xref: /openbmc/linux/fs/namei.c (revision 4bdf0bb7)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
37 
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39 
40 /* [Feb-1997 T. Schoebel-Theuer]
41  * Fundamental changes in the pathname lookup mechanisms (namei)
42  * were necessary because of omirr.  The reason is that omirr needs
43  * to know the _real_ pathname, not the user-supplied one, in case
44  * of symlinks (and also when transname replacements occur).
45  *
46  * The new code replaces the old recursive symlink resolution with
47  * an iterative one (in case of non-nested symlink chains).  It does
48  * this with calls to <fs>_follow_link().
49  * As a side effect, dir_namei(), _namei() and follow_link() are now
50  * replaced with a single function lookup_dentry() that can handle all
51  * the special cases of the former code.
52  *
53  * With the new dcache, the pathname is stored at each inode, at least as
54  * long as the refcount of the inode is positive.  As a side effect, the
55  * size of the dcache depends on the inode cache and thus is dynamic.
56  *
57  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58  * resolution to correspond with current state of the code.
59  *
60  * Note that the symlink resolution is not *completely* iterative.
61  * There is still a significant amount of tail- and mid- recursion in
62  * the algorithm.  Also, note that <fs>_readlink() is not used in
63  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64  * may return different results than <fs>_follow_link().  Many virtual
65  * filesystems (including /proc) exhibit this behavior.
66  */
67 
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70  * and the name already exists in form of a symlink, try to create the new
71  * name indicated by the symlink. The old code always complained that the
72  * name already exists, due to not following the symlink even if its target
73  * is nonexistent.  The new semantics affects also mknod() and link() when
74  * the name is a symlink pointing to a non-existant name.
75  *
76  * I don't know which semantics is the right one, since I have no access
77  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79  * "old" one. Personally, I think the new semantics is much more logical.
80  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81  * file does succeed in both HP-UX and SunOs, but not in Solaris
82  * and in the old Linux semantics.
83  */
84 
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86  * semantics.  See the comments in "open_namei" and "do_link" below.
87  *
88  * [10-Sep-98 Alan Modra] Another symlink change.
89  */
90 
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92  *	inside the path - always follow.
93  *	in the last component in creation/removal/renaming - never follow.
94  *	if LOOKUP_FOLLOW passed - follow.
95  *	if the pathname has trailing slashes - follow.
96  *	otherwise - don't follow.
97  * (applied in that order).
98  *
99  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101  * During the 2.4 we need to fix the userland stuff depending on it -
102  * hopefully we will be able to get rid of that wart in 2.5. So far only
103  * XEmacs seems to be relying on it...
104  */
105 /*
106  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
108  * any extra contention...
109  */
110 
111 static int __link_path_walk(const char *name, struct nameidata *nd);
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 static int do_getname(const char __user *filename, char *page)
121 {
122 	int retval;
123 	unsigned long len = PATH_MAX;
124 
125 	if (!segment_eq(get_fs(), KERNEL_DS)) {
126 		if ((unsigned long) filename >= TASK_SIZE)
127 			return -EFAULT;
128 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 			len = TASK_SIZE - (unsigned long) filename;
130 	}
131 
132 	retval = strncpy_from_user(page, filename, len);
133 	if (retval > 0) {
134 		if (retval < len)
135 			return 0;
136 		return -ENAMETOOLONG;
137 	} else if (!retval)
138 		retval = -ENOENT;
139 	return retval;
140 }
141 
142 char * getname(const char __user * filename)
143 {
144 	char *tmp, *result;
145 
146 	result = ERR_PTR(-ENOMEM);
147 	tmp = __getname();
148 	if (tmp)  {
149 		int retval = do_getname(filename, tmp);
150 
151 		result = tmp;
152 		if (retval < 0) {
153 			__putname(tmp);
154 			result = ERR_PTR(retval);
155 		}
156 	}
157 	audit_getname(result);
158 	return result;
159 }
160 
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
163 {
164 	if (unlikely(!audit_dummy_context()))
165 		audit_putname(name);
166 	else
167 		__putname(name);
168 }
169 EXPORT_SYMBOL(putname);
170 #endif
171 
172 /*
173  * This does basic POSIX ACL permission checking
174  */
175 static int acl_permission_check(struct inode *inode, int mask,
176 		int (*check_acl)(struct inode *inode, int mask))
177 {
178 	umode_t			mode = inode->i_mode;
179 
180 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
181 
182 	if (current_fsuid() == inode->i_uid)
183 		mode >>= 6;
184 	else {
185 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
186 			int error = check_acl(inode, mask);
187 			if (error != -EAGAIN)
188 				return error;
189 		}
190 
191 		if (in_group_p(inode->i_gid))
192 			mode >>= 3;
193 	}
194 
195 	/*
196 	 * If the DACs are ok we don't need any capability check.
197 	 */
198 	if ((mask & ~mode) == 0)
199 		return 0;
200 	return -EACCES;
201 }
202 
203 /**
204  * generic_permission  -  check for access rights on a Posix-like filesystem
205  * @inode:	inode to check access rights for
206  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
207  * @check_acl:	optional callback to check for Posix ACLs
208  *
209  * Used to check for read/write/execute permissions on a file.
210  * We use "fsuid" for this, letting us set arbitrary permissions
211  * for filesystem access without changing the "normal" uids which
212  * are used for other things..
213  */
214 int generic_permission(struct inode *inode, int mask,
215 		int (*check_acl)(struct inode *inode, int mask))
216 {
217 	int ret;
218 
219 	/*
220 	 * Do the basic POSIX ACL permission checks.
221 	 */
222 	ret = acl_permission_check(inode, mask, check_acl);
223 	if (ret != -EACCES)
224 		return ret;
225 
226 	/*
227 	 * Read/write DACs are always overridable.
228 	 * Executable DACs are overridable if at least one exec bit is set.
229 	 */
230 	if (!(mask & MAY_EXEC) || execute_ok(inode))
231 		if (capable(CAP_DAC_OVERRIDE))
232 			return 0;
233 
234 	/*
235 	 * Searching includes executable on directories, else just read.
236 	 */
237 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
238 		if (capable(CAP_DAC_READ_SEARCH))
239 			return 0;
240 
241 	return -EACCES;
242 }
243 
244 /**
245  * inode_permission  -  check for access rights to a given inode
246  * @inode:	inode to check permission on
247  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
248  *
249  * Used to check for read/write/execute permissions on an inode.
250  * We use "fsuid" for this, letting us set arbitrary permissions
251  * for filesystem access without changing the "normal" uids which
252  * are used for other things.
253  */
254 int inode_permission(struct inode *inode, int mask)
255 {
256 	int retval;
257 
258 	if (mask & MAY_WRITE) {
259 		umode_t mode = inode->i_mode;
260 
261 		/*
262 		 * Nobody gets write access to a read-only fs.
263 		 */
264 		if (IS_RDONLY(inode) &&
265 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
266 			return -EROFS;
267 
268 		/*
269 		 * Nobody gets write access to an immutable file.
270 		 */
271 		if (IS_IMMUTABLE(inode))
272 			return -EACCES;
273 	}
274 
275 	if (inode->i_op->permission)
276 		retval = inode->i_op->permission(inode, mask);
277 	else
278 		retval = generic_permission(inode, mask, inode->i_op->check_acl);
279 
280 	if (retval)
281 		return retval;
282 
283 	retval = devcgroup_inode_permission(inode, mask);
284 	if (retval)
285 		return retval;
286 
287 	return security_inode_permission(inode,
288 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
289 }
290 
291 /**
292  * file_permission  -  check for additional access rights to a given file
293  * @file:	file to check access rights for
294  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
295  *
296  * Used to check for read/write/execute permissions on an already opened
297  * file.
298  *
299  * Note:
300  *	Do not use this function in new code.  All access checks should
301  *	be done using inode_permission().
302  */
303 int file_permission(struct file *file, int mask)
304 {
305 	return inode_permission(file->f_path.dentry->d_inode, mask);
306 }
307 
308 /*
309  * get_write_access() gets write permission for a file.
310  * put_write_access() releases this write permission.
311  * This is used for regular files.
312  * We cannot support write (and maybe mmap read-write shared) accesses and
313  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
314  * can have the following values:
315  * 0: no writers, no VM_DENYWRITE mappings
316  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
317  * > 0: (i_writecount) users are writing to the file.
318  *
319  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
320  * except for the cases where we don't hold i_writecount yet. Then we need to
321  * use {get,deny}_write_access() - these functions check the sign and refuse
322  * to do the change if sign is wrong. Exclusion between them is provided by
323  * the inode->i_lock spinlock.
324  */
325 
326 int get_write_access(struct inode * inode)
327 {
328 	spin_lock(&inode->i_lock);
329 	if (atomic_read(&inode->i_writecount) < 0) {
330 		spin_unlock(&inode->i_lock);
331 		return -ETXTBSY;
332 	}
333 	atomic_inc(&inode->i_writecount);
334 	spin_unlock(&inode->i_lock);
335 
336 	return 0;
337 }
338 
339 int deny_write_access(struct file * file)
340 {
341 	struct inode *inode = file->f_path.dentry->d_inode;
342 
343 	spin_lock(&inode->i_lock);
344 	if (atomic_read(&inode->i_writecount) > 0) {
345 		spin_unlock(&inode->i_lock);
346 		return -ETXTBSY;
347 	}
348 	atomic_dec(&inode->i_writecount);
349 	spin_unlock(&inode->i_lock);
350 
351 	return 0;
352 }
353 
354 /**
355  * path_get - get a reference to a path
356  * @path: path to get the reference to
357  *
358  * Given a path increment the reference count to the dentry and the vfsmount.
359  */
360 void path_get(struct path *path)
361 {
362 	mntget(path->mnt);
363 	dget(path->dentry);
364 }
365 EXPORT_SYMBOL(path_get);
366 
367 /**
368  * path_put - put a reference to a path
369  * @path: path to put the reference to
370  *
371  * Given a path decrement the reference count to the dentry and the vfsmount.
372  */
373 void path_put(struct path *path)
374 {
375 	dput(path->dentry);
376 	mntput(path->mnt);
377 }
378 EXPORT_SYMBOL(path_put);
379 
380 /**
381  * release_open_intent - free up open intent resources
382  * @nd: pointer to nameidata
383  */
384 void release_open_intent(struct nameidata *nd)
385 {
386 	if (nd->intent.open.file->f_path.dentry == NULL)
387 		put_filp(nd->intent.open.file);
388 	else
389 		fput(nd->intent.open.file);
390 }
391 
392 static inline struct dentry *
393 do_revalidate(struct dentry *dentry, struct nameidata *nd)
394 {
395 	int status = dentry->d_op->d_revalidate(dentry, nd);
396 	if (unlikely(status <= 0)) {
397 		/*
398 		 * The dentry failed validation.
399 		 * If d_revalidate returned 0 attempt to invalidate
400 		 * the dentry otherwise d_revalidate is asking us
401 		 * to return a fail status.
402 		 */
403 		if (!status) {
404 			if (!d_invalidate(dentry)) {
405 				dput(dentry);
406 				dentry = NULL;
407 			}
408 		} else {
409 			dput(dentry);
410 			dentry = ERR_PTR(status);
411 		}
412 	}
413 	return dentry;
414 }
415 
416 /*
417  * Internal lookup() using the new generic dcache.
418  * SMP-safe
419  */
420 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
421 {
422 	struct dentry * dentry = __d_lookup(parent, name);
423 
424 	/* lockess __d_lookup may fail due to concurrent d_move()
425 	 * in some unrelated directory, so try with d_lookup
426 	 */
427 	if (!dentry)
428 		dentry = d_lookup(parent, name);
429 
430 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
431 		dentry = do_revalidate(dentry, nd);
432 
433 	return dentry;
434 }
435 
436 /*
437  * Short-cut version of permission(), for calling by
438  * path_walk(), when dcache lock is held.  Combines parts
439  * of permission() and generic_permission(), and tests ONLY for
440  * MAY_EXEC permission.
441  *
442  * If appropriate, check DAC only.  If not appropriate, or
443  * short-cut DAC fails, then call permission() to do more
444  * complete permission check.
445  */
446 static int exec_permission_lite(struct inode *inode)
447 {
448 	int ret;
449 
450 	if (inode->i_op->permission) {
451 		ret = inode->i_op->permission(inode, MAY_EXEC);
452 		if (!ret)
453 			goto ok;
454 		return ret;
455 	}
456 	ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
457 	if (!ret)
458 		goto ok;
459 
460 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
461 		goto ok;
462 
463 	return ret;
464 ok:
465 	return security_inode_permission(inode, MAY_EXEC);
466 }
467 
468 /*
469  * This is called when everything else fails, and we actually have
470  * to go to the low-level filesystem to find out what we should do..
471  *
472  * We get the directory semaphore, and after getting that we also
473  * make sure that nobody added the entry to the dcache in the meantime..
474  * SMP-safe
475  */
476 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
477 {
478 	struct dentry * result;
479 	struct inode *dir = parent->d_inode;
480 
481 	mutex_lock(&dir->i_mutex);
482 	/*
483 	 * First re-do the cached lookup just in case it was created
484 	 * while we waited for the directory semaphore..
485 	 *
486 	 * FIXME! This could use version numbering or similar to
487 	 * avoid unnecessary cache lookups.
488 	 *
489 	 * The "dcache_lock" is purely to protect the RCU list walker
490 	 * from concurrent renames at this point (we mustn't get false
491 	 * negatives from the RCU list walk here, unlike the optimistic
492 	 * fast walk).
493 	 *
494 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
495 	 */
496 	result = d_lookup(parent, name);
497 	if (!result) {
498 		struct dentry *dentry;
499 
500 		/* Don't create child dentry for a dead directory. */
501 		result = ERR_PTR(-ENOENT);
502 		if (IS_DEADDIR(dir))
503 			goto out_unlock;
504 
505 		dentry = d_alloc(parent, name);
506 		result = ERR_PTR(-ENOMEM);
507 		if (dentry) {
508 			result = dir->i_op->lookup(dir, dentry, nd);
509 			if (result)
510 				dput(dentry);
511 			else
512 				result = dentry;
513 		}
514 out_unlock:
515 		mutex_unlock(&dir->i_mutex);
516 		return result;
517 	}
518 
519 	/*
520 	 * Uhhuh! Nasty case: the cache was re-populated while
521 	 * we waited on the semaphore. Need to revalidate.
522 	 */
523 	mutex_unlock(&dir->i_mutex);
524 	if (result->d_op && result->d_op->d_revalidate) {
525 		result = do_revalidate(result, nd);
526 		if (!result)
527 			result = ERR_PTR(-ENOENT);
528 	}
529 	return result;
530 }
531 
532 /*
533  * Wrapper to retry pathname resolution whenever the underlying
534  * file system returns an ESTALE.
535  *
536  * Retry the whole path once, forcing real lookup requests
537  * instead of relying on the dcache.
538  */
539 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
540 {
541 	struct path save = nd->path;
542 	int result;
543 
544 	/* make sure the stuff we saved doesn't go away */
545 	path_get(&save);
546 
547 	result = __link_path_walk(name, nd);
548 	if (result == -ESTALE) {
549 		/* nd->path had been dropped */
550 		nd->path = save;
551 		path_get(&nd->path);
552 		nd->flags |= LOOKUP_REVAL;
553 		result = __link_path_walk(name, nd);
554 	}
555 
556 	path_put(&save);
557 
558 	return result;
559 }
560 
561 static __always_inline void set_root(struct nameidata *nd)
562 {
563 	if (!nd->root.mnt) {
564 		struct fs_struct *fs = current->fs;
565 		read_lock(&fs->lock);
566 		nd->root = fs->root;
567 		path_get(&nd->root);
568 		read_unlock(&fs->lock);
569 	}
570 }
571 
572 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
573 {
574 	int res = 0;
575 	char *name;
576 	if (IS_ERR(link))
577 		goto fail;
578 
579 	if (*link == '/') {
580 		set_root(nd);
581 		path_put(&nd->path);
582 		nd->path = nd->root;
583 		path_get(&nd->root);
584 	}
585 
586 	res = link_path_walk(link, nd);
587 	if (nd->depth || res || nd->last_type!=LAST_NORM)
588 		return res;
589 	/*
590 	 * If it is an iterative symlinks resolution in open_namei() we
591 	 * have to copy the last component. And all that crap because of
592 	 * bloody create() on broken symlinks. Furrfu...
593 	 */
594 	name = __getname();
595 	if (unlikely(!name)) {
596 		path_put(&nd->path);
597 		return -ENOMEM;
598 	}
599 	strcpy(name, nd->last.name);
600 	nd->last.name = name;
601 	return 0;
602 fail:
603 	path_put(&nd->path);
604 	return PTR_ERR(link);
605 }
606 
607 static void path_put_conditional(struct path *path, struct nameidata *nd)
608 {
609 	dput(path->dentry);
610 	if (path->mnt != nd->path.mnt)
611 		mntput(path->mnt);
612 }
613 
614 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
615 {
616 	dput(nd->path.dentry);
617 	if (nd->path.mnt != path->mnt)
618 		mntput(nd->path.mnt);
619 	nd->path.mnt = path->mnt;
620 	nd->path.dentry = path->dentry;
621 }
622 
623 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
624 {
625 	int error;
626 	void *cookie;
627 	struct dentry *dentry = path->dentry;
628 
629 	touch_atime(path->mnt, dentry);
630 	nd_set_link(nd, NULL);
631 
632 	if (path->mnt != nd->path.mnt) {
633 		path_to_nameidata(path, nd);
634 		dget(dentry);
635 	}
636 	mntget(path->mnt);
637 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
638 	error = PTR_ERR(cookie);
639 	if (!IS_ERR(cookie)) {
640 		char *s = nd_get_link(nd);
641 		error = 0;
642 		if (s)
643 			error = __vfs_follow_link(nd, s);
644 		if (dentry->d_inode->i_op->put_link)
645 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
646 	}
647 	path_put(path);
648 
649 	return error;
650 }
651 
652 /*
653  * This limits recursive symlink follows to 8, while
654  * limiting consecutive symlinks to 40.
655  *
656  * Without that kind of total limit, nasty chains of consecutive
657  * symlinks can cause almost arbitrarily long lookups.
658  */
659 static inline int do_follow_link(struct path *path, struct nameidata *nd)
660 {
661 	int err = -ELOOP;
662 	if (current->link_count >= MAX_NESTED_LINKS)
663 		goto loop;
664 	if (current->total_link_count >= 40)
665 		goto loop;
666 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
667 	cond_resched();
668 	err = security_inode_follow_link(path->dentry, nd);
669 	if (err)
670 		goto loop;
671 	current->link_count++;
672 	current->total_link_count++;
673 	nd->depth++;
674 	err = __do_follow_link(path, nd);
675 	current->link_count--;
676 	nd->depth--;
677 	return err;
678 loop:
679 	path_put_conditional(path, nd);
680 	path_put(&nd->path);
681 	return err;
682 }
683 
684 int follow_up(struct path *path)
685 {
686 	struct vfsmount *parent;
687 	struct dentry *mountpoint;
688 	spin_lock(&vfsmount_lock);
689 	parent = path->mnt->mnt_parent;
690 	if (parent == path->mnt) {
691 		spin_unlock(&vfsmount_lock);
692 		return 0;
693 	}
694 	mntget(parent);
695 	mountpoint = dget(path->mnt->mnt_mountpoint);
696 	spin_unlock(&vfsmount_lock);
697 	dput(path->dentry);
698 	path->dentry = mountpoint;
699 	mntput(path->mnt);
700 	path->mnt = parent;
701 	return 1;
702 }
703 
704 /* no need for dcache_lock, as serialization is taken care in
705  * namespace.c
706  */
707 static int __follow_mount(struct path *path)
708 {
709 	int res = 0;
710 	while (d_mountpoint(path->dentry)) {
711 		struct vfsmount *mounted = lookup_mnt(path);
712 		if (!mounted)
713 			break;
714 		dput(path->dentry);
715 		if (res)
716 			mntput(path->mnt);
717 		path->mnt = mounted;
718 		path->dentry = dget(mounted->mnt_root);
719 		res = 1;
720 	}
721 	return res;
722 }
723 
724 static void follow_mount(struct path *path)
725 {
726 	while (d_mountpoint(path->dentry)) {
727 		struct vfsmount *mounted = lookup_mnt(path);
728 		if (!mounted)
729 			break;
730 		dput(path->dentry);
731 		mntput(path->mnt);
732 		path->mnt = mounted;
733 		path->dentry = dget(mounted->mnt_root);
734 	}
735 }
736 
737 /* no need for dcache_lock, as serialization is taken care in
738  * namespace.c
739  */
740 int follow_down(struct path *path)
741 {
742 	struct vfsmount *mounted;
743 
744 	mounted = lookup_mnt(path);
745 	if (mounted) {
746 		dput(path->dentry);
747 		mntput(path->mnt);
748 		path->mnt = mounted;
749 		path->dentry = dget(mounted->mnt_root);
750 		return 1;
751 	}
752 	return 0;
753 }
754 
755 static __always_inline void follow_dotdot(struct nameidata *nd)
756 {
757 	set_root(nd);
758 
759 	while(1) {
760 		struct vfsmount *parent;
761 		struct dentry *old = nd->path.dentry;
762 
763 		if (nd->path.dentry == nd->root.dentry &&
764 		    nd->path.mnt == nd->root.mnt) {
765 			break;
766 		}
767 		spin_lock(&dcache_lock);
768 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
769 			nd->path.dentry = dget(nd->path.dentry->d_parent);
770 			spin_unlock(&dcache_lock);
771 			dput(old);
772 			break;
773 		}
774 		spin_unlock(&dcache_lock);
775 		spin_lock(&vfsmount_lock);
776 		parent = nd->path.mnt->mnt_parent;
777 		if (parent == nd->path.mnt) {
778 			spin_unlock(&vfsmount_lock);
779 			break;
780 		}
781 		mntget(parent);
782 		nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
783 		spin_unlock(&vfsmount_lock);
784 		dput(old);
785 		mntput(nd->path.mnt);
786 		nd->path.mnt = parent;
787 	}
788 	follow_mount(&nd->path);
789 }
790 
791 /*
792  *  It's more convoluted than I'd like it to be, but... it's still fairly
793  *  small and for now I'd prefer to have fast path as straight as possible.
794  *  It _is_ time-critical.
795  */
796 static int do_lookup(struct nameidata *nd, struct qstr *name,
797 		     struct path *path)
798 {
799 	struct vfsmount *mnt = nd->path.mnt;
800 	struct dentry *dentry = __d_lookup(nd->path.dentry, name);
801 
802 	if (!dentry)
803 		goto need_lookup;
804 	if (dentry->d_op && dentry->d_op->d_revalidate)
805 		goto need_revalidate;
806 done:
807 	path->mnt = mnt;
808 	path->dentry = dentry;
809 	__follow_mount(path);
810 	return 0;
811 
812 need_lookup:
813 	dentry = real_lookup(nd->path.dentry, name, nd);
814 	if (IS_ERR(dentry))
815 		goto fail;
816 	goto done;
817 
818 need_revalidate:
819 	dentry = do_revalidate(dentry, nd);
820 	if (!dentry)
821 		goto need_lookup;
822 	if (IS_ERR(dentry))
823 		goto fail;
824 	goto done;
825 
826 fail:
827 	return PTR_ERR(dentry);
828 }
829 
830 /*
831  * Name resolution.
832  * This is the basic name resolution function, turning a pathname into
833  * the final dentry. We expect 'base' to be positive and a directory.
834  *
835  * Returns 0 and nd will have valid dentry and mnt on success.
836  * Returns error and drops reference to input namei data on failure.
837  */
838 static int __link_path_walk(const char *name, struct nameidata *nd)
839 {
840 	struct path next;
841 	struct inode *inode;
842 	int err;
843 	unsigned int lookup_flags = nd->flags;
844 
845 	while (*name=='/')
846 		name++;
847 	if (!*name)
848 		goto return_reval;
849 
850 	inode = nd->path.dentry->d_inode;
851 	if (nd->depth)
852 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
853 
854 	/* At this point we know we have a real path component. */
855 	for(;;) {
856 		unsigned long hash;
857 		struct qstr this;
858 		unsigned int c;
859 
860 		nd->flags |= LOOKUP_CONTINUE;
861 		err = exec_permission_lite(inode);
862  		if (err)
863 			break;
864 
865 		this.name = name;
866 		c = *(const unsigned char *)name;
867 
868 		hash = init_name_hash();
869 		do {
870 			name++;
871 			hash = partial_name_hash(c, hash);
872 			c = *(const unsigned char *)name;
873 		} while (c && (c != '/'));
874 		this.len = name - (const char *) this.name;
875 		this.hash = end_name_hash(hash);
876 
877 		/* remove trailing slashes? */
878 		if (!c)
879 			goto last_component;
880 		while (*++name == '/');
881 		if (!*name)
882 			goto last_with_slashes;
883 
884 		/*
885 		 * "." and ".." are special - ".." especially so because it has
886 		 * to be able to know about the current root directory and
887 		 * parent relationships.
888 		 */
889 		if (this.name[0] == '.') switch (this.len) {
890 			default:
891 				break;
892 			case 2:
893 				if (this.name[1] != '.')
894 					break;
895 				follow_dotdot(nd);
896 				inode = nd->path.dentry->d_inode;
897 				/* fallthrough */
898 			case 1:
899 				continue;
900 		}
901 		/*
902 		 * See if the low-level filesystem might want
903 		 * to use its own hash..
904 		 */
905 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
906 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
907 							    &this);
908 			if (err < 0)
909 				break;
910 		}
911 		/* This does the actual lookups.. */
912 		err = do_lookup(nd, &this, &next);
913 		if (err)
914 			break;
915 
916 		err = -ENOENT;
917 		inode = next.dentry->d_inode;
918 		if (!inode)
919 			goto out_dput;
920 
921 		if (inode->i_op->follow_link) {
922 			err = do_follow_link(&next, nd);
923 			if (err)
924 				goto return_err;
925 			err = -ENOENT;
926 			inode = nd->path.dentry->d_inode;
927 			if (!inode)
928 				break;
929 		} else
930 			path_to_nameidata(&next, nd);
931 		err = -ENOTDIR;
932 		if (!inode->i_op->lookup)
933 			break;
934 		continue;
935 		/* here ends the main loop */
936 
937 last_with_slashes:
938 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
939 last_component:
940 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
941 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
942 		if (lookup_flags & LOOKUP_PARENT)
943 			goto lookup_parent;
944 		if (this.name[0] == '.') switch (this.len) {
945 			default:
946 				break;
947 			case 2:
948 				if (this.name[1] != '.')
949 					break;
950 				follow_dotdot(nd);
951 				inode = nd->path.dentry->d_inode;
952 				/* fallthrough */
953 			case 1:
954 				goto return_reval;
955 		}
956 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
957 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
958 							    &this);
959 			if (err < 0)
960 				break;
961 		}
962 		err = do_lookup(nd, &this, &next);
963 		if (err)
964 			break;
965 		inode = next.dentry->d_inode;
966 		if ((lookup_flags & LOOKUP_FOLLOW)
967 		    && inode && inode->i_op->follow_link) {
968 			err = do_follow_link(&next, nd);
969 			if (err)
970 				goto return_err;
971 			inode = nd->path.dentry->d_inode;
972 		} else
973 			path_to_nameidata(&next, nd);
974 		err = -ENOENT;
975 		if (!inode)
976 			break;
977 		if (lookup_flags & LOOKUP_DIRECTORY) {
978 			err = -ENOTDIR;
979 			if (!inode->i_op->lookup)
980 				break;
981 		}
982 		goto return_base;
983 lookup_parent:
984 		nd->last = this;
985 		nd->last_type = LAST_NORM;
986 		if (this.name[0] != '.')
987 			goto return_base;
988 		if (this.len == 1)
989 			nd->last_type = LAST_DOT;
990 		else if (this.len == 2 && this.name[1] == '.')
991 			nd->last_type = LAST_DOTDOT;
992 		else
993 			goto return_base;
994 return_reval:
995 		/*
996 		 * We bypassed the ordinary revalidation routines.
997 		 * We may need to check the cached dentry for staleness.
998 		 */
999 		if (nd->path.dentry && nd->path.dentry->d_sb &&
1000 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1001 			err = -ESTALE;
1002 			/* Note: we do not d_invalidate() */
1003 			if (!nd->path.dentry->d_op->d_revalidate(
1004 					nd->path.dentry, nd))
1005 				break;
1006 		}
1007 return_base:
1008 		return 0;
1009 out_dput:
1010 		path_put_conditional(&next, nd);
1011 		break;
1012 	}
1013 	path_put(&nd->path);
1014 return_err:
1015 	return err;
1016 }
1017 
1018 static int path_walk(const char *name, struct nameidata *nd)
1019 {
1020 	current->total_link_count = 0;
1021 	return link_path_walk(name, nd);
1022 }
1023 
1024 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1025 {
1026 	int retval = 0;
1027 	int fput_needed;
1028 	struct file *file;
1029 
1030 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1031 	nd->flags = flags;
1032 	nd->depth = 0;
1033 	nd->root.mnt = NULL;
1034 
1035 	if (*name=='/') {
1036 		set_root(nd);
1037 		nd->path = nd->root;
1038 		path_get(&nd->root);
1039 	} else if (dfd == AT_FDCWD) {
1040 		struct fs_struct *fs = current->fs;
1041 		read_lock(&fs->lock);
1042 		nd->path = fs->pwd;
1043 		path_get(&fs->pwd);
1044 		read_unlock(&fs->lock);
1045 	} else {
1046 		struct dentry *dentry;
1047 
1048 		file = fget_light(dfd, &fput_needed);
1049 		retval = -EBADF;
1050 		if (!file)
1051 			goto out_fail;
1052 
1053 		dentry = file->f_path.dentry;
1054 
1055 		retval = -ENOTDIR;
1056 		if (!S_ISDIR(dentry->d_inode->i_mode))
1057 			goto fput_fail;
1058 
1059 		retval = file_permission(file, MAY_EXEC);
1060 		if (retval)
1061 			goto fput_fail;
1062 
1063 		nd->path = file->f_path;
1064 		path_get(&file->f_path);
1065 
1066 		fput_light(file, fput_needed);
1067 	}
1068 	return 0;
1069 
1070 fput_fail:
1071 	fput_light(file, fput_needed);
1072 out_fail:
1073 	return retval;
1074 }
1075 
1076 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1077 static int do_path_lookup(int dfd, const char *name,
1078 				unsigned int flags, struct nameidata *nd)
1079 {
1080 	int retval = path_init(dfd, name, flags, nd);
1081 	if (!retval)
1082 		retval = path_walk(name, nd);
1083 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1084 				nd->path.dentry->d_inode))
1085 		audit_inode(name, nd->path.dentry);
1086 	if (nd->root.mnt) {
1087 		path_put(&nd->root);
1088 		nd->root.mnt = NULL;
1089 	}
1090 	return retval;
1091 }
1092 
1093 int path_lookup(const char *name, unsigned int flags,
1094 			struct nameidata *nd)
1095 {
1096 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1097 }
1098 
1099 int kern_path(const char *name, unsigned int flags, struct path *path)
1100 {
1101 	struct nameidata nd;
1102 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1103 	if (!res)
1104 		*path = nd.path;
1105 	return res;
1106 }
1107 
1108 /**
1109  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1110  * @dentry:  pointer to dentry of the base directory
1111  * @mnt: pointer to vfs mount of the base directory
1112  * @name: pointer to file name
1113  * @flags: lookup flags
1114  * @nd: pointer to nameidata
1115  */
1116 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1117 		    const char *name, unsigned int flags,
1118 		    struct nameidata *nd)
1119 {
1120 	int retval;
1121 
1122 	/* same as do_path_lookup */
1123 	nd->last_type = LAST_ROOT;
1124 	nd->flags = flags;
1125 	nd->depth = 0;
1126 
1127 	nd->path.dentry = dentry;
1128 	nd->path.mnt = mnt;
1129 	path_get(&nd->path);
1130 	nd->root = nd->path;
1131 	path_get(&nd->root);
1132 
1133 	retval = path_walk(name, nd);
1134 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1135 				nd->path.dentry->d_inode))
1136 		audit_inode(name, nd->path.dentry);
1137 
1138 	path_put(&nd->root);
1139 	nd->root.mnt = NULL;
1140 
1141 	return retval;
1142 }
1143 
1144 /**
1145  * path_lookup_open - lookup a file path with open intent
1146  * @dfd: the directory to use as base, or AT_FDCWD
1147  * @name: pointer to file name
1148  * @lookup_flags: lookup intent flags
1149  * @nd: pointer to nameidata
1150  * @open_flags: open intent flags
1151  */
1152 static int path_lookup_open(int dfd, const char *name,
1153 		unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1154 {
1155 	struct file *filp = get_empty_filp();
1156 	int err;
1157 
1158 	if (filp == NULL)
1159 		return -ENFILE;
1160 	nd->intent.open.file = filp;
1161 	nd->intent.open.flags = open_flags;
1162 	nd->intent.open.create_mode = 0;
1163 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1164 	if (IS_ERR(nd->intent.open.file)) {
1165 		if (err == 0) {
1166 			err = PTR_ERR(nd->intent.open.file);
1167 			path_put(&nd->path);
1168 		}
1169 	} else if (err != 0)
1170 		release_open_intent(nd);
1171 	return err;
1172 }
1173 
1174 static struct dentry *__lookup_hash(struct qstr *name,
1175 		struct dentry *base, struct nameidata *nd)
1176 {
1177 	struct dentry *dentry;
1178 	struct inode *inode;
1179 	int err;
1180 
1181 	inode = base->d_inode;
1182 
1183 	/*
1184 	 * See if the low-level filesystem might want
1185 	 * to use its own hash..
1186 	 */
1187 	if (base->d_op && base->d_op->d_hash) {
1188 		err = base->d_op->d_hash(base, name);
1189 		dentry = ERR_PTR(err);
1190 		if (err < 0)
1191 			goto out;
1192 	}
1193 
1194 	dentry = cached_lookup(base, name, nd);
1195 	if (!dentry) {
1196 		struct dentry *new;
1197 
1198 		/* Don't create child dentry for a dead directory. */
1199 		dentry = ERR_PTR(-ENOENT);
1200 		if (IS_DEADDIR(inode))
1201 			goto out;
1202 
1203 		new = d_alloc(base, name);
1204 		dentry = ERR_PTR(-ENOMEM);
1205 		if (!new)
1206 			goto out;
1207 		dentry = inode->i_op->lookup(inode, new, nd);
1208 		if (!dentry)
1209 			dentry = new;
1210 		else
1211 			dput(new);
1212 	}
1213 out:
1214 	return dentry;
1215 }
1216 
1217 /*
1218  * Restricted form of lookup. Doesn't follow links, single-component only,
1219  * needs parent already locked. Doesn't follow mounts.
1220  * SMP-safe.
1221  */
1222 static struct dentry *lookup_hash(struct nameidata *nd)
1223 {
1224 	int err;
1225 
1226 	err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1227 	if (err)
1228 		return ERR_PTR(err);
1229 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1230 }
1231 
1232 static int __lookup_one_len(const char *name, struct qstr *this,
1233 		struct dentry *base, int len)
1234 {
1235 	unsigned long hash;
1236 	unsigned int c;
1237 
1238 	this->name = name;
1239 	this->len = len;
1240 	if (!len)
1241 		return -EACCES;
1242 
1243 	hash = init_name_hash();
1244 	while (len--) {
1245 		c = *(const unsigned char *)name++;
1246 		if (c == '/' || c == '\0')
1247 			return -EACCES;
1248 		hash = partial_name_hash(c, hash);
1249 	}
1250 	this->hash = end_name_hash(hash);
1251 	return 0;
1252 }
1253 
1254 /**
1255  * lookup_one_len - filesystem helper to lookup single pathname component
1256  * @name:	pathname component to lookup
1257  * @base:	base directory to lookup from
1258  * @len:	maximum length @len should be interpreted to
1259  *
1260  * Note that this routine is purely a helper for filesystem usage and should
1261  * not be called by generic code.  Also note that by using this function the
1262  * nameidata argument is passed to the filesystem methods and a filesystem
1263  * using this helper needs to be prepared for that.
1264  */
1265 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1266 {
1267 	int err;
1268 	struct qstr this;
1269 
1270 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1271 
1272 	err = __lookup_one_len(name, &this, base, len);
1273 	if (err)
1274 		return ERR_PTR(err);
1275 
1276 	err = inode_permission(base->d_inode, MAY_EXEC);
1277 	if (err)
1278 		return ERR_PTR(err);
1279 	return __lookup_hash(&this, base, NULL);
1280 }
1281 
1282 /**
1283  * lookup_one_noperm - bad hack for sysfs
1284  * @name:	pathname component to lookup
1285  * @base:	base directory to lookup from
1286  *
1287  * This is a variant of lookup_one_len that doesn't perform any permission
1288  * checks.   It's a horrible hack to work around the braindead sysfs
1289  * architecture and should not be used anywhere else.
1290  *
1291  * DON'T USE THIS FUNCTION EVER, thanks.
1292  */
1293 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1294 {
1295 	int err;
1296 	struct qstr this;
1297 
1298 	err = __lookup_one_len(name, &this, base, strlen(name));
1299 	if (err)
1300 		return ERR_PTR(err);
1301 	return __lookup_hash(&this, base, NULL);
1302 }
1303 
1304 int user_path_at(int dfd, const char __user *name, unsigned flags,
1305 		 struct path *path)
1306 {
1307 	struct nameidata nd;
1308 	char *tmp = getname(name);
1309 	int err = PTR_ERR(tmp);
1310 	if (!IS_ERR(tmp)) {
1311 
1312 		BUG_ON(flags & LOOKUP_PARENT);
1313 
1314 		err = do_path_lookup(dfd, tmp, flags, &nd);
1315 		putname(tmp);
1316 		if (!err)
1317 			*path = nd.path;
1318 	}
1319 	return err;
1320 }
1321 
1322 static int user_path_parent(int dfd, const char __user *path,
1323 			struct nameidata *nd, char **name)
1324 {
1325 	char *s = getname(path);
1326 	int error;
1327 
1328 	if (IS_ERR(s))
1329 		return PTR_ERR(s);
1330 
1331 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1332 	if (error)
1333 		putname(s);
1334 	else
1335 		*name = s;
1336 
1337 	return error;
1338 }
1339 
1340 /*
1341  * It's inline, so penalty for filesystems that don't use sticky bit is
1342  * minimal.
1343  */
1344 static inline int check_sticky(struct inode *dir, struct inode *inode)
1345 {
1346 	uid_t fsuid = current_fsuid();
1347 
1348 	if (!(dir->i_mode & S_ISVTX))
1349 		return 0;
1350 	if (inode->i_uid == fsuid)
1351 		return 0;
1352 	if (dir->i_uid == fsuid)
1353 		return 0;
1354 	return !capable(CAP_FOWNER);
1355 }
1356 
1357 /*
1358  *	Check whether we can remove a link victim from directory dir, check
1359  *  whether the type of victim is right.
1360  *  1. We can't do it if dir is read-only (done in permission())
1361  *  2. We should have write and exec permissions on dir
1362  *  3. We can't remove anything from append-only dir
1363  *  4. We can't do anything with immutable dir (done in permission())
1364  *  5. If the sticky bit on dir is set we should either
1365  *	a. be owner of dir, or
1366  *	b. be owner of victim, or
1367  *	c. have CAP_FOWNER capability
1368  *  6. If the victim is append-only or immutable we can't do antyhing with
1369  *     links pointing to it.
1370  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1371  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1372  *  9. We can't remove a root or mountpoint.
1373  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1374  *     nfs_async_unlink().
1375  */
1376 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1377 {
1378 	int error;
1379 
1380 	if (!victim->d_inode)
1381 		return -ENOENT;
1382 
1383 	BUG_ON(victim->d_parent->d_inode != dir);
1384 	audit_inode_child(victim->d_name.name, victim, dir);
1385 
1386 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1387 	if (error)
1388 		return error;
1389 	if (IS_APPEND(dir))
1390 		return -EPERM;
1391 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1392 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1393 		return -EPERM;
1394 	if (isdir) {
1395 		if (!S_ISDIR(victim->d_inode->i_mode))
1396 			return -ENOTDIR;
1397 		if (IS_ROOT(victim))
1398 			return -EBUSY;
1399 	} else if (S_ISDIR(victim->d_inode->i_mode))
1400 		return -EISDIR;
1401 	if (IS_DEADDIR(dir))
1402 		return -ENOENT;
1403 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1404 		return -EBUSY;
1405 	return 0;
1406 }
1407 
1408 /*	Check whether we can create an object with dentry child in directory
1409  *  dir.
1410  *  1. We can't do it if child already exists (open has special treatment for
1411  *     this case, but since we are inlined it's OK)
1412  *  2. We can't do it if dir is read-only (done in permission())
1413  *  3. We should have write and exec permissions on dir
1414  *  4. We can't do it if dir is immutable (done in permission())
1415  */
1416 static inline int may_create(struct inode *dir, struct dentry *child)
1417 {
1418 	if (child->d_inode)
1419 		return -EEXIST;
1420 	if (IS_DEADDIR(dir))
1421 		return -ENOENT;
1422 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1423 }
1424 
1425 /*
1426  * O_DIRECTORY translates into forcing a directory lookup.
1427  */
1428 static inline int lookup_flags(unsigned int f)
1429 {
1430 	unsigned long retval = LOOKUP_FOLLOW;
1431 
1432 	if (f & O_NOFOLLOW)
1433 		retval &= ~LOOKUP_FOLLOW;
1434 
1435 	if (f & O_DIRECTORY)
1436 		retval |= LOOKUP_DIRECTORY;
1437 
1438 	return retval;
1439 }
1440 
1441 /*
1442  * p1 and p2 should be directories on the same fs.
1443  */
1444 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1445 {
1446 	struct dentry *p;
1447 
1448 	if (p1 == p2) {
1449 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1450 		return NULL;
1451 	}
1452 
1453 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1454 
1455 	p = d_ancestor(p2, p1);
1456 	if (p) {
1457 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1458 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1459 		return p;
1460 	}
1461 
1462 	p = d_ancestor(p1, p2);
1463 	if (p) {
1464 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1465 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1466 		return p;
1467 	}
1468 
1469 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1470 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1471 	return NULL;
1472 }
1473 
1474 void unlock_rename(struct dentry *p1, struct dentry *p2)
1475 {
1476 	mutex_unlock(&p1->d_inode->i_mutex);
1477 	if (p1 != p2) {
1478 		mutex_unlock(&p2->d_inode->i_mutex);
1479 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1480 	}
1481 }
1482 
1483 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1484 		struct nameidata *nd)
1485 {
1486 	int error = may_create(dir, dentry);
1487 
1488 	if (error)
1489 		return error;
1490 
1491 	if (!dir->i_op->create)
1492 		return -EACCES;	/* shouldn't it be ENOSYS? */
1493 	mode &= S_IALLUGO;
1494 	mode |= S_IFREG;
1495 	error = security_inode_create(dir, dentry, mode);
1496 	if (error)
1497 		return error;
1498 	vfs_dq_init(dir);
1499 	error = dir->i_op->create(dir, dentry, mode, nd);
1500 	if (!error)
1501 		fsnotify_create(dir, dentry);
1502 	return error;
1503 }
1504 
1505 int may_open(struct path *path, int acc_mode, int flag)
1506 {
1507 	struct dentry *dentry = path->dentry;
1508 	struct inode *inode = dentry->d_inode;
1509 	int error;
1510 
1511 	if (!inode)
1512 		return -ENOENT;
1513 
1514 	switch (inode->i_mode & S_IFMT) {
1515 	case S_IFLNK:
1516 		return -ELOOP;
1517 	case S_IFDIR:
1518 		if (acc_mode & MAY_WRITE)
1519 			return -EISDIR;
1520 		break;
1521 	case S_IFBLK:
1522 	case S_IFCHR:
1523 		if (path->mnt->mnt_flags & MNT_NODEV)
1524 			return -EACCES;
1525 		/*FALLTHRU*/
1526 	case S_IFIFO:
1527 	case S_IFSOCK:
1528 		flag &= ~O_TRUNC;
1529 		break;
1530 	}
1531 
1532 	error = inode_permission(inode, acc_mode);
1533 	if (error)
1534 		return error;
1535 
1536 	error = ima_path_check(path, acc_mode ?
1537 			       acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1538 			       ACC_MODE(flag) & (MAY_READ | MAY_WRITE),
1539 			       IMA_COUNT_UPDATE);
1540 
1541 	if (error)
1542 		return error;
1543 	/*
1544 	 * An append-only file must be opened in append mode for writing.
1545 	 */
1546 	if (IS_APPEND(inode)) {
1547 		error = -EPERM;
1548 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1549 			goto err_out;
1550 		if (flag & O_TRUNC)
1551 			goto err_out;
1552 	}
1553 
1554 	/* O_NOATIME can only be set by the owner or superuser */
1555 	if (flag & O_NOATIME)
1556 		if (!is_owner_or_cap(inode)) {
1557 			error = -EPERM;
1558 			goto err_out;
1559 		}
1560 
1561 	/*
1562 	 * Ensure there are no outstanding leases on the file.
1563 	 */
1564 	error = break_lease(inode, flag);
1565 	if (error)
1566 		goto err_out;
1567 
1568 	if (flag & O_TRUNC) {
1569 		error = get_write_access(inode);
1570 		if (error)
1571 			goto err_out;
1572 
1573 		/*
1574 		 * Refuse to truncate files with mandatory locks held on them.
1575 		 */
1576 		error = locks_verify_locked(inode);
1577 		if (!error)
1578 			error = security_path_truncate(path, 0,
1579 					       ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1580 		if (!error) {
1581 			vfs_dq_init(inode);
1582 
1583 			error = do_truncate(dentry, 0,
1584 					    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1585 					    NULL);
1586 		}
1587 		put_write_access(inode);
1588 		if (error)
1589 			goto err_out;
1590 	} else
1591 		if (flag & FMODE_WRITE)
1592 			vfs_dq_init(inode);
1593 
1594 	return 0;
1595 err_out:
1596 	ima_counts_put(path, acc_mode ?
1597 		       acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1598 		       ACC_MODE(flag) & (MAY_READ | MAY_WRITE));
1599 	return error;
1600 }
1601 
1602 /*
1603  * Be careful about ever adding any more callers of this
1604  * function.  Its flags must be in the namei format, not
1605  * what get passed to sys_open().
1606  */
1607 static int __open_namei_create(struct nameidata *nd, struct path *path,
1608 				int flag, int mode)
1609 {
1610 	int error;
1611 	struct dentry *dir = nd->path.dentry;
1612 
1613 	if (!IS_POSIXACL(dir->d_inode))
1614 		mode &= ~current_umask();
1615 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1616 	if (error)
1617 		goto out_unlock;
1618 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1619 out_unlock:
1620 	mutex_unlock(&dir->d_inode->i_mutex);
1621 	dput(nd->path.dentry);
1622 	nd->path.dentry = path->dentry;
1623 	if (error)
1624 		return error;
1625 	/* Don't check for write permission, don't truncate */
1626 	return may_open(&nd->path, 0, flag & ~O_TRUNC);
1627 }
1628 
1629 /*
1630  * Note that while the flag value (low two bits) for sys_open means:
1631  *	00 - read-only
1632  *	01 - write-only
1633  *	10 - read-write
1634  *	11 - special
1635  * it is changed into
1636  *	00 - no permissions needed
1637  *	01 - read-permission
1638  *	10 - write-permission
1639  *	11 - read-write
1640  * for the internal routines (ie open_namei()/follow_link() etc)
1641  * This is more logical, and also allows the 00 "no perm needed"
1642  * to be used for symlinks (where the permissions are checked
1643  * later).
1644  *
1645 */
1646 static inline int open_to_namei_flags(int flag)
1647 {
1648 	if ((flag+1) & O_ACCMODE)
1649 		flag++;
1650 	return flag;
1651 }
1652 
1653 static int open_will_write_to_fs(int flag, struct inode *inode)
1654 {
1655 	/*
1656 	 * We'll never write to the fs underlying
1657 	 * a device file.
1658 	 */
1659 	if (special_file(inode->i_mode))
1660 		return 0;
1661 	return (flag & O_TRUNC);
1662 }
1663 
1664 /*
1665  * Note that the low bits of the passed in "open_flag"
1666  * are not the same as in the local variable "flag". See
1667  * open_to_namei_flags() for more details.
1668  */
1669 struct file *do_filp_open(int dfd, const char *pathname,
1670 		int open_flag, int mode, int acc_mode)
1671 {
1672 	struct file *filp;
1673 	struct nameidata nd;
1674 	int error;
1675 	struct path path;
1676 	struct dentry *dir;
1677 	int count = 0;
1678 	int will_write;
1679 	int flag = open_to_namei_flags(open_flag);
1680 
1681 	if (!acc_mode)
1682 		acc_mode = MAY_OPEN | ACC_MODE(flag);
1683 
1684 	/* O_TRUNC implies we need access checks for write permissions */
1685 	if (flag & O_TRUNC)
1686 		acc_mode |= MAY_WRITE;
1687 
1688 	/* Allow the LSM permission hook to distinguish append
1689 	   access from general write access. */
1690 	if (flag & O_APPEND)
1691 		acc_mode |= MAY_APPEND;
1692 
1693 	/*
1694 	 * The simplest case - just a plain lookup.
1695 	 */
1696 	if (!(flag & O_CREAT)) {
1697 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1698 					 &nd, flag);
1699 		if (error)
1700 			return ERR_PTR(error);
1701 		goto ok;
1702 	}
1703 
1704 	/*
1705 	 * Create - we need to know the parent.
1706 	 */
1707 	error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1708 	if (error)
1709 		return ERR_PTR(error);
1710 	error = path_walk(pathname, &nd);
1711 	if (error) {
1712 		if (nd.root.mnt)
1713 			path_put(&nd.root);
1714 		return ERR_PTR(error);
1715 	}
1716 	if (unlikely(!audit_dummy_context()))
1717 		audit_inode(pathname, nd.path.dentry);
1718 
1719 	/*
1720 	 * We have the parent and last component. First of all, check
1721 	 * that we are not asked to creat(2) an obvious directory - that
1722 	 * will not do.
1723 	 */
1724 	error = -EISDIR;
1725 	if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1726 		goto exit_parent;
1727 
1728 	error = -ENFILE;
1729 	filp = get_empty_filp();
1730 	if (filp == NULL)
1731 		goto exit_parent;
1732 	nd.intent.open.file = filp;
1733 	nd.intent.open.flags = flag;
1734 	nd.intent.open.create_mode = mode;
1735 	dir = nd.path.dentry;
1736 	nd.flags &= ~LOOKUP_PARENT;
1737 	nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1738 	if (flag & O_EXCL)
1739 		nd.flags |= LOOKUP_EXCL;
1740 	mutex_lock(&dir->d_inode->i_mutex);
1741 	path.dentry = lookup_hash(&nd);
1742 	path.mnt = nd.path.mnt;
1743 
1744 do_last:
1745 	error = PTR_ERR(path.dentry);
1746 	if (IS_ERR(path.dentry)) {
1747 		mutex_unlock(&dir->d_inode->i_mutex);
1748 		goto exit;
1749 	}
1750 
1751 	if (IS_ERR(nd.intent.open.file)) {
1752 		error = PTR_ERR(nd.intent.open.file);
1753 		goto exit_mutex_unlock;
1754 	}
1755 
1756 	/* Negative dentry, just create the file */
1757 	if (!path.dentry->d_inode) {
1758 		/*
1759 		 * This write is needed to ensure that a
1760 		 * ro->rw transition does not occur between
1761 		 * the time when the file is created and when
1762 		 * a permanent write count is taken through
1763 		 * the 'struct file' in nameidata_to_filp().
1764 		 */
1765 		error = mnt_want_write(nd.path.mnt);
1766 		if (error)
1767 			goto exit_mutex_unlock;
1768 		error = __open_namei_create(&nd, &path, flag, mode);
1769 		if (error) {
1770 			mnt_drop_write(nd.path.mnt);
1771 			goto exit;
1772 		}
1773 		filp = nameidata_to_filp(&nd, open_flag);
1774 		if (IS_ERR(filp))
1775 			ima_counts_put(&nd.path,
1776 				       acc_mode & (MAY_READ | MAY_WRITE |
1777 						   MAY_EXEC));
1778 		mnt_drop_write(nd.path.mnt);
1779 		if (nd.root.mnt)
1780 			path_put(&nd.root);
1781 		return filp;
1782 	}
1783 
1784 	/*
1785 	 * It already exists.
1786 	 */
1787 	mutex_unlock(&dir->d_inode->i_mutex);
1788 	audit_inode(pathname, path.dentry);
1789 
1790 	error = -EEXIST;
1791 	if (flag & O_EXCL)
1792 		goto exit_dput;
1793 
1794 	if (__follow_mount(&path)) {
1795 		error = -ELOOP;
1796 		if (flag & O_NOFOLLOW)
1797 			goto exit_dput;
1798 	}
1799 
1800 	error = -ENOENT;
1801 	if (!path.dentry->d_inode)
1802 		goto exit_dput;
1803 	if (path.dentry->d_inode->i_op->follow_link)
1804 		goto do_link;
1805 
1806 	path_to_nameidata(&path, &nd);
1807 	error = -EISDIR;
1808 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1809 		goto exit;
1810 ok:
1811 	/*
1812 	 * Consider:
1813 	 * 1. may_open() truncates a file
1814 	 * 2. a rw->ro mount transition occurs
1815 	 * 3. nameidata_to_filp() fails due to
1816 	 *    the ro mount.
1817 	 * That would be inconsistent, and should
1818 	 * be avoided. Taking this mnt write here
1819 	 * ensures that (2) can not occur.
1820 	 */
1821 	will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1822 	if (will_write) {
1823 		error = mnt_want_write(nd.path.mnt);
1824 		if (error)
1825 			goto exit;
1826 	}
1827 	error = may_open(&nd.path, acc_mode, flag);
1828 	if (error) {
1829 		if (will_write)
1830 			mnt_drop_write(nd.path.mnt);
1831 		goto exit;
1832 	}
1833 	filp = nameidata_to_filp(&nd, open_flag);
1834 	if (IS_ERR(filp))
1835 		ima_counts_put(&nd.path,
1836 			       acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1837 	/*
1838 	 * It is now safe to drop the mnt write
1839 	 * because the filp has had a write taken
1840 	 * on its behalf.
1841 	 */
1842 	if (will_write)
1843 		mnt_drop_write(nd.path.mnt);
1844 	if (nd.root.mnt)
1845 		path_put(&nd.root);
1846 	return filp;
1847 
1848 exit_mutex_unlock:
1849 	mutex_unlock(&dir->d_inode->i_mutex);
1850 exit_dput:
1851 	path_put_conditional(&path, &nd);
1852 exit:
1853 	if (!IS_ERR(nd.intent.open.file))
1854 		release_open_intent(&nd);
1855 exit_parent:
1856 	if (nd.root.mnt)
1857 		path_put(&nd.root);
1858 	path_put(&nd.path);
1859 	return ERR_PTR(error);
1860 
1861 do_link:
1862 	error = -ELOOP;
1863 	if (flag & O_NOFOLLOW)
1864 		goto exit_dput;
1865 	/*
1866 	 * This is subtle. Instead of calling do_follow_link() we do the
1867 	 * thing by hands. The reason is that this way we have zero link_count
1868 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1869 	 * After that we have the parent and last component, i.e.
1870 	 * we are in the same situation as after the first path_walk().
1871 	 * Well, almost - if the last component is normal we get its copy
1872 	 * stored in nd->last.name and we will have to putname() it when we
1873 	 * are done. Procfs-like symlinks just set LAST_BIND.
1874 	 */
1875 	nd.flags |= LOOKUP_PARENT;
1876 	error = security_inode_follow_link(path.dentry, &nd);
1877 	if (error)
1878 		goto exit_dput;
1879 	error = __do_follow_link(&path, &nd);
1880 	if (error) {
1881 		/* Does someone understand code flow here? Or it is only
1882 		 * me so stupid? Anathema to whoever designed this non-sense
1883 		 * with "intent.open".
1884 		 */
1885 		release_open_intent(&nd);
1886 		if (nd.root.mnt)
1887 			path_put(&nd.root);
1888 		return ERR_PTR(error);
1889 	}
1890 	nd.flags &= ~LOOKUP_PARENT;
1891 	if (nd.last_type == LAST_BIND)
1892 		goto ok;
1893 	error = -EISDIR;
1894 	if (nd.last_type != LAST_NORM)
1895 		goto exit;
1896 	if (nd.last.name[nd.last.len]) {
1897 		__putname(nd.last.name);
1898 		goto exit;
1899 	}
1900 	error = -ELOOP;
1901 	if (count++==32) {
1902 		__putname(nd.last.name);
1903 		goto exit;
1904 	}
1905 	dir = nd.path.dentry;
1906 	mutex_lock(&dir->d_inode->i_mutex);
1907 	path.dentry = lookup_hash(&nd);
1908 	path.mnt = nd.path.mnt;
1909 	__putname(nd.last.name);
1910 	goto do_last;
1911 }
1912 
1913 /**
1914  * filp_open - open file and return file pointer
1915  *
1916  * @filename:	path to open
1917  * @flags:	open flags as per the open(2) second argument
1918  * @mode:	mode for the new file if O_CREAT is set, else ignored
1919  *
1920  * This is the helper to open a file from kernelspace if you really
1921  * have to.  But in generally you should not do this, so please move
1922  * along, nothing to see here..
1923  */
1924 struct file *filp_open(const char *filename, int flags, int mode)
1925 {
1926 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1927 }
1928 EXPORT_SYMBOL(filp_open);
1929 
1930 /**
1931  * lookup_create - lookup a dentry, creating it if it doesn't exist
1932  * @nd: nameidata info
1933  * @is_dir: directory flag
1934  *
1935  * Simple function to lookup and return a dentry and create it
1936  * if it doesn't exist.  Is SMP-safe.
1937  *
1938  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1939  */
1940 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1941 {
1942 	struct dentry *dentry = ERR_PTR(-EEXIST);
1943 
1944 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1945 	/*
1946 	 * Yucky last component or no last component at all?
1947 	 * (foo/., foo/.., /////)
1948 	 */
1949 	if (nd->last_type != LAST_NORM)
1950 		goto fail;
1951 	nd->flags &= ~LOOKUP_PARENT;
1952 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1953 	nd->intent.open.flags = O_EXCL;
1954 
1955 	/*
1956 	 * Do the final lookup.
1957 	 */
1958 	dentry = lookup_hash(nd);
1959 	if (IS_ERR(dentry))
1960 		goto fail;
1961 
1962 	if (dentry->d_inode)
1963 		goto eexist;
1964 	/*
1965 	 * Special case - lookup gave negative, but... we had foo/bar/
1966 	 * From the vfs_mknod() POV we just have a negative dentry -
1967 	 * all is fine. Let's be bastards - you had / on the end, you've
1968 	 * been asking for (non-existent) directory. -ENOENT for you.
1969 	 */
1970 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1971 		dput(dentry);
1972 		dentry = ERR_PTR(-ENOENT);
1973 	}
1974 	return dentry;
1975 eexist:
1976 	dput(dentry);
1977 	dentry = ERR_PTR(-EEXIST);
1978 fail:
1979 	return dentry;
1980 }
1981 EXPORT_SYMBOL_GPL(lookup_create);
1982 
1983 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1984 {
1985 	int error = may_create(dir, dentry);
1986 
1987 	if (error)
1988 		return error;
1989 
1990 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1991 		return -EPERM;
1992 
1993 	if (!dir->i_op->mknod)
1994 		return -EPERM;
1995 
1996 	error = devcgroup_inode_mknod(mode, dev);
1997 	if (error)
1998 		return error;
1999 
2000 	error = security_inode_mknod(dir, dentry, mode, dev);
2001 	if (error)
2002 		return error;
2003 
2004 	vfs_dq_init(dir);
2005 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2006 	if (!error)
2007 		fsnotify_create(dir, dentry);
2008 	return error;
2009 }
2010 
2011 static int may_mknod(mode_t mode)
2012 {
2013 	switch (mode & S_IFMT) {
2014 	case S_IFREG:
2015 	case S_IFCHR:
2016 	case S_IFBLK:
2017 	case S_IFIFO:
2018 	case S_IFSOCK:
2019 	case 0: /* zero mode translates to S_IFREG */
2020 		return 0;
2021 	case S_IFDIR:
2022 		return -EPERM;
2023 	default:
2024 		return -EINVAL;
2025 	}
2026 }
2027 
2028 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2029 		unsigned, dev)
2030 {
2031 	int error;
2032 	char *tmp;
2033 	struct dentry *dentry;
2034 	struct nameidata nd;
2035 
2036 	if (S_ISDIR(mode))
2037 		return -EPERM;
2038 
2039 	error = user_path_parent(dfd, filename, &nd, &tmp);
2040 	if (error)
2041 		return error;
2042 
2043 	dentry = lookup_create(&nd, 0);
2044 	if (IS_ERR(dentry)) {
2045 		error = PTR_ERR(dentry);
2046 		goto out_unlock;
2047 	}
2048 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2049 		mode &= ~current_umask();
2050 	error = may_mknod(mode);
2051 	if (error)
2052 		goto out_dput;
2053 	error = mnt_want_write(nd.path.mnt);
2054 	if (error)
2055 		goto out_dput;
2056 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2057 	if (error)
2058 		goto out_drop_write;
2059 	switch (mode & S_IFMT) {
2060 		case 0: case S_IFREG:
2061 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2062 			break;
2063 		case S_IFCHR: case S_IFBLK:
2064 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2065 					new_decode_dev(dev));
2066 			break;
2067 		case S_IFIFO: case S_IFSOCK:
2068 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2069 			break;
2070 	}
2071 out_drop_write:
2072 	mnt_drop_write(nd.path.mnt);
2073 out_dput:
2074 	dput(dentry);
2075 out_unlock:
2076 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2077 	path_put(&nd.path);
2078 	putname(tmp);
2079 
2080 	return error;
2081 }
2082 
2083 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2084 {
2085 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2086 }
2087 
2088 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2089 {
2090 	int error = may_create(dir, dentry);
2091 
2092 	if (error)
2093 		return error;
2094 
2095 	if (!dir->i_op->mkdir)
2096 		return -EPERM;
2097 
2098 	mode &= (S_IRWXUGO|S_ISVTX);
2099 	error = security_inode_mkdir(dir, dentry, mode);
2100 	if (error)
2101 		return error;
2102 
2103 	vfs_dq_init(dir);
2104 	error = dir->i_op->mkdir(dir, dentry, mode);
2105 	if (!error)
2106 		fsnotify_mkdir(dir, dentry);
2107 	return error;
2108 }
2109 
2110 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2111 {
2112 	int error = 0;
2113 	char * tmp;
2114 	struct dentry *dentry;
2115 	struct nameidata nd;
2116 
2117 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2118 	if (error)
2119 		goto out_err;
2120 
2121 	dentry = lookup_create(&nd, 1);
2122 	error = PTR_ERR(dentry);
2123 	if (IS_ERR(dentry))
2124 		goto out_unlock;
2125 
2126 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2127 		mode &= ~current_umask();
2128 	error = mnt_want_write(nd.path.mnt);
2129 	if (error)
2130 		goto out_dput;
2131 	error = security_path_mkdir(&nd.path, dentry, mode);
2132 	if (error)
2133 		goto out_drop_write;
2134 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2135 out_drop_write:
2136 	mnt_drop_write(nd.path.mnt);
2137 out_dput:
2138 	dput(dentry);
2139 out_unlock:
2140 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2141 	path_put(&nd.path);
2142 	putname(tmp);
2143 out_err:
2144 	return error;
2145 }
2146 
2147 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2148 {
2149 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2150 }
2151 
2152 /*
2153  * We try to drop the dentry early: we should have
2154  * a usage count of 2 if we're the only user of this
2155  * dentry, and if that is true (possibly after pruning
2156  * the dcache), then we drop the dentry now.
2157  *
2158  * A low-level filesystem can, if it choses, legally
2159  * do a
2160  *
2161  *	if (!d_unhashed(dentry))
2162  *		return -EBUSY;
2163  *
2164  * if it cannot handle the case of removing a directory
2165  * that is still in use by something else..
2166  */
2167 void dentry_unhash(struct dentry *dentry)
2168 {
2169 	dget(dentry);
2170 	shrink_dcache_parent(dentry);
2171 	spin_lock(&dcache_lock);
2172 	spin_lock(&dentry->d_lock);
2173 	if (atomic_read(&dentry->d_count) == 2)
2174 		__d_drop(dentry);
2175 	spin_unlock(&dentry->d_lock);
2176 	spin_unlock(&dcache_lock);
2177 }
2178 
2179 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2180 {
2181 	int error = may_delete(dir, dentry, 1);
2182 
2183 	if (error)
2184 		return error;
2185 
2186 	if (!dir->i_op->rmdir)
2187 		return -EPERM;
2188 
2189 	vfs_dq_init(dir);
2190 
2191 	mutex_lock(&dentry->d_inode->i_mutex);
2192 	dentry_unhash(dentry);
2193 	if (d_mountpoint(dentry))
2194 		error = -EBUSY;
2195 	else {
2196 		error = security_inode_rmdir(dir, dentry);
2197 		if (!error) {
2198 			error = dir->i_op->rmdir(dir, dentry);
2199 			if (!error)
2200 				dentry->d_inode->i_flags |= S_DEAD;
2201 		}
2202 	}
2203 	mutex_unlock(&dentry->d_inode->i_mutex);
2204 	if (!error) {
2205 		d_delete(dentry);
2206 	}
2207 	dput(dentry);
2208 
2209 	return error;
2210 }
2211 
2212 static long do_rmdir(int dfd, const char __user *pathname)
2213 {
2214 	int error = 0;
2215 	char * name;
2216 	struct dentry *dentry;
2217 	struct nameidata nd;
2218 
2219 	error = user_path_parent(dfd, pathname, &nd, &name);
2220 	if (error)
2221 		return error;
2222 
2223 	switch(nd.last_type) {
2224 	case LAST_DOTDOT:
2225 		error = -ENOTEMPTY;
2226 		goto exit1;
2227 	case LAST_DOT:
2228 		error = -EINVAL;
2229 		goto exit1;
2230 	case LAST_ROOT:
2231 		error = -EBUSY;
2232 		goto exit1;
2233 	}
2234 
2235 	nd.flags &= ~LOOKUP_PARENT;
2236 
2237 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2238 	dentry = lookup_hash(&nd);
2239 	error = PTR_ERR(dentry);
2240 	if (IS_ERR(dentry))
2241 		goto exit2;
2242 	error = mnt_want_write(nd.path.mnt);
2243 	if (error)
2244 		goto exit3;
2245 	error = security_path_rmdir(&nd.path, dentry);
2246 	if (error)
2247 		goto exit4;
2248 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2249 exit4:
2250 	mnt_drop_write(nd.path.mnt);
2251 exit3:
2252 	dput(dentry);
2253 exit2:
2254 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2255 exit1:
2256 	path_put(&nd.path);
2257 	putname(name);
2258 	return error;
2259 }
2260 
2261 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2262 {
2263 	return do_rmdir(AT_FDCWD, pathname);
2264 }
2265 
2266 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2267 {
2268 	int error = may_delete(dir, dentry, 0);
2269 
2270 	if (error)
2271 		return error;
2272 
2273 	if (!dir->i_op->unlink)
2274 		return -EPERM;
2275 
2276 	vfs_dq_init(dir);
2277 
2278 	mutex_lock(&dentry->d_inode->i_mutex);
2279 	if (d_mountpoint(dentry))
2280 		error = -EBUSY;
2281 	else {
2282 		error = security_inode_unlink(dir, dentry);
2283 		if (!error)
2284 			error = dir->i_op->unlink(dir, dentry);
2285 	}
2286 	mutex_unlock(&dentry->d_inode->i_mutex);
2287 
2288 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2289 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2290 		fsnotify_link_count(dentry->d_inode);
2291 		d_delete(dentry);
2292 	}
2293 
2294 	return error;
2295 }
2296 
2297 /*
2298  * Make sure that the actual truncation of the file will occur outside its
2299  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2300  * writeout happening, and we don't want to prevent access to the directory
2301  * while waiting on the I/O.
2302  */
2303 static long do_unlinkat(int dfd, const char __user *pathname)
2304 {
2305 	int error;
2306 	char *name;
2307 	struct dentry *dentry;
2308 	struct nameidata nd;
2309 	struct inode *inode = NULL;
2310 
2311 	error = user_path_parent(dfd, pathname, &nd, &name);
2312 	if (error)
2313 		return error;
2314 
2315 	error = -EISDIR;
2316 	if (nd.last_type != LAST_NORM)
2317 		goto exit1;
2318 
2319 	nd.flags &= ~LOOKUP_PARENT;
2320 
2321 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2322 	dentry = lookup_hash(&nd);
2323 	error = PTR_ERR(dentry);
2324 	if (!IS_ERR(dentry)) {
2325 		/* Why not before? Because we want correct error value */
2326 		if (nd.last.name[nd.last.len])
2327 			goto slashes;
2328 		inode = dentry->d_inode;
2329 		if (inode)
2330 			atomic_inc(&inode->i_count);
2331 		error = mnt_want_write(nd.path.mnt);
2332 		if (error)
2333 			goto exit2;
2334 		error = security_path_unlink(&nd.path, dentry);
2335 		if (error)
2336 			goto exit3;
2337 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2338 exit3:
2339 		mnt_drop_write(nd.path.mnt);
2340 	exit2:
2341 		dput(dentry);
2342 	}
2343 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2344 	if (inode)
2345 		iput(inode);	/* truncate the inode here */
2346 exit1:
2347 	path_put(&nd.path);
2348 	putname(name);
2349 	return error;
2350 
2351 slashes:
2352 	error = !dentry->d_inode ? -ENOENT :
2353 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2354 	goto exit2;
2355 }
2356 
2357 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2358 {
2359 	if ((flag & ~AT_REMOVEDIR) != 0)
2360 		return -EINVAL;
2361 
2362 	if (flag & AT_REMOVEDIR)
2363 		return do_rmdir(dfd, pathname);
2364 
2365 	return do_unlinkat(dfd, pathname);
2366 }
2367 
2368 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2369 {
2370 	return do_unlinkat(AT_FDCWD, pathname);
2371 }
2372 
2373 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2374 {
2375 	int error = may_create(dir, dentry);
2376 
2377 	if (error)
2378 		return error;
2379 
2380 	if (!dir->i_op->symlink)
2381 		return -EPERM;
2382 
2383 	error = security_inode_symlink(dir, dentry, oldname);
2384 	if (error)
2385 		return error;
2386 
2387 	vfs_dq_init(dir);
2388 	error = dir->i_op->symlink(dir, dentry, oldname);
2389 	if (!error)
2390 		fsnotify_create(dir, dentry);
2391 	return error;
2392 }
2393 
2394 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2395 		int, newdfd, const char __user *, newname)
2396 {
2397 	int error;
2398 	char *from;
2399 	char *to;
2400 	struct dentry *dentry;
2401 	struct nameidata nd;
2402 
2403 	from = getname(oldname);
2404 	if (IS_ERR(from))
2405 		return PTR_ERR(from);
2406 
2407 	error = user_path_parent(newdfd, newname, &nd, &to);
2408 	if (error)
2409 		goto out_putname;
2410 
2411 	dentry = lookup_create(&nd, 0);
2412 	error = PTR_ERR(dentry);
2413 	if (IS_ERR(dentry))
2414 		goto out_unlock;
2415 
2416 	error = mnt_want_write(nd.path.mnt);
2417 	if (error)
2418 		goto out_dput;
2419 	error = security_path_symlink(&nd.path, dentry, from);
2420 	if (error)
2421 		goto out_drop_write;
2422 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2423 out_drop_write:
2424 	mnt_drop_write(nd.path.mnt);
2425 out_dput:
2426 	dput(dentry);
2427 out_unlock:
2428 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2429 	path_put(&nd.path);
2430 	putname(to);
2431 out_putname:
2432 	putname(from);
2433 	return error;
2434 }
2435 
2436 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2437 {
2438 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2439 }
2440 
2441 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2442 {
2443 	struct inode *inode = old_dentry->d_inode;
2444 	int error;
2445 
2446 	if (!inode)
2447 		return -ENOENT;
2448 
2449 	error = may_create(dir, new_dentry);
2450 	if (error)
2451 		return error;
2452 
2453 	if (dir->i_sb != inode->i_sb)
2454 		return -EXDEV;
2455 
2456 	/*
2457 	 * A link to an append-only or immutable file cannot be created.
2458 	 */
2459 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2460 		return -EPERM;
2461 	if (!dir->i_op->link)
2462 		return -EPERM;
2463 	if (S_ISDIR(inode->i_mode))
2464 		return -EPERM;
2465 
2466 	error = security_inode_link(old_dentry, dir, new_dentry);
2467 	if (error)
2468 		return error;
2469 
2470 	mutex_lock(&inode->i_mutex);
2471 	vfs_dq_init(dir);
2472 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2473 	mutex_unlock(&inode->i_mutex);
2474 	if (!error)
2475 		fsnotify_link(dir, inode, new_dentry);
2476 	return error;
2477 }
2478 
2479 /*
2480  * Hardlinks are often used in delicate situations.  We avoid
2481  * security-related surprises by not following symlinks on the
2482  * newname.  --KAB
2483  *
2484  * We don't follow them on the oldname either to be compatible
2485  * with linux 2.0, and to avoid hard-linking to directories
2486  * and other special files.  --ADM
2487  */
2488 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2489 		int, newdfd, const char __user *, newname, int, flags)
2490 {
2491 	struct dentry *new_dentry;
2492 	struct nameidata nd;
2493 	struct path old_path;
2494 	int error;
2495 	char *to;
2496 
2497 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2498 		return -EINVAL;
2499 
2500 	error = user_path_at(olddfd, oldname,
2501 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2502 			     &old_path);
2503 	if (error)
2504 		return error;
2505 
2506 	error = user_path_parent(newdfd, newname, &nd, &to);
2507 	if (error)
2508 		goto out;
2509 	error = -EXDEV;
2510 	if (old_path.mnt != nd.path.mnt)
2511 		goto out_release;
2512 	new_dentry = lookup_create(&nd, 0);
2513 	error = PTR_ERR(new_dentry);
2514 	if (IS_ERR(new_dentry))
2515 		goto out_unlock;
2516 	error = mnt_want_write(nd.path.mnt);
2517 	if (error)
2518 		goto out_dput;
2519 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2520 	if (error)
2521 		goto out_drop_write;
2522 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2523 out_drop_write:
2524 	mnt_drop_write(nd.path.mnt);
2525 out_dput:
2526 	dput(new_dentry);
2527 out_unlock:
2528 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2529 out_release:
2530 	path_put(&nd.path);
2531 	putname(to);
2532 out:
2533 	path_put(&old_path);
2534 
2535 	return error;
2536 }
2537 
2538 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2539 {
2540 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2541 }
2542 
2543 /*
2544  * The worst of all namespace operations - renaming directory. "Perverted"
2545  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2546  * Problems:
2547  *	a) we can get into loop creation. Check is done in is_subdir().
2548  *	b) race potential - two innocent renames can create a loop together.
2549  *	   That's where 4.4 screws up. Current fix: serialization on
2550  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2551  *	   story.
2552  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2553  *	   And that - after we got ->i_mutex on parents (until then we don't know
2554  *	   whether the target exists).  Solution: try to be smart with locking
2555  *	   order for inodes.  We rely on the fact that tree topology may change
2556  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2557  *	   move will be locked.  Thus we can rank directories by the tree
2558  *	   (ancestors first) and rank all non-directories after them.
2559  *	   That works since everybody except rename does "lock parent, lookup,
2560  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2561  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2562  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2563  *	   we'd better make sure that there's no link(2) for them.
2564  *	d) some filesystems don't support opened-but-unlinked directories,
2565  *	   either because of layout or because they are not ready to deal with
2566  *	   all cases correctly. The latter will be fixed (taking this sort of
2567  *	   stuff into VFS), but the former is not going away. Solution: the same
2568  *	   trick as in rmdir().
2569  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2570  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2571  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2572  *	   ->i_mutex on parents, which works but leads to some truely excessive
2573  *	   locking].
2574  */
2575 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2576 			  struct inode *new_dir, struct dentry *new_dentry)
2577 {
2578 	int error = 0;
2579 	struct inode *target;
2580 
2581 	/*
2582 	 * If we are going to change the parent - check write permissions,
2583 	 * we'll need to flip '..'.
2584 	 */
2585 	if (new_dir != old_dir) {
2586 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2587 		if (error)
2588 			return error;
2589 	}
2590 
2591 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2592 	if (error)
2593 		return error;
2594 
2595 	target = new_dentry->d_inode;
2596 	if (target) {
2597 		mutex_lock(&target->i_mutex);
2598 		dentry_unhash(new_dentry);
2599 	}
2600 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2601 		error = -EBUSY;
2602 	else
2603 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2604 	if (target) {
2605 		if (!error)
2606 			target->i_flags |= S_DEAD;
2607 		mutex_unlock(&target->i_mutex);
2608 		if (d_unhashed(new_dentry))
2609 			d_rehash(new_dentry);
2610 		dput(new_dentry);
2611 	}
2612 	if (!error)
2613 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2614 			d_move(old_dentry,new_dentry);
2615 	return error;
2616 }
2617 
2618 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2619 			    struct inode *new_dir, struct dentry *new_dentry)
2620 {
2621 	struct inode *target;
2622 	int error;
2623 
2624 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2625 	if (error)
2626 		return error;
2627 
2628 	dget(new_dentry);
2629 	target = new_dentry->d_inode;
2630 	if (target)
2631 		mutex_lock(&target->i_mutex);
2632 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2633 		error = -EBUSY;
2634 	else
2635 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2636 	if (!error) {
2637 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2638 			d_move(old_dentry, new_dentry);
2639 	}
2640 	if (target)
2641 		mutex_unlock(&target->i_mutex);
2642 	dput(new_dentry);
2643 	return error;
2644 }
2645 
2646 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2647 	       struct inode *new_dir, struct dentry *new_dentry)
2648 {
2649 	int error;
2650 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2651 	const char *old_name;
2652 
2653 	if (old_dentry->d_inode == new_dentry->d_inode)
2654  		return 0;
2655 
2656 	error = may_delete(old_dir, old_dentry, is_dir);
2657 	if (error)
2658 		return error;
2659 
2660 	if (!new_dentry->d_inode)
2661 		error = may_create(new_dir, new_dentry);
2662 	else
2663 		error = may_delete(new_dir, new_dentry, is_dir);
2664 	if (error)
2665 		return error;
2666 
2667 	if (!old_dir->i_op->rename)
2668 		return -EPERM;
2669 
2670 	vfs_dq_init(old_dir);
2671 	vfs_dq_init(new_dir);
2672 
2673 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2674 
2675 	if (is_dir)
2676 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2677 	else
2678 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2679 	if (!error) {
2680 		const char *new_name = old_dentry->d_name.name;
2681 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2682 			      new_dentry->d_inode, old_dentry);
2683 	}
2684 	fsnotify_oldname_free(old_name);
2685 
2686 	return error;
2687 }
2688 
2689 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2690 		int, newdfd, const char __user *, newname)
2691 {
2692 	struct dentry *old_dir, *new_dir;
2693 	struct dentry *old_dentry, *new_dentry;
2694 	struct dentry *trap;
2695 	struct nameidata oldnd, newnd;
2696 	char *from;
2697 	char *to;
2698 	int error;
2699 
2700 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2701 	if (error)
2702 		goto exit;
2703 
2704 	error = user_path_parent(newdfd, newname, &newnd, &to);
2705 	if (error)
2706 		goto exit1;
2707 
2708 	error = -EXDEV;
2709 	if (oldnd.path.mnt != newnd.path.mnt)
2710 		goto exit2;
2711 
2712 	old_dir = oldnd.path.dentry;
2713 	error = -EBUSY;
2714 	if (oldnd.last_type != LAST_NORM)
2715 		goto exit2;
2716 
2717 	new_dir = newnd.path.dentry;
2718 	if (newnd.last_type != LAST_NORM)
2719 		goto exit2;
2720 
2721 	oldnd.flags &= ~LOOKUP_PARENT;
2722 	newnd.flags &= ~LOOKUP_PARENT;
2723 	newnd.flags |= LOOKUP_RENAME_TARGET;
2724 
2725 	trap = lock_rename(new_dir, old_dir);
2726 
2727 	old_dentry = lookup_hash(&oldnd);
2728 	error = PTR_ERR(old_dentry);
2729 	if (IS_ERR(old_dentry))
2730 		goto exit3;
2731 	/* source must exist */
2732 	error = -ENOENT;
2733 	if (!old_dentry->d_inode)
2734 		goto exit4;
2735 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2736 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2737 		error = -ENOTDIR;
2738 		if (oldnd.last.name[oldnd.last.len])
2739 			goto exit4;
2740 		if (newnd.last.name[newnd.last.len])
2741 			goto exit4;
2742 	}
2743 	/* source should not be ancestor of target */
2744 	error = -EINVAL;
2745 	if (old_dentry == trap)
2746 		goto exit4;
2747 	new_dentry = lookup_hash(&newnd);
2748 	error = PTR_ERR(new_dentry);
2749 	if (IS_ERR(new_dentry))
2750 		goto exit4;
2751 	/* target should not be an ancestor of source */
2752 	error = -ENOTEMPTY;
2753 	if (new_dentry == trap)
2754 		goto exit5;
2755 
2756 	error = mnt_want_write(oldnd.path.mnt);
2757 	if (error)
2758 		goto exit5;
2759 	error = security_path_rename(&oldnd.path, old_dentry,
2760 				     &newnd.path, new_dentry);
2761 	if (error)
2762 		goto exit6;
2763 	error = vfs_rename(old_dir->d_inode, old_dentry,
2764 				   new_dir->d_inode, new_dentry);
2765 exit6:
2766 	mnt_drop_write(oldnd.path.mnt);
2767 exit5:
2768 	dput(new_dentry);
2769 exit4:
2770 	dput(old_dentry);
2771 exit3:
2772 	unlock_rename(new_dir, old_dir);
2773 exit2:
2774 	path_put(&newnd.path);
2775 	putname(to);
2776 exit1:
2777 	path_put(&oldnd.path);
2778 	putname(from);
2779 exit:
2780 	return error;
2781 }
2782 
2783 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2784 {
2785 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2786 }
2787 
2788 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2789 {
2790 	int len;
2791 
2792 	len = PTR_ERR(link);
2793 	if (IS_ERR(link))
2794 		goto out;
2795 
2796 	len = strlen(link);
2797 	if (len > (unsigned) buflen)
2798 		len = buflen;
2799 	if (copy_to_user(buffer, link, len))
2800 		len = -EFAULT;
2801 out:
2802 	return len;
2803 }
2804 
2805 /*
2806  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2807  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2808  * using) it for any given inode is up to filesystem.
2809  */
2810 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2811 {
2812 	struct nameidata nd;
2813 	void *cookie;
2814 	int res;
2815 
2816 	nd.depth = 0;
2817 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2818 	if (IS_ERR(cookie))
2819 		return PTR_ERR(cookie);
2820 
2821 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2822 	if (dentry->d_inode->i_op->put_link)
2823 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2824 	return res;
2825 }
2826 
2827 int vfs_follow_link(struct nameidata *nd, const char *link)
2828 {
2829 	return __vfs_follow_link(nd, link);
2830 }
2831 
2832 /* get the link contents into pagecache */
2833 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2834 {
2835 	char *kaddr;
2836 	struct page *page;
2837 	struct address_space *mapping = dentry->d_inode->i_mapping;
2838 	page = read_mapping_page(mapping, 0, NULL);
2839 	if (IS_ERR(page))
2840 		return (char*)page;
2841 	*ppage = page;
2842 	kaddr = kmap(page);
2843 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2844 	return kaddr;
2845 }
2846 
2847 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2848 {
2849 	struct page *page = NULL;
2850 	char *s = page_getlink(dentry, &page);
2851 	int res = vfs_readlink(dentry,buffer,buflen,s);
2852 	if (page) {
2853 		kunmap(page);
2854 		page_cache_release(page);
2855 	}
2856 	return res;
2857 }
2858 
2859 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2860 {
2861 	struct page *page = NULL;
2862 	nd_set_link(nd, page_getlink(dentry, &page));
2863 	return page;
2864 }
2865 
2866 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2867 {
2868 	struct page *page = cookie;
2869 
2870 	if (page) {
2871 		kunmap(page);
2872 		page_cache_release(page);
2873 	}
2874 }
2875 
2876 /*
2877  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2878  */
2879 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2880 {
2881 	struct address_space *mapping = inode->i_mapping;
2882 	struct page *page;
2883 	void *fsdata;
2884 	int err;
2885 	char *kaddr;
2886 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2887 	if (nofs)
2888 		flags |= AOP_FLAG_NOFS;
2889 
2890 retry:
2891 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2892 				flags, &page, &fsdata);
2893 	if (err)
2894 		goto fail;
2895 
2896 	kaddr = kmap_atomic(page, KM_USER0);
2897 	memcpy(kaddr, symname, len-1);
2898 	kunmap_atomic(kaddr, KM_USER0);
2899 
2900 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2901 							page, fsdata);
2902 	if (err < 0)
2903 		goto fail;
2904 	if (err < len-1)
2905 		goto retry;
2906 
2907 	mark_inode_dirty(inode);
2908 	return 0;
2909 fail:
2910 	return err;
2911 }
2912 
2913 int page_symlink(struct inode *inode, const char *symname, int len)
2914 {
2915 	return __page_symlink(inode, symname, len,
2916 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2917 }
2918 
2919 const struct inode_operations page_symlink_inode_operations = {
2920 	.readlink	= generic_readlink,
2921 	.follow_link	= page_follow_link_light,
2922 	.put_link	= page_put_link,
2923 };
2924 
2925 EXPORT_SYMBOL(user_path_at);
2926 EXPORT_SYMBOL(follow_down);
2927 EXPORT_SYMBOL(follow_up);
2928 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2929 EXPORT_SYMBOL(getname);
2930 EXPORT_SYMBOL(lock_rename);
2931 EXPORT_SYMBOL(lookup_one_len);
2932 EXPORT_SYMBOL(page_follow_link_light);
2933 EXPORT_SYMBOL(page_put_link);
2934 EXPORT_SYMBOL(page_readlink);
2935 EXPORT_SYMBOL(__page_symlink);
2936 EXPORT_SYMBOL(page_symlink);
2937 EXPORT_SYMBOL(page_symlink_inode_operations);
2938 EXPORT_SYMBOL(path_lookup);
2939 EXPORT_SYMBOL(kern_path);
2940 EXPORT_SYMBOL(vfs_path_lookup);
2941 EXPORT_SYMBOL(inode_permission);
2942 EXPORT_SYMBOL(file_permission);
2943 EXPORT_SYMBOL(unlock_rename);
2944 EXPORT_SYMBOL(vfs_create);
2945 EXPORT_SYMBOL(vfs_follow_link);
2946 EXPORT_SYMBOL(vfs_link);
2947 EXPORT_SYMBOL(vfs_mkdir);
2948 EXPORT_SYMBOL(vfs_mknod);
2949 EXPORT_SYMBOL(generic_permission);
2950 EXPORT_SYMBOL(vfs_readlink);
2951 EXPORT_SYMBOL(vfs_rename);
2952 EXPORT_SYMBOL(vfs_rmdir);
2953 EXPORT_SYMBOL(vfs_symlink);
2954 EXPORT_SYMBOL(vfs_unlink);
2955 EXPORT_SYMBOL(dentry_unhash);
2956 EXPORT_SYMBOL(generic_readlink);
2957