1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <asm/uaccess.h> 38 39 #include "internal.h" 40 #include "mount.h" 41 42 /* [Feb-1997 T. Schoebel-Theuer] 43 * Fundamental changes in the pathname lookup mechanisms (namei) 44 * were necessary because of omirr. The reason is that omirr needs 45 * to know the _real_ pathname, not the user-supplied one, in case 46 * of symlinks (and also when transname replacements occur). 47 * 48 * The new code replaces the old recursive symlink resolution with 49 * an iterative one (in case of non-nested symlink chains). It does 50 * this with calls to <fs>_follow_link(). 51 * As a side effect, dir_namei(), _namei() and follow_link() are now 52 * replaced with a single function lookup_dentry() that can handle all 53 * the special cases of the former code. 54 * 55 * With the new dcache, the pathname is stored at each inode, at least as 56 * long as the refcount of the inode is positive. As a side effect, the 57 * size of the dcache depends on the inode cache and thus is dynamic. 58 * 59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 60 * resolution to correspond with current state of the code. 61 * 62 * Note that the symlink resolution is not *completely* iterative. 63 * There is still a significant amount of tail- and mid- recursion in 64 * the algorithm. Also, note that <fs>_readlink() is not used in 65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 66 * may return different results than <fs>_follow_link(). Many virtual 67 * filesystems (including /proc) exhibit this behavior. 68 */ 69 70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 72 * and the name already exists in form of a symlink, try to create the new 73 * name indicated by the symlink. The old code always complained that the 74 * name already exists, due to not following the symlink even if its target 75 * is nonexistent. The new semantics affects also mknod() and link() when 76 * the name is a symlink pointing to a non-existent name. 77 * 78 * I don't know which semantics is the right one, since I have no access 79 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 81 * "old" one. Personally, I think the new semantics is much more logical. 82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 83 * file does succeed in both HP-UX and SunOs, but not in Solaris 84 * and in the old Linux semantics. 85 */ 86 87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 88 * semantics. See the comments in "open_namei" and "do_link" below. 89 * 90 * [10-Sep-98 Alan Modra] Another symlink change. 91 */ 92 93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 94 * inside the path - always follow. 95 * in the last component in creation/removal/renaming - never follow. 96 * if LOOKUP_FOLLOW passed - follow. 97 * if the pathname has trailing slashes - follow. 98 * otherwise - don't follow. 99 * (applied in that order). 100 * 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 103 * During the 2.4 we need to fix the userland stuff depending on it - 104 * hopefully we will be able to get rid of that wart in 2.5. So far only 105 * XEmacs seems to be relying on it... 106 */ 107 /* 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 110 * any extra contention... 111 */ 112 113 /* In order to reduce some races, while at the same time doing additional 114 * checking and hopefully speeding things up, we copy filenames to the 115 * kernel data space before using them.. 116 * 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 118 * PATH_MAX includes the nul terminator --RR. 119 */ 120 void final_putname(struct filename *name) 121 { 122 if (name->separate) { 123 __putname(name->name); 124 kfree(name); 125 } else { 126 __putname(name); 127 } 128 } 129 130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 131 132 static struct filename * 133 getname_flags(const char __user *filename, int flags, int *empty) 134 { 135 struct filename *result, *err; 136 int len; 137 long max; 138 char *kname; 139 140 result = audit_reusename(filename); 141 if (result) 142 return result; 143 144 result = __getname(); 145 if (unlikely(!result)) 146 return ERR_PTR(-ENOMEM); 147 148 /* 149 * First, try to embed the struct filename inside the names_cache 150 * allocation 151 */ 152 kname = (char *)result + sizeof(*result); 153 result->name = kname; 154 result->separate = false; 155 max = EMBEDDED_NAME_MAX; 156 157 recopy: 158 len = strncpy_from_user(kname, filename, max); 159 if (unlikely(len < 0)) { 160 err = ERR_PTR(len); 161 goto error; 162 } 163 164 /* 165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 166 * separate struct filename so we can dedicate the entire 167 * names_cache allocation for the pathname, and re-do the copy from 168 * userland. 169 */ 170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 171 kname = (char *)result; 172 173 result = kzalloc(sizeof(*result), GFP_KERNEL); 174 if (!result) { 175 err = ERR_PTR(-ENOMEM); 176 result = (struct filename *)kname; 177 goto error; 178 } 179 result->name = kname; 180 result->separate = true; 181 max = PATH_MAX; 182 goto recopy; 183 } 184 185 /* The empty path is special. */ 186 if (unlikely(!len)) { 187 if (empty) 188 *empty = 1; 189 err = ERR_PTR(-ENOENT); 190 if (!(flags & LOOKUP_EMPTY)) 191 goto error; 192 } 193 194 err = ERR_PTR(-ENAMETOOLONG); 195 if (unlikely(len >= PATH_MAX)) 196 goto error; 197 198 result->uptr = filename; 199 audit_getname(result); 200 return result; 201 202 error: 203 final_putname(result); 204 return err; 205 } 206 207 struct filename * 208 getname(const char __user * filename) 209 { 210 return getname_flags(filename, 0, NULL); 211 } 212 213 #ifdef CONFIG_AUDITSYSCALL 214 void putname(struct filename *name) 215 { 216 if (unlikely(!audit_dummy_context())) 217 return audit_putname(name); 218 final_putname(name); 219 } 220 #endif 221 222 static int check_acl(struct inode *inode, int mask) 223 { 224 #ifdef CONFIG_FS_POSIX_ACL 225 struct posix_acl *acl; 226 227 if (mask & MAY_NOT_BLOCK) { 228 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 229 if (!acl) 230 return -EAGAIN; 231 /* no ->get_acl() calls in RCU mode... */ 232 if (acl == ACL_NOT_CACHED) 233 return -ECHILD; 234 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 235 } 236 237 acl = get_acl(inode, ACL_TYPE_ACCESS); 238 if (IS_ERR(acl)) 239 return PTR_ERR(acl); 240 if (acl) { 241 int error = posix_acl_permission(inode, acl, mask); 242 posix_acl_release(acl); 243 return error; 244 } 245 #endif 246 247 return -EAGAIN; 248 } 249 250 /* 251 * This does the basic permission checking 252 */ 253 static int acl_permission_check(struct inode *inode, int mask) 254 { 255 unsigned int mode = inode->i_mode; 256 257 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 258 mode >>= 6; 259 else { 260 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 261 int error = check_acl(inode, mask); 262 if (error != -EAGAIN) 263 return error; 264 } 265 266 if (in_group_p(inode->i_gid)) 267 mode >>= 3; 268 } 269 270 /* 271 * If the DACs are ok we don't need any capability check. 272 */ 273 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 274 return 0; 275 return -EACCES; 276 } 277 278 /** 279 * generic_permission - check for access rights on a Posix-like filesystem 280 * @inode: inode to check access rights for 281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 282 * 283 * Used to check for read/write/execute permissions on a file. 284 * We use "fsuid" for this, letting us set arbitrary permissions 285 * for filesystem access without changing the "normal" uids which 286 * are used for other things. 287 * 288 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 289 * request cannot be satisfied (eg. requires blocking or too much complexity). 290 * It would then be called again in ref-walk mode. 291 */ 292 int generic_permission(struct inode *inode, int mask) 293 { 294 int ret; 295 296 /* 297 * Do the basic permission checks. 298 */ 299 ret = acl_permission_check(inode, mask); 300 if (ret != -EACCES) 301 return ret; 302 303 if (S_ISDIR(inode->i_mode)) { 304 /* DACs are overridable for directories */ 305 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 306 return 0; 307 if (!(mask & MAY_WRITE)) 308 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 309 return 0; 310 return -EACCES; 311 } 312 /* 313 * Read/write DACs are always overridable. 314 * Executable DACs are overridable when there is 315 * at least one exec bit set. 316 */ 317 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 318 if (inode_capable(inode, CAP_DAC_OVERRIDE)) 319 return 0; 320 321 /* 322 * Searching includes executable on directories, else just read. 323 */ 324 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 325 if (mask == MAY_READ) 326 if (inode_capable(inode, CAP_DAC_READ_SEARCH)) 327 return 0; 328 329 return -EACCES; 330 } 331 332 /* 333 * We _really_ want to just do "generic_permission()" without 334 * even looking at the inode->i_op values. So we keep a cache 335 * flag in inode->i_opflags, that says "this has not special 336 * permission function, use the fast case". 337 */ 338 static inline int do_inode_permission(struct inode *inode, int mask) 339 { 340 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 341 if (likely(inode->i_op->permission)) 342 return inode->i_op->permission(inode, mask); 343 344 /* This gets set once for the inode lifetime */ 345 spin_lock(&inode->i_lock); 346 inode->i_opflags |= IOP_FASTPERM; 347 spin_unlock(&inode->i_lock); 348 } 349 return generic_permission(inode, mask); 350 } 351 352 /** 353 * __inode_permission - Check for access rights to a given inode 354 * @inode: Inode to check permission on 355 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 356 * 357 * Check for read/write/execute permissions on an inode. 358 * 359 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 360 * 361 * This does not check for a read-only file system. You probably want 362 * inode_permission(). 363 */ 364 int __inode_permission(struct inode *inode, int mask) 365 { 366 int retval; 367 368 if (unlikely(mask & MAY_WRITE)) { 369 /* 370 * Nobody gets write access to an immutable file. 371 */ 372 if (IS_IMMUTABLE(inode)) 373 return -EACCES; 374 } 375 376 retval = do_inode_permission(inode, mask); 377 if (retval) 378 return retval; 379 380 retval = devcgroup_inode_permission(inode, mask); 381 if (retval) 382 return retval; 383 384 return security_inode_permission(inode, mask); 385 } 386 387 /** 388 * sb_permission - Check superblock-level permissions 389 * @sb: Superblock of inode to check permission on 390 * @inode: Inode to check permission on 391 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 392 * 393 * Separate out file-system wide checks from inode-specific permission checks. 394 */ 395 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 396 { 397 if (unlikely(mask & MAY_WRITE)) { 398 umode_t mode = inode->i_mode; 399 400 /* Nobody gets write access to a read-only fs. */ 401 if ((sb->s_flags & MS_RDONLY) && 402 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 403 return -EROFS; 404 } 405 return 0; 406 } 407 408 /** 409 * inode_permission - Check for access rights to a given inode 410 * @inode: Inode to check permission on 411 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 412 * 413 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 414 * this, letting us set arbitrary permissions for filesystem access without 415 * changing the "normal" UIDs which are used for other things. 416 * 417 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 418 */ 419 int inode_permission(struct inode *inode, int mask) 420 { 421 int retval; 422 423 retval = sb_permission(inode->i_sb, inode, mask); 424 if (retval) 425 return retval; 426 return __inode_permission(inode, mask); 427 } 428 429 /** 430 * path_get - get a reference to a path 431 * @path: path to get the reference to 432 * 433 * Given a path increment the reference count to the dentry and the vfsmount. 434 */ 435 void path_get(const struct path *path) 436 { 437 mntget(path->mnt); 438 dget(path->dentry); 439 } 440 EXPORT_SYMBOL(path_get); 441 442 /** 443 * path_put - put a reference to a path 444 * @path: path to put the reference to 445 * 446 * Given a path decrement the reference count to the dentry and the vfsmount. 447 */ 448 void path_put(const struct path *path) 449 { 450 dput(path->dentry); 451 mntput(path->mnt); 452 } 453 EXPORT_SYMBOL(path_put); 454 455 /* 456 * Path walking has 2 modes, rcu-walk and ref-walk (see 457 * Documentation/filesystems/path-lookup.txt). In situations when we can't 458 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 459 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 460 * mode. Refcounts are grabbed at the last known good point before rcu-walk 461 * got stuck, so ref-walk may continue from there. If this is not successful 462 * (eg. a seqcount has changed), then failure is returned and it's up to caller 463 * to restart the path walk from the beginning in ref-walk mode. 464 */ 465 466 /** 467 * unlazy_walk - try to switch to ref-walk mode. 468 * @nd: nameidata pathwalk data 469 * @dentry: child of nd->path.dentry or NULL 470 * Returns: 0 on success, -ECHILD on failure 471 * 472 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 473 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 474 * @nd or NULL. Must be called from rcu-walk context. 475 */ 476 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 477 { 478 struct fs_struct *fs = current->fs; 479 struct dentry *parent = nd->path.dentry; 480 481 BUG_ON(!(nd->flags & LOOKUP_RCU)); 482 483 /* 484 * After legitimizing the bastards, terminate_walk() 485 * will do the right thing for non-RCU mode, and all our 486 * subsequent exit cases should rcu_read_unlock() 487 * before returning. Do vfsmount first; if dentry 488 * can't be legitimized, just set nd->path.dentry to NULL 489 * and rely on dput(NULL) being a no-op. 490 */ 491 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 492 return -ECHILD; 493 nd->flags &= ~LOOKUP_RCU; 494 495 if (!lockref_get_not_dead(&parent->d_lockref)) { 496 nd->path.dentry = NULL; 497 goto out; 498 } 499 500 /* 501 * For a negative lookup, the lookup sequence point is the parents 502 * sequence point, and it only needs to revalidate the parent dentry. 503 * 504 * For a positive lookup, we need to move both the parent and the 505 * dentry from the RCU domain to be properly refcounted. And the 506 * sequence number in the dentry validates *both* dentry counters, 507 * since we checked the sequence number of the parent after we got 508 * the child sequence number. So we know the parent must still 509 * be valid if the child sequence number is still valid. 510 */ 511 if (!dentry) { 512 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 513 goto out; 514 BUG_ON(nd->inode != parent->d_inode); 515 } else { 516 if (!lockref_get_not_dead(&dentry->d_lockref)) 517 goto out; 518 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 519 goto drop_dentry; 520 } 521 522 /* 523 * Sequence counts matched. Now make sure that the root is 524 * still valid and get it if required. 525 */ 526 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 527 spin_lock(&fs->lock); 528 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 529 goto unlock_and_drop_dentry; 530 path_get(&nd->root); 531 spin_unlock(&fs->lock); 532 } 533 534 rcu_read_unlock(); 535 return 0; 536 537 unlock_and_drop_dentry: 538 spin_unlock(&fs->lock); 539 drop_dentry: 540 rcu_read_unlock(); 541 dput(dentry); 542 goto drop_root_mnt; 543 out: 544 rcu_read_unlock(); 545 drop_root_mnt: 546 if (!(nd->flags & LOOKUP_ROOT)) 547 nd->root.mnt = NULL; 548 return -ECHILD; 549 } 550 551 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 552 { 553 return dentry->d_op->d_revalidate(dentry, flags); 554 } 555 556 /** 557 * complete_walk - successful completion of path walk 558 * @nd: pointer nameidata 559 * 560 * If we had been in RCU mode, drop out of it and legitimize nd->path. 561 * Revalidate the final result, unless we'd already done that during 562 * the path walk or the filesystem doesn't ask for it. Return 0 on 563 * success, -error on failure. In case of failure caller does not 564 * need to drop nd->path. 565 */ 566 static int complete_walk(struct nameidata *nd) 567 { 568 struct dentry *dentry = nd->path.dentry; 569 int status; 570 571 if (nd->flags & LOOKUP_RCU) { 572 nd->flags &= ~LOOKUP_RCU; 573 if (!(nd->flags & LOOKUP_ROOT)) 574 nd->root.mnt = NULL; 575 576 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 577 rcu_read_unlock(); 578 return -ECHILD; 579 } 580 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 581 rcu_read_unlock(); 582 mntput(nd->path.mnt); 583 return -ECHILD; 584 } 585 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 586 rcu_read_unlock(); 587 dput(dentry); 588 mntput(nd->path.mnt); 589 return -ECHILD; 590 } 591 rcu_read_unlock(); 592 } 593 594 if (likely(!(nd->flags & LOOKUP_JUMPED))) 595 return 0; 596 597 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 598 return 0; 599 600 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 601 if (status > 0) 602 return 0; 603 604 if (!status) 605 status = -ESTALE; 606 607 path_put(&nd->path); 608 return status; 609 } 610 611 static __always_inline void set_root(struct nameidata *nd) 612 { 613 if (!nd->root.mnt) 614 get_fs_root(current->fs, &nd->root); 615 } 616 617 static int link_path_walk(const char *, struct nameidata *); 618 619 static __always_inline void set_root_rcu(struct nameidata *nd) 620 { 621 if (!nd->root.mnt) { 622 struct fs_struct *fs = current->fs; 623 unsigned seq; 624 625 do { 626 seq = read_seqcount_begin(&fs->seq); 627 nd->root = fs->root; 628 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 629 } while (read_seqcount_retry(&fs->seq, seq)); 630 } 631 } 632 633 static void path_put_conditional(struct path *path, struct nameidata *nd) 634 { 635 dput(path->dentry); 636 if (path->mnt != nd->path.mnt) 637 mntput(path->mnt); 638 } 639 640 static inline void path_to_nameidata(const struct path *path, 641 struct nameidata *nd) 642 { 643 if (!(nd->flags & LOOKUP_RCU)) { 644 dput(nd->path.dentry); 645 if (nd->path.mnt != path->mnt) 646 mntput(nd->path.mnt); 647 } 648 nd->path.mnt = path->mnt; 649 nd->path.dentry = path->dentry; 650 } 651 652 /* 653 * Helper to directly jump to a known parsed path from ->follow_link, 654 * caller must have taken a reference to path beforehand. 655 */ 656 void nd_jump_link(struct nameidata *nd, struct path *path) 657 { 658 path_put(&nd->path); 659 660 nd->path = *path; 661 nd->inode = nd->path.dentry->d_inode; 662 nd->flags |= LOOKUP_JUMPED; 663 } 664 665 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 666 { 667 struct inode *inode = link->dentry->d_inode; 668 if (inode->i_op->put_link) 669 inode->i_op->put_link(link->dentry, nd, cookie); 670 path_put(link); 671 } 672 673 int sysctl_protected_symlinks __read_mostly = 0; 674 int sysctl_protected_hardlinks __read_mostly = 0; 675 676 /** 677 * may_follow_link - Check symlink following for unsafe situations 678 * @link: The path of the symlink 679 * @nd: nameidata pathwalk data 680 * 681 * In the case of the sysctl_protected_symlinks sysctl being enabled, 682 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 683 * in a sticky world-writable directory. This is to protect privileged 684 * processes from failing races against path names that may change out 685 * from under them by way of other users creating malicious symlinks. 686 * It will permit symlinks to be followed only when outside a sticky 687 * world-writable directory, or when the uid of the symlink and follower 688 * match, or when the directory owner matches the symlink's owner. 689 * 690 * Returns 0 if following the symlink is allowed, -ve on error. 691 */ 692 static inline int may_follow_link(struct path *link, struct nameidata *nd) 693 { 694 const struct inode *inode; 695 const struct inode *parent; 696 697 if (!sysctl_protected_symlinks) 698 return 0; 699 700 /* Allowed if owner and follower match. */ 701 inode = link->dentry->d_inode; 702 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 703 return 0; 704 705 /* Allowed if parent directory not sticky and world-writable. */ 706 parent = nd->path.dentry->d_inode; 707 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 708 return 0; 709 710 /* Allowed if parent directory and link owner match. */ 711 if (uid_eq(parent->i_uid, inode->i_uid)) 712 return 0; 713 714 audit_log_link_denied("follow_link", link); 715 path_put_conditional(link, nd); 716 path_put(&nd->path); 717 return -EACCES; 718 } 719 720 /** 721 * safe_hardlink_source - Check for safe hardlink conditions 722 * @inode: the source inode to hardlink from 723 * 724 * Return false if at least one of the following conditions: 725 * - inode is not a regular file 726 * - inode is setuid 727 * - inode is setgid and group-exec 728 * - access failure for read and write 729 * 730 * Otherwise returns true. 731 */ 732 static bool safe_hardlink_source(struct inode *inode) 733 { 734 umode_t mode = inode->i_mode; 735 736 /* Special files should not get pinned to the filesystem. */ 737 if (!S_ISREG(mode)) 738 return false; 739 740 /* Setuid files should not get pinned to the filesystem. */ 741 if (mode & S_ISUID) 742 return false; 743 744 /* Executable setgid files should not get pinned to the filesystem. */ 745 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 746 return false; 747 748 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 749 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 750 return false; 751 752 return true; 753 } 754 755 /** 756 * may_linkat - Check permissions for creating a hardlink 757 * @link: the source to hardlink from 758 * 759 * Block hardlink when all of: 760 * - sysctl_protected_hardlinks enabled 761 * - fsuid does not match inode 762 * - hardlink source is unsafe (see safe_hardlink_source() above) 763 * - not CAP_FOWNER 764 * 765 * Returns 0 if successful, -ve on error. 766 */ 767 static int may_linkat(struct path *link) 768 { 769 const struct cred *cred; 770 struct inode *inode; 771 772 if (!sysctl_protected_hardlinks) 773 return 0; 774 775 cred = current_cred(); 776 inode = link->dentry->d_inode; 777 778 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 779 * otherwise, it must be a safe source. 780 */ 781 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 782 capable(CAP_FOWNER)) 783 return 0; 784 785 audit_log_link_denied("linkat", link); 786 return -EPERM; 787 } 788 789 static __always_inline int 790 follow_link(struct path *link, struct nameidata *nd, void **p) 791 { 792 struct dentry *dentry = link->dentry; 793 int error; 794 char *s; 795 796 BUG_ON(nd->flags & LOOKUP_RCU); 797 798 if (link->mnt == nd->path.mnt) 799 mntget(link->mnt); 800 801 error = -ELOOP; 802 if (unlikely(current->total_link_count >= 40)) 803 goto out_put_nd_path; 804 805 cond_resched(); 806 current->total_link_count++; 807 808 touch_atime(link); 809 nd_set_link(nd, NULL); 810 811 error = security_inode_follow_link(link->dentry, nd); 812 if (error) 813 goto out_put_nd_path; 814 815 nd->last_type = LAST_BIND; 816 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 817 error = PTR_ERR(*p); 818 if (IS_ERR(*p)) 819 goto out_put_nd_path; 820 821 error = 0; 822 s = nd_get_link(nd); 823 if (s) { 824 if (unlikely(IS_ERR(s))) { 825 path_put(&nd->path); 826 put_link(nd, link, *p); 827 return PTR_ERR(s); 828 } 829 if (*s == '/') { 830 set_root(nd); 831 path_put(&nd->path); 832 nd->path = nd->root; 833 path_get(&nd->root); 834 nd->flags |= LOOKUP_JUMPED; 835 } 836 nd->inode = nd->path.dentry->d_inode; 837 error = link_path_walk(s, nd); 838 if (unlikely(error)) 839 put_link(nd, link, *p); 840 } 841 842 return error; 843 844 out_put_nd_path: 845 *p = NULL; 846 path_put(&nd->path); 847 path_put(link); 848 return error; 849 } 850 851 static int follow_up_rcu(struct path *path) 852 { 853 struct mount *mnt = real_mount(path->mnt); 854 struct mount *parent; 855 struct dentry *mountpoint; 856 857 parent = mnt->mnt_parent; 858 if (&parent->mnt == path->mnt) 859 return 0; 860 mountpoint = mnt->mnt_mountpoint; 861 path->dentry = mountpoint; 862 path->mnt = &parent->mnt; 863 return 1; 864 } 865 866 /* 867 * follow_up - Find the mountpoint of path's vfsmount 868 * 869 * Given a path, find the mountpoint of its source file system. 870 * Replace @path with the path of the mountpoint in the parent mount. 871 * Up is towards /. 872 * 873 * Return 1 if we went up a level and 0 if we were already at the 874 * root. 875 */ 876 int follow_up(struct path *path) 877 { 878 struct mount *mnt = real_mount(path->mnt); 879 struct mount *parent; 880 struct dentry *mountpoint; 881 882 read_seqlock_excl(&mount_lock); 883 parent = mnt->mnt_parent; 884 if (parent == mnt) { 885 read_sequnlock_excl(&mount_lock); 886 return 0; 887 } 888 mntget(&parent->mnt); 889 mountpoint = dget(mnt->mnt_mountpoint); 890 read_sequnlock_excl(&mount_lock); 891 dput(path->dentry); 892 path->dentry = mountpoint; 893 mntput(path->mnt); 894 path->mnt = &parent->mnt; 895 return 1; 896 } 897 898 /* 899 * Perform an automount 900 * - return -EISDIR to tell follow_managed() to stop and return the path we 901 * were called with. 902 */ 903 static int follow_automount(struct path *path, unsigned flags, 904 bool *need_mntput) 905 { 906 struct vfsmount *mnt; 907 int err; 908 909 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 910 return -EREMOTE; 911 912 /* We don't want to mount if someone's just doing a stat - 913 * unless they're stat'ing a directory and appended a '/' to 914 * the name. 915 * 916 * We do, however, want to mount if someone wants to open or 917 * create a file of any type under the mountpoint, wants to 918 * traverse through the mountpoint or wants to open the 919 * mounted directory. Also, autofs may mark negative dentries 920 * as being automount points. These will need the attentions 921 * of the daemon to instantiate them before they can be used. 922 */ 923 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 924 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 925 path->dentry->d_inode) 926 return -EISDIR; 927 928 current->total_link_count++; 929 if (current->total_link_count >= 40) 930 return -ELOOP; 931 932 mnt = path->dentry->d_op->d_automount(path); 933 if (IS_ERR(mnt)) { 934 /* 935 * The filesystem is allowed to return -EISDIR here to indicate 936 * it doesn't want to automount. For instance, autofs would do 937 * this so that its userspace daemon can mount on this dentry. 938 * 939 * However, we can only permit this if it's a terminal point in 940 * the path being looked up; if it wasn't then the remainder of 941 * the path is inaccessible and we should say so. 942 */ 943 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 944 return -EREMOTE; 945 return PTR_ERR(mnt); 946 } 947 948 if (!mnt) /* mount collision */ 949 return 0; 950 951 if (!*need_mntput) { 952 /* lock_mount() may release path->mnt on error */ 953 mntget(path->mnt); 954 *need_mntput = true; 955 } 956 err = finish_automount(mnt, path); 957 958 switch (err) { 959 case -EBUSY: 960 /* Someone else made a mount here whilst we were busy */ 961 return 0; 962 case 0: 963 path_put(path); 964 path->mnt = mnt; 965 path->dentry = dget(mnt->mnt_root); 966 return 0; 967 default: 968 return err; 969 } 970 971 } 972 973 /* 974 * Handle a dentry that is managed in some way. 975 * - Flagged for transit management (autofs) 976 * - Flagged as mountpoint 977 * - Flagged as automount point 978 * 979 * This may only be called in refwalk mode. 980 * 981 * Serialization is taken care of in namespace.c 982 */ 983 static int follow_managed(struct path *path, unsigned flags) 984 { 985 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 986 unsigned managed; 987 bool need_mntput = false; 988 int ret = 0; 989 990 /* Given that we're not holding a lock here, we retain the value in a 991 * local variable for each dentry as we look at it so that we don't see 992 * the components of that value change under us */ 993 while (managed = ACCESS_ONCE(path->dentry->d_flags), 994 managed &= DCACHE_MANAGED_DENTRY, 995 unlikely(managed != 0)) { 996 /* Allow the filesystem to manage the transit without i_mutex 997 * being held. */ 998 if (managed & DCACHE_MANAGE_TRANSIT) { 999 BUG_ON(!path->dentry->d_op); 1000 BUG_ON(!path->dentry->d_op->d_manage); 1001 ret = path->dentry->d_op->d_manage(path->dentry, false); 1002 if (ret < 0) 1003 break; 1004 } 1005 1006 /* Transit to a mounted filesystem. */ 1007 if (managed & DCACHE_MOUNTED) { 1008 struct vfsmount *mounted = lookup_mnt(path); 1009 if (mounted) { 1010 dput(path->dentry); 1011 if (need_mntput) 1012 mntput(path->mnt); 1013 path->mnt = mounted; 1014 path->dentry = dget(mounted->mnt_root); 1015 need_mntput = true; 1016 continue; 1017 } 1018 1019 /* Something is mounted on this dentry in another 1020 * namespace and/or whatever was mounted there in this 1021 * namespace got unmounted before lookup_mnt() could 1022 * get it */ 1023 } 1024 1025 /* Handle an automount point */ 1026 if (managed & DCACHE_NEED_AUTOMOUNT) { 1027 ret = follow_automount(path, flags, &need_mntput); 1028 if (ret < 0) 1029 break; 1030 continue; 1031 } 1032 1033 /* We didn't change the current path point */ 1034 break; 1035 } 1036 1037 if (need_mntput && path->mnt == mnt) 1038 mntput(path->mnt); 1039 if (ret == -EISDIR) 1040 ret = 0; 1041 return ret < 0 ? ret : need_mntput; 1042 } 1043 1044 int follow_down_one(struct path *path) 1045 { 1046 struct vfsmount *mounted; 1047 1048 mounted = lookup_mnt(path); 1049 if (mounted) { 1050 dput(path->dentry); 1051 mntput(path->mnt); 1052 path->mnt = mounted; 1053 path->dentry = dget(mounted->mnt_root); 1054 return 1; 1055 } 1056 return 0; 1057 } 1058 1059 static inline bool managed_dentry_might_block(struct dentry *dentry) 1060 { 1061 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && 1062 dentry->d_op->d_manage(dentry, true) < 0); 1063 } 1064 1065 /* 1066 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1067 * we meet a managed dentry that would need blocking. 1068 */ 1069 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1070 struct inode **inode) 1071 { 1072 for (;;) { 1073 struct mount *mounted; 1074 /* 1075 * Don't forget we might have a non-mountpoint managed dentry 1076 * that wants to block transit. 1077 */ 1078 if (unlikely(managed_dentry_might_block(path->dentry))) 1079 return false; 1080 1081 if (!d_mountpoint(path->dentry)) 1082 break; 1083 1084 mounted = __lookup_mnt(path->mnt, path->dentry); 1085 if (!mounted) 1086 break; 1087 path->mnt = &mounted->mnt; 1088 path->dentry = mounted->mnt.mnt_root; 1089 nd->flags |= LOOKUP_JUMPED; 1090 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1091 /* 1092 * Update the inode too. We don't need to re-check the 1093 * dentry sequence number here after this d_inode read, 1094 * because a mount-point is always pinned. 1095 */ 1096 *inode = path->dentry->d_inode; 1097 } 1098 return true; 1099 } 1100 1101 static void follow_mount_rcu(struct nameidata *nd) 1102 { 1103 while (d_mountpoint(nd->path.dentry)) { 1104 struct mount *mounted; 1105 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1106 if (!mounted) 1107 break; 1108 nd->path.mnt = &mounted->mnt; 1109 nd->path.dentry = mounted->mnt.mnt_root; 1110 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1111 } 1112 } 1113 1114 static int follow_dotdot_rcu(struct nameidata *nd) 1115 { 1116 set_root_rcu(nd); 1117 1118 while (1) { 1119 if (nd->path.dentry == nd->root.dentry && 1120 nd->path.mnt == nd->root.mnt) { 1121 break; 1122 } 1123 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1124 struct dentry *old = nd->path.dentry; 1125 struct dentry *parent = old->d_parent; 1126 unsigned seq; 1127 1128 seq = read_seqcount_begin(&parent->d_seq); 1129 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1130 goto failed; 1131 nd->path.dentry = parent; 1132 nd->seq = seq; 1133 break; 1134 } 1135 if (!follow_up_rcu(&nd->path)) 1136 break; 1137 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1138 } 1139 follow_mount_rcu(nd); 1140 nd->inode = nd->path.dentry->d_inode; 1141 return 0; 1142 1143 failed: 1144 nd->flags &= ~LOOKUP_RCU; 1145 if (!(nd->flags & LOOKUP_ROOT)) 1146 nd->root.mnt = NULL; 1147 rcu_read_unlock(); 1148 return -ECHILD; 1149 } 1150 1151 /* 1152 * Follow down to the covering mount currently visible to userspace. At each 1153 * point, the filesystem owning that dentry may be queried as to whether the 1154 * caller is permitted to proceed or not. 1155 */ 1156 int follow_down(struct path *path) 1157 { 1158 unsigned managed; 1159 int ret; 1160 1161 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1162 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1163 /* Allow the filesystem to manage the transit without i_mutex 1164 * being held. 1165 * 1166 * We indicate to the filesystem if someone is trying to mount 1167 * something here. This gives autofs the chance to deny anyone 1168 * other than its daemon the right to mount on its 1169 * superstructure. 1170 * 1171 * The filesystem may sleep at this point. 1172 */ 1173 if (managed & DCACHE_MANAGE_TRANSIT) { 1174 BUG_ON(!path->dentry->d_op); 1175 BUG_ON(!path->dentry->d_op->d_manage); 1176 ret = path->dentry->d_op->d_manage( 1177 path->dentry, false); 1178 if (ret < 0) 1179 return ret == -EISDIR ? 0 : ret; 1180 } 1181 1182 /* Transit to a mounted filesystem. */ 1183 if (managed & DCACHE_MOUNTED) { 1184 struct vfsmount *mounted = lookup_mnt(path); 1185 if (!mounted) 1186 break; 1187 dput(path->dentry); 1188 mntput(path->mnt); 1189 path->mnt = mounted; 1190 path->dentry = dget(mounted->mnt_root); 1191 continue; 1192 } 1193 1194 /* Don't handle automount points here */ 1195 break; 1196 } 1197 return 0; 1198 } 1199 1200 /* 1201 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1202 */ 1203 static void follow_mount(struct path *path) 1204 { 1205 while (d_mountpoint(path->dentry)) { 1206 struct vfsmount *mounted = lookup_mnt(path); 1207 if (!mounted) 1208 break; 1209 dput(path->dentry); 1210 mntput(path->mnt); 1211 path->mnt = mounted; 1212 path->dentry = dget(mounted->mnt_root); 1213 } 1214 } 1215 1216 static void follow_dotdot(struct nameidata *nd) 1217 { 1218 set_root(nd); 1219 1220 while(1) { 1221 struct dentry *old = nd->path.dentry; 1222 1223 if (nd->path.dentry == nd->root.dentry && 1224 nd->path.mnt == nd->root.mnt) { 1225 break; 1226 } 1227 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1228 /* rare case of legitimate dget_parent()... */ 1229 nd->path.dentry = dget_parent(nd->path.dentry); 1230 dput(old); 1231 break; 1232 } 1233 if (!follow_up(&nd->path)) 1234 break; 1235 } 1236 follow_mount(&nd->path); 1237 nd->inode = nd->path.dentry->d_inode; 1238 } 1239 1240 /* 1241 * This looks up the name in dcache, possibly revalidates the old dentry and 1242 * allocates a new one if not found or not valid. In the need_lookup argument 1243 * returns whether i_op->lookup is necessary. 1244 * 1245 * dir->d_inode->i_mutex must be held 1246 */ 1247 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1248 unsigned int flags, bool *need_lookup) 1249 { 1250 struct dentry *dentry; 1251 int error; 1252 1253 *need_lookup = false; 1254 dentry = d_lookup(dir, name); 1255 if (dentry) { 1256 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1257 error = d_revalidate(dentry, flags); 1258 if (unlikely(error <= 0)) { 1259 if (error < 0) { 1260 dput(dentry); 1261 return ERR_PTR(error); 1262 } else if (!d_invalidate(dentry)) { 1263 dput(dentry); 1264 dentry = NULL; 1265 } 1266 } 1267 } 1268 } 1269 1270 if (!dentry) { 1271 dentry = d_alloc(dir, name); 1272 if (unlikely(!dentry)) 1273 return ERR_PTR(-ENOMEM); 1274 1275 *need_lookup = true; 1276 } 1277 return dentry; 1278 } 1279 1280 /* 1281 * Call i_op->lookup on the dentry. The dentry must be negative and 1282 * unhashed. 1283 * 1284 * dir->d_inode->i_mutex must be held 1285 */ 1286 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1287 unsigned int flags) 1288 { 1289 struct dentry *old; 1290 1291 /* Don't create child dentry for a dead directory. */ 1292 if (unlikely(IS_DEADDIR(dir))) { 1293 dput(dentry); 1294 return ERR_PTR(-ENOENT); 1295 } 1296 1297 old = dir->i_op->lookup(dir, dentry, flags); 1298 if (unlikely(old)) { 1299 dput(dentry); 1300 dentry = old; 1301 } 1302 return dentry; 1303 } 1304 1305 static struct dentry *__lookup_hash(struct qstr *name, 1306 struct dentry *base, unsigned int flags) 1307 { 1308 bool need_lookup; 1309 struct dentry *dentry; 1310 1311 dentry = lookup_dcache(name, base, flags, &need_lookup); 1312 if (!need_lookup) 1313 return dentry; 1314 1315 return lookup_real(base->d_inode, dentry, flags); 1316 } 1317 1318 /* 1319 * It's more convoluted than I'd like it to be, but... it's still fairly 1320 * small and for now I'd prefer to have fast path as straight as possible. 1321 * It _is_ time-critical. 1322 */ 1323 static int lookup_fast(struct nameidata *nd, 1324 struct path *path, struct inode **inode) 1325 { 1326 struct vfsmount *mnt = nd->path.mnt; 1327 struct dentry *dentry, *parent = nd->path.dentry; 1328 int need_reval = 1; 1329 int status = 1; 1330 int err; 1331 1332 /* 1333 * Rename seqlock is not required here because in the off chance 1334 * of a false negative due to a concurrent rename, we're going to 1335 * do the non-racy lookup, below. 1336 */ 1337 if (nd->flags & LOOKUP_RCU) { 1338 unsigned seq; 1339 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1340 if (!dentry) 1341 goto unlazy; 1342 1343 /* 1344 * This sequence count validates that the inode matches 1345 * the dentry name information from lookup. 1346 */ 1347 *inode = dentry->d_inode; 1348 if (read_seqcount_retry(&dentry->d_seq, seq)) 1349 return -ECHILD; 1350 1351 /* 1352 * This sequence count validates that the parent had no 1353 * changes while we did the lookup of the dentry above. 1354 * 1355 * The memory barrier in read_seqcount_begin of child is 1356 * enough, we can use __read_seqcount_retry here. 1357 */ 1358 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1359 return -ECHILD; 1360 nd->seq = seq; 1361 1362 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1363 status = d_revalidate(dentry, nd->flags); 1364 if (unlikely(status <= 0)) { 1365 if (status != -ECHILD) 1366 need_reval = 0; 1367 goto unlazy; 1368 } 1369 } 1370 path->mnt = mnt; 1371 path->dentry = dentry; 1372 if (unlikely(!__follow_mount_rcu(nd, path, inode))) 1373 goto unlazy; 1374 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1375 goto unlazy; 1376 return 0; 1377 unlazy: 1378 if (unlazy_walk(nd, dentry)) 1379 return -ECHILD; 1380 } else { 1381 dentry = __d_lookup(parent, &nd->last); 1382 } 1383 1384 if (unlikely(!dentry)) 1385 goto need_lookup; 1386 1387 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1388 status = d_revalidate(dentry, nd->flags); 1389 if (unlikely(status <= 0)) { 1390 if (status < 0) { 1391 dput(dentry); 1392 return status; 1393 } 1394 if (!d_invalidate(dentry)) { 1395 dput(dentry); 1396 goto need_lookup; 1397 } 1398 } 1399 1400 path->mnt = mnt; 1401 path->dentry = dentry; 1402 err = follow_managed(path, nd->flags); 1403 if (unlikely(err < 0)) { 1404 path_put_conditional(path, nd); 1405 return err; 1406 } 1407 if (err) 1408 nd->flags |= LOOKUP_JUMPED; 1409 *inode = path->dentry->d_inode; 1410 return 0; 1411 1412 need_lookup: 1413 return 1; 1414 } 1415 1416 /* Fast lookup failed, do it the slow way */ 1417 static int lookup_slow(struct nameidata *nd, struct path *path) 1418 { 1419 struct dentry *dentry, *parent; 1420 int err; 1421 1422 parent = nd->path.dentry; 1423 BUG_ON(nd->inode != parent->d_inode); 1424 1425 mutex_lock(&parent->d_inode->i_mutex); 1426 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1427 mutex_unlock(&parent->d_inode->i_mutex); 1428 if (IS_ERR(dentry)) 1429 return PTR_ERR(dentry); 1430 path->mnt = nd->path.mnt; 1431 path->dentry = dentry; 1432 err = follow_managed(path, nd->flags); 1433 if (unlikely(err < 0)) { 1434 path_put_conditional(path, nd); 1435 return err; 1436 } 1437 if (err) 1438 nd->flags |= LOOKUP_JUMPED; 1439 return 0; 1440 } 1441 1442 static inline int may_lookup(struct nameidata *nd) 1443 { 1444 if (nd->flags & LOOKUP_RCU) { 1445 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1446 if (err != -ECHILD) 1447 return err; 1448 if (unlazy_walk(nd, NULL)) 1449 return -ECHILD; 1450 } 1451 return inode_permission(nd->inode, MAY_EXEC); 1452 } 1453 1454 static inline int handle_dots(struct nameidata *nd, int type) 1455 { 1456 if (type == LAST_DOTDOT) { 1457 if (nd->flags & LOOKUP_RCU) { 1458 if (follow_dotdot_rcu(nd)) 1459 return -ECHILD; 1460 } else 1461 follow_dotdot(nd); 1462 } 1463 return 0; 1464 } 1465 1466 static void terminate_walk(struct nameidata *nd) 1467 { 1468 if (!(nd->flags & LOOKUP_RCU)) { 1469 path_put(&nd->path); 1470 } else { 1471 nd->flags &= ~LOOKUP_RCU; 1472 if (!(nd->flags & LOOKUP_ROOT)) 1473 nd->root.mnt = NULL; 1474 rcu_read_unlock(); 1475 } 1476 } 1477 1478 /* 1479 * Do we need to follow links? We _really_ want to be able 1480 * to do this check without having to look at inode->i_op, 1481 * so we keep a cache of "no, this doesn't need follow_link" 1482 * for the common case. 1483 */ 1484 static inline int should_follow_link(struct dentry *dentry, int follow) 1485 { 1486 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1487 } 1488 1489 static inline int walk_component(struct nameidata *nd, struct path *path, 1490 int follow) 1491 { 1492 struct inode *inode; 1493 int err; 1494 /* 1495 * "." and ".." are special - ".." especially so because it has 1496 * to be able to know about the current root directory and 1497 * parent relationships. 1498 */ 1499 if (unlikely(nd->last_type != LAST_NORM)) 1500 return handle_dots(nd, nd->last_type); 1501 err = lookup_fast(nd, path, &inode); 1502 if (unlikely(err)) { 1503 if (err < 0) 1504 goto out_err; 1505 1506 err = lookup_slow(nd, path); 1507 if (err < 0) 1508 goto out_err; 1509 1510 inode = path->dentry->d_inode; 1511 } 1512 err = -ENOENT; 1513 if (!inode) 1514 goto out_path_put; 1515 1516 if (should_follow_link(path->dentry, follow)) { 1517 if (nd->flags & LOOKUP_RCU) { 1518 if (unlikely(unlazy_walk(nd, path->dentry))) { 1519 err = -ECHILD; 1520 goto out_err; 1521 } 1522 } 1523 BUG_ON(inode != path->dentry->d_inode); 1524 return 1; 1525 } 1526 path_to_nameidata(path, nd); 1527 nd->inode = inode; 1528 return 0; 1529 1530 out_path_put: 1531 path_to_nameidata(path, nd); 1532 out_err: 1533 terminate_walk(nd); 1534 return err; 1535 } 1536 1537 /* 1538 * This limits recursive symlink follows to 8, while 1539 * limiting consecutive symlinks to 40. 1540 * 1541 * Without that kind of total limit, nasty chains of consecutive 1542 * symlinks can cause almost arbitrarily long lookups. 1543 */ 1544 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1545 { 1546 int res; 1547 1548 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1549 path_put_conditional(path, nd); 1550 path_put(&nd->path); 1551 return -ELOOP; 1552 } 1553 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1554 1555 nd->depth++; 1556 current->link_count++; 1557 1558 do { 1559 struct path link = *path; 1560 void *cookie; 1561 1562 res = follow_link(&link, nd, &cookie); 1563 if (res) 1564 break; 1565 res = walk_component(nd, path, LOOKUP_FOLLOW); 1566 put_link(nd, &link, cookie); 1567 } while (res > 0); 1568 1569 current->link_count--; 1570 nd->depth--; 1571 return res; 1572 } 1573 1574 /* 1575 * We can do the critical dentry name comparison and hashing 1576 * operations one word at a time, but we are limited to: 1577 * 1578 * - Architectures with fast unaligned word accesses. We could 1579 * do a "get_unaligned()" if this helps and is sufficiently 1580 * fast. 1581 * 1582 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1583 * do not trap on the (extremely unlikely) case of a page 1584 * crossing operation. 1585 * 1586 * - Furthermore, we need an efficient 64-bit compile for the 1587 * 64-bit case in order to generate the "number of bytes in 1588 * the final mask". Again, that could be replaced with a 1589 * efficient population count instruction or similar. 1590 */ 1591 #ifdef CONFIG_DCACHE_WORD_ACCESS 1592 1593 #include <asm/word-at-a-time.h> 1594 1595 #ifdef CONFIG_64BIT 1596 1597 static inline unsigned int fold_hash(unsigned long hash) 1598 { 1599 hash += hash >> (8*sizeof(int)); 1600 return hash; 1601 } 1602 1603 #else /* 32-bit case */ 1604 1605 #define fold_hash(x) (x) 1606 1607 #endif 1608 1609 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1610 { 1611 unsigned long a, mask; 1612 unsigned long hash = 0; 1613 1614 for (;;) { 1615 a = load_unaligned_zeropad(name); 1616 if (len < sizeof(unsigned long)) 1617 break; 1618 hash += a; 1619 hash *= 9; 1620 name += sizeof(unsigned long); 1621 len -= sizeof(unsigned long); 1622 if (!len) 1623 goto done; 1624 } 1625 mask = bytemask_from_count(len); 1626 hash += mask & a; 1627 done: 1628 return fold_hash(hash); 1629 } 1630 EXPORT_SYMBOL(full_name_hash); 1631 1632 /* 1633 * Calculate the length and hash of the path component, and 1634 * return the length of the component; 1635 */ 1636 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1637 { 1638 unsigned long a, b, adata, bdata, mask, hash, len; 1639 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1640 1641 hash = a = 0; 1642 len = -sizeof(unsigned long); 1643 do { 1644 hash = (hash + a) * 9; 1645 len += sizeof(unsigned long); 1646 a = load_unaligned_zeropad(name+len); 1647 b = a ^ REPEAT_BYTE('/'); 1648 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1649 1650 adata = prep_zero_mask(a, adata, &constants); 1651 bdata = prep_zero_mask(b, bdata, &constants); 1652 1653 mask = create_zero_mask(adata | bdata); 1654 1655 hash += a & zero_bytemask(mask); 1656 *hashp = fold_hash(hash); 1657 1658 return len + find_zero(mask); 1659 } 1660 1661 #else 1662 1663 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1664 { 1665 unsigned long hash = init_name_hash(); 1666 while (len--) 1667 hash = partial_name_hash(*name++, hash); 1668 return end_name_hash(hash); 1669 } 1670 EXPORT_SYMBOL(full_name_hash); 1671 1672 /* 1673 * We know there's a real path component here of at least 1674 * one character. 1675 */ 1676 static inline unsigned long hash_name(const char *name, unsigned int *hashp) 1677 { 1678 unsigned long hash = init_name_hash(); 1679 unsigned long len = 0, c; 1680 1681 c = (unsigned char)*name; 1682 do { 1683 len++; 1684 hash = partial_name_hash(c, hash); 1685 c = (unsigned char)name[len]; 1686 } while (c && c != '/'); 1687 *hashp = end_name_hash(hash); 1688 return len; 1689 } 1690 1691 #endif 1692 1693 /* 1694 * Name resolution. 1695 * This is the basic name resolution function, turning a pathname into 1696 * the final dentry. We expect 'base' to be positive and a directory. 1697 * 1698 * Returns 0 and nd will have valid dentry and mnt on success. 1699 * Returns error and drops reference to input namei data on failure. 1700 */ 1701 static int link_path_walk(const char *name, struct nameidata *nd) 1702 { 1703 struct path next; 1704 int err; 1705 1706 while (*name=='/') 1707 name++; 1708 if (!*name) 1709 return 0; 1710 1711 /* At this point we know we have a real path component. */ 1712 for(;;) { 1713 struct qstr this; 1714 long len; 1715 int type; 1716 1717 err = may_lookup(nd); 1718 if (err) 1719 break; 1720 1721 len = hash_name(name, &this.hash); 1722 this.name = name; 1723 this.len = len; 1724 1725 type = LAST_NORM; 1726 if (name[0] == '.') switch (len) { 1727 case 2: 1728 if (name[1] == '.') { 1729 type = LAST_DOTDOT; 1730 nd->flags |= LOOKUP_JUMPED; 1731 } 1732 break; 1733 case 1: 1734 type = LAST_DOT; 1735 } 1736 if (likely(type == LAST_NORM)) { 1737 struct dentry *parent = nd->path.dentry; 1738 nd->flags &= ~LOOKUP_JUMPED; 1739 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1740 err = parent->d_op->d_hash(parent, &this); 1741 if (err < 0) 1742 break; 1743 } 1744 } 1745 1746 nd->last = this; 1747 nd->last_type = type; 1748 1749 if (!name[len]) 1750 return 0; 1751 /* 1752 * If it wasn't NUL, we know it was '/'. Skip that 1753 * slash, and continue until no more slashes. 1754 */ 1755 do { 1756 len++; 1757 } while (unlikely(name[len] == '/')); 1758 if (!name[len]) 1759 return 0; 1760 1761 name += len; 1762 1763 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1764 if (err < 0) 1765 return err; 1766 1767 if (err) { 1768 err = nested_symlink(&next, nd); 1769 if (err) 1770 return err; 1771 } 1772 if (!d_is_directory(nd->path.dentry)) { 1773 err = -ENOTDIR; 1774 break; 1775 } 1776 } 1777 terminate_walk(nd); 1778 return err; 1779 } 1780 1781 static int path_init(int dfd, const char *name, unsigned int flags, 1782 struct nameidata *nd, struct file **fp) 1783 { 1784 int retval = 0; 1785 1786 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1787 nd->flags = flags | LOOKUP_JUMPED; 1788 nd->depth = 0; 1789 if (flags & LOOKUP_ROOT) { 1790 struct dentry *root = nd->root.dentry; 1791 struct inode *inode = root->d_inode; 1792 if (*name) { 1793 if (!d_is_directory(root)) 1794 return -ENOTDIR; 1795 retval = inode_permission(inode, MAY_EXEC); 1796 if (retval) 1797 return retval; 1798 } 1799 nd->path = nd->root; 1800 nd->inode = inode; 1801 if (flags & LOOKUP_RCU) { 1802 rcu_read_lock(); 1803 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1804 nd->m_seq = read_seqbegin(&mount_lock); 1805 } else { 1806 path_get(&nd->path); 1807 } 1808 return 0; 1809 } 1810 1811 nd->root.mnt = NULL; 1812 1813 nd->m_seq = read_seqbegin(&mount_lock); 1814 if (*name=='/') { 1815 if (flags & LOOKUP_RCU) { 1816 rcu_read_lock(); 1817 set_root_rcu(nd); 1818 } else { 1819 set_root(nd); 1820 path_get(&nd->root); 1821 } 1822 nd->path = nd->root; 1823 } else if (dfd == AT_FDCWD) { 1824 if (flags & LOOKUP_RCU) { 1825 struct fs_struct *fs = current->fs; 1826 unsigned seq; 1827 1828 rcu_read_lock(); 1829 1830 do { 1831 seq = read_seqcount_begin(&fs->seq); 1832 nd->path = fs->pwd; 1833 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1834 } while (read_seqcount_retry(&fs->seq, seq)); 1835 } else { 1836 get_fs_pwd(current->fs, &nd->path); 1837 } 1838 } else { 1839 /* Caller must check execute permissions on the starting path component */ 1840 struct fd f = fdget_raw(dfd); 1841 struct dentry *dentry; 1842 1843 if (!f.file) 1844 return -EBADF; 1845 1846 dentry = f.file->f_path.dentry; 1847 1848 if (*name) { 1849 if (!d_is_directory(dentry)) { 1850 fdput(f); 1851 return -ENOTDIR; 1852 } 1853 } 1854 1855 nd->path = f.file->f_path; 1856 if (flags & LOOKUP_RCU) { 1857 if (f.need_put) 1858 *fp = f.file; 1859 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1860 rcu_read_lock(); 1861 } else { 1862 path_get(&nd->path); 1863 fdput(f); 1864 } 1865 } 1866 1867 nd->inode = nd->path.dentry->d_inode; 1868 return 0; 1869 } 1870 1871 static inline int lookup_last(struct nameidata *nd, struct path *path) 1872 { 1873 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1874 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1875 1876 nd->flags &= ~LOOKUP_PARENT; 1877 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1878 } 1879 1880 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1881 static int path_lookupat(int dfd, const char *name, 1882 unsigned int flags, struct nameidata *nd) 1883 { 1884 struct file *base = NULL; 1885 struct path path; 1886 int err; 1887 1888 /* 1889 * Path walking is largely split up into 2 different synchronisation 1890 * schemes, rcu-walk and ref-walk (explained in 1891 * Documentation/filesystems/path-lookup.txt). These share much of the 1892 * path walk code, but some things particularly setup, cleanup, and 1893 * following mounts are sufficiently divergent that functions are 1894 * duplicated. Typically there is a function foo(), and its RCU 1895 * analogue, foo_rcu(). 1896 * 1897 * -ECHILD is the error number of choice (just to avoid clashes) that 1898 * is returned if some aspect of an rcu-walk fails. Such an error must 1899 * be handled by restarting a traditional ref-walk (which will always 1900 * be able to complete). 1901 */ 1902 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); 1903 1904 if (unlikely(err)) 1905 return err; 1906 1907 current->total_link_count = 0; 1908 err = link_path_walk(name, nd); 1909 1910 if (!err && !(flags & LOOKUP_PARENT)) { 1911 err = lookup_last(nd, &path); 1912 while (err > 0) { 1913 void *cookie; 1914 struct path link = path; 1915 err = may_follow_link(&link, nd); 1916 if (unlikely(err)) 1917 break; 1918 nd->flags |= LOOKUP_PARENT; 1919 err = follow_link(&link, nd, &cookie); 1920 if (err) 1921 break; 1922 err = lookup_last(nd, &path); 1923 put_link(nd, &link, cookie); 1924 } 1925 } 1926 1927 if (!err) 1928 err = complete_walk(nd); 1929 1930 if (!err && nd->flags & LOOKUP_DIRECTORY) { 1931 if (!d_is_directory(nd->path.dentry)) { 1932 path_put(&nd->path); 1933 err = -ENOTDIR; 1934 } 1935 } 1936 1937 if (base) 1938 fput(base); 1939 1940 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1941 path_put(&nd->root); 1942 nd->root.mnt = NULL; 1943 } 1944 return err; 1945 } 1946 1947 static int filename_lookup(int dfd, struct filename *name, 1948 unsigned int flags, struct nameidata *nd) 1949 { 1950 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 1951 if (unlikely(retval == -ECHILD)) 1952 retval = path_lookupat(dfd, name->name, flags, nd); 1953 if (unlikely(retval == -ESTALE)) 1954 retval = path_lookupat(dfd, name->name, 1955 flags | LOOKUP_REVAL, nd); 1956 1957 if (likely(!retval)) 1958 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 1959 return retval; 1960 } 1961 1962 static int do_path_lookup(int dfd, const char *name, 1963 unsigned int flags, struct nameidata *nd) 1964 { 1965 struct filename filename = { .name = name }; 1966 1967 return filename_lookup(dfd, &filename, flags, nd); 1968 } 1969 1970 /* does lookup, returns the object with parent locked */ 1971 struct dentry *kern_path_locked(const char *name, struct path *path) 1972 { 1973 struct nameidata nd; 1974 struct dentry *d; 1975 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd); 1976 if (err) 1977 return ERR_PTR(err); 1978 if (nd.last_type != LAST_NORM) { 1979 path_put(&nd.path); 1980 return ERR_PTR(-EINVAL); 1981 } 1982 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1983 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 1984 if (IS_ERR(d)) { 1985 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 1986 path_put(&nd.path); 1987 return d; 1988 } 1989 *path = nd.path; 1990 return d; 1991 } 1992 1993 int kern_path(const char *name, unsigned int flags, struct path *path) 1994 { 1995 struct nameidata nd; 1996 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1997 if (!res) 1998 *path = nd.path; 1999 return res; 2000 } 2001 2002 /** 2003 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2004 * @dentry: pointer to dentry of the base directory 2005 * @mnt: pointer to vfs mount of the base directory 2006 * @name: pointer to file name 2007 * @flags: lookup flags 2008 * @path: pointer to struct path to fill 2009 */ 2010 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2011 const char *name, unsigned int flags, 2012 struct path *path) 2013 { 2014 struct nameidata nd; 2015 int err; 2016 nd.root.dentry = dentry; 2017 nd.root.mnt = mnt; 2018 BUG_ON(flags & LOOKUP_PARENT); 2019 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2020 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2021 if (!err) 2022 *path = nd.path; 2023 return err; 2024 } 2025 2026 /* 2027 * Restricted form of lookup. Doesn't follow links, single-component only, 2028 * needs parent already locked. Doesn't follow mounts. 2029 * SMP-safe. 2030 */ 2031 static struct dentry *lookup_hash(struct nameidata *nd) 2032 { 2033 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2034 } 2035 2036 /** 2037 * lookup_one_len - filesystem helper to lookup single pathname component 2038 * @name: pathname component to lookup 2039 * @base: base directory to lookup from 2040 * @len: maximum length @len should be interpreted to 2041 * 2042 * Note that this routine is purely a helper for filesystem usage and should 2043 * not be called by generic code. Also note that by using this function the 2044 * nameidata argument is passed to the filesystem methods and a filesystem 2045 * using this helper needs to be prepared for that. 2046 */ 2047 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2048 { 2049 struct qstr this; 2050 unsigned int c; 2051 int err; 2052 2053 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2054 2055 this.name = name; 2056 this.len = len; 2057 this.hash = full_name_hash(name, len); 2058 if (!len) 2059 return ERR_PTR(-EACCES); 2060 2061 if (unlikely(name[0] == '.')) { 2062 if (len < 2 || (len == 2 && name[1] == '.')) 2063 return ERR_PTR(-EACCES); 2064 } 2065 2066 while (len--) { 2067 c = *(const unsigned char *)name++; 2068 if (c == '/' || c == '\0') 2069 return ERR_PTR(-EACCES); 2070 } 2071 /* 2072 * See if the low-level filesystem might want 2073 * to use its own hash.. 2074 */ 2075 if (base->d_flags & DCACHE_OP_HASH) { 2076 int err = base->d_op->d_hash(base, &this); 2077 if (err < 0) 2078 return ERR_PTR(err); 2079 } 2080 2081 err = inode_permission(base->d_inode, MAY_EXEC); 2082 if (err) 2083 return ERR_PTR(err); 2084 2085 return __lookup_hash(&this, base, 0); 2086 } 2087 2088 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2089 struct path *path, int *empty) 2090 { 2091 struct nameidata nd; 2092 struct filename *tmp = getname_flags(name, flags, empty); 2093 int err = PTR_ERR(tmp); 2094 if (!IS_ERR(tmp)) { 2095 2096 BUG_ON(flags & LOOKUP_PARENT); 2097 2098 err = filename_lookup(dfd, tmp, flags, &nd); 2099 putname(tmp); 2100 if (!err) 2101 *path = nd.path; 2102 } 2103 return err; 2104 } 2105 2106 int user_path_at(int dfd, const char __user *name, unsigned flags, 2107 struct path *path) 2108 { 2109 return user_path_at_empty(dfd, name, flags, path, NULL); 2110 } 2111 2112 /* 2113 * NB: most callers don't do anything directly with the reference to the 2114 * to struct filename, but the nd->last pointer points into the name string 2115 * allocated by getname. So we must hold the reference to it until all 2116 * path-walking is complete. 2117 */ 2118 static struct filename * 2119 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2120 unsigned int flags) 2121 { 2122 struct filename *s = getname(path); 2123 int error; 2124 2125 /* only LOOKUP_REVAL is allowed in extra flags */ 2126 flags &= LOOKUP_REVAL; 2127 2128 if (IS_ERR(s)) 2129 return s; 2130 2131 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2132 if (error) { 2133 putname(s); 2134 return ERR_PTR(error); 2135 } 2136 2137 return s; 2138 } 2139 2140 /** 2141 * mountpoint_last - look up last component for umount 2142 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2143 * @path: pointer to container for result 2144 * 2145 * This is a special lookup_last function just for umount. In this case, we 2146 * need to resolve the path without doing any revalidation. 2147 * 2148 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2149 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2150 * in almost all cases, this lookup will be served out of the dcache. The only 2151 * cases where it won't are if nd->last refers to a symlink or the path is 2152 * bogus and it doesn't exist. 2153 * 2154 * Returns: 2155 * -error: if there was an error during lookup. This includes -ENOENT if the 2156 * lookup found a negative dentry. The nd->path reference will also be 2157 * put in this case. 2158 * 2159 * 0: if we successfully resolved nd->path and found it to not to be a 2160 * symlink that needs to be followed. "path" will also be populated. 2161 * The nd->path reference will also be put. 2162 * 2163 * 1: if we successfully resolved nd->last and found it to be a symlink 2164 * that needs to be followed. "path" will be populated with the path 2165 * to the link, and nd->path will *not* be put. 2166 */ 2167 static int 2168 mountpoint_last(struct nameidata *nd, struct path *path) 2169 { 2170 int error = 0; 2171 struct dentry *dentry; 2172 struct dentry *dir = nd->path.dentry; 2173 2174 /* If we're in rcuwalk, drop out of it to handle last component */ 2175 if (nd->flags & LOOKUP_RCU) { 2176 if (unlazy_walk(nd, NULL)) { 2177 error = -ECHILD; 2178 goto out; 2179 } 2180 } 2181 2182 nd->flags &= ~LOOKUP_PARENT; 2183 2184 if (unlikely(nd->last_type != LAST_NORM)) { 2185 error = handle_dots(nd, nd->last_type); 2186 if (error) 2187 goto out; 2188 dentry = dget(nd->path.dentry); 2189 goto done; 2190 } 2191 2192 mutex_lock(&dir->d_inode->i_mutex); 2193 dentry = d_lookup(dir, &nd->last); 2194 if (!dentry) { 2195 /* 2196 * No cached dentry. Mounted dentries are pinned in the cache, 2197 * so that means that this dentry is probably a symlink or the 2198 * path doesn't actually point to a mounted dentry. 2199 */ 2200 dentry = d_alloc(dir, &nd->last); 2201 if (!dentry) { 2202 error = -ENOMEM; 2203 mutex_unlock(&dir->d_inode->i_mutex); 2204 goto out; 2205 } 2206 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2207 error = PTR_ERR(dentry); 2208 if (IS_ERR(dentry)) { 2209 mutex_unlock(&dir->d_inode->i_mutex); 2210 goto out; 2211 } 2212 } 2213 mutex_unlock(&dir->d_inode->i_mutex); 2214 2215 done: 2216 if (!dentry->d_inode) { 2217 error = -ENOENT; 2218 dput(dentry); 2219 goto out; 2220 } 2221 path->dentry = dentry; 2222 path->mnt = mntget(nd->path.mnt); 2223 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2224 return 1; 2225 follow_mount(path); 2226 error = 0; 2227 out: 2228 terminate_walk(nd); 2229 return error; 2230 } 2231 2232 /** 2233 * path_mountpoint - look up a path to be umounted 2234 * @dfd: directory file descriptor to start walk from 2235 * @name: full pathname to walk 2236 * @path: pointer to container for result 2237 * @flags: lookup flags 2238 * 2239 * Look up the given name, but don't attempt to revalidate the last component. 2240 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2241 */ 2242 static int 2243 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2244 { 2245 struct file *base = NULL; 2246 struct nameidata nd; 2247 int err; 2248 2249 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base); 2250 if (unlikely(err)) 2251 return err; 2252 2253 current->total_link_count = 0; 2254 err = link_path_walk(name, &nd); 2255 if (err) 2256 goto out; 2257 2258 err = mountpoint_last(&nd, path); 2259 while (err > 0) { 2260 void *cookie; 2261 struct path link = *path; 2262 err = may_follow_link(&link, &nd); 2263 if (unlikely(err)) 2264 break; 2265 nd.flags |= LOOKUP_PARENT; 2266 err = follow_link(&link, &nd, &cookie); 2267 if (err) 2268 break; 2269 err = mountpoint_last(&nd, path); 2270 put_link(&nd, &link, cookie); 2271 } 2272 out: 2273 if (base) 2274 fput(base); 2275 2276 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT)) 2277 path_put(&nd.root); 2278 2279 return err; 2280 } 2281 2282 static int 2283 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2284 unsigned int flags) 2285 { 2286 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2287 if (unlikely(error == -ECHILD)) 2288 error = path_mountpoint(dfd, s->name, path, flags); 2289 if (unlikely(error == -ESTALE)) 2290 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2291 if (likely(!error)) 2292 audit_inode(s, path->dentry, 0); 2293 return error; 2294 } 2295 2296 /** 2297 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2298 * @dfd: directory file descriptor 2299 * @name: pathname from userland 2300 * @flags: lookup flags 2301 * @path: pointer to container to hold result 2302 * 2303 * A umount is a special case for path walking. We're not actually interested 2304 * in the inode in this situation, and ESTALE errors can be a problem. We 2305 * simply want track down the dentry and vfsmount attached at the mountpoint 2306 * and avoid revalidating the last component. 2307 * 2308 * Returns 0 and populates "path" on success. 2309 */ 2310 int 2311 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2312 struct path *path) 2313 { 2314 struct filename *s = getname(name); 2315 int error; 2316 if (IS_ERR(s)) 2317 return PTR_ERR(s); 2318 error = filename_mountpoint(dfd, s, path, flags); 2319 putname(s); 2320 return error; 2321 } 2322 2323 int 2324 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2325 unsigned int flags) 2326 { 2327 struct filename s = {.name = name}; 2328 return filename_mountpoint(dfd, &s, path, flags); 2329 } 2330 EXPORT_SYMBOL(kern_path_mountpoint); 2331 2332 /* 2333 * It's inline, so penalty for filesystems that don't use sticky bit is 2334 * minimal. 2335 */ 2336 static inline int check_sticky(struct inode *dir, struct inode *inode) 2337 { 2338 kuid_t fsuid = current_fsuid(); 2339 2340 if (!(dir->i_mode & S_ISVTX)) 2341 return 0; 2342 if (uid_eq(inode->i_uid, fsuid)) 2343 return 0; 2344 if (uid_eq(dir->i_uid, fsuid)) 2345 return 0; 2346 return !inode_capable(inode, CAP_FOWNER); 2347 } 2348 2349 /* 2350 * Check whether we can remove a link victim from directory dir, check 2351 * whether the type of victim is right. 2352 * 1. We can't do it if dir is read-only (done in permission()) 2353 * 2. We should have write and exec permissions on dir 2354 * 3. We can't remove anything from append-only dir 2355 * 4. We can't do anything with immutable dir (done in permission()) 2356 * 5. If the sticky bit on dir is set we should either 2357 * a. be owner of dir, or 2358 * b. be owner of victim, or 2359 * c. have CAP_FOWNER capability 2360 * 6. If the victim is append-only or immutable we can't do antyhing with 2361 * links pointing to it. 2362 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2363 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2364 * 9. We can't remove a root or mountpoint. 2365 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2366 * nfs_async_unlink(). 2367 */ 2368 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2369 { 2370 struct inode *inode = victim->d_inode; 2371 int error; 2372 2373 if (d_is_negative(victim)) 2374 return -ENOENT; 2375 BUG_ON(!inode); 2376 2377 BUG_ON(victim->d_parent->d_inode != dir); 2378 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2379 2380 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2381 if (error) 2382 return error; 2383 if (IS_APPEND(dir)) 2384 return -EPERM; 2385 2386 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2387 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2388 return -EPERM; 2389 if (isdir) { 2390 if (!d_is_directory(victim) && !d_is_autodir(victim)) 2391 return -ENOTDIR; 2392 if (IS_ROOT(victim)) 2393 return -EBUSY; 2394 } else if (d_is_directory(victim) || d_is_autodir(victim)) 2395 return -EISDIR; 2396 if (IS_DEADDIR(dir)) 2397 return -ENOENT; 2398 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2399 return -EBUSY; 2400 return 0; 2401 } 2402 2403 /* Check whether we can create an object with dentry child in directory 2404 * dir. 2405 * 1. We can't do it if child already exists (open has special treatment for 2406 * this case, but since we are inlined it's OK) 2407 * 2. We can't do it if dir is read-only (done in permission()) 2408 * 3. We should have write and exec permissions on dir 2409 * 4. We can't do it if dir is immutable (done in permission()) 2410 */ 2411 static inline int may_create(struct inode *dir, struct dentry *child) 2412 { 2413 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2414 if (child->d_inode) 2415 return -EEXIST; 2416 if (IS_DEADDIR(dir)) 2417 return -ENOENT; 2418 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2419 } 2420 2421 /* 2422 * p1 and p2 should be directories on the same fs. 2423 */ 2424 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2425 { 2426 struct dentry *p; 2427 2428 if (p1 == p2) { 2429 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2430 return NULL; 2431 } 2432 2433 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2434 2435 p = d_ancestor(p2, p1); 2436 if (p) { 2437 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2438 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2439 return p; 2440 } 2441 2442 p = d_ancestor(p1, p2); 2443 if (p) { 2444 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2445 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2446 return p; 2447 } 2448 2449 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2450 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2451 return NULL; 2452 } 2453 2454 void unlock_rename(struct dentry *p1, struct dentry *p2) 2455 { 2456 mutex_unlock(&p1->d_inode->i_mutex); 2457 if (p1 != p2) { 2458 mutex_unlock(&p2->d_inode->i_mutex); 2459 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2460 } 2461 } 2462 2463 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2464 bool want_excl) 2465 { 2466 int error = may_create(dir, dentry); 2467 if (error) 2468 return error; 2469 2470 if (!dir->i_op->create) 2471 return -EACCES; /* shouldn't it be ENOSYS? */ 2472 mode &= S_IALLUGO; 2473 mode |= S_IFREG; 2474 error = security_inode_create(dir, dentry, mode); 2475 if (error) 2476 return error; 2477 error = dir->i_op->create(dir, dentry, mode, want_excl); 2478 if (!error) 2479 fsnotify_create(dir, dentry); 2480 return error; 2481 } 2482 2483 static int may_open(struct path *path, int acc_mode, int flag) 2484 { 2485 struct dentry *dentry = path->dentry; 2486 struct inode *inode = dentry->d_inode; 2487 int error; 2488 2489 /* O_PATH? */ 2490 if (!acc_mode) 2491 return 0; 2492 2493 if (!inode) 2494 return -ENOENT; 2495 2496 switch (inode->i_mode & S_IFMT) { 2497 case S_IFLNK: 2498 return -ELOOP; 2499 case S_IFDIR: 2500 if (acc_mode & MAY_WRITE) 2501 return -EISDIR; 2502 break; 2503 case S_IFBLK: 2504 case S_IFCHR: 2505 if (path->mnt->mnt_flags & MNT_NODEV) 2506 return -EACCES; 2507 /*FALLTHRU*/ 2508 case S_IFIFO: 2509 case S_IFSOCK: 2510 flag &= ~O_TRUNC; 2511 break; 2512 } 2513 2514 error = inode_permission(inode, acc_mode); 2515 if (error) 2516 return error; 2517 2518 /* 2519 * An append-only file must be opened in append mode for writing. 2520 */ 2521 if (IS_APPEND(inode)) { 2522 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2523 return -EPERM; 2524 if (flag & O_TRUNC) 2525 return -EPERM; 2526 } 2527 2528 /* O_NOATIME can only be set by the owner or superuser */ 2529 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2530 return -EPERM; 2531 2532 return 0; 2533 } 2534 2535 static int handle_truncate(struct file *filp) 2536 { 2537 struct path *path = &filp->f_path; 2538 struct inode *inode = path->dentry->d_inode; 2539 int error = get_write_access(inode); 2540 if (error) 2541 return error; 2542 /* 2543 * Refuse to truncate files with mandatory locks held on them. 2544 */ 2545 error = locks_verify_locked(inode); 2546 if (!error) 2547 error = security_path_truncate(path); 2548 if (!error) { 2549 error = do_truncate(path->dentry, 0, 2550 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2551 filp); 2552 } 2553 put_write_access(inode); 2554 return error; 2555 } 2556 2557 static inline int open_to_namei_flags(int flag) 2558 { 2559 if ((flag & O_ACCMODE) == 3) 2560 flag--; 2561 return flag; 2562 } 2563 2564 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2565 { 2566 int error = security_path_mknod(dir, dentry, mode, 0); 2567 if (error) 2568 return error; 2569 2570 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2571 if (error) 2572 return error; 2573 2574 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2575 } 2576 2577 /* 2578 * Attempt to atomically look up, create and open a file from a negative 2579 * dentry. 2580 * 2581 * Returns 0 if successful. The file will have been created and attached to 2582 * @file by the filesystem calling finish_open(). 2583 * 2584 * Returns 1 if the file was looked up only or didn't need creating. The 2585 * caller will need to perform the open themselves. @path will have been 2586 * updated to point to the new dentry. This may be negative. 2587 * 2588 * Returns an error code otherwise. 2589 */ 2590 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2591 struct path *path, struct file *file, 2592 const struct open_flags *op, 2593 bool got_write, bool need_lookup, 2594 int *opened) 2595 { 2596 struct inode *dir = nd->path.dentry->d_inode; 2597 unsigned open_flag = open_to_namei_flags(op->open_flag); 2598 umode_t mode; 2599 int error; 2600 int acc_mode; 2601 int create_error = 0; 2602 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2603 bool excl; 2604 2605 BUG_ON(dentry->d_inode); 2606 2607 /* Don't create child dentry for a dead directory. */ 2608 if (unlikely(IS_DEADDIR(dir))) { 2609 error = -ENOENT; 2610 goto out; 2611 } 2612 2613 mode = op->mode; 2614 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2615 mode &= ~current_umask(); 2616 2617 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2618 if (excl) 2619 open_flag &= ~O_TRUNC; 2620 2621 /* 2622 * Checking write permission is tricky, bacuse we don't know if we are 2623 * going to actually need it: O_CREAT opens should work as long as the 2624 * file exists. But checking existence breaks atomicity. The trick is 2625 * to check access and if not granted clear O_CREAT from the flags. 2626 * 2627 * Another problem is returing the "right" error value (e.g. for an 2628 * O_EXCL open we want to return EEXIST not EROFS). 2629 */ 2630 if (((open_flag & (O_CREAT | O_TRUNC)) || 2631 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2632 if (!(open_flag & O_CREAT)) { 2633 /* 2634 * No O_CREATE -> atomicity not a requirement -> fall 2635 * back to lookup + open 2636 */ 2637 goto no_open; 2638 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2639 /* Fall back and fail with the right error */ 2640 create_error = -EROFS; 2641 goto no_open; 2642 } else { 2643 /* No side effects, safe to clear O_CREAT */ 2644 create_error = -EROFS; 2645 open_flag &= ~O_CREAT; 2646 } 2647 } 2648 2649 if (open_flag & O_CREAT) { 2650 error = may_o_create(&nd->path, dentry, mode); 2651 if (error) { 2652 create_error = error; 2653 if (open_flag & O_EXCL) 2654 goto no_open; 2655 open_flag &= ~O_CREAT; 2656 } 2657 } 2658 2659 if (nd->flags & LOOKUP_DIRECTORY) 2660 open_flag |= O_DIRECTORY; 2661 2662 file->f_path.dentry = DENTRY_NOT_SET; 2663 file->f_path.mnt = nd->path.mnt; 2664 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2665 opened); 2666 if (error < 0) { 2667 if (create_error && error == -ENOENT) 2668 error = create_error; 2669 goto out; 2670 } 2671 2672 if (error) { /* returned 1, that is */ 2673 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2674 error = -EIO; 2675 goto out; 2676 } 2677 if (file->f_path.dentry) { 2678 dput(dentry); 2679 dentry = file->f_path.dentry; 2680 } 2681 if (*opened & FILE_CREATED) 2682 fsnotify_create(dir, dentry); 2683 if (!dentry->d_inode) { 2684 WARN_ON(*opened & FILE_CREATED); 2685 if (create_error) { 2686 error = create_error; 2687 goto out; 2688 } 2689 } else { 2690 if (excl && !(*opened & FILE_CREATED)) { 2691 error = -EEXIST; 2692 goto out; 2693 } 2694 } 2695 goto looked_up; 2696 } 2697 2698 /* 2699 * We didn't have the inode before the open, so check open permission 2700 * here. 2701 */ 2702 acc_mode = op->acc_mode; 2703 if (*opened & FILE_CREATED) { 2704 WARN_ON(!(open_flag & O_CREAT)); 2705 fsnotify_create(dir, dentry); 2706 acc_mode = MAY_OPEN; 2707 } 2708 error = may_open(&file->f_path, acc_mode, open_flag); 2709 if (error) 2710 fput(file); 2711 2712 out: 2713 dput(dentry); 2714 return error; 2715 2716 no_open: 2717 if (need_lookup) { 2718 dentry = lookup_real(dir, dentry, nd->flags); 2719 if (IS_ERR(dentry)) 2720 return PTR_ERR(dentry); 2721 2722 if (create_error) { 2723 int open_flag = op->open_flag; 2724 2725 error = create_error; 2726 if ((open_flag & O_EXCL)) { 2727 if (!dentry->d_inode) 2728 goto out; 2729 } else if (!dentry->d_inode) { 2730 goto out; 2731 } else if ((open_flag & O_TRUNC) && 2732 S_ISREG(dentry->d_inode->i_mode)) { 2733 goto out; 2734 } 2735 /* will fail later, go on to get the right error */ 2736 } 2737 } 2738 looked_up: 2739 path->dentry = dentry; 2740 path->mnt = nd->path.mnt; 2741 return 1; 2742 } 2743 2744 /* 2745 * Look up and maybe create and open the last component. 2746 * 2747 * Must be called with i_mutex held on parent. 2748 * 2749 * Returns 0 if the file was successfully atomically created (if necessary) and 2750 * opened. In this case the file will be returned attached to @file. 2751 * 2752 * Returns 1 if the file was not completely opened at this time, though lookups 2753 * and creations will have been performed and the dentry returned in @path will 2754 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2755 * specified then a negative dentry may be returned. 2756 * 2757 * An error code is returned otherwise. 2758 * 2759 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2760 * cleared otherwise prior to returning. 2761 */ 2762 static int lookup_open(struct nameidata *nd, struct path *path, 2763 struct file *file, 2764 const struct open_flags *op, 2765 bool got_write, int *opened) 2766 { 2767 struct dentry *dir = nd->path.dentry; 2768 struct inode *dir_inode = dir->d_inode; 2769 struct dentry *dentry; 2770 int error; 2771 bool need_lookup; 2772 2773 *opened &= ~FILE_CREATED; 2774 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2775 if (IS_ERR(dentry)) 2776 return PTR_ERR(dentry); 2777 2778 /* Cached positive dentry: will open in f_op->open */ 2779 if (!need_lookup && dentry->d_inode) 2780 goto out_no_open; 2781 2782 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2783 return atomic_open(nd, dentry, path, file, op, got_write, 2784 need_lookup, opened); 2785 } 2786 2787 if (need_lookup) { 2788 BUG_ON(dentry->d_inode); 2789 2790 dentry = lookup_real(dir_inode, dentry, nd->flags); 2791 if (IS_ERR(dentry)) 2792 return PTR_ERR(dentry); 2793 } 2794 2795 /* Negative dentry, just create the file */ 2796 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2797 umode_t mode = op->mode; 2798 if (!IS_POSIXACL(dir->d_inode)) 2799 mode &= ~current_umask(); 2800 /* 2801 * This write is needed to ensure that a 2802 * rw->ro transition does not occur between 2803 * the time when the file is created and when 2804 * a permanent write count is taken through 2805 * the 'struct file' in finish_open(). 2806 */ 2807 if (!got_write) { 2808 error = -EROFS; 2809 goto out_dput; 2810 } 2811 *opened |= FILE_CREATED; 2812 error = security_path_mknod(&nd->path, dentry, mode, 0); 2813 if (error) 2814 goto out_dput; 2815 error = vfs_create(dir->d_inode, dentry, mode, 2816 nd->flags & LOOKUP_EXCL); 2817 if (error) 2818 goto out_dput; 2819 } 2820 out_no_open: 2821 path->dentry = dentry; 2822 path->mnt = nd->path.mnt; 2823 return 1; 2824 2825 out_dput: 2826 dput(dentry); 2827 return error; 2828 } 2829 2830 /* 2831 * Handle the last step of open() 2832 */ 2833 static int do_last(struct nameidata *nd, struct path *path, 2834 struct file *file, const struct open_flags *op, 2835 int *opened, struct filename *name) 2836 { 2837 struct dentry *dir = nd->path.dentry; 2838 int open_flag = op->open_flag; 2839 bool will_truncate = (open_flag & O_TRUNC) != 0; 2840 bool got_write = false; 2841 int acc_mode = op->acc_mode; 2842 struct inode *inode; 2843 bool symlink_ok = false; 2844 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2845 bool retried = false; 2846 int error; 2847 2848 nd->flags &= ~LOOKUP_PARENT; 2849 nd->flags |= op->intent; 2850 2851 if (nd->last_type != LAST_NORM) { 2852 error = handle_dots(nd, nd->last_type); 2853 if (error) 2854 return error; 2855 goto finish_open; 2856 } 2857 2858 if (!(open_flag & O_CREAT)) { 2859 if (nd->last.name[nd->last.len]) 2860 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2861 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2862 symlink_ok = true; 2863 /* we _can_ be in RCU mode here */ 2864 error = lookup_fast(nd, path, &inode); 2865 if (likely(!error)) 2866 goto finish_lookup; 2867 2868 if (error < 0) 2869 goto out; 2870 2871 BUG_ON(nd->inode != dir->d_inode); 2872 } else { 2873 /* create side of things */ 2874 /* 2875 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2876 * has been cleared when we got to the last component we are 2877 * about to look up 2878 */ 2879 error = complete_walk(nd); 2880 if (error) 2881 return error; 2882 2883 audit_inode(name, dir, LOOKUP_PARENT); 2884 error = -EISDIR; 2885 /* trailing slashes? */ 2886 if (nd->last.name[nd->last.len]) 2887 goto out; 2888 } 2889 2890 retry_lookup: 2891 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2892 error = mnt_want_write(nd->path.mnt); 2893 if (!error) 2894 got_write = true; 2895 /* 2896 * do _not_ fail yet - we might not need that or fail with 2897 * a different error; let lookup_open() decide; we'll be 2898 * dropping this one anyway. 2899 */ 2900 } 2901 mutex_lock(&dir->d_inode->i_mutex); 2902 error = lookup_open(nd, path, file, op, got_write, opened); 2903 mutex_unlock(&dir->d_inode->i_mutex); 2904 2905 if (error <= 0) { 2906 if (error) 2907 goto out; 2908 2909 if ((*opened & FILE_CREATED) || 2910 !S_ISREG(file_inode(file)->i_mode)) 2911 will_truncate = false; 2912 2913 audit_inode(name, file->f_path.dentry, 0); 2914 goto opened; 2915 } 2916 2917 if (*opened & FILE_CREATED) { 2918 /* Don't check for write permission, don't truncate */ 2919 open_flag &= ~O_TRUNC; 2920 will_truncate = false; 2921 acc_mode = MAY_OPEN; 2922 path_to_nameidata(path, nd); 2923 goto finish_open_created; 2924 } 2925 2926 /* 2927 * create/update audit record if it already exists. 2928 */ 2929 if (d_is_positive(path->dentry)) 2930 audit_inode(name, path->dentry, 0); 2931 2932 /* 2933 * If atomic_open() acquired write access it is dropped now due to 2934 * possible mount and symlink following (this might be optimized away if 2935 * necessary...) 2936 */ 2937 if (got_write) { 2938 mnt_drop_write(nd->path.mnt); 2939 got_write = false; 2940 } 2941 2942 error = -EEXIST; 2943 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 2944 goto exit_dput; 2945 2946 error = follow_managed(path, nd->flags); 2947 if (error < 0) 2948 goto exit_dput; 2949 2950 if (error) 2951 nd->flags |= LOOKUP_JUMPED; 2952 2953 BUG_ON(nd->flags & LOOKUP_RCU); 2954 inode = path->dentry->d_inode; 2955 finish_lookup: 2956 /* we _can_ be in RCU mode here */ 2957 error = -ENOENT; 2958 if (d_is_negative(path->dentry)) { 2959 path_to_nameidata(path, nd); 2960 goto out; 2961 } 2962 2963 if (should_follow_link(path->dentry, !symlink_ok)) { 2964 if (nd->flags & LOOKUP_RCU) { 2965 if (unlikely(unlazy_walk(nd, path->dentry))) { 2966 error = -ECHILD; 2967 goto out; 2968 } 2969 } 2970 BUG_ON(inode != path->dentry->d_inode); 2971 return 1; 2972 } 2973 2974 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 2975 path_to_nameidata(path, nd); 2976 } else { 2977 save_parent.dentry = nd->path.dentry; 2978 save_parent.mnt = mntget(path->mnt); 2979 nd->path.dentry = path->dentry; 2980 2981 } 2982 nd->inode = inode; 2983 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 2984 finish_open: 2985 error = complete_walk(nd); 2986 if (error) { 2987 path_put(&save_parent); 2988 return error; 2989 } 2990 audit_inode(name, nd->path.dentry, 0); 2991 error = -EISDIR; 2992 if ((open_flag & O_CREAT) && 2993 (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry))) 2994 goto out; 2995 error = -ENOTDIR; 2996 if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry)) 2997 goto out; 2998 if (!S_ISREG(nd->inode->i_mode)) 2999 will_truncate = false; 3000 3001 if (will_truncate) { 3002 error = mnt_want_write(nd->path.mnt); 3003 if (error) 3004 goto out; 3005 got_write = true; 3006 } 3007 finish_open_created: 3008 error = may_open(&nd->path, acc_mode, open_flag); 3009 if (error) 3010 goto out; 3011 file->f_path.mnt = nd->path.mnt; 3012 error = finish_open(file, nd->path.dentry, NULL, opened); 3013 if (error) { 3014 if (error == -EOPENSTALE) 3015 goto stale_open; 3016 goto out; 3017 } 3018 opened: 3019 error = open_check_o_direct(file); 3020 if (error) 3021 goto exit_fput; 3022 error = ima_file_check(file, op->acc_mode); 3023 if (error) 3024 goto exit_fput; 3025 3026 if (will_truncate) { 3027 error = handle_truncate(file); 3028 if (error) 3029 goto exit_fput; 3030 } 3031 out: 3032 if (got_write) 3033 mnt_drop_write(nd->path.mnt); 3034 path_put(&save_parent); 3035 terminate_walk(nd); 3036 return error; 3037 3038 exit_dput: 3039 path_put_conditional(path, nd); 3040 goto out; 3041 exit_fput: 3042 fput(file); 3043 goto out; 3044 3045 stale_open: 3046 /* If no saved parent or already retried then can't retry */ 3047 if (!save_parent.dentry || retried) 3048 goto out; 3049 3050 BUG_ON(save_parent.dentry != dir); 3051 path_put(&nd->path); 3052 nd->path = save_parent; 3053 nd->inode = dir->d_inode; 3054 save_parent.mnt = NULL; 3055 save_parent.dentry = NULL; 3056 if (got_write) { 3057 mnt_drop_write(nd->path.mnt); 3058 got_write = false; 3059 } 3060 retried = true; 3061 goto retry_lookup; 3062 } 3063 3064 static int do_tmpfile(int dfd, struct filename *pathname, 3065 struct nameidata *nd, int flags, 3066 const struct open_flags *op, 3067 struct file *file, int *opened) 3068 { 3069 static const struct qstr name = QSTR_INIT("/", 1); 3070 struct dentry *dentry, *child; 3071 struct inode *dir; 3072 int error = path_lookupat(dfd, pathname->name, 3073 flags | LOOKUP_DIRECTORY, nd); 3074 if (unlikely(error)) 3075 return error; 3076 error = mnt_want_write(nd->path.mnt); 3077 if (unlikely(error)) 3078 goto out; 3079 /* we want directory to be writable */ 3080 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3081 if (error) 3082 goto out2; 3083 dentry = nd->path.dentry; 3084 dir = dentry->d_inode; 3085 if (!dir->i_op->tmpfile) { 3086 error = -EOPNOTSUPP; 3087 goto out2; 3088 } 3089 child = d_alloc(dentry, &name); 3090 if (unlikely(!child)) { 3091 error = -ENOMEM; 3092 goto out2; 3093 } 3094 nd->flags &= ~LOOKUP_DIRECTORY; 3095 nd->flags |= op->intent; 3096 dput(nd->path.dentry); 3097 nd->path.dentry = child; 3098 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3099 if (error) 3100 goto out2; 3101 audit_inode(pathname, nd->path.dentry, 0); 3102 error = may_open(&nd->path, op->acc_mode, op->open_flag); 3103 if (error) 3104 goto out2; 3105 file->f_path.mnt = nd->path.mnt; 3106 error = finish_open(file, nd->path.dentry, NULL, opened); 3107 if (error) 3108 goto out2; 3109 error = open_check_o_direct(file); 3110 if (error) { 3111 fput(file); 3112 } else if (!(op->open_flag & O_EXCL)) { 3113 struct inode *inode = file_inode(file); 3114 spin_lock(&inode->i_lock); 3115 inode->i_state |= I_LINKABLE; 3116 spin_unlock(&inode->i_lock); 3117 } 3118 out2: 3119 mnt_drop_write(nd->path.mnt); 3120 out: 3121 path_put(&nd->path); 3122 return error; 3123 } 3124 3125 static struct file *path_openat(int dfd, struct filename *pathname, 3126 struct nameidata *nd, const struct open_flags *op, int flags) 3127 { 3128 struct file *base = NULL; 3129 struct file *file; 3130 struct path path; 3131 int opened = 0; 3132 int error; 3133 3134 file = get_empty_filp(); 3135 if (IS_ERR(file)) 3136 return file; 3137 3138 file->f_flags = op->open_flag; 3139 3140 if (unlikely(file->f_flags & __O_TMPFILE)) { 3141 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3142 goto out; 3143 } 3144 3145 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base); 3146 if (unlikely(error)) 3147 goto out; 3148 3149 current->total_link_count = 0; 3150 error = link_path_walk(pathname->name, nd); 3151 if (unlikely(error)) 3152 goto out; 3153 3154 error = do_last(nd, &path, file, op, &opened, pathname); 3155 while (unlikely(error > 0)) { /* trailing symlink */ 3156 struct path link = path; 3157 void *cookie; 3158 if (!(nd->flags & LOOKUP_FOLLOW)) { 3159 path_put_conditional(&path, nd); 3160 path_put(&nd->path); 3161 error = -ELOOP; 3162 break; 3163 } 3164 error = may_follow_link(&link, nd); 3165 if (unlikely(error)) 3166 break; 3167 nd->flags |= LOOKUP_PARENT; 3168 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3169 error = follow_link(&link, nd, &cookie); 3170 if (unlikely(error)) 3171 break; 3172 error = do_last(nd, &path, file, op, &opened, pathname); 3173 put_link(nd, &link, cookie); 3174 } 3175 out: 3176 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) 3177 path_put(&nd->root); 3178 if (base) 3179 fput(base); 3180 if (!(opened & FILE_OPENED)) { 3181 BUG_ON(!error); 3182 put_filp(file); 3183 } 3184 if (unlikely(error)) { 3185 if (error == -EOPENSTALE) { 3186 if (flags & LOOKUP_RCU) 3187 error = -ECHILD; 3188 else 3189 error = -ESTALE; 3190 } 3191 file = ERR_PTR(error); 3192 } 3193 return file; 3194 } 3195 3196 struct file *do_filp_open(int dfd, struct filename *pathname, 3197 const struct open_flags *op) 3198 { 3199 struct nameidata nd; 3200 int flags = op->lookup_flags; 3201 struct file *filp; 3202 3203 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3204 if (unlikely(filp == ERR_PTR(-ECHILD))) 3205 filp = path_openat(dfd, pathname, &nd, op, flags); 3206 if (unlikely(filp == ERR_PTR(-ESTALE))) 3207 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3208 return filp; 3209 } 3210 3211 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3212 const char *name, const struct open_flags *op) 3213 { 3214 struct nameidata nd; 3215 struct file *file; 3216 struct filename filename = { .name = name }; 3217 int flags = op->lookup_flags | LOOKUP_ROOT; 3218 3219 nd.root.mnt = mnt; 3220 nd.root.dentry = dentry; 3221 3222 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3223 return ERR_PTR(-ELOOP); 3224 3225 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU); 3226 if (unlikely(file == ERR_PTR(-ECHILD))) 3227 file = path_openat(-1, &filename, &nd, op, flags); 3228 if (unlikely(file == ERR_PTR(-ESTALE))) 3229 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL); 3230 return file; 3231 } 3232 3233 struct dentry *kern_path_create(int dfd, const char *pathname, 3234 struct path *path, unsigned int lookup_flags) 3235 { 3236 struct dentry *dentry = ERR_PTR(-EEXIST); 3237 struct nameidata nd; 3238 int err2; 3239 int error; 3240 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3241 3242 /* 3243 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3244 * other flags passed in are ignored! 3245 */ 3246 lookup_flags &= LOOKUP_REVAL; 3247 3248 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd); 3249 if (error) 3250 return ERR_PTR(error); 3251 3252 /* 3253 * Yucky last component or no last component at all? 3254 * (foo/., foo/.., /////) 3255 */ 3256 if (nd.last_type != LAST_NORM) 3257 goto out; 3258 nd.flags &= ~LOOKUP_PARENT; 3259 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3260 3261 /* don't fail immediately if it's r/o, at least try to report other errors */ 3262 err2 = mnt_want_write(nd.path.mnt); 3263 /* 3264 * Do the final lookup. 3265 */ 3266 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3267 dentry = lookup_hash(&nd); 3268 if (IS_ERR(dentry)) 3269 goto unlock; 3270 3271 error = -EEXIST; 3272 if (d_is_positive(dentry)) 3273 goto fail; 3274 3275 /* 3276 * Special case - lookup gave negative, but... we had foo/bar/ 3277 * From the vfs_mknod() POV we just have a negative dentry - 3278 * all is fine. Let's be bastards - you had / on the end, you've 3279 * been asking for (non-existent) directory. -ENOENT for you. 3280 */ 3281 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3282 error = -ENOENT; 3283 goto fail; 3284 } 3285 if (unlikely(err2)) { 3286 error = err2; 3287 goto fail; 3288 } 3289 *path = nd.path; 3290 return dentry; 3291 fail: 3292 dput(dentry); 3293 dentry = ERR_PTR(error); 3294 unlock: 3295 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3296 if (!err2) 3297 mnt_drop_write(nd.path.mnt); 3298 out: 3299 path_put(&nd.path); 3300 return dentry; 3301 } 3302 EXPORT_SYMBOL(kern_path_create); 3303 3304 void done_path_create(struct path *path, struct dentry *dentry) 3305 { 3306 dput(dentry); 3307 mutex_unlock(&path->dentry->d_inode->i_mutex); 3308 mnt_drop_write(path->mnt); 3309 path_put(path); 3310 } 3311 EXPORT_SYMBOL(done_path_create); 3312 3313 struct dentry *user_path_create(int dfd, const char __user *pathname, 3314 struct path *path, unsigned int lookup_flags) 3315 { 3316 struct filename *tmp = getname(pathname); 3317 struct dentry *res; 3318 if (IS_ERR(tmp)) 3319 return ERR_CAST(tmp); 3320 res = kern_path_create(dfd, tmp->name, path, lookup_flags); 3321 putname(tmp); 3322 return res; 3323 } 3324 EXPORT_SYMBOL(user_path_create); 3325 3326 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3327 { 3328 int error = may_create(dir, dentry); 3329 3330 if (error) 3331 return error; 3332 3333 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3334 return -EPERM; 3335 3336 if (!dir->i_op->mknod) 3337 return -EPERM; 3338 3339 error = devcgroup_inode_mknod(mode, dev); 3340 if (error) 3341 return error; 3342 3343 error = security_inode_mknod(dir, dentry, mode, dev); 3344 if (error) 3345 return error; 3346 3347 error = dir->i_op->mknod(dir, dentry, mode, dev); 3348 if (!error) 3349 fsnotify_create(dir, dentry); 3350 return error; 3351 } 3352 3353 static int may_mknod(umode_t mode) 3354 { 3355 switch (mode & S_IFMT) { 3356 case S_IFREG: 3357 case S_IFCHR: 3358 case S_IFBLK: 3359 case S_IFIFO: 3360 case S_IFSOCK: 3361 case 0: /* zero mode translates to S_IFREG */ 3362 return 0; 3363 case S_IFDIR: 3364 return -EPERM; 3365 default: 3366 return -EINVAL; 3367 } 3368 } 3369 3370 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3371 unsigned, dev) 3372 { 3373 struct dentry *dentry; 3374 struct path path; 3375 int error; 3376 unsigned int lookup_flags = 0; 3377 3378 error = may_mknod(mode); 3379 if (error) 3380 return error; 3381 retry: 3382 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3383 if (IS_ERR(dentry)) 3384 return PTR_ERR(dentry); 3385 3386 if (!IS_POSIXACL(path.dentry->d_inode)) 3387 mode &= ~current_umask(); 3388 error = security_path_mknod(&path, dentry, mode, dev); 3389 if (error) 3390 goto out; 3391 switch (mode & S_IFMT) { 3392 case 0: case S_IFREG: 3393 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3394 break; 3395 case S_IFCHR: case S_IFBLK: 3396 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3397 new_decode_dev(dev)); 3398 break; 3399 case S_IFIFO: case S_IFSOCK: 3400 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3401 break; 3402 } 3403 out: 3404 done_path_create(&path, dentry); 3405 if (retry_estale(error, lookup_flags)) { 3406 lookup_flags |= LOOKUP_REVAL; 3407 goto retry; 3408 } 3409 return error; 3410 } 3411 3412 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3413 { 3414 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3415 } 3416 3417 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3418 { 3419 int error = may_create(dir, dentry); 3420 unsigned max_links = dir->i_sb->s_max_links; 3421 3422 if (error) 3423 return error; 3424 3425 if (!dir->i_op->mkdir) 3426 return -EPERM; 3427 3428 mode &= (S_IRWXUGO|S_ISVTX); 3429 error = security_inode_mkdir(dir, dentry, mode); 3430 if (error) 3431 return error; 3432 3433 if (max_links && dir->i_nlink >= max_links) 3434 return -EMLINK; 3435 3436 error = dir->i_op->mkdir(dir, dentry, mode); 3437 if (!error) 3438 fsnotify_mkdir(dir, dentry); 3439 return error; 3440 } 3441 3442 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3443 { 3444 struct dentry *dentry; 3445 struct path path; 3446 int error; 3447 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3448 3449 retry: 3450 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3451 if (IS_ERR(dentry)) 3452 return PTR_ERR(dentry); 3453 3454 if (!IS_POSIXACL(path.dentry->d_inode)) 3455 mode &= ~current_umask(); 3456 error = security_path_mkdir(&path, dentry, mode); 3457 if (!error) 3458 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3459 done_path_create(&path, dentry); 3460 if (retry_estale(error, lookup_flags)) { 3461 lookup_flags |= LOOKUP_REVAL; 3462 goto retry; 3463 } 3464 return error; 3465 } 3466 3467 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3468 { 3469 return sys_mkdirat(AT_FDCWD, pathname, mode); 3470 } 3471 3472 /* 3473 * The dentry_unhash() helper will try to drop the dentry early: we 3474 * should have a usage count of 1 if we're the only user of this 3475 * dentry, and if that is true (possibly after pruning the dcache), 3476 * then we drop the dentry now. 3477 * 3478 * A low-level filesystem can, if it choses, legally 3479 * do a 3480 * 3481 * if (!d_unhashed(dentry)) 3482 * return -EBUSY; 3483 * 3484 * if it cannot handle the case of removing a directory 3485 * that is still in use by something else.. 3486 */ 3487 void dentry_unhash(struct dentry *dentry) 3488 { 3489 shrink_dcache_parent(dentry); 3490 spin_lock(&dentry->d_lock); 3491 if (dentry->d_lockref.count == 1) 3492 __d_drop(dentry); 3493 spin_unlock(&dentry->d_lock); 3494 } 3495 3496 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3497 { 3498 int error = may_delete(dir, dentry, 1); 3499 3500 if (error) 3501 return error; 3502 3503 if (!dir->i_op->rmdir) 3504 return -EPERM; 3505 3506 dget(dentry); 3507 mutex_lock(&dentry->d_inode->i_mutex); 3508 3509 error = -EBUSY; 3510 if (d_mountpoint(dentry)) 3511 goto out; 3512 3513 error = security_inode_rmdir(dir, dentry); 3514 if (error) 3515 goto out; 3516 3517 shrink_dcache_parent(dentry); 3518 error = dir->i_op->rmdir(dir, dentry); 3519 if (error) 3520 goto out; 3521 3522 dentry->d_inode->i_flags |= S_DEAD; 3523 dont_mount(dentry); 3524 3525 out: 3526 mutex_unlock(&dentry->d_inode->i_mutex); 3527 dput(dentry); 3528 if (!error) 3529 d_delete(dentry); 3530 return error; 3531 } 3532 3533 static long do_rmdir(int dfd, const char __user *pathname) 3534 { 3535 int error = 0; 3536 struct filename *name; 3537 struct dentry *dentry; 3538 struct nameidata nd; 3539 unsigned int lookup_flags = 0; 3540 retry: 3541 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3542 if (IS_ERR(name)) 3543 return PTR_ERR(name); 3544 3545 switch(nd.last_type) { 3546 case LAST_DOTDOT: 3547 error = -ENOTEMPTY; 3548 goto exit1; 3549 case LAST_DOT: 3550 error = -EINVAL; 3551 goto exit1; 3552 case LAST_ROOT: 3553 error = -EBUSY; 3554 goto exit1; 3555 } 3556 3557 nd.flags &= ~LOOKUP_PARENT; 3558 error = mnt_want_write(nd.path.mnt); 3559 if (error) 3560 goto exit1; 3561 3562 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3563 dentry = lookup_hash(&nd); 3564 error = PTR_ERR(dentry); 3565 if (IS_ERR(dentry)) 3566 goto exit2; 3567 if (!dentry->d_inode) { 3568 error = -ENOENT; 3569 goto exit3; 3570 } 3571 error = security_path_rmdir(&nd.path, dentry); 3572 if (error) 3573 goto exit3; 3574 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3575 exit3: 3576 dput(dentry); 3577 exit2: 3578 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3579 mnt_drop_write(nd.path.mnt); 3580 exit1: 3581 path_put(&nd.path); 3582 putname(name); 3583 if (retry_estale(error, lookup_flags)) { 3584 lookup_flags |= LOOKUP_REVAL; 3585 goto retry; 3586 } 3587 return error; 3588 } 3589 3590 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3591 { 3592 return do_rmdir(AT_FDCWD, pathname); 3593 } 3594 3595 /** 3596 * vfs_unlink - unlink a filesystem object 3597 * @dir: parent directory 3598 * @dentry: victim 3599 * @delegated_inode: returns victim inode, if the inode is delegated. 3600 * 3601 * The caller must hold dir->i_mutex. 3602 * 3603 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3604 * return a reference to the inode in delegated_inode. The caller 3605 * should then break the delegation on that inode and retry. Because 3606 * breaking a delegation may take a long time, the caller should drop 3607 * dir->i_mutex before doing so. 3608 * 3609 * Alternatively, a caller may pass NULL for delegated_inode. This may 3610 * be appropriate for callers that expect the underlying filesystem not 3611 * to be NFS exported. 3612 */ 3613 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3614 { 3615 struct inode *target = dentry->d_inode; 3616 int error = may_delete(dir, dentry, 0); 3617 3618 if (error) 3619 return error; 3620 3621 if (!dir->i_op->unlink) 3622 return -EPERM; 3623 3624 mutex_lock(&target->i_mutex); 3625 if (d_mountpoint(dentry)) 3626 error = -EBUSY; 3627 else { 3628 error = security_inode_unlink(dir, dentry); 3629 if (!error) { 3630 error = try_break_deleg(target, delegated_inode); 3631 if (error) 3632 goto out; 3633 error = dir->i_op->unlink(dir, dentry); 3634 if (!error) 3635 dont_mount(dentry); 3636 } 3637 } 3638 out: 3639 mutex_unlock(&target->i_mutex); 3640 3641 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3642 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3643 fsnotify_link_count(target); 3644 d_delete(dentry); 3645 } 3646 3647 return error; 3648 } 3649 3650 /* 3651 * Make sure that the actual truncation of the file will occur outside its 3652 * directory's i_mutex. Truncate can take a long time if there is a lot of 3653 * writeout happening, and we don't want to prevent access to the directory 3654 * while waiting on the I/O. 3655 */ 3656 static long do_unlinkat(int dfd, const char __user *pathname) 3657 { 3658 int error; 3659 struct filename *name; 3660 struct dentry *dentry; 3661 struct nameidata nd; 3662 struct inode *inode = NULL; 3663 struct inode *delegated_inode = NULL; 3664 unsigned int lookup_flags = 0; 3665 retry: 3666 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3667 if (IS_ERR(name)) 3668 return PTR_ERR(name); 3669 3670 error = -EISDIR; 3671 if (nd.last_type != LAST_NORM) 3672 goto exit1; 3673 3674 nd.flags &= ~LOOKUP_PARENT; 3675 error = mnt_want_write(nd.path.mnt); 3676 if (error) 3677 goto exit1; 3678 retry_deleg: 3679 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3680 dentry = lookup_hash(&nd); 3681 error = PTR_ERR(dentry); 3682 if (!IS_ERR(dentry)) { 3683 /* Why not before? Because we want correct error value */ 3684 if (nd.last.name[nd.last.len]) 3685 goto slashes; 3686 inode = dentry->d_inode; 3687 if (d_is_negative(dentry)) 3688 goto slashes; 3689 ihold(inode); 3690 error = security_path_unlink(&nd.path, dentry); 3691 if (error) 3692 goto exit2; 3693 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3694 exit2: 3695 dput(dentry); 3696 } 3697 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3698 if (inode) 3699 iput(inode); /* truncate the inode here */ 3700 inode = NULL; 3701 if (delegated_inode) { 3702 error = break_deleg_wait(&delegated_inode); 3703 if (!error) 3704 goto retry_deleg; 3705 } 3706 mnt_drop_write(nd.path.mnt); 3707 exit1: 3708 path_put(&nd.path); 3709 putname(name); 3710 if (retry_estale(error, lookup_flags)) { 3711 lookup_flags |= LOOKUP_REVAL; 3712 inode = NULL; 3713 goto retry; 3714 } 3715 return error; 3716 3717 slashes: 3718 if (d_is_negative(dentry)) 3719 error = -ENOENT; 3720 else if (d_is_directory(dentry) || d_is_autodir(dentry)) 3721 error = -EISDIR; 3722 else 3723 error = -ENOTDIR; 3724 goto exit2; 3725 } 3726 3727 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3728 { 3729 if ((flag & ~AT_REMOVEDIR) != 0) 3730 return -EINVAL; 3731 3732 if (flag & AT_REMOVEDIR) 3733 return do_rmdir(dfd, pathname); 3734 3735 return do_unlinkat(dfd, pathname); 3736 } 3737 3738 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3739 { 3740 return do_unlinkat(AT_FDCWD, pathname); 3741 } 3742 3743 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3744 { 3745 int error = may_create(dir, dentry); 3746 3747 if (error) 3748 return error; 3749 3750 if (!dir->i_op->symlink) 3751 return -EPERM; 3752 3753 error = security_inode_symlink(dir, dentry, oldname); 3754 if (error) 3755 return error; 3756 3757 error = dir->i_op->symlink(dir, dentry, oldname); 3758 if (!error) 3759 fsnotify_create(dir, dentry); 3760 return error; 3761 } 3762 3763 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3764 int, newdfd, const char __user *, newname) 3765 { 3766 int error; 3767 struct filename *from; 3768 struct dentry *dentry; 3769 struct path path; 3770 unsigned int lookup_flags = 0; 3771 3772 from = getname(oldname); 3773 if (IS_ERR(from)) 3774 return PTR_ERR(from); 3775 retry: 3776 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3777 error = PTR_ERR(dentry); 3778 if (IS_ERR(dentry)) 3779 goto out_putname; 3780 3781 error = security_path_symlink(&path, dentry, from->name); 3782 if (!error) 3783 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3784 done_path_create(&path, dentry); 3785 if (retry_estale(error, lookup_flags)) { 3786 lookup_flags |= LOOKUP_REVAL; 3787 goto retry; 3788 } 3789 out_putname: 3790 putname(from); 3791 return error; 3792 } 3793 3794 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3795 { 3796 return sys_symlinkat(oldname, AT_FDCWD, newname); 3797 } 3798 3799 /** 3800 * vfs_link - create a new link 3801 * @old_dentry: object to be linked 3802 * @dir: new parent 3803 * @new_dentry: where to create the new link 3804 * @delegated_inode: returns inode needing a delegation break 3805 * 3806 * The caller must hold dir->i_mutex 3807 * 3808 * If vfs_link discovers a delegation on the to-be-linked file in need 3809 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3810 * inode in delegated_inode. The caller should then break the delegation 3811 * and retry. Because breaking a delegation may take a long time, the 3812 * caller should drop the i_mutex before doing so. 3813 * 3814 * Alternatively, a caller may pass NULL for delegated_inode. This may 3815 * be appropriate for callers that expect the underlying filesystem not 3816 * to be NFS exported. 3817 */ 3818 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3819 { 3820 struct inode *inode = old_dentry->d_inode; 3821 unsigned max_links = dir->i_sb->s_max_links; 3822 int error; 3823 3824 if (!inode) 3825 return -ENOENT; 3826 3827 error = may_create(dir, new_dentry); 3828 if (error) 3829 return error; 3830 3831 if (dir->i_sb != inode->i_sb) 3832 return -EXDEV; 3833 3834 /* 3835 * A link to an append-only or immutable file cannot be created. 3836 */ 3837 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3838 return -EPERM; 3839 if (!dir->i_op->link) 3840 return -EPERM; 3841 if (S_ISDIR(inode->i_mode)) 3842 return -EPERM; 3843 3844 error = security_inode_link(old_dentry, dir, new_dentry); 3845 if (error) 3846 return error; 3847 3848 mutex_lock(&inode->i_mutex); 3849 /* Make sure we don't allow creating hardlink to an unlinked file */ 3850 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3851 error = -ENOENT; 3852 else if (max_links && inode->i_nlink >= max_links) 3853 error = -EMLINK; 3854 else { 3855 error = try_break_deleg(inode, delegated_inode); 3856 if (!error) 3857 error = dir->i_op->link(old_dentry, dir, new_dentry); 3858 } 3859 3860 if (!error && (inode->i_state & I_LINKABLE)) { 3861 spin_lock(&inode->i_lock); 3862 inode->i_state &= ~I_LINKABLE; 3863 spin_unlock(&inode->i_lock); 3864 } 3865 mutex_unlock(&inode->i_mutex); 3866 if (!error) 3867 fsnotify_link(dir, inode, new_dentry); 3868 return error; 3869 } 3870 3871 /* 3872 * Hardlinks are often used in delicate situations. We avoid 3873 * security-related surprises by not following symlinks on the 3874 * newname. --KAB 3875 * 3876 * We don't follow them on the oldname either to be compatible 3877 * with linux 2.0, and to avoid hard-linking to directories 3878 * and other special files. --ADM 3879 */ 3880 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3881 int, newdfd, const char __user *, newname, int, flags) 3882 { 3883 struct dentry *new_dentry; 3884 struct path old_path, new_path; 3885 struct inode *delegated_inode = NULL; 3886 int how = 0; 3887 int error; 3888 3889 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3890 return -EINVAL; 3891 /* 3892 * To use null names we require CAP_DAC_READ_SEARCH 3893 * This ensures that not everyone will be able to create 3894 * handlink using the passed filedescriptor. 3895 */ 3896 if (flags & AT_EMPTY_PATH) { 3897 if (!capable(CAP_DAC_READ_SEARCH)) 3898 return -ENOENT; 3899 how = LOOKUP_EMPTY; 3900 } 3901 3902 if (flags & AT_SYMLINK_FOLLOW) 3903 how |= LOOKUP_FOLLOW; 3904 retry: 3905 error = user_path_at(olddfd, oldname, how, &old_path); 3906 if (error) 3907 return error; 3908 3909 new_dentry = user_path_create(newdfd, newname, &new_path, 3910 (how & LOOKUP_REVAL)); 3911 error = PTR_ERR(new_dentry); 3912 if (IS_ERR(new_dentry)) 3913 goto out; 3914 3915 error = -EXDEV; 3916 if (old_path.mnt != new_path.mnt) 3917 goto out_dput; 3918 error = may_linkat(&old_path); 3919 if (unlikely(error)) 3920 goto out_dput; 3921 error = security_path_link(old_path.dentry, &new_path, new_dentry); 3922 if (error) 3923 goto out_dput; 3924 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 3925 out_dput: 3926 done_path_create(&new_path, new_dentry); 3927 if (delegated_inode) { 3928 error = break_deleg_wait(&delegated_inode); 3929 if (!error) { 3930 path_put(&old_path); 3931 goto retry; 3932 } 3933 } 3934 if (retry_estale(error, how)) { 3935 path_put(&old_path); 3936 how |= LOOKUP_REVAL; 3937 goto retry; 3938 } 3939 out: 3940 path_put(&old_path); 3941 3942 return error; 3943 } 3944 3945 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3946 { 3947 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3948 } 3949 3950 /* 3951 * The worst of all namespace operations - renaming directory. "Perverted" 3952 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3953 * Problems: 3954 * a) we can get into loop creation. Check is done in is_subdir(). 3955 * b) race potential - two innocent renames can create a loop together. 3956 * That's where 4.4 screws up. Current fix: serialization on 3957 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3958 * story. 3959 * c) we have to lock _four_ objects - parents and victim (if it exists), 3960 * and source (if it is not a directory). 3961 * And that - after we got ->i_mutex on parents (until then we don't know 3962 * whether the target exists). Solution: try to be smart with locking 3963 * order for inodes. We rely on the fact that tree topology may change 3964 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3965 * move will be locked. Thus we can rank directories by the tree 3966 * (ancestors first) and rank all non-directories after them. 3967 * That works since everybody except rename does "lock parent, lookup, 3968 * lock child" and rename is under ->s_vfs_rename_mutex. 3969 * HOWEVER, it relies on the assumption that any object with ->lookup() 3970 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3971 * we'd better make sure that there's no link(2) for them. 3972 * d) conversion from fhandle to dentry may come in the wrong moment - when 3973 * we are removing the target. Solution: we will have to grab ->i_mutex 3974 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3975 * ->i_mutex on parents, which works but leads to some truly excessive 3976 * locking]. 3977 */ 3978 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3979 struct inode *new_dir, struct dentry *new_dentry) 3980 { 3981 int error = 0; 3982 struct inode *target = new_dentry->d_inode; 3983 unsigned max_links = new_dir->i_sb->s_max_links; 3984 3985 /* 3986 * If we are going to change the parent - check write permissions, 3987 * we'll need to flip '..'. 3988 */ 3989 if (new_dir != old_dir) { 3990 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3991 if (error) 3992 return error; 3993 } 3994 3995 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3996 if (error) 3997 return error; 3998 3999 dget(new_dentry); 4000 if (target) 4001 mutex_lock(&target->i_mutex); 4002 4003 error = -EBUSY; 4004 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) 4005 goto out; 4006 4007 error = -EMLINK; 4008 if (max_links && !target && new_dir != old_dir && 4009 new_dir->i_nlink >= max_links) 4010 goto out; 4011 4012 if (target) 4013 shrink_dcache_parent(new_dentry); 4014 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 4015 if (error) 4016 goto out; 4017 4018 if (target) { 4019 target->i_flags |= S_DEAD; 4020 dont_mount(new_dentry); 4021 } 4022 out: 4023 if (target) 4024 mutex_unlock(&target->i_mutex); 4025 dput(new_dentry); 4026 if (!error) 4027 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 4028 d_move(old_dentry,new_dentry); 4029 return error; 4030 } 4031 4032 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 4033 struct inode *new_dir, struct dentry *new_dentry, 4034 struct inode **delegated_inode) 4035 { 4036 struct inode *target = new_dentry->d_inode; 4037 struct inode *source = old_dentry->d_inode; 4038 int error; 4039 4040 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 4041 if (error) 4042 return error; 4043 4044 dget(new_dentry); 4045 lock_two_nondirectories(source, target); 4046 4047 error = -EBUSY; 4048 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 4049 goto out; 4050 4051 error = try_break_deleg(source, delegated_inode); 4052 if (error) 4053 goto out; 4054 if (target) { 4055 error = try_break_deleg(target, delegated_inode); 4056 if (error) 4057 goto out; 4058 } 4059 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 4060 if (error) 4061 goto out; 4062 4063 if (target) 4064 dont_mount(new_dentry); 4065 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 4066 d_move(old_dentry, new_dentry); 4067 out: 4068 unlock_two_nondirectories(source, target); 4069 dput(new_dentry); 4070 return error; 4071 } 4072 4073 /** 4074 * vfs_rename - rename a filesystem object 4075 * @old_dir: parent of source 4076 * @old_dentry: source 4077 * @new_dir: parent of destination 4078 * @new_dentry: destination 4079 * @delegated_inode: returns an inode needing a delegation break 4080 * 4081 * The caller must hold multiple mutexes--see lock_rename()). 4082 * 4083 * If vfs_rename discovers a delegation in need of breaking at either 4084 * the source or destination, it will return -EWOULDBLOCK and return a 4085 * reference to the inode in delegated_inode. The caller should then 4086 * break the delegation and retry. Because breaking a delegation may 4087 * take a long time, the caller should drop all locks before doing 4088 * so. 4089 * 4090 * Alternatively, a caller may pass NULL for delegated_inode. This may 4091 * be appropriate for callers that expect the underlying filesystem not 4092 * to be NFS exported. 4093 */ 4094 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4095 struct inode *new_dir, struct dentry *new_dentry, 4096 struct inode **delegated_inode) 4097 { 4098 int error; 4099 int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry); 4100 const unsigned char *old_name; 4101 4102 if (old_dentry->d_inode == new_dentry->d_inode) 4103 return 0; 4104 4105 error = may_delete(old_dir, old_dentry, is_dir); 4106 if (error) 4107 return error; 4108 4109 if (!new_dentry->d_inode) 4110 error = may_create(new_dir, new_dentry); 4111 else 4112 error = may_delete(new_dir, new_dentry, is_dir); 4113 if (error) 4114 return error; 4115 4116 if (!old_dir->i_op->rename) 4117 return -EPERM; 4118 4119 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4120 4121 if (is_dir) 4122 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 4123 else 4124 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode); 4125 if (!error) 4126 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4127 new_dentry->d_inode, old_dentry); 4128 fsnotify_oldname_free(old_name); 4129 4130 return error; 4131 } 4132 4133 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4134 int, newdfd, const char __user *, newname) 4135 { 4136 struct dentry *old_dir, *new_dir; 4137 struct dentry *old_dentry, *new_dentry; 4138 struct dentry *trap; 4139 struct nameidata oldnd, newnd; 4140 struct inode *delegated_inode = NULL; 4141 struct filename *from; 4142 struct filename *to; 4143 unsigned int lookup_flags = 0; 4144 bool should_retry = false; 4145 int error; 4146 retry: 4147 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4148 if (IS_ERR(from)) { 4149 error = PTR_ERR(from); 4150 goto exit; 4151 } 4152 4153 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4154 if (IS_ERR(to)) { 4155 error = PTR_ERR(to); 4156 goto exit1; 4157 } 4158 4159 error = -EXDEV; 4160 if (oldnd.path.mnt != newnd.path.mnt) 4161 goto exit2; 4162 4163 old_dir = oldnd.path.dentry; 4164 error = -EBUSY; 4165 if (oldnd.last_type != LAST_NORM) 4166 goto exit2; 4167 4168 new_dir = newnd.path.dentry; 4169 if (newnd.last_type != LAST_NORM) 4170 goto exit2; 4171 4172 error = mnt_want_write(oldnd.path.mnt); 4173 if (error) 4174 goto exit2; 4175 4176 oldnd.flags &= ~LOOKUP_PARENT; 4177 newnd.flags &= ~LOOKUP_PARENT; 4178 newnd.flags |= LOOKUP_RENAME_TARGET; 4179 4180 retry_deleg: 4181 trap = lock_rename(new_dir, old_dir); 4182 4183 old_dentry = lookup_hash(&oldnd); 4184 error = PTR_ERR(old_dentry); 4185 if (IS_ERR(old_dentry)) 4186 goto exit3; 4187 /* source must exist */ 4188 error = -ENOENT; 4189 if (d_is_negative(old_dentry)) 4190 goto exit4; 4191 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4192 if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) { 4193 error = -ENOTDIR; 4194 if (oldnd.last.name[oldnd.last.len]) 4195 goto exit4; 4196 if (newnd.last.name[newnd.last.len]) 4197 goto exit4; 4198 } 4199 /* source should not be ancestor of target */ 4200 error = -EINVAL; 4201 if (old_dentry == trap) 4202 goto exit4; 4203 new_dentry = lookup_hash(&newnd); 4204 error = PTR_ERR(new_dentry); 4205 if (IS_ERR(new_dentry)) 4206 goto exit4; 4207 /* target should not be an ancestor of source */ 4208 error = -ENOTEMPTY; 4209 if (new_dentry == trap) 4210 goto exit5; 4211 4212 error = security_path_rename(&oldnd.path, old_dentry, 4213 &newnd.path, new_dentry); 4214 if (error) 4215 goto exit5; 4216 error = vfs_rename(old_dir->d_inode, old_dentry, 4217 new_dir->d_inode, new_dentry, 4218 &delegated_inode); 4219 exit5: 4220 dput(new_dentry); 4221 exit4: 4222 dput(old_dentry); 4223 exit3: 4224 unlock_rename(new_dir, old_dir); 4225 if (delegated_inode) { 4226 error = break_deleg_wait(&delegated_inode); 4227 if (!error) 4228 goto retry_deleg; 4229 } 4230 mnt_drop_write(oldnd.path.mnt); 4231 exit2: 4232 if (retry_estale(error, lookup_flags)) 4233 should_retry = true; 4234 path_put(&newnd.path); 4235 putname(to); 4236 exit1: 4237 path_put(&oldnd.path); 4238 putname(from); 4239 if (should_retry) { 4240 should_retry = false; 4241 lookup_flags |= LOOKUP_REVAL; 4242 goto retry; 4243 } 4244 exit: 4245 return error; 4246 } 4247 4248 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4249 { 4250 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 4251 } 4252 4253 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 4254 { 4255 int len; 4256 4257 len = PTR_ERR(link); 4258 if (IS_ERR(link)) 4259 goto out; 4260 4261 len = strlen(link); 4262 if (len > (unsigned) buflen) 4263 len = buflen; 4264 if (copy_to_user(buffer, link, len)) 4265 len = -EFAULT; 4266 out: 4267 return len; 4268 } 4269 4270 /* 4271 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4272 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4273 * using) it for any given inode is up to filesystem. 4274 */ 4275 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4276 { 4277 struct nameidata nd; 4278 void *cookie; 4279 int res; 4280 4281 nd.depth = 0; 4282 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4283 if (IS_ERR(cookie)) 4284 return PTR_ERR(cookie); 4285 4286 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 4287 if (dentry->d_inode->i_op->put_link) 4288 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4289 return res; 4290 } 4291 4292 /* get the link contents into pagecache */ 4293 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4294 { 4295 char *kaddr; 4296 struct page *page; 4297 struct address_space *mapping = dentry->d_inode->i_mapping; 4298 page = read_mapping_page(mapping, 0, NULL); 4299 if (IS_ERR(page)) 4300 return (char*)page; 4301 *ppage = page; 4302 kaddr = kmap(page); 4303 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4304 return kaddr; 4305 } 4306 4307 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4308 { 4309 struct page *page = NULL; 4310 char *s = page_getlink(dentry, &page); 4311 int res = vfs_readlink(dentry,buffer,buflen,s); 4312 if (page) { 4313 kunmap(page); 4314 page_cache_release(page); 4315 } 4316 return res; 4317 } 4318 4319 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4320 { 4321 struct page *page = NULL; 4322 nd_set_link(nd, page_getlink(dentry, &page)); 4323 return page; 4324 } 4325 4326 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4327 { 4328 struct page *page = cookie; 4329 4330 if (page) { 4331 kunmap(page); 4332 page_cache_release(page); 4333 } 4334 } 4335 4336 /* 4337 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4338 */ 4339 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4340 { 4341 struct address_space *mapping = inode->i_mapping; 4342 struct page *page; 4343 void *fsdata; 4344 int err; 4345 char *kaddr; 4346 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4347 if (nofs) 4348 flags |= AOP_FLAG_NOFS; 4349 4350 retry: 4351 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4352 flags, &page, &fsdata); 4353 if (err) 4354 goto fail; 4355 4356 kaddr = kmap_atomic(page); 4357 memcpy(kaddr, symname, len-1); 4358 kunmap_atomic(kaddr); 4359 4360 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4361 page, fsdata); 4362 if (err < 0) 4363 goto fail; 4364 if (err < len-1) 4365 goto retry; 4366 4367 mark_inode_dirty(inode); 4368 return 0; 4369 fail: 4370 return err; 4371 } 4372 4373 int page_symlink(struct inode *inode, const char *symname, int len) 4374 { 4375 return __page_symlink(inode, symname, len, 4376 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4377 } 4378 4379 const struct inode_operations page_symlink_inode_operations = { 4380 .readlink = generic_readlink, 4381 .follow_link = page_follow_link_light, 4382 .put_link = page_put_link, 4383 }; 4384 4385 EXPORT_SYMBOL(user_path_at); 4386 EXPORT_SYMBOL(follow_down_one); 4387 EXPORT_SYMBOL(follow_down); 4388 EXPORT_SYMBOL(follow_up); 4389 EXPORT_SYMBOL(get_write_access); /* nfsd */ 4390 EXPORT_SYMBOL(lock_rename); 4391 EXPORT_SYMBOL(lookup_one_len); 4392 EXPORT_SYMBOL(page_follow_link_light); 4393 EXPORT_SYMBOL(page_put_link); 4394 EXPORT_SYMBOL(page_readlink); 4395 EXPORT_SYMBOL(__page_symlink); 4396 EXPORT_SYMBOL(page_symlink); 4397 EXPORT_SYMBOL(page_symlink_inode_operations); 4398 EXPORT_SYMBOL(kern_path); 4399 EXPORT_SYMBOL(vfs_path_lookup); 4400 EXPORT_SYMBOL(inode_permission); 4401 EXPORT_SYMBOL(unlock_rename); 4402 EXPORT_SYMBOL(vfs_create); 4403 EXPORT_SYMBOL(vfs_link); 4404 EXPORT_SYMBOL(vfs_mkdir); 4405 EXPORT_SYMBOL(vfs_mknod); 4406 EXPORT_SYMBOL(generic_permission); 4407 EXPORT_SYMBOL(vfs_readlink); 4408 EXPORT_SYMBOL(vfs_rename); 4409 EXPORT_SYMBOL(vfs_rmdir); 4410 EXPORT_SYMBOL(vfs_symlink); 4411 EXPORT_SYMBOL(vfs_unlink); 4412 EXPORT_SYMBOL(dentry_unhash); 4413 EXPORT_SYMBOL(generic_readlink); 4414