xref: /openbmc/linux/fs/namei.c (revision 483eb062)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	audit_getname(result);
200 	return result;
201 
202 error:
203 	final_putname(result);
204 	return err;
205 }
206 
207 struct filename *
208 getname(const char __user * filename)
209 {
210 	return getname_flags(filename, 0, NULL);
211 }
212 
213 #ifdef CONFIG_AUDITSYSCALL
214 void putname(struct filename *name)
215 {
216 	if (unlikely(!audit_dummy_context()))
217 		return audit_putname(name);
218 	final_putname(name);
219 }
220 #endif
221 
222 static int check_acl(struct inode *inode, int mask)
223 {
224 #ifdef CONFIG_FS_POSIX_ACL
225 	struct posix_acl *acl;
226 
227 	if (mask & MAY_NOT_BLOCK) {
228 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
229 	        if (!acl)
230 	                return -EAGAIN;
231 		/* no ->get_acl() calls in RCU mode... */
232 		if (acl == ACL_NOT_CACHED)
233 			return -ECHILD;
234 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
235 	}
236 
237 	acl = get_acl(inode, ACL_TYPE_ACCESS);
238 	if (IS_ERR(acl))
239 		return PTR_ERR(acl);
240 	if (acl) {
241 	        int error = posix_acl_permission(inode, acl, mask);
242 	        posix_acl_release(acl);
243 	        return error;
244 	}
245 #endif
246 
247 	return -EAGAIN;
248 }
249 
250 /*
251  * This does the basic permission checking
252  */
253 static int acl_permission_check(struct inode *inode, int mask)
254 {
255 	unsigned int mode = inode->i_mode;
256 
257 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
258 		mode >>= 6;
259 	else {
260 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
261 			int error = check_acl(inode, mask);
262 			if (error != -EAGAIN)
263 				return error;
264 		}
265 
266 		if (in_group_p(inode->i_gid))
267 			mode >>= 3;
268 	}
269 
270 	/*
271 	 * If the DACs are ok we don't need any capability check.
272 	 */
273 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
274 		return 0;
275 	return -EACCES;
276 }
277 
278 /**
279  * generic_permission -  check for access rights on a Posix-like filesystem
280  * @inode:	inode to check access rights for
281  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
282  *
283  * Used to check for read/write/execute permissions on a file.
284  * We use "fsuid" for this, letting us set arbitrary permissions
285  * for filesystem access without changing the "normal" uids which
286  * are used for other things.
287  *
288  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
289  * request cannot be satisfied (eg. requires blocking or too much complexity).
290  * It would then be called again in ref-walk mode.
291  */
292 int generic_permission(struct inode *inode, int mask)
293 {
294 	int ret;
295 
296 	/*
297 	 * Do the basic permission checks.
298 	 */
299 	ret = acl_permission_check(inode, mask);
300 	if (ret != -EACCES)
301 		return ret;
302 
303 	if (S_ISDIR(inode->i_mode)) {
304 		/* DACs are overridable for directories */
305 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
306 			return 0;
307 		if (!(mask & MAY_WRITE))
308 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
309 				return 0;
310 		return -EACCES;
311 	}
312 	/*
313 	 * Read/write DACs are always overridable.
314 	 * Executable DACs are overridable when there is
315 	 * at least one exec bit set.
316 	 */
317 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
318 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
319 			return 0;
320 
321 	/*
322 	 * Searching includes executable on directories, else just read.
323 	 */
324 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
325 	if (mask == MAY_READ)
326 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
327 			return 0;
328 
329 	return -EACCES;
330 }
331 
332 /*
333  * We _really_ want to just do "generic_permission()" without
334  * even looking at the inode->i_op values. So we keep a cache
335  * flag in inode->i_opflags, that says "this has not special
336  * permission function, use the fast case".
337  */
338 static inline int do_inode_permission(struct inode *inode, int mask)
339 {
340 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
341 		if (likely(inode->i_op->permission))
342 			return inode->i_op->permission(inode, mask);
343 
344 		/* This gets set once for the inode lifetime */
345 		spin_lock(&inode->i_lock);
346 		inode->i_opflags |= IOP_FASTPERM;
347 		spin_unlock(&inode->i_lock);
348 	}
349 	return generic_permission(inode, mask);
350 }
351 
352 /**
353  * __inode_permission - Check for access rights to a given inode
354  * @inode: Inode to check permission on
355  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
356  *
357  * Check for read/write/execute permissions on an inode.
358  *
359  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
360  *
361  * This does not check for a read-only file system.  You probably want
362  * inode_permission().
363  */
364 int __inode_permission(struct inode *inode, int mask)
365 {
366 	int retval;
367 
368 	if (unlikely(mask & MAY_WRITE)) {
369 		/*
370 		 * Nobody gets write access to an immutable file.
371 		 */
372 		if (IS_IMMUTABLE(inode))
373 			return -EACCES;
374 	}
375 
376 	retval = do_inode_permission(inode, mask);
377 	if (retval)
378 		return retval;
379 
380 	retval = devcgroup_inode_permission(inode, mask);
381 	if (retval)
382 		return retval;
383 
384 	return security_inode_permission(inode, mask);
385 }
386 
387 /**
388  * sb_permission - Check superblock-level permissions
389  * @sb: Superblock of inode to check permission on
390  * @inode: Inode to check permission on
391  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
392  *
393  * Separate out file-system wide checks from inode-specific permission checks.
394  */
395 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
396 {
397 	if (unlikely(mask & MAY_WRITE)) {
398 		umode_t mode = inode->i_mode;
399 
400 		/* Nobody gets write access to a read-only fs. */
401 		if ((sb->s_flags & MS_RDONLY) &&
402 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
403 			return -EROFS;
404 	}
405 	return 0;
406 }
407 
408 /**
409  * inode_permission - Check for access rights to a given inode
410  * @inode: Inode to check permission on
411  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
412  *
413  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
414  * this, letting us set arbitrary permissions for filesystem access without
415  * changing the "normal" UIDs which are used for other things.
416  *
417  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
418  */
419 int inode_permission(struct inode *inode, int mask)
420 {
421 	int retval;
422 
423 	retval = sb_permission(inode->i_sb, inode, mask);
424 	if (retval)
425 		return retval;
426 	return __inode_permission(inode, mask);
427 }
428 
429 /**
430  * path_get - get a reference to a path
431  * @path: path to get the reference to
432  *
433  * Given a path increment the reference count to the dentry and the vfsmount.
434  */
435 void path_get(const struct path *path)
436 {
437 	mntget(path->mnt);
438 	dget(path->dentry);
439 }
440 EXPORT_SYMBOL(path_get);
441 
442 /**
443  * path_put - put a reference to a path
444  * @path: path to put the reference to
445  *
446  * Given a path decrement the reference count to the dentry and the vfsmount.
447  */
448 void path_put(const struct path *path)
449 {
450 	dput(path->dentry);
451 	mntput(path->mnt);
452 }
453 EXPORT_SYMBOL(path_put);
454 
455 /*
456  * Path walking has 2 modes, rcu-walk and ref-walk (see
457  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
458  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
459  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
460  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
461  * got stuck, so ref-walk may continue from there. If this is not successful
462  * (eg. a seqcount has changed), then failure is returned and it's up to caller
463  * to restart the path walk from the beginning in ref-walk mode.
464  */
465 
466 /**
467  * unlazy_walk - try to switch to ref-walk mode.
468  * @nd: nameidata pathwalk data
469  * @dentry: child of nd->path.dentry or NULL
470  * Returns: 0 on success, -ECHILD on failure
471  *
472  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
473  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
474  * @nd or NULL.  Must be called from rcu-walk context.
475  */
476 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
477 {
478 	struct fs_struct *fs = current->fs;
479 	struct dentry *parent = nd->path.dentry;
480 
481 	BUG_ON(!(nd->flags & LOOKUP_RCU));
482 
483 	/*
484 	 * After legitimizing the bastards, terminate_walk()
485 	 * will do the right thing for non-RCU mode, and all our
486 	 * subsequent exit cases should rcu_read_unlock()
487 	 * before returning.  Do vfsmount first; if dentry
488 	 * can't be legitimized, just set nd->path.dentry to NULL
489 	 * and rely on dput(NULL) being a no-op.
490 	 */
491 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
492 		return -ECHILD;
493 	nd->flags &= ~LOOKUP_RCU;
494 
495 	if (!lockref_get_not_dead(&parent->d_lockref)) {
496 		nd->path.dentry = NULL;
497 		goto out;
498 	}
499 
500 	/*
501 	 * For a negative lookup, the lookup sequence point is the parents
502 	 * sequence point, and it only needs to revalidate the parent dentry.
503 	 *
504 	 * For a positive lookup, we need to move both the parent and the
505 	 * dentry from the RCU domain to be properly refcounted. And the
506 	 * sequence number in the dentry validates *both* dentry counters,
507 	 * since we checked the sequence number of the parent after we got
508 	 * the child sequence number. So we know the parent must still
509 	 * be valid if the child sequence number is still valid.
510 	 */
511 	if (!dentry) {
512 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
513 			goto out;
514 		BUG_ON(nd->inode != parent->d_inode);
515 	} else {
516 		if (!lockref_get_not_dead(&dentry->d_lockref))
517 			goto out;
518 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
519 			goto drop_dentry;
520 	}
521 
522 	/*
523 	 * Sequence counts matched. Now make sure that the root is
524 	 * still valid and get it if required.
525 	 */
526 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
527 		spin_lock(&fs->lock);
528 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
529 			goto unlock_and_drop_dentry;
530 		path_get(&nd->root);
531 		spin_unlock(&fs->lock);
532 	}
533 
534 	rcu_read_unlock();
535 	return 0;
536 
537 unlock_and_drop_dentry:
538 	spin_unlock(&fs->lock);
539 drop_dentry:
540 	rcu_read_unlock();
541 	dput(dentry);
542 	goto drop_root_mnt;
543 out:
544 	rcu_read_unlock();
545 drop_root_mnt:
546 	if (!(nd->flags & LOOKUP_ROOT))
547 		nd->root.mnt = NULL;
548 	return -ECHILD;
549 }
550 
551 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
552 {
553 	return dentry->d_op->d_revalidate(dentry, flags);
554 }
555 
556 /**
557  * complete_walk - successful completion of path walk
558  * @nd:  pointer nameidata
559  *
560  * If we had been in RCU mode, drop out of it and legitimize nd->path.
561  * Revalidate the final result, unless we'd already done that during
562  * the path walk or the filesystem doesn't ask for it.  Return 0 on
563  * success, -error on failure.  In case of failure caller does not
564  * need to drop nd->path.
565  */
566 static int complete_walk(struct nameidata *nd)
567 {
568 	struct dentry *dentry = nd->path.dentry;
569 	int status;
570 
571 	if (nd->flags & LOOKUP_RCU) {
572 		nd->flags &= ~LOOKUP_RCU;
573 		if (!(nd->flags & LOOKUP_ROOT))
574 			nd->root.mnt = NULL;
575 
576 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
577 			rcu_read_unlock();
578 			return -ECHILD;
579 		}
580 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
581 			rcu_read_unlock();
582 			mntput(nd->path.mnt);
583 			return -ECHILD;
584 		}
585 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
586 			rcu_read_unlock();
587 			dput(dentry);
588 			mntput(nd->path.mnt);
589 			return -ECHILD;
590 		}
591 		rcu_read_unlock();
592 	}
593 
594 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
595 		return 0;
596 
597 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
598 		return 0;
599 
600 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
601 	if (status > 0)
602 		return 0;
603 
604 	if (!status)
605 		status = -ESTALE;
606 
607 	path_put(&nd->path);
608 	return status;
609 }
610 
611 static __always_inline void set_root(struct nameidata *nd)
612 {
613 	if (!nd->root.mnt)
614 		get_fs_root(current->fs, &nd->root);
615 }
616 
617 static int link_path_walk(const char *, struct nameidata *);
618 
619 static __always_inline void set_root_rcu(struct nameidata *nd)
620 {
621 	if (!nd->root.mnt) {
622 		struct fs_struct *fs = current->fs;
623 		unsigned seq;
624 
625 		do {
626 			seq = read_seqcount_begin(&fs->seq);
627 			nd->root = fs->root;
628 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
629 		} while (read_seqcount_retry(&fs->seq, seq));
630 	}
631 }
632 
633 static void path_put_conditional(struct path *path, struct nameidata *nd)
634 {
635 	dput(path->dentry);
636 	if (path->mnt != nd->path.mnt)
637 		mntput(path->mnt);
638 }
639 
640 static inline void path_to_nameidata(const struct path *path,
641 					struct nameidata *nd)
642 {
643 	if (!(nd->flags & LOOKUP_RCU)) {
644 		dput(nd->path.dentry);
645 		if (nd->path.mnt != path->mnt)
646 			mntput(nd->path.mnt);
647 	}
648 	nd->path.mnt = path->mnt;
649 	nd->path.dentry = path->dentry;
650 }
651 
652 /*
653  * Helper to directly jump to a known parsed path from ->follow_link,
654  * caller must have taken a reference to path beforehand.
655  */
656 void nd_jump_link(struct nameidata *nd, struct path *path)
657 {
658 	path_put(&nd->path);
659 
660 	nd->path = *path;
661 	nd->inode = nd->path.dentry->d_inode;
662 	nd->flags |= LOOKUP_JUMPED;
663 }
664 
665 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
666 {
667 	struct inode *inode = link->dentry->d_inode;
668 	if (inode->i_op->put_link)
669 		inode->i_op->put_link(link->dentry, nd, cookie);
670 	path_put(link);
671 }
672 
673 int sysctl_protected_symlinks __read_mostly = 0;
674 int sysctl_protected_hardlinks __read_mostly = 0;
675 
676 /**
677  * may_follow_link - Check symlink following for unsafe situations
678  * @link: The path of the symlink
679  * @nd: nameidata pathwalk data
680  *
681  * In the case of the sysctl_protected_symlinks sysctl being enabled,
682  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
683  * in a sticky world-writable directory. This is to protect privileged
684  * processes from failing races against path names that may change out
685  * from under them by way of other users creating malicious symlinks.
686  * It will permit symlinks to be followed only when outside a sticky
687  * world-writable directory, or when the uid of the symlink and follower
688  * match, or when the directory owner matches the symlink's owner.
689  *
690  * Returns 0 if following the symlink is allowed, -ve on error.
691  */
692 static inline int may_follow_link(struct path *link, struct nameidata *nd)
693 {
694 	const struct inode *inode;
695 	const struct inode *parent;
696 
697 	if (!sysctl_protected_symlinks)
698 		return 0;
699 
700 	/* Allowed if owner and follower match. */
701 	inode = link->dentry->d_inode;
702 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
703 		return 0;
704 
705 	/* Allowed if parent directory not sticky and world-writable. */
706 	parent = nd->path.dentry->d_inode;
707 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
708 		return 0;
709 
710 	/* Allowed if parent directory and link owner match. */
711 	if (uid_eq(parent->i_uid, inode->i_uid))
712 		return 0;
713 
714 	audit_log_link_denied("follow_link", link);
715 	path_put_conditional(link, nd);
716 	path_put(&nd->path);
717 	return -EACCES;
718 }
719 
720 /**
721  * safe_hardlink_source - Check for safe hardlink conditions
722  * @inode: the source inode to hardlink from
723  *
724  * Return false if at least one of the following conditions:
725  *    - inode is not a regular file
726  *    - inode is setuid
727  *    - inode is setgid and group-exec
728  *    - access failure for read and write
729  *
730  * Otherwise returns true.
731  */
732 static bool safe_hardlink_source(struct inode *inode)
733 {
734 	umode_t mode = inode->i_mode;
735 
736 	/* Special files should not get pinned to the filesystem. */
737 	if (!S_ISREG(mode))
738 		return false;
739 
740 	/* Setuid files should not get pinned to the filesystem. */
741 	if (mode & S_ISUID)
742 		return false;
743 
744 	/* Executable setgid files should not get pinned to the filesystem. */
745 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
746 		return false;
747 
748 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
749 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
750 		return false;
751 
752 	return true;
753 }
754 
755 /**
756  * may_linkat - Check permissions for creating a hardlink
757  * @link: the source to hardlink from
758  *
759  * Block hardlink when all of:
760  *  - sysctl_protected_hardlinks enabled
761  *  - fsuid does not match inode
762  *  - hardlink source is unsafe (see safe_hardlink_source() above)
763  *  - not CAP_FOWNER
764  *
765  * Returns 0 if successful, -ve on error.
766  */
767 static int may_linkat(struct path *link)
768 {
769 	const struct cred *cred;
770 	struct inode *inode;
771 
772 	if (!sysctl_protected_hardlinks)
773 		return 0;
774 
775 	cred = current_cred();
776 	inode = link->dentry->d_inode;
777 
778 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
779 	 * otherwise, it must be a safe source.
780 	 */
781 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
782 	    capable(CAP_FOWNER))
783 		return 0;
784 
785 	audit_log_link_denied("linkat", link);
786 	return -EPERM;
787 }
788 
789 static __always_inline int
790 follow_link(struct path *link, struct nameidata *nd, void **p)
791 {
792 	struct dentry *dentry = link->dentry;
793 	int error;
794 	char *s;
795 
796 	BUG_ON(nd->flags & LOOKUP_RCU);
797 
798 	if (link->mnt == nd->path.mnt)
799 		mntget(link->mnt);
800 
801 	error = -ELOOP;
802 	if (unlikely(current->total_link_count >= 40))
803 		goto out_put_nd_path;
804 
805 	cond_resched();
806 	current->total_link_count++;
807 
808 	touch_atime(link);
809 	nd_set_link(nd, NULL);
810 
811 	error = security_inode_follow_link(link->dentry, nd);
812 	if (error)
813 		goto out_put_nd_path;
814 
815 	nd->last_type = LAST_BIND;
816 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
817 	error = PTR_ERR(*p);
818 	if (IS_ERR(*p))
819 		goto out_put_nd_path;
820 
821 	error = 0;
822 	s = nd_get_link(nd);
823 	if (s) {
824 		if (unlikely(IS_ERR(s))) {
825 			path_put(&nd->path);
826 			put_link(nd, link, *p);
827 			return PTR_ERR(s);
828 		}
829 		if (*s == '/') {
830 			set_root(nd);
831 			path_put(&nd->path);
832 			nd->path = nd->root;
833 			path_get(&nd->root);
834 			nd->flags |= LOOKUP_JUMPED;
835 		}
836 		nd->inode = nd->path.dentry->d_inode;
837 		error = link_path_walk(s, nd);
838 		if (unlikely(error))
839 			put_link(nd, link, *p);
840 	}
841 
842 	return error;
843 
844 out_put_nd_path:
845 	*p = NULL;
846 	path_put(&nd->path);
847 	path_put(link);
848 	return error;
849 }
850 
851 static int follow_up_rcu(struct path *path)
852 {
853 	struct mount *mnt = real_mount(path->mnt);
854 	struct mount *parent;
855 	struct dentry *mountpoint;
856 
857 	parent = mnt->mnt_parent;
858 	if (&parent->mnt == path->mnt)
859 		return 0;
860 	mountpoint = mnt->mnt_mountpoint;
861 	path->dentry = mountpoint;
862 	path->mnt = &parent->mnt;
863 	return 1;
864 }
865 
866 /*
867  * follow_up - Find the mountpoint of path's vfsmount
868  *
869  * Given a path, find the mountpoint of its source file system.
870  * Replace @path with the path of the mountpoint in the parent mount.
871  * Up is towards /.
872  *
873  * Return 1 if we went up a level and 0 if we were already at the
874  * root.
875  */
876 int follow_up(struct path *path)
877 {
878 	struct mount *mnt = real_mount(path->mnt);
879 	struct mount *parent;
880 	struct dentry *mountpoint;
881 
882 	read_seqlock_excl(&mount_lock);
883 	parent = mnt->mnt_parent;
884 	if (parent == mnt) {
885 		read_sequnlock_excl(&mount_lock);
886 		return 0;
887 	}
888 	mntget(&parent->mnt);
889 	mountpoint = dget(mnt->mnt_mountpoint);
890 	read_sequnlock_excl(&mount_lock);
891 	dput(path->dentry);
892 	path->dentry = mountpoint;
893 	mntput(path->mnt);
894 	path->mnt = &parent->mnt;
895 	return 1;
896 }
897 
898 /*
899  * Perform an automount
900  * - return -EISDIR to tell follow_managed() to stop and return the path we
901  *   were called with.
902  */
903 static int follow_automount(struct path *path, unsigned flags,
904 			    bool *need_mntput)
905 {
906 	struct vfsmount *mnt;
907 	int err;
908 
909 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
910 		return -EREMOTE;
911 
912 	/* We don't want to mount if someone's just doing a stat -
913 	 * unless they're stat'ing a directory and appended a '/' to
914 	 * the name.
915 	 *
916 	 * We do, however, want to mount if someone wants to open or
917 	 * create a file of any type under the mountpoint, wants to
918 	 * traverse through the mountpoint or wants to open the
919 	 * mounted directory.  Also, autofs may mark negative dentries
920 	 * as being automount points.  These will need the attentions
921 	 * of the daemon to instantiate them before they can be used.
922 	 */
923 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
924 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
925 	    path->dentry->d_inode)
926 		return -EISDIR;
927 
928 	current->total_link_count++;
929 	if (current->total_link_count >= 40)
930 		return -ELOOP;
931 
932 	mnt = path->dentry->d_op->d_automount(path);
933 	if (IS_ERR(mnt)) {
934 		/*
935 		 * The filesystem is allowed to return -EISDIR here to indicate
936 		 * it doesn't want to automount.  For instance, autofs would do
937 		 * this so that its userspace daemon can mount on this dentry.
938 		 *
939 		 * However, we can only permit this if it's a terminal point in
940 		 * the path being looked up; if it wasn't then the remainder of
941 		 * the path is inaccessible and we should say so.
942 		 */
943 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
944 			return -EREMOTE;
945 		return PTR_ERR(mnt);
946 	}
947 
948 	if (!mnt) /* mount collision */
949 		return 0;
950 
951 	if (!*need_mntput) {
952 		/* lock_mount() may release path->mnt on error */
953 		mntget(path->mnt);
954 		*need_mntput = true;
955 	}
956 	err = finish_automount(mnt, path);
957 
958 	switch (err) {
959 	case -EBUSY:
960 		/* Someone else made a mount here whilst we were busy */
961 		return 0;
962 	case 0:
963 		path_put(path);
964 		path->mnt = mnt;
965 		path->dentry = dget(mnt->mnt_root);
966 		return 0;
967 	default:
968 		return err;
969 	}
970 
971 }
972 
973 /*
974  * Handle a dentry that is managed in some way.
975  * - Flagged for transit management (autofs)
976  * - Flagged as mountpoint
977  * - Flagged as automount point
978  *
979  * This may only be called in refwalk mode.
980  *
981  * Serialization is taken care of in namespace.c
982  */
983 static int follow_managed(struct path *path, unsigned flags)
984 {
985 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
986 	unsigned managed;
987 	bool need_mntput = false;
988 	int ret = 0;
989 
990 	/* Given that we're not holding a lock here, we retain the value in a
991 	 * local variable for each dentry as we look at it so that we don't see
992 	 * the components of that value change under us */
993 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
994 	       managed &= DCACHE_MANAGED_DENTRY,
995 	       unlikely(managed != 0)) {
996 		/* Allow the filesystem to manage the transit without i_mutex
997 		 * being held. */
998 		if (managed & DCACHE_MANAGE_TRANSIT) {
999 			BUG_ON(!path->dentry->d_op);
1000 			BUG_ON(!path->dentry->d_op->d_manage);
1001 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1002 			if (ret < 0)
1003 				break;
1004 		}
1005 
1006 		/* Transit to a mounted filesystem. */
1007 		if (managed & DCACHE_MOUNTED) {
1008 			struct vfsmount *mounted = lookup_mnt(path);
1009 			if (mounted) {
1010 				dput(path->dentry);
1011 				if (need_mntput)
1012 					mntput(path->mnt);
1013 				path->mnt = mounted;
1014 				path->dentry = dget(mounted->mnt_root);
1015 				need_mntput = true;
1016 				continue;
1017 			}
1018 
1019 			/* Something is mounted on this dentry in another
1020 			 * namespace and/or whatever was mounted there in this
1021 			 * namespace got unmounted before lookup_mnt() could
1022 			 * get it */
1023 		}
1024 
1025 		/* Handle an automount point */
1026 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1027 			ret = follow_automount(path, flags, &need_mntput);
1028 			if (ret < 0)
1029 				break;
1030 			continue;
1031 		}
1032 
1033 		/* We didn't change the current path point */
1034 		break;
1035 	}
1036 
1037 	if (need_mntput && path->mnt == mnt)
1038 		mntput(path->mnt);
1039 	if (ret == -EISDIR)
1040 		ret = 0;
1041 	return ret < 0 ? ret : need_mntput;
1042 }
1043 
1044 int follow_down_one(struct path *path)
1045 {
1046 	struct vfsmount *mounted;
1047 
1048 	mounted = lookup_mnt(path);
1049 	if (mounted) {
1050 		dput(path->dentry);
1051 		mntput(path->mnt);
1052 		path->mnt = mounted;
1053 		path->dentry = dget(mounted->mnt_root);
1054 		return 1;
1055 	}
1056 	return 0;
1057 }
1058 
1059 static inline bool managed_dentry_might_block(struct dentry *dentry)
1060 {
1061 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1062 		dentry->d_op->d_manage(dentry, true) < 0);
1063 }
1064 
1065 /*
1066  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1067  * we meet a managed dentry that would need blocking.
1068  */
1069 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1070 			       struct inode **inode)
1071 {
1072 	for (;;) {
1073 		struct mount *mounted;
1074 		/*
1075 		 * Don't forget we might have a non-mountpoint managed dentry
1076 		 * that wants to block transit.
1077 		 */
1078 		if (unlikely(managed_dentry_might_block(path->dentry)))
1079 			return false;
1080 
1081 		if (!d_mountpoint(path->dentry))
1082 			break;
1083 
1084 		mounted = __lookup_mnt(path->mnt, path->dentry);
1085 		if (!mounted)
1086 			break;
1087 		path->mnt = &mounted->mnt;
1088 		path->dentry = mounted->mnt.mnt_root;
1089 		nd->flags |= LOOKUP_JUMPED;
1090 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1091 		/*
1092 		 * Update the inode too. We don't need to re-check the
1093 		 * dentry sequence number here after this d_inode read,
1094 		 * because a mount-point is always pinned.
1095 		 */
1096 		*inode = path->dentry->d_inode;
1097 	}
1098 	return true;
1099 }
1100 
1101 static void follow_mount_rcu(struct nameidata *nd)
1102 {
1103 	while (d_mountpoint(nd->path.dentry)) {
1104 		struct mount *mounted;
1105 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1106 		if (!mounted)
1107 			break;
1108 		nd->path.mnt = &mounted->mnt;
1109 		nd->path.dentry = mounted->mnt.mnt_root;
1110 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1111 	}
1112 }
1113 
1114 static int follow_dotdot_rcu(struct nameidata *nd)
1115 {
1116 	set_root_rcu(nd);
1117 
1118 	while (1) {
1119 		if (nd->path.dentry == nd->root.dentry &&
1120 		    nd->path.mnt == nd->root.mnt) {
1121 			break;
1122 		}
1123 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1124 			struct dentry *old = nd->path.dentry;
1125 			struct dentry *parent = old->d_parent;
1126 			unsigned seq;
1127 
1128 			seq = read_seqcount_begin(&parent->d_seq);
1129 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1130 				goto failed;
1131 			nd->path.dentry = parent;
1132 			nd->seq = seq;
1133 			break;
1134 		}
1135 		if (!follow_up_rcu(&nd->path))
1136 			break;
1137 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1138 	}
1139 	follow_mount_rcu(nd);
1140 	nd->inode = nd->path.dentry->d_inode;
1141 	return 0;
1142 
1143 failed:
1144 	nd->flags &= ~LOOKUP_RCU;
1145 	if (!(nd->flags & LOOKUP_ROOT))
1146 		nd->root.mnt = NULL;
1147 	rcu_read_unlock();
1148 	return -ECHILD;
1149 }
1150 
1151 /*
1152  * Follow down to the covering mount currently visible to userspace.  At each
1153  * point, the filesystem owning that dentry may be queried as to whether the
1154  * caller is permitted to proceed or not.
1155  */
1156 int follow_down(struct path *path)
1157 {
1158 	unsigned managed;
1159 	int ret;
1160 
1161 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1162 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1163 		/* Allow the filesystem to manage the transit without i_mutex
1164 		 * being held.
1165 		 *
1166 		 * We indicate to the filesystem if someone is trying to mount
1167 		 * something here.  This gives autofs the chance to deny anyone
1168 		 * other than its daemon the right to mount on its
1169 		 * superstructure.
1170 		 *
1171 		 * The filesystem may sleep at this point.
1172 		 */
1173 		if (managed & DCACHE_MANAGE_TRANSIT) {
1174 			BUG_ON(!path->dentry->d_op);
1175 			BUG_ON(!path->dentry->d_op->d_manage);
1176 			ret = path->dentry->d_op->d_manage(
1177 				path->dentry, false);
1178 			if (ret < 0)
1179 				return ret == -EISDIR ? 0 : ret;
1180 		}
1181 
1182 		/* Transit to a mounted filesystem. */
1183 		if (managed & DCACHE_MOUNTED) {
1184 			struct vfsmount *mounted = lookup_mnt(path);
1185 			if (!mounted)
1186 				break;
1187 			dput(path->dentry);
1188 			mntput(path->mnt);
1189 			path->mnt = mounted;
1190 			path->dentry = dget(mounted->mnt_root);
1191 			continue;
1192 		}
1193 
1194 		/* Don't handle automount points here */
1195 		break;
1196 	}
1197 	return 0;
1198 }
1199 
1200 /*
1201  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1202  */
1203 static void follow_mount(struct path *path)
1204 {
1205 	while (d_mountpoint(path->dentry)) {
1206 		struct vfsmount *mounted = lookup_mnt(path);
1207 		if (!mounted)
1208 			break;
1209 		dput(path->dentry);
1210 		mntput(path->mnt);
1211 		path->mnt = mounted;
1212 		path->dentry = dget(mounted->mnt_root);
1213 	}
1214 }
1215 
1216 static void follow_dotdot(struct nameidata *nd)
1217 {
1218 	set_root(nd);
1219 
1220 	while(1) {
1221 		struct dentry *old = nd->path.dentry;
1222 
1223 		if (nd->path.dentry == nd->root.dentry &&
1224 		    nd->path.mnt == nd->root.mnt) {
1225 			break;
1226 		}
1227 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1228 			/* rare case of legitimate dget_parent()... */
1229 			nd->path.dentry = dget_parent(nd->path.dentry);
1230 			dput(old);
1231 			break;
1232 		}
1233 		if (!follow_up(&nd->path))
1234 			break;
1235 	}
1236 	follow_mount(&nd->path);
1237 	nd->inode = nd->path.dentry->d_inode;
1238 }
1239 
1240 /*
1241  * This looks up the name in dcache, possibly revalidates the old dentry and
1242  * allocates a new one if not found or not valid.  In the need_lookup argument
1243  * returns whether i_op->lookup is necessary.
1244  *
1245  * dir->d_inode->i_mutex must be held
1246  */
1247 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1248 				    unsigned int flags, bool *need_lookup)
1249 {
1250 	struct dentry *dentry;
1251 	int error;
1252 
1253 	*need_lookup = false;
1254 	dentry = d_lookup(dir, name);
1255 	if (dentry) {
1256 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1257 			error = d_revalidate(dentry, flags);
1258 			if (unlikely(error <= 0)) {
1259 				if (error < 0) {
1260 					dput(dentry);
1261 					return ERR_PTR(error);
1262 				} else if (!d_invalidate(dentry)) {
1263 					dput(dentry);
1264 					dentry = NULL;
1265 				}
1266 			}
1267 		}
1268 	}
1269 
1270 	if (!dentry) {
1271 		dentry = d_alloc(dir, name);
1272 		if (unlikely(!dentry))
1273 			return ERR_PTR(-ENOMEM);
1274 
1275 		*need_lookup = true;
1276 	}
1277 	return dentry;
1278 }
1279 
1280 /*
1281  * Call i_op->lookup on the dentry.  The dentry must be negative and
1282  * unhashed.
1283  *
1284  * dir->d_inode->i_mutex must be held
1285  */
1286 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1287 				  unsigned int flags)
1288 {
1289 	struct dentry *old;
1290 
1291 	/* Don't create child dentry for a dead directory. */
1292 	if (unlikely(IS_DEADDIR(dir))) {
1293 		dput(dentry);
1294 		return ERR_PTR(-ENOENT);
1295 	}
1296 
1297 	old = dir->i_op->lookup(dir, dentry, flags);
1298 	if (unlikely(old)) {
1299 		dput(dentry);
1300 		dentry = old;
1301 	}
1302 	return dentry;
1303 }
1304 
1305 static struct dentry *__lookup_hash(struct qstr *name,
1306 		struct dentry *base, unsigned int flags)
1307 {
1308 	bool need_lookup;
1309 	struct dentry *dentry;
1310 
1311 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1312 	if (!need_lookup)
1313 		return dentry;
1314 
1315 	return lookup_real(base->d_inode, dentry, flags);
1316 }
1317 
1318 /*
1319  *  It's more convoluted than I'd like it to be, but... it's still fairly
1320  *  small and for now I'd prefer to have fast path as straight as possible.
1321  *  It _is_ time-critical.
1322  */
1323 static int lookup_fast(struct nameidata *nd,
1324 		       struct path *path, struct inode **inode)
1325 {
1326 	struct vfsmount *mnt = nd->path.mnt;
1327 	struct dentry *dentry, *parent = nd->path.dentry;
1328 	int need_reval = 1;
1329 	int status = 1;
1330 	int err;
1331 
1332 	/*
1333 	 * Rename seqlock is not required here because in the off chance
1334 	 * of a false negative due to a concurrent rename, we're going to
1335 	 * do the non-racy lookup, below.
1336 	 */
1337 	if (nd->flags & LOOKUP_RCU) {
1338 		unsigned seq;
1339 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1340 		if (!dentry)
1341 			goto unlazy;
1342 
1343 		/*
1344 		 * This sequence count validates that the inode matches
1345 		 * the dentry name information from lookup.
1346 		 */
1347 		*inode = dentry->d_inode;
1348 		if (read_seqcount_retry(&dentry->d_seq, seq))
1349 			return -ECHILD;
1350 
1351 		/*
1352 		 * This sequence count validates that the parent had no
1353 		 * changes while we did the lookup of the dentry above.
1354 		 *
1355 		 * The memory barrier in read_seqcount_begin of child is
1356 		 *  enough, we can use __read_seqcount_retry here.
1357 		 */
1358 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1359 			return -ECHILD;
1360 		nd->seq = seq;
1361 
1362 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1363 			status = d_revalidate(dentry, nd->flags);
1364 			if (unlikely(status <= 0)) {
1365 				if (status != -ECHILD)
1366 					need_reval = 0;
1367 				goto unlazy;
1368 			}
1369 		}
1370 		path->mnt = mnt;
1371 		path->dentry = dentry;
1372 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1373 			goto unlazy;
1374 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1375 			goto unlazy;
1376 		return 0;
1377 unlazy:
1378 		if (unlazy_walk(nd, dentry))
1379 			return -ECHILD;
1380 	} else {
1381 		dentry = __d_lookup(parent, &nd->last);
1382 	}
1383 
1384 	if (unlikely(!dentry))
1385 		goto need_lookup;
1386 
1387 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1388 		status = d_revalidate(dentry, nd->flags);
1389 	if (unlikely(status <= 0)) {
1390 		if (status < 0) {
1391 			dput(dentry);
1392 			return status;
1393 		}
1394 		if (!d_invalidate(dentry)) {
1395 			dput(dentry);
1396 			goto need_lookup;
1397 		}
1398 	}
1399 
1400 	path->mnt = mnt;
1401 	path->dentry = dentry;
1402 	err = follow_managed(path, nd->flags);
1403 	if (unlikely(err < 0)) {
1404 		path_put_conditional(path, nd);
1405 		return err;
1406 	}
1407 	if (err)
1408 		nd->flags |= LOOKUP_JUMPED;
1409 	*inode = path->dentry->d_inode;
1410 	return 0;
1411 
1412 need_lookup:
1413 	return 1;
1414 }
1415 
1416 /* Fast lookup failed, do it the slow way */
1417 static int lookup_slow(struct nameidata *nd, struct path *path)
1418 {
1419 	struct dentry *dentry, *parent;
1420 	int err;
1421 
1422 	parent = nd->path.dentry;
1423 	BUG_ON(nd->inode != parent->d_inode);
1424 
1425 	mutex_lock(&parent->d_inode->i_mutex);
1426 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1427 	mutex_unlock(&parent->d_inode->i_mutex);
1428 	if (IS_ERR(dentry))
1429 		return PTR_ERR(dentry);
1430 	path->mnt = nd->path.mnt;
1431 	path->dentry = dentry;
1432 	err = follow_managed(path, nd->flags);
1433 	if (unlikely(err < 0)) {
1434 		path_put_conditional(path, nd);
1435 		return err;
1436 	}
1437 	if (err)
1438 		nd->flags |= LOOKUP_JUMPED;
1439 	return 0;
1440 }
1441 
1442 static inline int may_lookup(struct nameidata *nd)
1443 {
1444 	if (nd->flags & LOOKUP_RCU) {
1445 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1446 		if (err != -ECHILD)
1447 			return err;
1448 		if (unlazy_walk(nd, NULL))
1449 			return -ECHILD;
1450 	}
1451 	return inode_permission(nd->inode, MAY_EXEC);
1452 }
1453 
1454 static inline int handle_dots(struct nameidata *nd, int type)
1455 {
1456 	if (type == LAST_DOTDOT) {
1457 		if (nd->flags & LOOKUP_RCU) {
1458 			if (follow_dotdot_rcu(nd))
1459 				return -ECHILD;
1460 		} else
1461 			follow_dotdot(nd);
1462 	}
1463 	return 0;
1464 }
1465 
1466 static void terminate_walk(struct nameidata *nd)
1467 {
1468 	if (!(nd->flags & LOOKUP_RCU)) {
1469 		path_put(&nd->path);
1470 	} else {
1471 		nd->flags &= ~LOOKUP_RCU;
1472 		if (!(nd->flags & LOOKUP_ROOT))
1473 			nd->root.mnt = NULL;
1474 		rcu_read_unlock();
1475 	}
1476 }
1477 
1478 /*
1479  * Do we need to follow links? We _really_ want to be able
1480  * to do this check without having to look at inode->i_op,
1481  * so we keep a cache of "no, this doesn't need follow_link"
1482  * for the common case.
1483  */
1484 static inline int should_follow_link(struct dentry *dentry, int follow)
1485 {
1486 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1487 }
1488 
1489 static inline int walk_component(struct nameidata *nd, struct path *path,
1490 		int follow)
1491 {
1492 	struct inode *inode;
1493 	int err;
1494 	/*
1495 	 * "." and ".." are special - ".." especially so because it has
1496 	 * to be able to know about the current root directory and
1497 	 * parent relationships.
1498 	 */
1499 	if (unlikely(nd->last_type != LAST_NORM))
1500 		return handle_dots(nd, nd->last_type);
1501 	err = lookup_fast(nd, path, &inode);
1502 	if (unlikely(err)) {
1503 		if (err < 0)
1504 			goto out_err;
1505 
1506 		err = lookup_slow(nd, path);
1507 		if (err < 0)
1508 			goto out_err;
1509 
1510 		inode = path->dentry->d_inode;
1511 	}
1512 	err = -ENOENT;
1513 	if (!inode)
1514 		goto out_path_put;
1515 
1516 	if (should_follow_link(path->dentry, follow)) {
1517 		if (nd->flags & LOOKUP_RCU) {
1518 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1519 				err = -ECHILD;
1520 				goto out_err;
1521 			}
1522 		}
1523 		BUG_ON(inode != path->dentry->d_inode);
1524 		return 1;
1525 	}
1526 	path_to_nameidata(path, nd);
1527 	nd->inode = inode;
1528 	return 0;
1529 
1530 out_path_put:
1531 	path_to_nameidata(path, nd);
1532 out_err:
1533 	terminate_walk(nd);
1534 	return err;
1535 }
1536 
1537 /*
1538  * This limits recursive symlink follows to 8, while
1539  * limiting consecutive symlinks to 40.
1540  *
1541  * Without that kind of total limit, nasty chains of consecutive
1542  * symlinks can cause almost arbitrarily long lookups.
1543  */
1544 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1545 {
1546 	int res;
1547 
1548 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1549 		path_put_conditional(path, nd);
1550 		path_put(&nd->path);
1551 		return -ELOOP;
1552 	}
1553 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1554 
1555 	nd->depth++;
1556 	current->link_count++;
1557 
1558 	do {
1559 		struct path link = *path;
1560 		void *cookie;
1561 
1562 		res = follow_link(&link, nd, &cookie);
1563 		if (res)
1564 			break;
1565 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1566 		put_link(nd, &link, cookie);
1567 	} while (res > 0);
1568 
1569 	current->link_count--;
1570 	nd->depth--;
1571 	return res;
1572 }
1573 
1574 /*
1575  * We can do the critical dentry name comparison and hashing
1576  * operations one word at a time, but we are limited to:
1577  *
1578  * - Architectures with fast unaligned word accesses. We could
1579  *   do a "get_unaligned()" if this helps and is sufficiently
1580  *   fast.
1581  *
1582  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1583  *   do not trap on the (extremely unlikely) case of a page
1584  *   crossing operation.
1585  *
1586  * - Furthermore, we need an efficient 64-bit compile for the
1587  *   64-bit case in order to generate the "number of bytes in
1588  *   the final mask". Again, that could be replaced with a
1589  *   efficient population count instruction or similar.
1590  */
1591 #ifdef CONFIG_DCACHE_WORD_ACCESS
1592 
1593 #include <asm/word-at-a-time.h>
1594 
1595 #ifdef CONFIG_64BIT
1596 
1597 static inline unsigned int fold_hash(unsigned long hash)
1598 {
1599 	hash += hash >> (8*sizeof(int));
1600 	return hash;
1601 }
1602 
1603 #else	/* 32-bit case */
1604 
1605 #define fold_hash(x) (x)
1606 
1607 #endif
1608 
1609 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1610 {
1611 	unsigned long a, mask;
1612 	unsigned long hash = 0;
1613 
1614 	for (;;) {
1615 		a = load_unaligned_zeropad(name);
1616 		if (len < sizeof(unsigned long))
1617 			break;
1618 		hash += a;
1619 		hash *= 9;
1620 		name += sizeof(unsigned long);
1621 		len -= sizeof(unsigned long);
1622 		if (!len)
1623 			goto done;
1624 	}
1625 	mask = bytemask_from_count(len);
1626 	hash += mask & a;
1627 done:
1628 	return fold_hash(hash);
1629 }
1630 EXPORT_SYMBOL(full_name_hash);
1631 
1632 /*
1633  * Calculate the length and hash of the path component, and
1634  * return the length of the component;
1635  */
1636 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1637 {
1638 	unsigned long a, b, adata, bdata, mask, hash, len;
1639 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1640 
1641 	hash = a = 0;
1642 	len = -sizeof(unsigned long);
1643 	do {
1644 		hash = (hash + a) * 9;
1645 		len += sizeof(unsigned long);
1646 		a = load_unaligned_zeropad(name+len);
1647 		b = a ^ REPEAT_BYTE('/');
1648 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1649 
1650 	adata = prep_zero_mask(a, adata, &constants);
1651 	bdata = prep_zero_mask(b, bdata, &constants);
1652 
1653 	mask = create_zero_mask(adata | bdata);
1654 
1655 	hash += a & zero_bytemask(mask);
1656 	*hashp = fold_hash(hash);
1657 
1658 	return len + find_zero(mask);
1659 }
1660 
1661 #else
1662 
1663 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1664 {
1665 	unsigned long hash = init_name_hash();
1666 	while (len--)
1667 		hash = partial_name_hash(*name++, hash);
1668 	return end_name_hash(hash);
1669 }
1670 EXPORT_SYMBOL(full_name_hash);
1671 
1672 /*
1673  * We know there's a real path component here of at least
1674  * one character.
1675  */
1676 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1677 {
1678 	unsigned long hash = init_name_hash();
1679 	unsigned long len = 0, c;
1680 
1681 	c = (unsigned char)*name;
1682 	do {
1683 		len++;
1684 		hash = partial_name_hash(c, hash);
1685 		c = (unsigned char)name[len];
1686 	} while (c && c != '/');
1687 	*hashp = end_name_hash(hash);
1688 	return len;
1689 }
1690 
1691 #endif
1692 
1693 /*
1694  * Name resolution.
1695  * This is the basic name resolution function, turning a pathname into
1696  * the final dentry. We expect 'base' to be positive and a directory.
1697  *
1698  * Returns 0 and nd will have valid dentry and mnt on success.
1699  * Returns error and drops reference to input namei data on failure.
1700  */
1701 static int link_path_walk(const char *name, struct nameidata *nd)
1702 {
1703 	struct path next;
1704 	int err;
1705 
1706 	while (*name=='/')
1707 		name++;
1708 	if (!*name)
1709 		return 0;
1710 
1711 	/* At this point we know we have a real path component. */
1712 	for(;;) {
1713 		struct qstr this;
1714 		long len;
1715 		int type;
1716 
1717 		err = may_lookup(nd);
1718  		if (err)
1719 			break;
1720 
1721 		len = hash_name(name, &this.hash);
1722 		this.name = name;
1723 		this.len = len;
1724 
1725 		type = LAST_NORM;
1726 		if (name[0] == '.') switch (len) {
1727 			case 2:
1728 				if (name[1] == '.') {
1729 					type = LAST_DOTDOT;
1730 					nd->flags |= LOOKUP_JUMPED;
1731 				}
1732 				break;
1733 			case 1:
1734 				type = LAST_DOT;
1735 		}
1736 		if (likely(type == LAST_NORM)) {
1737 			struct dentry *parent = nd->path.dentry;
1738 			nd->flags &= ~LOOKUP_JUMPED;
1739 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1740 				err = parent->d_op->d_hash(parent, &this);
1741 				if (err < 0)
1742 					break;
1743 			}
1744 		}
1745 
1746 		nd->last = this;
1747 		nd->last_type = type;
1748 
1749 		if (!name[len])
1750 			return 0;
1751 		/*
1752 		 * If it wasn't NUL, we know it was '/'. Skip that
1753 		 * slash, and continue until no more slashes.
1754 		 */
1755 		do {
1756 			len++;
1757 		} while (unlikely(name[len] == '/'));
1758 		if (!name[len])
1759 			return 0;
1760 
1761 		name += len;
1762 
1763 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1764 		if (err < 0)
1765 			return err;
1766 
1767 		if (err) {
1768 			err = nested_symlink(&next, nd);
1769 			if (err)
1770 				return err;
1771 		}
1772 		if (!d_is_directory(nd->path.dentry)) {
1773 			err = -ENOTDIR;
1774 			break;
1775 		}
1776 	}
1777 	terminate_walk(nd);
1778 	return err;
1779 }
1780 
1781 static int path_init(int dfd, const char *name, unsigned int flags,
1782 		     struct nameidata *nd, struct file **fp)
1783 {
1784 	int retval = 0;
1785 
1786 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1787 	nd->flags = flags | LOOKUP_JUMPED;
1788 	nd->depth = 0;
1789 	if (flags & LOOKUP_ROOT) {
1790 		struct dentry *root = nd->root.dentry;
1791 		struct inode *inode = root->d_inode;
1792 		if (*name) {
1793 			if (!d_is_directory(root))
1794 				return -ENOTDIR;
1795 			retval = inode_permission(inode, MAY_EXEC);
1796 			if (retval)
1797 				return retval;
1798 		}
1799 		nd->path = nd->root;
1800 		nd->inode = inode;
1801 		if (flags & LOOKUP_RCU) {
1802 			rcu_read_lock();
1803 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1804 			nd->m_seq = read_seqbegin(&mount_lock);
1805 		} else {
1806 			path_get(&nd->path);
1807 		}
1808 		return 0;
1809 	}
1810 
1811 	nd->root.mnt = NULL;
1812 
1813 	nd->m_seq = read_seqbegin(&mount_lock);
1814 	if (*name=='/') {
1815 		if (flags & LOOKUP_RCU) {
1816 			rcu_read_lock();
1817 			set_root_rcu(nd);
1818 		} else {
1819 			set_root(nd);
1820 			path_get(&nd->root);
1821 		}
1822 		nd->path = nd->root;
1823 	} else if (dfd == AT_FDCWD) {
1824 		if (flags & LOOKUP_RCU) {
1825 			struct fs_struct *fs = current->fs;
1826 			unsigned seq;
1827 
1828 			rcu_read_lock();
1829 
1830 			do {
1831 				seq = read_seqcount_begin(&fs->seq);
1832 				nd->path = fs->pwd;
1833 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1834 			} while (read_seqcount_retry(&fs->seq, seq));
1835 		} else {
1836 			get_fs_pwd(current->fs, &nd->path);
1837 		}
1838 	} else {
1839 		/* Caller must check execute permissions on the starting path component */
1840 		struct fd f = fdget_raw(dfd);
1841 		struct dentry *dentry;
1842 
1843 		if (!f.file)
1844 			return -EBADF;
1845 
1846 		dentry = f.file->f_path.dentry;
1847 
1848 		if (*name) {
1849 			if (!d_is_directory(dentry)) {
1850 				fdput(f);
1851 				return -ENOTDIR;
1852 			}
1853 		}
1854 
1855 		nd->path = f.file->f_path;
1856 		if (flags & LOOKUP_RCU) {
1857 			if (f.need_put)
1858 				*fp = f.file;
1859 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1860 			rcu_read_lock();
1861 		} else {
1862 			path_get(&nd->path);
1863 			fdput(f);
1864 		}
1865 	}
1866 
1867 	nd->inode = nd->path.dentry->d_inode;
1868 	return 0;
1869 }
1870 
1871 static inline int lookup_last(struct nameidata *nd, struct path *path)
1872 {
1873 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1874 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1875 
1876 	nd->flags &= ~LOOKUP_PARENT;
1877 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1878 }
1879 
1880 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1881 static int path_lookupat(int dfd, const char *name,
1882 				unsigned int flags, struct nameidata *nd)
1883 {
1884 	struct file *base = NULL;
1885 	struct path path;
1886 	int err;
1887 
1888 	/*
1889 	 * Path walking is largely split up into 2 different synchronisation
1890 	 * schemes, rcu-walk and ref-walk (explained in
1891 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1892 	 * path walk code, but some things particularly setup, cleanup, and
1893 	 * following mounts are sufficiently divergent that functions are
1894 	 * duplicated. Typically there is a function foo(), and its RCU
1895 	 * analogue, foo_rcu().
1896 	 *
1897 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1898 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1899 	 * be handled by restarting a traditional ref-walk (which will always
1900 	 * be able to complete).
1901 	 */
1902 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1903 
1904 	if (unlikely(err))
1905 		return err;
1906 
1907 	current->total_link_count = 0;
1908 	err = link_path_walk(name, nd);
1909 
1910 	if (!err && !(flags & LOOKUP_PARENT)) {
1911 		err = lookup_last(nd, &path);
1912 		while (err > 0) {
1913 			void *cookie;
1914 			struct path link = path;
1915 			err = may_follow_link(&link, nd);
1916 			if (unlikely(err))
1917 				break;
1918 			nd->flags |= LOOKUP_PARENT;
1919 			err = follow_link(&link, nd, &cookie);
1920 			if (err)
1921 				break;
1922 			err = lookup_last(nd, &path);
1923 			put_link(nd, &link, cookie);
1924 		}
1925 	}
1926 
1927 	if (!err)
1928 		err = complete_walk(nd);
1929 
1930 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1931 		if (!d_is_directory(nd->path.dentry)) {
1932 			path_put(&nd->path);
1933 			err = -ENOTDIR;
1934 		}
1935 	}
1936 
1937 	if (base)
1938 		fput(base);
1939 
1940 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1941 		path_put(&nd->root);
1942 		nd->root.mnt = NULL;
1943 	}
1944 	return err;
1945 }
1946 
1947 static int filename_lookup(int dfd, struct filename *name,
1948 				unsigned int flags, struct nameidata *nd)
1949 {
1950 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1951 	if (unlikely(retval == -ECHILD))
1952 		retval = path_lookupat(dfd, name->name, flags, nd);
1953 	if (unlikely(retval == -ESTALE))
1954 		retval = path_lookupat(dfd, name->name,
1955 						flags | LOOKUP_REVAL, nd);
1956 
1957 	if (likely(!retval))
1958 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1959 	return retval;
1960 }
1961 
1962 static int do_path_lookup(int dfd, const char *name,
1963 				unsigned int flags, struct nameidata *nd)
1964 {
1965 	struct filename filename = { .name = name };
1966 
1967 	return filename_lookup(dfd, &filename, flags, nd);
1968 }
1969 
1970 /* does lookup, returns the object with parent locked */
1971 struct dentry *kern_path_locked(const char *name, struct path *path)
1972 {
1973 	struct nameidata nd;
1974 	struct dentry *d;
1975 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1976 	if (err)
1977 		return ERR_PTR(err);
1978 	if (nd.last_type != LAST_NORM) {
1979 		path_put(&nd.path);
1980 		return ERR_PTR(-EINVAL);
1981 	}
1982 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1983 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
1984 	if (IS_ERR(d)) {
1985 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
1986 		path_put(&nd.path);
1987 		return d;
1988 	}
1989 	*path = nd.path;
1990 	return d;
1991 }
1992 
1993 int kern_path(const char *name, unsigned int flags, struct path *path)
1994 {
1995 	struct nameidata nd;
1996 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1997 	if (!res)
1998 		*path = nd.path;
1999 	return res;
2000 }
2001 
2002 /**
2003  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2004  * @dentry:  pointer to dentry of the base directory
2005  * @mnt: pointer to vfs mount of the base directory
2006  * @name: pointer to file name
2007  * @flags: lookup flags
2008  * @path: pointer to struct path to fill
2009  */
2010 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2011 		    const char *name, unsigned int flags,
2012 		    struct path *path)
2013 {
2014 	struct nameidata nd;
2015 	int err;
2016 	nd.root.dentry = dentry;
2017 	nd.root.mnt = mnt;
2018 	BUG_ON(flags & LOOKUP_PARENT);
2019 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2020 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2021 	if (!err)
2022 		*path = nd.path;
2023 	return err;
2024 }
2025 
2026 /*
2027  * Restricted form of lookup. Doesn't follow links, single-component only,
2028  * needs parent already locked. Doesn't follow mounts.
2029  * SMP-safe.
2030  */
2031 static struct dentry *lookup_hash(struct nameidata *nd)
2032 {
2033 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2034 }
2035 
2036 /**
2037  * lookup_one_len - filesystem helper to lookup single pathname component
2038  * @name:	pathname component to lookup
2039  * @base:	base directory to lookup from
2040  * @len:	maximum length @len should be interpreted to
2041  *
2042  * Note that this routine is purely a helper for filesystem usage and should
2043  * not be called by generic code.  Also note that by using this function the
2044  * nameidata argument is passed to the filesystem methods and a filesystem
2045  * using this helper needs to be prepared for that.
2046  */
2047 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2048 {
2049 	struct qstr this;
2050 	unsigned int c;
2051 	int err;
2052 
2053 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2054 
2055 	this.name = name;
2056 	this.len = len;
2057 	this.hash = full_name_hash(name, len);
2058 	if (!len)
2059 		return ERR_PTR(-EACCES);
2060 
2061 	if (unlikely(name[0] == '.')) {
2062 		if (len < 2 || (len == 2 && name[1] == '.'))
2063 			return ERR_PTR(-EACCES);
2064 	}
2065 
2066 	while (len--) {
2067 		c = *(const unsigned char *)name++;
2068 		if (c == '/' || c == '\0')
2069 			return ERR_PTR(-EACCES);
2070 	}
2071 	/*
2072 	 * See if the low-level filesystem might want
2073 	 * to use its own hash..
2074 	 */
2075 	if (base->d_flags & DCACHE_OP_HASH) {
2076 		int err = base->d_op->d_hash(base, &this);
2077 		if (err < 0)
2078 			return ERR_PTR(err);
2079 	}
2080 
2081 	err = inode_permission(base->d_inode, MAY_EXEC);
2082 	if (err)
2083 		return ERR_PTR(err);
2084 
2085 	return __lookup_hash(&this, base, 0);
2086 }
2087 
2088 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2089 		 struct path *path, int *empty)
2090 {
2091 	struct nameidata nd;
2092 	struct filename *tmp = getname_flags(name, flags, empty);
2093 	int err = PTR_ERR(tmp);
2094 	if (!IS_ERR(tmp)) {
2095 
2096 		BUG_ON(flags & LOOKUP_PARENT);
2097 
2098 		err = filename_lookup(dfd, tmp, flags, &nd);
2099 		putname(tmp);
2100 		if (!err)
2101 			*path = nd.path;
2102 	}
2103 	return err;
2104 }
2105 
2106 int user_path_at(int dfd, const char __user *name, unsigned flags,
2107 		 struct path *path)
2108 {
2109 	return user_path_at_empty(dfd, name, flags, path, NULL);
2110 }
2111 
2112 /*
2113  * NB: most callers don't do anything directly with the reference to the
2114  *     to struct filename, but the nd->last pointer points into the name string
2115  *     allocated by getname. So we must hold the reference to it until all
2116  *     path-walking is complete.
2117  */
2118 static struct filename *
2119 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2120 		 unsigned int flags)
2121 {
2122 	struct filename *s = getname(path);
2123 	int error;
2124 
2125 	/* only LOOKUP_REVAL is allowed in extra flags */
2126 	flags &= LOOKUP_REVAL;
2127 
2128 	if (IS_ERR(s))
2129 		return s;
2130 
2131 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2132 	if (error) {
2133 		putname(s);
2134 		return ERR_PTR(error);
2135 	}
2136 
2137 	return s;
2138 }
2139 
2140 /**
2141  * mountpoint_last - look up last component for umount
2142  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2143  * @path: pointer to container for result
2144  *
2145  * This is a special lookup_last function just for umount. In this case, we
2146  * need to resolve the path without doing any revalidation.
2147  *
2148  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2149  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2150  * in almost all cases, this lookup will be served out of the dcache. The only
2151  * cases where it won't are if nd->last refers to a symlink or the path is
2152  * bogus and it doesn't exist.
2153  *
2154  * Returns:
2155  * -error: if there was an error during lookup. This includes -ENOENT if the
2156  *         lookup found a negative dentry. The nd->path reference will also be
2157  *         put in this case.
2158  *
2159  * 0:      if we successfully resolved nd->path and found it to not to be a
2160  *         symlink that needs to be followed. "path" will also be populated.
2161  *         The nd->path reference will also be put.
2162  *
2163  * 1:      if we successfully resolved nd->last and found it to be a symlink
2164  *         that needs to be followed. "path" will be populated with the path
2165  *         to the link, and nd->path will *not* be put.
2166  */
2167 static int
2168 mountpoint_last(struct nameidata *nd, struct path *path)
2169 {
2170 	int error = 0;
2171 	struct dentry *dentry;
2172 	struct dentry *dir = nd->path.dentry;
2173 
2174 	/* If we're in rcuwalk, drop out of it to handle last component */
2175 	if (nd->flags & LOOKUP_RCU) {
2176 		if (unlazy_walk(nd, NULL)) {
2177 			error = -ECHILD;
2178 			goto out;
2179 		}
2180 	}
2181 
2182 	nd->flags &= ~LOOKUP_PARENT;
2183 
2184 	if (unlikely(nd->last_type != LAST_NORM)) {
2185 		error = handle_dots(nd, nd->last_type);
2186 		if (error)
2187 			goto out;
2188 		dentry = dget(nd->path.dentry);
2189 		goto done;
2190 	}
2191 
2192 	mutex_lock(&dir->d_inode->i_mutex);
2193 	dentry = d_lookup(dir, &nd->last);
2194 	if (!dentry) {
2195 		/*
2196 		 * No cached dentry. Mounted dentries are pinned in the cache,
2197 		 * so that means that this dentry is probably a symlink or the
2198 		 * path doesn't actually point to a mounted dentry.
2199 		 */
2200 		dentry = d_alloc(dir, &nd->last);
2201 		if (!dentry) {
2202 			error = -ENOMEM;
2203 			mutex_unlock(&dir->d_inode->i_mutex);
2204 			goto out;
2205 		}
2206 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2207 		error = PTR_ERR(dentry);
2208 		if (IS_ERR(dentry)) {
2209 			mutex_unlock(&dir->d_inode->i_mutex);
2210 			goto out;
2211 		}
2212 	}
2213 	mutex_unlock(&dir->d_inode->i_mutex);
2214 
2215 done:
2216 	if (!dentry->d_inode) {
2217 		error = -ENOENT;
2218 		dput(dentry);
2219 		goto out;
2220 	}
2221 	path->dentry = dentry;
2222 	path->mnt = mntget(nd->path.mnt);
2223 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2224 		return 1;
2225 	follow_mount(path);
2226 	error = 0;
2227 out:
2228 	terminate_walk(nd);
2229 	return error;
2230 }
2231 
2232 /**
2233  * path_mountpoint - look up a path to be umounted
2234  * @dfd:	directory file descriptor to start walk from
2235  * @name:	full pathname to walk
2236  * @path:	pointer to container for result
2237  * @flags:	lookup flags
2238  *
2239  * Look up the given name, but don't attempt to revalidate the last component.
2240  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2241  */
2242 static int
2243 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2244 {
2245 	struct file *base = NULL;
2246 	struct nameidata nd;
2247 	int err;
2248 
2249 	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2250 	if (unlikely(err))
2251 		return err;
2252 
2253 	current->total_link_count = 0;
2254 	err = link_path_walk(name, &nd);
2255 	if (err)
2256 		goto out;
2257 
2258 	err = mountpoint_last(&nd, path);
2259 	while (err > 0) {
2260 		void *cookie;
2261 		struct path link = *path;
2262 		err = may_follow_link(&link, &nd);
2263 		if (unlikely(err))
2264 			break;
2265 		nd.flags |= LOOKUP_PARENT;
2266 		err = follow_link(&link, &nd, &cookie);
2267 		if (err)
2268 			break;
2269 		err = mountpoint_last(&nd, path);
2270 		put_link(&nd, &link, cookie);
2271 	}
2272 out:
2273 	if (base)
2274 		fput(base);
2275 
2276 	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2277 		path_put(&nd.root);
2278 
2279 	return err;
2280 }
2281 
2282 static int
2283 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2284 			unsigned int flags)
2285 {
2286 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2287 	if (unlikely(error == -ECHILD))
2288 		error = path_mountpoint(dfd, s->name, path, flags);
2289 	if (unlikely(error == -ESTALE))
2290 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2291 	if (likely(!error))
2292 		audit_inode(s, path->dentry, 0);
2293 	return error;
2294 }
2295 
2296 /**
2297  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2298  * @dfd:	directory file descriptor
2299  * @name:	pathname from userland
2300  * @flags:	lookup flags
2301  * @path:	pointer to container to hold result
2302  *
2303  * A umount is a special case for path walking. We're not actually interested
2304  * in the inode in this situation, and ESTALE errors can be a problem. We
2305  * simply want track down the dentry and vfsmount attached at the mountpoint
2306  * and avoid revalidating the last component.
2307  *
2308  * Returns 0 and populates "path" on success.
2309  */
2310 int
2311 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2312 			struct path *path)
2313 {
2314 	struct filename *s = getname(name);
2315 	int error;
2316 	if (IS_ERR(s))
2317 		return PTR_ERR(s);
2318 	error = filename_mountpoint(dfd, s, path, flags);
2319 	putname(s);
2320 	return error;
2321 }
2322 
2323 int
2324 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2325 			unsigned int flags)
2326 {
2327 	struct filename s = {.name = name};
2328 	return filename_mountpoint(dfd, &s, path, flags);
2329 }
2330 EXPORT_SYMBOL(kern_path_mountpoint);
2331 
2332 /*
2333  * It's inline, so penalty for filesystems that don't use sticky bit is
2334  * minimal.
2335  */
2336 static inline int check_sticky(struct inode *dir, struct inode *inode)
2337 {
2338 	kuid_t fsuid = current_fsuid();
2339 
2340 	if (!(dir->i_mode & S_ISVTX))
2341 		return 0;
2342 	if (uid_eq(inode->i_uid, fsuid))
2343 		return 0;
2344 	if (uid_eq(dir->i_uid, fsuid))
2345 		return 0;
2346 	return !inode_capable(inode, CAP_FOWNER);
2347 }
2348 
2349 /*
2350  *	Check whether we can remove a link victim from directory dir, check
2351  *  whether the type of victim is right.
2352  *  1. We can't do it if dir is read-only (done in permission())
2353  *  2. We should have write and exec permissions on dir
2354  *  3. We can't remove anything from append-only dir
2355  *  4. We can't do anything with immutable dir (done in permission())
2356  *  5. If the sticky bit on dir is set we should either
2357  *	a. be owner of dir, or
2358  *	b. be owner of victim, or
2359  *	c. have CAP_FOWNER capability
2360  *  6. If the victim is append-only or immutable we can't do antyhing with
2361  *     links pointing to it.
2362  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2363  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2364  *  9. We can't remove a root or mountpoint.
2365  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2366  *     nfs_async_unlink().
2367  */
2368 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2369 {
2370 	struct inode *inode = victim->d_inode;
2371 	int error;
2372 
2373 	if (d_is_negative(victim))
2374 		return -ENOENT;
2375 	BUG_ON(!inode);
2376 
2377 	BUG_ON(victim->d_parent->d_inode != dir);
2378 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2379 
2380 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2381 	if (error)
2382 		return error;
2383 	if (IS_APPEND(dir))
2384 		return -EPERM;
2385 
2386 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2387 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2388 		return -EPERM;
2389 	if (isdir) {
2390 		if (!d_is_directory(victim) && !d_is_autodir(victim))
2391 			return -ENOTDIR;
2392 		if (IS_ROOT(victim))
2393 			return -EBUSY;
2394 	} else if (d_is_directory(victim) || d_is_autodir(victim))
2395 		return -EISDIR;
2396 	if (IS_DEADDIR(dir))
2397 		return -ENOENT;
2398 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2399 		return -EBUSY;
2400 	return 0;
2401 }
2402 
2403 /*	Check whether we can create an object with dentry child in directory
2404  *  dir.
2405  *  1. We can't do it if child already exists (open has special treatment for
2406  *     this case, but since we are inlined it's OK)
2407  *  2. We can't do it if dir is read-only (done in permission())
2408  *  3. We should have write and exec permissions on dir
2409  *  4. We can't do it if dir is immutable (done in permission())
2410  */
2411 static inline int may_create(struct inode *dir, struct dentry *child)
2412 {
2413 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2414 	if (child->d_inode)
2415 		return -EEXIST;
2416 	if (IS_DEADDIR(dir))
2417 		return -ENOENT;
2418 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2419 }
2420 
2421 /*
2422  * p1 and p2 should be directories on the same fs.
2423  */
2424 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2425 {
2426 	struct dentry *p;
2427 
2428 	if (p1 == p2) {
2429 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2430 		return NULL;
2431 	}
2432 
2433 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2434 
2435 	p = d_ancestor(p2, p1);
2436 	if (p) {
2437 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2438 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2439 		return p;
2440 	}
2441 
2442 	p = d_ancestor(p1, p2);
2443 	if (p) {
2444 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2445 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2446 		return p;
2447 	}
2448 
2449 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2450 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2451 	return NULL;
2452 }
2453 
2454 void unlock_rename(struct dentry *p1, struct dentry *p2)
2455 {
2456 	mutex_unlock(&p1->d_inode->i_mutex);
2457 	if (p1 != p2) {
2458 		mutex_unlock(&p2->d_inode->i_mutex);
2459 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2460 	}
2461 }
2462 
2463 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2464 		bool want_excl)
2465 {
2466 	int error = may_create(dir, dentry);
2467 	if (error)
2468 		return error;
2469 
2470 	if (!dir->i_op->create)
2471 		return -EACCES;	/* shouldn't it be ENOSYS? */
2472 	mode &= S_IALLUGO;
2473 	mode |= S_IFREG;
2474 	error = security_inode_create(dir, dentry, mode);
2475 	if (error)
2476 		return error;
2477 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2478 	if (!error)
2479 		fsnotify_create(dir, dentry);
2480 	return error;
2481 }
2482 
2483 static int may_open(struct path *path, int acc_mode, int flag)
2484 {
2485 	struct dentry *dentry = path->dentry;
2486 	struct inode *inode = dentry->d_inode;
2487 	int error;
2488 
2489 	/* O_PATH? */
2490 	if (!acc_mode)
2491 		return 0;
2492 
2493 	if (!inode)
2494 		return -ENOENT;
2495 
2496 	switch (inode->i_mode & S_IFMT) {
2497 	case S_IFLNK:
2498 		return -ELOOP;
2499 	case S_IFDIR:
2500 		if (acc_mode & MAY_WRITE)
2501 			return -EISDIR;
2502 		break;
2503 	case S_IFBLK:
2504 	case S_IFCHR:
2505 		if (path->mnt->mnt_flags & MNT_NODEV)
2506 			return -EACCES;
2507 		/*FALLTHRU*/
2508 	case S_IFIFO:
2509 	case S_IFSOCK:
2510 		flag &= ~O_TRUNC;
2511 		break;
2512 	}
2513 
2514 	error = inode_permission(inode, acc_mode);
2515 	if (error)
2516 		return error;
2517 
2518 	/*
2519 	 * An append-only file must be opened in append mode for writing.
2520 	 */
2521 	if (IS_APPEND(inode)) {
2522 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2523 			return -EPERM;
2524 		if (flag & O_TRUNC)
2525 			return -EPERM;
2526 	}
2527 
2528 	/* O_NOATIME can only be set by the owner or superuser */
2529 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2530 		return -EPERM;
2531 
2532 	return 0;
2533 }
2534 
2535 static int handle_truncate(struct file *filp)
2536 {
2537 	struct path *path = &filp->f_path;
2538 	struct inode *inode = path->dentry->d_inode;
2539 	int error = get_write_access(inode);
2540 	if (error)
2541 		return error;
2542 	/*
2543 	 * Refuse to truncate files with mandatory locks held on them.
2544 	 */
2545 	error = locks_verify_locked(inode);
2546 	if (!error)
2547 		error = security_path_truncate(path);
2548 	if (!error) {
2549 		error = do_truncate(path->dentry, 0,
2550 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2551 				    filp);
2552 	}
2553 	put_write_access(inode);
2554 	return error;
2555 }
2556 
2557 static inline int open_to_namei_flags(int flag)
2558 {
2559 	if ((flag & O_ACCMODE) == 3)
2560 		flag--;
2561 	return flag;
2562 }
2563 
2564 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2565 {
2566 	int error = security_path_mknod(dir, dentry, mode, 0);
2567 	if (error)
2568 		return error;
2569 
2570 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2571 	if (error)
2572 		return error;
2573 
2574 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2575 }
2576 
2577 /*
2578  * Attempt to atomically look up, create and open a file from a negative
2579  * dentry.
2580  *
2581  * Returns 0 if successful.  The file will have been created and attached to
2582  * @file by the filesystem calling finish_open().
2583  *
2584  * Returns 1 if the file was looked up only or didn't need creating.  The
2585  * caller will need to perform the open themselves.  @path will have been
2586  * updated to point to the new dentry.  This may be negative.
2587  *
2588  * Returns an error code otherwise.
2589  */
2590 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2591 			struct path *path, struct file *file,
2592 			const struct open_flags *op,
2593 			bool got_write, bool need_lookup,
2594 			int *opened)
2595 {
2596 	struct inode *dir =  nd->path.dentry->d_inode;
2597 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2598 	umode_t mode;
2599 	int error;
2600 	int acc_mode;
2601 	int create_error = 0;
2602 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2603 	bool excl;
2604 
2605 	BUG_ON(dentry->d_inode);
2606 
2607 	/* Don't create child dentry for a dead directory. */
2608 	if (unlikely(IS_DEADDIR(dir))) {
2609 		error = -ENOENT;
2610 		goto out;
2611 	}
2612 
2613 	mode = op->mode;
2614 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2615 		mode &= ~current_umask();
2616 
2617 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2618 	if (excl)
2619 		open_flag &= ~O_TRUNC;
2620 
2621 	/*
2622 	 * Checking write permission is tricky, bacuse we don't know if we are
2623 	 * going to actually need it: O_CREAT opens should work as long as the
2624 	 * file exists.  But checking existence breaks atomicity.  The trick is
2625 	 * to check access and if not granted clear O_CREAT from the flags.
2626 	 *
2627 	 * Another problem is returing the "right" error value (e.g. for an
2628 	 * O_EXCL open we want to return EEXIST not EROFS).
2629 	 */
2630 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2631 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2632 		if (!(open_flag & O_CREAT)) {
2633 			/*
2634 			 * No O_CREATE -> atomicity not a requirement -> fall
2635 			 * back to lookup + open
2636 			 */
2637 			goto no_open;
2638 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2639 			/* Fall back and fail with the right error */
2640 			create_error = -EROFS;
2641 			goto no_open;
2642 		} else {
2643 			/* No side effects, safe to clear O_CREAT */
2644 			create_error = -EROFS;
2645 			open_flag &= ~O_CREAT;
2646 		}
2647 	}
2648 
2649 	if (open_flag & O_CREAT) {
2650 		error = may_o_create(&nd->path, dentry, mode);
2651 		if (error) {
2652 			create_error = error;
2653 			if (open_flag & O_EXCL)
2654 				goto no_open;
2655 			open_flag &= ~O_CREAT;
2656 		}
2657 	}
2658 
2659 	if (nd->flags & LOOKUP_DIRECTORY)
2660 		open_flag |= O_DIRECTORY;
2661 
2662 	file->f_path.dentry = DENTRY_NOT_SET;
2663 	file->f_path.mnt = nd->path.mnt;
2664 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2665 				      opened);
2666 	if (error < 0) {
2667 		if (create_error && error == -ENOENT)
2668 			error = create_error;
2669 		goto out;
2670 	}
2671 
2672 	if (error) {	/* returned 1, that is */
2673 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2674 			error = -EIO;
2675 			goto out;
2676 		}
2677 		if (file->f_path.dentry) {
2678 			dput(dentry);
2679 			dentry = file->f_path.dentry;
2680 		}
2681 		if (*opened & FILE_CREATED)
2682 			fsnotify_create(dir, dentry);
2683 		if (!dentry->d_inode) {
2684 			WARN_ON(*opened & FILE_CREATED);
2685 			if (create_error) {
2686 				error = create_error;
2687 				goto out;
2688 			}
2689 		} else {
2690 			if (excl && !(*opened & FILE_CREATED)) {
2691 				error = -EEXIST;
2692 				goto out;
2693 			}
2694 		}
2695 		goto looked_up;
2696 	}
2697 
2698 	/*
2699 	 * We didn't have the inode before the open, so check open permission
2700 	 * here.
2701 	 */
2702 	acc_mode = op->acc_mode;
2703 	if (*opened & FILE_CREATED) {
2704 		WARN_ON(!(open_flag & O_CREAT));
2705 		fsnotify_create(dir, dentry);
2706 		acc_mode = MAY_OPEN;
2707 	}
2708 	error = may_open(&file->f_path, acc_mode, open_flag);
2709 	if (error)
2710 		fput(file);
2711 
2712 out:
2713 	dput(dentry);
2714 	return error;
2715 
2716 no_open:
2717 	if (need_lookup) {
2718 		dentry = lookup_real(dir, dentry, nd->flags);
2719 		if (IS_ERR(dentry))
2720 			return PTR_ERR(dentry);
2721 
2722 		if (create_error) {
2723 			int open_flag = op->open_flag;
2724 
2725 			error = create_error;
2726 			if ((open_flag & O_EXCL)) {
2727 				if (!dentry->d_inode)
2728 					goto out;
2729 			} else if (!dentry->d_inode) {
2730 				goto out;
2731 			} else if ((open_flag & O_TRUNC) &&
2732 				   S_ISREG(dentry->d_inode->i_mode)) {
2733 				goto out;
2734 			}
2735 			/* will fail later, go on to get the right error */
2736 		}
2737 	}
2738 looked_up:
2739 	path->dentry = dentry;
2740 	path->mnt = nd->path.mnt;
2741 	return 1;
2742 }
2743 
2744 /*
2745  * Look up and maybe create and open the last component.
2746  *
2747  * Must be called with i_mutex held on parent.
2748  *
2749  * Returns 0 if the file was successfully atomically created (if necessary) and
2750  * opened.  In this case the file will be returned attached to @file.
2751  *
2752  * Returns 1 if the file was not completely opened at this time, though lookups
2753  * and creations will have been performed and the dentry returned in @path will
2754  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2755  * specified then a negative dentry may be returned.
2756  *
2757  * An error code is returned otherwise.
2758  *
2759  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2760  * cleared otherwise prior to returning.
2761  */
2762 static int lookup_open(struct nameidata *nd, struct path *path,
2763 			struct file *file,
2764 			const struct open_flags *op,
2765 			bool got_write, int *opened)
2766 {
2767 	struct dentry *dir = nd->path.dentry;
2768 	struct inode *dir_inode = dir->d_inode;
2769 	struct dentry *dentry;
2770 	int error;
2771 	bool need_lookup;
2772 
2773 	*opened &= ~FILE_CREATED;
2774 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2775 	if (IS_ERR(dentry))
2776 		return PTR_ERR(dentry);
2777 
2778 	/* Cached positive dentry: will open in f_op->open */
2779 	if (!need_lookup && dentry->d_inode)
2780 		goto out_no_open;
2781 
2782 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2783 		return atomic_open(nd, dentry, path, file, op, got_write,
2784 				   need_lookup, opened);
2785 	}
2786 
2787 	if (need_lookup) {
2788 		BUG_ON(dentry->d_inode);
2789 
2790 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2791 		if (IS_ERR(dentry))
2792 			return PTR_ERR(dentry);
2793 	}
2794 
2795 	/* Negative dentry, just create the file */
2796 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2797 		umode_t mode = op->mode;
2798 		if (!IS_POSIXACL(dir->d_inode))
2799 			mode &= ~current_umask();
2800 		/*
2801 		 * This write is needed to ensure that a
2802 		 * rw->ro transition does not occur between
2803 		 * the time when the file is created and when
2804 		 * a permanent write count is taken through
2805 		 * the 'struct file' in finish_open().
2806 		 */
2807 		if (!got_write) {
2808 			error = -EROFS;
2809 			goto out_dput;
2810 		}
2811 		*opened |= FILE_CREATED;
2812 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2813 		if (error)
2814 			goto out_dput;
2815 		error = vfs_create(dir->d_inode, dentry, mode,
2816 				   nd->flags & LOOKUP_EXCL);
2817 		if (error)
2818 			goto out_dput;
2819 	}
2820 out_no_open:
2821 	path->dentry = dentry;
2822 	path->mnt = nd->path.mnt;
2823 	return 1;
2824 
2825 out_dput:
2826 	dput(dentry);
2827 	return error;
2828 }
2829 
2830 /*
2831  * Handle the last step of open()
2832  */
2833 static int do_last(struct nameidata *nd, struct path *path,
2834 		   struct file *file, const struct open_flags *op,
2835 		   int *opened, struct filename *name)
2836 {
2837 	struct dentry *dir = nd->path.dentry;
2838 	int open_flag = op->open_flag;
2839 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2840 	bool got_write = false;
2841 	int acc_mode = op->acc_mode;
2842 	struct inode *inode;
2843 	bool symlink_ok = false;
2844 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2845 	bool retried = false;
2846 	int error;
2847 
2848 	nd->flags &= ~LOOKUP_PARENT;
2849 	nd->flags |= op->intent;
2850 
2851 	if (nd->last_type != LAST_NORM) {
2852 		error = handle_dots(nd, nd->last_type);
2853 		if (error)
2854 			return error;
2855 		goto finish_open;
2856 	}
2857 
2858 	if (!(open_flag & O_CREAT)) {
2859 		if (nd->last.name[nd->last.len])
2860 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2861 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2862 			symlink_ok = true;
2863 		/* we _can_ be in RCU mode here */
2864 		error = lookup_fast(nd, path, &inode);
2865 		if (likely(!error))
2866 			goto finish_lookup;
2867 
2868 		if (error < 0)
2869 			goto out;
2870 
2871 		BUG_ON(nd->inode != dir->d_inode);
2872 	} else {
2873 		/* create side of things */
2874 		/*
2875 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2876 		 * has been cleared when we got to the last component we are
2877 		 * about to look up
2878 		 */
2879 		error = complete_walk(nd);
2880 		if (error)
2881 			return error;
2882 
2883 		audit_inode(name, dir, LOOKUP_PARENT);
2884 		error = -EISDIR;
2885 		/* trailing slashes? */
2886 		if (nd->last.name[nd->last.len])
2887 			goto out;
2888 	}
2889 
2890 retry_lookup:
2891 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2892 		error = mnt_want_write(nd->path.mnt);
2893 		if (!error)
2894 			got_write = true;
2895 		/*
2896 		 * do _not_ fail yet - we might not need that or fail with
2897 		 * a different error; let lookup_open() decide; we'll be
2898 		 * dropping this one anyway.
2899 		 */
2900 	}
2901 	mutex_lock(&dir->d_inode->i_mutex);
2902 	error = lookup_open(nd, path, file, op, got_write, opened);
2903 	mutex_unlock(&dir->d_inode->i_mutex);
2904 
2905 	if (error <= 0) {
2906 		if (error)
2907 			goto out;
2908 
2909 		if ((*opened & FILE_CREATED) ||
2910 		    !S_ISREG(file_inode(file)->i_mode))
2911 			will_truncate = false;
2912 
2913 		audit_inode(name, file->f_path.dentry, 0);
2914 		goto opened;
2915 	}
2916 
2917 	if (*opened & FILE_CREATED) {
2918 		/* Don't check for write permission, don't truncate */
2919 		open_flag &= ~O_TRUNC;
2920 		will_truncate = false;
2921 		acc_mode = MAY_OPEN;
2922 		path_to_nameidata(path, nd);
2923 		goto finish_open_created;
2924 	}
2925 
2926 	/*
2927 	 * create/update audit record if it already exists.
2928 	 */
2929 	if (d_is_positive(path->dentry))
2930 		audit_inode(name, path->dentry, 0);
2931 
2932 	/*
2933 	 * If atomic_open() acquired write access it is dropped now due to
2934 	 * possible mount and symlink following (this might be optimized away if
2935 	 * necessary...)
2936 	 */
2937 	if (got_write) {
2938 		mnt_drop_write(nd->path.mnt);
2939 		got_write = false;
2940 	}
2941 
2942 	error = -EEXIST;
2943 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2944 		goto exit_dput;
2945 
2946 	error = follow_managed(path, nd->flags);
2947 	if (error < 0)
2948 		goto exit_dput;
2949 
2950 	if (error)
2951 		nd->flags |= LOOKUP_JUMPED;
2952 
2953 	BUG_ON(nd->flags & LOOKUP_RCU);
2954 	inode = path->dentry->d_inode;
2955 finish_lookup:
2956 	/* we _can_ be in RCU mode here */
2957 	error = -ENOENT;
2958 	if (d_is_negative(path->dentry)) {
2959 		path_to_nameidata(path, nd);
2960 		goto out;
2961 	}
2962 
2963 	if (should_follow_link(path->dentry, !symlink_ok)) {
2964 		if (nd->flags & LOOKUP_RCU) {
2965 			if (unlikely(unlazy_walk(nd, path->dentry))) {
2966 				error = -ECHILD;
2967 				goto out;
2968 			}
2969 		}
2970 		BUG_ON(inode != path->dentry->d_inode);
2971 		return 1;
2972 	}
2973 
2974 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2975 		path_to_nameidata(path, nd);
2976 	} else {
2977 		save_parent.dentry = nd->path.dentry;
2978 		save_parent.mnt = mntget(path->mnt);
2979 		nd->path.dentry = path->dentry;
2980 
2981 	}
2982 	nd->inode = inode;
2983 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
2984 finish_open:
2985 	error = complete_walk(nd);
2986 	if (error) {
2987 		path_put(&save_parent);
2988 		return error;
2989 	}
2990 	audit_inode(name, nd->path.dentry, 0);
2991 	error = -EISDIR;
2992 	if ((open_flag & O_CREAT) &&
2993 	    (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry)))
2994 		goto out;
2995 	error = -ENOTDIR;
2996 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry))
2997 		goto out;
2998 	if (!S_ISREG(nd->inode->i_mode))
2999 		will_truncate = false;
3000 
3001 	if (will_truncate) {
3002 		error = mnt_want_write(nd->path.mnt);
3003 		if (error)
3004 			goto out;
3005 		got_write = true;
3006 	}
3007 finish_open_created:
3008 	error = may_open(&nd->path, acc_mode, open_flag);
3009 	if (error)
3010 		goto out;
3011 	file->f_path.mnt = nd->path.mnt;
3012 	error = finish_open(file, nd->path.dentry, NULL, opened);
3013 	if (error) {
3014 		if (error == -EOPENSTALE)
3015 			goto stale_open;
3016 		goto out;
3017 	}
3018 opened:
3019 	error = open_check_o_direct(file);
3020 	if (error)
3021 		goto exit_fput;
3022 	error = ima_file_check(file, op->acc_mode);
3023 	if (error)
3024 		goto exit_fput;
3025 
3026 	if (will_truncate) {
3027 		error = handle_truncate(file);
3028 		if (error)
3029 			goto exit_fput;
3030 	}
3031 out:
3032 	if (got_write)
3033 		mnt_drop_write(nd->path.mnt);
3034 	path_put(&save_parent);
3035 	terminate_walk(nd);
3036 	return error;
3037 
3038 exit_dput:
3039 	path_put_conditional(path, nd);
3040 	goto out;
3041 exit_fput:
3042 	fput(file);
3043 	goto out;
3044 
3045 stale_open:
3046 	/* If no saved parent or already retried then can't retry */
3047 	if (!save_parent.dentry || retried)
3048 		goto out;
3049 
3050 	BUG_ON(save_parent.dentry != dir);
3051 	path_put(&nd->path);
3052 	nd->path = save_parent;
3053 	nd->inode = dir->d_inode;
3054 	save_parent.mnt = NULL;
3055 	save_parent.dentry = NULL;
3056 	if (got_write) {
3057 		mnt_drop_write(nd->path.mnt);
3058 		got_write = false;
3059 	}
3060 	retried = true;
3061 	goto retry_lookup;
3062 }
3063 
3064 static int do_tmpfile(int dfd, struct filename *pathname,
3065 		struct nameidata *nd, int flags,
3066 		const struct open_flags *op,
3067 		struct file *file, int *opened)
3068 {
3069 	static const struct qstr name = QSTR_INIT("/", 1);
3070 	struct dentry *dentry, *child;
3071 	struct inode *dir;
3072 	int error = path_lookupat(dfd, pathname->name,
3073 				  flags | LOOKUP_DIRECTORY, nd);
3074 	if (unlikely(error))
3075 		return error;
3076 	error = mnt_want_write(nd->path.mnt);
3077 	if (unlikely(error))
3078 		goto out;
3079 	/* we want directory to be writable */
3080 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3081 	if (error)
3082 		goto out2;
3083 	dentry = nd->path.dentry;
3084 	dir = dentry->d_inode;
3085 	if (!dir->i_op->tmpfile) {
3086 		error = -EOPNOTSUPP;
3087 		goto out2;
3088 	}
3089 	child = d_alloc(dentry, &name);
3090 	if (unlikely(!child)) {
3091 		error = -ENOMEM;
3092 		goto out2;
3093 	}
3094 	nd->flags &= ~LOOKUP_DIRECTORY;
3095 	nd->flags |= op->intent;
3096 	dput(nd->path.dentry);
3097 	nd->path.dentry = child;
3098 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3099 	if (error)
3100 		goto out2;
3101 	audit_inode(pathname, nd->path.dentry, 0);
3102 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
3103 	if (error)
3104 		goto out2;
3105 	file->f_path.mnt = nd->path.mnt;
3106 	error = finish_open(file, nd->path.dentry, NULL, opened);
3107 	if (error)
3108 		goto out2;
3109 	error = open_check_o_direct(file);
3110 	if (error) {
3111 		fput(file);
3112 	} else if (!(op->open_flag & O_EXCL)) {
3113 		struct inode *inode = file_inode(file);
3114 		spin_lock(&inode->i_lock);
3115 		inode->i_state |= I_LINKABLE;
3116 		spin_unlock(&inode->i_lock);
3117 	}
3118 out2:
3119 	mnt_drop_write(nd->path.mnt);
3120 out:
3121 	path_put(&nd->path);
3122 	return error;
3123 }
3124 
3125 static struct file *path_openat(int dfd, struct filename *pathname,
3126 		struct nameidata *nd, const struct open_flags *op, int flags)
3127 {
3128 	struct file *base = NULL;
3129 	struct file *file;
3130 	struct path path;
3131 	int opened = 0;
3132 	int error;
3133 
3134 	file = get_empty_filp();
3135 	if (IS_ERR(file))
3136 		return file;
3137 
3138 	file->f_flags = op->open_flag;
3139 
3140 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3141 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3142 		goto out;
3143 	}
3144 
3145 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3146 	if (unlikely(error))
3147 		goto out;
3148 
3149 	current->total_link_count = 0;
3150 	error = link_path_walk(pathname->name, nd);
3151 	if (unlikely(error))
3152 		goto out;
3153 
3154 	error = do_last(nd, &path, file, op, &opened, pathname);
3155 	while (unlikely(error > 0)) { /* trailing symlink */
3156 		struct path link = path;
3157 		void *cookie;
3158 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3159 			path_put_conditional(&path, nd);
3160 			path_put(&nd->path);
3161 			error = -ELOOP;
3162 			break;
3163 		}
3164 		error = may_follow_link(&link, nd);
3165 		if (unlikely(error))
3166 			break;
3167 		nd->flags |= LOOKUP_PARENT;
3168 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3169 		error = follow_link(&link, nd, &cookie);
3170 		if (unlikely(error))
3171 			break;
3172 		error = do_last(nd, &path, file, op, &opened, pathname);
3173 		put_link(nd, &link, cookie);
3174 	}
3175 out:
3176 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3177 		path_put(&nd->root);
3178 	if (base)
3179 		fput(base);
3180 	if (!(opened & FILE_OPENED)) {
3181 		BUG_ON(!error);
3182 		put_filp(file);
3183 	}
3184 	if (unlikely(error)) {
3185 		if (error == -EOPENSTALE) {
3186 			if (flags & LOOKUP_RCU)
3187 				error = -ECHILD;
3188 			else
3189 				error = -ESTALE;
3190 		}
3191 		file = ERR_PTR(error);
3192 	}
3193 	return file;
3194 }
3195 
3196 struct file *do_filp_open(int dfd, struct filename *pathname,
3197 		const struct open_flags *op)
3198 {
3199 	struct nameidata nd;
3200 	int flags = op->lookup_flags;
3201 	struct file *filp;
3202 
3203 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3204 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3205 		filp = path_openat(dfd, pathname, &nd, op, flags);
3206 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3207 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3208 	return filp;
3209 }
3210 
3211 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3212 		const char *name, const struct open_flags *op)
3213 {
3214 	struct nameidata nd;
3215 	struct file *file;
3216 	struct filename filename = { .name = name };
3217 	int flags = op->lookup_flags | LOOKUP_ROOT;
3218 
3219 	nd.root.mnt = mnt;
3220 	nd.root.dentry = dentry;
3221 
3222 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3223 		return ERR_PTR(-ELOOP);
3224 
3225 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3226 	if (unlikely(file == ERR_PTR(-ECHILD)))
3227 		file = path_openat(-1, &filename, &nd, op, flags);
3228 	if (unlikely(file == ERR_PTR(-ESTALE)))
3229 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3230 	return file;
3231 }
3232 
3233 struct dentry *kern_path_create(int dfd, const char *pathname,
3234 				struct path *path, unsigned int lookup_flags)
3235 {
3236 	struct dentry *dentry = ERR_PTR(-EEXIST);
3237 	struct nameidata nd;
3238 	int err2;
3239 	int error;
3240 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3241 
3242 	/*
3243 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3244 	 * other flags passed in are ignored!
3245 	 */
3246 	lookup_flags &= LOOKUP_REVAL;
3247 
3248 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3249 	if (error)
3250 		return ERR_PTR(error);
3251 
3252 	/*
3253 	 * Yucky last component or no last component at all?
3254 	 * (foo/., foo/.., /////)
3255 	 */
3256 	if (nd.last_type != LAST_NORM)
3257 		goto out;
3258 	nd.flags &= ~LOOKUP_PARENT;
3259 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3260 
3261 	/* don't fail immediately if it's r/o, at least try to report other errors */
3262 	err2 = mnt_want_write(nd.path.mnt);
3263 	/*
3264 	 * Do the final lookup.
3265 	 */
3266 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3267 	dentry = lookup_hash(&nd);
3268 	if (IS_ERR(dentry))
3269 		goto unlock;
3270 
3271 	error = -EEXIST;
3272 	if (d_is_positive(dentry))
3273 		goto fail;
3274 
3275 	/*
3276 	 * Special case - lookup gave negative, but... we had foo/bar/
3277 	 * From the vfs_mknod() POV we just have a negative dentry -
3278 	 * all is fine. Let's be bastards - you had / on the end, you've
3279 	 * been asking for (non-existent) directory. -ENOENT for you.
3280 	 */
3281 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3282 		error = -ENOENT;
3283 		goto fail;
3284 	}
3285 	if (unlikely(err2)) {
3286 		error = err2;
3287 		goto fail;
3288 	}
3289 	*path = nd.path;
3290 	return dentry;
3291 fail:
3292 	dput(dentry);
3293 	dentry = ERR_PTR(error);
3294 unlock:
3295 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3296 	if (!err2)
3297 		mnt_drop_write(nd.path.mnt);
3298 out:
3299 	path_put(&nd.path);
3300 	return dentry;
3301 }
3302 EXPORT_SYMBOL(kern_path_create);
3303 
3304 void done_path_create(struct path *path, struct dentry *dentry)
3305 {
3306 	dput(dentry);
3307 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3308 	mnt_drop_write(path->mnt);
3309 	path_put(path);
3310 }
3311 EXPORT_SYMBOL(done_path_create);
3312 
3313 struct dentry *user_path_create(int dfd, const char __user *pathname,
3314 				struct path *path, unsigned int lookup_flags)
3315 {
3316 	struct filename *tmp = getname(pathname);
3317 	struct dentry *res;
3318 	if (IS_ERR(tmp))
3319 		return ERR_CAST(tmp);
3320 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3321 	putname(tmp);
3322 	return res;
3323 }
3324 EXPORT_SYMBOL(user_path_create);
3325 
3326 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3327 {
3328 	int error = may_create(dir, dentry);
3329 
3330 	if (error)
3331 		return error;
3332 
3333 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3334 		return -EPERM;
3335 
3336 	if (!dir->i_op->mknod)
3337 		return -EPERM;
3338 
3339 	error = devcgroup_inode_mknod(mode, dev);
3340 	if (error)
3341 		return error;
3342 
3343 	error = security_inode_mknod(dir, dentry, mode, dev);
3344 	if (error)
3345 		return error;
3346 
3347 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3348 	if (!error)
3349 		fsnotify_create(dir, dentry);
3350 	return error;
3351 }
3352 
3353 static int may_mknod(umode_t mode)
3354 {
3355 	switch (mode & S_IFMT) {
3356 	case S_IFREG:
3357 	case S_IFCHR:
3358 	case S_IFBLK:
3359 	case S_IFIFO:
3360 	case S_IFSOCK:
3361 	case 0: /* zero mode translates to S_IFREG */
3362 		return 0;
3363 	case S_IFDIR:
3364 		return -EPERM;
3365 	default:
3366 		return -EINVAL;
3367 	}
3368 }
3369 
3370 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3371 		unsigned, dev)
3372 {
3373 	struct dentry *dentry;
3374 	struct path path;
3375 	int error;
3376 	unsigned int lookup_flags = 0;
3377 
3378 	error = may_mknod(mode);
3379 	if (error)
3380 		return error;
3381 retry:
3382 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3383 	if (IS_ERR(dentry))
3384 		return PTR_ERR(dentry);
3385 
3386 	if (!IS_POSIXACL(path.dentry->d_inode))
3387 		mode &= ~current_umask();
3388 	error = security_path_mknod(&path, dentry, mode, dev);
3389 	if (error)
3390 		goto out;
3391 	switch (mode & S_IFMT) {
3392 		case 0: case S_IFREG:
3393 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3394 			break;
3395 		case S_IFCHR: case S_IFBLK:
3396 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3397 					new_decode_dev(dev));
3398 			break;
3399 		case S_IFIFO: case S_IFSOCK:
3400 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3401 			break;
3402 	}
3403 out:
3404 	done_path_create(&path, dentry);
3405 	if (retry_estale(error, lookup_flags)) {
3406 		lookup_flags |= LOOKUP_REVAL;
3407 		goto retry;
3408 	}
3409 	return error;
3410 }
3411 
3412 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3413 {
3414 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3415 }
3416 
3417 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3418 {
3419 	int error = may_create(dir, dentry);
3420 	unsigned max_links = dir->i_sb->s_max_links;
3421 
3422 	if (error)
3423 		return error;
3424 
3425 	if (!dir->i_op->mkdir)
3426 		return -EPERM;
3427 
3428 	mode &= (S_IRWXUGO|S_ISVTX);
3429 	error = security_inode_mkdir(dir, dentry, mode);
3430 	if (error)
3431 		return error;
3432 
3433 	if (max_links && dir->i_nlink >= max_links)
3434 		return -EMLINK;
3435 
3436 	error = dir->i_op->mkdir(dir, dentry, mode);
3437 	if (!error)
3438 		fsnotify_mkdir(dir, dentry);
3439 	return error;
3440 }
3441 
3442 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3443 {
3444 	struct dentry *dentry;
3445 	struct path path;
3446 	int error;
3447 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3448 
3449 retry:
3450 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3451 	if (IS_ERR(dentry))
3452 		return PTR_ERR(dentry);
3453 
3454 	if (!IS_POSIXACL(path.dentry->d_inode))
3455 		mode &= ~current_umask();
3456 	error = security_path_mkdir(&path, dentry, mode);
3457 	if (!error)
3458 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3459 	done_path_create(&path, dentry);
3460 	if (retry_estale(error, lookup_flags)) {
3461 		lookup_flags |= LOOKUP_REVAL;
3462 		goto retry;
3463 	}
3464 	return error;
3465 }
3466 
3467 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3468 {
3469 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3470 }
3471 
3472 /*
3473  * The dentry_unhash() helper will try to drop the dentry early: we
3474  * should have a usage count of 1 if we're the only user of this
3475  * dentry, and if that is true (possibly after pruning the dcache),
3476  * then we drop the dentry now.
3477  *
3478  * A low-level filesystem can, if it choses, legally
3479  * do a
3480  *
3481  *	if (!d_unhashed(dentry))
3482  *		return -EBUSY;
3483  *
3484  * if it cannot handle the case of removing a directory
3485  * that is still in use by something else..
3486  */
3487 void dentry_unhash(struct dentry *dentry)
3488 {
3489 	shrink_dcache_parent(dentry);
3490 	spin_lock(&dentry->d_lock);
3491 	if (dentry->d_lockref.count == 1)
3492 		__d_drop(dentry);
3493 	spin_unlock(&dentry->d_lock);
3494 }
3495 
3496 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3497 {
3498 	int error = may_delete(dir, dentry, 1);
3499 
3500 	if (error)
3501 		return error;
3502 
3503 	if (!dir->i_op->rmdir)
3504 		return -EPERM;
3505 
3506 	dget(dentry);
3507 	mutex_lock(&dentry->d_inode->i_mutex);
3508 
3509 	error = -EBUSY;
3510 	if (d_mountpoint(dentry))
3511 		goto out;
3512 
3513 	error = security_inode_rmdir(dir, dentry);
3514 	if (error)
3515 		goto out;
3516 
3517 	shrink_dcache_parent(dentry);
3518 	error = dir->i_op->rmdir(dir, dentry);
3519 	if (error)
3520 		goto out;
3521 
3522 	dentry->d_inode->i_flags |= S_DEAD;
3523 	dont_mount(dentry);
3524 
3525 out:
3526 	mutex_unlock(&dentry->d_inode->i_mutex);
3527 	dput(dentry);
3528 	if (!error)
3529 		d_delete(dentry);
3530 	return error;
3531 }
3532 
3533 static long do_rmdir(int dfd, const char __user *pathname)
3534 {
3535 	int error = 0;
3536 	struct filename *name;
3537 	struct dentry *dentry;
3538 	struct nameidata nd;
3539 	unsigned int lookup_flags = 0;
3540 retry:
3541 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3542 	if (IS_ERR(name))
3543 		return PTR_ERR(name);
3544 
3545 	switch(nd.last_type) {
3546 	case LAST_DOTDOT:
3547 		error = -ENOTEMPTY;
3548 		goto exit1;
3549 	case LAST_DOT:
3550 		error = -EINVAL;
3551 		goto exit1;
3552 	case LAST_ROOT:
3553 		error = -EBUSY;
3554 		goto exit1;
3555 	}
3556 
3557 	nd.flags &= ~LOOKUP_PARENT;
3558 	error = mnt_want_write(nd.path.mnt);
3559 	if (error)
3560 		goto exit1;
3561 
3562 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3563 	dentry = lookup_hash(&nd);
3564 	error = PTR_ERR(dentry);
3565 	if (IS_ERR(dentry))
3566 		goto exit2;
3567 	if (!dentry->d_inode) {
3568 		error = -ENOENT;
3569 		goto exit3;
3570 	}
3571 	error = security_path_rmdir(&nd.path, dentry);
3572 	if (error)
3573 		goto exit3;
3574 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3575 exit3:
3576 	dput(dentry);
3577 exit2:
3578 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3579 	mnt_drop_write(nd.path.mnt);
3580 exit1:
3581 	path_put(&nd.path);
3582 	putname(name);
3583 	if (retry_estale(error, lookup_flags)) {
3584 		lookup_flags |= LOOKUP_REVAL;
3585 		goto retry;
3586 	}
3587 	return error;
3588 }
3589 
3590 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3591 {
3592 	return do_rmdir(AT_FDCWD, pathname);
3593 }
3594 
3595 /**
3596  * vfs_unlink - unlink a filesystem object
3597  * @dir:	parent directory
3598  * @dentry:	victim
3599  * @delegated_inode: returns victim inode, if the inode is delegated.
3600  *
3601  * The caller must hold dir->i_mutex.
3602  *
3603  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3604  * return a reference to the inode in delegated_inode.  The caller
3605  * should then break the delegation on that inode and retry.  Because
3606  * breaking a delegation may take a long time, the caller should drop
3607  * dir->i_mutex before doing so.
3608  *
3609  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3610  * be appropriate for callers that expect the underlying filesystem not
3611  * to be NFS exported.
3612  */
3613 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3614 {
3615 	struct inode *target = dentry->d_inode;
3616 	int error = may_delete(dir, dentry, 0);
3617 
3618 	if (error)
3619 		return error;
3620 
3621 	if (!dir->i_op->unlink)
3622 		return -EPERM;
3623 
3624 	mutex_lock(&target->i_mutex);
3625 	if (d_mountpoint(dentry))
3626 		error = -EBUSY;
3627 	else {
3628 		error = security_inode_unlink(dir, dentry);
3629 		if (!error) {
3630 			error = try_break_deleg(target, delegated_inode);
3631 			if (error)
3632 				goto out;
3633 			error = dir->i_op->unlink(dir, dentry);
3634 			if (!error)
3635 				dont_mount(dentry);
3636 		}
3637 	}
3638 out:
3639 	mutex_unlock(&target->i_mutex);
3640 
3641 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3642 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3643 		fsnotify_link_count(target);
3644 		d_delete(dentry);
3645 	}
3646 
3647 	return error;
3648 }
3649 
3650 /*
3651  * Make sure that the actual truncation of the file will occur outside its
3652  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3653  * writeout happening, and we don't want to prevent access to the directory
3654  * while waiting on the I/O.
3655  */
3656 static long do_unlinkat(int dfd, const char __user *pathname)
3657 {
3658 	int error;
3659 	struct filename *name;
3660 	struct dentry *dentry;
3661 	struct nameidata nd;
3662 	struct inode *inode = NULL;
3663 	struct inode *delegated_inode = NULL;
3664 	unsigned int lookup_flags = 0;
3665 retry:
3666 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3667 	if (IS_ERR(name))
3668 		return PTR_ERR(name);
3669 
3670 	error = -EISDIR;
3671 	if (nd.last_type != LAST_NORM)
3672 		goto exit1;
3673 
3674 	nd.flags &= ~LOOKUP_PARENT;
3675 	error = mnt_want_write(nd.path.mnt);
3676 	if (error)
3677 		goto exit1;
3678 retry_deleg:
3679 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3680 	dentry = lookup_hash(&nd);
3681 	error = PTR_ERR(dentry);
3682 	if (!IS_ERR(dentry)) {
3683 		/* Why not before? Because we want correct error value */
3684 		if (nd.last.name[nd.last.len])
3685 			goto slashes;
3686 		inode = dentry->d_inode;
3687 		if (d_is_negative(dentry))
3688 			goto slashes;
3689 		ihold(inode);
3690 		error = security_path_unlink(&nd.path, dentry);
3691 		if (error)
3692 			goto exit2;
3693 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3694 exit2:
3695 		dput(dentry);
3696 	}
3697 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3698 	if (inode)
3699 		iput(inode);	/* truncate the inode here */
3700 	inode = NULL;
3701 	if (delegated_inode) {
3702 		error = break_deleg_wait(&delegated_inode);
3703 		if (!error)
3704 			goto retry_deleg;
3705 	}
3706 	mnt_drop_write(nd.path.mnt);
3707 exit1:
3708 	path_put(&nd.path);
3709 	putname(name);
3710 	if (retry_estale(error, lookup_flags)) {
3711 		lookup_flags |= LOOKUP_REVAL;
3712 		inode = NULL;
3713 		goto retry;
3714 	}
3715 	return error;
3716 
3717 slashes:
3718 	if (d_is_negative(dentry))
3719 		error = -ENOENT;
3720 	else if (d_is_directory(dentry) || d_is_autodir(dentry))
3721 		error = -EISDIR;
3722 	else
3723 		error = -ENOTDIR;
3724 	goto exit2;
3725 }
3726 
3727 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3728 {
3729 	if ((flag & ~AT_REMOVEDIR) != 0)
3730 		return -EINVAL;
3731 
3732 	if (flag & AT_REMOVEDIR)
3733 		return do_rmdir(dfd, pathname);
3734 
3735 	return do_unlinkat(dfd, pathname);
3736 }
3737 
3738 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3739 {
3740 	return do_unlinkat(AT_FDCWD, pathname);
3741 }
3742 
3743 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3744 {
3745 	int error = may_create(dir, dentry);
3746 
3747 	if (error)
3748 		return error;
3749 
3750 	if (!dir->i_op->symlink)
3751 		return -EPERM;
3752 
3753 	error = security_inode_symlink(dir, dentry, oldname);
3754 	if (error)
3755 		return error;
3756 
3757 	error = dir->i_op->symlink(dir, dentry, oldname);
3758 	if (!error)
3759 		fsnotify_create(dir, dentry);
3760 	return error;
3761 }
3762 
3763 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3764 		int, newdfd, const char __user *, newname)
3765 {
3766 	int error;
3767 	struct filename *from;
3768 	struct dentry *dentry;
3769 	struct path path;
3770 	unsigned int lookup_flags = 0;
3771 
3772 	from = getname(oldname);
3773 	if (IS_ERR(from))
3774 		return PTR_ERR(from);
3775 retry:
3776 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3777 	error = PTR_ERR(dentry);
3778 	if (IS_ERR(dentry))
3779 		goto out_putname;
3780 
3781 	error = security_path_symlink(&path, dentry, from->name);
3782 	if (!error)
3783 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3784 	done_path_create(&path, dentry);
3785 	if (retry_estale(error, lookup_flags)) {
3786 		lookup_flags |= LOOKUP_REVAL;
3787 		goto retry;
3788 	}
3789 out_putname:
3790 	putname(from);
3791 	return error;
3792 }
3793 
3794 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3795 {
3796 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3797 }
3798 
3799 /**
3800  * vfs_link - create a new link
3801  * @old_dentry:	object to be linked
3802  * @dir:	new parent
3803  * @new_dentry:	where to create the new link
3804  * @delegated_inode: returns inode needing a delegation break
3805  *
3806  * The caller must hold dir->i_mutex
3807  *
3808  * If vfs_link discovers a delegation on the to-be-linked file in need
3809  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3810  * inode in delegated_inode.  The caller should then break the delegation
3811  * and retry.  Because breaking a delegation may take a long time, the
3812  * caller should drop the i_mutex before doing so.
3813  *
3814  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3815  * be appropriate for callers that expect the underlying filesystem not
3816  * to be NFS exported.
3817  */
3818 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3819 {
3820 	struct inode *inode = old_dentry->d_inode;
3821 	unsigned max_links = dir->i_sb->s_max_links;
3822 	int error;
3823 
3824 	if (!inode)
3825 		return -ENOENT;
3826 
3827 	error = may_create(dir, new_dentry);
3828 	if (error)
3829 		return error;
3830 
3831 	if (dir->i_sb != inode->i_sb)
3832 		return -EXDEV;
3833 
3834 	/*
3835 	 * A link to an append-only or immutable file cannot be created.
3836 	 */
3837 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3838 		return -EPERM;
3839 	if (!dir->i_op->link)
3840 		return -EPERM;
3841 	if (S_ISDIR(inode->i_mode))
3842 		return -EPERM;
3843 
3844 	error = security_inode_link(old_dentry, dir, new_dentry);
3845 	if (error)
3846 		return error;
3847 
3848 	mutex_lock(&inode->i_mutex);
3849 	/* Make sure we don't allow creating hardlink to an unlinked file */
3850 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3851 		error =  -ENOENT;
3852 	else if (max_links && inode->i_nlink >= max_links)
3853 		error = -EMLINK;
3854 	else {
3855 		error = try_break_deleg(inode, delegated_inode);
3856 		if (!error)
3857 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3858 	}
3859 
3860 	if (!error && (inode->i_state & I_LINKABLE)) {
3861 		spin_lock(&inode->i_lock);
3862 		inode->i_state &= ~I_LINKABLE;
3863 		spin_unlock(&inode->i_lock);
3864 	}
3865 	mutex_unlock(&inode->i_mutex);
3866 	if (!error)
3867 		fsnotify_link(dir, inode, new_dentry);
3868 	return error;
3869 }
3870 
3871 /*
3872  * Hardlinks are often used in delicate situations.  We avoid
3873  * security-related surprises by not following symlinks on the
3874  * newname.  --KAB
3875  *
3876  * We don't follow them on the oldname either to be compatible
3877  * with linux 2.0, and to avoid hard-linking to directories
3878  * and other special files.  --ADM
3879  */
3880 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3881 		int, newdfd, const char __user *, newname, int, flags)
3882 {
3883 	struct dentry *new_dentry;
3884 	struct path old_path, new_path;
3885 	struct inode *delegated_inode = NULL;
3886 	int how = 0;
3887 	int error;
3888 
3889 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3890 		return -EINVAL;
3891 	/*
3892 	 * To use null names we require CAP_DAC_READ_SEARCH
3893 	 * This ensures that not everyone will be able to create
3894 	 * handlink using the passed filedescriptor.
3895 	 */
3896 	if (flags & AT_EMPTY_PATH) {
3897 		if (!capable(CAP_DAC_READ_SEARCH))
3898 			return -ENOENT;
3899 		how = LOOKUP_EMPTY;
3900 	}
3901 
3902 	if (flags & AT_SYMLINK_FOLLOW)
3903 		how |= LOOKUP_FOLLOW;
3904 retry:
3905 	error = user_path_at(olddfd, oldname, how, &old_path);
3906 	if (error)
3907 		return error;
3908 
3909 	new_dentry = user_path_create(newdfd, newname, &new_path,
3910 					(how & LOOKUP_REVAL));
3911 	error = PTR_ERR(new_dentry);
3912 	if (IS_ERR(new_dentry))
3913 		goto out;
3914 
3915 	error = -EXDEV;
3916 	if (old_path.mnt != new_path.mnt)
3917 		goto out_dput;
3918 	error = may_linkat(&old_path);
3919 	if (unlikely(error))
3920 		goto out_dput;
3921 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3922 	if (error)
3923 		goto out_dput;
3924 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3925 out_dput:
3926 	done_path_create(&new_path, new_dentry);
3927 	if (delegated_inode) {
3928 		error = break_deleg_wait(&delegated_inode);
3929 		if (!error) {
3930 			path_put(&old_path);
3931 			goto retry;
3932 		}
3933 	}
3934 	if (retry_estale(error, how)) {
3935 		path_put(&old_path);
3936 		how |= LOOKUP_REVAL;
3937 		goto retry;
3938 	}
3939 out:
3940 	path_put(&old_path);
3941 
3942 	return error;
3943 }
3944 
3945 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3946 {
3947 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3948 }
3949 
3950 /*
3951  * The worst of all namespace operations - renaming directory. "Perverted"
3952  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3953  * Problems:
3954  *	a) we can get into loop creation. Check is done in is_subdir().
3955  *	b) race potential - two innocent renames can create a loop together.
3956  *	   That's where 4.4 screws up. Current fix: serialization on
3957  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3958  *	   story.
3959  *	c) we have to lock _four_ objects - parents and victim (if it exists),
3960  *	   and source (if it is not a directory).
3961  *	   And that - after we got ->i_mutex on parents (until then we don't know
3962  *	   whether the target exists).  Solution: try to be smart with locking
3963  *	   order for inodes.  We rely on the fact that tree topology may change
3964  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3965  *	   move will be locked.  Thus we can rank directories by the tree
3966  *	   (ancestors first) and rank all non-directories after them.
3967  *	   That works since everybody except rename does "lock parent, lookup,
3968  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3969  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3970  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3971  *	   we'd better make sure that there's no link(2) for them.
3972  *	d) conversion from fhandle to dentry may come in the wrong moment - when
3973  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3974  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3975  *	   ->i_mutex on parents, which works but leads to some truly excessive
3976  *	   locking].
3977  */
3978 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3979 			  struct inode *new_dir, struct dentry *new_dentry)
3980 {
3981 	int error = 0;
3982 	struct inode *target = new_dentry->d_inode;
3983 	unsigned max_links = new_dir->i_sb->s_max_links;
3984 
3985 	/*
3986 	 * If we are going to change the parent - check write permissions,
3987 	 * we'll need to flip '..'.
3988 	 */
3989 	if (new_dir != old_dir) {
3990 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3991 		if (error)
3992 			return error;
3993 	}
3994 
3995 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3996 	if (error)
3997 		return error;
3998 
3999 	dget(new_dentry);
4000 	if (target)
4001 		mutex_lock(&target->i_mutex);
4002 
4003 	error = -EBUSY;
4004 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4005 		goto out;
4006 
4007 	error = -EMLINK;
4008 	if (max_links && !target && new_dir != old_dir &&
4009 	    new_dir->i_nlink >= max_links)
4010 		goto out;
4011 
4012 	if (target)
4013 		shrink_dcache_parent(new_dentry);
4014 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4015 	if (error)
4016 		goto out;
4017 
4018 	if (target) {
4019 		target->i_flags |= S_DEAD;
4020 		dont_mount(new_dentry);
4021 	}
4022 out:
4023 	if (target)
4024 		mutex_unlock(&target->i_mutex);
4025 	dput(new_dentry);
4026 	if (!error)
4027 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4028 			d_move(old_dentry,new_dentry);
4029 	return error;
4030 }
4031 
4032 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4033 			    struct inode *new_dir, struct dentry *new_dentry,
4034 			    struct inode **delegated_inode)
4035 {
4036 	struct inode *target = new_dentry->d_inode;
4037 	struct inode *source = old_dentry->d_inode;
4038 	int error;
4039 
4040 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4041 	if (error)
4042 		return error;
4043 
4044 	dget(new_dentry);
4045 	lock_two_nondirectories(source, target);
4046 
4047 	error = -EBUSY;
4048 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4049 		goto out;
4050 
4051 	error = try_break_deleg(source, delegated_inode);
4052 	if (error)
4053 		goto out;
4054 	if (target) {
4055 		error = try_break_deleg(target, delegated_inode);
4056 		if (error)
4057 			goto out;
4058 	}
4059 	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4060 	if (error)
4061 		goto out;
4062 
4063 	if (target)
4064 		dont_mount(new_dentry);
4065 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4066 		d_move(old_dentry, new_dentry);
4067 out:
4068 	unlock_two_nondirectories(source, target);
4069 	dput(new_dentry);
4070 	return error;
4071 }
4072 
4073 /**
4074  * vfs_rename - rename a filesystem object
4075  * @old_dir:	parent of source
4076  * @old_dentry:	source
4077  * @new_dir:	parent of destination
4078  * @new_dentry:	destination
4079  * @delegated_inode: returns an inode needing a delegation break
4080  *
4081  * The caller must hold multiple mutexes--see lock_rename()).
4082  *
4083  * If vfs_rename discovers a delegation in need of breaking at either
4084  * the source or destination, it will return -EWOULDBLOCK and return a
4085  * reference to the inode in delegated_inode.  The caller should then
4086  * break the delegation and retry.  Because breaking a delegation may
4087  * take a long time, the caller should drop all locks before doing
4088  * so.
4089  *
4090  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4091  * be appropriate for callers that expect the underlying filesystem not
4092  * to be NFS exported.
4093  */
4094 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4095 	       struct inode *new_dir, struct dentry *new_dentry,
4096 	       struct inode **delegated_inode)
4097 {
4098 	int error;
4099 	int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry);
4100 	const unsigned char *old_name;
4101 
4102 	if (old_dentry->d_inode == new_dentry->d_inode)
4103  		return 0;
4104 
4105 	error = may_delete(old_dir, old_dentry, is_dir);
4106 	if (error)
4107 		return error;
4108 
4109 	if (!new_dentry->d_inode)
4110 		error = may_create(new_dir, new_dentry);
4111 	else
4112 		error = may_delete(new_dir, new_dentry, is_dir);
4113 	if (error)
4114 		return error;
4115 
4116 	if (!old_dir->i_op->rename)
4117 		return -EPERM;
4118 
4119 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4120 
4121 	if (is_dir)
4122 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4123 	else
4124 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode);
4125 	if (!error)
4126 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4127 			      new_dentry->d_inode, old_dentry);
4128 	fsnotify_oldname_free(old_name);
4129 
4130 	return error;
4131 }
4132 
4133 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4134 		int, newdfd, const char __user *, newname)
4135 {
4136 	struct dentry *old_dir, *new_dir;
4137 	struct dentry *old_dentry, *new_dentry;
4138 	struct dentry *trap;
4139 	struct nameidata oldnd, newnd;
4140 	struct inode *delegated_inode = NULL;
4141 	struct filename *from;
4142 	struct filename *to;
4143 	unsigned int lookup_flags = 0;
4144 	bool should_retry = false;
4145 	int error;
4146 retry:
4147 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4148 	if (IS_ERR(from)) {
4149 		error = PTR_ERR(from);
4150 		goto exit;
4151 	}
4152 
4153 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4154 	if (IS_ERR(to)) {
4155 		error = PTR_ERR(to);
4156 		goto exit1;
4157 	}
4158 
4159 	error = -EXDEV;
4160 	if (oldnd.path.mnt != newnd.path.mnt)
4161 		goto exit2;
4162 
4163 	old_dir = oldnd.path.dentry;
4164 	error = -EBUSY;
4165 	if (oldnd.last_type != LAST_NORM)
4166 		goto exit2;
4167 
4168 	new_dir = newnd.path.dentry;
4169 	if (newnd.last_type != LAST_NORM)
4170 		goto exit2;
4171 
4172 	error = mnt_want_write(oldnd.path.mnt);
4173 	if (error)
4174 		goto exit2;
4175 
4176 	oldnd.flags &= ~LOOKUP_PARENT;
4177 	newnd.flags &= ~LOOKUP_PARENT;
4178 	newnd.flags |= LOOKUP_RENAME_TARGET;
4179 
4180 retry_deleg:
4181 	trap = lock_rename(new_dir, old_dir);
4182 
4183 	old_dentry = lookup_hash(&oldnd);
4184 	error = PTR_ERR(old_dentry);
4185 	if (IS_ERR(old_dentry))
4186 		goto exit3;
4187 	/* source must exist */
4188 	error = -ENOENT;
4189 	if (d_is_negative(old_dentry))
4190 		goto exit4;
4191 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4192 	if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) {
4193 		error = -ENOTDIR;
4194 		if (oldnd.last.name[oldnd.last.len])
4195 			goto exit4;
4196 		if (newnd.last.name[newnd.last.len])
4197 			goto exit4;
4198 	}
4199 	/* source should not be ancestor of target */
4200 	error = -EINVAL;
4201 	if (old_dentry == trap)
4202 		goto exit4;
4203 	new_dentry = lookup_hash(&newnd);
4204 	error = PTR_ERR(new_dentry);
4205 	if (IS_ERR(new_dentry))
4206 		goto exit4;
4207 	/* target should not be an ancestor of source */
4208 	error = -ENOTEMPTY;
4209 	if (new_dentry == trap)
4210 		goto exit5;
4211 
4212 	error = security_path_rename(&oldnd.path, old_dentry,
4213 				     &newnd.path, new_dentry);
4214 	if (error)
4215 		goto exit5;
4216 	error = vfs_rename(old_dir->d_inode, old_dentry,
4217 				   new_dir->d_inode, new_dentry,
4218 				   &delegated_inode);
4219 exit5:
4220 	dput(new_dentry);
4221 exit4:
4222 	dput(old_dentry);
4223 exit3:
4224 	unlock_rename(new_dir, old_dir);
4225 	if (delegated_inode) {
4226 		error = break_deleg_wait(&delegated_inode);
4227 		if (!error)
4228 			goto retry_deleg;
4229 	}
4230 	mnt_drop_write(oldnd.path.mnt);
4231 exit2:
4232 	if (retry_estale(error, lookup_flags))
4233 		should_retry = true;
4234 	path_put(&newnd.path);
4235 	putname(to);
4236 exit1:
4237 	path_put(&oldnd.path);
4238 	putname(from);
4239 	if (should_retry) {
4240 		should_retry = false;
4241 		lookup_flags |= LOOKUP_REVAL;
4242 		goto retry;
4243 	}
4244 exit:
4245 	return error;
4246 }
4247 
4248 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4249 {
4250 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4251 }
4252 
4253 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4254 {
4255 	int len;
4256 
4257 	len = PTR_ERR(link);
4258 	if (IS_ERR(link))
4259 		goto out;
4260 
4261 	len = strlen(link);
4262 	if (len > (unsigned) buflen)
4263 		len = buflen;
4264 	if (copy_to_user(buffer, link, len))
4265 		len = -EFAULT;
4266 out:
4267 	return len;
4268 }
4269 
4270 /*
4271  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4272  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4273  * using) it for any given inode is up to filesystem.
4274  */
4275 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4276 {
4277 	struct nameidata nd;
4278 	void *cookie;
4279 	int res;
4280 
4281 	nd.depth = 0;
4282 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4283 	if (IS_ERR(cookie))
4284 		return PTR_ERR(cookie);
4285 
4286 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4287 	if (dentry->d_inode->i_op->put_link)
4288 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4289 	return res;
4290 }
4291 
4292 /* get the link contents into pagecache */
4293 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4294 {
4295 	char *kaddr;
4296 	struct page *page;
4297 	struct address_space *mapping = dentry->d_inode->i_mapping;
4298 	page = read_mapping_page(mapping, 0, NULL);
4299 	if (IS_ERR(page))
4300 		return (char*)page;
4301 	*ppage = page;
4302 	kaddr = kmap(page);
4303 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4304 	return kaddr;
4305 }
4306 
4307 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4308 {
4309 	struct page *page = NULL;
4310 	char *s = page_getlink(dentry, &page);
4311 	int res = vfs_readlink(dentry,buffer,buflen,s);
4312 	if (page) {
4313 		kunmap(page);
4314 		page_cache_release(page);
4315 	}
4316 	return res;
4317 }
4318 
4319 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4320 {
4321 	struct page *page = NULL;
4322 	nd_set_link(nd, page_getlink(dentry, &page));
4323 	return page;
4324 }
4325 
4326 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4327 {
4328 	struct page *page = cookie;
4329 
4330 	if (page) {
4331 		kunmap(page);
4332 		page_cache_release(page);
4333 	}
4334 }
4335 
4336 /*
4337  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4338  */
4339 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4340 {
4341 	struct address_space *mapping = inode->i_mapping;
4342 	struct page *page;
4343 	void *fsdata;
4344 	int err;
4345 	char *kaddr;
4346 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4347 	if (nofs)
4348 		flags |= AOP_FLAG_NOFS;
4349 
4350 retry:
4351 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4352 				flags, &page, &fsdata);
4353 	if (err)
4354 		goto fail;
4355 
4356 	kaddr = kmap_atomic(page);
4357 	memcpy(kaddr, symname, len-1);
4358 	kunmap_atomic(kaddr);
4359 
4360 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4361 							page, fsdata);
4362 	if (err < 0)
4363 		goto fail;
4364 	if (err < len-1)
4365 		goto retry;
4366 
4367 	mark_inode_dirty(inode);
4368 	return 0;
4369 fail:
4370 	return err;
4371 }
4372 
4373 int page_symlink(struct inode *inode, const char *symname, int len)
4374 {
4375 	return __page_symlink(inode, symname, len,
4376 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4377 }
4378 
4379 const struct inode_operations page_symlink_inode_operations = {
4380 	.readlink	= generic_readlink,
4381 	.follow_link	= page_follow_link_light,
4382 	.put_link	= page_put_link,
4383 };
4384 
4385 EXPORT_SYMBOL(user_path_at);
4386 EXPORT_SYMBOL(follow_down_one);
4387 EXPORT_SYMBOL(follow_down);
4388 EXPORT_SYMBOL(follow_up);
4389 EXPORT_SYMBOL(get_write_access); /* nfsd */
4390 EXPORT_SYMBOL(lock_rename);
4391 EXPORT_SYMBOL(lookup_one_len);
4392 EXPORT_SYMBOL(page_follow_link_light);
4393 EXPORT_SYMBOL(page_put_link);
4394 EXPORT_SYMBOL(page_readlink);
4395 EXPORT_SYMBOL(__page_symlink);
4396 EXPORT_SYMBOL(page_symlink);
4397 EXPORT_SYMBOL(page_symlink_inode_operations);
4398 EXPORT_SYMBOL(kern_path);
4399 EXPORT_SYMBOL(vfs_path_lookup);
4400 EXPORT_SYMBOL(inode_permission);
4401 EXPORT_SYMBOL(unlock_rename);
4402 EXPORT_SYMBOL(vfs_create);
4403 EXPORT_SYMBOL(vfs_link);
4404 EXPORT_SYMBOL(vfs_mkdir);
4405 EXPORT_SYMBOL(vfs_mknod);
4406 EXPORT_SYMBOL(generic_permission);
4407 EXPORT_SYMBOL(vfs_readlink);
4408 EXPORT_SYMBOL(vfs_rename);
4409 EXPORT_SYMBOL(vfs_rmdir);
4410 EXPORT_SYMBOL(vfs_symlink);
4411 EXPORT_SYMBOL(vfs_unlink);
4412 EXPORT_SYMBOL(dentry_unhash);
4413 EXPORT_SYMBOL(generic_readlink);
4414