xref: /openbmc/linux/fs/namei.c (revision 4d1356ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 	unsigned int mode = inode->i_mode;
296 
297 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 		mode >>= 6;
299 	else {
300 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 			int error = check_acl(inode, mask);
302 			if (error != -EAGAIN)
303 				return error;
304 		}
305 
306 		if (in_group_p(inode->i_gid))
307 			mode >>= 3;
308 	}
309 
310 	/*
311 	 * If the DACs are ok we don't need any capability check.
312 	 */
313 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 		return 0;
315 	return -EACCES;
316 }
317 
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:	inode to check access rights for
321  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 	int ret;
335 
336 	/*
337 	 * Do the basic permission checks.
338 	 */
339 	ret = acl_permission_check(inode, mask);
340 	if (ret != -EACCES)
341 		return ret;
342 
343 	if (S_ISDIR(inode->i_mode)) {
344 		/* DACs are overridable for directories */
345 		if (!(mask & MAY_WRITE))
346 			if (capable_wrt_inode_uidgid(inode,
347 						     CAP_DAC_READ_SEARCH))
348 				return 0;
349 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 			return 0;
351 		return -EACCES;
352 	}
353 
354 	/*
355 	 * Searching includes executable on directories, else just read.
356 	 */
357 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 	if (mask == MAY_READ)
359 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 			return 0;
361 	/*
362 	 * Read/write DACs are always overridable.
363 	 * Executable DACs are overridable when there is
364 	 * at least one exec bit set.
365 	 */
366 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 			return 0;
369 
370 	return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373 
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 		if (likely(inode->i_op->permission))
384 			return inode->i_op->permission(inode, mask);
385 
386 		/* This gets set once for the inode lifetime */
387 		spin_lock(&inode->i_lock);
388 		inode->i_opflags |= IOP_FASTPERM;
389 		spin_unlock(&inode->i_lock);
390 	}
391 	return generic_permission(inode, mask);
392 }
393 
394 /**
395  * sb_permission - Check superblock-level permissions
396  * @sb: Superblock of inode to check permission on
397  * @inode: Inode to check permission on
398  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399  *
400  * Separate out file-system wide checks from inode-specific permission checks.
401  */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 	if (unlikely(mask & MAY_WRITE)) {
405 		umode_t mode = inode->i_mode;
406 
407 		/* Nobody gets write access to a read-only fs. */
408 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 			return -EROFS;
410 	}
411 	return 0;
412 }
413 
414 /**
415  * inode_permission - Check for access rights to a given inode
416  * @inode: Inode to check permission on
417  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418  *
419  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
420  * this, letting us set arbitrary permissions for filesystem access without
421  * changing the "normal" UIDs which are used for other things.
422  *
423  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424  */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 	int retval;
428 
429 	retval = sb_permission(inode->i_sb, inode, mask);
430 	if (retval)
431 		return retval;
432 
433 	if (unlikely(mask & MAY_WRITE)) {
434 		/*
435 		 * Nobody gets write access to an immutable file.
436 		 */
437 		if (IS_IMMUTABLE(inode))
438 			return -EPERM;
439 
440 		/*
441 		 * Updating mtime will likely cause i_uid and i_gid to be
442 		 * written back improperly if their true value is unknown
443 		 * to the vfs.
444 		 */
445 		if (HAS_UNMAPPED_ID(inode))
446 			return -EACCES;
447 	}
448 
449 	retval = do_inode_permission(inode, mask);
450 	if (retval)
451 		return retval;
452 
453 	retval = devcgroup_inode_permission(inode, mask);
454 	if (retval)
455 		return retval;
456 
457 	return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460 
461 /**
462  * path_get - get a reference to a path
463  * @path: path to get the reference to
464  *
465  * Given a path increment the reference count to the dentry and the vfsmount.
466  */
467 void path_get(const struct path *path)
468 {
469 	mntget(path->mnt);
470 	dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473 
474 /**
475  * path_put - put a reference to a path
476  * @path: path to put the reference to
477  *
478  * Given a path decrement the reference count to the dentry and the vfsmount.
479  */
480 void path_put(const struct path *path)
481 {
482 	dput(path->dentry);
483 	mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486 
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 	struct path	path;
490 	struct qstr	last;
491 	struct path	root;
492 	struct inode	*inode; /* path.dentry.d_inode */
493 	unsigned int	flags;
494 	unsigned	seq, m_seq;
495 	int		last_type;
496 	unsigned	depth;
497 	int		total_link_count;
498 	struct saved {
499 		struct path link;
500 		struct delayed_call done;
501 		const char *name;
502 		unsigned seq;
503 	} *stack, internal[EMBEDDED_LEVELS];
504 	struct filename	*name;
505 	struct nameidata *saved;
506 	struct inode	*link_inode;
507 	unsigned	root_seq;
508 	int		dfd;
509 } __randomize_layout;
510 
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 	struct nameidata *old = current->nameidata;
514 	p->stack = p->internal;
515 	p->dfd = dfd;
516 	p->name = name;
517 	p->total_link_count = old ? old->total_link_count : 0;
518 	p->saved = old;
519 	current->nameidata = p;
520 }
521 
522 static void restore_nameidata(void)
523 {
524 	struct nameidata *now = current->nameidata, *old = now->saved;
525 
526 	current->nameidata = old;
527 	if (old)
528 		old->total_link_count = now->total_link_count;
529 	if (now->stack != now->internal)
530 		kfree(now->stack);
531 }
532 
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 	struct saved *p;
536 
537 	if (nd->flags & LOOKUP_RCU) {
538 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 				  GFP_ATOMIC);
540 		if (unlikely(!p))
541 			return -ECHILD;
542 	} else {
543 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 				  GFP_KERNEL);
545 		if (unlikely(!p))
546 			return -ENOMEM;
547 	}
548 	memcpy(p, nd->internal, sizeof(nd->internal));
549 	nd->stack = p;
550 	return 0;
551 }
552 
553 /**
554  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555  * @path: nameidate to verify
556  *
557  * Rename can sometimes move a file or directory outside of a bind
558  * mount, path_connected allows those cases to be detected.
559  */
560 static bool path_connected(const struct path *path)
561 {
562 	struct vfsmount *mnt = path->mnt;
563 	struct super_block *sb = mnt->mnt_sb;
564 
565 	/* Bind mounts and multi-root filesystems can have disconnected paths */
566 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 		return true;
568 
569 	return is_subdir(path->dentry, mnt->mnt_root);
570 }
571 
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 	if (likely(nd->depth != EMBEDDED_LEVELS))
575 		return 0;
576 	if (likely(nd->stack != nd->internal))
577 		return 0;
578 	return __nd_alloc_stack(nd);
579 }
580 
581 static void drop_links(struct nameidata *nd)
582 {
583 	int i = nd->depth;
584 	while (i--) {
585 		struct saved *last = nd->stack + i;
586 		do_delayed_call(&last->done);
587 		clear_delayed_call(&last->done);
588 	}
589 }
590 
591 static void terminate_walk(struct nameidata *nd)
592 {
593 	drop_links(nd);
594 	if (!(nd->flags & LOOKUP_RCU)) {
595 		int i;
596 		path_put(&nd->path);
597 		for (i = 0; i < nd->depth; i++)
598 			path_put(&nd->stack[i].link);
599 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
600 			path_put(&nd->root);
601 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
602 		}
603 	} else {
604 		nd->flags &= ~LOOKUP_RCU;
605 		rcu_read_unlock();
606 	}
607 	nd->depth = 0;
608 }
609 
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 			    struct path *path, unsigned seq)
613 {
614 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 	if (unlikely(res)) {
616 		if (res > 0)
617 			path->mnt = NULL;
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
626 }
627 
628 static bool legitimize_links(struct nameidata *nd)
629 {
630 	int i;
631 	for (i = 0; i < nd->depth; i++) {
632 		struct saved *last = nd->stack + i;
633 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 			drop_links(nd);
635 			nd->depth = i + 1;
636 			return false;
637 		}
638 	}
639 	return true;
640 }
641 
642 static bool legitimize_root(struct nameidata *nd)
643 {
644 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
645 		return true;
646 	nd->flags |= LOOKUP_ROOT_GRABBED;
647 	return legitimize_path(nd, &nd->root, nd->root_seq);
648 }
649 
650 /*
651  * Path walking has 2 modes, rcu-walk and ref-walk (see
652  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
653  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
654  * normal reference counts on dentries and vfsmounts to transition to ref-walk
655  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
656  * got stuck, so ref-walk may continue from there. If this is not successful
657  * (eg. a seqcount has changed), then failure is returned and it's up to caller
658  * to restart the path walk from the beginning in ref-walk mode.
659  */
660 
661 /**
662  * unlazy_walk - try to switch to ref-walk mode.
663  * @nd: nameidata pathwalk data
664  * Returns: 0 on success, -ECHILD on failure
665  *
666  * unlazy_walk attempts to legitimize the current nd->path and nd->root
667  * for ref-walk mode.
668  * Must be called from rcu-walk context.
669  * Nothing should touch nameidata between unlazy_walk() failure and
670  * terminate_walk().
671  */
672 static int unlazy_walk(struct nameidata *nd)
673 {
674 	struct dentry *parent = nd->path.dentry;
675 
676 	BUG_ON(!(nd->flags & LOOKUP_RCU));
677 
678 	nd->flags &= ~LOOKUP_RCU;
679 	if (unlikely(!legitimize_links(nd)))
680 		goto out1;
681 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
682 		goto out;
683 	if (unlikely(!legitimize_root(nd)))
684 		goto out;
685 	rcu_read_unlock();
686 	BUG_ON(nd->inode != parent->d_inode);
687 	return 0;
688 
689 out1:
690 	nd->path.mnt = NULL;
691 	nd->path.dentry = NULL;
692 out:
693 	rcu_read_unlock();
694 	return -ECHILD;
695 }
696 
697 /**
698  * unlazy_child - try to switch to ref-walk mode.
699  * @nd: nameidata pathwalk data
700  * @dentry: child of nd->path.dentry
701  * @seq: seq number to check dentry against
702  * Returns: 0 on success, -ECHILD on failure
703  *
704  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
705  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
706  * @nd.  Must be called from rcu-walk context.
707  * Nothing should touch nameidata between unlazy_child() failure and
708  * terminate_walk().
709  */
710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
711 {
712 	BUG_ON(!(nd->flags & LOOKUP_RCU));
713 
714 	nd->flags &= ~LOOKUP_RCU;
715 	if (unlikely(!legitimize_links(nd)))
716 		goto out2;
717 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
718 		goto out2;
719 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
720 		goto out1;
721 
722 	/*
723 	 * We need to move both the parent and the dentry from the RCU domain
724 	 * to be properly refcounted. And the sequence number in the dentry
725 	 * validates *both* dentry counters, since we checked the sequence
726 	 * number of the parent after we got the child sequence number. So we
727 	 * know the parent must still be valid if the child sequence number is
728 	 */
729 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
730 		goto out;
731 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
732 		goto out_dput;
733 	/*
734 	 * Sequence counts matched. Now make sure that the root is
735 	 * still valid and get it if required.
736 	 */
737 	if (unlikely(!legitimize_root(nd)))
738 		goto out_dput;
739 	rcu_read_unlock();
740 	return 0;
741 
742 out2:
743 	nd->path.mnt = NULL;
744 out1:
745 	nd->path.dentry = NULL;
746 out:
747 	rcu_read_unlock();
748 	return -ECHILD;
749 out_dput:
750 	rcu_read_unlock();
751 	dput(dentry);
752 	return -ECHILD;
753 }
754 
755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
756 {
757 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
758 		return dentry->d_op->d_revalidate(dentry, flags);
759 	else
760 		return 1;
761 }
762 
763 /**
764  * complete_walk - successful completion of path walk
765  * @nd:  pointer nameidata
766  *
767  * If we had been in RCU mode, drop out of it and legitimize nd->path.
768  * Revalidate the final result, unless we'd already done that during
769  * the path walk or the filesystem doesn't ask for it.  Return 0 on
770  * success, -error on failure.  In case of failure caller does not
771  * need to drop nd->path.
772  */
773 static int complete_walk(struct nameidata *nd)
774 {
775 	struct dentry *dentry = nd->path.dentry;
776 	int status;
777 
778 	if (nd->flags & LOOKUP_RCU) {
779 		if (!(nd->flags & LOOKUP_ROOT))
780 			nd->root.mnt = NULL;
781 		if (unlikely(unlazy_walk(nd)))
782 			return -ECHILD;
783 	}
784 
785 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
786 		return 0;
787 
788 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
789 		return 0;
790 
791 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
792 	if (status > 0)
793 		return 0;
794 
795 	if (!status)
796 		status = -ESTALE;
797 
798 	return status;
799 }
800 
801 static void set_root(struct nameidata *nd)
802 {
803 	struct fs_struct *fs = current->fs;
804 
805 	if (nd->flags & LOOKUP_RCU) {
806 		unsigned seq;
807 
808 		do {
809 			seq = read_seqcount_begin(&fs->seq);
810 			nd->root = fs->root;
811 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
812 		} while (read_seqcount_retry(&fs->seq, seq));
813 	} else {
814 		get_fs_root(fs, &nd->root);
815 		nd->flags |= LOOKUP_ROOT_GRABBED;
816 	}
817 }
818 
819 static void path_put_conditional(struct path *path, struct nameidata *nd)
820 {
821 	dput(path->dentry);
822 	if (path->mnt != nd->path.mnt)
823 		mntput(path->mnt);
824 }
825 
826 static inline void path_to_nameidata(const struct path *path,
827 					struct nameidata *nd)
828 {
829 	if (!(nd->flags & LOOKUP_RCU)) {
830 		dput(nd->path.dentry);
831 		if (nd->path.mnt != path->mnt)
832 			mntput(nd->path.mnt);
833 	}
834 	nd->path.mnt = path->mnt;
835 	nd->path.dentry = path->dentry;
836 }
837 
838 static int nd_jump_root(struct nameidata *nd)
839 {
840 	if (nd->flags & LOOKUP_RCU) {
841 		struct dentry *d;
842 		nd->path = nd->root;
843 		d = nd->path.dentry;
844 		nd->inode = d->d_inode;
845 		nd->seq = nd->root_seq;
846 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
847 			return -ECHILD;
848 	} else {
849 		path_put(&nd->path);
850 		nd->path = nd->root;
851 		path_get(&nd->path);
852 		nd->inode = nd->path.dentry->d_inode;
853 	}
854 	nd->flags |= LOOKUP_JUMPED;
855 	return 0;
856 }
857 
858 /*
859  * Helper to directly jump to a known parsed path from ->get_link,
860  * caller must have taken a reference to path beforehand.
861  */
862 void nd_jump_link(struct path *path)
863 {
864 	struct nameidata *nd = current->nameidata;
865 	path_put(&nd->path);
866 
867 	nd->path = *path;
868 	nd->inode = nd->path.dentry->d_inode;
869 	nd->flags |= LOOKUP_JUMPED;
870 }
871 
872 static inline void put_link(struct nameidata *nd)
873 {
874 	struct saved *last = nd->stack + --nd->depth;
875 	do_delayed_call(&last->done);
876 	if (!(nd->flags & LOOKUP_RCU))
877 		path_put(&last->link);
878 }
879 
880 int sysctl_protected_symlinks __read_mostly = 0;
881 int sysctl_protected_hardlinks __read_mostly = 0;
882 int sysctl_protected_fifos __read_mostly;
883 int sysctl_protected_regular __read_mostly;
884 
885 /**
886  * may_follow_link - Check symlink following for unsafe situations
887  * @nd: nameidata pathwalk data
888  *
889  * In the case of the sysctl_protected_symlinks sysctl being enabled,
890  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891  * in a sticky world-writable directory. This is to protect privileged
892  * processes from failing races against path names that may change out
893  * from under them by way of other users creating malicious symlinks.
894  * It will permit symlinks to be followed only when outside a sticky
895  * world-writable directory, or when the uid of the symlink and follower
896  * match, or when the directory owner matches the symlink's owner.
897  *
898  * Returns 0 if following the symlink is allowed, -ve on error.
899  */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 	const struct inode *inode;
903 	const struct inode *parent;
904 	kuid_t puid;
905 
906 	if (!sysctl_protected_symlinks)
907 		return 0;
908 
909 	/* Allowed if owner and follower match. */
910 	inode = nd->link_inode;
911 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
912 		return 0;
913 
914 	/* Allowed if parent directory not sticky and world-writable. */
915 	parent = nd->inode;
916 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
917 		return 0;
918 
919 	/* Allowed if parent directory and link owner match. */
920 	puid = parent->i_uid;
921 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
922 		return 0;
923 
924 	if (nd->flags & LOOKUP_RCU)
925 		return -ECHILD;
926 
927 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
928 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
929 	return -EACCES;
930 }
931 
932 /**
933  * safe_hardlink_source - Check for safe hardlink conditions
934  * @inode: the source inode to hardlink from
935  *
936  * Return false if at least one of the following conditions:
937  *    - inode is not a regular file
938  *    - inode is setuid
939  *    - inode is setgid and group-exec
940  *    - access failure for read and write
941  *
942  * Otherwise returns true.
943  */
944 static bool safe_hardlink_source(struct inode *inode)
945 {
946 	umode_t mode = inode->i_mode;
947 
948 	/* Special files should not get pinned to the filesystem. */
949 	if (!S_ISREG(mode))
950 		return false;
951 
952 	/* Setuid files should not get pinned to the filesystem. */
953 	if (mode & S_ISUID)
954 		return false;
955 
956 	/* Executable setgid files should not get pinned to the filesystem. */
957 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
958 		return false;
959 
960 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
961 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
962 		return false;
963 
964 	return true;
965 }
966 
967 /**
968  * may_linkat - Check permissions for creating a hardlink
969  * @link: the source to hardlink from
970  *
971  * Block hardlink when all of:
972  *  - sysctl_protected_hardlinks enabled
973  *  - fsuid does not match inode
974  *  - hardlink source is unsafe (see safe_hardlink_source() above)
975  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
976  *
977  * Returns 0 if successful, -ve on error.
978  */
979 static int may_linkat(struct path *link)
980 {
981 	struct inode *inode = link->dentry->d_inode;
982 
983 	/* Inode writeback is not safe when the uid or gid are invalid. */
984 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
985 		return -EOVERFLOW;
986 
987 	if (!sysctl_protected_hardlinks)
988 		return 0;
989 
990 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
991 	 * otherwise, it must be a safe source.
992 	 */
993 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
994 		return 0;
995 
996 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
997 	return -EPERM;
998 }
999 
1000 /**
1001  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002  *			  should be allowed, or not, on files that already
1003  *			  exist.
1004  * @dir: the sticky parent directory
1005  * @inode: the inode of the file to open
1006  *
1007  * Block an O_CREAT open of a FIFO (or a regular file) when:
1008  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009  *   - the file already exists
1010  *   - we are in a sticky directory
1011  *   - we don't own the file
1012  *   - the owner of the directory doesn't own the file
1013  *   - the directory is world writable
1014  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015  * the directory doesn't have to be world writable: being group writable will
1016  * be enough.
1017  *
1018  * Returns 0 if the open is allowed, -ve on error.
1019  */
1020 static int may_create_in_sticky(struct dentry * const dir,
1021 				struct inode * const inode)
1022 {
1023 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025 	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026 	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027 	    uid_eq(current_fsuid(), inode->i_uid))
1028 		return 0;
1029 
1030 	if (likely(dir->d_inode->i_mode & 0002) ||
1031 	    (dir->d_inode->i_mode & 0020 &&
1032 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1034 		const char *operation = S_ISFIFO(inode->i_mode) ?
1035 					"sticky_create_fifo" :
1036 					"sticky_create_regular";
1037 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1038 		return -EACCES;
1039 	}
1040 	return 0;
1041 }
1042 
1043 static __always_inline
1044 const char *get_link(struct nameidata *nd)
1045 {
1046 	struct saved *last = nd->stack + nd->depth - 1;
1047 	struct dentry *dentry = last->link.dentry;
1048 	struct inode *inode = nd->link_inode;
1049 	int error;
1050 	const char *res;
1051 
1052 	if (!(nd->flags & LOOKUP_RCU)) {
1053 		touch_atime(&last->link);
1054 		cond_resched();
1055 	} else if (atime_needs_update(&last->link, inode)) {
1056 		if (unlikely(unlazy_walk(nd)))
1057 			return ERR_PTR(-ECHILD);
1058 		touch_atime(&last->link);
1059 	}
1060 
1061 	error = security_inode_follow_link(dentry, inode,
1062 					   nd->flags & LOOKUP_RCU);
1063 	if (unlikely(error))
1064 		return ERR_PTR(error);
1065 
1066 	nd->last_type = LAST_BIND;
1067 	res = READ_ONCE(inode->i_link);
1068 	if (!res) {
1069 		const char * (*get)(struct dentry *, struct inode *,
1070 				struct delayed_call *);
1071 		get = inode->i_op->get_link;
1072 		if (nd->flags & LOOKUP_RCU) {
1073 			res = get(NULL, inode, &last->done);
1074 			if (res == ERR_PTR(-ECHILD)) {
1075 				if (unlikely(unlazy_walk(nd)))
1076 					return ERR_PTR(-ECHILD);
1077 				res = get(dentry, inode, &last->done);
1078 			}
1079 		} else {
1080 			res = get(dentry, inode, &last->done);
1081 		}
1082 		if (IS_ERR_OR_NULL(res))
1083 			return res;
1084 	}
1085 	if (*res == '/') {
1086 		if (!nd->root.mnt)
1087 			set_root(nd);
1088 		if (unlikely(nd_jump_root(nd)))
1089 			return ERR_PTR(-ECHILD);
1090 		while (unlikely(*++res == '/'))
1091 			;
1092 	}
1093 	if (!*res)
1094 		res = NULL;
1095 	return res;
1096 }
1097 
1098 /*
1099  * follow_up - Find the mountpoint of path's vfsmount
1100  *
1101  * Given a path, find the mountpoint of its source file system.
1102  * Replace @path with the path of the mountpoint in the parent mount.
1103  * Up is towards /.
1104  *
1105  * Return 1 if we went up a level and 0 if we were already at the
1106  * root.
1107  */
1108 int follow_up(struct path *path)
1109 {
1110 	struct mount *mnt = real_mount(path->mnt);
1111 	struct mount *parent;
1112 	struct dentry *mountpoint;
1113 
1114 	read_seqlock_excl(&mount_lock);
1115 	parent = mnt->mnt_parent;
1116 	if (parent == mnt) {
1117 		read_sequnlock_excl(&mount_lock);
1118 		return 0;
1119 	}
1120 	mntget(&parent->mnt);
1121 	mountpoint = dget(mnt->mnt_mountpoint);
1122 	read_sequnlock_excl(&mount_lock);
1123 	dput(path->dentry);
1124 	path->dentry = mountpoint;
1125 	mntput(path->mnt);
1126 	path->mnt = &parent->mnt;
1127 	return 1;
1128 }
1129 EXPORT_SYMBOL(follow_up);
1130 
1131 /*
1132  * Perform an automount
1133  * - return -EISDIR to tell follow_managed() to stop and return the path we
1134  *   were called with.
1135  */
1136 static int follow_automount(struct path *path, struct nameidata *nd,
1137 			    bool *need_mntput)
1138 {
1139 	struct vfsmount *mnt;
1140 	int err;
1141 
1142 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1143 		return -EREMOTE;
1144 
1145 	/* We don't want to mount if someone's just doing a stat -
1146 	 * unless they're stat'ing a directory and appended a '/' to
1147 	 * the name.
1148 	 *
1149 	 * We do, however, want to mount if someone wants to open or
1150 	 * create a file of any type under the mountpoint, wants to
1151 	 * traverse through the mountpoint or wants to open the
1152 	 * mounted directory.  Also, autofs may mark negative dentries
1153 	 * as being automount points.  These will need the attentions
1154 	 * of the daemon to instantiate them before they can be used.
1155 	 */
1156 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1157 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1158 	    path->dentry->d_inode)
1159 		return -EISDIR;
1160 
1161 	nd->total_link_count++;
1162 	if (nd->total_link_count >= 40)
1163 		return -ELOOP;
1164 
1165 	mnt = path->dentry->d_op->d_automount(path);
1166 	if (IS_ERR(mnt)) {
1167 		/*
1168 		 * The filesystem is allowed to return -EISDIR here to indicate
1169 		 * it doesn't want to automount.  For instance, autofs would do
1170 		 * this so that its userspace daemon can mount on this dentry.
1171 		 *
1172 		 * However, we can only permit this if it's a terminal point in
1173 		 * the path being looked up; if it wasn't then the remainder of
1174 		 * the path is inaccessible and we should say so.
1175 		 */
1176 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1177 			return -EREMOTE;
1178 		return PTR_ERR(mnt);
1179 	}
1180 
1181 	if (!mnt) /* mount collision */
1182 		return 0;
1183 
1184 	if (!*need_mntput) {
1185 		/* lock_mount() may release path->mnt on error */
1186 		mntget(path->mnt);
1187 		*need_mntput = true;
1188 	}
1189 	err = finish_automount(mnt, path);
1190 
1191 	switch (err) {
1192 	case -EBUSY:
1193 		/* Someone else made a mount here whilst we were busy */
1194 		return 0;
1195 	case 0:
1196 		path_put(path);
1197 		path->mnt = mnt;
1198 		path->dentry = dget(mnt->mnt_root);
1199 		return 0;
1200 	default:
1201 		return err;
1202 	}
1203 
1204 }
1205 
1206 /*
1207  * Handle a dentry that is managed in some way.
1208  * - Flagged for transit management (autofs)
1209  * - Flagged as mountpoint
1210  * - Flagged as automount point
1211  *
1212  * This may only be called in refwalk mode.
1213  * On success path->dentry is known positive.
1214  *
1215  * Serialization is taken care of in namespace.c
1216  */
1217 static int follow_managed(struct path *path, struct nameidata *nd)
1218 {
1219 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1220 	unsigned flags;
1221 	bool need_mntput = false;
1222 	int ret = 0;
1223 
1224 	/* Given that we're not holding a lock here, we retain the value in a
1225 	 * local variable for each dentry as we look at it so that we don't see
1226 	 * the components of that value change under us */
1227 	while (flags = smp_load_acquire(&path->dentry->d_flags),
1228 	       unlikely(flags & DCACHE_MANAGED_DENTRY)) {
1229 		/* Allow the filesystem to manage the transit without i_mutex
1230 		 * being held. */
1231 		if (flags & DCACHE_MANAGE_TRANSIT) {
1232 			BUG_ON(!path->dentry->d_op);
1233 			BUG_ON(!path->dentry->d_op->d_manage);
1234 			ret = path->dentry->d_op->d_manage(path, false);
1235 			flags = smp_load_acquire(&path->dentry->d_flags);
1236 			if (ret < 0)
1237 				break;
1238 		}
1239 
1240 		/* Transit to a mounted filesystem. */
1241 		if (flags & DCACHE_MOUNTED) {
1242 			struct vfsmount *mounted = lookup_mnt(path);
1243 			if (mounted) {
1244 				dput(path->dentry);
1245 				if (need_mntput)
1246 					mntput(path->mnt);
1247 				path->mnt = mounted;
1248 				path->dentry = dget(mounted->mnt_root);
1249 				need_mntput = true;
1250 				continue;
1251 			}
1252 
1253 			/* Something is mounted on this dentry in another
1254 			 * namespace and/or whatever was mounted there in this
1255 			 * namespace got unmounted before lookup_mnt() could
1256 			 * get it */
1257 		}
1258 
1259 		/* Handle an automount point */
1260 		if (flags & DCACHE_NEED_AUTOMOUNT) {
1261 			ret = follow_automount(path, nd, &need_mntput);
1262 			if (ret < 0)
1263 				break;
1264 			continue;
1265 		}
1266 
1267 		/* We didn't change the current path point */
1268 		break;
1269 	}
1270 
1271 	if (need_mntput && path->mnt == mnt)
1272 		mntput(path->mnt);
1273 	if (need_mntput)
1274 		nd->flags |= LOOKUP_JUMPED;
1275 	if (ret == -EISDIR || !ret)
1276 		ret = 1;
1277 	if (ret > 0 && unlikely(d_flags_negative(flags)))
1278 		ret = -ENOENT;
1279 	if (unlikely(ret < 0))
1280 		path_put_conditional(path, nd);
1281 	return ret;
1282 }
1283 
1284 int follow_down_one(struct path *path)
1285 {
1286 	struct vfsmount *mounted;
1287 
1288 	mounted = lookup_mnt(path);
1289 	if (mounted) {
1290 		dput(path->dentry);
1291 		mntput(path->mnt);
1292 		path->mnt = mounted;
1293 		path->dentry = dget(mounted->mnt_root);
1294 		return 1;
1295 	}
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL(follow_down_one);
1299 
1300 static inline int managed_dentry_rcu(const struct path *path)
1301 {
1302 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1303 		path->dentry->d_op->d_manage(path, true) : 0;
1304 }
1305 
1306 /*
1307  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1308  * we meet a managed dentry that would need blocking.
1309  */
1310 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1311 			       struct inode **inode, unsigned *seqp)
1312 {
1313 	for (;;) {
1314 		struct mount *mounted;
1315 		/*
1316 		 * Don't forget we might have a non-mountpoint managed dentry
1317 		 * that wants to block transit.
1318 		 */
1319 		switch (managed_dentry_rcu(path)) {
1320 		case -ECHILD:
1321 		default:
1322 			return false;
1323 		case -EISDIR:
1324 			return true;
1325 		case 0:
1326 			break;
1327 		}
1328 
1329 		if (!d_mountpoint(path->dentry))
1330 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1331 
1332 		mounted = __lookup_mnt(path->mnt, path->dentry);
1333 		if (!mounted)
1334 			break;
1335 		path->mnt = &mounted->mnt;
1336 		path->dentry = mounted->mnt.mnt_root;
1337 		nd->flags |= LOOKUP_JUMPED;
1338 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1339 		/*
1340 		 * Update the inode too. We don't need to re-check the
1341 		 * dentry sequence number here after this d_inode read,
1342 		 * because a mount-point is always pinned.
1343 		 */
1344 		*inode = path->dentry->d_inode;
1345 	}
1346 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1347 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1348 }
1349 
1350 static int follow_dotdot_rcu(struct nameidata *nd)
1351 {
1352 	struct inode *inode = nd->inode;
1353 
1354 	while (1) {
1355 		if (path_equal(&nd->path, &nd->root))
1356 			break;
1357 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1358 			struct dentry *old = nd->path.dentry;
1359 			struct dentry *parent = old->d_parent;
1360 			unsigned seq;
1361 
1362 			inode = parent->d_inode;
1363 			seq = read_seqcount_begin(&parent->d_seq);
1364 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1365 				return -ECHILD;
1366 			nd->path.dentry = parent;
1367 			nd->seq = seq;
1368 			if (unlikely(!path_connected(&nd->path)))
1369 				return -ENOENT;
1370 			break;
1371 		} else {
1372 			struct mount *mnt = real_mount(nd->path.mnt);
1373 			struct mount *mparent = mnt->mnt_parent;
1374 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1375 			struct inode *inode2 = mountpoint->d_inode;
1376 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1377 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1378 				return -ECHILD;
1379 			if (&mparent->mnt == nd->path.mnt)
1380 				break;
1381 			/* we know that mountpoint was pinned */
1382 			nd->path.dentry = mountpoint;
1383 			nd->path.mnt = &mparent->mnt;
1384 			inode = inode2;
1385 			nd->seq = seq;
1386 		}
1387 	}
1388 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1389 		struct mount *mounted;
1390 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1391 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1392 			return -ECHILD;
1393 		if (!mounted)
1394 			break;
1395 		nd->path.mnt = &mounted->mnt;
1396 		nd->path.dentry = mounted->mnt.mnt_root;
1397 		inode = nd->path.dentry->d_inode;
1398 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1399 	}
1400 	nd->inode = inode;
1401 	return 0;
1402 }
1403 
1404 /*
1405  * Follow down to the covering mount currently visible to userspace.  At each
1406  * point, the filesystem owning that dentry may be queried as to whether the
1407  * caller is permitted to proceed or not.
1408  */
1409 int follow_down(struct path *path)
1410 {
1411 	unsigned managed;
1412 	int ret;
1413 
1414 	while (managed = READ_ONCE(path->dentry->d_flags),
1415 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1416 		/* Allow the filesystem to manage the transit without i_mutex
1417 		 * being held.
1418 		 *
1419 		 * We indicate to the filesystem if someone is trying to mount
1420 		 * something here.  This gives autofs the chance to deny anyone
1421 		 * other than its daemon the right to mount on its
1422 		 * superstructure.
1423 		 *
1424 		 * The filesystem may sleep at this point.
1425 		 */
1426 		if (managed & DCACHE_MANAGE_TRANSIT) {
1427 			BUG_ON(!path->dentry->d_op);
1428 			BUG_ON(!path->dentry->d_op->d_manage);
1429 			ret = path->dentry->d_op->d_manage(path, false);
1430 			if (ret < 0)
1431 				return ret == -EISDIR ? 0 : ret;
1432 		}
1433 
1434 		/* Transit to a mounted filesystem. */
1435 		if (managed & DCACHE_MOUNTED) {
1436 			struct vfsmount *mounted = lookup_mnt(path);
1437 			if (!mounted)
1438 				break;
1439 			dput(path->dentry);
1440 			mntput(path->mnt);
1441 			path->mnt = mounted;
1442 			path->dentry = dget(mounted->mnt_root);
1443 			continue;
1444 		}
1445 
1446 		/* Don't handle automount points here */
1447 		break;
1448 	}
1449 	return 0;
1450 }
1451 EXPORT_SYMBOL(follow_down);
1452 
1453 /*
1454  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1455  */
1456 static void follow_mount(struct path *path)
1457 {
1458 	while (d_mountpoint(path->dentry)) {
1459 		struct vfsmount *mounted = lookup_mnt(path);
1460 		if (!mounted)
1461 			break;
1462 		dput(path->dentry);
1463 		mntput(path->mnt);
1464 		path->mnt = mounted;
1465 		path->dentry = dget(mounted->mnt_root);
1466 	}
1467 }
1468 
1469 static int path_parent_directory(struct path *path)
1470 {
1471 	struct dentry *old = path->dentry;
1472 	/* rare case of legitimate dget_parent()... */
1473 	path->dentry = dget_parent(path->dentry);
1474 	dput(old);
1475 	if (unlikely(!path_connected(path)))
1476 		return -ENOENT;
1477 	return 0;
1478 }
1479 
1480 static int follow_dotdot(struct nameidata *nd)
1481 {
1482 	while(1) {
1483 		if (path_equal(&nd->path, &nd->root))
1484 			break;
1485 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1486 			int ret = path_parent_directory(&nd->path);
1487 			if (ret)
1488 				return ret;
1489 			break;
1490 		}
1491 		if (!follow_up(&nd->path))
1492 			break;
1493 	}
1494 	follow_mount(&nd->path);
1495 	nd->inode = nd->path.dentry->d_inode;
1496 	return 0;
1497 }
1498 
1499 /*
1500  * This looks up the name in dcache and possibly revalidates the found dentry.
1501  * NULL is returned if the dentry does not exist in the cache.
1502  */
1503 static struct dentry *lookup_dcache(const struct qstr *name,
1504 				    struct dentry *dir,
1505 				    unsigned int flags)
1506 {
1507 	struct dentry *dentry = d_lookup(dir, name);
1508 	if (dentry) {
1509 		int error = d_revalidate(dentry, flags);
1510 		if (unlikely(error <= 0)) {
1511 			if (!error)
1512 				d_invalidate(dentry);
1513 			dput(dentry);
1514 			return ERR_PTR(error);
1515 		}
1516 	}
1517 	return dentry;
1518 }
1519 
1520 /*
1521  * Parent directory has inode locked exclusive.  This is one
1522  * and only case when ->lookup() gets called on non in-lookup
1523  * dentries - as the matter of fact, this only gets called
1524  * when directory is guaranteed to have no in-lookup children
1525  * at all.
1526  */
1527 static struct dentry *__lookup_hash(const struct qstr *name,
1528 		struct dentry *base, unsigned int flags)
1529 {
1530 	struct dentry *dentry = lookup_dcache(name, base, flags);
1531 	struct dentry *old;
1532 	struct inode *dir = base->d_inode;
1533 
1534 	if (dentry)
1535 		return dentry;
1536 
1537 	/* Don't create child dentry for a dead directory. */
1538 	if (unlikely(IS_DEADDIR(dir)))
1539 		return ERR_PTR(-ENOENT);
1540 
1541 	dentry = d_alloc(base, name);
1542 	if (unlikely(!dentry))
1543 		return ERR_PTR(-ENOMEM);
1544 
1545 	old = dir->i_op->lookup(dir, dentry, flags);
1546 	if (unlikely(old)) {
1547 		dput(dentry);
1548 		dentry = old;
1549 	}
1550 	return dentry;
1551 }
1552 
1553 static int lookup_fast(struct nameidata *nd,
1554 		       struct path *path, struct inode **inode,
1555 		       unsigned *seqp)
1556 {
1557 	struct vfsmount *mnt = nd->path.mnt;
1558 	struct dentry *dentry, *parent = nd->path.dentry;
1559 	int status = 1;
1560 	int err;
1561 
1562 	/*
1563 	 * Rename seqlock is not required here because in the off chance
1564 	 * of a false negative due to a concurrent rename, the caller is
1565 	 * going to fall back to non-racy lookup.
1566 	 */
1567 	if (nd->flags & LOOKUP_RCU) {
1568 		unsigned seq;
1569 		bool negative;
1570 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1571 		if (unlikely(!dentry)) {
1572 			if (unlazy_walk(nd))
1573 				return -ECHILD;
1574 			return 0;
1575 		}
1576 
1577 		/*
1578 		 * This sequence count validates that the inode matches
1579 		 * the dentry name information from lookup.
1580 		 */
1581 		*inode = d_backing_inode(dentry);
1582 		negative = d_is_negative(dentry);
1583 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1584 			return -ECHILD;
1585 
1586 		/*
1587 		 * This sequence count validates that the parent had no
1588 		 * changes while we did the lookup of the dentry above.
1589 		 *
1590 		 * The memory barrier in read_seqcount_begin of child is
1591 		 *  enough, we can use __read_seqcount_retry here.
1592 		 */
1593 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1594 			return -ECHILD;
1595 
1596 		*seqp = seq;
1597 		status = d_revalidate(dentry, nd->flags);
1598 		if (likely(status > 0)) {
1599 			/*
1600 			 * Note: do negative dentry check after revalidation in
1601 			 * case that drops it.
1602 			 */
1603 			if (unlikely(negative))
1604 				return -ENOENT;
1605 			path->mnt = mnt;
1606 			path->dentry = dentry;
1607 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1608 				return 1;
1609 		}
1610 		if (unlazy_child(nd, dentry, seq))
1611 			return -ECHILD;
1612 		if (unlikely(status == -ECHILD))
1613 			/* we'd been told to redo it in non-rcu mode */
1614 			status = d_revalidate(dentry, nd->flags);
1615 	} else {
1616 		dentry = __d_lookup(parent, &nd->last);
1617 		if (unlikely(!dentry))
1618 			return 0;
1619 		status = d_revalidate(dentry, nd->flags);
1620 	}
1621 	if (unlikely(status <= 0)) {
1622 		if (!status)
1623 			d_invalidate(dentry);
1624 		dput(dentry);
1625 		return status;
1626 	}
1627 
1628 	path->mnt = mnt;
1629 	path->dentry = dentry;
1630 	err = follow_managed(path, nd);
1631 	if (likely(err > 0))
1632 		*inode = d_backing_inode(path->dentry);
1633 	return err;
1634 }
1635 
1636 /* Fast lookup failed, do it the slow way */
1637 static struct dentry *__lookup_slow(const struct qstr *name,
1638 				    struct dentry *dir,
1639 				    unsigned int flags)
1640 {
1641 	struct dentry *dentry, *old;
1642 	struct inode *inode = dir->d_inode;
1643 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1644 
1645 	/* Don't go there if it's already dead */
1646 	if (unlikely(IS_DEADDIR(inode)))
1647 		return ERR_PTR(-ENOENT);
1648 again:
1649 	dentry = d_alloc_parallel(dir, name, &wq);
1650 	if (IS_ERR(dentry))
1651 		return dentry;
1652 	if (unlikely(!d_in_lookup(dentry))) {
1653 		int error = d_revalidate(dentry, flags);
1654 		if (unlikely(error <= 0)) {
1655 			if (!error) {
1656 				d_invalidate(dentry);
1657 				dput(dentry);
1658 				goto again;
1659 			}
1660 			dput(dentry);
1661 			dentry = ERR_PTR(error);
1662 		}
1663 	} else {
1664 		old = inode->i_op->lookup(inode, dentry, flags);
1665 		d_lookup_done(dentry);
1666 		if (unlikely(old)) {
1667 			dput(dentry);
1668 			dentry = old;
1669 		}
1670 	}
1671 	return dentry;
1672 }
1673 
1674 static struct dentry *lookup_slow(const struct qstr *name,
1675 				  struct dentry *dir,
1676 				  unsigned int flags)
1677 {
1678 	struct inode *inode = dir->d_inode;
1679 	struct dentry *res;
1680 	inode_lock_shared(inode);
1681 	res = __lookup_slow(name, dir, flags);
1682 	inode_unlock_shared(inode);
1683 	return res;
1684 }
1685 
1686 static inline int may_lookup(struct nameidata *nd)
1687 {
1688 	if (nd->flags & LOOKUP_RCU) {
1689 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1690 		if (err != -ECHILD)
1691 			return err;
1692 		if (unlazy_walk(nd))
1693 			return -ECHILD;
1694 	}
1695 	return inode_permission(nd->inode, MAY_EXEC);
1696 }
1697 
1698 static inline int handle_dots(struct nameidata *nd, int type)
1699 {
1700 	if (type == LAST_DOTDOT) {
1701 		if (!nd->root.mnt)
1702 			set_root(nd);
1703 		if (nd->flags & LOOKUP_RCU) {
1704 			return follow_dotdot_rcu(nd);
1705 		} else
1706 			return follow_dotdot(nd);
1707 	}
1708 	return 0;
1709 }
1710 
1711 static int pick_link(struct nameidata *nd, struct path *link,
1712 		     struct inode *inode, unsigned seq)
1713 {
1714 	int error;
1715 	struct saved *last;
1716 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1717 		path_to_nameidata(link, nd);
1718 		return -ELOOP;
1719 	}
1720 	if (!(nd->flags & LOOKUP_RCU)) {
1721 		if (link->mnt == nd->path.mnt)
1722 			mntget(link->mnt);
1723 	}
1724 	error = nd_alloc_stack(nd);
1725 	if (unlikely(error)) {
1726 		if (error == -ECHILD) {
1727 			if (unlikely(!legitimize_path(nd, link, seq))) {
1728 				drop_links(nd);
1729 				nd->depth = 0;
1730 				nd->flags &= ~LOOKUP_RCU;
1731 				nd->path.mnt = NULL;
1732 				nd->path.dentry = NULL;
1733 				rcu_read_unlock();
1734 			} else if (likely(unlazy_walk(nd)) == 0)
1735 				error = nd_alloc_stack(nd);
1736 		}
1737 		if (error) {
1738 			path_put(link);
1739 			return error;
1740 		}
1741 	}
1742 
1743 	last = nd->stack + nd->depth++;
1744 	last->link = *link;
1745 	clear_delayed_call(&last->done);
1746 	nd->link_inode = inode;
1747 	last->seq = seq;
1748 	return 1;
1749 }
1750 
1751 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1752 
1753 /*
1754  * Do we need to follow links? We _really_ want to be able
1755  * to do this check without having to look at inode->i_op,
1756  * so we keep a cache of "no, this doesn't need follow_link"
1757  * for the common case.
1758  */
1759 static inline int step_into(struct nameidata *nd, struct path *path,
1760 			    int flags, struct inode *inode, unsigned seq)
1761 {
1762 	if (!(flags & WALK_MORE) && nd->depth)
1763 		put_link(nd);
1764 	if (likely(!d_is_symlink(path->dentry)) ||
1765 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1766 		/* not a symlink or should not follow */
1767 		path_to_nameidata(path, nd);
1768 		nd->inode = inode;
1769 		nd->seq = seq;
1770 		return 0;
1771 	}
1772 	/* make sure that d_is_symlink above matches inode */
1773 	if (nd->flags & LOOKUP_RCU) {
1774 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1775 			return -ECHILD;
1776 	}
1777 	return pick_link(nd, path, inode, seq);
1778 }
1779 
1780 static int walk_component(struct nameidata *nd, int flags)
1781 {
1782 	struct path path;
1783 	struct inode *inode;
1784 	unsigned seq;
1785 	int err;
1786 	/*
1787 	 * "." and ".." are special - ".." especially so because it has
1788 	 * to be able to know about the current root directory and
1789 	 * parent relationships.
1790 	 */
1791 	if (unlikely(nd->last_type != LAST_NORM)) {
1792 		err = handle_dots(nd, nd->last_type);
1793 		if (!(flags & WALK_MORE) && nd->depth)
1794 			put_link(nd);
1795 		return err;
1796 	}
1797 	err = lookup_fast(nd, &path, &inode, &seq);
1798 	if (unlikely(err <= 0)) {
1799 		if (err < 0)
1800 			return err;
1801 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1802 					  nd->flags);
1803 		if (IS_ERR(path.dentry))
1804 			return PTR_ERR(path.dentry);
1805 
1806 		path.mnt = nd->path.mnt;
1807 		err = follow_managed(&path, nd);
1808 		if (unlikely(err < 0))
1809 			return err;
1810 
1811 		seq = 0;	/* we are already out of RCU mode */
1812 		inode = d_backing_inode(path.dentry);
1813 	}
1814 
1815 	return step_into(nd, &path, flags, inode, seq);
1816 }
1817 
1818 /*
1819  * We can do the critical dentry name comparison and hashing
1820  * operations one word at a time, but we are limited to:
1821  *
1822  * - Architectures with fast unaligned word accesses. We could
1823  *   do a "get_unaligned()" if this helps and is sufficiently
1824  *   fast.
1825  *
1826  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1827  *   do not trap on the (extremely unlikely) case of a page
1828  *   crossing operation.
1829  *
1830  * - Furthermore, we need an efficient 64-bit compile for the
1831  *   64-bit case in order to generate the "number of bytes in
1832  *   the final mask". Again, that could be replaced with a
1833  *   efficient population count instruction or similar.
1834  */
1835 #ifdef CONFIG_DCACHE_WORD_ACCESS
1836 
1837 #include <asm/word-at-a-time.h>
1838 
1839 #ifdef HASH_MIX
1840 
1841 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1842 
1843 #elif defined(CONFIG_64BIT)
1844 /*
1845  * Register pressure in the mixing function is an issue, particularly
1846  * on 32-bit x86, but almost any function requires one state value and
1847  * one temporary.  Instead, use a function designed for two state values
1848  * and no temporaries.
1849  *
1850  * This function cannot create a collision in only two iterations, so
1851  * we have two iterations to achieve avalanche.  In those two iterations,
1852  * we have six layers of mixing, which is enough to spread one bit's
1853  * influence out to 2^6 = 64 state bits.
1854  *
1855  * Rotate constants are scored by considering either 64 one-bit input
1856  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1857  * probability of that delta causing a change to each of the 128 output
1858  * bits, using a sample of random initial states.
1859  *
1860  * The Shannon entropy of the computed probabilities is then summed
1861  * to produce a score.  Ideally, any input change has a 50% chance of
1862  * toggling any given output bit.
1863  *
1864  * Mixing scores (in bits) for (12,45):
1865  * Input delta: 1-bit      2-bit
1866  * 1 round:     713.3    42542.6
1867  * 2 rounds:   2753.7   140389.8
1868  * 3 rounds:   5954.1   233458.2
1869  * 4 rounds:   7862.6   256672.2
1870  * Perfect:    8192     258048
1871  *            (64*128) (64*63/2 * 128)
1872  */
1873 #define HASH_MIX(x, y, a)	\
1874 	(	x ^= (a),	\
1875 	y ^= x,	x = rol64(x,12),\
1876 	x += y,	y = rol64(y,45),\
1877 	y *= 9			)
1878 
1879 /*
1880  * Fold two longs into one 32-bit hash value.  This must be fast, but
1881  * latency isn't quite as critical, as there is a fair bit of additional
1882  * work done before the hash value is used.
1883  */
1884 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1885 {
1886 	y ^= x * GOLDEN_RATIO_64;
1887 	y *= GOLDEN_RATIO_64;
1888 	return y >> 32;
1889 }
1890 
1891 #else	/* 32-bit case */
1892 
1893 /*
1894  * Mixing scores (in bits) for (7,20):
1895  * Input delta: 1-bit      2-bit
1896  * 1 round:     330.3     9201.6
1897  * 2 rounds:   1246.4    25475.4
1898  * 3 rounds:   1907.1    31295.1
1899  * 4 rounds:   2042.3    31718.6
1900  * Perfect:    2048      31744
1901  *            (32*64)   (32*31/2 * 64)
1902  */
1903 #define HASH_MIX(x, y, a)	\
1904 	(	x ^= (a),	\
1905 	y ^= x,	x = rol32(x, 7),\
1906 	x += y,	y = rol32(y,20),\
1907 	y *= 9			)
1908 
1909 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1910 {
1911 	/* Use arch-optimized multiply if one exists */
1912 	return __hash_32(y ^ __hash_32(x));
1913 }
1914 
1915 #endif
1916 
1917 /*
1918  * Return the hash of a string of known length.  This is carfully
1919  * designed to match hash_name(), which is the more critical function.
1920  * In particular, we must end by hashing a final word containing 0..7
1921  * payload bytes, to match the way that hash_name() iterates until it
1922  * finds the delimiter after the name.
1923  */
1924 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1925 {
1926 	unsigned long a, x = 0, y = (unsigned long)salt;
1927 
1928 	for (;;) {
1929 		if (!len)
1930 			goto done;
1931 		a = load_unaligned_zeropad(name);
1932 		if (len < sizeof(unsigned long))
1933 			break;
1934 		HASH_MIX(x, y, a);
1935 		name += sizeof(unsigned long);
1936 		len -= sizeof(unsigned long);
1937 	}
1938 	x ^= a & bytemask_from_count(len);
1939 done:
1940 	return fold_hash(x, y);
1941 }
1942 EXPORT_SYMBOL(full_name_hash);
1943 
1944 /* Return the "hash_len" (hash and length) of a null-terminated string */
1945 u64 hashlen_string(const void *salt, const char *name)
1946 {
1947 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1948 	unsigned long adata, mask, len;
1949 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1950 
1951 	len = 0;
1952 	goto inside;
1953 
1954 	do {
1955 		HASH_MIX(x, y, a);
1956 		len += sizeof(unsigned long);
1957 inside:
1958 		a = load_unaligned_zeropad(name+len);
1959 	} while (!has_zero(a, &adata, &constants));
1960 
1961 	adata = prep_zero_mask(a, adata, &constants);
1962 	mask = create_zero_mask(adata);
1963 	x ^= a & zero_bytemask(mask);
1964 
1965 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1966 }
1967 EXPORT_SYMBOL(hashlen_string);
1968 
1969 /*
1970  * Calculate the length and hash of the path component, and
1971  * return the "hash_len" as the result.
1972  */
1973 static inline u64 hash_name(const void *salt, const char *name)
1974 {
1975 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1976 	unsigned long adata, bdata, mask, len;
1977 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1978 
1979 	len = 0;
1980 	goto inside;
1981 
1982 	do {
1983 		HASH_MIX(x, y, a);
1984 		len += sizeof(unsigned long);
1985 inside:
1986 		a = load_unaligned_zeropad(name+len);
1987 		b = a ^ REPEAT_BYTE('/');
1988 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1989 
1990 	adata = prep_zero_mask(a, adata, &constants);
1991 	bdata = prep_zero_mask(b, bdata, &constants);
1992 	mask = create_zero_mask(adata | bdata);
1993 	x ^= a & zero_bytemask(mask);
1994 
1995 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1996 }
1997 
1998 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1999 
2000 /* Return the hash of a string of known length */
2001 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2002 {
2003 	unsigned long hash = init_name_hash(salt);
2004 	while (len--)
2005 		hash = partial_name_hash((unsigned char)*name++, hash);
2006 	return end_name_hash(hash);
2007 }
2008 EXPORT_SYMBOL(full_name_hash);
2009 
2010 /* Return the "hash_len" (hash and length) of a null-terminated string */
2011 u64 hashlen_string(const void *salt, const char *name)
2012 {
2013 	unsigned long hash = init_name_hash(salt);
2014 	unsigned long len = 0, c;
2015 
2016 	c = (unsigned char)*name;
2017 	while (c) {
2018 		len++;
2019 		hash = partial_name_hash(c, hash);
2020 		c = (unsigned char)name[len];
2021 	}
2022 	return hashlen_create(end_name_hash(hash), len);
2023 }
2024 EXPORT_SYMBOL(hashlen_string);
2025 
2026 /*
2027  * We know there's a real path component here of at least
2028  * one character.
2029  */
2030 static inline u64 hash_name(const void *salt, const char *name)
2031 {
2032 	unsigned long hash = init_name_hash(salt);
2033 	unsigned long len = 0, c;
2034 
2035 	c = (unsigned char)*name;
2036 	do {
2037 		len++;
2038 		hash = partial_name_hash(c, hash);
2039 		c = (unsigned char)name[len];
2040 	} while (c && c != '/');
2041 	return hashlen_create(end_name_hash(hash), len);
2042 }
2043 
2044 #endif
2045 
2046 /*
2047  * Name resolution.
2048  * This is the basic name resolution function, turning a pathname into
2049  * the final dentry. We expect 'base' to be positive and a directory.
2050  *
2051  * Returns 0 and nd will have valid dentry and mnt on success.
2052  * Returns error and drops reference to input namei data on failure.
2053  */
2054 static int link_path_walk(const char *name, struct nameidata *nd)
2055 {
2056 	int err;
2057 
2058 	if (IS_ERR(name))
2059 		return PTR_ERR(name);
2060 	while (*name=='/')
2061 		name++;
2062 	if (!*name)
2063 		return 0;
2064 
2065 	/* At this point we know we have a real path component. */
2066 	for(;;) {
2067 		u64 hash_len;
2068 		int type;
2069 
2070 		err = may_lookup(nd);
2071 		if (err)
2072 			return err;
2073 
2074 		hash_len = hash_name(nd->path.dentry, name);
2075 
2076 		type = LAST_NORM;
2077 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2078 			case 2:
2079 				if (name[1] == '.') {
2080 					type = LAST_DOTDOT;
2081 					nd->flags |= LOOKUP_JUMPED;
2082 				}
2083 				break;
2084 			case 1:
2085 				type = LAST_DOT;
2086 		}
2087 		if (likely(type == LAST_NORM)) {
2088 			struct dentry *parent = nd->path.dentry;
2089 			nd->flags &= ~LOOKUP_JUMPED;
2090 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2091 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2092 				err = parent->d_op->d_hash(parent, &this);
2093 				if (err < 0)
2094 					return err;
2095 				hash_len = this.hash_len;
2096 				name = this.name;
2097 			}
2098 		}
2099 
2100 		nd->last.hash_len = hash_len;
2101 		nd->last.name = name;
2102 		nd->last_type = type;
2103 
2104 		name += hashlen_len(hash_len);
2105 		if (!*name)
2106 			goto OK;
2107 		/*
2108 		 * If it wasn't NUL, we know it was '/'. Skip that
2109 		 * slash, and continue until no more slashes.
2110 		 */
2111 		do {
2112 			name++;
2113 		} while (unlikely(*name == '/'));
2114 		if (unlikely(!*name)) {
2115 OK:
2116 			/* pathname body, done */
2117 			if (!nd->depth)
2118 				return 0;
2119 			name = nd->stack[nd->depth - 1].name;
2120 			/* trailing symlink, done */
2121 			if (!name)
2122 				return 0;
2123 			/* last component of nested symlink */
2124 			err = walk_component(nd, WALK_FOLLOW);
2125 		} else {
2126 			/* not the last component */
2127 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2128 		}
2129 		if (err < 0)
2130 			return err;
2131 
2132 		if (err) {
2133 			const char *s = get_link(nd);
2134 
2135 			if (IS_ERR(s))
2136 				return PTR_ERR(s);
2137 			err = 0;
2138 			if (unlikely(!s)) {
2139 				/* jumped */
2140 				put_link(nd);
2141 			} else {
2142 				nd->stack[nd->depth - 1].name = name;
2143 				name = s;
2144 				continue;
2145 			}
2146 		}
2147 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2148 			if (nd->flags & LOOKUP_RCU) {
2149 				if (unlazy_walk(nd))
2150 					return -ECHILD;
2151 			}
2152 			return -ENOTDIR;
2153 		}
2154 	}
2155 }
2156 
2157 /* must be paired with terminate_walk() */
2158 static const char *path_init(struct nameidata *nd, unsigned flags)
2159 {
2160 	const char *s = nd->name->name;
2161 
2162 	if (!*s)
2163 		flags &= ~LOOKUP_RCU;
2164 	if (flags & LOOKUP_RCU)
2165 		rcu_read_lock();
2166 
2167 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2168 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2169 	nd->depth = 0;
2170 	if (flags & LOOKUP_ROOT) {
2171 		struct dentry *root = nd->root.dentry;
2172 		struct inode *inode = root->d_inode;
2173 		if (*s && unlikely(!d_can_lookup(root)))
2174 			return ERR_PTR(-ENOTDIR);
2175 		nd->path = nd->root;
2176 		nd->inode = inode;
2177 		if (flags & LOOKUP_RCU) {
2178 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2179 			nd->root_seq = nd->seq;
2180 			nd->m_seq = read_seqbegin(&mount_lock);
2181 		} else {
2182 			path_get(&nd->path);
2183 		}
2184 		return s;
2185 	}
2186 
2187 	nd->root.mnt = NULL;
2188 	nd->path.mnt = NULL;
2189 	nd->path.dentry = NULL;
2190 
2191 	nd->m_seq = read_seqbegin(&mount_lock);
2192 	if (*s == '/') {
2193 		set_root(nd);
2194 		if (likely(!nd_jump_root(nd)))
2195 			return s;
2196 		return ERR_PTR(-ECHILD);
2197 	} else if (nd->dfd == AT_FDCWD) {
2198 		if (flags & LOOKUP_RCU) {
2199 			struct fs_struct *fs = current->fs;
2200 			unsigned seq;
2201 
2202 			do {
2203 				seq = read_seqcount_begin(&fs->seq);
2204 				nd->path = fs->pwd;
2205 				nd->inode = nd->path.dentry->d_inode;
2206 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2207 			} while (read_seqcount_retry(&fs->seq, seq));
2208 		} else {
2209 			get_fs_pwd(current->fs, &nd->path);
2210 			nd->inode = nd->path.dentry->d_inode;
2211 		}
2212 		return s;
2213 	} else {
2214 		/* Caller must check execute permissions on the starting path component */
2215 		struct fd f = fdget_raw(nd->dfd);
2216 		struct dentry *dentry;
2217 
2218 		if (!f.file)
2219 			return ERR_PTR(-EBADF);
2220 
2221 		dentry = f.file->f_path.dentry;
2222 
2223 		if (*s && unlikely(!d_can_lookup(dentry))) {
2224 			fdput(f);
2225 			return ERR_PTR(-ENOTDIR);
2226 		}
2227 
2228 		nd->path = f.file->f_path;
2229 		if (flags & LOOKUP_RCU) {
2230 			nd->inode = nd->path.dentry->d_inode;
2231 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2232 		} else {
2233 			path_get(&nd->path);
2234 			nd->inode = nd->path.dentry->d_inode;
2235 		}
2236 		fdput(f);
2237 		return s;
2238 	}
2239 }
2240 
2241 static const char *trailing_symlink(struct nameidata *nd)
2242 {
2243 	const char *s;
2244 	int error = may_follow_link(nd);
2245 	if (unlikely(error))
2246 		return ERR_PTR(error);
2247 	nd->flags |= LOOKUP_PARENT;
2248 	nd->stack[0].name = NULL;
2249 	s = get_link(nd);
2250 	return s ? s : "";
2251 }
2252 
2253 static inline int lookup_last(struct nameidata *nd)
2254 {
2255 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2256 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2257 
2258 	nd->flags &= ~LOOKUP_PARENT;
2259 	return walk_component(nd, 0);
2260 }
2261 
2262 static int handle_lookup_down(struct nameidata *nd)
2263 {
2264 	struct path path = nd->path;
2265 	struct inode *inode = nd->inode;
2266 	unsigned seq = nd->seq;
2267 	int err;
2268 
2269 	if (nd->flags & LOOKUP_RCU) {
2270 		/*
2271 		 * don't bother with unlazy_walk on failure - we are
2272 		 * at the very beginning of walk, so we lose nothing
2273 		 * if we simply redo everything in non-RCU mode
2274 		 */
2275 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2276 			return -ECHILD;
2277 	} else {
2278 		dget(path.dentry);
2279 		err = follow_managed(&path, nd);
2280 		if (unlikely(err < 0))
2281 			return err;
2282 		inode = d_backing_inode(path.dentry);
2283 		seq = 0;
2284 	}
2285 	path_to_nameidata(&path, nd);
2286 	nd->inode = inode;
2287 	nd->seq = seq;
2288 	return 0;
2289 }
2290 
2291 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2292 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2293 {
2294 	const char *s = path_init(nd, flags);
2295 	int err;
2296 
2297 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2298 		err = handle_lookup_down(nd);
2299 		if (unlikely(err < 0))
2300 			s = ERR_PTR(err);
2301 	}
2302 
2303 	while (!(err = link_path_walk(s, nd))
2304 		&& ((err = lookup_last(nd)) > 0)) {
2305 		s = trailing_symlink(nd);
2306 	}
2307 	if (!err)
2308 		err = complete_walk(nd);
2309 
2310 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2311 		if (!d_can_lookup(nd->path.dentry))
2312 			err = -ENOTDIR;
2313 	if (!err) {
2314 		*path = nd->path;
2315 		nd->path.mnt = NULL;
2316 		nd->path.dentry = NULL;
2317 	}
2318 	terminate_walk(nd);
2319 	return err;
2320 }
2321 
2322 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2323 		    struct path *path, struct path *root)
2324 {
2325 	int retval;
2326 	struct nameidata nd;
2327 	if (IS_ERR(name))
2328 		return PTR_ERR(name);
2329 	if (unlikely(root)) {
2330 		nd.root = *root;
2331 		flags |= LOOKUP_ROOT;
2332 	}
2333 	set_nameidata(&nd, dfd, name);
2334 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2335 	if (unlikely(retval == -ECHILD))
2336 		retval = path_lookupat(&nd, flags, path);
2337 	if (unlikely(retval == -ESTALE))
2338 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2339 
2340 	if (likely(!retval))
2341 		audit_inode(name, path->dentry, 0);
2342 	restore_nameidata();
2343 	putname(name);
2344 	return retval;
2345 }
2346 
2347 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2348 static int path_parentat(struct nameidata *nd, unsigned flags,
2349 				struct path *parent)
2350 {
2351 	const char *s = path_init(nd, flags);
2352 	int err = link_path_walk(s, nd);
2353 	if (!err)
2354 		err = complete_walk(nd);
2355 	if (!err) {
2356 		*parent = nd->path;
2357 		nd->path.mnt = NULL;
2358 		nd->path.dentry = NULL;
2359 	}
2360 	terminate_walk(nd);
2361 	return err;
2362 }
2363 
2364 static struct filename *filename_parentat(int dfd, struct filename *name,
2365 				unsigned int flags, struct path *parent,
2366 				struct qstr *last, int *type)
2367 {
2368 	int retval;
2369 	struct nameidata nd;
2370 
2371 	if (IS_ERR(name))
2372 		return name;
2373 	set_nameidata(&nd, dfd, name);
2374 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2375 	if (unlikely(retval == -ECHILD))
2376 		retval = path_parentat(&nd, flags, parent);
2377 	if (unlikely(retval == -ESTALE))
2378 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2379 	if (likely(!retval)) {
2380 		*last = nd.last;
2381 		*type = nd.last_type;
2382 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2383 	} else {
2384 		putname(name);
2385 		name = ERR_PTR(retval);
2386 	}
2387 	restore_nameidata();
2388 	return name;
2389 }
2390 
2391 /* does lookup, returns the object with parent locked */
2392 struct dentry *kern_path_locked(const char *name, struct path *path)
2393 {
2394 	struct filename *filename;
2395 	struct dentry *d;
2396 	struct qstr last;
2397 	int type;
2398 
2399 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2400 				    &last, &type);
2401 	if (IS_ERR(filename))
2402 		return ERR_CAST(filename);
2403 	if (unlikely(type != LAST_NORM)) {
2404 		path_put(path);
2405 		putname(filename);
2406 		return ERR_PTR(-EINVAL);
2407 	}
2408 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2409 	d = __lookup_hash(&last, path->dentry, 0);
2410 	if (IS_ERR(d)) {
2411 		inode_unlock(path->dentry->d_inode);
2412 		path_put(path);
2413 	}
2414 	putname(filename);
2415 	return d;
2416 }
2417 
2418 int kern_path(const char *name, unsigned int flags, struct path *path)
2419 {
2420 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2421 			       flags, path, NULL);
2422 }
2423 EXPORT_SYMBOL(kern_path);
2424 
2425 /**
2426  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2427  * @dentry:  pointer to dentry of the base directory
2428  * @mnt: pointer to vfs mount of the base directory
2429  * @name: pointer to file name
2430  * @flags: lookup flags
2431  * @path: pointer to struct path to fill
2432  */
2433 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2434 		    const char *name, unsigned int flags,
2435 		    struct path *path)
2436 {
2437 	struct path root = {.mnt = mnt, .dentry = dentry};
2438 	/* the first argument of filename_lookup() is ignored with root */
2439 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2440 			       flags , path, &root);
2441 }
2442 EXPORT_SYMBOL(vfs_path_lookup);
2443 
2444 static int lookup_one_len_common(const char *name, struct dentry *base,
2445 				 int len, struct qstr *this)
2446 {
2447 	this->name = name;
2448 	this->len = len;
2449 	this->hash = full_name_hash(base, name, len);
2450 	if (!len)
2451 		return -EACCES;
2452 
2453 	if (unlikely(name[0] == '.')) {
2454 		if (len < 2 || (len == 2 && name[1] == '.'))
2455 			return -EACCES;
2456 	}
2457 
2458 	while (len--) {
2459 		unsigned int c = *(const unsigned char *)name++;
2460 		if (c == '/' || c == '\0')
2461 			return -EACCES;
2462 	}
2463 	/*
2464 	 * See if the low-level filesystem might want
2465 	 * to use its own hash..
2466 	 */
2467 	if (base->d_flags & DCACHE_OP_HASH) {
2468 		int err = base->d_op->d_hash(base, this);
2469 		if (err < 0)
2470 			return err;
2471 	}
2472 
2473 	return inode_permission(base->d_inode, MAY_EXEC);
2474 }
2475 
2476 /**
2477  * try_lookup_one_len - filesystem helper to lookup single pathname component
2478  * @name:	pathname component to lookup
2479  * @base:	base directory to lookup from
2480  * @len:	maximum length @len should be interpreted to
2481  *
2482  * Look up a dentry by name in the dcache, returning NULL if it does not
2483  * currently exist.  The function does not try to create a dentry.
2484  *
2485  * Note that this routine is purely a helper for filesystem usage and should
2486  * not be called by generic code.
2487  *
2488  * The caller must hold base->i_mutex.
2489  */
2490 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2491 {
2492 	struct qstr this;
2493 	int err;
2494 
2495 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2496 
2497 	err = lookup_one_len_common(name, base, len, &this);
2498 	if (err)
2499 		return ERR_PTR(err);
2500 
2501 	return lookup_dcache(&this, base, 0);
2502 }
2503 EXPORT_SYMBOL(try_lookup_one_len);
2504 
2505 /**
2506  * lookup_one_len - filesystem helper to lookup single pathname component
2507  * @name:	pathname component to lookup
2508  * @base:	base directory to lookup from
2509  * @len:	maximum length @len should be interpreted to
2510  *
2511  * Note that this routine is purely a helper for filesystem usage and should
2512  * not be called by generic code.
2513  *
2514  * The caller must hold base->i_mutex.
2515  */
2516 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2517 {
2518 	struct dentry *dentry;
2519 	struct qstr this;
2520 	int err;
2521 
2522 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2523 
2524 	err = lookup_one_len_common(name, base, len, &this);
2525 	if (err)
2526 		return ERR_PTR(err);
2527 
2528 	dentry = lookup_dcache(&this, base, 0);
2529 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2530 }
2531 EXPORT_SYMBOL(lookup_one_len);
2532 
2533 /**
2534  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2535  * @name:	pathname component to lookup
2536  * @base:	base directory to lookup from
2537  * @len:	maximum length @len should be interpreted to
2538  *
2539  * Note that this routine is purely a helper for filesystem usage and should
2540  * not be called by generic code.
2541  *
2542  * Unlike lookup_one_len, it should be called without the parent
2543  * i_mutex held, and will take the i_mutex itself if necessary.
2544  */
2545 struct dentry *lookup_one_len_unlocked(const char *name,
2546 				       struct dentry *base, int len)
2547 {
2548 	struct qstr this;
2549 	int err;
2550 	struct dentry *ret;
2551 
2552 	err = lookup_one_len_common(name, base, len, &this);
2553 	if (err)
2554 		return ERR_PTR(err);
2555 
2556 	ret = lookup_dcache(&this, base, 0);
2557 	if (!ret)
2558 		ret = lookup_slow(&this, base, 0);
2559 	return ret;
2560 }
2561 EXPORT_SYMBOL(lookup_one_len_unlocked);
2562 
2563 /*
2564  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2565  * on negatives.  Returns known positive or ERR_PTR(); that's what
2566  * most of the users want.  Note that pinned negative with unlocked parent
2567  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2568  * need to be very careful; pinned positives have ->d_inode stable, so
2569  * this one avoids such problems.
2570  */
2571 struct dentry *lookup_positive_unlocked(const char *name,
2572 				       struct dentry *base, int len)
2573 {
2574 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2575 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2576 		dput(ret);
2577 		ret = ERR_PTR(-ENOENT);
2578 	}
2579 	return ret;
2580 }
2581 EXPORT_SYMBOL(lookup_positive_unlocked);
2582 
2583 #ifdef CONFIG_UNIX98_PTYS
2584 int path_pts(struct path *path)
2585 {
2586 	/* Find something mounted on "pts" in the same directory as
2587 	 * the input path.
2588 	 */
2589 	struct dentry *child, *parent;
2590 	struct qstr this;
2591 	int ret;
2592 
2593 	ret = path_parent_directory(path);
2594 	if (ret)
2595 		return ret;
2596 
2597 	parent = path->dentry;
2598 	this.name = "pts";
2599 	this.len = 3;
2600 	child = d_hash_and_lookup(parent, &this);
2601 	if (!child)
2602 		return -ENOENT;
2603 
2604 	path->dentry = child;
2605 	dput(parent);
2606 	follow_mount(path);
2607 	return 0;
2608 }
2609 #endif
2610 
2611 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2612 		 struct path *path, int *empty)
2613 {
2614 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2615 			       flags, path, NULL);
2616 }
2617 EXPORT_SYMBOL(user_path_at_empty);
2618 
2619 /**
2620  * path_mountpoint - look up a path to be umounted
2621  * @nd:		lookup context
2622  * @flags:	lookup flags
2623  * @path:	pointer to container for result
2624  *
2625  * Look up the given name, but don't attempt to revalidate the last component.
2626  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2627  */
2628 static int
2629 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2630 {
2631 	const char *s = path_init(nd, flags);
2632 	int err;
2633 
2634 	while (!(err = link_path_walk(s, nd)) &&
2635 		(err = lookup_last(nd)) > 0) {
2636 		s = trailing_symlink(nd);
2637 	}
2638 	if (!err && (nd->flags & LOOKUP_RCU))
2639 		err = unlazy_walk(nd);
2640 	if (!err)
2641 		err = handle_lookup_down(nd);
2642 	if (!err) {
2643 		*path = nd->path;
2644 		nd->path.mnt = NULL;
2645 		nd->path.dentry = NULL;
2646 	}
2647 	terminate_walk(nd);
2648 	return err;
2649 }
2650 
2651 static int
2652 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2653 			unsigned int flags)
2654 {
2655 	struct nameidata nd;
2656 	int error;
2657 	if (IS_ERR(name))
2658 		return PTR_ERR(name);
2659 	set_nameidata(&nd, dfd, name);
2660 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2661 	if (unlikely(error == -ECHILD))
2662 		error = path_mountpoint(&nd, flags, path);
2663 	if (unlikely(error == -ESTALE))
2664 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2665 	if (likely(!error))
2666 		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2667 	restore_nameidata();
2668 	putname(name);
2669 	return error;
2670 }
2671 
2672 /**
2673  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2674  * @dfd:	directory file descriptor
2675  * @name:	pathname from userland
2676  * @flags:	lookup flags
2677  * @path:	pointer to container to hold result
2678  *
2679  * A umount is a special case for path walking. We're not actually interested
2680  * in the inode in this situation, and ESTALE errors can be a problem. We
2681  * simply want track down the dentry and vfsmount attached at the mountpoint
2682  * and avoid revalidating the last component.
2683  *
2684  * Returns 0 and populates "path" on success.
2685  */
2686 int
2687 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2688 			struct path *path)
2689 {
2690 	return filename_mountpoint(dfd, getname(name), path, flags);
2691 }
2692 
2693 int
2694 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2695 			unsigned int flags)
2696 {
2697 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2698 }
2699 EXPORT_SYMBOL(kern_path_mountpoint);
2700 
2701 int __check_sticky(struct inode *dir, struct inode *inode)
2702 {
2703 	kuid_t fsuid = current_fsuid();
2704 
2705 	if (uid_eq(inode->i_uid, fsuid))
2706 		return 0;
2707 	if (uid_eq(dir->i_uid, fsuid))
2708 		return 0;
2709 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2710 }
2711 EXPORT_SYMBOL(__check_sticky);
2712 
2713 /*
2714  *	Check whether we can remove a link victim from directory dir, check
2715  *  whether the type of victim is right.
2716  *  1. We can't do it if dir is read-only (done in permission())
2717  *  2. We should have write and exec permissions on dir
2718  *  3. We can't remove anything from append-only dir
2719  *  4. We can't do anything with immutable dir (done in permission())
2720  *  5. If the sticky bit on dir is set we should either
2721  *	a. be owner of dir, or
2722  *	b. be owner of victim, or
2723  *	c. have CAP_FOWNER capability
2724  *  6. If the victim is append-only or immutable we can't do antyhing with
2725  *     links pointing to it.
2726  *  7. If the victim has an unknown uid or gid we can't change the inode.
2727  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2728  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2729  * 10. We can't remove a root or mountpoint.
2730  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2731  *     nfs_async_unlink().
2732  */
2733 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2734 {
2735 	struct inode *inode = d_backing_inode(victim);
2736 	int error;
2737 
2738 	if (d_is_negative(victim))
2739 		return -ENOENT;
2740 	BUG_ON(!inode);
2741 
2742 	BUG_ON(victim->d_parent->d_inode != dir);
2743 
2744 	/* Inode writeback is not safe when the uid or gid are invalid. */
2745 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2746 		return -EOVERFLOW;
2747 
2748 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2749 
2750 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2751 	if (error)
2752 		return error;
2753 	if (IS_APPEND(dir))
2754 		return -EPERM;
2755 
2756 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2757 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2758 		return -EPERM;
2759 	if (isdir) {
2760 		if (!d_is_dir(victim))
2761 			return -ENOTDIR;
2762 		if (IS_ROOT(victim))
2763 			return -EBUSY;
2764 	} else if (d_is_dir(victim))
2765 		return -EISDIR;
2766 	if (IS_DEADDIR(dir))
2767 		return -ENOENT;
2768 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2769 		return -EBUSY;
2770 	return 0;
2771 }
2772 
2773 /*	Check whether we can create an object with dentry child in directory
2774  *  dir.
2775  *  1. We can't do it if child already exists (open has special treatment for
2776  *     this case, but since we are inlined it's OK)
2777  *  2. We can't do it if dir is read-only (done in permission())
2778  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2779  *  4. We should have write and exec permissions on dir
2780  *  5. We can't do it if dir is immutable (done in permission())
2781  */
2782 static inline int may_create(struct inode *dir, struct dentry *child)
2783 {
2784 	struct user_namespace *s_user_ns;
2785 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2786 	if (child->d_inode)
2787 		return -EEXIST;
2788 	if (IS_DEADDIR(dir))
2789 		return -ENOENT;
2790 	s_user_ns = dir->i_sb->s_user_ns;
2791 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2792 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2793 		return -EOVERFLOW;
2794 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2795 }
2796 
2797 /*
2798  * p1 and p2 should be directories on the same fs.
2799  */
2800 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2801 {
2802 	struct dentry *p;
2803 
2804 	if (p1 == p2) {
2805 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2806 		return NULL;
2807 	}
2808 
2809 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2810 
2811 	p = d_ancestor(p2, p1);
2812 	if (p) {
2813 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2814 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2815 		return p;
2816 	}
2817 
2818 	p = d_ancestor(p1, p2);
2819 	if (p) {
2820 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2821 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2822 		return p;
2823 	}
2824 
2825 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2826 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2827 	return NULL;
2828 }
2829 EXPORT_SYMBOL(lock_rename);
2830 
2831 void unlock_rename(struct dentry *p1, struct dentry *p2)
2832 {
2833 	inode_unlock(p1->d_inode);
2834 	if (p1 != p2) {
2835 		inode_unlock(p2->d_inode);
2836 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2837 	}
2838 }
2839 EXPORT_SYMBOL(unlock_rename);
2840 
2841 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2842 		bool want_excl)
2843 {
2844 	int error = may_create(dir, dentry);
2845 	if (error)
2846 		return error;
2847 
2848 	if (!dir->i_op->create)
2849 		return -EACCES;	/* shouldn't it be ENOSYS? */
2850 	mode &= S_IALLUGO;
2851 	mode |= S_IFREG;
2852 	error = security_inode_create(dir, dentry, mode);
2853 	if (error)
2854 		return error;
2855 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2856 	if (!error)
2857 		fsnotify_create(dir, dentry);
2858 	return error;
2859 }
2860 EXPORT_SYMBOL(vfs_create);
2861 
2862 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2863 		int (*f)(struct dentry *, umode_t, void *),
2864 		void *arg)
2865 {
2866 	struct inode *dir = dentry->d_parent->d_inode;
2867 	int error = may_create(dir, dentry);
2868 	if (error)
2869 		return error;
2870 
2871 	mode &= S_IALLUGO;
2872 	mode |= S_IFREG;
2873 	error = security_inode_create(dir, dentry, mode);
2874 	if (error)
2875 		return error;
2876 	error = f(dentry, mode, arg);
2877 	if (!error)
2878 		fsnotify_create(dir, dentry);
2879 	return error;
2880 }
2881 EXPORT_SYMBOL(vfs_mkobj);
2882 
2883 bool may_open_dev(const struct path *path)
2884 {
2885 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2886 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2887 }
2888 
2889 static int may_open(const struct path *path, int acc_mode, int flag)
2890 {
2891 	struct dentry *dentry = path->dentry;
2892 	struct inode *inode = dentry->d_inode;
2893 	int error;
2894 
2895 	if (!inode)
2896 		return -ENOENT;
2897 
2898 	switch (inode->i_mode & S_IFMT) {
2899 	case S_IFLNK:
2900 		return -ELOOP;
2901 	case S_IFDIR:
2902 		if (acc_mode & MAY_WRITE)
2903 			return -EISDIR;
2904 		break;
2905 	case S_IFBLK:
2906 	case S_IFCHR:
2907 		if (!may_open_dev(path))
2908 			return -EACCES;
2909 		/*FALLTHRU*/
2910 	case S_IFIFO:
2911 	case S_IFSOCK:
2912 		flag &= ~O_TRUNC;
2913 		break;
2914 	}
2915 
2916 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2917 	if (error)
2918 		return error;
2919 
2920 	/*
2921 	 * An append-only file must be opened in append mode for writing.
2922 	 */
2923 	if (IS_APPEND(inode)) {
2924 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2925 			return -EPERM;
2926 		if (flag & O_TRUNC)
2927 			return -EPERM;
2928 	}
2929 
2930 	/* O_NOATIME can only be set by the owner or superuser */
2931 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2932 		return -EPERM;
2933 
2934 	return 0;
2935 }
2936 
2937 static int handle_truncate(struct file *filp)
2938 {
2939 	const struct path *path = &filp->f_path;
2940 	struct inode *inode = path->dentry->d_inode;
2941 	int error = get_write_access(inode);
2942 	if (error)
2943 		return error;
2944 	/*
2945 	 * Refuse to truncate files with mandatory locks held on them.
2946 	 */
2947 	error = locks_verify_locked(filp);
2948 	if (!error)
2949 		error = security_path_truncate(path);
2950 	if (!error) {
2951 		error = do_truncate(path->dentry, 0,
2952 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2953 				    filp);
2954 	}
2955 	put_write_access(inode);
2956 	return error;
2957 }
2958 
2959 static inline int open_to_namei_flags(int flag)
2960 {
2961 	if ((flag & O_ACCMODE) == 3)
2962 		flag--;
2963 	return flag;
2964 }
2965 
2966 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2967 {
2968 	struct user_namespace *s_user_ns;
2969 	int error = security_path_mknod(dir, dentry, mode, 0);
2970 	if (error)
2971 		return error;
2972 
2973 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2974 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2975 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2976 		return -EOVERFLOW;
2977 
2978 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2979 	if (error)
2980 		return error;
2981 
2982 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2983 }
2984 
2985 /*
2986  * Attempt to atomically look up, create and open a file from a negative
2987  * dentry.
2988  *
2989  * Returns 0 if successful.  The file will have been created and attached to
2990  * @file by the filesystem calling finish_open().
2991  *
2992  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2993  * be set.  The caller will need to perform the open themselves.  @path will
2994  * have been updated to point to the new dentry.  This may be negative.
2995  *
2996  * Returns an error code otherwise.
2997  */
2998 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2999 			struct path *path, struct file *file,
3000 			const struct open_flags *op,
3001 			int open_flag, umode_t mode)
3002 {
3003 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3004 	struct inode *dir =  nd->path.dentry->d_inode;
3005 	int error;
3006 
3007 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3008 		open_flag &= ~O_TRUNC;
3009 
3010 	if (nd->flags & LOOKUP_DIRECTORY)
3011 		open_flag |= O_DIRECTORY;
3012 
3013 	file->f_path.dentry = DENTRY_NOT_SET;
3014 	file->f_path.mnt = nd->path.mnt;
3015 	error = dir->i_op->atomic_open(dir, dentry, file,
3016 				       open_to_namei_flags(open_flag), mode);
3017 	d_lookup_done(dentry);
3018 	if (!error) {
3019 		if (file->f_mode & FMODE_OPENED) {
3020 			/*
3021 			 * We didn't have the inode before the open, so check open
3022 			 * permission here.
3023 			 */
3024 			int acc_mode = op->acc_mode;
3025 			if (file->f_mode & FMODE_CREATED) {
3026 				WARN_ON(!(open_flag & O_CREAT));
3027 				fsnotify_create(dir, dentry);
3028 				acc_mode = 0;
3029 			}
3030 			error = may_open(&file->f_path, acc_mode, open_flag);
3031 			if (WARN_ON(error > 0))
3032 				error = -EINVAL;
3033 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3034 			error = -EIO;
3035 		} else {
3036 			if (file->f_path.dentry) {
3037 				dput(dentry);
3038 				dentry = file->f_path.dentry;
3039 			}
3040 			if (file->f_mode & FMODE_CREATED)
3041 				fsnotify_create(dir, dentry);
3042 			if (unlikely(d_is_negative(dentry))) {
3043 				error = -ENOENT;
3044 			} else {
3045 				path->dentry = dentry;
3046 				path->mnt = nd->path.mnt;
3047 				return 0;
3048 			}
3049 		}
3050 	}
3051 	dput(dentry);
3052 	return error;
3053 }
3054 
3055 /*
3056  * Look up and maybe create and open the last component.
3057  *
3058  * Must be called with parent locked (exclusive in O_CREAT case).
3059  *
3060  * Returns 0 on success, that is, if
3061  *  the file was successfully atomically created (if necessary) and opened, or
3062  *  the file was not completely opened at this time, though lookups and
3063  *  creations were performed.
3064  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3065  * In the latter case dentry returned in @path might be negative if O_CREAT
3066  * hadn't been specified.
3067  *
3068  * An error code is returned on failure.
3069  */
3070 static int lookup_open(struct nameidata *nd, struct path *path,
3071 			struct file *file,
3072 			const struct open_flags *op,
3073 			bool got_write)
3074 {
3075 	struct dentry *dir = nd->path.dentry;
3076 	struct inode *dir_inode = dir->d_inode;
3077 	int open_flag = op->open_flag;
3078 	struct dentry *dentry;
3079 	int error, create_error = 0;
3080 	umode_t mode = op->mode;
3081 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3082 
3083 	if (unlikely(IS_DEADDIR(dir_inode)))
3084 		return -ENOENT;
3085 
3086 	file->f_mode &= ~FMODE_CREATED;
3087 	dentry = d_lookup(dir, &nd->last);
3088 	for (;;) {
3089 		if (!dentry) {
3090 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3091 			if (IS_ERR(dentry))
3092 				return PTR_ERR(dentry);
3093 		}
3094 		if (d_in_lookup(dentry))
3095 			break;
3096 
3097 		error = d_revalidate(dentry, nd->flags);
3098 		if (likely(error > 0))
3099 			break;
3100 		if (error)
3101 			goto out_dput;
3102 		d_invalidate(dentry);
3103 		dput(dentry);
3104 		dentry = NULL;
3105 	}
3106 	if (dentry->d_inode) {
3107 		/* Cached positive dentry: will open in f_op->open */
3108 		goto out_no_open;
3109 	}
3110 
3111 	/*
3112 	 * Checking write permission is tricky, bacuse we don't know if we are
3113 	 * going to actually need it: O_CREAT opens should work as long as the
3114 	 * file exists.  But checking existence breaks atomicity.  The trick is
3115 	 * to check access and if not granted clear O_CREAT from the flags.
3116 	 *
3117 	 * Another problem is returing the "right" error value (e.g. for an
3118 	 * O_EXCL open we want to return EEXIST not EROFS).
3119 	 */
3120 	if (open_flag & O_CREAT) {
3121 		if (!IS_POSIXACL(dir->d_inode))
3122 			mode &= ~current_umask();
3123 		if (unlikely(!got_write)) {
3124 			create_error = -EROFS;
3125 			open_flag &= ~O_CREAT;
3126 			if (open_flag & (O_EXCL | O_TRUNC))
3127 				goto no_open;
3128 			/* No side effects, safe to clear O_CREAT */
3129 		} else {
3130 			create_error = may_o_create(&nd->path, dentry, mode);
3131 			if (create_error) {
3132 				open_flag &= ~O_CREAT;
3133 				if (open_flag & O_EXCL)
3134 					goto no_open;
3135 			}
3136 		}
3137 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3138 		   unlikely(!got_write)) {
3139 		/*
3140 		 * No O_CREATE -> atomicity not a requirement -> fall
3141 		 * back to lookup + open
3142 		 */
3143 		goto no_open;
3144 	}
3145 
3146 	if (dir_inode->i_op->atomic_open) {
3147 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3148 				    mode);
3149 		if (unlikely(error == -ENOENT) && create_error)
3150 			error = create_error;
3151 		return error;
3152 	}
3153 
3154 no_open:
3155 	if (d_in_lookup(dentry)) {
3156 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3157 							     nd->flags);
3158 		d_lookup_done(dentry);
3159 		if (unlikely(res)) {
3160 			if (IS_ERR(res)) {
3161 				error = PTR_ERR(res);
3162 				goto out_dput;
3163 			}
3164 			dput(dentry);
3165 			dentry = res;
3166 		}
3167 	}
3168 
3169 	/* Negative dentry, just create the file */
3170 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3171 		file->f_mode |= FMODE_CREATED;
3172 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3173 		if (!dir_inode->i_op->create) {
3174 			error = -EACCES;
3175 			goto out_dput;
3176 		}
3177 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3178 						open_flag & O_EXCL);
3179 		if (error)
3180 			goto out_dput;
3181 		fsnotify_create(dir_inode, dentry);
3182 	}
3183 	if (unlikely(create_error) && !dentry->d_inode) {
3184 		error = create_error;
3185 		goto out_dput;
3186 	}
3187 out_no_open:
3188 	path->dentry = dentry;
3189 	path->mnt = nd->path.mnt;
3190 	return 0;
3191 
3192 out_dput:
3193 	dput(dentry);
3194 	return error;
3195 }
3196 
3197 /*
3198  * Handle the last step of open()
3199  */
3200 static int do_last(struct nameidata *nd,
3201 		   struct file *file, const struct open_flags *op)
3202 {
3203 	struct dentry *dir = nd->path.dentry;
3204 	int open_flag = op->open_flag;
3205 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3206 	bool got_write = false;
3207 	int acc_mode = op->acc_mode;
3208 	unsigned seq;
3209 	struct inode *inode;
3210 	struct path path;
3211 	int error;
3212 
3213 	nd->flags &= ~LOOKUP_PARENT;
3214 	nd->flags |= op->intent;
3215 
3216 	if (nd->last_type != LAST_NORM) {
3217 		error = handle_dots(nd, nd->last_type);
3218 		if (unlikely(error))
3219 			return error;
3220 		goto finish_open;
3221 	}
3222 
3223 	if (!(open_flag & O_CREAT)) {
3224 		if (nd->last.name[nd->last.len])
3225 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3226 		/* we _can_ be in RCU mode here */
3227 		error = lookup_fast(nd, &path, &inode, &seq);
3228 		if (likely(error > 0))
3229 			goto finish_lookup;
3230 
3231 		if (error < 0)
3232 			return error;
3233 
3234 		BUG_ON(nd->inode != dir->d_inode);
3235 		BUG_ON(nd->flags & LOOKUP_RCU);
3236 	} else {
3237 		/* create side of things */
3238 		/*
3239 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3240 		 * has been cleared when we got to the last component we are
3241 		 * about to look up
3242 		 */
3243 		error = complete_walk(nd);
3244 		if (error)
3245 			return error;
3246 
3247 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3248 		/* trailing slashes? */
3249 		if (unlikely(nd->last.name[nd->last.len]))
3250 			return -EISDIR;
3251 	}
3252 
3253 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3254 		error = mnt_want_write(nd->path.mnt);
3255 		if (!error)
3256 			got_write = true;
3257 		/*
3258 		 * do _not_ fail yet - we might not need that or fail with
3259 		 * a different error; let lookup_open() decide; we'll be
3260 		 * dropping this one anyway.
3261 		 */
3262 	}
3263 	if (open_flag & O_CREAT)
3264 		inode_lock(dir->d_inode);
3265 	else
3266 		inode_lock_shared(dir->d_inode);
3267 	error = lookup_open(nd, &path, file, op, got_write);
3268 	if (open_flag & O_CREAT)
3269 		inode_unlock(dir->d_inode);
3270 	else
3271 		inode_unlock_shared(dir->d_inode);
3272 
3273 	if (error)
3274 		goto out;
3275 
3276 	if (file->f_mode & FMODE_OPENED) {
3277 		if ((file->f_mode & FMODE_CREATED) ||
3278 		    !S_ISREG(file_inode(file)->i_mode))
3279 			will_truncate = false;
3280 
3281 		audit_inode(nd->name, file->f_path.dentry, 0);
3282 		goto opened;
3283 	}
3284 
3285 	if (file->f_mode & FMODE_CREATED) {
3286 		/* Don't check for write permission, don't truncate */
3287 		open_flag &= ~O_TRUNC;
3288 		will_truncate = false;
3289 		acc_mode = 0;
3290 		path_to_nameidata(&path, nd);
3291 		goto finish_open_created;
3292 	}
3293 
3294 	/*
3295 	 * If atomic_open() acquired write access it is dropped now due to
3296 	 * possible mount and symlink following (this might be optimized away if
3297 	 * necessary...)
3298 	 */
3299 	if (got_write) {
3300 		mnt_drop_write(nd->path.mnt);
3301 		got_write = false;
3302 	}
3303 
3304 	error = follow_managed(&path, nd);
3305 	if (unlikely(error < 0))
3306 		return error;
3307 
3308 	/*
3309 	 * create/update audit record if it already exists.
3310 	 */
3311 	audit_inode(nd->name, path.dentry, 0);
3312 
3313 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3314 		path_to_nameidata(&path, nd);
3315 		return -EEXIST;
3316 	}
3317 
3318 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3319 	inode = d_backing_inode(path.dentry);
3320 finish_lookup:
3321 	error = step_into(nd, &path, 0, inode, seq);
3322 	if (unlikely(error))
3323 		return error;
3324 finish_open:
3325 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3326 	error = complete_walk(nd);
3327 	if (error)
3328 		return error;
3329 	audit_inode(nd->name, nd->path.dentry, 0);
3330 	if (open_flag & O_CREAT) {
3331 		error = -EISDIR;
3332 		if (d_is_dir(nd->path.dentry))
3333 			goto out;
3334 		error = may_create_in_sticky(dir,
3335 					     d_backing_inode(nd->path.dentry));
3336 		if (unlikely(error))
3337 			goto out;
3338 	}
3339 	error = -ENOTDIR;
3340 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3341 		goto out;
3342 	if (!d_is_reg(nd->path.dentry))
3343 		will_truncate = false;
3344 
3345 	if (will_truncate) {
3346 		error = mnt_want_write(nd->path.mnt);
3347 		if (error)
3348 			goto out;
3349 		got_write = true;
3350 	}
3351 finish_open_created:
3352 	error = may_open(&nd->path, acc_mode, open_flag);
3353 	if (error)
3354 		goto out;
3355 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3356 	error = vfs_open(&nd->path, file);
3357 	if (error)
3358 		goto out;
3359 opened:
3360 	error = ima_file_check(file, op->acc_mode);
3361 	if (!error && will_truncate)
3362 		error = handle_truncate(file);
3363 out:
3364 	if (unlikely(error > 0)) {
3365 		WARN_ON(1);
3366 		error = -EINVAL;
3367 	}
3368 	if (got_write)
3369 		mnt_drop_write(nd->path.mnt);
3370 	return error;
3371 }
3372 
3373 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3374 {
3375 	struct dentry *child = NULL;
3376 	struct inode *dir = dentry->d_inode;
3377 	struct inode *inode;
3378 	int error;
3379 
3380 	/* we want directory to be writable */
3381 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3382 	if (error)
3383 		goto out_err;
3384 	error = -EOPNOTSUPP;
3385 	if (!dir->i_op->tmpfile)
3386 		goto out_err;
3387 	error = -ENOMEM;
3388 	child = d_alloc(dentry, &slash_name);
3389 	if (unlikely(!child))
3390 		goto out_err;
3391 	error = dir->i_op->tmpfile(dir, child, mode);
3392 	if (error)
3393 		goto out_err;
3394 	error = -ENOENT;
3395 	inode = child->d_inode;
3396 	if (unlikely(!inode))
3397 		goto out_err;
3398 	if (!(open_flag & O_EXCL)) {
3399 		spin_lock(&inode->i_lock);
3400 		inode->i_state |= I_LINKABLE;
3401 		spin_unlock(&inode->i_lock);
3402 	}
3403 	ima_post_create_tmpfile(inode);
3404 	return child;
3405 
3406 out_err:
3407 	dput(child);
3408 	return ERR_PTR(error);
3409 }
3410 EXPORT_SYMBOL(vfs_tmpfile);
3411 
3412 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3413 		const struct open_flags *op,
3414 		struct file *file)
3415 {
3416 	struct dentry *child;
3417 	struct path path;
3418 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3419 	if (unlikely(error))
3420 		return error;
3421 	error = mnt_want_write(path.mnt);
3422 	if (unlikely(error))
3423 		goto out;
3424 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3425 	error = PTR_ERR(child);
3426 	if (IS_ERR(child))
3427 		goto out2;
3428 	dput(path.dentry);
3429 	path.dentry = child;
3430 	audit_inode(nd->name, child, 0);
3431 	/* Don't check for other permissions, the inode was just created */
3432 	error = may_open(&path, 0, op->open_flag);
3433 	if (error)
3434 		goto out2;
3435 	file->f_path.mnt = path.mnt;
3436 	error = finish_open(file, child, NULL);
3437 out2:
3438 	mnt_drop_write(path.mnt);
3439 out:
3440 	path_put(&path);
3441 	return error;
3442 }
3443 
3444 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3445 {
3446 	struct path path;
3447 	int error = path_lookupat(nd, flags, &path);
3448 	if (!error) {
3449 		audit_inode(nd->name, path.dentry, 0);
3450 		error = vfs_open(&path, file);
3451 		path_put(&path);
3452 	}
3453 	return error;
3454 }
3455 
3456 static struct file *path_openat(struct nameidata *nd,
3457 			const struct open_flags *op, unsigned flags)
3458 {
3459 	struct file *file;
3460 	int error;
3461 
3462 	file = alloc_empty_file(op->open_flag, current_cred());
3463 	if (IS_ERR(file))
3464 		return file;
3465 
3466 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3467 		error = do_tmpfile(nd, flags, op, file);
3468 	} else if (unlikely(file->f_flags & O_PATH)) {
3469 		error = do_o_path(nd, flags, file);
3470 	} else {
3471 		const char *s = path_init(nd, flags);
3472 		while (!(error = link_path_walk(s, nd)) &&
3473 			(error = do_last(nd, file, op)) > 0) {
3474 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3475 			s = trailing_symlink(nd);
3476 		}
3477 		terminate_walk(nd);
3478 	}
3479 	if (likely(!error)) {
3480 		if (likely(file->f_mode & FMODE_OPENED))
3481 			return file;
3482 		WARN_ON(1);
3483 		error = -EINVAL;
3484 	}
3485 	fput(file);
3486 	if (error == -EOPENSTALE) {
3487 		if (flags & LOOKUP_RCU)
3488 			error = -ECHILD;
3489 		else
3490 			error = -ESTALE;
3491 	}
3492 	return ERR_PTR(error);
3493 }
3494 
3495 struct file *do_filp_open(int dfd, struct filename *pathname,
3496 		const struct open_flags *op)
3497 {
3498 	struct nameidata nd;
3499 	int flags = op->lookup_flags;
3500 	struct file *filp;
3501 
3502 	set_nameidata(&nd, dfd, pathname);
3503 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3504 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3505 		filp = path_openat(&nd, op, flags);
3506 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3507 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3508 	restore_nameidata();
3509 	return filp;
3510 }
3511 
3512 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3513 		const char *name, const struct open_flags *op)
3514 {
3515 	struct nameidata nd;
3516 	struct file *file;
3517 	struct filename *filename;
3518 	int flags = op->lookup_flags | LOOKUP_ROOT;
3519 
3520 	nd.root.mnt = mnt;
3521 	nd.root.dentry = dentry;
3522 
3523 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3524 		return ERR_PTR(-ELOOP);
3525 
3526 	filename = getname_kernel(name);
3527 	if (IS_ERR(filename))
3528 		return ERR_CAST(filename);
3529 
3530 	set_nameidata(&nd, -1, filename);
3531 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3532 	if (unlikely(file == ERR_PTR(-ECHILD)))
3533 		file = path_openat(&nd, op, flags);
3534 	if (unlikely(file == ERR_PTR(-ESTALE)))
3535 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3536 	restore_nameidata();
3537 	putname(filename);
3538 	return file;
3539 }
3540 
3541 static struct dentry *filename_create(int dfd, struct filename *name,
3542 				struct path *path, unsigned int lookup_flags)
3543 {
3544 	struct dentry *dentry = ERR_PTR(-EEXIST);
3545 	struct qstr last;
3546 	int type;
3547 	int err2;
3548 	int error;
3549 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3550 
3551 	/*
3552 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3553 	 * other flags passed in are ignored!
3554 	 */
3555 	lookup_flags &= LOOKUP_REVAL;
3556 
3557 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3558 	if (IS_ERR(name))
3559 		return ERR_CAST(name);
3560 
3561 	/*
3562 	 * Yucky last component or no last component at all?
3563 	 * (foo/., foo/.., /////)
3564 	 */
3565 	if (unlikely(type != LAST_NORM))
3566 		goto out;
3567 
3568 	/* don't fail immediately if it's r/o, at least try to report other errors */
3569 	err2 = mnt_want_write(path->mnt);
3570 	/*
3571 	 * Do the final lookup.
3572 	 */
3573 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3574 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3575 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3576 	if (IS_ERR(dentry))
3577 		goto unlock;
3578 
3579 	error = -EEXIST;
3580 	if (d_is_positive(dentry))
3581 		goto fail;
3582 
3583 	/*
3584 	 * Special case - lookup gave negative, but... we had foo/bar/
3585 	 * From the vfs_mknod() POV we just have a negative dentry -
3586 	 * all is fine. Let's be bastards - you had / on the end, you've
3587 	 * been asking for (non-existent) directory. -ENOENT for you.
3588 	 */
3589 	if (unlikely(!is_dir && last.name[last.len])) {
3590 		error = -ENOENT;
3591 		goto fail;
3592 	}
3593 	if (unlikely(err2)) {
3594 		error = err2;
3595 		goto fail;
3596 	}
3597 	putname(name);
3598 	return dentry;
3599 fail:
3600 	dput(dentry);
3601 	dentry = ERR_PTR(error);
3602 unlock:
3603 	inode_unlock(path->dentry->d_inode);
3604 	if (!err2)
3605 		mnt_drop_write(path->mnt);
3606 out:
3607 	path_put(path);
3608 	putname(name);
3609 	return dentry;
3610 }
3611 
3612 struct dentry *kern_path_create(int dfd, const char *pathname,
3613 				struct path *path, unsigned int lookup_flags)
3614 {
3615 	return filename_create(dfd, getname_kernel(pathname),
3616 				path, lookup_flags);
3617 }
3618 EXPORT_SYMBOL(kern_path_create);
3619 
3620 void done_path_create(struct path *path, struct dentry *dentry)
3621 {
3622 	dput(dentry);
3623 	inode_unlock(path->dentry->d_inode);
3624 	mnt_drop_write(path->mnt);
3625 	path_put(path);
3626 }
3627 EXPORT_SYMBOL(done_path_create);
3628 
3629 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3630 				struct path *path, unsigned int lookup_flags)
3631 {
3632 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3633 }
3634 EXPORT_SYMBOL(user_path_create);
3635 
3636 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3637 {
3638 	int error = may_create(dir, dentry);
3639 
3640 	if (error)
3641 		return error;
3642 
3643 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3644 		return -EPERM;
3645 
3646 	if (!dir->i_op->mknod)
3647 		return -EPERM;
3648 
3649 	error = devcgroup_inode_mknod(mode, dev);
3650 	if (error)
3651 		return error;
3652 
3653 	error = security_inode_mknod(dir, dentry, mode, dev);
3654 	if (error)
3655 		return error;
3656 
3657 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3658 	if (!error)
3659 		fsnotify_create(dir, dentry);
3660 	return error;
3661 }
3662 EXPORT_SYMBOL(vfs_mknod);
3663 
3664 static int may_mknod(umode_t mode)
3665 {
3666 	switch (mode & S_IFMT) {
3667 	case S_IFREG:
3668 	case S_IFCHR:
3669 	case S_IFBLK:
3670 	case S_IFIFO:
3671 	case S_IFSOCK:
3672 	case 0: /* zero mode translates to S_IFREG */
3673 		return 0;
3674 	case S_IFDIR:
3675 		return -EPERM;
3676 	default:
3677 		return -EINVAL;
3678 	}
3679 }
3680 
3681 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3682 		unsigned int dev)
3683 {
3684 	struct dentry *dentry;
3685 	struct path path;
3686 	int error;
3687 	unsigned int lookup_flags = 0;
3688 
3689 	error = may_mknod(mode);
3690 	if (error)
3691 		return error;
3692 retry:
3693 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3694 	if (IS_ERR(dentry))
3695 		return PTR_ERR(dentry);
3696 
3697 	if (!IS_POSIXACL(path.dentry->d_inode))
3698 		mode &= ~current_umask();
3699 	error = security_path_mknod(&path, dentry, mode, dev);
3700 	if (error)
3701 		goto out;
3702 	switch (mode & S_IFMT) {
3703 		case 0: case S_IFREG:
3704 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3705 			if (!error)
3706 				ima_post_path_mknod(dentry);
3707 			break;
3708 		case S_IFCHR: case S_IFBLK:
3709 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3710 					new_decode_dev(dev));
3711 			break;
3712 		case S_IFIFO: case S_IFSOCK:
3713 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3714 			break;
3715 	}
3716 out:
3717 	done_path_create(&path, dentry);
3718 	if (retry_estale(error, lookup_flags)) {
3719 		lookup_flags |= LOOKUP_REVAL;
3720 		goto retry;
3721 	}
3722 	return error;
3723 }
3724 
3725 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3726 		unsigned int, dev)
3727 {
3728 	return do_mknodat(dfd, filename, mode, dev);
3729 }
3730 
3731 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3732 {
3733 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3734 }
3735 
3736 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3737 {
3738 	int error = may_create(dir, dentry);
3739 	unsigned max_links = dir->i_sb->s_max_links;
3740 
3741 	if (error)
3742 		return error;
3743 
3744 	if (!dir->i_op->mkdir)
3745 		return -EPERM;
3746 
3747 	mode &= (S_IRWXUGO|S_ISVTX);
3748 	error = security_inode_mkdir(dir, dentry, mode);
3749 	if (error)
3750 		return error;
3751 
3752 	if (max_links && dir->i_nlink >= max_links)
3753 		return -EMLINK;
3754 
3755 	error = dir->i_op->mkdir(dir, dentry, mode);
3756 	if (!error)
3757 		fsnotify_mkdir(dir, dentry);
3758 	return error;
3759 }
3760 EXPORT_SYMBOL(vfs_mkdir);
3761 
3762 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3763 {
3764 	struct dentry *dentry;
3765 	struct path path;
3766 	int error;
3767 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3768 
3769 retry:
3770 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3771 	if (IS_ERR(dentry))
3772 		return PTR_ERR(dentry);
3773 
3774 	if (!IS_POSIXACL(path.dentry->d_inode))
3775 		mode &= ~current_umask();
3776 	error = security_path_mkdir(&path, dentry, mode);
3777 	if (!error)
3778 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3779 	done_path_create(&path, dentry);
3780 	if (retry_estale(error, lookup_flags)) {
3781 		lookup_flags |= LOOKUP_REVAL;
3782 		goto retry;
3783 	}
3784 	return error;
3785 }
3786 
3787 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3788 {
3789 	return do_mkdirat(dfd, pathname, mode);
3790 }
3791 
3792 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3793 {
3794 	return do_mkdirat(AT_FDCWD, pathname, mode);
3795 }
3796 
3797 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3798 {
3799 	int error = may_delete(dir, dentry, 1);
3800 
3801 	if (error)
3802 		return error;
3803 
3804 	if (!dir->i_op->rmdir)
3805 		return -EPERM;
3806 
3807 	dget(dentry);
3808 	inode_lock(dentry->d_inode);
3809 
3810 	error = -EBUSY;
3811 	if (is_local_mountpoint(dentry))
3812 		goto out;
3813 
3814 	error = security_inode_rmdir(dir, dentry);
3815 	if (error)
3816 		goto out;
3817 
3818 	error = dir->i_op->rmdir(dir, dentry);
3819 	if (error)
3820 		goto out;
3821 
3822 	shrink_dcache_parent(dentry);
3823 	dentry->d_inode->i_flags |= S_DEAD;
3824 	dont_mount(dentry);
3825 	detach_mounts(dentry);
3826 	fsnotify_rmdir(dir, dentry);
3827 
3828 out:
3829 	inode_unlock(dentry->d_inode);
3830 	dput(dentry);
3831 	if (!error)
3832 		d_delete(dentry);
3833 	return error;
3834 }
3835 EXPORT_SYMBOL(vfs_rmdir);
3836 
3837 long do_rmdir(int dfd, const char __user *pathname)
3838 {
3839 	int error = 0;
3840 	struct filename *name;
3841 	struct dentry *dentry;
3842 	struct path path;
3843 	struct qstr last;
3844 	int type;
3845 	unsigned int lookup_flags = 0;
3846 retry:
3847 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3848 				&path, &last, &type);
3849 	if (IS_ERR(name))
3850 		return PTR_ERR(name);
3851 
3852 	switch (type) {
3853 	case LAST_DOTDOT:
3854 		error = -ENOTEMPTY;
3855 		goto exit1;
3856 	case LAST_DOT:
3857 		error = -EINVAL;
3858 		goto exit1;
3859 	case LAST_ROOT:
3860 		error = -EBUSY;
3861 		goto exit1;
3862 	}
3863 
3864 	error = mnt_want_write(path.mnt);
3865 	if (error)
3866 		goto exit1;
3867 
3868 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3869 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3870 	error = PTR_ERR(dentry);
3871 	if (IS_ERR(dentry))
3872 		goto exit2;
3873 	if (!dentry->d_inode) {
3874 		error = -ENOENT;
3875 		goto exit3;
3876 	}
3877 	error = security_path_rmdir(&path, dentry);
3878 	if (error)
3879 		goto exit3;
3880 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3881 exit3:
3882 	dput(dentry);
3883 exit2:
3884 	inode_unlock(path.dentry->d_inode);
3885 	mnt_drop_write(path.mnt);
3886 exit1:
3887 	path_put(&path);
3888 	putname(name);
3889 	if (retry_estale(error, lookup_flags)) {
3890 		lookup_flags |= LOOKUP_REVAL;
3891 		goto retry;
3892 	}
3893 	return error;
3894 }
3895 
3896 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3897 {
3898 	return do_rmdir(AT_FDCWD, pathname);
3899 }
3900 
3901 /**
3902  * vfs_unlink - unlink a filesystem object
3903  * @dir:	parent directory
3904  * @dentry:	victim
3905  * @delegated_inode: returns victim inode, if the inode is delegated.
3906  *
3907  * The caller must hold dir->i_mutex.
3908  *
3909  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3910  * return a reference to the inode in delegated_inode.  The caller
3911  * should then break the delegation on that inode and retry.  Because
3912  * breaking a delegation may take a long time, the caller should drop
3913  * dir->i_mutex before doing so.
3914  *
3915  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3916  * be appropriate for callers that expect the underlying filesystem not
3917  * to be NFS exported.
3918  */
3919 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3920 {
3921 	struct inode *target = dentry->d_inode;
3922 	int error = may_delete(dir, dentry, 0);
3923 
3924 	if (error)
3925 		return error;
3926 
3927 	if (!dir->i_op->unlink)
3928 		return -EPERM;
3929 
3930 	inode_lock(target);
3931 	if (is_local_mountpoint(dentry))
3932 		error = -EBUSY;
3933 	else {
3934 		error = security_inode_unlink(dir, dentry);
3935 		if (!error) {
3936 			error = try_break_deleg(target, delegated_inode);
3937 			if (error)
3938 				goto out;
3939 			error = dir->i_op->unlink(dir, dentry);
3940 			if (!error) {
3941 				dont_mount(dentry);
3942 				detach_mounts(dentry);
3943 				fsnotify_unlink(dir, dentry);
3944 			}
3945 		}
3946 	}
3947 out:
3948 	inode_unlock(target);
3949 
3950 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3951 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3952 		fsnotify_link_count(target);
3953 		d_delete(dentry);
3954 	}
3955 
3956 	return error;
3957 }
3958 EXPORT_SYMBOL(vfs_unlink);
3959 
3960 /*
3961  * Make sure that the actual truncation of the file will occur outside its
3962  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3963  * writeout happening, and we don't want to prevent access to the directory
3964  * while waiting on the I/O.
3965  */
3966 long do_unlinkat(int dfd, struct filename *name)
3967 {
3968 	int error;
3969 	struct dentry *dentry;
3970 	struct path path;
3971 	struct qstr last;
3972 	int type;
3973 	struct inode *inode = NULL;
3974 	struct inode *delegated_inode = NULL;
3975 	unsigned int lookup_flags = 0;
3976 retry:
3977 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3978 	if (IS_ERR(name))
3979 		return PTR_ERR(name);
3980 
3981 	error = -EISDIR;
3982 	if (type != LAST_NORM)
3983 		goto exit1;
3984 
3985 	error = mnt_want_write(path.mnt);
3986 	if (error)
3987 		goto exit1;
3988 retry_deleg:
3989 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3990 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3991 	error = PTR_ERR(dentry);
3992 	if (!IS_ERR(dentry)) {
3993 		/* Why not before? Because we want correct error value */
3994 		if (last.name[last.len])
3995 			goto slashes;
3996 		inode = dentry->d_inode;
3997 		if (d_is_negative(dentry))
3998 			goto slashes;
3999 		ihold(inode);
4000 		error = security_path_unlink(&path, dentry);
4001 		if (error)
4002 			goto exit2;
4003 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4004 exit2:
4005 		dput(dentry);
4006 	}
4007 	inode_unlock(path.dentry->d_inode);
4008 	if (inode)
4009 		iput(inode);	/* truncate the inode here */
4010 	inode = NULL;
4011 	if (delegated_inode) {
4012 		error = break_deleg_wait(&delegated_inode);
4013 		if (!error)
4014 			goto retry_deleg;
4015 	}
4016 	mnt_drop_write(path.mnt);
4017 exit1:
4018 	path_put(&path);
4019 	if (retry_estale(error, lookup_flags)) {
4020 		lookup_flags |= LOOKUP_REVAL;
4021 		inode = NULL;
4022 		goto retry;
4023 	}
4024 	putname(name);
4025 	return error;
4026 
4027 slashes:
4028 	if (d_is_negative(dentry))
4029 		error = -ENOENT;
4030 	else if (d_is_dir(dentry))
4031 		error = -EISDIR;
4032 	else
4033 		error = -ENOTDIR;
4034 	goto exit2;
4035 }
4036 
4037 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4038 {
4039 	if ((flag & ~AT_REMOVEDIR) != 0)
4040 		return -EINVAL;
4041 
4042 	if (flag & AT_REMOVEDIR)
4043 		return do_rmdir(dfd, pathname);
4044 
4045 	return do_unlinkat(dfd, getname(pathname));
4046 }
4047 
4048 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4049 {
4050 	return do_unlinkat(AT_FDCWD, getname(pathname));
4051 }
4052 
4053 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4054 {
4055 	int error = may_create(dir, dentry);
4056 
4057 	if (error)
4058 		return error;
4059 
4060 	if (!dir->i_op->symlink)
4061 		return -EPERM;
4062 
4063 	error = security_inode_symlink(dir, dentry, oldname);
4064 	if (error)
4065 		return error;
4066 
4067 	error = dir->i_op->symlink(dir, dentry, oldname);
4068 	if (!error)
4069 		fsnotify_create(dir, dentry);
4070 	return error;
4071 }
4072 EXPORT_SYMBOL(vfs_symlink);
4073 
4074 long do_symlinkat(const char __user *oldname, int newdfd,
4075 		  const char __user *newname)
4076 {
4077 	int error;
4078 	struct filename *from;
4079 	struct dentry *dentry;
4080 	struct path path;
4081 	unsigned int lookup_flags = 0;
4082 
4083 	from = getname(oldname);
4084 	if (IS_ERR(from))
4085 		return PTR_ERR(from);
4086 retry:
4087 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4088 	error = PTR_ERR(dentry);
4089 	if (IS_ERR(dentry))
4090 		goto out_putname;
4091 
4092 	error = security_path_symlink(&path, dentry, from->name);
4093 	if (!error)
4094 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4095 	done_path_create(&path, dentry);
4096 	if (retry_estale(error, lookup_flags)) {
4097 		lookup_flags |= LOOKUP_REVAL;
4098 		goto retry;
4099 	}
4100 out_putname:
4101 	putname(from);
4102 	return error;
4103 }
4104 
4105 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4106 		int, newdfd, const char __user *, newname)
4107 {
4108 	return do_symlinkat(oldname, newdfd, newname);
4109 }
4110 
4111 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4112 {
4113 	return do_symlinkat(oldname, AT_FDCWD, newname);
4114 }
4115 
4116 /**
4117  * vfs_link - create a new link
4118  * @old_dentry:	object to be linked
4119  * @dir:	new parent
4120  * @new_dentry:	where to create the new link
4121  * @delegated_inode: returns inode needing a delegation break
4122  *
4123  * The caller must hold dir->i_mutex
4124  *
4125  * If vfs_link discovers a delegation on the to-be-linked file in need
4126  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4127  * inode in delegated_inode.  The caller should then break the delegation
4128  * and retry.  Because breaking a delegation may take a long time, the
4129  * caller should drop the i_mutex before doing so.
4130  *
4131  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4132  * be appropriate for callers that expect the underlying filesystem not
4133  * to be NFS exported.
4134  */
4135 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4136 {
4137 	struct inode *inode = old_dentry->d_inode;
4138 	unsigned max_links = dir->i_sb->s_max_links;
4139 	int error;
4140 
4141 	if (!inode)
4142 		return -ENOENT;
4143 
4144 	error = may_create(dir, new_dentry);
4145 	if (error)
4146 		return error;
4147 
4148 	if (dir->i_sb != inode->i_sb)
4149 		return -EXDEV;
4150 
4151 	/*
4152 	 * A link to an append-only or immutable file cannot be created.
4153 	 */
4154 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4155 		return -EPERM;
4156 	/*
4157 	 * Updating the link count will likely cause i_uid and i_gid to
4158 	 * be writen back improperly if their true value is unknown to
4159 	 * the vfs.
4160 	 */
4161 	if (HAS_UNMAPPED_ID(inode))
4162 		return -EPERM;
4163 	if (!dir->i_op->link)
4164 		return -EPERM;
4165 	if (S_ISDIR(inode->i_mode))
4166 		return -EPERM;
4167 
4168 	error = security_inode_link(old_dentry, dir, new_dentry);
4169 	if (error)
4170 		return error;
4171 
4172 	inode_lock(inode);
4173 	/* Make sure we don't allow creating hardlink to an unlinked file */
4174 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4175 		error =  -ENOENT;
4176 	else if (max_links && inode->i_nlink >= max_links)
4177 		error = -EMLINK;
4178 	else {
4179 		error = try_break_deleg(inode, delegated_inode);
4180 		if (!error)
4181 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4182 	}
4183 
4184 	if (!error && (inode->i_state & I_LINKABLE)) {
4185 		spin_lock(&inode->i_lock);
4186 		inode->i_state &= ~I_LINKABLE;
4187 		spin_unlock(&inode->i_lock);
4188 	}
4189 	inode_unlock(inode);
4190 	if (!error)
4191 		fsnotify_link(dir, inode, new_dentry);
4192 	return error;
4193 }
4194 EXPORT_SYMBOL(vfs_link);
4195 
4196 /*
4197  * Hardlinks are often used in delicate situations.  We avoid
4198  * security-related surprises by not following symlinks on the
4199  * newname.  --KAB
4200  *
4201  * We don't follow them on the oldname either to be compatible
4202  * with linux 2.0, and to avoid hard-linking to directories
4203  * and other special files.  --ADM
4204  */
4205 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4206 	      const char __user *newname, int flags)
4207 {
4208 	struct dentry *new_dentry;
4209 	struct path old_path, new_path;
4210 	struct inode *delegated_inode = NULL;
4211 	int how = 0;
4212 	int error;
4213 
4214 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4215 		return -EINVAL;
4216 	/*
4217 	 * To use null names we require CAP_DAC_READ_SEARCH
4218 	 * This ensures that not everyone will be able to create
4219 	 * handlink using the passed filedescriptor.
4220 	 */
4221 	if (flags & AT_EMPTY_PATH) {
4222 		if (!capable(CAP_DAC_READ_SEARCH))
4223 			return -ENOENT;
4224 		how = LOOKUP_EMPTY;
4225 	}
4226 
4227 	if (flags & AT_SYMLINK_FOLLOW)
4228 		how |= LOOKUP_FOLLOW;
4229 retry:
4230 	error = user_path_at(olddfd, oldname, how, &old_path);
4231 	if (error)
4232 		return error;
4233 
4234 	new_dentry = user_path_create(newdfd, newname, &new_path,
4235 					(how & LOOKUP_REVAL));
4236 	error = PTR_ERR(new_dentry);
4237 	if (IS_ERR(new_dentry))
4238 		goto out;
4239 
4240 	error = -EXDEV;
4241 	if (old_path.mnt != new_path.mnt)
4242 		goto out_dput;
4243 	error = may_linkat(&old_path);
4244 	if (unlikely(error))
4245 		goto out_dput;
4246 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4247 	if (error)
4248 		goto out_dput;
4249 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4250 out_dput:
4251 	done_path_create(&new_path, new_dentry);
4252 	if (delegated_inode) {
4253 		error = break_deleg_wait(&delegated_inode);
4254 		if (!error) {
4255 			path_put(&old_path);
4256 			goto retry;
4257 		}
4258 	}
4259 	if (retry_estale(error, how)) {
4260 		path_put(&old_path);
4261 		how |= LOOKUP_REVAL;
4262 		goto retry;
4263 	}
4264 out:
4265 	path_put(&old_path);
4266 
4267 	return error;
4268 }
4269 
4270 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4271 		int, newdfd, const char __user *, newname, int, flags)
4272 {
4273 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4274 }
4275 
4276 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4277 {
4278 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4279 }
4280 
4281 /**
4282  * vfs_rename - rename a filesystem object
4283  * @old_dir:	parent of source
4284  * @old_dentry:	source
4285  * @new_dir:	parent of destination
4286  * @new_dentry:	destination
4287  * @delegated_inode: returns an inode needing a delegation break
4288  * @flags:	rename flags
4289  *
4290  * The caller must hold multiple mutexes--see lock_rename()).
4291  *
4292  * If vfs_rename discovers a delegation in need of breaking at either
4293  * the source or destination, it will return -EWOULDBLOCK and return a
4294  * reference to the inode in delegated_inode.  The caller should then
4295  * break the delegation and retry.  Because breaking a delegation may
4296  * take a long time, the caller should drop all locks before doing
4297  * so.
4298  *
4299  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4300  * be appropriate for callers that expect the underlying filesystem not
4301  * to be NFS exported.
4302  *
4303  * The worst of all namespace operations - renaming directory. "Perverted"
4304  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4305  * Problems:
4306  *
4307  *	a) we can get into loop creation.
4308  *	b) race potential - two innocent renames can create a loop together.
4309  *	   That's where 4.4 screws up. Current fix: serialization on
4310  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4311  *	   story.
4312  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4313  *	   and source (if it is not a directory).
4314  *	   And that - after we got ->i_mutex on parents (until then we don't know
4315  *	   whether the target exists).  Solution: try to be smart with locking
4316  *	   order for inodes.  We rely on the fact that tree topology may change
4317  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4318  *	   move will be locked.  Thus we can rank directories by the tree
4319  *	   (ancestors first) and rank all non-directories after them.
4320  *	   That works since everybody except rename does "lock parent, lookup,
4321  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4322  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4323  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4324  *	   we'd better make sure that there's no link(2) for them.
4325  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4326  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4327  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4328  *	   ->i_mutex on parents, which works but leads to some truly excessive
4329  *	   locking].
4330  */
4331 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4332 	       struct inode *new_dir, struct dentry *new_dentry,
4333 	       struct inode **delegated_inode, unsigned int flags)
4334 {
4335 	int error;
4336 	bool is_dir = d_is_dir(old_dentry);
4337 	struct inode *source = old_dentry->d_inode;
4338 	struct inode *target = new_dentry->d_inode;
4339 	bool new_is_dir = false;
4340 	unsigned max_links = new_dir->i_sb->s_max_links;
4341 	struct name_snapshot old_name;
4342 
4343 	if (source == target)
4344 		return 0;
4345 
4346 	error = may_delete(old_dir, old_dentry, is_dir);
4347 	if (error)
4348 		return error;
4349 
4350 	if (!target) {
4351 		error = may_create(new_dir, new_dentry);
4352 	} else {
4353 		new_is_dir = d_is_dir(new_dentry);
4354 
4355 		if (!(flags & RENAME_EXCHANGE))
4356 			error = may_delete(new_dir, new_dentry, is_dir);
4357 		else
4358 			error = may_delete(new_dir, new_dentry, new_is_dir);
4359 	}
4360 	if (error)
4361 		return error;
4362 
4363 	if (!old_dir->i_op->rename)
4364 		return -EPERM;
4365 
4366 	/*
4367 	 * If we are going to change the parent - check write permissions,
4368 	 * we'll need to flip '..'.
4369 	 */
4370 	if (new_dir != old_dir) {
4371 		if (is_dir) {
4372 			error = inode_permission(source, MAY_WRITE);
4373 			if (error)
4374 				return error;
4375 		}
4376 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4377 			error = inode_permission(target, MAY_WRITE);
4378 			if (error)
4379 				return error;
4380 		}
4381 	}
4382 
4383 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4384 				      flags);
4385 	if (error)
4386 		return error;
4387 
4388 	take_dentry_name_snapshot(&old_name, old_dentry);
4389 	dget(new_dentry);
4390 	if (!is_dir || (flags & RENAME_EXCHANGE))
4391 		lock_two_nondirectories(source, target);
4392 	else if (target)
4393 		inode_lock(target);
4394 
4395 	error = -EBUSY;
4396 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4397 		goto out;
4398 
4399 	if (max_links && new_dir != old_dir) {
4400 		error = -EMLINK;
4401 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4402 			goto out;
4403 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4404 		    old_dir->i_nlink >= max_links)
4405 			goto out;
4406 	}
4407 	if (!is_dir) {
4408 		error = try_break_deleg(source, delegated_inode);
4409 		if (error)
4410 			goto out;
4411 	}
4412 	if (target && !new_is_dir) {
4413 		error = try_break_deleg(target, delegated_inode);
4414 		if (error)
4415 			goto out;
4416 	}
4417 	error = old_dir->i_op->rename(old_dir, old_dentry,
4418 				       new_dir, new_dentry, flags);
4419 	if (error)
4420 		goto out;
4421 
4422 	if (!(flags & RENAME_EXCHANGE) && target) {
4423 		if (is_dir) {
4424 			shrink_dcache_parent(new_dentry);
4425 			target->i_flags |= S_DEAD;
4426 		}
4427 		dont_mount(new_dentry);
4428 		detach_mounts(new_dentry);
4429 	}
4430 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4431 		if (!(flags & RENAME_EXCHANGE))
4432 			d_move(old_dentry, new_dentry);
4433 		else
4434 			d_exchange(old_dentry, new_dentry);
4435 	}
4436 out:
4437 	if (!is_dir || (flags & RENAME_EXCHANGE))
4438 		unlock_two_nondirectories(source, target);
4439 	else if (target)
4440 		inode_unlock(target);
4441 	dput(new_dentry);
4442 	if (!error) {
4443 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4444 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4445 		if (flags & RENAME_EXCHANGE) {
4446 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4447 				      new_is_dir, NULL, new_dentry);
4448 		}
4449 	}
4450 	release_dentry_name_snapshot(&old_name);
4451 
4452 	return error;
4453 }
4454 EXPORT_SYMBOL(vfs_rename);
4455 
4456 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4457 			const char __user *newname, unsigned int flags)
4458 {
4459 	struct dentry *old_dentry, *new_dentry;
4460 	struct dentry *trap;
4461 	struct path old_path, new_path;
4462 	struct qstr old_last, new_last;
4463 	int old_type, new_type;
4464 	struct inode *delegated_inode = NULL;
4465 	struct filename *from;
4466 	struct filename *to;
4467 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4468 	bool should_retry = false;
4469 	int error;
4470 
4471 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4472 		return -EINVAL;
4473 
4474 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4475 	    (flags & RENAME_EXCHANGE))
4476 		return -EINVAL;
4477 
4478 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4479 		return -EPERM;
4480 
4481 	if (flags & RENAME_EXCHANGE)
4482 		target_flags = 0;
4483 
4484 retry:
4485 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4486 				&old_path, &old_last, &old_type);
4487 	if (IS_ERR(from)) {
4488 		error = PTR_ERR(from);
4489 		goto exit;
4490 	}
4491 
4492 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4493 				&new_path, &new_last, &new_type);
4494 	if (IS_ERR(to)) {
4495 		error = PTR_ERR(to);
4496 		goto exit1;
4497 	}
4498 
4499 	error = -EXDEV;
4500 	if (old_path.mnt != new_path.mnt)
4501 		goto exit2;
4502 
4503 	error = -EBUSY;
4504 	if (old_type != LAST_NORM)
4505 		goto exit2;
4506 
4507 	if (flags & RENAME_NOREPLACE)
4508 		error = -EEXIST;
4509 	if (new_type != LAST_NORM)
4510 		goto exit2;
4511 
4512 	error = mnt_want_write(old_path.mnt);
4513 	if (error)
4514 		goto exit2;
4515 
4516 retry_deleg:
4517 	trap = lock_rename(new_path.dentry, old_path.dentry);
4518 
4519 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4520 	error = PTR_ERR(old_dentry);
4521 	if (IS_ERR(old_dentry))
4522 		goto exit3;
4523 	/* source must exist */
4524 	error = -ENOENT;
4525 	if (d_is_negative(old_dentry))
4526 		goto exit4;
4527 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4528 	error = PTR_ERR(new_dentry);
4529 	if (IS_ERR(new_dentry))
4530 		goto exit4;
4531 	error = -EEXIST;
4532 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4533 		goto exit5;
4534 	if (flags & RENAME_EXCHANGE) {
4535 		error = -ENOENT;
4536 		if (d_is_negative(new_dentry))
4537 			goto exit5;
4538 
4539 		if (!d_is_dir(new_dentry)) {
4540 			error = -ENOTDIR;
4541 			if (new_last.name[new_last.len])
4542 				goto exit5;
4543 		}
4544 	}
4545 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4546 	if (!d_is_dir(old_dentry)) {
4547 		error = -ENOTDIR;
4548 		if (old_last.name[old_last.len])
4549 			goto exit5;
4550 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4551 			goto exit5;
4552 	}
4553 	/* source should not be ancestor of target */
4554 	error = -EINVAL;
4555 	if (old_dentry == trap)
4556 		goto exit5;
4557 	/* target should not be an ancestor of source */
4558 	if (!(flags & RENAME_EXCHANGE))
4559 		error = -ENOTEMPTY;
4560 	if (new_dentry == trap)
4561 		goto exit5;
4562 
4563 	error = security_path_rename(&old_path, old_dentry,
4564 				     &new_path, new_dentry, flags);
4565 	if (error)
4566 		goto exit5;
4567 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4568 			   new_path.dentry->d_inode, new_dentry,
4569 			   &delegated_inode, flags);
4570 exit5:
4571 	dput(new_dentry);
4572 exit4:
4573 	dput(old_dentry);
4574 exit3:
4575 	unlock_rename(new_path.dentry, old_path.dentry);
4576 	if (delegated_inode) {
4577 		error = break_deleg_wait(&delegated_inode);
4578 		if (!error)
4579 			goto retry_deleg;
4580 	}
4581 	mnt_drop_write(old_path.mnt);
4582 exit2:
4583 	if (retry_estale(error, lookup_flags))
4584 		should_retry = true;
4585 	path_put(&new_path);
4586 	putname(to);
4587 exit1:
4588 	path_put(&old_path);
4589 	putname(from);
4590 	if (should_retry) {
4591 		should_retry = false;
4592 		lookup_flags |= LOOKUP_REVAL;
4593 		goto retry;
4594 	}
4595 exit:
4596 	return error;
4597 }
4598 
4599 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4600 		int, newdfd, const char __user *, newname, unsigned int, flags)
4601 {
4602 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4603 }
4604 
4605 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4606 		int, newdfd, const char __user *, newname)
4607 {
4608 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4609 }
4610 
4611 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4612 {
4613 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4614 }
4615 
4616 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4617 {
4618 	int error = may_create(dir, dentry);
4619 	if (error)
4620 		return error;
4621 
4622 	if (!dir->i_op->mknod)
4623 		return -EPERM;
4624 
4625 	return dir->i_op->mknod(dir, dentry,
4626 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4627 }
4628 EXPORT_SYMBOL(vfs_whiteout);
4629 
4630 int readlink_copy(char __user *buffer, int buflen, const char *link)
4631 {
4632 	int len = PTR_ERR(link);
4633 	if (IS_ERR(link))
4634 		goto out;
4635 
4636 	len = strlen(link);
4637 	if (len > (unsigned) buflen)
4638 		len = buflen;
4639 	if (copy_to_user(buffer, link, len))
4640 		len = -EFAULT;
4641 out:
4642 	return len;
4643 }
4644 
4645 /**
4646  * vfs_readlink - copy symlink body into userspace buffer
4647  * @dentry: dentry on which to get symbolic link
4648  * @buffer: user memory pointer
4649  * @buflen: size of buffer
4650  *
4651  * Does not touch atime.  That's up to the caller if necessary
4652  *
4653  * Does not call security hook.
4654  */
4655 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4656 {
4657 	struct inode *inode = d_inode(dentry);
4658 	DEFINE_DELAYED_CALL(done);
4659 	const char *link;
4660 	int res;
4661 
4662 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4663 		if (unlikely(inode->i_op->readlink))
4664 			return inode->i_op->readlink(dentry, buffer, buflen);
4665 
4666 		if (!d_is_symlink(dentry))
4667 			return -EINVAL;
4668 
4669 		spin_lock(&inode->i_lock);
4670 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4671 		spin_unlock(&inode->i_lock);
4672 	}
4673 
4674 	link = READ_ONCE(inode->i_link);
4675 	if (!link) {
4676 		link = inode->i_op->get_link(dentry, inode, &done);
4677 		if (IS_ERR(link))
4678 			return PTR_ERR(link);
4679 	}
4680 	res = readlink_copy(buffer, buflen, link);
4681 	do_delayed_call(&done);
4682 	return res;
4683 }
4684 EXPORT_SYMBOL(vfs_readlink);
4685 
4686 /**
4687  * vfs_get_link - get symlink body
4688  * @dentry: dentry on which to get symbolic link
4689  * @done: caller needs to free returned data with this
4690  *
4691  * Calls security hook and i_op->get_link() on the supplied inode.
4692  *
4693  * It does not touch atime.  That's up to the caller if necessary.
4694  *
4695  * Does not work on "special" symlinks like /proc/$$/fd/N
4696  */
4697 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4698 {
4699 	const char *res = ERR_PTR(-EINVAL);
4700 	struct inode *inode = d_inode(dentry);
4701 
4702 	if (d_is_symlink(dentry)) {
4703 		res = ERR_PTR(security_inode_readlink(dentry));
4704 		if (!res)
4705 			res = inode->i_op->get_link(dentry, inode, done);
4706 	}
4707 	return res;
4708 }
4709 EXPORT_SYMBOL(vfs_get_link);
4710 
4711 /* get the link contents into pagecache */
4712 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4713 			  struct delayed_call *callback)
4714 {
4715 	char *kaddr;
4716 	struct page *page;
4717 	struct address_space *mapping = inode->i_mapping;
4718 
4719 	if (!dentry) {
4720 		page = find_get_page(mapping, 0);
4721 		if (!page)
4722 			return ERR_PTR(-ECHILD);
4723 		if (!PageUptodate(page)) {
4724 			put_page(page);
4725 			return ERR_PTR(-ECHILD);
4726 		}
4727 	} else {
4728 		page = read_mapping_page(mapping, 0, NULL);
4729 		if (IS_ERR(page))
4730 			return (char*)page;
4731 	}
4732 	set_delayed_call(callback, page_put_link, page);
4733 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4734 	kaddr = page_address(page);
4735 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4736 	return kaddr;
4737 }
4738 
4739 EXPORT_SYMBOL(page_get_link);
4740 
4741 void page_put_link(void *arg)
4742 {
4743 	put_page(arg);
4744 }
4745 EXPORT_SYMBOL(page_put_link);
4746 
4747 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4748 {
4749 	DEFINE_DELAYED_CALL(done);
4750 	int res = readlink_copy(buffer, buflen,
4751 				page_get_link(dentry, d_inode(dentry),
4752 					      &done));
4753 	do_delayed_call(&done);
4754 	return res;
4755 }
4756 EXPORT_SYMBOL(page_readlink);
4757 
4758 /*
4759  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4760  */
4761 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4762 {
4763 	struct address_space *mapping = inode->i_mapping;
4764 	struct page *page;
4765 	void *fsdata;
4766 	int err;
4767 	unsigned int flags = 0;
4768 	if (nofs)
4769 		flags |= AOP_FLAG_NOFS;
4770 
4771 retry:
4772 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4773 				flags, &page, &fsdata);
4774 	if (err)
4775 		goto fail;
4776 
4777 	memcpy(page_address(page), symname, len-1);
4778 
4779 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4780 							page, fsdata);
4781 	if (err < 0)
4782 		goto fail;
4783 	if (err < len-1)
4784 		goto retry;
4785 
4786 	mark_inode_dirty(inode);
4787 	return 0;
4788 fail:
4789 	return err;
4790 }
4791 EXPORT_SYMBOL(__page_symlink);
4792 
4793 int page_symlink(struct inode *inode, const char *symname, int len)
4794 {
4795 	return __page_symlink(inode, symname, len,
4796 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4797 }
4798 EXPORT_SYMBOL(page_symlink);
4799 
4800 const struct inode_operations page_symlink_inode_operations = {
4801 	.get_link	= page_get_link,
4802 };
4803 EXPORT_SYMBOL(page_symlink_inode_operations);
4804