1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic permission checking 292 */ 293 static int acl_permission_check(struct inode *inode, int mask) 294 { 295 unsigned int mode = inode->i_mode; 296 297 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 298 mode >>= 6; 299 else { 300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 301 int error = check_acl(inode, mask); 302 if (error != -EAGAIN) 303 return error; 304 } 305 306 if (in_group_p(inode->i_gid)) 307 mode >>= 3; 308 } 309 310 /* 311 * If the DACs are ok we don't need any capability check. 312 */ 313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 314 return 0; 315 return -EACCES; 316 } 317 318 /** 319 * generic_permission - check for access rights on a Posix-like filesystem 320 * @inode: inode to check access rights for 321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 322 * 323 * Used to check for read/write/execute permissions on a file. 324 * We use "fsuid" for this, letting us set arbitrary permissions 325 * for filesystem access without changing the "normal" uids which 326 * are used for other things. 327 * 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 329 * request cannot be satisfied (eg. requires blocking or too much complexity). 330 * It would then be called again in ref-walk mode. 331 */ 332 int generic_permission(struct inode *inode, int mask) 333 { 334 int ret; 335 336 /* 337 * Do the basic permission checks. 338 */ 339 ret = acl_permission_check(inode, mask); 340 if (ret != -EACCES) 341 return ret; 342 343 if (S_ISDIR(inode->i_mode)) { 344 /* DACs are overridable for directories */ 345 if (!(mask & MAY_WRITE)) 346 if (capable_wrt_inode_uidgid(inode, 347 CAP_DAC_READ_SEARCH)) 348 return 0; 349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 350 return 0; 351 return -EACCES; 352 } 353 354 /* 355 * Searching includes executable on directories, else just read. 356 */ 357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 358 if (mask == MAY_READ) 359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 360 return 0; 361 /* 362 * Read/write DACs are always overridable. 363 * Executable DACs are overridable when there is 364 * at least one exec bit set. 365 */ 366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 368 return 0; 369 370 return -EACCES; 371 } 372 EXPORT_SYMBOL(generic_permission); 373 374 /* 375 * We _really_ want to just do "generic_permission()" without 376 * even looking at the inode->i_op values. So we keep a cache 377 * flag in inode->i_opflags, that says "this has not special 378 * permission function, use the fast case". 379 */ 380 static inline int do_inode_permission(struct inode *inode, int mask) 381 { 382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 383 if (likely(inode->i_op->permission)) 384 return inode->i_op->permission(inode, mask); 385 386 /* This gets set once for the inode lifetime */ 387 spin_lock(&inode->i_lock); 388 inode->i_opflags |= IOP_FASTPERM; 389 spin_unlock(&inode->i_lock); 390 } 391 return generic_permission(inode, mask); 392 } 393 394 /** 395 * sb_permission - Check superblock-level permissions 396 * @sb: Superblock of inode to check permission on 397 * @inode: Inode to check permission on 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 399 * 400 * Separate out file-system wide checks from inode-specific permission checks. 401 */ 402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 403 { 404 if (unlikely(mask & MAY_WRITE)) { 405 umode_t mode = inode->i_mode; 406 407 /* Nobody gets write access to a read-only fs. */ 408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 409 return -EROFS; 410 } 411 return 0; 412 } 413 414 /** 415 * inode_permission - Check for access rights to a given inode 416 * @inode: Inode to check permission on 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 418 * 419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 420 * this, letting us set arbitrary permissions for filesystem access without 421 * changing the "normal" UIDs which are used for other things. 422 * 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 424 */ 425 int inode_permission(struct inode *inode, int mask) 426 { 427 int retval; 428 429 retval = sb_permission(inode->i_sb, inode, mask); 430 if (retval) 431 return retval; 432 433 if (unlikely(mask & MAY_WRITE)) { 434 /* 435 * Nobody gets write access to an immutable file. 436 */ 437 if (IS_IMMUTABLE(inode)) 438 return -EPERM; 439 440 /* 441 * Updating mtime will likely cause i_uid and i_gid to be 442 * written back improperly if their true value is unknown 443 * to the vfs. 444 */ 445 if (HAS_UNMAPPED_ID(inode)) 446 return -EACCES; 447 } 448 449 retval = do_inode_permission(inode, mask); 450 if (retval) 451 return retval; 452 453 retval = devcgroup_inode_permission(inode, mask); 454 if (retval) 455 return retval; 456 457 return security_inode_permission(inode, mask); 458 } 459 EXPORT_SYMBOL(inode_permission); 460 461 /** 462 * path_get - get a reference to a path 463 * @path: path to get the reference to 464 * 465 * Given a path increment the reference count to the dentry and the vfsmount. 466 */ 467 void path_get(const struct path *path) 468 { 469 mntget(path->mnt); 470 dget(path->dentry); 471 } 472 EXPORT_SYMBOL(path_get); 473 474 /** 475 * path_put - put a reference to a path 476 * @path: path to put the reference to 477 * 478 * Given a path decrement the reference count to the dentry and the vfsmount. 479 */ 480 void path_put(const struct path *path) 481 { 482 dput(path->dentry); 483 mntput(path->mnt); 484 } 485 EXPORT_SYMBOL(path_put); 486 487 #define EMBEDDED_LEVELS 2 488 struct nameidata { 489 struct path path; 490 struct qstr last; 491 struct path root; 492 struct inode *inode; /* path.dentry.d_inode */ 493 unsigned int flags; 494 unsigned seq, m_seq; 495 int last_type; 496 unsigned depth; 497 int total_link_count; 498 struct saved { 499 struct path link; 500 struct delayed_call done; 501 const char *name; 502 unsigned seq; 503 } *stack, internal[EMBEDDED_LEVELS]; 504 struct filename *name; 505 struct nameidata *saved; 506 struct inode *link_inode; 507 unsigned root_seq; 508 int dfd; 509 } __randomize_layout; 510 511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 512 { 513 struct nameidata *old = current->nameidata; 514 p->stack = p->internal; 515 p->dfd = dfd; 516 p->name = name; 517 p->total_link_count = old ? old->total_link_count : 0; 518 p->saved = old; 519 current->nameidata = p; 520 } 521 522 static void restore_nameidata(void) 523 { 524 struct nameidata *now = current->nameidata, *old = now->saved; 525 526 current->nameidata = old; 527 if (old) 528 old->total_link_count = now->total_link_count; 529 if (now->stack != now->internal) 530 kfree(now->stack); 531 } 532 533 static int __nd_alloc_stack(struct nameidata *nd) 534 { 535 struct saved *p; 536 537 if (nd->flags & LOOKUP_RCU) { 538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 539 GFP_ATOMIC); 540 if (unlikely(!p)) 541 return -ECHILD; 542 } else { 543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 544 GFP_KERNEL); 545 if (unlikely(!p)) 546 return -ENOMEM; 547 } 548 memcpy(p, nd->internal, sizeof(nd->internal)); 549 nd->stack = p; 550 return 0; 551 } 552 553 /** 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 555 * @path: nameidate to verify 556 * 557 * Rename can sometimes move a file or directory outside of a bind 558 * mount, path_connected allows those cases to be detected. 559 */ 560 static bool path_connected(const struct path *path) 561 { 562 struct vfsmount *mnt = path->mnt; 563 struct super_block *sb = mnt->mnt_sb; 564 565 /* Bind mounts and multi-root filesystems can have disconnected paths */ 566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 567 return true; 568 569 return is_subdir(path->dentry, mnt->mnt_root); 570 } 571 572 static inline int nd_alloc_stack(struct nameidata *nd) 573 { 574 if (likely(nd->depth != EMBEDDED_LEVELS)) 575 return 0; 576 if (likely(nd->stack != nd->internal)) 577 return 0; 578 return __nd_alloc_stack(nd); 579 } 580 581 static void drop_links(struct nameidata *nd) 582 { 583 int i = nd->depth; 584 while (i--) { 585 struct saved *last = nd->stack + i; 586 do_delayed_call(&last->done); 587 clear_delayed_call(&last->done); 588 } 589 } 590 591 static void terminate_walk(struct nameidata *nd) 592 { 593 drop_links(nd); 594 if (!(nd->flags & LOOKUP_RCU)) { 595 int i; 596 path_put(&nd->path); 597 for (i = 0; i < nd->depth; i++) 598 path_put(&nd->stack[i].link); 599 if (nd->flags & LOOKUP_ROOT_GRABBED) { 600 path_put(&nd->root); 601 nd->flags &= ~LOOKUP_ROOT_GRABBED; 602 } 603 } else { 604 nd->flags &= ~LOOKUP_RCU; 605 rcu_read_unlock(); 606 } 607 nd->depth = 0; 608 } 609 610 /* path_put is needed afterwards regardless of success or failure */ 611 static bool legitimize_path(struct nameidata *nd, 612 struct path *path, unsigned seq) 613 { 614 int res = __legitimize_mnt(path->mnt, nd->m_seq); 615 if (unlikely(res)) { 616 if (res > 0) 617 path->mnt = NULL; 618 path->dentry = NULL; 619 return false; 620 } 621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 622 path->dentry = NULL; 623 return false; 624 } 625 return !read_seqcount_retry(&path->dentry->d_seq, seq); 626 } 627 628 static bool legitimize_links(struct nameidata *nd) 629 { 630 int i; 631 for (i = 0; i < nd->depth; i++) { 632 struct saved *last = nd->stack + i; 633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 634 drop_links(nd); 635 nd->depth = i + 1; 636 return false; 637 } 638 } 639 return true; 640 } 641 642 static bool legitimize_root(struct nameidata *nd) 643 { 644 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 645 return true; 646 nd->flags |= LOOKUP_ROOT_GRABBED; 647 return legitimize_path(nd, &nd->root, nd->root_seq); 648 } 649 650 /* 651 * Path walking has 2 modes, rcu-walk and ref-walk (see 652 * Documentation/filesystems/path-lookup.txt). In situations when we can't 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk 655 * mode. Refcounts are grabbed at the last known good point before rcu-walk 656 * got stuck, so ref-walk may continue from there. If this is not successful 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller 658 * to restart the path walk from the beginning in ref-walk mode. 659 */ 660 661 /** 662 * unlazy_walk - try to switch to ref-walk mode. 663 * @nd: nameidata pathwalk data 664 * Returns: 0 on success, -ECHILD on failure 665 * 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root 667 * for ref-walk mode. 668 * Must be called from rcu-walk context. 669 * Nothing should touch nameidata between unlazy_walk() failure and 670 * terminate_walk(). 671 */ 672 static int unlazy_walk(struct nameidata *nd) 673 { 674 struct dentry *parent = nd->path.dentry; 675 676 BUG_ON(!(nd->flags & LOOKUP_RCU)); 677 678 nd->flags &= ~LOOKUP_RCU; 679 if (unlikely(!legitimize_links(nd))) 680 goto out1; 681 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 682 goto out; 683 if (unlikely(!legitimize_root(nd))) 684 goto out; 685 rcu_read_unlock(); 686 BUG_ON(nd->inode != parent->d_inode); 687 return 0; 688 689 out1: 690 nd->path.mnt = NULL; 691 nd->path.dentry = NULL; 692 out: 693 rcu_read_unlock(); 694 return -ECHILD; 695 } 696 697 /** 698 * unlazy_child - try to switch to ref-walk mode. 699 * @nd: nameidata pathwalk data 700 * @dentry: child of nd->path.dentry 701 * @seq: seq number to check dentry against 702 * Returns: 0 on success, -ECHILD on failure 703 * 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 705 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 706 * @nd. Must be called from rcu-walk context. 707 * Nothing should touch nameidata between unlazy_child() failure and 708 * terminate_walk(). 709 */ 710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 711 { 712 BUG_ON(!(nd->flags & LOOKUP_RCU)); 713 714 nd->flags &= ~LOOKUP_RCU; 715 if (unlikely(!legitimize_links(nd))) 716 goto out2; 717 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 718 goto out2; 719 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 720 goto out1; 721 722 /* 723 * We need to move both the parent and the dentry from the RCU domain 724 * to be properly refcounted. And the sequence number in the dentry 725 * validates *both* dentry counters, since we checked the sequence 726 * number of the parent after we got the child sequence number. So we 727 * know the parent must still be valid if the child sequence number is 728 */ 729 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 730 goto out; 731 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 732 goto out_dput; 733 /* 734 * Sequence counts matched. Now make sure that the root is 735 * still valid and get it if required. 736 */ 737 if (unlikely(!legitimize_root(nd))) 738 goto out_dput; 739 rcu_read_unlock(); 740 return 0; 741 742 out2: 743 nd->path.mnt = NULL; 744 out1: 745 nd->path.dentry = NULL; 746 out: 747 rcu_read_unlock(); 748 return -ECHILD; 749 out_dput: 750 rcu_read_unlock(); 751 dput(dentry); 752 return -ECHILD; 753 } 754 755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 756 { 757 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 758 return dentry->d_op->d_revalidate(dentry, flags); 759 else 760 return 1; 761 } 762 763 /** 764 * complete_walk - successful completion of path walk 765 * @nd: pointer nameidata 766 * 767 * If we had been in RCU mode, drop out of it and legitimize nd->path. 768 * Revalidate the final result, unless we'd already done that during 769 * the path walk or the filesystem doesn't ask for it. Return 0 on 770 * success, -error on failure. In case of failure caller does not 771 * need to drop nd->path. 772 */ 773 static int complete_walk(struct nameidata *nd) 774 { 775 struct dentry *dentry = nd->path.dentry; 776 int status; 777 778 if (nd->flags & LOOKUP_RCU) { 779 if (!(nd->flags & LOOKUP_ROOT)) 780 nd->root.mnt = NULL; 781 if (unlikely(unlazy_walk(nd))) 782 return -ECHILD; 783 } 784 785 if (likely(!(nd->flags & LOOKUP_JUMPED))) 786 return 0; 787 788 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 789 return 0; 790 791 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 792 if (status > 0) 793 return 0; 794 795 if (!status) 796 status = -ESTALE; 797 798 return status; 799 } 800 801 static void set_root(struct nameidata *nd) 802 { 803 struct fs_struct *fs = current->fs; 804 805 if (nd->flags & LOOKUP_RCU) { 806 unsigned seq; 807 808 do { 809 seq = read_seqcount_begin(&fs->seq); 810 nd->root = fs->root; 811 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 812 } while (read_seqcount_retry(&fs->seq, seq)); 813 } else { 814 get_fs_root(fs, &nd->root); 815 nd->flags |= LOOKUP_ROOT_GRABBED; 816 } 817 } 818 819 static void path_put_conditional(struct path *path, struct nameidata *nd) 820 { 821 dput(path->dentry); 822 if (path->mnt != nd->path.mnt) 823 mntput(path->mnt); 824 } 825 826 static inline void path_to_nameidata(const struct path *path, 827 struct nameidata *nd) 828 { 829 if (!(nd->flags & LOOKUP_RCU)) { 830 dput(nd->path.dentry); 831 if (nd->path.mnt != path->mnt) 832 mntput(nd->path.mnt); 833 } 834 nd->path.mnt = path->mnt; 835 nd->path.dentry = path->dentry; 836 } 837 838 static int nd_jump_root(struct nameidata *nd) 839 { 840 if (nd->flags & LOOKUP_RCU) { 841 struct dentry *d; 842 nd->path = nd->root; 843 d = nd->path.dentry; 844 nd->inode = d->d_inode; 845 nd->seq = nd->root_seq; 846 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 847 return -ECHILD; 848 } else { 849 path_put(&nd->path); 850 nd->path = nd->root; 851 path_get(&nd->path); 852 nd->inode = nd->path.dentry->d_inode; 853 } 854 nd->flags |= LOOKUP_JUMPED; 855 return 0; 856 } 857 858 /* 859 * Helper to directly jump to a known parsed path from ->get_link, 860 * caller must have taken a reference to path beforehand. 861 */ 862 void nd_jump_link(struct path *path) 863 { 864 struct nameidata *nd = current->nameidata; 865 path_put(&nd->path); 866 867 nd->path = *path; 868 nd->inode = nd->path.dentry->d_inode; 869 nd->flags |= LOOKUP_JUMPED; 870 } 871 872 static inline void put_link(struct nameidata *nd) 873 { 874 struct saved *last = nd->stack + --nd->depth; 875 do_delayed_call(&last->done); 876 if (!(nd->flags & LOOKUP_RCU)) 877 path_put(&last->link); 878 } 879 880 int sysctl_protected_symlinks __read_mostly = 0; 881 int sysctl_protected_hardlinks __read_mostly = 0; 882 int sysctl_protected_fifos __read_mostly; 883 int sysctl_protected_regular __read_mostly; 884 885 /** 886 * may_follow_link - Check symlink following for unsafe situations 887 * @nd: nameidata pathwalk data 888 * 889 * In the case of the sysctl_protected_symlinks sysctl being enabled, 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 891 * in a sticky world-writable directory. This is to protect privileged 892 * processes from failing races against path names that may change out 893 * from under them by way of other users creating malicious symlinks. 894 * It will permit symlinks to be followed only when outside a sticky 895 * world-writable directory, or when the uid of the symlink and follower 896 * match, or when the directory owner matches the symlink's owner. 897 * 898 * Returns 0 if following the symlink is allowed, -ve on error. 899 */ 900 static inline int may_follow_link(struct nameidata *nd) 901 { 902 const struct inode *inode; 903 const struct inode *parent; 904 kuid_t puid; 905 906 if (!sysctl_protected_symlinks) 907 return 0; 908 909 /* Allowed if owner and follower match. */ 910 inode = nd->link_inode; 911 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 912 return 0; 913 914 /* Allowed if parent directory not sticky and world-writable. */ 915 parent = nd->inode; 916 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 917 return 0; 918 919 /* Allowed if parent directory and link owner match. */ 920 puid = parent->i_uid; 921 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 922 return 0; 923 924 if (nd->flags & LOOKUP_RCU) 925 return -ECHILD; 926 927 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 928 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 929 return -EACCES; 930 } 931 932 /** 933 * safe_hardlink_source - Check for safe hardlink conditions 934 * @inode: the source inode to hardlink from 935 * 936 * Return false if at least one of the following conditions: 937 * - inode is not a regular file 938 * - inode is setuid 939 * - inode is setgid and group-exec 940 * - access failure for read and write 941 * 942 * Otherwise returns true. 943 */ 944 static bool safe_hardlink_source(struct inode *inode) 945 { 946 umode_t mode = inode->i_mode; 947 948 /* Special files should not get pinned to the filesystem. */ 949 if (!S_ISREG(mode)) 950 return false; 951 952 /* Setuid files should not get pinned to the filesystem. */ 953 if (mode & S_ISUID) 954 return false; 955 956 /* Executable setgid files should not get pinned to the filesystem. */ 957 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 958 return false; 959 960 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 961 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 962 return false; 963 964 return true; 965 } 966 967 /** 968 * may_linkat - Check permissions for creating a hardlink 969 * @link: the source to hardlink from 970 * 971 * Block hardlink when all of: 972 * - sysctl_protected_hardlinks enabled 973 * - fsuid does not match inode 974 * - hardlink source is unsafe (see safe_hardlink_source() above) 975 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 976 * 977 * Returns 0 if successful, -ve on error. 978 */ 979 static int may_linkat(struct path *link) 980 { 981 struct inode *inode = link->dentry->d_inode; 982 983 /* Inode writeback is not safe when the uid or gid are invalid. */ 984 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 985 return -EOVERFLOW; 986 987 if (!sysctl_protected_hardlinks) 988 return 0; 989 990 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 991 * otherwise, it must be a safe source. 992 */ 993 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 994 return 0; 995 996 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 997 return -EPERM; 998 } 999 1000 /** 1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1002 * should be allowed, or not, on files that already 1003 * exist. 1004 * @dir: the sticky parent directory 1005 * @inode: the inode of the file to open 1006 * 1007 * Block an O_CREAT open of a FIFO (or a regular file) when: 1008 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1009 * - the file already exists 1010 * - we are in a sticky directory 1011 * - we don't own the file 1012 * - the owner of the directory doesn't own the file 1013 * - the directory is world writable 1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1015 * the directory doesn't have to be world writable: being group writable will 1016 * be enough. 1017 * 1018 * Returns 0 if the open is allowed, -ve on error. 1019 */ 1020 static int may_create_in_sticky(struct dentry * const dir, 1021 struct inode * const inode) 1022 { 1023 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1024 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1025 likely(!(dir->d_inode->i_mode & S_ISVTX)) || 1026 uid_eq(inode->i_uid, dir->d_inode->i_uid) || 1027 uid_eq(current_fsuid(), inode->i_uid)) 1028 return 0; 1029 1030 if (likely(dir->d_inode->i_mode & 0002) || 1031 (dir->d_inode->i_mode & 0020 && 1032 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1033 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1034 const char *operation = S_ISFIFO(inode->i_mode) ? 1035 "sticky_create_fifo" : 1036 "sticky_create_regular"; 1037 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1038 return -EACCES; 1039 } 1040 return 0; 1041 } 1042 1043 static __always_inline 1044 const char *get_link(struct nameidata *nd) 1045 { 1046 struct saved *last = nd->stack + nd->depth - 1; 1047 struct dentry *dentry = last->link.dentry; 1048 struct inode *inode = nd->link_inode; 1049 int error; 1050 const char *res; 1051 1052 if (!(nd->flags & LOOKUP_RCU)) { 1053 touch_atime(&last->link); 1054 cond_resched(); 1055 } else if (atime_needs_update(&last->link, inode)) { 1056 if (unlikely(unlazy_walk(nd))) 1057 return ERR_PTR(-ECHILD); 1058 touch_atime(&last->link); 1059 } 1060 1061 error = security_inode_follow_link(dentry, inode, 1062 nd->flags & LOOKUP_RCU); 1063 if (unlikely(error)) 1064 return ERR_PTR(error); 1065 1066 nd->last_type = LAST_BIND; 1067 res = READ_ONCE(inode->i_link); 1068 if (!res) { 1069 const char * (*get)(struct dentry *, struct inode *, 1070 struct delayed_call *); 1071 get = inode->i_op->get_link; 1072 if (nd->flags & LOOKUP_RCU) { 1073 res = get(NULL, inode, &last->done); 1074 if (res == ERR_PTR(-ECHILD)) { 1075 if (unlikely(unlazy_walk(nd))) 1076 return ERR_PTR(-ECHILD); 1077 res = get(dentry, inode, &last->done); 1078 } 1079 } else { 1080 res = get(dentry, inode, &last->done); 1081 } 1082 if (IS_ERR_OR_NULL(res)) 1083 return res; 1084 } 1085 if (*res == '/') { 1086 if (!nd->root.mnt) 1087 set_root(nd); 1088 if (unlikely(nd_jump_root(nd))) 1089 return ERR_PTR(-ECHILD); 1090 while (unlikely(*++res == '/')) 1091 ; 1092 } 1093 if (!*res) 1094 res = NULL; 1095 return res; 1096 } 1097 1098 /* 1099 * follow_up - Find the mountpoint of path's vfsmount 1100 * 1101 * Given a path, find the mountpoint of its source file system. 1102 * Replace @path with the path of the mountpoint in the parent mount. 1103 * Up is towards /. 1104 * 1105 * Return 1 if we went up a level and 0 if we were already at the 1106 * root. 1107 */ 1108 int follow_up(struct path *path) 1109 { 1110 struct mount *mnt = real_mount(path->mnt); 1111 struct mount *parent; 1112 struct dentry *mountpoint; 1113 1114 read_seqlock_excl(&mount_lock); 1115 parent = mnt->mnt_parent; 1116 if (parent == mnt) { 1117 read_sequnlock_excl(&mount_lock); 1118 return 0; 1119 } 1120 mntget(&parent->mnt); 1121 mountpoint = dget(mnt->mnt_mountpoint); 1122 read_sequnlock_excl(&mount_lock); 1123 dput(path->dentry); 1124 path->dentry = mountpoint; 1125 mntput(path->mnt); 1126 path->mnt = &parent->mnt; 1127 return 1; 1128 } 1129 EXPORT_SYMBOL(follow_up); 1130 1131 /* 1132 * Perform an automount 1133 * - return -EISDIR to tell follow_managed() to stop and return the path we 1134 * were called with. 1135 */ 1136 static int follow_automount(struct path *path, struct nameidata *nd, 1137 bool *need_mntput) 1138 { 1139 struct vfsmount *mnt; 1140 int err; 1141 1142 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1143 return -EREMOTE; 1144 1145 /* We don't want to mount if someone's just doing a stat - 1146 * unless they're stat'ing a directory and appended a '/' to 1147 * the name. 1148 * 1149 * We do, however, want to mount if someone wants to open or 1150 * create a file of any type under the mountpoint, wants to 1151 * traverse through the mountpoint or wants to open the 1152 * mounted directory. Also, autofs may mark negative dentries 1153 * as being automount points. These will need the attentions 1154 * of the daemon to instantiate them before they can be used. 1155 */ 1156 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1157 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1158 path->dentry->d_inode) 1159 return -EISDIR; 1160 1161 nd->total_link_count++; 1162 if (nd->total_link_count >= 40) 1163 return -ELOOP; 1164 1165 mnt = path->dentry->d_op->d_automount(path); 1166 if (IS_ERR(mnt)) { 1167 /* 1168 * The filesystem is allowed to return -EISDIR here to indicate 1169 * it doesn't want to automount. For instance, autofs would do 1170 * this so that its userspace daemon can mount on this dentry. 1171 * 1172 * However, we can only permit this if it's a terminal point in 1173 * the path being looked up; if it wasn't then the remainder of 1174 * the path is inaccessible and we should say so. 1175 */ 1176 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1177 return -EREMOTE; 1178 return PTR_ERR(mnt); 1179 } 1180 1181 if (!mnt) /* mount collision */ 1182 return 0; 1183 1184 if (!*need_mntput) { 1185 /* lock_mount() may release path->mnt on error */ 1186 mntget(path->mnt); 1187 *need_mntput = true; 1188 } 1189 err = finish_automount(mnt, path); 1190 1191 switch (err) { 1192 case -EBUSY: 1193 /* Someone else made a mount here whilst we were busy */ 1194 return 0; 1195 case 0: 1196 path_put(path); 1197 path->mnt = mnt; 1198 path->dentry = dget(mnt->mnt_root); 1199 return 0; 1200 default: 1201 return err; 1202 } 1203 1204 } 1205 1206 /* 1207 * Handle a dentry that is managed in some way. 1208 * - Flagged for transit management (autofs) 1209 * - Flagged as mountpoint 1210 * - Flagged as automount point 1211 * 1212 * This may only be called in refwalk mode. 1213 * On success path->dentry is known positive. 1214 * 1215 * Serialization is taken care of in namespace.c 1216 */ 1217 static int follow_managed(struct path *path, struct nameidata *nd) 1218 { 1219 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1220 unsigned flags; 1221 bool need_mntput = false; 1222 int ret = 0; 1223 1224 /* Given that we're not holding a lock here, we retain the value in a 1225 * local variable for each dentry as we look at it so that we don't see 1226 * the components of that value change under us */ 1227 while (flags = smp_load_acquire(&path->dentry->d_flags), 1228 unlikely(flags & DCACHE_MANAGED_DENTRY)) { 1229 /* Allow the filesystem to manage the transit without i_mutex 1230 * being held. */ 1231 if (flags & DCACHE_MANAGE_TRANSIT) { 1232 BUG_ON(!path->dentry->d_op); 1233 BUG_ON(!path->dentry->d_op->d_manage); 1234 ret = path->dentry->d_op->d_manage(path, false); 1235 flags = smp_load_acquire(&path->dentry->d_flags); 1236 if (ret < 0) 1237 break; 1238 } 1239 1240 /* Transit to a mounted filesystem. */ 1241 if (flags & DCACHE_MOUNTED) { 1242 struct vfsmount *mounted = lookup_mnt(path); 1243 if (mounted) { 1244 dput(path->dentry); 1245 if (need_mntput) 1246 mntput(path->mnt); 1247 path->mnt = mounted; 1248 path->dentry = dget(mounted->mnt_root); 1249 need_mntput = true; 1250 continue; 1251 } 1252 1253 /* Something is mounted on this dentry in another 1254 * namespace and/or whatever was mounted there in this 1255 * namespace got unmounted before lookup_mnt() could 1256 * get it */ 1257 } 1258 1259 /* Handle an automount point */ 1260 if (flags & DCACHE_NEED_AUTOMOUNT) { 1261 ret = follow_automount(path, nd, &need_mntput); 1262 if (ret < 0) 1263 break; 1264 continue; 1265 } 1266 1267 /* We didn't change the current path point */ 1268 break; 1269 } 1270 1271 if (need_mntput && path->mnt == mnt) 1272 mntput(path->mnt); 1273 if (need_mntput) 1274 nd->flags |= LOOKUP_JUMPED; 1275 if (ret == -EISDIR || !ret) 1276 ret = 1; 1277 if (ret > 0 && unlikely(d_flags_negative(flags))) 1278 ret = -ENOENT; 1279 if (unlikely(ret < 0)) 1280 path_put_conditional(path, nd); 1281 return ret; 1282 } 1283 1284 int follow_down_one(struct path *path) 1285 { 1286 struct vfsmount *mounted; 1287 1288 mounted = lookup_mnt(path); 1289 if (mounted) { 1290 dput(path->dentry); 1291 mntput(path->mnt); 1292 path->mnt = mounted; 1293 path->dentry = dget(mounted->mnt_root); 1294 return 1; 1295 } 1296 return 0; 1297 } 1298 EXPORT_SYMBOL(follow_down_one); 1299 1300 static inline int managed_dentry_rcu(const struct path *path) 1301 { 1302 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1303 path->dentry->d_op->d_manage(path, true) : 0; 1304 } 1305 1306 /* 1307 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1308 * we meet a managed dentry that would need blocking. 1309 */ 1310 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1311 struct inode **inode, unsigned *seqp) 1312 { 1313 for (;;) { 1314 struct mount *mounted; 1315 /* 1316 * Don't forget we might have a non-mountpoint managed dentry 1317 * that wants to block transit. 1318 */ 1319 switch (managed_dentry_rcu(path)) { 1320 case -ECHILD: 1321 default: 1322 return false; 1323 case -EISDIR: 1324 return true; 1325 case 0: 1326 break; 1327 } 1328 1329 if (!d_mountpoint(path->dentry)) 1330 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1331 1332 mounted = __lookup_mnt(path->mnt, path->dentry); 1333 if (!mounted) 1334 break; 1335 path->mnt = &mounted->mnt; 1336 path->dentry = mounted->mnt.mnt_root; 1337 nd->flags |= LOOKUP_JUMPED; 1338 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1339 /* 1340 * Update the inode too. We don't need to re-check the 1341 * dentry sequence number here after this d_inode read, 1342 * because a mount-point is always pinned. 1343 */ 1344 *inode = path->dentry->d_inode; 1345 } 1346 return !read_seqretry(&mount_lock, nd->m_seq) && 1347 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1348 } 1349 1350 static int follow_dotdot_rcu(struct nameidata *nd) 1351 { 1352 struct inode *inode = nd->inode; 1353 1354 while (1) { 1355 if (path_equal(&nd->path, &nd->root)) 1356 break; 1357 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1358 struct dentry *old = nd->path.dentry; 1359 struct dentry *parent = old->d_parent; 1360 unsigned seq; 1361 1362 inode = parent->d_inode; 1363 seq = read_seqcount_begin(&parent->d_seq); 1364 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1365 return -ECHILD; 1366 nd->path.dentry = parent; 1367 nd->seq = seq; 1368 if (unlikely(!path_connected(&nd->path))) 1369 return -ENOENT; 1370 break; 1371 } else { 1372 struct mount *mnt = real_mount(nd->path.mnt); 1373 struct mount *mparent = mnt->mnt_parent; 1374 struct dentry *mountpoint = mnt->mnt_mountpoint; 1375 struct inode *inode2 = mountpoint->d_inode; 1376 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1377 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1378 return -ECHILD; 1379 if (&mparent->mnt == nd->path.mnt) 1380 break; 1381 /* we know that mountpoint was pinned */ 1382 nd->path.dentry = mountpoint; 1383 nd->path.mnt = &mparent->mnt; 1384 inode = inode2; 1385 nd->seq = seq; 1386 } 1387 } 1388 while (unlikely(d_mountpoint(nd->path.dentry))) { 1389 struct mount *mounted; 1390 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1391 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1392 return -ECHILD; 1393 if (!mounted) 1394 break; 1395 nd->path.mnt = &mounted->mnt; 1396 nd->path.dentry = mounted->mnt.mnt_root; 1397 inode = nd->path.dentry->d_inode; 1398 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1399 } 1400 nd->inode = inode; 1401 return 0; 1402 } 1403 1404 /* 1405 * Follow down to the covering mount currently visible to userspace. At each 1406 * point, the filesystem owning that dentry may be queried as to whether the 1407 * caller is permitted to proceed or not. 1408 */ 1409 int follow_down(struct path *path) 1410 { 1411 unsigned managed; 1412 int ret; 1413 1414 while (managed = READ_ONCE(path->dentry->d_flags), 1415 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1416 /* Allow the filesystem to manage the transit without i_mutex 1417 * being held. 1418 * 1419 * We indicate to the filesystem if someone is trying to mount 1420 * something here. This gives autofs the chance to deny anyone 1421 * other than its daemon the right to mount on its 1422 * superstructure. 1423 * 1424 * The filesystem may sleep at this point. 1425 */ 1426 if (managed & DCACHE_MANAGE_TRANSIT) { 1427 BUG_ON(!path->dentry->d_op); 1428 BUG_ON(!path->dentry->d_op->d_manage); 1429 ret = path->dentry->d_op->d_manage(path, false); 1430 if (ret < 0) 1431 return ret == -EISDIR ? 0 : ret; 1432 } 1433 1434 /* Transit to a mounted filesystem. */ 1435 if (managed & DCACHE_MOUNTED) { 1436 struct vfsmount *mounted = lookup_mnt(path); 1437 if (!mounted) 1438 break; 1439 dput(path->dentry); 1440 mntput(path->mnt); 1441 path->mnt = mounted; 1442 path->dentry = dget(mounted->mnt_root); 1443 continue; 1444 } 1445 1446 /* Don't handle automount points here */ 1447 break; 1448 } 1449 return 0; 1450 } 1451 EXPORT_SYMBOL(follow_down); 1452 1453 /* 1454 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1455 */ 1456 static void follow_mount(struct path *path) 1457 { 1458 while (d_mountpoint(path->dentry)) { 1459 struct vfsmount *mounted = lookup_mnt(path); 1460 if (!mounted) 1461 break; 1462 dput(path->dentry); 1463 mntput(path->mnt); 1464 path->mnt = mounted; 1465 path->dentry = dget(mounted->mnt_root); 1466 } 1467 } 1468 1469 static int path_parent_directory(struct path *path) 1470 { 1471 struct dentry *old = path->dentry; 1472 /* rare case of legitimate dget_parent()... */ 1473 path->dentry = dget_parent(path->dentry); 1474 dput(old); 1475 if (unlikely(!path_connected(path))) 1476 return -ENOENT; 1477 return 0; 1478 } 1479 1480 static int follow_dotdot(struct nameidata *nd) 1481 { 1482 while(1) { 1483 if (path_equal(&nd->path, &nd->root)) 1484 break; 1485 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1486 int ret = path_parent_directory(&nd->path); 1487 if (ret) 1488 return ret; 1489 break; 1490 } 1491 if (!follow_up(&nd->path)) 1492 break; 1493 } 1494 follow_mount(&nd->path); 1495 nd->inode = nd->path.dentry->d_inode; 1496 return 0; 1497 } 1498 1499 /* 1500 * This looks up the name in dcache and possibly revalidates the found dentry. 1501 * NULL is returned if the dentry does not exist in the cache. 1502 */ 1503 static struct dentry *lookup_dcache(const struct qstr *name, 1504 struct dentry *dir, 1505 unsigned int flags) 1506 { 1507 struct dentry *dentry = d_lookup(dir, name); 1508 if (dentry) { 1509 int error = d_revalidate(dentry, flags); 1510 if (unlikely(error <= 0)) { 1511 if (!error) 1512 d_invalidate(dentry); 1513 dput(dentry); 1514 return ERR_PTR(error); 1515 } 1516 } 1517 return dentry; 1518 } 1519 1520 /* 1521 * Parent directory has inode locked exclusive. This is one 1522 * and only case when ->lookup() gets called on non in-lookup 1523 * dentries - as the matter of fact, this only gets called 1524 * when directory is guaranteed to have no in-lookup children 1525 * at all. 1526 */ 1527 static struct dentry *__lookup_hash(const struct qstr *name, 1528 struct dentry *base, unsigned int flags) 1529 { 1530 struct dentry *dentry = lookup_dcache(name, base, flags); 1531 struct dentry *old; 1532 struct inode *dir = base->d_inode; 1533 1534 if (dentry) 1535 return dentry; 1536 1537 /* Don't create child dentry for a dead directory. */ 1538 if (unlikely(IS_DEADDIR(dir))) 1539 return ERR_PTR(-ENOENT); 1540 1541 dentry = d_alloc(base, name); 1542 if (unlikely(!dentry)) 1543 return ERR_PTR(-ENOMEM); 1544 1545 old = dir->i_op->lookup(dir, dentry, flags); 1546 if (unlikely(old)) { 1547 dput(dentry); 1548 dentry = old; 1549 } 1550 return dentry; 1551 } 1552 1553 static int lookup_fast(struct nameidata *nd, 1554 struct path *path, struct inode **inode, 1555 unsigned *seqp) 1556 { 1557 struct vfsmount *mnt = nd->path.mnt; 1558 struct dentry *dentry, *parent = nd->path.dentry; 1559 int status = 1; 1560 int err; 1561 1562 /* 1563 * Rename seqlock is not required here because in the off chance 1564 * of a false negative due to a concurrent rename, the caller is 1565 * going to fall back to non-racy lookup. 1566 */ 1567 if (nd->flags & LOOKUP_RCU) { 1568 unsigned seq; 1569 bool negative; 1570 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1571 if (unlikely(!dentry)) { 1572 if (unlazy_walk(nd)) 1573 return -ECHILD; 1574 return 0; 1575 } 1576 1577 /* 1578 * This sequence count validates that the inode matches 1579 * the dentry name information from lookup. 1580 */ 1581 *inode = d_backing_inode(dentry); 1582 negative = d_is_negative(dentry); 1583 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1584 return -ECHILD; 1585 1586 /* 1587 * This sequence count validates that the parent had no 1588 * changes while we did the lookup of the dentry above. 1589 * 1590 * The memory barrier in read_seqcount_begin of child is 1591 * enough, we can use __read_seqcount_retry here. 1592 */ 1593 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1594 return -ECHILD; 1595 1596 *seqp = seq; 1597 status = d_revalidate(dentry, nd->flags); 1598 if (likely(status > 0)) { 1599 /* 1600 * Note: do negative dentry check after revalidation in 1601 * case that drops it. 1602 */ 1603 if (unlikely(negative)) 1604 return -ENOENT; 1605 path->mnt = mnt; 1606 path->dentry = dentry; 1607 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1608 return 1; 1609 } 1610 if (unlazy_child(nd, dentry, seq)) 1611 return -ECHILD; 1612 if (unlikely(status == -ECHILD)) 1613 /* we'd been told to redo it in non-rcu mode */ 1614 status = d_revalidate(dentry, nd->flags); 1615 } else { 1616 dentry = __d_lookup(parent, &nd->last); 1617 if (unlikely(!dentry)) 1618 return 0; 1619 status = d_revalidate(dentry, nd->flags); 1620 } 1621 if (unlikely(status <= 0)) { 1622 if (!status) 1623 d_invalidate(dentry); 1624 dput(dentry); 1625 return status; 1626 } 1627 1628 path->mnt = mnt; 1629 path->dentry = dentry; 1630 err = follow_managed(path, nd); 1631 if (likely(err > 0)) 1632 *inode = d_backing_inode(path->dentry); 1633 return err; 1634 } 1635 1636 /* Fast lookup failed, do it the slow way */ 1637 static struct dentry *__lookup_slow(const struct qstr *name, 1638 struct dentry *dir, 1639 unsigned int flags) 1640 { 1641 struct dentry *dentry, *old; 1642 struct inode *inode = dir->d_inode; 1643 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1644 1645 /* Don't go there if it's already dead */ 1646 if (unlikely(IS_DEADDIR(inode))) 1647 return ERR_PTR(-ENOENT); 1648 again: 1649 dentry = d_alloc_parallel(dir, name, &wq); 1650 if (IS_ERR(dentry)) 1651 return dentry; 1652 if (unlikely(!d_in_lookup(dentry))) { 1653 int error = d_revalidate(dentry, flags); 1654 if (unlikely(error <= 0)) { 1655 if (!error) { 1656 d_invalidate(dentry); 1657 dput(dentry); 1658 goto again; 1659 } 1660 dput(dentry); 1661 dentry = ERR_PTR(error); 1662 } 1663 } else { 1664 old = inode->i_op->lookup(inode, dentry, flags); 1665 d_lookup_done(dentry); 1666 if (unlikely(old)) { 1667 dput(dentry); 1668 dentry = old; 1669 } 1670 } 1671 return dentry; 1672 } 1673 1674 static struct dentry *lookup_slow(const struct qstr *name, 1675 struct dentry *dir, 1676 unsigned int flags) 1677 { 1678 struct inode *inode = dir->d_inode; 1679 struct dentry *res; 1680 inode_lock_shared(inode); 1681 res = __lookup_slow(name, dir, flags); 1682 inode_unlock_shared(inode); 1683 return res; 1684 } 1685 1686 static inline int may_lookup(struct nameidata *nd) 1687 { 1688 if (nd->flags & LOOKUP_RCU) { 1689 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1690 if (err != -ECHILD) 1691 return err; 1692 if (unlazy_walk(nd)) 1693 return -ECHILD; 1694 } 1695 return inode_permission(nd->inode, MAY_EXEC); 1696 } 1697 1698 static inline int handle_dots(struct nameidata *nd, int type) 1699 { 1700 if (type == LAST_DOTDOT) { 1701 if (!nd->root.mnt) 1702 set_root(nd); 1703 if (nd->flags & LOOKUP_RCU) { 1704 return follow_dotdot_rcu(nd); 1705 } else 1706 return follow_dotdot(nd); 1707 } 1708 return 0; 1709 } 1710 1711 static int pick_link(struct nameidata *nd, struct path *link, 1712 struct inode *inode, unsigned seq) 1713 { 1714 int error; 1715 struct saved *last; 1716 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1717 path_to_nameidata(link, nd); 1718 return -ELOOP; 1719 } 1720 if (!(nd->flags & LOOKUP_RCU)) { 1721 if (link->mnt == nd->path.mnt) 1722 mntget(link->mnt); 1723 } 1724 error = nd_alloc_stack(nd); 1725 if (unlikely(error)) { 1726 if (error == -ECHILD) { 1727 if (unlikely(!legitimize_path(nd, link, seq))) { 1728 drop_links(nd); 1729 nd->depth = 0; 1730 nd->flags &= ~LOOKUP_RCU; 1731 nd->path.mnt = NULL; 1732 nd->path.dentry = NULL; 1733 rcu_read_unlock(); 1734 } else if (likely(unlazy_walk(nd)) == 0) 1735 error = nd_alloc_stack(nd); 1736 } 1737 if (error) { 1738 path_put(link); 1739 return error; 1740 } 1741 } 1742 1743 last = nd->stack + nd->depth++; 1744 last->link = *link; 1745 clear_delayed_call(&last->done); 1746 nd->link_inode = inode; 1747 last->seq = seq; 1748 return 1; 1749 } 1750 1751 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1752 1753 /* 1754 * Do we need to follow links? We _really_ want to be able 1755 * to do this check without having to look at inode->i_op, 1756 * so we keep a cache of "no, this doesn't need follow_link" 1757 * for the common case. 1758 */ 1759 static inline int step_into(struct nameidata *nd, struct path *path, 1760 int flags, struct inode *inode, unsigned seq) 1761 { 1762 if (!(flags & WALK_MORE) && nd->depth) 1763 put_link(nd); 1764 if (likely(!d_is_symlink(path->dentry)) || 1765 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1766 /* not a symlink or should not follow */ 1767 path_to_nameidata(path, nd); 1768 nd->inode = inode; 1769 nd->seq = seq; 1770 return 0; 1771 } 1772 /* make sure that d_is_symlink above matches inode */ 1773 if (nd->flags & LOOKUP_RCU) { 1774 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1775 return -ECHILD; 1776 } 1777 return pick_link(nd, path, inode, seq); 1778 } 1779 1780 static int walk_component(struct nameidata *nd, int flags) 1781 { 1782 struct path path; 1783 struct inode *inode; 1784 unsigned seq; 1785 int err; 1786 /* 1787 * "." and ".." are special - ".." especially so because it has 1788 * to be able to know about the current root directory and 1789 * parent relationships. 1790 */ 1791 if (unlikely(nd->last_type != LAST_NORM)) { 1792 err = handle_dots(nd, nd->last_type); 1793 if (!(flags & WALK_MORE) && nd->depth) 1794 put_link(nd); 1795 return err; 1796 } 1797 err = lookup_fast(nd, &path, &inode, &seq); 1798 if (unlikely(err <= 0)) { 1799 if (err < 0) 1800 return err; 1801 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1802 nd->flags); 1803 if (IS_ERR(path.dentry)) 1804 return PTR_ERR(path.dentry); 1805 1806 path.mnt = nd->path.mnt; 1807 err = follow_managed(&path, nd); 1808 if (unlikely(err < 0)) 1809 return err; 1810 1811 seq = 0; /* we are already out of RCU mode */ 1812 inode = d_backing_inode(path.dentry); 1813 } 1814 1815 return step_into(nd, &path, flags, inode, seq); 1816 } 1817 1818 /* 1819 * We can do the critical dentry name comparison and hashing 1820 * operations one word at a time, but we are limited to: 1821 * 1822 * - Architectures with fast unaligned word accesses. We could 1823 * do a "get_unaligned()" if this helps and is sufficiently 1824 * fast. 1825 * 1826 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1827 * do not trap on the (extremely unlikely) case of a page 1828 * crossing operation. 1829 * 1830 * - Furthermore, we need an efficient 64-bit compile for the 1831 * 64-bit case in order to generate the "number of bytes in 1832 * the final mask". Again, that could be replaced with a 1833 * efficient population count instruction or similar. 1834 */ 1835 #ifdef CONFIG_DCACHE_WORD_ACCESS 1836 1837 #include <asm/word-at-a-time.h> 1838 1839 #ifdef HASH_MIX 1840 1841 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1842 1843 #elif defined(CONFIG_64BIT) 1844 /* 1845 * Register pressure in the mixing function is an issue, particularly 1846 * on 32-bit x86, but almost any function requires one state value and 1847 * one temporary. Instead, use a function designed for two state values 1848 * and no temporaries. 1849 * 1850 * This function cannot create a collision in only two iterations, so 1851 * we have two iterations to achieve avalanche. In those two iterations, 1852 * we have six layers of mixing, which is enough to spread one bit's 1853 * influence out to 2^6 = 64 state bits. 1854 * 1855 * Rotate constants are scored by considering either 64 one-bit input 1856 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1857 * probability of that delta causing a change to each of the 128 output 1858 * bits, using a sample of random initial states. 1859 * 1860 * The Shannon entropy of the computed probabilities is then summed 1861 * to produce a score. Ideally, any input change has a 50% chance of 1862 * toggling any given output bit. 1863 * 1864 * Mixing scores (in bits) for (12,45): 1865 * Input delta: 1-bit 2-bit 1866 * 1 round: 713.3 42542.6 1867 * 2 rounds: 2753.7 140389.8 1868 * 3 rounds: 5954.1 233458.2 1869 * 4 rounds: 7862.6 256672.2 1870 * Perfect: 8192 258048 1871 * (64*128) (64*63/2 * 128) 1872 */ 1873 #define HASH_MIX(x, y, a) \ 1874 ( x ^= (a), \ 1875 y ^= x, x = rol64(x,12),\ 1876 x += y, y = rol64(y,45),\ 1877 y *= 9 ) 1878 1879 /* 1880 * Fold two longs into one 32-bit hash value. This must be fast, but 1881 * latency isn't quite as critical, as there is a fair bit of additional 1882 * work done before the hash value is used. 1883 */ 1884 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1885 { 1886 y ^= x * GOLDEN_RATIO_64; 1887 y *= GOLDEN_RATIO_64; 1888 return y >> 32; 1889 } 1890 1891 #else /* 32-bit case */ 1892 1893 /* 1894 * Mixing scores (in bits) for (7,20): 1895 * Input delta: 1-bit 2-bit 1896 * 1 round: 330.3 9201.6 1897 * 2 rounds: 1246.4 25475.4 1898 * 3 rounds: 1907.1 31295.1 1899 * 4 rounds: 2042.3 31718.6 1900 * Perfect: 2048 31744 1901 * (32*64) (32*31/2 * 64) 1902 */ 1903 #define HASH_MIX(x, y, a) \ 1904 ( x ^= (a), \ 1905 y ^= x, x = rol32(x, 7),\ 1906 x += y, y = rol32(y,20),\ 1907 y *= 9 ) 1908 1909 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1910 { 1911 /* Use arch-optimized multiply if one exists */ 1912 return __hash_32(y ^ __hash_32(x)); 1913 } 1914 1915 #endif 1916 1917 /* 1918 * Return the hash of a string of known length. This is carfully 1919 * designed to match hash_name(), which is the more critical function. 1920 * In particular, we must end by hashing a final word containing 0..7 1921 * payload bytes, to match the way that hash_name() iterates until it 1922 * finds the delimiter after the name. 1923 */ 1924 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1925 { 1926 unsigned long a, x = 0, y = (unsigned long)salt; 1927 1928 for (;;) { 1929 if (!len) 1930 goto done; 1931 a = load_unaligned_zeropad(name); 1932 if (len < sizeof(unsigned long)) 1933 break; 1934 HASH_MIX(x, y, a); 1935 name += sizeof(unsigned long); 1936 len -= sizeof(unsigned long); 1937 } 1938 x ^= a & bytemask_from_count(len); 1939 done: 1940 return fold_hash(x, y); 1941 } 1942 EXPORT_SYMBOL(full_name_hash); 1943 1944 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1945 u64 hashlen_string(const void *salt, const char *name) 1946 { 1947 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1948 unsigned long adata, mask, len; 1949 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1950 1951 len = 0; 1952 goto inside; 1953 1954 do { 1955 HASH_MIX(x, y, a); 1956 len += sizeof(unsigned long); 1957 inside: 1958 a = load_unaligned_zeropad(name+len); 1959 } while (!has_zero(a, &adata, &constants)); 1960 1961 adata = prep_zero_mask(a, adata, &constants); 1962 mask = create_zero_mask(adata); 1963 x ^= a & zero_bytemask(mask); 1964 1965 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1966 } 1967 EXPORT_SYMBOL(hashlen_string); 1968 1969 /* 1970 * Calculate the length and hash of the path component, and 1971 * return the "hash_len" as the result. 1972 */ 1973 static inline u64 hash_name(const void *salt, const char *name) 1974 { 1975 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1976 unsigned long adata, bdata, mask, len; 1977 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1978 1979 len = 0; 1980 goto inside; 1981 1982 do { 1983 HASH_MIX(x, y, a); 1984 len += sizeof(unsigned long); 1985 inside: 1986 a = load_unaligned_zeropad(name+len); 1987 b = a ^ REPEAT_BYTE('/'); 1988 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1989 1990 adata = prep_zero_mask(a, adata, &constants); 1991 bdata = prep_zero_mask(b, bdata, &constants); 1992 mask = create_zero_mask(adata | bdata); 1993 x ^= a & zero_bytemask(mask); 1994 1995 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1996 } 1997 1998 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1999 2000 /* Return the hash of a string of known length */ 2001 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2002 { 2003 unsigned long hash = init_name_hash(salt); 2004 while (len--) 2005 hash = partial_name_hash((unsigned char)*name++, hash); 2006 return end_name_hash(hash); 2007 } 2008 EXPORT_SYMBOL(full_name_hash); 2009 2010 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2011 u64 hashlen_string(const void *salt, const char *name) 2012 { 2013 unsigned long hash = init_name_hash(salt); 2014 unsigned long len = 0, c; 2015 2016 c = (unsigned char)*name; 2017 while (c) { 2018 len++; 2019 hash = partial_name_hash(c, hash); 2020 c = (unsigned char)name[len]; 2021 } 2022 return hashlen_create(end_name_hash(hash), len); 2023 } 2024 EXPORT_SYMBOL(hashlen_string); 2025 2026 /* 2027 * We know there's a real path component here of at least 2028 * one character. 2029 */ 2030 static inline u64 hash_name(const void *salt, const char *name) 2031 { 2032 unsigned long hash = init_name_hash(salt); 2033 unsigned long len = 0, c; 2034 2035 c = (unsigned char)*name; 2036 do { 2037 len++; 2038 hash = partial_name_hash(c, hash); 2039 c = (unsigned char)name[len]; 2040 } while (c && c != '/'); 2041 return hashlen_create(end_name_hash(hash), len); 2042 } 2043 2044 #endif 2045 2046 /* 2047 * Name resolution. 2048 * This is the basic name resolution function, turning a pathname into 2049 * the final dentry. We expect 'base' to be positive and a directory. 2050 * 2051 * Returns 0 and nd will have valid dentry and mnt on success. 2052 * Returns error and drops reference to input namei data on failure. 2053 */ 2054 static int link_path_walk(const char *name, struct nameidata *nd) 2055 { 2056 int err; 2057 2058 if (IS_ERR(name)) 2059 return PTR_ERR(name); 2060 while (*name=='/') 2061 name++; 2062 if (!*name) 2063 return 0; 2064 2065 /* At this point we know we have a real path component. */ 2066 for(;;) { 2067 u64 hash_len; 2068 int type; 2069 2070 err = may_lookup(nd); 2071 if (err) 2072 return err; 2073 2074 hash_len = hash_name(nd->path.dentry, name); 2075 2076 type = LAST_NORM; 2077 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2078 case 2: 2079 if (name[1] == '.') { 2080 type = LAST_DOTDOT; 2081 nd->flags |= LOOKUP_JUMPED; 2082 } 2083 break; 2084 case 1: 2085 type = LAST_DOT; 2086 } 2087 if (likely(type == LAST_NORM)) { 2088 struct dentry *parent = nd->path.dentry; 2089 nd->flags &= ~LOOKUP_JUMPED; 2090 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2091 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2092 err = parent->d_op->d_hash(parent, &this); 2093 if (err < 0) 2094 return err; 2095 hash_len = this.hash_len; 2096 name = this.name; 2097 } 2098 } 2099 2100 nd->last.hash_len = hash_len; 2101 nd->last.name = name; 2102 nd->last_type = type; 2103 2104 name += hashlen_len(hash_len); 2105 if (!*name) 2106 goto OK; 2107 /* 2108 * If it wasn't NUL, we know it was '/'. Skip that 2109 * slash, and continue until no more slashes. 2110 */ 2111 do { 2112 name++; 2113 } while (unlikely(*name == '/')); 2114 if (unlikely(!*name)) { 2115 OK: 2116 /* pathname body, done */ 2117 if (!nd->depth) 2118 return 0; 2119 name = nd->stack[nd->depth - 1].name; 2120 /* trailing symlink, done */ 2121 if (!name) 2122 return 0; 2123 /* last component of nested symlink */ 2124 err = walk_component(nd, WALK_FOLLOW); 2125 } else { 2126 /* not the last component */ 2127 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2128 } 2129 if (err < 0) 2130 return err; 2131 2132 if (err) { 2133 const char *s = get_link(nd); 2134 2135 if (IS_ERR(s)) 2136 return PTR_ERR(s); 2137 err = 0; 2138 if (unlikely(!s)) { 2139 /* jumped */ 2140 put_link(nd); 2141 } else { 2142 nd->stack[nd->depth - 1].name = name; 2143 name = s; 2144 continue; 2145 } 2146 } 2147 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2148 if (nd->flags & LOOKUP_RCU) { 2149 if (unlazy_walk(nd)) 2150 return -ECHILD; 2151 } 2152 return -ENOTDIR; 2153 } 2154 } 2155 } 2156 2157 /* must be paired with terminate_walk() */ 2158 static const char *path_init(struct nameidata *nd, unsigned flags) 2159 { 2160 const char *s = nd->name->name; 2161 2162 if (!*s) 2163 flags &= ~LOOKUP_RCU; 2164 if (flags & LOOKUP_RCU) 2165 rcu_read_lock(); 2166 2167 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2168 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2169 nd->depth = 0; 2170 if (flags & LOOKUP_ROOT) { 2171 struct dentry *root = nd->root.dentry; 2172 struct inode *inode = root->d_inode; 2173 if (*s && unlikely(!d_can_lookup(root))) 2174 return ERR_PTR(-ENOTDIR); 2175 nd->path = nd->root; 2176 nd->inode = inode; 2177 if (flags & LOOKUP_RCU) { 2178 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2179 nd->root_seq = nd->seq; 2180 nd->m_seq = read_seqbegin(&mount_lock); 2181 } else { 2182 path_get(&nd->path); 2183 } 2184 return s; 2185 } 2186 2187 nd->root.mnt = NULL; 2188 nd->path.mnt = NULL; 2189 nd->path.dentry = NULL; 2190 2191 nd->m_seq = read_seqbegin(&mount_lock); 2192 if (*s == '/') { 2193 set_root(nd); 2194 if (likely(!nd_jump_root(nd))) 2195 return s; 2196 return ERR_PTR(-ECHILD); 2197 } else if (nd->dfd == AT_FDCWD) { 2198 if (flags & LOOKUP_RCU) { 2199 struct fs_struct *fs = current->fs; 2200 unsigned seq; 2201 2202 do { 2203 seq = read_seqcount_begin(&fs->seq); 2204 nd->path = fs->pwd; 2205 nd->inode = nd->path.dentry->d_inode; 2206 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2207 } while (read_seqcount_retry(&fs->seq, seq)); 2208 } else { 2209 get_fs_pwd(current->fs, &nd->path); 2210 nd->inode = nd->path.dentry->d_inode; 2211 } 2212 return s; 2213 } else { 2214 /* Caller must check execute permissions on the starting path component */ 2215 struct fd f = fdget_raw(nd->dfd); 2216 struct dentry *dentry; 2217 2218 if (!f.file) 2219 return ERR_PTR(-EBADF); 2220 2221 dentry = f.file->f_path.dentry; 2222 2223 if (*s && unlikely(!d_can_lookup(dentry))) { 2224 fdput(f); 2225 return ERR_PTR(-ENOTDIR); 2226 } 2227 2228 nd->path = f.file->f_path; 2229 if (flags & LOOKUP_RCU) { 2230 nd->inode = nd->path.dentry->d_inode; 2231 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2232 } else { 2233 path_get(&nd->path); 2234 nd->inode = nd->path.dentry->d_inode; 2235 } 2236 fdput(f); 2237 return s; 2238 } 2239 } 2240 2241 static const char *trailing_symlink(struct nameidata *nd) 2242 { 2243 const char *s; 2244 int error = may_follow_link(nd); 2245 if (unlikely(error)) 2246 return ERR_PTR(error); 2247 nd->flags |= LOOKUP_PARENT; 2248 nd->stack[0].name = NULL; 2249 s = get_link(nd); 2250 return s ? s : ""; 2251 } 2252 2253 static inline int lookup_last(struct nameidata *nd) 2254 { 2255 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2256 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2257 2258 nd->flags &= ~LOOKUP_PARENT; 2259 return walk_component(nd, 0); 2260 } 2261 2262 static int handle_lookup_down(struct nameidata *nd) 2263 { 2264 struct path path = nd->path; 2265 struct inode *inode = nd->inode; 2266 unsigned seq = nd->seq; 2267 int err; 2268 2269 if (nd->flags & LOOKUP_RCU) { 2270 /* 2271 * don't bother with unlazy_walk on failure - we are 2272 * at the very beginning of walk, so we lose nothing 2273 * if we simply redo everything in non-RCU mode 2274 */ 2275 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2276 return -ECHILD; 2277 } else { 2278 dget(path.dentry); 2279 err = follow_managed(&path, nd); 2280 if (unlikely(err < 0)) 2281 return err; 2282 inode = d_backing_inode(path.dentry); 2283 seq = 0; 2284 } 2285 path_to_nameidata(&path, nd); 2286 nd->inode = inode; 2287 nd->seq = seq; 2288 return 0; 2289 } 2290 2291 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2292 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2293 { 2294 const char *s = path_init(nd, flags); 2295 int err; 2296 2297 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2298 err = handle_lookup_down(nd); 2299 if (unlikely(err < 0)) 2300 s = ERR_PTR(err); 2301 } 2302 2303 while (!(err = link_path_walk(s, nd)) 2304 && ((err = lookup_last(nd)) > 0)) { 2305 s = trailing_symlink(nd); 2306 } 2307 if (!err) 2308 err = complete_walk(nd); 2309 2310 if (!err && nd->flags & LOOKUP_DIRECTORY) 2311 if (!d_can_lookup(nd->path.dentry)) 2312 err = -ENOTDIR; 2313 if (!err) { 2314 *path = nd->path; 2315 nd->path.mnt = NULL; 2316 nd->path.dentry = NULL; 2317 } 2318 terminate_walk(nd); 2319 return err; 2320 } 2321 2322 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2323 struct path *path, struct path *root) 2324 { 2325 int retval; 2326 struct nameidata nd; 2327 if (IS_ERR(name)) 2328 return PTR_ERR(name); 2329 if (unlikely(root)) { 2330 nd.root = *root; 2331 flags |= LOOKUP_ROOT; 2332 } 2333 set_nameidata(&nd, dfd, name); 2334 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2335 if (unlikely(retval == -ECHILD)) 2336 retval = path_lookupat(&nd, flags, path); 2337 if (unlikely(retval == -ESTALE)) 2338 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2339 2340 if (likely(!retval)) 2341 audit_inode(name, path->dentry, 0); 2342 restore_nameidata(); 2343 putname(name); 2344 return retval; 2345 } 2346 2347 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2348 static int path_parentat(struct nameidata *nd, unsigned flags, 2349 struct path *parent) 2350 { 2351 const char *s = path_init(nd, flags); 2352 int err = link_path_walk(s, nd); 2353 if (!err) 2354 err = complete_walk(nd); 2355 if (!err) { 2356 *parent = nd->path; 2357 nd->path.mnt = NULL; 2358 nd->path.dentry = NULL; 2359 } 2360 terminate_walk(nd); 2361 return err; 2362 } 2363 2364 static struct filename *filename_parentat(int dfd, struct filename *name, 2365 unsigned int flags, struct path *parent, 2366 struct qstr *last, int *type) 2367 { 2368 int retval; 2369 struct nameidata nd; 2370 2371 if (IS_ERR(name)) 2372 return name; 2373 set_nameidata(&nd, dfd, name); 2374 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2375 if (unlikely(retval == -ECHILD)) 2376 retval = path_parentat(&nd, flags, parent); 2377 if (unlikely(retval == -ESTALE)) 2378 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2379 if (likely(!retval)) { 2380 *last = nd.last; 2381 *type = nd.last_type; 2382 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2383 } else { 2384 putname(name); 2385 name = ERR_PTR(retval); 2386 } 2387 restore_nameidata(); 2388 return name; 2389 } 2390 2391 /* does lookup, returns the object with parent locked */ 2392 struct dentry *kern_path_locked(const char *name, struct path *path) 2393 { 2394 struct filename *filename; 2395 struct dentry *d; 2396 struct qstr last; 2397 int type; 2398 2399 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2400 &last, &type); 2401 if (IS_ERR(filename)) 2402 return ERR_CAST(filename); 2403 if (unlikely(type != LAST_NORM)) { 2404 path_put(path); 2405 putname(filename); 2406 return ERR_PTR(-EINVAL); 2407 } 2408 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2409 d = __lookup_hash(&last, path->dentry, 0); 2410 if (IS_ERR(d)) { 2411 inode_unlock(path->dentry->d_inode); 2412 path_put(path); 2413 } 2414 putname(filename); 2415 return d; 2416 } 2417 2418 int kern_path(const char *name, unsigned int flags, struct path *path) 2419 { 2420 return filename_lookup(AT_FDCWD, getname_kernel(name), 2421 flags, path, NULL); 2422 } 2423 EXPORT_SYMBOL(kern_path); 2424 2425 /** 2426 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2427 * @dentry: pointer to dentry of the base directory 2428 * @mnt: pointer to vfs mount of the base directory 2429 * @name: pointer to file name 2430 * @flags: lookup flags 2431 * @path: pointer to struct path to fill 2432 */ 2433 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2434 const char *name, unsigned int flags, 2435 struct path *path) 2436 { 2437 struct path root = {.mnt = mnt, .dentry = dentry}; 2438 /* the first argument of filename_lookup() is ignored with root */ 2439 return filename_lookup(AT_FDCWD, getname_kernel(name), 2440 flags , path, &root); 2441 } 2442 EXPORT_SYMBOL(vfs_path_lookup); 2443 2444 static int lookup_one_len_common(const char *name, struct dentry *base, 2445 int len, struct qstr *this) 2446 { 2447 this->name = name; 2448 this->len = len; 2449 this->hash = full_name_hash(base, name, len); 2450 if (!len) 2451 return -EACCES; 2452 2453 if (unlikely(name[0] == '.')) { 2454 if (len < 2 || (len == 2 && name[1] == '.')) 2455 return -EACCES; 2456 } 2457 2458 while (len--) { 2459 unsigned int c = *(const unsigned char *)name++; 2460 if (c == '/' || c == '\0') 2461 return -EACCES; 2462 } 2463 /* 2464 * See if the low-level filesystem might want 2465 * to use its own hash.. 2466 */ 2467 if (base->d_flags & DCACHE_OP_HASH) { 2468 int err = base->d_op->d_hash(base, this); 2469 if (err < 0) 2470 return err; 2471 } 2472 2473 return inode_permission(base->d_inode, MAY_EXEC); 2474 } 2475 2476 /** 2477 * try_lookup_one_len - filesystem helper to lookup single pathname component 2478 * @name: pathname component to lookup 2479 * @base: base directory to lookup from 2480 * @len: maximum length @len should be interpreted to 2481 * 2482 * Look up a dentry by name in the dcache, returning NULL if it does not 2483 * currently exist. The function does not try to create a dentry. 2484 * 2485 * Note that this routine is purely a helper for filesystem usage and should 2486 * not be called by generic code. 2487 * 2488 * The caller must hold base->i_mutex. 2489 */ 2490 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2491 { 2492 struct qstr this; 2493 int err; 2494 2495 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2496 2497 err = lookup_one_len_common(name, base, len, &this); 2498 if (err) 2499 return ERR_PTR(err); 2500 2501 return lookup_dcache(&this, base, 0); 2502 } 2503 EXPORT_SYMBOL(try_lookup_one_len); 2504 2505 /** 2506 * lookup_one_len - filesystem helper to lookup single pathname component 2507 * @name: pathname component to lookup 2508 * @base: base directory to lookup from 2509 * @len: maximum length @len should be interpreted to 2510 * 2511 * Note that this routine is purely a helper for filesystem usage and should 2512 * not be called by generic code. 2513 * 2514 * The caller must hold base->i_mutex. 2515 */ 2516 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2517 { 2518 struct dentry *dentry; 2519 struct qstr this; 2520 int err; 2521 2522 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2523 2524 err = lookup_one_len_common(name, base, len, &this); 2525 if (err) 2526 return ERR_PTR(err); 2527 2528 dentry = lookup_dcache(&this, base, 0); 2529 return dentry ? dentry : __lookup_slow(&this, base, 0); 2530 } 2531 EXPORT_SYMBOL(lookup_one_len); 2532 2533 /** 2534 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2535 * @name: pathname component to lookup 2536 * @base: base directory to lookup from 2537 * @len: maximum length @len should be interpreted to 2538 * 2539 * Note that this routine is purely a helper for filesystem usage and should 2540 * not be called by generic code. 2541 * 2542 * Unlike lookup_one_len, it should be called without the parent 2543 * i_mutex held, and will take the i_mutex itself if necessary. 2544 */ 2545 struct dentry *lookup_one_len_unlocked(const char *name, 2546 struct dentry *base, int len) 2547 { 2548 struct qstr this; 2549 int err; 2550 struct dentry *ret; 2551 2552 err = lookup_one_len_common(name, base, len, &this); 2553 if (err) 2554 return ERR_PTR(err); 2555 2556 ret = lookup_dcache(&this, base, 0); 2557 if (!ret) 2558 ret = lookup_slow(&this, base, 0); 2559 return ret; 2560 } 2561 EXPORT_SYMBOL(lookup_one_len_unlocked); 2562 2563 /* 2564 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2565 * on negatives. Returns known positive or ERR_PTR(); that's what 2566 * most of the users want. Note that pinned negative with unlocked parent 2567 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2568 * need to be very careful; pinned positives have ->d_inode stable, so 2569 * this one avoids such problems. 2570 */ 2571 struct dentry *lookup_positive_unlocked(const char *name, 2572 struct dentry *base, int len) 2573 { 2574 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2575 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2576 dput(ret); 2577 ret = ERR_PTR(-ENOENT); 2578 } 2579 return ret; 2580 } 2581 EXPORT_SYMBOL(lookup_positive_unlocked); 2582 2583 #ifdef CONFIG_UNIX98_PTYS 2584 int path_pts(struct path *path) 2585 { 2586 /* Find something mounted on "pts" in the same directory as 2587 * the input path. 2588 */ 2589 struct dentry *child, *parent; 2590 struct qstr this; 2591 int ret; 2592 2593 ret = path_parent_directory(path); 2594 if (ret) 2595 return ret; 2596 2597 parent = path->dentry; 2598 this.name = "pts"; 2599 this.len = 3; 2600 child = d_hash_and_lookup(parent, &this); 2601 if (!child) 2602 return -ENOENT; 2603 2604 path->dentry = child; 2605 dput(parent); 2606 follow_mount(path); 2607 return 0; 2608 } 2609 #endif 2610 2611 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2612 struct path *path, int *empty) 2613 { 2614 return filename_lookup(dfd, getname_flags(name, flags, empty), 2615 flags, path, NULL); 2616 } 2617 EXPORT_SYMBOL(user_path_at_empty); 2618 2619 /** 2620 * path_mountpoint - look up a path to be umounted 2621 * @nd: lookup context 2622 * @flags: lookup flags 2623 * @path: pointer to container for result 2624 * 2625 * Look up the given name, but don't attempt to revalidate the last component. 2626 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2627 */ 2628 static int 2629 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2630 { 2631 const char *s = path_init(nd, flags); 2632 int err; 2633 2634 while (!(err = link_path_walk(s, nd)) && 2635 (err = lookup_last(nd)) > 0) { 2636 s = trailing_symlink(nd); 2637 } 2638 if (!err && (nd->flags & LOOKUP_RCU)) 2639 err = unlazy_walk(nd); 2640 if (!err) 2641 err = handle_lookup_down(nd); 2642 if (!err) { 2643 *path = nd->path; 2644 nd->path.mnt = NULL; 2645 nd->path.dentry = NULL; 2646 } 2647 terminate_walk(nd); 2648 return err; 2649 } 2650 2651 static int 2652 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2653 unsigned int flags) 2654 { 2655 struct nameidata nd; 2656 int error; 2657 if (IS_ERR(name)) 2658 return PTR_ERR(name); 2659 set_nameidata(&nd, dfd, name); 2660 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2661 if (unlikely(error == -ECHILD)) 2662 error = path_mountpoint(&nd, flags, path); 2663 if (unlikely(error == -ESTALE)) 2664 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2665 if (likely(!error)) 2666 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL); 2667 restore_nameidata(); 2668 putname(name); 2669 return error; 2670 } 2671 2672 /** 2673 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2674 * @dfd: directory file descriptor 2675 * @name: pathname from userland 2676 * @flags: lookup flags 2677 * @path: pointer to container to hold result 2678 * 2679 * A umount is a special case for path walking. We're not actually interested 2680 * in the inode in this situation, and ESTALE errors can be a problem. We 2681 * simply want track down the dentry and vfsmount attached at the mountpoint 2682 * and avoid revalidating the last component. 2683 * 2684 * Returns 0 and populates "path" on success. 2685 */ 2686 int 2687 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2688 struct path *path) 2689 { 2690 return filename_mountpoint(dfd, getname(name), path, flags); 2691 } 2692 2693 int 2694 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2695 unsigned int flags) 2696 { 2697 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2698 } 2699 EXPORT_SYMBOL(kern_path_mountpoint); 2700 2701 int __check_sticky(struct inode *dir, struct inode *inode) 2702 { 2703 kuid_t fsuid = current_fsuid(); 2704 2705 if (uid_eq(inode->i_uid, fsuid)) 2706 return 0; 2707 if (uid_eq(dir->i_uid, fsuid)) 2708 return 0; 2709 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2710 } 2711 EXPORT_SYMBOL(__check_sticky); 2712 2713 /* 2714 * Check whether we can remove a link victim from directory dir, check 2715 * whether the type of victim is right. 2716 * 1. We can't do it if dir is read-only (done in permission()) 2717 * 2. We should have write and exec permissions on dir 2718 * 3. We can't remove anything from append-only dir 2719 * 4. We can't do anything with immutable dir (done in permission()) 2720 * 5. If the sticky bit on dir is set we should either 2721 * a. be owner of dir, or 2722 * b. be owner of victim, or 2723 * c. have CAP_FOWNER capability 2724 * 6. If the victim is append-only or immutable we can't do antyhing with 2725 * links pointing to it. 2726 * 7. If the victim has an unknown uid or gid we can't change the inode. 2727 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2728 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2729 * 10. We can't remove a root or mountpoint. 2730 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2731 * nfs_async_unlink(). 2732 */ 2733 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2734 { 2735 struct inode *inode = d_backing_inode(victim); 2736 int error; 2737 2738 if (d_is_negative(victim)) 2739 return -ENOENT; 2740 BUG_ON(!inode); 2741 2742 BUG_ON(victim->d_parent->d_inode != dir); 2743 2744 /* Inode writeback is not safe when the uid or gid are invalid. */ 2745 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2746 return -EOVERFLOW; 2747 2748 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2749 2750 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2751 if (error) 2752 return error; 2753 if (IS_APPEND(dir)) 2754 return -EPERM; 2755 2756 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2757 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2758 return -EPERM; 2759 if (isdir) { 2760 if (!d_is_dir(victim)) 2761 return -ENOTDIR; 2762 if (IS_ROOT(victim)) 2763 return -EBUSY; 2764 } else if (d_is_dir(victim)) 2765 return -EISDIR; 2766 if (IS_DEADDIR(dir)) 2767 return -ENOENT; 2768 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2769 return -EBUSY; 2770 return 0; 2771 } 2772 2773 /* Check whether we can create an object with dentry child in directory 2774 * dir. 2775 * 1. We can't do it if child already exists (open has special treatment for 2776 * this case, but since we are inlined it's OK) 2777 * 2. We can't do it if dir is read-only (done in permission()) 2778 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2779 * 4. We should have write and exec permissions on dir 2780 * 5. We can't do it if dir is immutable (done in permission()) 2781 */ 2782 static inline int may_create(struct inode *dir, struct dentry *child) 2783 { 2784 struct user_namespace *s_user_ns; 2785 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2786 if (child->d_inode) 2787 return -EEXIST; 2788 if (IS_DEADDIR(dir)) 2789 return -ENOENT; 2790 s_user_ns = dir->i_sb->s_user_ns; 2791 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2792 !kgid_has_mapping(s_user_ns, current_fsgid())) 2793 return -EOVERFLOW; 2794 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2795 } 2796 2797 /* 2798 * p1 and p2 should be directories on the same fs. 2799 */ 2800 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2801 { 2802 struct dentry *p; 2803 2804 if (p1 == p2) { 2805 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2806 return NULL; 2807 } 2808 2809 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2810 2811 p = d_ancestor(p2, p1); 2812 if (p) { 2813 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2814 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2815 return p; 2816 } 2817 2818 p = d_ancestor(p1, p2); 2819 if (p) { 2820 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2821 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2822 return p; 2823 } 2824 2825 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2826 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2827 return NULL; 2828 } 2829 EXPORT_SYMBOL(lock_rename); 2830 2831 void unlock_rename(struct dentry *p1, struct dentry *p2) 2832 { 2833 inode_unlock(p1->d_inode); 2834 if (p1 != p2) { 2835 inode_unlock(p2->d_inode); 2836 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2837 } 2838 } 2839 EXPORT_SYMBOL(unlock_rename); 2840 2841 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2842 bool want_excl) 2843 { 2844 int error = may_create(dir, dentry); 2845 if (error) 2846 return error; 2847 2848 if (!dir->i_op->create) 2849 return -EACCES; /* shouldn't it be ENOSYS? */ 2850 mode &= S_IALLUGO; 2851 mode |= S_IFREG; 2852 error = security_inode_create(dir, dentry, mode); 2853 if (error) 2854 return error; 2855 error = dir->i_op->create(dir, dentry, mode, want_excl); 2856 if (!error) 2857 fsnotify_create(dir, dentry); 2858 return error; 2859 } 2860 EXPORT_SYMBOL(vfs_create); 2861 2862 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2863 int (*f)(struct dentry *, umode_t, void *), 2864 void *arg) 2865 { 2866 struct inode *dir = dentry->d_parent->d_inode; 2867 int error = may_create(dir, dentry); 2868 if (error) 2869 return error; 2870 2871 mode &= S_IALLUGO; 2872 mode |= S_IFREG; 2873 error = security_inode_create(dir, dentry, mode); 2874 if (error) 2875 return error; 2876 error = f(dentry, mode, arg); 2877 if (!error) 2878 fsnotify_create(dir, dentry); 2879 return error; 2880 } 2881 EXPORT_SYMBOL(vfs_mkobj); 2882 2883 bool may_open_dev(const struct path *path) 2884 { 2885 return !(path->mnt->mnt_flags & MNT_NODEV) && 2886 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2887 } 2888 2889 static int may_open(const struct path *path, int acc_mode, int flag) 2890 { 2891 struct dentry *dentry = path->dentry; 2892 struct inode *inode = dentry->d_inode; 2893 int error; 2894 2895 if (!inode) 2896 return -ENOENT; 2897 2898 switch (inode->i_mode & S_IFMT) { 2899 case S_IFLNK: 2900 return -ELOOP; 2901 case S_IFDIR: 2902 if (acc_mode & MAY_WRITE) 2903 return -EISDIR; 2904 break; 2905 case S_IFBLK: 2906 case S_IFCHR: 2907 if (!may_open_dev(path)) 2908 return -EACCES; 2909 /*FALLTHRU*/ 2910 case S_IFIFO: 2911 case S_IFSOCK: 2912 flag &= ~O_TRUNC; 2913 break; 2914 } 2915 2916 error = inode_permission(inode, MAY_OPEN | acc_mode); 2917 if (error) 2918 return error; 2919 2920 /* 2921 * An append-only file must be opened in append mode for writing. 2922 */ 2923 if (IS_APPEND(inode)) { 2924 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2925 return -EPERM; 2926 if (flag & O_TRUNC) 2927 return -EPERM; 2928 } 2929 2930 /* O_NOATIME can only be set by the owner or superuser */ 2931 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2932 return -EPERM; 2933 2934 return 0; 2935 } 2936 2937 static int handle_truncate(struct file *filp) 2938 { 2939 const struct path *path = &filp->f_path; 2940 struct inode *inode = path->dentry->d_inode; 2941 int error = get_write_access(inode); 2942 if (error) 2943 return error; 2944 /* 2945 * Refuse to truncate files with mandatory locks held on them. 2946 */ 2947 error = locks_verify_locked(filp); 2948 if (!error) 2949 error = security_path_truncate(path); 2950 if (!error) { 2951 error = do_truncate(path->dentry, 0, 2952 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2953 filp); 2954 } 2955 put_write_access(inode); 2956 return error; 2957 } 2958 2959 static inline int open_to_namei_flags(int flag) 2960 { 2961 if ((flag & O_ACCMODE) == 3) 2962 flag--; 2963 return flag; 2964 } 2965 2966 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2967 { 2968 struct user_namespace *s_user_ns; 2969 int error = security_path_mknod(dir, dentry, mode, 0); 2970 if (error) 2971 return error; 2972 2973 s_user_ns = dir->dentry->d_sb->s_user_ns; 2974 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2975 !kgid_has_mapping(s_user_ns, current_fsgid())) 2976 return -EOVERFLOW; 2977 2978 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2979 if (error) 2980 return error; 2981 2982 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2983 } 2984 2985 /* 2986 * Attempt to atomically look up, create and open a file from a negative 2987 * dentry. 2988 * 2989 * Returns 0 if successful. The file will have been created and attached to 2990 * @file by the filesystem calling finish_open(). 2991 * 2992 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 2993 * be set. The caller will need to perform the open themselves. @path will 2994 * have been updated to point to the new dentry. This may be negative. 2995 * 2996 * Returns an error code otherwise. 2997 */ 2998 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2999 struct path *path, struct file *file, 3000 const struct open_flags *op, 3001 int open_flag, umode_t mode) 3002 { 3003 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3004 struct inode *dir = nd->path.dentry->d_inode; 3005 int error; 3006 3007 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3008 open_flag &= ~O_TRUNC; 3009 3010 if (nd->flags & LOOKUP_DIRECTORY) 3011 open_flag |= O_DIRECTORY; 3012 3013 file->f_path.dentry = DENTRY_NOT_SET; 3014 file->f_path.mnt = nd->path.mnt; 3015 error = dir->i_op->atomic_open(dir, dentry, file, 3016 open_to_namei_flags(open_flag), mode); 3017 d_lookup_done(dentry); 3018 if (!error) { 3019 if (file->f_mode & FMODE_OPENED) { 3020 /* 3021 * We didn't have the inode before the open, so check open 3022 * permission here. 3023 */ 3024 int acc_mode = op->acc_mode; 3025 if (file->f_mode & FMODE_CREATED) { 3026 WARN_ON(!(open_flag & O_CREAT)); 3027 fsnotify_create(dir, dentry); 3028 acc_mode = 0; 3029 } 3030 error = may_open(&file->f_path, acc_mode, open_flag); 3031 if (WARN_ON(error > 0)) 3032 error = -EINVAL; 3033 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3034 error = -EIO; 3035 } else { 3036 if (file->f_path.dentry) { 3037 dput(dentry); 3038 dentry = file->f_path.dentry; 3039 } 3040 if (file->f_mode & FMODE_CREATED) 3041 fsnotify_create(dir, dentry); 3042 if (unlikely(d_is_negative(dentry))) { 3043 error = -ENOENT; 3044 } else { 3045 path->dentry = dentry; 3046 path->mnt = nd->path.mnt; 3047 return 0; 3048 } 3049 } 3050 } 3051 dput(dentry); 3052 return error; 3053 } 3054 3055 /* 3056 * Look up and maybe create and open the last component. 3057 * 3058 * Must be called with parent locked (exclusive in O_CREAT case). 3059 * 3060 * Returns 0 on success, that is, if 3061 * the file was successfully atomically created (if necessary) and opened, or 3062 * the file was not completely opened at this time, though lookups and 3063 * creations were performed. 3064 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3065 * In the latter case dentry returned in @path might be negative if O_CREAT 3066 * hadn't been specified. 3067 * 3068 * An error code is returned on failure. 3069 */ 3070 static int lookup_open(struct nameidata *nd, struct path *path, 3071 struct file *file, 3072 const struct open_flags *op, 3073 bool got_write) 3074 { 3075 struct dentry *dir = nd->path.dentry; 3076 struct inode *dir_inode = dir->d_inode; 3077 int open_flag = op->open_flag; 3078 struct dentry *dentry; 3079 int error, create_error = 0; 3080 umode_t mode = op->mode; 3081 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3082 3083 if (unlikely(IS_DEADDIR(dir_inode))) 3084 return -ENOENT; 3085 3086 file->f_mode &= ~FMODE_CREATED; 3087 dentry = d_lookup(dir, &nd->last); 3088 for (;;) { 3089 if (!dentry) { 3090 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3091 if (IS_ERR(dentry)) 3092 return PTR_ERR(dentry); 3093 } 3094 if (d_in_lookup(dentry)) 3095 break; 3096 3097 error = d_revalidate(dentry, nd->flags); 3098 if (likely(error > 0)) 3099 break; 3100 if (error) 3101 goto out_dput; 3102 d_invalidate(dentry); 3103 dput(dentry); 3104 dentry = NULL; 3105 } 3106 if (dentry->d_inode) { 3107 /* Cached positive dentry: will open in f_op->open */ 3108 goto out_no_open; 3109 } 3110 3111 /* 3112 * Checking write permission is tricky, bacuse we don't know if we are 3113 * going to actually need it: O_CREAT opens should work as long as the 3114 * file exists. But checking existence breaks atomicity. The trick is 3115 * to check access and if not granted clear O_CREAT from the flags. 3116 * 3117 * Another problem is returing the "right" error value (e.g. for an 3118 * O_EXCL open we want to return EEXIST not EROFS). 3119 */ 3120 if (open_flag & O_CREAT) { 3121 if (!IS_POSIXACL(dir->d_inode)) 3122 mode &= ~current_umask(); 3123 if (unlikely(!got_write)) { 3124 create_error = -EROFS; 3125 open_flag &= ~O_CREAT; 3126 if (open_flag & (O_EXCL | O_TRUNC)) 3127 goto no_open; 3128 /* No side effects, safe to clear O_CREAT */ 3129 } else { 3130 create_error = may_o_create(&nd->path, dentry, mode); 3131 if (create_error) { 3132 open_flag &= ~O_CREAT; 3133 if (open_flag & O_EXCL) 3134 goto no_open; 3135 } 3136 } 3137 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3138 unlikely(!got_write)) { 3139 /* 3140 * No O_CREATE -> atomicity not a requirement -> fall 3141 * back to lookup + open 3142 */ 3143 goto no_open; 3144 } 3145 3146 if (dir_inode->i_op->atomic_open) { 3147 error = atomic_open(nd, dentry, path, file, op, open_flag, 3148 mode); 3149 if (unlikely(error == -ENOENT) && create_error) 3150 error = create_error; 3151 return error; 3152 } 3153 3154 no_open: 3155 if (d_in_lookup(dentry)) { 3156 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3157 nd->flags); 3158 d_lookup_done(dentry); 3159 if (unlikely(res)) { 3160 if (IS_ERR(res)) { 3161 error = PTR_ERR(res); 3162 goto out_dput; 3163 } 3164 dput(dentry); 3165 dentry = res; 3166 } 3167 } 3168 3169 /* Negative dentry, just create the file */ 3170 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3171 file->f_mode |= FMODE_CREATED; 3172 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3173 if (!dir_inode->i_op->create) { 3174 error = -EACCES; 3175 goto out_dput; 3176 } 3177 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3178 open_flag & O_EXCL); 3179 if (error) 3180 goto out_dput; 3181 fsnotify_create(dir_inode, dentry); 3182 } 3183 if (unlikely(create_error) && !dentry->d_inode) { 3184 error = create_error; 3185 goto out_dput; 3186 } 3187 out_no_open: 3188 path->dentry = dentry; 3189 path->mnt = nd->path.mnt; 3190 return 0; 3191 3192 out_dput: 3193 dput(dentry); 3194 return error; 3195 } 3196 3197 /* 3198 * Handle the last step of open() 3199 */ 3200 static int do_last(struct nameidata *nd, 3201 struct file *file, const struct open_flags *op) 3202 { 3203 struct dentry *dir = nd->path.dentry; 3204 int open_flag = op->open_flag; 3205 bool will_truncate = (open_flag & O_TRUNC) != 0; 3206 bool got_write = false; 3207 int acc_mode = op->acc_mode; 3208 unsigned seq; 3209 struct inode *inode; 3210 struct path path; 3211 int error; 3212 3213 nd->flags &= ~LOOKUP_PARENT; 3214 nd->flags |= op->intent; 3215 3216 if (nd->last_type != LAST_NORM) { 3217 error = handle_dots(nd, nd->last_type); 3218 if (unlikely(error)) 3219 return error; 3220 goto finish_open; 3221 } 3222 3223 if (!(open_flag & O_CREAT)) { 3224 if (nd->last.name[nd->last.len]) 3225 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3226 /* we _can_ be in RCU mode here */ 3227 error = lookup_fast(nd, &path, &inode, &seq); 3228 if (likely(error > 0)) 3229 goto finish_lookup; 3230 3231 if (error < 0) 3232 return error; 3233 3234 BUG_ON(nd->inode != dir->d_inode); 3235 BUG_ON(nd->flags & LOOKUP_RCU); 3236 } else { 3237 /* create side of things */ 3238 /* 3239 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3240 * has been cleared when we got to the last component we are 3241 * about to look up 3242 */ 3243 error = complete_walk(nd); 3244 if (error) 3245 return error; 3246 3247 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3248 /* trailing slashes? */ 3249 if (unlikely(nd->last.name[nd->last.len])) 3250 return -EISDIR; 3251 } 3252 3253 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3254 error = mnt_want_write(nd->path.mnt); 3255 if (!error) 3256 got_write = true; 3257 /* 3258 * do _not_ fail yet - we might not need that or fail with 3259 * a different error; let lookup_open() decide; we'll be 3260 * dropping this one anyway. 3261 */ 3262 } 3263 if (open_flag & O_CREAT) 3264 inode_lock(dir->d_inode); 3265 else 3266 inode_lock_shared(dir->d_inode); 3267 error = lookup_open(nd, &path, file, op, got_write); 3268 if (open_flag & O_CREAT) 3269 inode_unlock(dir->d_inode); 3270 else 3271 inode_unlock_shared(dir->d_inode); 3272 3273 if (error) 3274 goto out; 3275 3276 if (file->f_mode & FMODE_OPENED) { 3277 if ((file->f_mode & FMODE_CREATED) || 3278 !S_ISREG(file_inode(file)->i_mode)) 3279 will_truncate = false; 3280 3281 audit_inode(nd->name, file->f_path.dentry, 0); 3282 goto opened; 3283 } 3284 3285 if (file->f_mode & FMODE_CREATED) { 3286 /* Don't check for write permission, don't truncate */ 3287 open_flag &= ~O_TRUNC; 3288 will_truncate = false; 3289 acc_mode = 0; 3290 path_to_nameidata(&path, nd); 3291 goto finish_open_created; 3292 } 3293 3294 /* 3295 * If atomic_open() acquired write access it is dropped now due to 3296 * possible mount and symlink following (this might be optimized away if 3297 * necessary...) 3298 */ 3299 if (got_write) { 3300 mnt_drop_write(nd->path.mnt); 3301 got_write = false; 3302 } 3303 3304 error = follow_managed(&path, nd); 3305 if (unlikely(error < 0)) 3306 return error; 3307 3308 /* 3309 * create/update audit record if it already exists. 3310 */ 3311 audit_inode(nd->name, path.dentry, 0); 3312 3313 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3314 path_to_nameidata(&path, nd); 3315 return -EEXIST; 3316 } 3317 3318 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3319 inode = d_backing_inode(path.dentry); 3320 finish_lookup: 3321 error = step_into(nd, &path, 0, inode, seq); 3322 if (unlikely(error)) 3323 return error; 3324 finish_open: 3325 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3326 error = complete_walk(nd); 3327 if (error) 3328 return error; 3329 audit_inode(nd->name, nd->path.dentry, 0); 3330 if (open_flag & O_CREAT) { 3331 error = -EISDIR; 3332 if (d_is_dir(nd->path.dentry)) 3333 goto out; 3334 error = may_create_in_sticky(dir, 3335 d_backing_inode(nd->path.dentry)); 3336 if (unlikely(error)) 3337 goto out; 3338 } 3339 error = -ENOTDIR; 3340 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3341 goto out; 3342 if (!d_is_reg(nd->path.dentry)) 3343 will_truncate = false; 3344 3345 if (will_truncate) { 3346 error = mnt_want_write(nd->path.mnt); 3347 if (error) 3348 goto out; 3349 got_write = true; 3350 } 3351 finish_open_created: 3352 error = may_open(&nd->path, acc_mode, open_flag); 3353 if (error) 3354 goto out; 3355 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ 3356 error = vfs_open(&nd->path, file); 3357 if (error) 3358 goto out; 3359 opened: 3360 error = ima_file_check(file, op->acc_mode); 3361 if (!error && will_truncate) 3362 error = handle_truncate(file); 3363 out: 3364 if (unlikely(error > 0)) { 3365 WARN_ON(1); 3366 error = -EINVAL; 3367 } 3368 if (got_write) 3369 mnt_drop_write(nd->path.mnt); 3370 return error; 3371 } 3372 3373 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3374 { 3375 struct dentry *child = NULL; 3376 struct inode *dir = dentry->d_inode; 3377 struct inode *inode; 3378 int error; 3379 3380 /* we want directory to be writable */ 3381 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3382 if (error) 3383 goto out_err; 3384 error = -EOPNOTSUPP; 3385 if (!dir->i_op->tmpfile) 3386 goto out_err; 3387 error = -ENOMEM; 3388 child = d_alloc(dentry, &slash_name); 3389 if (unlikely(!child)) 3390 goto out_err; 3391 error = dir->i_op->tmpfile(dir, child, mode); 3392 if (error) 3393 goto out_err; 3394 error = -ENOENT; 3395 inode = child->d_inode; 3396 if (unlikely(!inode)) 3397 goto out_err; 3398 if (!(open_flag & O_EXCL)) { 3399 spin_lock(&inode->i_lock); 3400 inode->i_state |= I_LINKABLE; 3401 spin_unlock(&inode->i_lock); 3402 } 3403 ima_post_create_tmpfile(inode); 3404 return child; 3405 3406 out_err: 3407 dput(child); 3408 return ERR_PTR(error); 3409 } 3410 EXPORT_SYMBOL(vfs_tmpfile); 3411 3412 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3413 const struct open_flags *op, 3414 struct file *file) 3415 { 3416 struct dentry *child; 3417 struct path path; 3418 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3419 if (unlikely(error)) 3420 return error; 3421 error = mnt_want_write(path.mnt); 3422 if (unlikely(error)) 3423 goto out; 3424 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3425 error = PTR_ERR(child); 3426 if (IS_ERR(child)) 3427 goto out2; 3428 dput(path.dentry); 3429 path.dentry = child; 3430 audit_inode(nd->name, child, 0); 3431 /* Don't check for other permissions, the inode was just created */ 3432 error = may_open(&path, 0, op->open_flag); 3433 if (error) 3434 goto out2; 3435 file->f_path.mnt = path.mnt; 3436 error = finish_open(file, child, NULL); 3437 out2: 3438 mnt_drop_write(path.mnt); 3439 out: 3440 path_put(&path); 3441 return error; 3442 } 3443 3444 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3445 { 3446 struct path path; 3447 int error = path_lookupat(nd, flags, &path); 3448 if (!error) { 3449 audit_inode(nd->name, path.dentry, 0); 3450 error = vfs_open(&path, file); 3451 path_put(&path); 3452 } 3453 return error; 3454 } 3455 3456 static struct file *path_openat(struct nameidata *nd, 3457 const struct open_flags *op, unsigned flags) 3458 { 3459 struct file *file; 3460 int error; 3461 3462 file = alloc_empty_file(op->open_flag, current_cred()); 3463 if (IS_ERR(file)) 3464 return file; 3465 3466 if (unlikely(file->f_flags & __O_TMPFILE)) { 3467 error = do_tmpfile(nd, flags, op, file); 3468 } else if (unlikely(file->f_flags & O_PATH)) { 3469 error = do_o_path(nd, flags, file); 3470 } else { 3471 const char *s = path_init(nd, flags); 3472 while (!(error = link_path_walk(s, nd)) && 3473 (error = do_last(nd, file, op)) > 0) { 3474 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3475 s = trailing_symlink(nd); 3476 } 3477 terminate_walk(nd); 3478 } 3479 if (likely(!error)) { 3480 if (likely(file->f_mode & FMODE_OPENED)) 3481 return file; 3482 WARN_ON(1); 3483 error = -EINVAL; 3484 } 3485 fput(file); 3486 if (error == -EOPENSTALE) { 3487 if (flags & LOOKUP_RCU) 3488 error = -ECHILD; 3489 else 3490 error = -ESTALE; 3491 } 3492 return ERR_PTR(error); 3493 } 3494 3495 struct file *do_filp_open(int dfd, struct filename *pathname, 3496 const struct open_flags *op) 3497 { 3498 struct nameidata nd; 3499 int flags = op->lookup_flags; 3500 struct file *filp; 3501 3502 set_nameidata(&nd, dfd, pathname); 3503 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3504 if (unlikely(filp == ERR_PTR(-ECHILD))) 3505 filp = path_openat(&nd, op, flags); 3506 if (unlikely(filp == ERR_PTR(-ESTALE))) 3507 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3508 restore_nameidata(); 3509 return filp; 3510 } 3511 3512 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3513 const char *name, const struct open_flags *op) 3514 { 3515 struct nameidata nd; 3516 struct file *file; 3517 struct filename *filename; 3518 int flags = op->lookup_flags | LOOKUP_ROOT; 3519 3520 nd.root.mnt = mnt; 3521 nd.root.dentry = dentry; 3522 3523 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3524 return ERR_PTR(-ELOOP); 3525 3526 filename = getname_kernel(name); 3527 if (IS_ERR(filename)) 3528 return ERR_CAST(filename); 3529 3530 set_nameidata(&nd, -1, filename); 3531 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3532 if (unlikely(file == ERR_PTR(-ECHILD))) 3533 file = path_openat(&nd, op, flags); 3534 if (unlikely(file == ERR_PTR(-ESTALE))) 3535 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3536 restore_nameidata(); 3537 putname(filename); 3538 return file; 3539 } 3540 3541 static struct dentry *filename_create(int dfd, struct filename *name, 3542 struct path *path, unsigned int lookup_flags) 3543 { 3544 struct dentry *dentry = ERR_PTR(-EEXIST); 3545 struct qstr last; 3546 int type; 3547 int err2; 3548 int error; 3549 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3550 3551 /* 3552 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3553 * other flags passed in are ignored! 3554 */ 3555 lookup_flags &= LOOKUP_REVAL; 3556 3557 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3558 if (IS_ERR(name)) 3559 return ERR_CAST(name); 3560 3561 /* 3562 * Yucky last component or no last component at all? 3563 * (foo/., foo/.., /////) 3564 */ 3565 if (unlikely(type != LAST_NORM)) 3566 goto out; 3567 3568 /* don't fail immediately if it's r/o, at least try to report other errors */ 3569 err2 = mnt_want_write(path->mnt); 3570 /* 3571 * Do the final lookup. 3572 */ 3573 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3574 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3575 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3576 if (IS_ERR(dentry)) 3577 goto unlock; 3578 3579 error = -EEXIST; 3580 if (d_is_positive(dentry)) 3581 goto fail; 3582 3583 /* 3584 * Special case - lookup gave negative, but... we had foo/bar/ 3585 * From the vfs_mknod() POV we just have a negative dentry - 3586 * all is fine. Let's be bastards - you had / on the end, you've 3587 * been asking for (non-existent) directory. -ENOENT for you. 3588 */ 3589 if (unlikely(!is_dir && last.name[last.len])) { 3590 error = -ENOENT; 3591 goto fail; 3592 } 3593 if (unlikely(err2)) { 3594 error = err2; 3595 goto fail; 3596 } 3597 putname(name); 3598 return dentry; 3599 fail: 3600 dput(dentry); 3601 dentry = ERR_PTR(error); 3602 unlock: 3603 inode_unlock(path->dentry->d_inode); 3604 if (!err2) 3605 mnt_drop_write(path->mnt); 3606 out: 3607 path_put(path); 3608 putname(name); 3609 return dentry; 3610 } 3611 3612 struct dentry *kern_path_create(int dfd, const char *pathname, 3613 struct path *path, unsigned int lookup_flags) 3614 { 3615 return filename_create(dfd, getname_kernel(pathname), 3616 path, lookup_flags); 3617 } 3618 EXPORT_SYMBOL(kern_path_create); 3619 3620 void done_path_create(struct path *path, struct dentry *dentry) 3621 { 3622 dput(dentry); 3623 inode_unlock(path->dentry->d_inode); 3624 mnt_drop_write(path->mnt); 3625 path_put(path); 3626 } 3627 EXPORT_SYMBOL(done_path_create); 3628 3629 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3630 struct path *path, unsigned int lookup_flags) 3631 { 3632 return filename_create(dfd, getname(pathname), path, lookup_flags); 3633 } 3634 EXPORT_SYMBOL(user_path_create); 3635 3636 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3637 { 3638 int error = may_create(dir, dentry); 3639 3640 if (error) 3641 return error; 3642 3643 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3644 return -EPERM; 3645 3646 if (!dir->i_op->mknod) 3647 return -EPERM; 3648 3649 error = devcgroup_inode_mknod(mode, dev); 3650 if (error) 3651 return error; 3652 3653 error = security_inode_mknod(dir, dentry, mode, dev); 3654 if (error) 3655 return error; 3656 3657 error = dir->i_op->mknod(dir, dentry, mode, dev); 3658 if (!error) 3659 fsnotify_create(dir, dentry); 3660 return error; 3661 } 3662 EXPORT_SYMBOL(vfs_mknod); 3663 3664 static int may_mknod(umode_t mode) 3665 { 3666 switch (mode & S_IFMT) { 3667 case S_IFREG: 3668 case S_IFCHR: 3669 case S_IFBLK: 3670 case S_IFIFO: 3671 case S_IFSOCK: 3672 case 0: /* zero mode translates to S_IFREG */ 3673 return 0; 3674 case S_IFDIR: 3675 return -EPERM; 3676 default: 3677 return -EINVAL; 3678 } 3679 } 3680 3681 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3682 unsigned int dev) 3683 { 3684 struct dentry *dentry; 3685 struct path path; 3686 int error; 3687 unsigned int lookup_flags = 0; 3688 3689 error = may_mknod(mode); 3690 if (error) 3691 return error; 3692 retry: 3693 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3694 if (IS_ERR(dentry)) 3695 return PTR_ERR(dentry); 3696 3697 if (!IS_POSIXACL(path.dentry->d_inode)) 3698 mode &= ~current_umask(); 3699 error = security_path_mknod(&path, dentry, mode, dev); 3700 if (error) 3701 goto out; 3702 switch (mode & S_IFMT) { 3703 case 0: case S_IFREG: 3704 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3705 if (!error) 3706 ima_post_path_mknod(dentry); 3707 break; 3708 case S_IFCHR: case S_IFBLK: 3709 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3710 new_decode_dev(dev)); 3711 break; 3712 case S_IFIFO: case S_IFSOCK: 3713 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3714 break; 3715 } 3716 out: 3717 done_path_create(&path, dentry); 3718 if (retry_estale(error, lookup_flags)) { 3719 lookup_flags |= LOOKUP_REVAL; 3720 goto retry; 3721 } 3722 return error; 3723 } 3724 3725 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3726 unsigned int, dev) 3727 { 3728 return do_mknodat(dfd, filename, mode, dev); 3729 } 3730 3731 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3732 { 3733 return do_mknodat(AT_FDCWD, filename, mode, dev); 3734 } 3735 3736 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3737 { 3738 int error = may_create(dir, dentry); 3739 unsigned max_links = dir->i_sb->s_max_links; 3740 3741 if (error) 3742 return error; 3743 3744 if (!dir->i_op->mkdir) 3745 return -EPERM; 3746 3747 mode &= (S_IRWXUGO|S_ISVTX); 3748 error = security_inode_mkdir(dir, dentry, mode); 3749 if (error) 3750 return error; 3751 3752 if (max_links && dir->i_nlink >= max_links) 3753 return -EMLINK; 3754 3755 error = dir->i_op->mkdir(dir, dentry, mode); 3756 if (!error) 3757 fsnotify_mkdir(dir, dentry); 3758 return error; 3759 } 3760 EXPORT_SYMBOL(vfs_mkdir); 3761 3762 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3763 { 3764 struct dentry *dentry; 3765 struct path path; 3766 int error; 3767 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3768 3769 retry: 3770 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3771 if (IS_ERR(dentry)) 3772 return PTR_ERR(dentry); 3773 3774 if (!IS_POSIXACL(path.dentry->d_inode)) 3775 mode &= ~current_umask(); 3776 error = security_path_mkdir(&path, dentry, mode); 3777 if (!error) 3778 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3779 done_path_create(&path, dentry); 3780 if (retry_estale(error, lookup_flags)) { 3781 lookup_flags |= LOOKUP_REVAL; 3782 goto retry; 3783 } 3784 return error; 3785 } 3786 3787 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3788 { 3789 return do_mkdirat(dfd, pathname, mode); 3790 } 3791 3792 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3793 { 3794 return do_mkdirat(AT_FDCWD, pathname, mode); 3795 } 3796 3797 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3798 { 3799 int error = may_delete(dir, dentry, 1); 3800 3801 if (error) 3802 return error; 3803 3804 if (!dir->i_op->rmdir) 3805 return -EPERM; 3806 3807 dget(dentry); 3808 inode_lock(dentry->d_inode); 3809 3810 error = -EBUSY; 3811 if (is_local_mountpoint(dentry)) 3812 goto out; 3813 3814 error = security_inode_rmdir(dir, dentry); 3815 if (error) 3816 goto out; 3817 3818 error = dir->i_op->rmdir(dir, dentry); 3819 if (error) 3820 goto out; 3821 3822 shrink_dcache_parent(dentry); 3823 dentry->d_inode->i_flags |= S_DEAD; 3824 dont_mount(dentry); 3825 detach_mounts(dentry); 3826 fsnotify_rmdir(dir, dentry); 3827 3828 out: 3829 inode_unlock(dentry->d_inode); 3830 dput(dentry); 3831 if (!error) 3832 d_delete(dentry); 3833 return error; 3834 } 3835 EXPORT_SYMBOL(vfs_rmdir); 3836 3837 long do_rmdir(int dfd, const char __user *pathname) 3838 { 3839 int error = 0; 3840 struct filename *name; 3841 struct dentry *dentry; 3842 struct path path; 3843 struct qstr last; 3844 int type; 3845 unsigned int lookup_flags = 0; 3846 retry: 3847 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3848 &path, &last, &type); 3849 if (IS_ERR(name)) 3850 return PTR_ERR(name); 3851 3852 switch (type) { 3853 case LAST_DOTDOT: 3854 error = -ENOTEMPTY; 3855 goto exit1; 3856 case LAST_DOT: 3857 error = -EINVAL; 3858 goto exit1; 3859 case LAST_ROOT: 3860 error = -EBUSY; 3861 goto exit1; 3862 } 3863 3864 error = mnt_want_write(path.mnt); 3865 if (error) 3866 goto exit1; 3867 3868 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3869 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3870 error = PTR_ERR(dentry); 3871 if (IS_ERR(dentry)) 3872 goto exit2; 3873 if (!dentry->d_inode) { 3874 error = -ENOENT; 3875 goto exit3; 3876 } 3877 error = security_path_rmdir(&path, dentry); 3878 if (error) 3879 goto exit3; 3880 error = vfs_rmdir(path.dentry->d_inode, dentry); 3881 exit3: 3882 dput(dentry); 3883 exit2: 3884 inode_unlock(path.dentry->d_inode); 3885 mnt_drop_write(path.mnt); 3886 exit1: 3887 path_put(&path); 3888 putname(name); 3889 if (retry_estale(error, lookup_flags)) { 3890 lookup_flags |= LOOKUP_REVAL; 3891 goto retry; 3892 } 3893 return error; 3894 } 3895 3896 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3897 { 3898 return do_rmdir(AT_FDCWD, pathname); 3899 } 3900 3901 /** 3902 * vfs_unlink - unlink a filesystem object 3903 * @dir: parent directory 3904 * @dentry: victim 3905 * @delegated_inode: returns victim inode, if the inode is delegated. 3906 * 3907 * The caller must hold dir->i_mutex. 3908 * 3909 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3910 * return a reference to the inode in delegated_inode. The caller 3911 * should then break the delegation on that inode and retry. Because 3912 * breaking a delegation may take a long time, the caller should drop 3913 * dir->i_mutex before doing so. 3914 * 3915 * Alternatively, a caller may pass NULL for delegated_inode. This may 3916 * be appropriate for callers that expect the underlying filesystem not 3917 * to be NFS exported. 3918 */ 3919 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3920 { 3921 struct inode *target = dentry->d_inode; 3922 int error = may_delete(dir, dentry, 0); 3923 3924 if (error) 3925 return error; 3926 3927 if (!dir->i_op->unlink) 3928 return -EPERM; 3929 3930 inode_lock(target); 3931 if (is_local_mountpoint(dentry)) 3932 error = -EBUSY; 3933 else { 3934 error = security_inode_unlink(dir, dentry); 3935 if (!error) { 3936 error = try_break_deleg(target, delegated_inode); 3937 if (error) 3938 goto out; 3939 error = dir->i_op->unlink(dir, dentry); 3940 if (!error) { 3941 dont_mount(dentry); 3942 detach_mounts(dentry); 3943 fsnotify_unlink(dir, dentry); 3944 } 3945 } 3946 } 3947 out: 3948 inode_unlock(target); 3949 3950 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3951 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3952 fsnotify_link_count(target); 3953 d_delete(dentry); 3954 } 3955 3956 return error; 3957 } 3958 EXPORT_SYMBOL(vfs_unlink); 3959 3960 /* 3961 * Make sure that the actual truncation of the file will occur outside its 3962 * directory's i_mutex. Truncate can take a long time if there is a lot of 3963 * writeout happening, and we don't want to prevent access to the directory 3964 * while waiting on the I/O. 3965 */ 3966 long do_unlinkat(int dfd, struct filename *name) 3967 { 3968 int error; 3969 struct dentry *dentry; 3970 struct path path; 3971 struct qstr last; 3972 int type; 3973 struct inode *inode = NULL; 3974 struct inode *delegated_inode = NULL; 3975 unsigned int lookup_flags = 0; 3976 retry: 3977 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 3978 if (IS_ERR(name)) 3979 return PTR_ERR(name); 3980 3981 error = -EISDIR; 3982 if (type != LAST_NORM) 3983 goto exit1; 3984 3985 error = mnt_want_write(path.mnt); 3986 if (error) 3987 goto exit1; 3988 retry_deleg: 3989 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3990 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3991 error = PTR_ERR(dentry); 3992 if (!IS_ERR(dentry)) { 3993 /* Why not before? Because we want correct error value */ 3994 if (last.name[last.len]) 3995 goto slashes; 3996 inode = dentry->d_inode; 3997 if (d_is_negative(dentry)) 3998 goto slashes; 3999 ihold(inode); 4000 error = security_path_unlink(&path, dentry); 4001 if (error) 4002 goto exit2; 4003 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4004 exit2: 4005 dput(dentry); 4006 } 4007 inode_unlock(path.dentry->d_inode); 4008 if (inode) 4009 iput(inode); /* truncate the inode here */ 4010 inode = NULL; 4011 if (delegated_inode) { 4012 error = break_deleg_wait(&delegated_inode); 4013 if (!error) 4014 goto retry_deleg; 4015 } 4016 mnt_drop_write(path.mnt); 4017 exit1: 4018 path_put(&path); 4019 if (retry_estale(error, lookup_flags)) { 4020 lookup_flags |= LOOKUP_REVAL; 4021 inode = NULL; 4022 goto retry; 4023 } 4024 putname(name); 4025 return error; 4026 4027 slashes: 4028 if (d_is_negative(dentry)) 4029 error = -ENOENT; 4030 else if (d_is_dir(dentry)) 4031 error = -EISDIR; 4032 else 4033 error = -ENOTDIR; 4034 goto exit2; 4035 } 4036 4037 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4038 { 4039 if ((flag & ~AT_REMOVEDIR) != 0) 4040 return -EINVAL; 4041 4042 if (flag & AT_REMOVEDIR) 4043 return do_rmdir(dfd, pathname); 4044 4045 return do_unlinkat(dfd, getname(pathname)); 4046 } 4047 4048 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4049 { 4050 return do_unlinkat(AT_FDCWD, getname(pathname)); 4051 } 4052 4053 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4054 { 4055 int error = may_create(dir, dentry); 4056 4057 if (error) 4058 return error; 4059 4060 if (!dir->i_op->symlink) 4061 return -EPERM; 4062 4063 error = security_inode_symlink(dir, dentry, oldname); 4064 if (error) 4065 return error; 4066 4067 error = dir->i_op->symlink(dir, dentry, oldname); 4068 if (!error) 4069 fsnotify_create(dir, dentry); 4070 return error; 4071 } 4072 EXPORT_SYMBOL(vfs_symlink); 4073 4074 long do_symlinkat(const char __user *oldname, int newdfd, 4075 const char __user *newname) 4076 { 4077 int error; 4078 struct filename *from; 4079 struct dentry *dentry; 4080 struct path path; 4081 unsigned int lookup_flags = 0; 4082 4083 from = getname(oldname); 4084 if (IS_ERR(from)) 4085 return PTR_ERR(from); 4086 retry: 4087 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4088 error = PTR_ERR(dentry); 4089 if (IS_ERR(dentry)) 4090 goto out_putname; 4091 4092 error = security_path_symlink(&path, dentry, from->name); 4093 if (!error) 4094 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4095 done_path_create(&path, dentry); 4096 if (retry_estale(error, lookup_flags)) { 4097 lookup_flags |= LOOKUP_REVAL; 4098 goto retry; 4099 } 4100 out_putname: 4101 putname(from); 4102 return error; 4103 } 4104 4105 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4106 int, newdfd, const char __user *, newname) 4107 { 4108 return do_symlinkat(oldname, newdfd, newname); 4109 } 4110 4111 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4112 { 4113 return do_symlinkat(oldname, AT_FDCWD, newname); 4114 } 4115 4116 /** 4117 * vfs_link - create a new link 4118 * @old_dentry: object to be linked 4119 * @dir: new parent 4120 * @new_dentry: where to create the new link 4121 * @delegated_inode: returns inode needing a delegation break 4122 * 4123 * The caller must hold dir->i_mutex 4124 * 4125 * If vfs_link discovers a delegation on the to-be-linked file in need 4126 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4127 * inode in delegated_inode. The caller should then break the delegation 4128 * and retry. Because breaking a delegation may take a long time, the 4129 * caller should drop the i_mutex before doing so. 4130 * 4131 * Alternatively, a caller may pass NULL for delegated_inode. This may 4132 * be appropriate for callers that expect the underlying filesystem not 4133 * to be NFS exported. 4134 */ 4135 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4136 { 4137 struct inode *inode = old_dentry->d_inode; 4138 unsigned max_links = dir->i_sb->s_max_links; 4139 int error; 4140 4141 if (!inode) 4142 return -ENOENT; 4143 4144 error = may_create(dir, new_dentry); 4145 if (error) 4146 return error; 4147 4148 if (dir->i_sb != inode->i_sb) 4149 return -EXDEV; 4150 4151 /* 4152 * A link to an append-only or immutable file cannot be created. 4153 */ 4154 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4155 return -EPERM; 4156 /* 4157 * Updating the link count will likely cause i_uid and i_gid to 4158 * be writen back improperly if their true value is unknown to 4159 * the vfs. 4160 */ 4161 if (HAS_UNMAPPED_ID(inode)) 4162 return -EPERM; 4163 if (!dir->i_op->link) 4164 return -EPERM; 4165 if (S_ISDIR(inode->i_mode)) 4166 return -EPERM; 4167 4168 error = security_inode_link(old_dentry, dir, new_dentry); 4169 if (error) 4170 return error; 4171 4172 inode_lock(inode); 4173 /* Make sure we don't allow creating hardlink to an unlinked file */ 4174 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4175 error = -ENOENT; 4176 else if (max_links && inode->i_nlink >= max_links) 4177 error = -EMLINK; 4178 else { 4179 error = try_break_deleg(inode, delegated_inode); 4180 if (!error) 4181 error = dir->i_op->link(old_dentry, dir, new_dentry); 4182 } 4183 4184 if (!error && (inode->i_state & I_LINKABLE)) { 4185 spin_lock(&inode->i_lock); 4186 inode->i_state &= ~I_LINKABLE; 4187 spin_unlock(&inode->i_lock); 4188 } 4189 inode_unlock(inode); 4190 if (!error) 4191 fsnotify_link(dir, inode, new_dentry); 4192 return error; 4193 } 4194 EXPORT_SYMBOL(vfs_link); 4195 4196 /* 4197 * Hardlinks are often used in delicate situations. We avoid 4198 * security-related surprises by not following symlinks on the 4199 * newname. --KAB 4200 * 4201 * We don't follow them on the oldname either to be compatible 4202 * with linux 2.0, and to avoid hard-linking to directories 4203 * and other special files. --ADM 4204 */ 4205 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4206 const char __user *newname, int flags) 4207 { 4208 struct dentry *new_dentry; 4209 struct path old_path, new_path; 4210 struct inode *delegated_inode = NULL; 4211 int how = 0; 4212 int error; 4213 4214 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4215 return -EINVAL; 4216 /* 4217 * To use null names we require CAP_DAC_READ_SEARCH 4218 * This ensures that not everyone will be able to create 4219 * handlink using the passed filedescriptor. 4220 */ 4221 if (flags & AT_EMPTY_PATH) { 4222 if (!capable(CAP_DAC_READ_SEARCH)) 4223 return -ENOENT; 4224 how = LOOKUP_EMPTY; 4225 } 4226 4227 if (flags & AT_SYMLINK_FOLLOW) 4228 how |= LOOKUP_FOLLOW; 4229 retry: 4230 error = user_path_at(olddfd, oldname, how, &old_path); 4231 if (error) 4232 return error; 4233 4234 new_dentry = user_path_create(newdfd, newname, &new_path, 4235 (how & LOOKUP_REVAL)); 4236 error = PTR_ERR(new_dentry); 4237 if (IS_ERR(new_dentry)) 4238 goto out; 4239 4240 error = -EXDEV; 4241 if (old_path.mnt != new_path.mnt) 4242 goto out_dput; 4243 error = may_linkat(&old_path); 4244 if (unlikely(error)) 4245 goto out_dput; 4246 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4247 if (error) 4248 goto out_dput; 4249 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4250 out_dput: 4251 done_path_create(&new_path, new_dentry); 4252 if (delegated_inode) { 4253 error = break_deleg_wait(&delegated_inode); 4254 if (!error) { 4255 path_put(&old_path); 4256 goto retry; 4257 } 4258 } 4259 if (retry_estale(error, how)) { 4260 path_put(&old_path); 4261 how |= LOOKUP_REVAL; 4262 goto retry; 4263 } 4264 out: 4265 path_put(&old_path); 4266 4267 return error; 4268 } 4269 4270 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4271 int, newdfd, const char __user *, newname, int, flags) 4272 { 4273 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4274 } 4275 4276 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4277 { 4278 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4279 } 4280 4281 /** 4282 * vfs_rename - rename a filesystem object 4283 * @old_dir: parent of source 4284 * @old_dentry: source 4285 * @new_dir: parent of destination 4286 * @new_dentry: destination 4287 * @delegated_inode: returns an inode needing a delegation break 4288 * @flags: rename flags 4289 * 4290 * The caller must hold multiple mutexes--see lock_rename()). 4291 * 4292 * If vfs_rename discovers a delegation in need of breaking at either 4293 * the source or destination, it will return -EWOULDBLOCK and return a 4294 * reference to the inode in delegated_inode. The caller should then 4295 * break the delegation and retry. Because breaking a delegation may 4296 * take a long time, the caller should drop all locks before doing 4297 * so. 4298 * 4299 * Alternatively, a caller may pass NULL for delegated_inode. This may 4300 * be appropriate for callers that expect the underlying filesystem not 4301 * to be NFS exported. 4302 * 4303 * The worst of all namespace operations - renaming directory. "Perverted" 4304 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4305 * Problems: 4306 * 4307 * a) we can get into loop creation. 4308 * b) race potential - two innocent renames can create a loop together. 4309 * That's where 4.4 screws up. Current fix: serialization on 4310 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4311 * story. 4312 * c) we have to lock _four_ objects - parents and victim (if it exists), 4313 * and source (if it is not a directory). 4314 * And that - after we got ->i_mutex on parents (until then we don't know 4315 * whether the target exists). Solution: try to be smart with locking 4316 * order for inodes. We rely on the fact that tree topology may change 4317 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4318 * move will be locked. Thus we can rank directories by the tree 4319 * (ancestors first) and rank all non-directories after them. 4320 * That works since everybody except rename does "lock parent, lookup, 4321 * lock child" and rename is under ->s_vfs_rename_mutex. 4322 * HOWEVER, it relies on the assumption that any object with ->lookup() 4323 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4324 * we'd better make sure that there's no link(2) for them. 4325 * d) conversion from fhandle to dentry may come in the wrong moment - when 4326 * we are removing the target. Solution: we will have to grab ->i_mutex 4327 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4328 * ->i_mutex on parents, which works but leads to some truly excessive 4329 * locking]. 4330 */ 4331 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4332 struct inode *new_dir, struct dentry *new_dentry, 4333 struct inode **delegated_inode, unsigned int flags) 4334 { 4335 int error; 4336 bool is_dir = d_is_dir(old_dentry); 4337 struct inode *source = old_dentry->d_inode; 4338 struct inode *target = new_dentry->d_inode; 4339 bool new_is_dir = false; 4340 unsigned max_links = new_dir->i_sb->s_max_links; 4341 struct name_snapshot old_name; 4342 4343 if (source == target) 4344 return 0; 4345 4346 error = may_delete(old_dir, old_dentry, is_dir); 4347 if (error) 4348 return error; 4349 4350 if (!target) { 4351 error = may_create(new_dir, new_dentry); 4352 } else { 4353 new_is_dir = d_is_dir(new_dentry); 4354 4355 if (!(flags & RENAME_EXCHANGE)) 4356 error = may_delete(new_dir, new_dentry, is_dir); 4357 else 4358 error = may_delete(new_dir, new_dentry, new_is_dir); 4359 } 4360 if (error) 4361 return error; 4362 4363 if (!old_dir->i_op->rename) 4364 return -EPERM; 4365 4366 /* 4367 * If we are going to change the parent - check write permissions, 4368 * we'll need to flip '..'. 4369 */ 4370 if (new_dir != old_dir) { 4371 if (is_dir) { 4372 error = inode_permission(source, MAY_WRITE); 4373 if (error) 4374 return error; 4375 } 4376 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4377 error = inode_permission(target, MAY_WRITE); 4378 if (error) 4379 return error; 4380 } 4381 } 4382 4383 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4384 flags); 4385 if (error) 4386 return error; 4387 4388 take_dentry_name_snapshot(&old_name, old_dentry); 4389 dget(new_dentry); 4390 if (!is_dir || (flags & RENAME_EXCHANGE)) 4391 lock_two_nondirectories(source, target); 4392 else if (target) 4393 inode_lock(target); 4394 4395 error = -EBUSY; 4396 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4397 goto out; 4398 4399 if (max_links && new_dir != old_dir) { 4400 error = -EMLINK; 4401 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4402 goto out; 4403 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4404 old_dir->i_nlink >= max_links) 4405 goto out; 4406 } 4407 if (!is_dir) { 4408 error = try_break_deleg(source, delegated_inode); 4409 if (error) 4410 goto out; 4411 } 4412 if (target && !new_is_dir) { 4413 error = try_break_deleg(target, delegated_inode); 4414 if (error) 4415 goto out; 4416 } 4417 error = old_dir->i_op->rename(old_dir, old_dentry, 4418 new_dir, new_dentry, flags); 4419 if (error) 4420 goto out; 4421 4422 if (!(flags & RENAME_EXCHANGE) && target) { 4423 if (is_dir) { 4424 shrink_dcache_parent(new_dentry); 4425 target->i_flags |= S_DEAD; 4426 } 4427 dont_mount(new_dentry); 4428 detach_mounts(new_dentry); 4429 } 4430 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4431 if (!(flags & RENAME_EXCHANGE)) 4432 d_move(old_dentry, new_dentry); 4433 else 4434 d_exchange(old_dentry, new_dentry); 4435 } 4436 out: 4437 if (!is_dir || (flags & RENAME_EXCHANGE)) 4438 unlock_two_nondirectories(source, target); 4439 else if (target) 4440 inode_unlock(target); 4441 dput(new_dentry); 4442 if (!error) { 4443 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4444 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4445 if (flags & RENAME_EXCHANGE) { 4446 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4447 new_is_dir, NULL, new_dentry); 4448 } 4449 } 4450 release_dentry_name_snapshot(&old_name); 4451 4452 return error; 4453 } 4454 EXPORT_SYMBOL(vfs_rename); 4455 4456 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4457 const char __user *newname, unsigned int flags) 4458 { 4459 struct dentry *old_dentry, *new_dentry; 4460 struct dentry *trap; 4461 struct path old_path, new_path; 4462 struct qstr old_last, new_last; 4463 int old_type, new_type; 4464 struct inode *delegated_inode = NULL; 4465 struct filename *from; 4466 struct filename *to; 4467 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4468 bool should_retry = false; 4469 int error; 4470 4471 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4472 return -EINVAL; 4473 4474 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4475 (flags & RENAME_EXCHANGE)) 4476 return -EINVAL; 4477 4478 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4479 return -EPERM; 4480 4481 if (flags & RENAME_EXCHANGE) 4482 target_flags = 0; 4483 4484 retry: 4485 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4486 &old_path, &old_last, &old_type); 4487 if (IS_ERR(from)) { 4488 error = PTR_ERR(from); 4489 goto exit; 4490 } 4491 4492 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4493 &new_path, &new_last, &new_type); 4494 if (IS_ERR(to)) { 4495 error = PTR_ERR(to); 4496 goto exit1; 4497 } 4498 4499 error = -EXDEV; 4500 if (old_path.mnt != new_path.mnt) 4501 goto exit2; 4502 4503 error = -EBUSY; 4504 if (old_type != LAST_NORM) 4505 goto exit2; 4506 4507 if (flags & RENAME_NOREPLACE) 4508 error = -EEXIST; 4509 if (new_type != LAST_NORM) 4510 goto exit2; 4511 4512 error = mnt_want_write(old_path.mnt); 4513 if (error) 4514 goto exit2; 4515 4516 retry_deleg: 4517 trap = lock_rename(new_path.dentry, old_path.dentry); 4518 4519 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4520 error = PTR_ERR(old_dentry); 4521 if (IS_ERR(old_dentry)) 4522 goto exit3; 4523 /* source must exist */ 4524 error = -ENOENT; 4525 if (d_is_negative(old_dentry)) 4526 goto exit4; 4527 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4528 error = PTR_ERR(new_dentry); 4529 if (IS_ERR(new_dentry)) 4530 goto exit4; 4531 error = -EEXIST; 4532 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4533 goto exit5; 4534 if (flags & RENAME_EXCHANGE) { 4535 error = -ENOENT; 4536 if (d_is_negative(new_dentry)) 4537 goto exit5; 4538 4539 if (!d_is_dir(new_dentry)) { 4540 error = -ENOTDIR; 4541 if (new_last.name[new_last.len]) 4542 goto exit5; 4543 } 4544 } 4545 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4546 if (!d_is_dir(old_dentry)) { 4547 error = -ENOTDIR; 4548 if (old_last.name[old_last.len]) 4549 goto exit5; 4550 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4551 goto exit5; 4552 } 4553 /* source should not be ancestor of target */ 4554 error = -EINVAL; 4555 if (old_dentry == trap) 4556 goto exit5; 4557 /* target should not be an ancestor of source */ 4558 if (!(flags & RENAME_EXCHANGE)) 4559 error = -ENOTEMPTY; 4560 if (new_dentry == trap) 4561 goto exit5; 4562 4563 error = security_path_rename(&old_path, old_dentry, 4564 &new_path, new_dentry, flags); 4565 if (error) 4566 goto exit5; 4567 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4568 new_path.dentry->d_inode, new_dentry, 4569 &delegated_inode, flags); 4570 exit5: 4571 dput(new_dentry); 4572 exit4: 4573 dput(old_dentry); 4574 exit3: 4575 unlock_rename(new_path.dentry, old_path.dentry); 4576 if (delegated_inode) { 4577 error = break_deleg_wait(&delegated_inode); 4578 if (!error) 4579 goto retry_deleg; 4580 } 4581 mnt_drop_write(old_path.mnt); 4582 exit2: 4583 if (retry_estale(error, lookup_flags)) 4584 should_retry = true; 4585 path_put(&new_path); 4586 putname(to); 4587 exit1: 4588 path_put(&old_path); 4589 putname(from); 4590 if (should_retry) { 4591 should_retry = false; 4592 lookup_flags |= LOOKUP_REVAL; 4593 goto retry; 4594 } 4595 exit: 4596 return error; 4597 } 4598 4599 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4600 int, newdfd, const char __user *, newname, unsigned int, flags) 4601 { 4602 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4603 } 4604 4605 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4606 int, newdfd, const char __user *, newname) 4607 { 4608 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4609 } 4610 4611 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4612 { 4613 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4614 } 4615 4616 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4617 { 4618 int error = may_create(dir, dentry); 4619 if (error) 4620 return error; 4621 4622 if (!dir->i_op->mknod) 4623 return -EPERM; 4624 4625 return dir->i_op->mknod(dir, dentry, 4626 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4627 } 4628 EXPORT_SYMBOL(vfs_whiteout); 4629 4630 int readlink_copy(char __user *buffer, int buflen, const char *link) 4631 { 4632 int len = PTR_ERR(link); 4633 if (IS_ERR(link)) 4634 goto out; 4635 4636 len = strlen(link); 4637 if (len > (unsigned) buflen) 4638 len = buflen; 4639 if (copy_to_user(buffer, link, len)) 4640 len = -EFAULT; 4641 out: 4642 return len; 4643 } 4644 4645 /** 4646 * vfs_readlink - copy symlink body into userspace buffer 4647 * @dentry: dentry on which to get symbolic link 4648 * @buffer: user memory pointer 4649 * @buflen: size of buffer 4650 * 4651 * Does not touch atime. That's up to the caller if necessary 4652 * 4653 * Does not call security hook. 4654 */ 4655 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4656 { 4657 struct inode *inode = d_inode(dentry); 4658 DEFINE_DELAYED_CALL(done); 4659 const char *link; 4660 int res; 4661 4662 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4663 if (unlikely(inode->i_op->readlink)) 4664 return inode->i_op->readlink(dentry, buffer, buflen); 4665 4666 if (!d_is_symlink(dentry)) 4667 return -EINVAL; 4668 4669 spin_lock(&inode->i_lock); 4670 inode->i_opflags |= IOP_DEFAULT_READLINK; 4671 spin_unlock(&inode->i_lock); 4672 } 4673 4674 link = READ_ONCE(inode->i_link); 4675 if (!link) { 4676 link = inode->i_op->get_link(dentry, inode, &done); 4677 if (IS_ERR(link)) 4678 return PTR_ERR(link); 4679 } 4680 res = readlink_copy(buffer, buflen, link); 4681 do_delayed_call(&done); 4682 return res; 4683 } 4684 EXPORT_SYMBOL(vfs_readlink); 4685 4686 /** 4687 * vfs_get_link - get symlink body 4688 * @dentry: dentry on which to get symbolic link 4689 * @done: caller needs to free returned data with this 4690 * 4691 * Calls security hook and i_op->get_link() on the supplied inode. 4692 * 4693 * It does not touch atime. That's up to the caller if necessary. 4694 * 4695 * Does not work on "special" symlinks like /proc/$$/fd/N 4696 */ 4697 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4698 { 4699 const char *res = ERR_PTR(-EINVAL); 4700 struct inode *inode = d_inode(dentry); 4701 4702 if (d_is_symlink(dentry)) { 4703 res = ERR_PTR(security_inode_readlink(dentry)); 4704 if (!res) 4705 res = inode->i_op->get_link(dentry, inode, done); 4706 } 4707 return res; 4708 } 4709 EXPORT_SYMBOL(vfs_get_link); 4710 4711 /* get the link contents into pagecache */ 4712 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4713 struct delayed_call *callback) 4714 { 4715 char *kaddr; 4716 struct page *page; 4717 struct address_space *mapping = inode->i_mapping; 4718 4719 if (!dentry) { 4720 page = find_get_page(mapping, 0); 4721 if (!page) 4722 return ERR_PTR(-ECHILD); 4723 if (!PageUptodate(page)) { 4724 put_page(page); 4725 return ERR_PTR(-ECHILD); 4726 } 4727 } else { 4728 page = read_mapping_page(mapping, 0, NULL); 4729 if (IS_ERR(page)) 4730 return (char*)page; 4731 } 4732 set_delayed_call(callback, page_put_link, page); 4733 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4734 kaddr = page_address(page); 4735 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4736 return kaddr; 4737 } 4738 4739 EXPORT_SYMBOL(page_get_link); 4740 4741 void page_put_link(void *arg) 4742 { 4743 put_page(arg); 4744 } 4745 EXPORT_SYMBOL(page_put_link); 4746 4747 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4748 { 4749 DEFINE_DELAYED_CALL(done); 4750 int res = readlink_copy(buffer, buflen, 4751 page_get_link(dentry, d_inode(dentry), 4752 &done)); 4753 do_delayed_call(&done); 4754 return res; 4755 } 4756 EXPORT_SYMBOL(page_readlink); 4757 4758 /* 4759 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4760 */ 4761 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4762 { 4763 struct address_space *mapping = inode->i_mapping; 4764 struct page *page; 4765 void *fsdata; 4766 int err; 4767 unsigned int flags = 0; 4768 if (nofs) 4769 flags |= AOP_FLAG_NOFS; 4770 4771 retry: 4772 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4773 flags, &page, &fsdata); 4774 if (err) 4775 goto fail; 4776 4777 memcpy(page_address(page), symname, len-1); 4778 4779 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4780 page, fsdata); 4781 if (err < 0) 4782 goto fail; 4783 if (err < len-1) 4784 goto retry; 4785 4786 mark_inode_dirty(inode); 4787 return 0; 4788 fail: 4789 return err; 4790 } 4791 EXPORT_SYMBOL(__page_symlink); 4792 4793 int page_symlink(struct inode *inode, const char *symname, int len) 4794 { 4795 return __page_symlink(inode, symname, len, 4796 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4797 } 4798 EXPORT_SYMBOL(page_symlink); 4799 4800 const struct inode_operations page_symlink_inode_operations = { 4801 .get_link = page_get_link, 4802 }; 4803 EXPORT_SYMBOL(page_symlink_inode_operations); 4804