->i_op->link)
4050 		return -EPERM;
4051 	if (S_ISDIR(inode->i_mode))
4052 		return -EPERM;
4053 
4054 	error = security_inode_link(old_dentry, dir, new_dentry);
4055 	if (error)
4056 		return error;
4057 
4058 	inode_lock(inode);
4059 	/* Make sure we don't allow creating hardlink to an unlinked file */
4060 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4061 		error =  -ENOENT;
4062 	else if (max_links && inode->i_nlink >= max_links)
4063 		error = -EMLINK;
4064 	else {
4065 		error = try_break_deleg(inode, delegated_inode);
4066 		if (!error)
4067 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4068 	}
4069 
4070 	if (!error && (inode->i_state & I_LINKABLE)) {
4071 		spin_lock(&inode->i_lock);
4072 		inode->i_state &= ~I_LINKABLE;
4073 		spin_unlock(&inode->i_lock);
4074 	}
4075 	inode_unlock(inode);
4076 	if (!error)
4077 		fsnotify_link(dir, inode, new_dentry);
4078 	return error;
4079 }
4080 EXPORT_SYMBOL(vfs_link);
4081 
4082 /*
4083  * Hardlinks are often used in delicate situations.  We avoid
4084  * security-related surprises by not following symlinks on the
4085  * newname.  --KAB
4086  *
4087  * We don't follow them on the oldname either to be compatible
4088  * with linux 2.0, and to avoid hard-linking to directories
4089  * and other special files.  --ADM
4090  */
4091 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4092 	      const char __user *newname, int flags)
4093 {
4094 	struct dentry *new_dentry;
4095 	struct path old_path, new_path;
4096 	struct inode *delegated_inode = NULL;
4097 	int how = 0;
4098 	int error;
4099 
4100 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4101 		return -EINVAL;
4102 	/*
4103 	 * To use null names we require CAP_DAC_READ_SEARCH
4104 	 * This ensures that not everyone will be able to create
4105 	 * handlink using the passed filedescriptor.
4106 	 */
4107 	if (flags & AT_EMPTY_PATH) {
4108 		if (!capable(CAP_DAC_READ_SEARCH))
4109 			return -ENOENT;
4110 		how = LOOKUP_EMPTY;
4111 	}
4112 
4113 	if (flags & AT_SYMLINK_FOLLOW)
4114 		how |= LOOKUP_FOLLOW;
4115 retry:
4116 	error = user_path_at(olddfd, oldname, how, &old_path);
4117 	if (error)
4118 		return error;
4119 
4120 	new_dentry = user_path_create(newdfd, newname, &new_path,
4121 					(how & LOOKUP_REVAL));
4122 	error = PTR_ERR(new_dentry);
4123 	if (IS_ERR(new_dentry))
4124 		goto out;
4125 
4126 	error = -EXDEV;
4127 	if (old_path.mnt != new_path.mnt)
4128 		goto out_dput;
4129 	error = may_linkat(&old_path);
4130 	if (unlikely(error))
4131 		goto out_dput;
4132 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4133 	if (error)
4134 		goto out_dput;
4135 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4136 out_dput:
4137 	done_path_create(&new_path, new_dentry);
4138 	if (delegated_inode) {
4139 		error = break_deleg_wait(&delegated_inode);
4140 		if (!error) {
4141 			path_put(&old_path);
4142 			goto retry;
4143 		}
4144 	}
4145 	if (retry_estale(error, how)) {
4146 		path_put(&old_path);
4147 		how |= LOOKUP_REVAL;
4148 		goto retry;
4149 	}
4150 out:
4151 	path_put(&old_path);
4152 
4153 	return error;
4154 }
4155 
4156 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4157 		int, newdfd, const char __user *, newname, int, flags)
4158 {
4159 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4160 }
4161 
4162 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4163 {
4164 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4165 }
4166 
4167 /**
4168  * vfs_rename - rename a filesystem object
4169  * @old_dir:	parent of source
4170  * @old_dentry:	source
4171  * @new_dir:	parent of destination
4172  * @new_dentry:	destination
4173  * @delegated_inode: returns an inode needing a delegation break
4174  * @flags:	rename flags
4175  *
4176  * The caller must hold multiple mutexes--see lock_rename()).
4177  *
4178  * If vfs_rename discovers a delegation in need of breaking at either
4179  * the source or destination, it will return -EWOULDBLOCK and return a
4180  * reference to the inode in delegated_inode.  The caller should then
4181  * break the delegation and retry.  Because breaking a delegation may
4182  * take a long time, the caller should drop all locks before doing
4183  * so.
4184  *
4185  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4186  * be appropriate for callers that expect the underlying filesystem not
4187  * to be NFS exported.
4188  *
4189  * The worst of all namespace operations - renaming directory. "Perverted"
4190  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4191  * Problems:
4192  *
4193  *	a) we can get into loop creation.
4194  *	b) race potential - two innocent renames can create a loop together.
4195  *	   That's where 4.4 screws up. Current fix: serialization on
4196  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4197  *	   story.
4198  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4199  *	   and source (if it is not a directory).
4200  *	   And that - after we got ->i_mutex on parents (until then we don't know
4201  *	   whether the target exists).  Solution: try to be smart with locking
4202  *	   order for inodes.  We rely on the fact that tree topology may change
4203  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4204  *	   move will be locked.  Thus we can rank directories by the tree
4205  *	   (ancestors first) and rank all non-directories after them.
4206  *	   That works since everybody except rename does "lock parent, lookup,
4207  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4208  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4209  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4210  *	   we'd better make sure that there's no link(2) for them.
4211  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4212  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4213  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4214  *	   ->i_mutex on parents, which works but leads to some truly excessive
4215  *	   locking].
4216  */
4217 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4218 	       struct inode *new_dir, struct dentry *new_dentry,
4219 	       struct inode **delegated_inode, unsigned int flags)
4220 {
4221 	int error;
4222 	bool is_dir = d_is_dir(old_dentry);
4223 	struct inode *source = old_dentry->d_inode;
4224 	struct inode *target = new_dentry->d_inode;
4225 	bool new_is_dir = false;
4226 	unsigned max_links = new_dir->i_sb->s_max_links;
4227 	struct name_snapshot old_name;
4228 
4229 	if (source == target)
4230 		return 0;
4231 
4232 	error = may_delete(old_dir, old_dentry, is_dir);
4233 	if (error)
4234 		return error;
4235 
4236 	if (!target) {
4237 		error = may_create(new_dir, new_dentry);
4238 	} else {
4239 		new_is_dir = d_is_dir(new_dentry);
4240 
4241 		if (!(flags & RENAME_EXCHANGE))
4242 			error = may_delete(new_dir, new_dentry, is_dir);
4243 		else
4244 			error = may_delete(new_dir, new_dentry, new_is_dir);
4245 	}
4246 	if (error)
4247 		return error;
4248 
4249 	if (!old_dir->i_op->rename)
4250 		return -EPERM;
4251 
4252 	/*
4253 	 * If we are going to change the parent - check write permissions,
4254 	 * we'll need to flip '..'.
4255 	 */
4256 	if (new_dir != old_dir) {
4257 		if (is_dir) {
4258 			error = inode_permission(source, MAY_WRITE);
4259 			if (error)
4260 				return error;
4261 		}
4262 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4263 			error = inode_permission(target, MAY_WRITE);
4264 			if (error)
4265 				return error;
4266 		}
4267 	}
4268 
4269 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4270 				      flags);
4271 	if (error)
4272 		return error;
4273 
4274 	take_dentry_name_snapshot(&old_name, old_dentry);
4275 	dget(new_dentry);
4276 	if (!is_dir || (flags & RENAME_EXCHANGE))
4277 		lock_two_nondirectories(source, target);
4278 	else if (target)
4279 		inode_lock(target);
4280 
4281 	error = -EBUSY;
4282 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4283 		goto out;
4284 
4285 	if (max_links && new_dir != old_dir) {
4286 		error = -EMLINK;
4287 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4288 			goto out;
4289 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4290 		    old_dir->i_nlink >= max_links)
4291 			goto out;
4292 	}
4293 	if (!is_dir) {
4294 		error = try_break_deleg(source, delegated_inode);
4295 		if (error)
4296 			goto out;
4297 	}
4298 	if (target && !new_is_dir) {
4299 		error = try_break_deleg(target, delegated_inode);
4300 		if (error)
4301 			goto out;
4302 	}
4303 	error = old_dir->i_op->rename(old_dir, old_dentry,
4304 				       new_dir, new_dentry, flags);
4305 	if (error)
4306 		goto out;
4307 
4308 	if (!(flags & RENAME_EXCHANGE) && target) {
4309 		if (is_dir) {
4310 			shrink_dcache_parent(new_dentry);
4311 			target->i_flags |= S_DEAD;
4312 		}
4313 		dont_mount(new_dentry);
4314 		detach_mounts(new_dentry);
4315 	}
4316 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4317 		if (!(flags & RENAME_EXCHANGE))
4318 			d_move(old_dentry, new_dentry);
4319 		else
4320 			d_exchange(old_dentry, new_dentry);
4321 	}
4322 out:
4323 	if (!is_dir || (flags & RENAME_EXCHANGE))
4324 		unlock_two_nondirectories(source, target);
4325 	else if (target)
4326 		inode_unlock(target);
4327 	dput(new_dentry);
4328 	if (!error) {
4329 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4330 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4331 		if (flags & RENAME_EXCHANGE) {
4332 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4333 				      new_is_dir, NULL, new_dentry);
4334 		}
4335 	}
4336 	release_dentry_name_snapshot(&old_name);
4337 
4338 	return error;
4339 }
4340 EXPORT_SYMBOL(vfs_rename);
4341 
4342 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4343 			const char __user *newname, unsigned int flags)
4344 {
4345 	struct dentry *old_dentry, *new_dentry;
4346 	struct dentry *trap;
4347 	struct path old_path, new_path;
4348 	struct qstr old_last, new_last;
4349 	int old_type, new_type;
4350 	struct inode *delegated_inode = NULL;
4351 	struct filename *from;
4352 	struct filename *to;
4353 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4354 	bool should_retry = false;
4355 	int error;
4356 
4357 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4358 		return -EINVAL;
4359 
4360 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4361 	    (flags & RENAME_EXCHANGE))
4362 		return -EINVAL;
4363 
4364 	if (flags & RENAME_EXCHANGE)
4365 		target_flags = 0;
4366 
4367 retry:
4368 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4369 				&old_path, &old_last, &old_type);
4370 	if (IS_ERR(from)) {
4371 		error = PTR_ERR(from);
4372 		goto exit;
4373 	}
4374 
4375 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4376 				&new_path, &new_last, &new_type);
4377 	if (IS_ERR(to)) {
4378 		error = PTR_ERR(to);
4379 		goto exit1;
4380 	}
4381 
4382 	error = -EXDEV;
4383 	if (old_path.mnt != new_path.mnt)
4384 		goto exit2;
4385 
4386 	error = -EBUSY;
4387 	if (old_type != LAST_NORM)
4388 		goto exit2;
4389 
4390 	if (flags & RENAME_NOREPLACE)
4391 		error = -EEXIST;
4392 	if (new_type != LAST_NORM)
4393 		goto exit2;
4394 
4395 	error = mnt_want_write(old_path.mnt);
4396 	if (error)
4397 		goto exit2;
4398 
4399 retry_deleg:
4400 	trap = lock_rename(new_path.dentry, old_path.dentry);
4401 
4402 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4403 	error = PTR_ERR(old_dentry);
4404 	if (IS_ERR(old_dentry))
4405 		goto exit3;
4406 	/* source must exist */
4407 	error = -ENOENT;
4408 	if (d_is_negative(old_dentry))
4409 		goto exit4;
4410 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4411 	error = PTR_ERR(new_dentry);
4412 	if (IS_ERR(new_dentry))
4413 		goto exit4;
4414 	error = -EEXIST;
4415 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4416 		goto exit5;
4417 	if (flags & RENAME_EXCHANGE) {
4418 		error = -ENOENT;
4419 		if (d_is_negative(new_dentry))
4420 			goto exit5;
4421 
4422 		if (!d_is_dir(new_dentry)) {
4423 			error = -ENOTDIR;
4424 			if (new_last.name[new_last.len])
4425 				goto exit5;
4426 		}
4427 	}
4428 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4429 	if (!d_is_dir(old_dentry)) {
4430 		error = -ENOTDIR;
4431 		if (old_last.name[old_last.len])
4432 			goto exit5;
4433 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4434 			goto exit5;
4435 	}
4436 	/* source should not be ancestor of target */
4437 	error = -EINVAL;
4438 	if (old_dentry == trap)
4439 		goto exit5;
4440 	/* target should not be an ancestor of source */
4441 	if (!(flags & RENAME_EXCHANGE))
4442 		error = -ENOTEMPTY;
4443 	if (new_dentry == trap)
4444 		goto exit5;
4445 
4446 	error = security_path_rename(&old_path, old_dentry,
4447 				     &new_path, new_dentry, flags);
4448 	if (error)
4449 		goto exit5;
4450 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4451 			   new_path.dentry->d_inode, new_dentry,
4452 			   &delegated_inode, flags);
4453 exit5:
4454 	dput(new_dentry);
4455 exit4:
4456 	dput(old_dentry);
4457 exit3:
4458 	unlock_rename(new_path.dentry, old_path.dentry);
4459 	if (delegated_inode) {
4460 		error = break_deleg_wait(&delegated_inode);
4461 		if (!error)
4462 			goto retry_deleg;
4463 	}
4464 	mnt_drop_write(old_path.mnt);
4465 exit2:
4466 	if (retry_estale(error, lookup_flags))
4467 		should_retry = true;
4468 	path_put(&new_path);
4469 	putname(to);
4470 exit1:
4471 	path_put(&old_path);
4472 	putname(from);
4473 	if (should_retry) {
4474 		should_retry = false;
4475 		lookup_flags |= LOOKUP_REVAL;
4476 		goto retry;
4477 	}
4478 exit:
4479 	return error;
4480 }
4481 
4482 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4483 		int, newdfd, const char __user *, newname, unsigned int, flags)
4484 {
4485 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4486 }
4487 
4488 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4489 		int, newdfd, const char __user *, newname)
4490 {
4491 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4492 }
4493 
4494 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4495 {
4496 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4497 }
4498 
4499 int readlink_copy(char __user *buffer, int buflen, const char *link)
4500 {
4501 	int len = PTR_ERR(link);
4502 	if (IS_ERR(link))
4503 		goto out;
4504 
4505 	len = strlen(link);
4506 	if (len > (unsigned) buflen)
4507 		len = buflen;
4508 	if (copy_to_user(buffer, link, len))
4509 		len = -EFAULT;
4510 out:
4511 	return len;
4512 }
4513 
4514 /**
4515  * vfs_readlink - copy symlink body into userspace buffer
4516  * @dentry: dentry on which to get symbolic link
4517  * @buffer: user memory pointer
4518  * @buflen: size of buffer
4519  *
4520  * Does not touch atime.  That's up to the caller if necessary
4521  *
4522  * Does not call security hook.
4523  */
4524 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4525 {
4526 	struct inode *inode = d_inode(dentry);
4527 	DEFINE_DELAYED_CALL(done);
4528 	const char *link;
4529 	int res;
4530 
4531 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4532 		if (unlikely(inode->i_op->readlink))
4533 			return inode->i_op->readlink(dentry, buffer, buflen);
4534 
4535 		if (!d_is_symlink(dentry))
4536 			return -EINVAL;
4537 
4538 		spin_lock(&inode->i_lock);
4539 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4540 		spin_unlock(&inode->i_lock);
4541 	}
4542 
4543 	link = READ_ONCE(inode->i_link);
4544 	if (!link) {
4545 		link = inode->i_op->get_link(dentry, inode, &done);
4546 		if (IS_ERR(link))
4547 			return PTR_ERR(link);
4548 	}
4549 	res = readlink_copy(buffer, buflen, link);
4550 	do_delayed_call(&done);
4551 	return res;
4552 }
4553 EXPORT_SYMBOL(vfs_readlink);
4554 
4555 /**
4556  * vfs_get_link - get symlink body
4557  * @dentry: dentry on which to get symbolic link
4558  * @done: caller needs to free returned data with this
4559  *
4560  * Calls security hook and i_op->get_link() on the supplied inode.
4561  *
4562  * It does not touch atime.  That's up to the caller if necessary.
4563  *
4564  * Does not work on "special" symlinks like /proc/$$/fd/N
4565  */
4566 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4567 {
4568 	const char *res = ERR_PTR(-EINVAL);
4569 	struct inode *inode = d_inode(dentry);
4570 
4571 	if (d_is_symlink(dentry)) {
4572 		res = ERR_PTR(security_inode_readlink(dentry));
4573 		if (!res)
4574 			res = inode->i_op->get_link(dentry, inode, done);
4575 	}
4576 	return res;
4577 }
4578 EXPORT_SYMBOL(vfs_get_link);
4579 
4580 /* get the link contents into pagecache */
4581 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4582 			  struct delayed_call *callback)
4583 {
4584 	char *kaddr;
4585 	struct page *page;
4586 	struct address_space *mapping = inode->i_mapping;
4587 
4588 	if (!dentry) {
4589 		page = find_get_page(mapping, 0);
4590 		if (!page)
4591 			return ERR_PTR(-ECHILD);
4592 		if (!PageUptodate(page)) {
4593 			put_page(page);
4594 			return ERR_PTR(-ECHILD);
4595 		}
4596 	} else {
4597 		page = read_mapping_page(mapping, 0, NULL);
4598 		if (IS_ERR(page))
4599 			return (char*)page;
4600 	}
4601 	set_delayed_call(callback, page_put_link, page);
4602 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4603 	kaddr = page_address(page);
4604 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4605 	return kaddr;
4606 }
4607 
4608 EXPORT_SYMBOL(page_get_link);
4609 
4610 void page_put_link(void *arg)
4611 {
4612 	put_page(arg);
4613 }
4614 EXPORT_SYMBOL(page_put_link);
4615 
4616 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4617 {
4618 	DEFINE_DELAYED_CALL(done);
4619 	int res = readlink_copy(buffer, buflen,
4620 				page_get_link(dentry, d_inode(dentry),
4621 					      &done));
4622 	do_delayed_call(&done);
4623 	return res;
4624 }
4625 EXPORT_SYMBOL(page_readlink);
4626 
4627 /*
4628  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4629  */
4630 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4631 {
4632 	struct address_space *mapping = inode->i_mapping;
4633 	struct page *page;
4634 	void *fsdata;
4635 	int err;
4636 	unsigned int flags = 0;
4637 	if (nofs)
4638 		flags |= AOP_FLAG_NOFS;
4639 
4640 retry:
4641 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4642 				flags, &page, &fsdata);
4643 	if (err)
4644 		goto fail;
4645 
4646 	memcpy(page_address(page), symname, len-1);
4647 
4648 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4649 							page, fsdata);
4650 	if (err < 0)
4651 		goto fail;
4652 	if (err < len-1)
4653 		goto retry;
4654 
4655 	mark_inode_dirty(inode);
4656 	return 0;
4657 fail:
4658 	return err;
4659 }
4660 EXPORT_SYMBOL(__page_symlink);
4661 
4662 int page_symlink(struct inode *inode, const char *symname, int len)
4663 {
4664 	return __page_symlink(inode, symname, len,
4665 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4666 }
4667 EXPORT_SYMBOL(page_symlink);
4668 
4669 const struct inode_operations page_symlink_inode_operations = {
4670 	.get_link	= page_get_link,
4671 };
4672 EXPORT_SYMBOL(page_symlink_inode_operations);
4673