1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/pagemap.h> 23 #include <linux/fsnotify.h> 24 #include <linux/personality.h> 25 #include <linux/security.h> 26 #include <linux/ima.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <linux/fs_struct.h> 35 #include <asm/uaccess.h> 36 37 #include "internal.h" 38 39 /* [Feb-1997 T. Schoebel-Theuer] 40 * Fundamental changes in the pathname lookup mechanisms (namei) 41 * were necessary because of omirr. The reason is that omirr needs 42 * to know the _real_ pathname, not the user-supplied one, in case 43 * of symlinks (and also when transname replacements occur). 44 * 45 * The new code replaces the old recursive symlink resolution with 46 * an iterative one (in case of non-nested symlink chains). It does 47 * this with calls to <fs>_follow_link(). 48 * As a side effect, dir_namei(), _namei() and follow_link() are now 49 * replaced with a single function lookup_dentry() that can handle all 50 * the special cases of the former code. 51 * 52 * With the new dcache, the pathname is stored at each inode, at least as 53 * long as the refcount of the inode is positive. As a side effect, the 54 * size of the dcache depends on the inode cache and thus is dynamic. 55 * 56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 57 * resolution to correspond with current state of the code. 58 * 59 * Note that the symlink resolution is not *completely* iterative. 60 * There is still a significant amount of tail- and mid- recursion in 61 * the algorithm. Also, note that <fs>_readlink() is not used in 62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 63 * may return different results than <fs>_follow_link(). Many virtual 64 * filesystems (including /proc) exhibit this behavior. 65 */ 66 67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 69 * and the name already exists in form of a symlink, try to create the new 70 * name indicated by the symlink. The old code always complained that the 71 * name already exists, due to not following the symlink even if its target 72 * is nonexistent. The new semantics affects also mknod() and link() when 73 * the name is a symlink pointing to a non-existant name. 74 * 75 * I don't know which semantics is the right one, since I have no access 76 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 78 * "old" one. Personally, I think the new semantics is much more logical. 79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 80 * file does succeed in both HP-UX and SunOs, but not in Solaris 81 * and in the old Linux semantics. 82 */ 83 84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 85 * semantics. See the comments in "open_namei" and "do_link" below. 86 * 87 * [10-Sep-98 Alan Modra] Another symlink change. 88 */ 89 90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 91 * inside the path - always follow. 92 * in the last component in creation/removal/renaming - never follow. 93 * if LOOKUP_FOLLOW passed - follow. 94 * if the pathname has trailing slashes - follow. 95 * otherwise - don't follow. 96 * (applied in that order). 97 * 98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 100 * During the 2.4 we need to fix the userland stuff depending on it - 101 * hopefully we will be able to get rid of that wart in 2.5. So far only 102 * XEmacs seems to be relying on it... 103 */ 104 /* 105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 107 * any extra contention... 108 */ 109 110 /* In order to reduce some races, while at the same time doing additional 111 * checking and hopefully speeding things up, we copy filenames to the 112 * kernel data space before using them.. 113 * 114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 115 * PATH_MAX includes the nul terminator --RR. 116 */ 117 static int do_getname(const char __user *filename, char *page) 118 { 119 int retval; 120 unsigned long len = PATH_MAX; 121 122 if (!segment_eq(get_fs(), KERNEL_DS)) { 123 if ((unsigned long) filename >= TASK_SIZE) 124 return -EFAULT; 125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 126 len = TASK_SIZE - (unsigned long) filename; 127 } 128 129 retval = strncpy_from_user(page, filename, len); 130 if (retval > 0) { 131 if (retval < len) 132 return 0; 133 return -ENAMETOOLONG; 134 } else if (!retval) 135 retval = -ENOENT; 136 return retval; 137 } 138 139 char * getname(const char __user * filename) 140 { 141 char *tmp, *result; 142 143 result = ERR_PTR(-ENOMEM); 144 tmp = __getname(); 145 if (tmp) { 146 int retval = do_getname(filename, tmp); 147 148 result = tmp; 149 if (retval < 0) { 150 __putname(tmp); 151 result = ERR_PTR(retval); 152 } 153 } 154 audit_getname(result); 155 return result; 156 } 157 158 #ifdef CONFIG_AUDITSYSCALL 159 void putname(const char *name) 160 { 161 if (unlikely(!audit_dummy_context())) 162 audit_putname(name); 163 else 164 __putname(name); 165 } 166 EXPORT_SYMBOL(putname); 167 #endif 168 169 /* 170 * This does basic POSIX ACL permission checking 171 */ 172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags, 173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 174 { 175 umode_t mode = inode->i_mode; 176 177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 178 179 if (current_fsuid() == inode->i_uid) 180 mode >>= 6; 181 else { 182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 183 int error = check_acl(inode, mask, flags); 184 if (error != -EAGAIN) 185 return error; 186 } 187 188 if (in_group_p(inode->i_gid)) 189 mode >>= 3; 190 } 191 192 /* 193 * If the DACs are ok we don't need any capability check. 194 */ 195 if ((mask & ~mode) == 0) 196 return 0; 197 return -EACCES; 198 } 199 200 /** 201 * generic_permission - check for access rights on a Posix-like filesystem 202 * @inode: inode to check access rights for 203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 204 * @check_acl: optional callback to check for Posix ACLs 205 * @flags: IPERM_FLAG_ flags. 206 * 207 * Used to check for read/write/execute permissions on a file. 208 * We use "fsuid" for this, letting us set arbitrary permissions 209 * for filesystem access without changing the "normal" uids which 210 * are used for other things. 211 * 212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 213 * request cannot be satisfied (eg. requires blocking or too much complexity). 214 * It would then be called again in ref-walk mode. 215 */ 216 int generic_permission(struct inode *inode, int mask, unsigned int flags, 217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags)) 218 { 219 int ret; 220 221 /* 222 * Do the basic POSIX ACL permission checks. 223 */ 224 ret = acl_permission_check(inode, mask, flags, check_acl); 225 if (ret != -EACCES) 226 return ret; 227 228 /* 229 * Read/write DACs are always overridable. 230 * Executable DACs are overridable if at least one exec bit is set. 231 */ 232 if (!(mask & MAY_EXEC) || execute_ok(inode)) 233 if (capable(CAP_DAC_OVERRIDE)) 234 return 0; 235 236 /* 237 * Searching includes executable on directories, else just read. 238 */ 239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 241 if (capable(CAP_DAC_READ_SEARCH)) 242 return 0; 243 244 return -EACCES; 245 } 246 247 /** 248 * inode_permission - check for access rights to a given inode 249 * @inode: inode to check permission on 250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 251 * 252 * Used to check for read/write/execute permissions on an inode. 253 * We use "fsuid" for this, letting us set arbitrary permissions 254 * for filesystem access without changing the "normal" uids which 255 * are used for other things. 256 */ 257 int inode_permission(struct inode *inode, int mask) 258 { 259 int retval; 260 261 if (mask & MAY_WRITE) { 262 umode_t mode = inode->i_mode; 263 264 /* 265 * Nobody gets write access to a read-only fs. 266 */ 267 if (IS_RDONLY(inode) && 268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 269 return -EROFS; 270 271 /* 272 * Nobody gets write access to an immutable file. 273 */ 274 if (IS_IMMUTABLE(inode)) 275 return -EACCES; 276 } 277 278 if (inode->i_op->permission) 279 retval = inode->i_op->permission(inode, mask, 0); 280 else 281 retval = generic_permission(inode, mask, 0, 282 inode->i_op->check_acl); 283 284 if (retval) 285 return retval; 286 287 retval = devcgroup_inode_permission(inode, mask); 288 if (retval) 289 return retval; 290 291 return security_inode_permission(inode, mask); 292 } 293 294 /** 295 * file_permission - check for additional access rights to a given file 296 * @file: file to check access rights for 297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 298 * 299 * Used to check for read/write/execute permissions on an already opened 300 * file. 301 * 302 * Note: 303 * Do not use this function in new code. All access checks should 304 * be done using inode_permission(). 305 */ 306 int file_permission(struct file *file, int mask) 307 { 308 return inode_permission(file->f_path.dentry->d_inode, mask); 309 } 310 311 /* 312 * get_write_access() gets write permission for a file. 313 * put_write_access() releases this write permission. 314 * This is used for regular files. 315 * We cannot support write (and maybe mmap read-write shared) accesses and 316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 317 * can have the following values: 318 * 0: no writers, no VM_DENYWRITE mappings 319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 320 * > 0: (i_writecount) users are writing to the file. 321 * 322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 323 * except for the cases where we don't hold i_writecount yet. Then we need to 324 * use {get,deny}_write_access() - these functions check the sign and refuse 325 * to do the change if sign is wrong. Exclusion between them is provided by 326 * the inode->i_lock spinlock. 327 */ 328 329 int get_write_access(struct inode * inode) 330 { 331 spin_lock(&inode->i_lock); 332 if (atomic_read(&inode->i_writecount) < 0) { 333 spin_unlock(&inode->i_lock); 334 return -ETXTBSY; 335 } 336 atomic_inc(&inode->i_writecount); 337 spin_unlock(&inode->i_lock); 338 339 return 0; 340 } 341 342 int deny_write_access(struct file * file) 343 { 344 struct inode *inode = file->f_path.dentry->d_inode; 345 346 spin_lock(&inode->i_lock); 347 if (atomic_read(&inode->i_writecount) > 0) { 348 spin_unlock(&inode->i_lock); 349 return -ETXTBSY; 350 } 351 atomic_dec(&inode->i_writecount); 352 spin_unlock(&inode->i_lock); 353 354 return 0; 355 } 356 357 /** 358 * path_get - get a reference to a path 359 * @path: path to get the reference to 360 * 361 * Given a path increment the reference count to the dentry and the vfsmount. 362 */ 363 void path_get(struct path *path) 364 { 365 mntget(path->mnt); 366 dget(path->dentry); 367 } 368 EXPORT_SYMBOL(path_get); 369 370 /** 371 * path_put - put a reference to a path 372 * @path: path to put the reference to 373 * 374 * Given a path decrement the reference count to the dentry and the vfsmount. 375 */ 376 void path_put(struct path *path) 377 { 378 dput(path->dentry); 379 mntput(path->mnt); 380 } 381 EXPORT_SYMBOL(path_put); 382 383 /** 384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk 385 * @nd: nameidata pathwalk data to drop 386 * Returns: 0 on success, -ECHILD on failure 387 * 388 * Path walking has 2 modes, rcu-walk and ref-walk (see 389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt 390 * to drop out of rcu-walk mode and take normal reference counts on dentries 391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take 392 * refcounts at the last known good point before rcu-walk got stuck, so 393 * ref-walk may continue from there. If this is not successful (eg. a seqcount 394 * has changed), then failure is returned and path walk restarts from the 395 * beginning in ref-walk mode. 396 * 397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into 398 * ref-walk. Must be called from rcu-walk context. 399 */ 400 static int nameidata_drop_rcu(struct nameidata *nd) 401 { 402 struct fs_struct *fs = current->fs; 403 struct dentry *dentry = nd->path.dentry; 404 405 BUG_ON(!(nd->flags & LOOKUP_RCU)); 406 if (nd->root.mnt) { 407 spin_lock(&fs->lock); 408 if (nd->root.mnt != fs->root.mnt || 409 nd->root.dentry != fs->root.dentry) 410 goto err_root; 411 } 412 spin_lock(&dentry->d_lock); 413 if (!__d_rcu_to_refcount(dentry, nd->seq)) 414 goto err; 415 BUG_ON(nd->inode != dentry->d_inode); 416 spin_unlock(&dentry->d_lock); 417 if (nd->root.mnt) { 418 path_get(&nd->root); 419 spin_unlock(&fs->lock); 420 } 421 mntget(nd->path.mnt); 422 423 rcu_read_unlock(); 424 br_read_unlock(vfsmount_lock); 425 nd->flags &= ~LOOKUP_RCU; 426 return 0; 427 err: 428 spin_unlock(&dentry->d_lock); 429 err_root: 430 if (nd->root.mnt) 431 spin_unlock(&fs->lock); 432 return -ECHILD; 433 } 434 435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd) 437 { 438 if (nd->flags & LOOKUP_RCU) 439 return nameidata_drop_rcu(nd); 440 return 0; 441 } 442 443 /** 444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk 445 * @nd: nameidata pathwalk data to drop 446 * @dentry: dentry to drop 447 * Returns: 0 on success, -ECHILD on failure 448 * 449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root, 450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on 451 * @nd. Must be called from rcu-walk context. 452 */ 453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry) 454 { 455 struct fs_struct *fs = current->fs; 456 struct dentry *parent = nd->path.dentry; 457 458 BUG_ON(!(nd->flags & LOOKUP_RCU)); 459 if (nd->root.mnt) { 460 spin_lock(&fs->lock); 461 if (nd->root.mnt != fs->root.mnt || 462 nd->root.dentry != fs->root.dentry) 463 goto err_root; 464 } 465 spin_lock(&parent->d_lock); 466 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 467 if (!__d_rcu_to_refcount(dentry, nd->seq)) 468 goto err; 469 /* 470 * If the sequence check on the child dentry passed, then the child has 471 * not been removed from its parent. This means the parent dentry must 472 * be valid and able to take a reference at this point. 473 */ 474 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); 475 BUG_ON(!parent->d_count); 476 parent->d_count++; 477 spin_unlock(&dentry->d_lock); 478 spin_unlock(&parent->d_lock); 479 if (nd->root.mnt) { 480 path_get(&nd->root); 481 spin_unlock(&fs->lock); 482 } 483 mntget(nd->path.mnt); 484 485 rcu_read_unlock(); 486 br_read_unlock(vfsmount_lock); 487 nd->flags &= ~LOOKUP_RCU; 488 return 0; 489 err: 490 spin_unlock(&dentry->d_lock); 491 spin_unlock(&parent->d_lock); 492 err_root: 493 if (nd->root.mnt) 494 spin_unlock(&fs->lock); 495 return -ECHILD; 496 } 497 498 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 499 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry) 500 { 501 if (nd->flags & LOOKUP_RCU) 502 return nameidata_dentry_drop_rcu(nd, dentry); 503 return 0; 504 } 505 506 /** 507 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk 508 * @nd: nameidata pathwalk data to drop 509 * Returns: 0 on success, -ECHILD on failure 510 * 511 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk. 512 * nd->path should be the final element of the lookup, so nd->root is discarded. 513 * Must be called from rcu-walk context. 514 */ 515 static int nameidata_drop_rcu_last(struct nameidata *nd) 516 { 517 struct dentry *dentry = nd->path.dentry; 518 519 BUG_ON(!(nd->flags & LOOKUP_RCU)); 520 nd->flags &= ~LOOKUP_RCU; 521 nd->root.mnt = NULL; 522 spin_lock(&dentry->d_lock); 523 if (!__d_rcu_to_refcount(dentry, nd->seq)) 524 goto err_unlock; 525 BUG_ON(nd->inode != dentry->d_inode); 526 spin_unlock(&dentry->d_lock); 527 528 mntget(nd->path.mnt); 529 530 rcu_read_unlock(); 531 br_read_unlock(vfsmount_lock); 532 533 return 0; 534 535 err_unlock: 536 spin_unlock(&dentry->d_lock); 537 rcu_read_unlock(); 538 br_read_unlock(vfsmount_lock); 539 return -ECHILD; 540 } 541 542 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */ 543 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd) 544 { 545 if (likely(nd->flags & LOOKUP_RCU)) 546 return nameidata_drop_rcu_last(nd); 547 return 0; 548 } 549 550 /** 551 * release_open_intent - free up open intent resources 552 * @nd: pointer to nameidata 553 */ 554 void release_open_intent(struct nameidata *nd) 555 { 556 struct file *file = nd->intent.open.file; 557 558 if (file && !IS_ERR(file)) { 559 if (file->f_path.dentry == NULL) 560 put_filp(file); 561 else 562 fput(file); 563 } 564 } 565 566 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) 567 { 568 return dentry->d_op->d_revalidate(dentry, nd); 569 } 570 571 static struct dentry * 572 do_revalidate(struct dentry *dentry, struct nameidata *nd) 573 { 574 int status = d_revalidate(dentry, nd); 575 if (unlikely(status <= 0)) { 576 /* 577 * The dentry failed validation. 578 * If d_revalidate returned 0 attempt to invalidate 579 * the dentry otherwise d_revalidate is asking us 580 * to return a fail status. 581 */ 582 if (status < 0) { 583 dput(dentry); 584 dentry = ERR_PTR(status); 585 } else if (!d_invalidate(dentry)) { 586 dput(dentry); 587 dentry = NULL; 588 } 589 } 590 return dentry; 591 } 592 593 static inline struct dentry * 594 do_revalidate_rcu(struct dentry *dentry, struct nameidata *nd) 595 { 596 int status = d_revalidate(dentry, nd); 597 if (likely(status > 0)) 598 return dentry; 599 if (status == -ECHILD) { 600 if (nameidata_dentry_drop_rcu(nd, dentry)) 601 return ERR_PTR(-ECHILD); 602 return do_revalidate(dentry, nd); 603 } 604 if (status < 0) 605 return ERR_PTR(status); 606 /* Don't d_invalidate in rcu-walk mode */ 607 if (nameidata_dentry_drop_rcu(nd, dentry)) 608 return ERR_PTR(-ECHILD); 609 if (!d_invalidate(dentry)) { 610 dput(dentry); 611 dentry = NULL; 612 } 613 return dentry; 614 } 615 616 static inline int need_reval_dot(struct dentry *dentry) 617 { 618 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) 619 return 0; 620 621 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) 622 return 0; 623 624 return 1; 625 } 626 627 /* 628 * force_reval_path - force revalidation of a dentry 629 * 630 * In some situations the path walking code will trust dentries without 631 * revalidating them. This causes problems for filesystems that depend on 632 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set 633 * (which indicates that it's possible for the dentry to go stale), force 634 * a d_revalidate call before proceeding. 635 * 636 * Returns 0 if the revalidation was successful. If the revalidation fails, 637 * either return the error returned by d_revalidate or -ESTALE if the 638 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to 639 * invalidate the dentry. It's up to the caller to handle putting references 640 * to the path if necessary. 641 */ 642 static int 643 force_reval_path(struct path *path, struct nameidata *nd) 644 { 645 int status; 646 struct dentry *dentry = path->dentry; 647 648 /* 649 * only check on filesystems where it's possible for the dentry to 650 * become stale. 651 */ 652 if (!need_reval_dot(dentry)) 653 return 0; 654 655 status = d_revalidate(dentry, nd); 656 if (status > 0) 657 return 0; 658 659 if (!status) { 660 d_invalidate(dentry); 661 status = -ESTALE; 662 } 663 return status; 664 } 665 666 /* 667 * Short-cut version of permission(), for calling on directories 668 * during pathname resolution. Combines parts of permission() 669 * and generic_permission(), and tests ONLY for MAY_EXEC permission. 670 * 671 * If appropriate, check DAC only. If not appropriate, or 672 * short-cut DAC fails, then call ->permission() to do more 673 * complete permission check. 674 */ 675 static inline int exec_permission(struct inode *inode, unsigned int flags) 676 { 677 int ret; 678 679 if (inode->i_op->permission) { 680 ret = inode->i_op->permission(inode, MAY_EXEC, flags); 681 } else { 682 ret = acl_permission_check(inode, MAY_EXEC, flags, 683 inode->i_op->check_acl); 684 } 685 if (likely(!ret)) 686 goto ok; 687 if (ret == -ECHILD) 688 return ret; 689 690 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH)) 691 goto ok; 692 693 return ret; 694 ok: 695 return security_inode_exec_permission(inode, flags); 696 } 697 698 static __always_inline void set_root(struct nameidata *nd) 699 { 700 if (!nd->root.mnt) 701 get_fs_root(current->fs, &nd->root); 702 } 703 704 static int link_path_walk(const char *, struct nameidata *); 705 706 static __always_inline void set_root_rcu(struct nameidata *nd) 707 { 708 if (!nd->root.mnt) { 709 struct fs_struct *fs = current->fs; 710 unsigned seq; 711 712 do { 713 seq = read_seqcount_begin(&fs->seq); 714 nd->root = fs->root; 715 } while (read_seqcount_retry(&fs->seq, seq)); 716 } 717 } 718 719 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 720 { 721 int ret; 722 723 if (IS_ERR(link)) 724 goto fail; 725 726 if (*link == '/') { 727 set_root(nd); 728 path_put(&nd->path); 729 nd->path = nd->root; 730 path_get(&nd->root); 731 } 732 nd->inode = nd->path.dentry->d_inode; 733 734 ret = link_path_walk(link, nd); 735 return ret; 736 fail: 737 path_put(&nd->path); 738 return PTR_ERR(link); 739 } 740 741 static void path_put_conditional(struct path *path, struct nameidata *nd) 742 { 743 dput(path->dentry); 744 if (path->mnt != nd->path.mnt) 745 mntput(path->mnt); 746 } 747 748 static inline void path_to_nameidata(const struct path *path, 749 struct nameidata *nd) 750 { 751 if (!(nd->flags & LOOKUP_RCU)) { 752 dput(nd->path.dentry); 753 if (nd->path.mnt != path->mnt) 754 mntput(nd->path.mnt); 755 } 756 nd->path.mnt = path->mnt; 757 nd->path.dentry = path->dentry; 758 } 759 760 static __always_inline int 761 __do_follow_link(const struct path *link, struct nameidata *nd, void **p) 762 { 763 int error; 764 struct dentry *dentry = link->dentry; 765 766 BUG_ON(nd->flags & LOOKUP_RCU); 767 768 touch_atime(link->mnt, dentry); 769 nd_set_link(nd, NULL); 770 771 if (link->mnt == nd->path.mnt) 772 mntget(link->mnt); 773 774 nd->last_type = LAST_BIND; 775 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 776 error = PTR_ERR(*p); 777 if (!IS_ERR(*p)) { 778 char *s = nd_get_link(nd); 779 error = 0; 780 if (s) 781 error = __vfs_follow_link(nd, s); 782 else if (nd->last_type == LAST_BIND) { 783 error = force_reval_path(&nd->path, nd); 784 if (error) 785 path_put(&nd->path); 786 } 787 } 788 return error; 789 } 790 791 /* 792 * This limits recursive symlink follows to 8, while 793 * limiting consecutive symlinks to 40. 794 * 795 * Without that kind of total limit, nasty chains of consecutive 796 * symlinks can cause almost arbitrarily long lookups. 797 */ 798 static inline int do_follow_link(struct inode *inode, struct path *path, struct nameidata *nd) 799 { 800 void *cookie; 801 int err = -ELOOP; 802 803 /* We drop rcu-walk here */ 804 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry)) 805 return -ECHILD; 806 BUG_ON(inode != path->dentry->d_inode); 807 808 if (current->link_count >= MAX_NESTED_LINKS) 809 goto loop; 810 if (current->total_link_count >= 40) 811 goto loop; 812 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 813 cond_resched(); 814 err = security_inode_follow_link(path->dentry, nd); 815 if (err) 816 goto loop; 817 current->link_count++; 818 current->total_link_count++; 819 nd->depth++; 820 err = __do_follow_link(path, nd, &cookie); 821 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link) 822 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie); 823 path_put(path); 824 current->link_count--; 825 nd->depth--; 826 return err; 827 loop: 828 path_put_conditional(path, nd); 829 path_put(&nd->path); 830 return err; 831 } 832 833 static int follow_up_rcu(struct path *path) 834 { 835 struct vfsmount *parent; 836 struct dentry *mountpoint; 837 838 parent = path->mnt->mnt_parent; 839 if (parent == path->mnt) 840 return 0; 841 mountpoint = path->mnt->mnt_mountpoint; 842 path->dentry = mountpoint; 843 path->mnt = parent; 844 return 1; 845 } 846 847 int follow_up(struct path *path) 848 { 849 struct vfsmount *parent; 850 struct dentry *mountpoint; 851 852 br_read_lock(vfsmount_lock); 853 parent = path->mnt->mnt_parent; 854 if (parent == path->mnt) { 855 br_read_unlock(vfsmount_lock); 856 return 0; 857 } 858 mntget(parent); 859 mountpoint = dget(path->mnt->mnt_mountpoint); 860 br_read_unlock(vfsmount_lock); 861 dput(path->dentry); 862 path->dentry = mountpoint; 863 mntput(path->mnt); 864 path->mnt = parent; 865 return 1; 866 } 867 868 /* 869 * Perform an automount 870 * - return -EISDIR to tell follow_managed() to stop and return the path we 871 * were called with. 872 */ 873 static int follow_automount(struct path *path, unsigned flags, 874 bool *need_mntput) 875 { 876 struct vfsmount *mnt; 877 int err; 878 879 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 880 return -EREMOTE; 881 882 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT 883 * and this is the terminal part of the path. 884 */ 885 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE)) 886 return -EISDIR; /* we actually want to stop here */ 887 888 /* We want to mount if someone is trying to open/create a file of any 889 * type under the mountpoint, wants to traverse through the mountpoint 890 * or wants to open the mounted directory. 891 * 892 * We don't want to mount if someone's just doing a stat and they've 893 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and 894 * appended a '/' to the name. 895 */ 896 if (!(flags & LOOKUP_FOLLOW) && 897 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY | 898 LOOKUP_OPEN | LOOKUP_CREATE))) 899 return -EISDIR; 900 901 current->total_link_count++; 902 if (current->total_link_count >= 40) 903 return -ELOOP; 904 905 mnt = path->dentry->d_op->d_automount(path); 906 if (IS_ERR(mnt)) { 907 /* 908 * The filesystem is allowed to return -EISDIR here to indicate 909 * it doesn't want to automount. For instance, autofs would do 910 * this so that its userspace daemon can mount on this dentry. 911 * 912 * However, we can only permit this if it's a terminal point in 913 * the path being looked up; if it wasn't then the remainder of 914 * the path is inaccessible and we should say so. 915 */ 916 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE)) 917 return -EREMOTE; 918 return PTR_ERR(mnt); 919 } 920 921 if (!mnt) /* mount collision */ 922 return 0; 923 924 err = finish_automount(mnt, path); 925 926 switch (err) { 927 case -EBUSY: 928 /* Someone else made a mount here whilst we were busy */ 929 return 0; 930 case 0: 931 dput(path->dentry); 932 if (*need_mntput) 933 mntput(path->mnt); 934 path->mnt = mnt; 935 path->dentry = dget(mnt->mnt_root); 936 *need_mntput = true; 937 return 0; 938 default: 939 return err; 940 } 941 942 } 943 944 /* 945 * Handle a dentry that is managed in some way. 946 * - Flagged for transit management (autofs) 947 * - Flagged as mountpoint 948 * - Flagged as automount point 949 * 950 * This may only be called in refwalk mode. 951 * 952 * Serialization is taken care of in namespace.c 953 */ 954 static int follow_managed(struct path *path, unsigned flags) 955 { 956 unsigned managed; 957 bool need_mntput = false; 958 int ret; 959 960 /* Given that we're not holding a lock here, we retain the value in a 961 * local variable for each dentry as we look at it so that we don't see 962 * the components of that value change under us */ 963 while (managed = ACCESS_ONCE(path->dentry->d_flags), 964 managed &= DCACHE_MANAGED_DENTRY, 965 unlikely(managed != 0)) { 966 /* Allow the filesystem to manage the transit without i_mutex 967 * being held. */ 968 if (managed & DCACHE_MANAGE_TRANSIT) { 969 BUG_ON(!path->dentry->d_op); 970 BUG_ON(!path->dentry->d_op->d_manage); 971 ret = path->dentry->d_op->d_manage(path->dentry, 972 false, false); 973 if (ret < 0) 974 return ret == -EISDIR ? 0 : ret; 975 } 976 977 /* Transit to a mounted filesystem. */ 978 if (managed & DCACHE_MOUNTED) { 979 struct vfsmount *mounted = lookup_mnt(path); 980 if (mounted) { 981 dput(path->dentry); 982 if (need_mntput) 983 mntput(path->mnt); 984 path->mnt = mounted; 985 path->dentry = dget(mounted->mnt_root); 986 need_mntput = true; 987 continue; 988 } 989 990 /* Something is mounted on this dentry in another 991 * namespace and/or whatever was mounted there in this 992 * namespace got unmounted before we managed to get the 993 * vfsmount_lock */ 994 } 995 996 /* Handle an automount point */ 997 if (managed & DCACHE_NEED_AUTOMOUNT) { 998 ret = follow_automount(path, flags, &need_mntput); 999 if (ret < 0) 1000 return ret == -EISDIR ? 0 : ret; 1001 continue; 1002 } 1003 1004 /* We didn't change the current path point */ 1005 break; 1006 } 1007 return 0; 1008 } 1009 1010 int follow_down_one(struct path *path) 1011 { 1012 struct vfsmount *mounted; 1013 1014 mounted = lookup_mnt(path); 1015 if (mounted) { 1016 dput(path->dentry); 1017 mntput(path->mnt); 1018 path->mnt = mounted; 1019 path->dentry = dget(mounted->mnt_root); 1020 return 1; 1021 } 1022 return 0; 1023 } 1024 1025 /* 1026 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we 1027 * meet a managed dentry and we're not walking to "..". True is returned to 1028 * continue, false to abort. 1029 */ 1030 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1031 struct inode **inode, bool reverse_transit) 1032 { 1033 while (d_mountpoint(path->dentry)) { 1034 struct vfsmount *mounted; 1035 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) && 1036 !reverse_transit && 1037 path->dentry->d_op->d_manage(path->dentry, false, true) < 0) 1038 return false; 1039 mounted = __lookup_mnt(path->mnt, path->dentry, 1); 1040 if (!mounted) 1041 break; 1042 path->mnt = mounted; 1043 path->dentry = mounted->mnt_root; 1044 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1045 *inode = path->dentry->d_inode; 1046 } 1047 1048 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) 1049 return reverse_transit; 1050 return true; 1051 } 1052 1053 static int follow_dotdot_rcu(struct nameidata *nd) 1054 { 1055 struct inode *inode = nd->inode; 1056 1057 set_root_rcu(nd); 1058 1059 while (1) { 1060 if (nd->path.dentry == nd->root.dentry && 1061 nd->path.mnt == nd->root.mnt) { 1062 break; 1063 } 1064 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1065 struct dentry *old = nd->path.dentry; 1066 struct dentry *parent = old->d_parent; 1067 unsigned seq; 1068 1069 seq = read_seqcount_begin(&parent->d_seq); 1070 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1071 return -ECHILD; 1072 inode = parent->d_inode; 1073 nd->path.dentry = parent; 1074 nd->seq = seq; 1075 break; 1076 } 1077 if (!follow_up_rcu(&nd->path)) 1078 break; 1079 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1080 inode = nd->path.dentry->d_inode; 1081 } 1082 __follow_mount_rcu(nd, &nd->path, &inode, true); 1083 nd->inode = inode; 1084 1085 return 0; 1086 } 1087 1088 /* 1089 * Follow down to the covering mount currently visible to userspace. At each 1090 * point, the filesystem owning that dentry may be queried as to whether the 1091 * caller is permitted to proceed or not. 1092 * 1093 * Care must be taken as namespace_sem may be held (indicated by mounting_here 1094 * being true). 1095 */ 1096 int follow_down(struct path *path, bool mounting_here) 1097 { 1098 unsigned managed; 1099 int ret; 1100 1101 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1102 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1103 /* Allow the filesystem to manage the transit without i_mutex 1104 * being held. 1105 * 1106 * We indicate to the filesystem if someone is trying to mount 1107 * something here. This gives autofs the chance to deny anyone 1108 * other than its daemon the right to mount on its 1109 * superstructure. 1110 * 1111 * The filesystem may sleep at this point. 1112 */ 1113 if (managed & DCACHE_MANAGE_TRANSIT) { 1114 BUG_ON(!path->dentry->d_op); 1115 BUG_ON(!path->dentry->d_op->d_manage); 1116 ret = path->dentry->d_op->d_manage( 1117 path->dentry, mounting_here, false); 1118 if (ret < 0) 1119 return ret == -EISDIR ? 0 : ret; 1120 } 1121 1122 /* Transit to a mounted filesystem. */ 1123 if (managed & DCACHE_MOUNTED) { 1124 struct vfsmount *mounted = lookup_mnt(path); 1125 if (!mounted) 1126 break; 1127 dput(path->dentry); 1128 mntput(path->mnt); 1129 path->mnt = mounted; 1130 path->dentry = dget(mounted->mnt_root); 1131 continue; 1132 } 1133 1134 /* Don't handle automount points here */ 1135 break; 1136 } 1137 return 0; 1138 } 1139 1140 /* 1141 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1142 */ 1143 static void follow_mount(struct path *path) 1144 { 1145 while (d_mountpoint(path->dentry)) { 1146 struct vfsmount *mounted = lookup_mnt(path); 1147 if (!mounted) 1148 break; 1149 dput(path->dentry); 1150 mntput(path->mnt); 1151 path->mnt = mounted; 1152 path->dentry = dget(mounted->mnt_root); 1153 } 1154 } 1155 1156 static void follow_dotdot(struct nameidata *nd) 1157 { 1158 set_root(nd); 1159 1160 while(1) { 1161 struct dentry *old = nd->path.dentry; 1162 1163 if (nd->path.dentry == nd->root.dentry && 1164 nd->path.mnt == nd->root.mnt) { 1165 break; 1166 } 1167 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1168 /* rare case of legitimate dget_parent()... */ 1169 nd->path.dentry = dget_parent(nd->path.dentry); 1170 dput(old); 1171 break; 1172 } 1173 if (!follow_up(&nd->path)) 1174 break; 1175 } 1176 follow_mount(&nd->path); 1177 nd->inode = nd->path.dentry->d_inode; 1178 } 1179 1180 /* 1181 * Allocate a dentry with name and parent, and perform a parent 1182 * directory ->lookup on it. Returns the new dentry, or ERR_PTR 1183 * on error. parent->d_inode->i_mutex must be held. d_lookup must 1184 * have verified that no child exists while under i_mutex. 1185 */ 1186 static struct dentry *d_alloc_and_lookup(struct dentry *parent, 1187 struct qstr *name, struct nameidata *nd) 1188 { 1189 struct inode *inode = parent->d_inode; 1190 struct dentry *dentry; 1191 struct dentry *old; 1192 1193 /* Don't create child dentry for a dead directory. */ 1194 if (unlikely(IS_DEADDIR(inode))) 1195 return ERR_PTR(-ENOENT); 1196 1197 dentry = d_alloc(parent, name); 1198 if (unlikely(!dentry)) 1199 return ERR_PTR(-ENOMEM); 1200 1201 old = inode->i_op->lookup(inode, dentry, nd); 1202 if (unlikely(old)) { 1203 dput(dentry); 1204 dentry = old; 1205 } 1206 return dentry; 1207 } 1208 1209 /* 1210 * It's more convoluted than I'd like it to be, but... it's still fairly 1211 * small and for now I'd prefer to have fast path as straight as possible. 1212 * It _is_ time-critical. 1213 */ 1214 static int do_lookup(struct nameidata *nd, struct qstr *name, 1215 struct path *path, struct inode **inode) 1216 { 1217 struct vfsmount *mnt = nd->path.mnt; 1218 struct dentry *dentry, *parent = nd->path.dentry; 1219 struct inode *dir; 1220 int err; 1221 1222 /* 1223 * See if the low-level filesystem might want 1224 * to use its own hash.. 1225 */ 1226 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1227 err = parent->d_op->d_hash(parent, nd->inode, name); 1228 if (err < 0) 1229 return err; 1230 } 1231 1232 /* 1233 * Rename seqlock is not required here because in the off chance 1234 * of a false negative due to a concurrent rename, we're going to 1235 * do the non-racy lookup, below. 1236 */ 1237 if (nd->flags & LOOKUP_RCU) { 1238 unsigned seq; 1239 1240 *inode = nd->inode; 1241 dentry = __d_lookup_rcu(parent, name, &seq, inode); 1242 if (!dentry) { 1243 if (nameidata_drop_rcu(nd)) 1244 return -ECHILD; 1245 goto need_lookup; 1246 } 1247 /* Memory barrier in read_seqcount_begin of child is enough */ 1248 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1249 return -ECHILD; 1250 1251 nd->seq = seq; 1252 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1253 dentry = do_revalidate_rcu(dentry, nd); 1254 if (!dentry) 1255 goto need_lookup; 1256 if (IS_ERR(dentry)) 1257 goto fail; 1258 if (!(nd->flags & LOOKUP_RCU)) 1259 goto done; 1260 } 1261 path->mnt = mnt; 1262 path->dentry = dentry; 1263 if (likely(__follow_mount_rcu(nd, path, inode, false))) 1264 return 0; 1265 if (nameidata_drop_rcu(nd)) 1266 return -ECHILD; 1267 /* fallthru */ 1268 } 1269 dentry = __d_lookup(parent, name); 1270 if (!dentry) 1271 goto need_lookup; 1272 found: 1273 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1274 dentry = do_revalidate(dentry, nd); 1275 if (!dentry) 1276 goto need_lookup; 1277 if (IS_ERR(dentry)) 1278 goto fail; 1279 } 1280 done: 1281 path->mnt = mnt; 1282 path->dentry = dentry; 1283 err = follow_managed(path, nd->flags); 1284 if (unlikely(err < 0)) { 1285 path_put_conditional(path, nd); 1286 return err; 1287 } 1288 *inode = path->dentry->d_inode; 1289 return 0; 1290 1291 need_lookup: 1292 dir = parent->d_inode; 1293 BUG_ON(nd->inode != dir); 1294 1295 mutex_lock(&dir->i_mutex); 1296 /* 1297 * First re-do the cached lookup just in case it was created 1298 * while we waited for the directory semaphore, or the first 1299 * lookup failed due to an unrelated rename. 1300 * 1301 * This could use version numbering or similar to avoid unnecessary 1302 * cache lookups, but then we'd have to do the first lookup in the 1303 * non-racy way. However in the common case here, everything should 1304 * be hot in cache, so would it be a big win? 1305 */ 1306 dentry = d_lookup(parent, name); 1307 if (likely(!dentry)) { 1308 dentry = d_alloc_and_lookup(parent, name, nd); 1309 mutex_unlock(&dir->i_mutex); 1310 if (IS_ERR(dentry)) 1311 goto fail; 1312 goto done; 1313 } 1314 /* 1315 * Uhhuh! Nasty case: the cache was re-populated while 1316 * we waited on the semaphore. Need to revalidate. 1317 */ 1318 mutex_unlock(&dir->i_mutex); 1319 goto found; 1320 1321 fail: 1322 return PTR_ERR(dentry); 1323 } 1324 1325 /* 1326 * Name resolution. 1327 * This is the basic name resolution function, turning a pathname into 1328 * the final dentry. We expect 'base' to be positive and a directory. 1329 * 1330 * Returns 0 and nd will have valid dentry and mnt on success. 1331 * Returns error and drops reference to input namei data on failure. 1332 */ 1333 static int link_path_walk(const char *name, struct nameidata *nd) 1334 { 1335 struct path next; 1336 int err; 1337 unsigned int lookup_flags = nd->flags; 1338 1339 while (*name=='/') 1340 name++; 1341 if (!*name) 1342 goto return_reval; 1343 1344 if (nd->depth) 1345 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 1346 1347 /* At this point we know we have a real path component. */ 1348 for(;;) { 1349 struct inode *inode; 1350 unsigned long hash; 1351 struct qstr this; 1352 unsigned int c; 1353 1354 nd->flags |= LOOKUP_CONTINUE; 1355 if (nd->flags & LOOKUP_RCU) { 1356 err = exec_permission(nd->inode, IPERM_FLAG_RCU); 1357 if (err == -ECHILD) { 1358 if (nameidata_drop_rcu(nd)) 1359 return -ECHILD; 1360 goto exec_again; 1361 } 1362 } else { 1363 exec_again: 1364 err = exec_permission(nd->inode, 0); 1365 } 1366 if (err) 1367 break; 1368 1369 this.name = name; 1370 c = *(const unsigned char *)name; 1371 1372 hash = init_name_hash(); 1373 do { 1374 name++; 1375 hash = partial_name_hash(c, hash); 1376 c = *(const unsigned char *)name; 1377 } while (c && (c != '/')); 1378 this.len = name - (const char *) this.name; 1379 this.hash = end_name_hash(hash); 1380 1381 /* remove trailing slashes? */ 1382 if (!c) 1383 goto last_component; 1384 while (*++name == '/'); 1385 if (!*name) 1386 goto last_with_slashes; 1387 1388 /* 1389 * "." and ".." are special - ".." especially so because it has 1390 * to be able to know about the current root directory and 1391 * parent relationships. 1392 */ 1393 if (this.name[0] == '.') switch (this.len) { 1394 default: 1395 break; 1396 case 2: 1397 if (this.name[1] != '.') 1398 break; 1399 if (nd->flags & LOOKUP_RCU) { 1400 if (follow_dotdot_rcu(nd)) 1401 return -ECHILD; 1402 } else 1403 follow_dotdot(nd); 1404 /* fallthrough */ 1405 case 1: 1406 continue; 1407 } 1408 /* This does the actual lookups.. */ 1409 err = do_lookup(nd, &this, &next, &inode); 1410 if (err) 1411 break; 1412 err = -ENOENT; 1413 if (!inode) 1414 goto out_dput; 1415 1416 if (inode->i_op->follow_link) { 1417 err = do_follow_link(inode, &next, nd); 1418 if (err) 1419 goto return_err; 1420 nd->inode = nd->path.dentry->d_inode; 1421 err = -ENOENT; 1422 if (!nd->inode) 1423 break; 1424 } else { 1425 path_to_nameidata(&next, nd); 1426 nd->inode = inode; 1427 } 1428 err = -ENOTDIR; 1429 if (!nd->inode->i_op->lookup) 1430 break; 1431 continue; 1432 /* here ends the main loop */ 1433 1434 last_with_slashes: 1435 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1436 last_component: 1437 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 1438 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 1439 if (lookup_flags & LOOKUP_PARENT) 1440 goto lookup_parent; 1441 if (this.name[0] == '.') switch (this.len) { 1442 default: 1443 break; 1444 case 2: 1445 if (this.name[1] != '.') 1446 break; 1447 if (nd->flags & LOOKUP_RCU) { 1448 if (follow_dotdot_rcu(nd)) 1449 return -ECHILD; 1450 } else 1451 follow_dotdot(nd); 1452 /* fallthrough */ 1453 case 1: 1454 goto return_reval; 1455 } 1456 err = do_lookup(nd, &this, &next, &inode); 1457 if (err) 1458 break; 1459 if (inode && unlikely(inode->i_op->follow_link) && 1460 (lookup_flags & LOOKUP_FOLLOW)) { 1461 err = do_follow_link(inode, &next, nd); 1462 if (err) 1463 goto return_err; 1464 nd->inode = nd->path.dentry->d_inode; 1465 } else { 1466 path_to_nameidata(&next, nd); 1467 nd->inode = inode; 1468 } 1469 err = -ENOENT; 1470 if (!nd->inode) 1471 break; 1472 if (lookup_flags & LOOKUP_DIRECTORY) { 1473 err = -ENOTDIR; 1474 if (!nd->inode->i_op->lookup) 1475 break; 1476 } 1477 goto return_base; 1478 lookup_parent: 1479 nd->last = this; 1480 nd->last_type = LAST_NORM; 1481 if (this.name[0] != '.') 1482 goto return_base; 1483 if (this.len == 1) 1484 nd->last_type = LAST_DOT; 1485 else if (this.len == 2 && this.name[1] == '.') 1486 nd->last_type = LAST_DOTDOT; 1487 else 1488 goto return_base; 1489 return_reval: 1490 /* 1491 * We bypassed the ordinary revalidation routines. 1492 * We may need to check the cached dentry for staleness. 1493 */ 1494 if (need_reval_dot(nd->path.dentry)) { 1495 if (nameidata_drop_rcu_last_maybe(nd)) 1496 return -ECHILD; 1497 /* Note: we do not d_invalidate() */ 1498 err = d_revalidate(nd->path.dentry, nd); 1499 if (!err) 1500 err = -ESTALE; 1501 if (err < 0) 1502 break; 1503 return 0; 1504 } 1505 return_base: 1506 if (nameidata_drop_rcu_last_maybe(nd)) 1507 return -ECHILD; 1508 return 0; 1509 out_dput: 1510 if (!(nd->flags & LOOKUP_RCU)) 1511 path_put_conditional(&next, nd); 1512 break; 1513 } 1514 if (!(nd->flags & LOOKUP_RCU)) 1515 path_put(&nd->path); 1516 return_err: 1517 return err; 1518 } 1519 1520 static inline int path_walk_rcu(const char *name, struct nameidata *nd) 1521 { 1522 current->total_link_count = 0; 1523 1524 return link_path_walk(name, nd); 1525 } 1526 1527 static inline int path_walk_simple(const char *name, struct nameidata *nd) 1528 { 1529 current->total_link_count = 0; 1530 1531 return link_path_walk(name, nd); 1532 } 1533 1534 static int path_walk(const char *name, struct nameidata *nd) 1535 { 1536 struct path save = nd->path; 1537 int result; 1538 1539 current->total_link_count = 0; 1540 1541 /* make sure the stuff we saved doesn't go away */ 1542 path_get(&save); 1543 1544 result = link_path_walk(name, nd); 1545 if (result == -ESTALE) { 1546 /* nd->path had been dropped */ 1547 current->total_link_count = 0; 1548 nd->path = save; 1549 nd->inode = save.dentry->d_inode; 1550 path_get(&nd->path); 1551 nd->flags |= LOOKUP_REVAL; 1552 result = link_path_walk(name, nd); 1553 } 1554 1555 path_put(&save); 1556 1557 return result; 1558 } 1559 1560 static void path_finish_rcu(struct nameidata *nd) 1561 { 1562 if (nd->flags & LOOKUP_RCU) { 1563 /* RCU dangling. Cancel it. */ 1564 nd->flags &= ~LOOKUP_RCU; 1565 nd->root.mnt = NULL; 1566 rcu_read_unlock(); 1567 br_read_unlock(vfsmount_lock); 1568 } 1569 if (nd->file) 1570 fput(nd->file); 1571 } 1572 1573 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1574 { 1575 int retval = 0; 1576 int fput_needed; 1577 struct file *file; 1578 1579 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1580 nd->flags = flags | LOOKUP_RCU; 1581 nd->depth = 0; 1582 nd->root.mnt = NULL; 1583 nd->file = NULL; 1584 1585 if (*name=='/') { 1586 struct fs_struct *fs = current->fs; 1587 unsigned seq; 1588 1589 br_read_lock(vfsmount_lock); 1590 rcu_read_lock(); 1591 1592 do { 1593 seq = read_seqcount_begin(&fs->seq); 1594 nd->root = fs->root; 1595 nd->path = nd->root; 1596 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1597 } while (read_seqcount_retry(&fs->seq, seq)); 1598 1599 } else if (dfd == AT_FDCWD) { 1600 struct fs_struct *fs = current->fs; 1601 unsigned seq; 1602 1603 br_read_lock(vfsmount_lock); 1604 rcu_read_lock(); 1605 1606 do { 1607 seq = read_seqcount_begin(&fs->seq); 1608 nd->path = fs->pwd; 1609 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1610 } while (read_seqcount_retry(&fs->seq, seq)); 1611 1612 } else { 1613 struct dentry *dentry; 1614 1615 file = fget_light(dfd, &fput_needed); 1616 retval = -EBADF; 1617 if (!file) 1618 goto out_fail; 1619 1620 dentry = file->f_path.dentry; 1621 1622 retval = -ENOTDIR; 1623 if (!S_ISDIR(dentry->d_inode->i_mode)) 1624 goto fput_fail; 1625 1626 retval = file_permission(file, MAY_EXEC); 1627 if (retval) 1628 goto fput_fail; 1629 1630 nd->path = file->f_path; 1631 if (fput_needed) 1632 nd->file = file; 1633 1634 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1635 br_read_lock(vfsmount_lock); 1636 rcu_read_lock(); 1637 } 1638 nd->inode = nd->path.dentry->d_inode; 1639 return 0; 1640 1641 fput_fail: 1642 fput_light(file, fput_needed); 1643 out_fail: 1644 return retval; 1645 } 1646 1647 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd) 1648 { 1649 int retval = 0; 1650 int fput_needed; 1651 struct file *file; 1652 1653 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1654 nd->flags = flags; 1655 nd->depth = 0; 1656 nd->root.mnt = NULL; 1657 1658 if (*name=='/') { 1659 set_root(nd); 1660 nd->path = nd->root; 1661 path_get(&nd->root); 1662 } else if (dfd == AT_FDCWD) { 1663 get_fs_pwd(current->fs, &nd->path); 1664 } else { 1665 struct dentry *dentry; 1666 1667 file = fget_light(dfd, &fput_needed); 1668 retval = -EBADF; 1669 if (!file) 1670 goto out_fail; 1671 1672 dentry = file->f_path.dentry; 1673 1674 retval = -ENOTDIR; 1675 if (!S_ISDIR(dentry->d_inode->i_mode)) 1676 goto fput_fail; 1677 1678 retval = file_permission(file, MAY_EXEC); 1679 if (retval) 1680 goto fput_fail; 1681 1682 nd->path = file->f_path; 1683 path_get(&file->f_path); 1684 1685 fput_light(file, fput_needed); 1686 } 1687 nd->inode = nd->path.dentry->d_inode; 1688 return 0; 1689 1690 fput_fail: 1691 fput_light(file, fput_needed); 1692 out_fail: 1693 return retval; 1694 } 1695 1696 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1697 static int do_path_lookup(int dfd, const char *name, 1698 unsigned int flags, struct nameidata *nd) 1699 { 1700 int retval; 1701 1702 /* 1703 * Path walking is largely split up into 2 different synchronisation 1704 * schemes, rcu-walk and ref-walk (explained in 1705 * Documentation/filesystems/path-lookup.txt). These share much of the 1706 * path walk code, but some things particularly setup, cleanup, and 1707 * following mounts are sufficiently divergent that functions are 1708 * duplicated. Typically there is a function foo(), and its RCU 1709 * analogue, foo_rcu(). 1710 * 1711 * -ECHILD is the error number of choice (just to avoid clashes) that 1712 * is returned if some aspect of an rcu-walk fails. Such an error must 1713 * be handled by restarting a traditional ref-walk (which will always 1714 * be able to complete). 1715 */ 1716 retval = path_init_rcu(dfd, name, flags, nd); 1717 if (unlikely(retval)) 1718 return retval; 1719 retval = path_walk_rcu(name, nd); 1720 path_finish_rcu(nd); 1721 if (nd->root.mnt) { 1722 path_put(&nd->root); 1723 nd->root.mnt = NULL; 1724 } 1725 1726 if (unlikely(retval == -ECHILD || retval == -ESTALE)) { 1727 /* slower, locked walk */ 1728 if (retval == -ESTALE) 1729 flags |= LOOKUP_REVAL; 1730 retval = path_init(dfd, name, flags, nd); 1731 if (unlikely(retval)) 1732 return retval; 1733 retval = path_walk(name, nd); 1734 if (nd->root.mnt) { 1735 path_put(&nd->root); 1736 nd->root.mnt = NULL; 1737 } 1738 } 1739 1740 if (likely(!retval)) { 1741 if (unlikely(!audit_dummy_context())) { 1742 if (nd->path.dentry && nd->inode) 1743 audit_inode(name, nd->path.dentry); 1744 } 1745 } 1746 1747 return retval; 1748 } 1749 1750 int path_lookup(const char *name, unsigned int flags, 1751 struct nameidata *nd) 1752 { 1753 return do_path_lookup(AT_FDCWD, name, flags, nd); 1754 } 1755 1756 int kern_path(const char *name, unsigned int flags, struct path *path) 1757 { 1758 struct nameidata nd; 1759 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1760 if (!res) 1761 *path = nd.path; 1762 return res; 1763 } 1764 1765 /** 1766 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1767 * @dentry: pointer to dentry of the base directory 1768 * @mnt: pointer to vfs mount of the base directory 1769 * @name: pointer to file name 1770 * @flags: lookup flags 1771 * @nd: pointer to nameidata 1772 */ 1773 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1774 const char *name, unsigned int flags, 1775 struct nameidata *nd) 1776 { 1777 int retval; 1778 1779 /* same as do_path_lookup */ 1780 nd->last_type = LAST_ROOT; 1781 nd->flags = flags; 1782 nd->depth = 0; 1783 1784 nd->path.dentry = dentry; 1785 nd->path.mnt = mnt; 1786 path_get(&nd->path); 1787 nd->root = nd->path; 1788 path_get(&nd->root); 1789 nd->inode = nd->path.dentry->d_inode; 1790 1791 retval = path_walk(name, nd); 1792 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1793 nd->inode)) 1794 audit_inode(name, nd->path.dentry); 1795 1796 path_put(&nd->root); 1797 nd->root.mnt = NULL; 1798 1799 return retval; 1800 } 1801 1802 static struct dentry *__lookup_hash(struct qstr *name, 1803 struct dentry *base, struct nameidata *nd) 1804 { 1805 struct inode *inode = base->d_inode; 1806 struct dentry *dentry; 1807 int err; 1808 1809 err = exec_permission(inode, 0); 1810 if (err) 1811 return ERR_PTR(err); 1812 1813 /* 1814 * See if the low-level filesystem might want 1815 * to use its own hash.. 1816 */ 1817 if (base->d_flags & DCACHE_OP_HASH) { 1818 err = base->d_op->d_hash(base, inode, name); 1819 dentry = ERR_PTR(err); 1820 if (err < 0) 1821 goto out; 1822 } 1823 1824 /* 1825 * Don't bother with __d_lookup: callers are for creat as 1826 * well as unlink, so a lot of the time it would cost 1827 * a double lookup. 1828 */ 1829 dentry = d_lookup(base, name); 1830 1831 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) 1832 dentry = do_revalidate(dentry, nd); 1833 1834 if (!dentry) 1835 dentry = d_alloc_and_lookup(base, name, nd); 1836 out: 1837 return dentry; 1838 } 1839 1840 /* 1841 * Restricted form of lookup. Doesn't follow links, single-component only, 1842 * needs parent already locked. Doesn't follow mounts. 1843 * SMP-safe. 1844 */ 1845 static struct dentry *lookup_hash(struct nameidata *nd) 1846 { 1847 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1848 } 1849 1850 static int __lookup_one_len(const char *name, struct qstr *this, 1851 struct dentry *base, int len) 1852 { 1853 unsigned long hash; 1854 unsigned int c; 1855 1856 this->name = name; 1857 this->len = len; 1858 if (!len) 1859 return -EACCES; 1860 1861 hash = init_name_hash(); 1862 while (len--) { 1863 c = *(const unsigned char *)name++; 1864 if (c == '/' || c == '\0') 1865 return -EACCES; 1866 hash = partial_name_hash(c, hash); 1867 } 1868 this->hash = end_name_hash(hash); 1869 return 0; 1870 } 1871 1872 /** 1873 * lookup_one_len - filesystem helper to lookup single pathname component 1874 * @name: pathname component to lookup 1875 * @base: base directory to lookup from 1876 * @len: maximum length @len should be interpreted to 1877 * 1878 * Note that this routine is purely a helper for filesystem usage and should 1879 * not be called by generic code. Also note that by using this function the 1880 * nameidata argument is passed to the filesystem methods and a filesystem 1881 * using this helper needs to be prepared for that. 1882 */ 1883 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1884 { 1885 int err; 1886 struct qstr this; 1887 1888 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 1889 1890 err = __lookup_one_len(name, &this, base, len); 1891 if (err) 1892 return ERR_PTR(err); 1893 1894 return __lookup_hash(&this, base, NULL); 1895 } 1896 1897 int user_path_at(int dfd, const char __user *name, unsigned flags, 1898 struct path *path) 1899 { 1900 struct nameidata nd; 1901 char *tmp = getname(name); 1902 int err = PTR_ERR(tmp); 1903 if (!IS_ERR(tmp)) { 1904 1905 BUG_ON(flags & LOOKUP_PARENT); 1906 1907 err = do_path_lookup(dfd, tmp, flags, &nd); 1908 putname(tmp); 1909 if (!err) 1910 *path = nd.path; 1911 } 1912 return err; 1913 } 1914 1915 static int user_path_parent(int dfd, const char __user *path, 1916 struct nameidata *nd, char **name) 1917 { 1918 char *s = getname(path); 1919 int error; 1920 1921 if (IS_ERR(s)) 1922 return PTR_ERR(s); 1923 1924 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1925 if (error) 1926 putname(s); 1927 else 1928 *name = s; 1929 1930 return error; 1931 } 1932 1933 /* 1934 * It's inline, so penalty for filesystems that don't use sticky bit is 1935 * minimal. 1936 */ 1937 static inline int check_sticky(struct inode *dir, struct inode *inode) 1938 { 1939 uid_t fsuid = current_fsuid(); 1940 1941 if (!(dir->i_mode & S_ISVTX)) 1942 return 0; 1943 if (inode->i_uid == fsuid) 1944 return 0; 1945 if (dir->i_uid == fsuid) 1946 return 0; 1947 return !capable(CAP_FOWNER); 1948 } 1949 1950 /* 1951 * Check whether we can remove a link victim from directory dir, check 1952 * whether the type of victim is right. 1953 * 1. We can't do it if dir is read-only (done in permission()) 1954 * 2. We should have write and exec permissions on dir 1955 * 3. We can't remove anything from append-only dir 1956 * 4. We can't do anything with immutable dir (done in permission()) 1957 * 5. If the sticky bit on dir is set we should either 1958 * a. be owner of dir, or 1959 * b. be owner of victim, or 1960 * c. have CAP_FOWNER capability 1961 * 6. If the victim is append-only or immutable we can't do antyhing with 1962 * links pointing to it. 1963 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1964 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1965 * 9. We can't remove a root or mountpoint. 1966 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1967 * nfs_async_unlink(). 1968 */ 1969 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1970 { 1971 int error; 1972 1973 if (!victim->d_inode) 1974 return -ENOENT; 1975 1976 BUG_ON(victim->d_parent->d_inode != dir); 1977 audit_inode_child(victim, dir); 1978 1979 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1980 if (error) 1981 return error; 1982 if (IS_APPEND(dir)) 1983 return -EPERM; 1984 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1985 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 1986 return -EPERM; 1987 if (isdir) { 1988 if (!S_ISDIR(victim->d_inode->i_mode)) 1989 return -ENOTDIR; 1990 if (IS_ROOT(victim)) 1991 return -EBUSY; 1992 } else if (S_ISDIR(victim->d_inode->i_mode)) 1993 return -EISDIR; 1994 if (IS_DEADDIR(dir)) 1995 return -ENOENT; 1996 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1997 return -EBUSY; 1998 return 0; 1999 } 2000 2001 /* Check whether we can create an object with dentry child in directory 2002 * dir. 2003 * 1. We can't do it if child already exists (open has special treatment for 2004 * this case, but since we are inlined it's OK) 2005 * 2. We can't do it if dir is read-only (done in permission()) 2006 * 3. We should have write and exec permissions on dir 2007 * 4. We can't do it if dir is immutable (done in permission()) 2008 */ 2009 static inline int may_create(struct inode *dir, struct dentry *child) 2010 { 2011 if (child->d_inode) 2012 return -EEXIST; 2013 if (IS_DEADDIR(dir)) 2014 return -ENOENT; 2015 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2016 } 2017 2018 /* 2019 * p1 and p2 should be directories on the same fs. 2020 */ 2021 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2022 { 2023 struct dentry *p; 2024 2025 if (p1 == p2) { 2026 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2027 return NULL; 2028 } 2029 2030 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2031 2032 p = d_ancestor(p2, p1); 2033 if (p) { 2034 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2035 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2036 return p; 2037 } 2038 2039 p = d_ancestor(p1, p2); 2040 if (p) { 2041 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2042 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2043 return p; 2044 } 2045 2046 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2047 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2048 return NULL; 2049 } 2050 2051 void unlock_rename(struct dentry *p1, struct dentry *p2) 2052 { 2053 mutex_unlock(&p1->d_inode->i_mutex); 2054 if (p1 != p2) { 2055 mutex_unlock(&p2->d_inode->i_mutex); 2056 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2057 } 2058 } 2059 2060 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 2061 struct nameidata *nd) 2062 { 2063 int error = may_create(dir, dentry); 2064 2065 if (error) 2066 return error; 2067 2068 if (!dir->i_op->create) 2069 return -EACCES; /* shouldn't it be ENOSYS? */ 2070 mode &= S_IALLUGO; 2071 mode |= S_IFREG; 2072 error = security_inode_create(dir, dentry, mode); 2073 if (error) 2074 return error; 2075 error = dir->i_op->create(dir, dentry, mode, nd); 2076 if (!error) 2077 fsnotify_create(dir, dentry); 2078 return error; 2079 } 2080 2081 int may_open(struct path *path, int acc_mode, int flag) 2082 { 2083 struct dentry *dentry = path->dentry; 2084 struct inode *inode = dentry->d_inode; 2085 int error; 2086 2087 if (!inode) 2088 return -ENOENT; 2089 2090 switch (inode->i_mode & S_IFMT) { 2091 case S_IFLNK: 2092 return -ELOOP; 2093 case S_IFDIR: 2094 if (acc_mode & MAY_WRITE) 2095 return -EISDIR; 2096 break; 2097 case S_IFBLK: 2098 case S_IFCHR: 2099 if (path->mnt->mnt_flags & MNT_NODEV) 2100 return -EACCES; 2101 /*FALLTHRU*/ 2102 case S_IFIFO: 2103 case S_IFSOCK: 2104 flag &= ~O_TRUNC; 2105 break; 2106 } 2107 2108 error = inode_permission(inode, acc_mode); 2109 if (error) 2110 return error; 2111 2112 /* 2113 * An append-only file must be opened in append mode for writing. 2114 */ 2115 if (IS_APPEND(inode)) { 2116 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2117 return -EPERM; 2118 if (flag & O_TRUNC) 2119 return -EPERM; 2120 } 2121 2122 /* O_NOATIME can only be set by the owner or superuser */ 2123 if (flag & O_NOATIME && !is_owner_or_cap(inode)) 2124 return -EPERM; 2125 2126 /* 2127 * Ensure there are no outstanding leases on the file. 2128 */ 2129 return break_lease(inode, flag); 2130 } 2131 2132 static int handle_truncate(struct file *filp) 2133 { 2134 struct path *path = &filp->f_path; 2135 struct inode *inode = path->dentry->d_inode; 2136 int error = get_write_access(inode); 2137 if (error) 2138 return error; 2139 /* 2140 * Refuse to truncate files with mandatory locks held on them. 2141 */ 2142 error = locks_verify_locked(inode); 2143 if (!error) 2144 error = security_path_truncate(path); 2145 if (!error) { 2146 error = do_truncate(path->dentry, 0, 2147 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2148 filp); 2149 } 2150 put_write_access(inode); 2151 return error; 2152 } 2153 2154 /* 2155 * Be careful about ever adding any more callers of this 2156 * function. Its flags must be in the namei format, not 2157 * what get passed to sys_open(). 2158 */ 2159 static int __open_namei_create(struct nameidata *nd, struct path *path, 2160 int open_flag, int mode) 2161 { 2162 int error; 2163 struct dentry *dir = nd->path.dentry; 2164 2165 if (!IS_POSIXACL(dir->d_inode)) 2166 mode &= ~current_umask(); 2167 error = security_path_mknod(&nd->path, path->dentry, mode, 0); 2168 if (error) 2169 goto out_unlock; 2170 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 2171 out_unlock: 2172 mutex_unlock(&dir->d_inode->i_mutex); 2173 dput(nd->path.dentry); 2174 nd->path.dentry = path->dentry; 2175 2176 if (error) 2177 return error; 2178 /* Don't check for write permission, don't truncate */ 2179 return may_open(&nd->path, 0, open_flag & ~O_TRUNC); 2180 } 2181 2182 /* 2183 * Note that while the flag value (low two bits) for sys_open means: 2184 * 00 - read-only 2185 * 01 - write-only 2186 * 10 - read-write 2187 * 11 - special 2188 * it is changed into 2189 * 00 - no permissions needed 2190 * 01 - read-permission 2191 * 10 - write-permission 2192 * 11 - read-write 2193 * for the internal routines (ie open_namei()/follow_link() etc) 2194 * This is more logical, and also allows the 00 "no perm needed" 2195 * to be used for symlinks (where the permissions are checked 2196 * later). 2197 * 2198 */ 2199 static inline int open_to_namei_flags(int flag) 2200 { 2201 if ((flag+1) & O_ACCMODE) 2202 flag++; 2203 return flag; 2204 } 2205 2206 static int open_will_truncate(int flag, struct inode *inode) 2207 { 2208 /* 2209 * We'll never write to the fs underlying 2210 * a device file. 2211 */ 2212 if (special_file(inode->i_mode)) 2213 return 0; 2214 return (flag & O_TRUNC); 2215 } 2216 2217 static struct file *finish_open(struct nameidata *nd, 2218 int open_flag, int acc_mode) 2219 { 2220 struct file *filp; 2221 int will_truncate; 2222 int error; 2223 2224 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode); 2225 if (will_truncate) { 2226 error = mnt_want_write(nd->path.mnt); 2227 if (error) 2228 goto exit; 2229 } 2230 error = may_open(&nd->path, acc_mode, open_flag); 2231 if (error) { 2232 if (will_truncate) 2233 mnt_drop_write(nd->path.mnt); 2234 goto exit; 2235 } 2236 filp = nameidata_to_filp(nd); 2237 if (!IS_ERR(filp)) { 2238 error = ima_file_check(filp, acc_mode); 2239 if (error) { 2240 fput(filp); 2241 filp = ERR_PTR(error); 2242 } 2243 } 2244 if (!IS_ERR(filp)) { 2245 if (will_truncate) { 2246 error = handle_truncate(filp); 2247 if (error) { 2248 fput(filp); 2249 filp = ERR_PTR(error); 2250 } 2251 } 2252 } 2253 /* 2254 * It is now safe to drop the mnt write 2255 * because the filp has had a write taken 2256 * on its behalf. 2257 */ 2258 if (will_truncate) 2259 mnt_drop_write(nd->path.mnt); 2260 path_put(&nd->path); 2261 return filp; 2262 2263 exit: 2264 path_put(&nd->path); 2265 return ERR_PTR(error); 2266 } 2267 2268 /* 2269 * Handle O_CREAT case for do_filp_open 2270 */ 2271 static struct file *do_last(struct nameidata *nd, struct path *path, 2272 int open_flag, int acc_mode, 2273 int mode, const char *pathname) 2274 { 2275 struct dentry *dir = nd->path.dentry; 2276 struct file *filp; 2277 int error = -EISDIR; 2278 2279 switch (nd->last_type) { 2280 case LAST_DOTDOT: 2281 follow_dotdot(nd); 2282 dir = nd->path.dentry; 2283 case LAST_DOT: 2284 if (need_reval_dot(dir)) { 2285 int status = d_revalidate(nd->path.dentry, nd); 2286 if (!status) 2287 status = -ESTALE; 2288 if (status < 0) { 2289 error = status; 2290 goto exit; 2291 } 2292 } 2293 /* fallthrough */ 2294 case LAST_ROOT: 2295 goto exit; 2296 case LAST_BIND: 2297 audit_inode(pathname, dir); 2298 goto ok; 2299 } 2300 2301 /* trailing slashes? */ 2302 if (nd->last.name[nd->last.len]) 2303 goto exit; 2304 2305 mutex_lock(&dir->d_inode->i_mutex); 2306 2307 path->dentry = lookup_hash(nd); 2308 path->mnt = nd->path.mnt; 2309 2310 error = PTR_ERR(path->dentry); 2311 if (IS_ERR(path->dentry)) { 2312 mutex_unlock(&dir->d_inode->i_mutex); 2313 goto exit; 2314 } 2315 2316 if (IS_ERR(nd->intent.open.file)) { 2317 error = PTR_ERR(nd->intent.open.file); 2318 goto exit_mutex_unlock; 2319 } 2320 2321 /* Negative dentry, just create the file */ 2322 if (!path->dentry->d_inode) { 2323 /* 2324 * This write is needed to ensure that a 2325 * ro->rw transition does not occur between 2326 * the time when the file is created and when 2327 * a permanent write count is taken through 2328 * the 'struct file' in nameidata_to_filp(). 2329 */ 2330 error = mnt_want_write(nd->path.mnt); 2331 if (error) 2332 goto exit_mutex_unlock; 2333 error = __open_namei_create(nd, path, open_flag, mode); 2334 if (error) { 2335 mnt_drop_write(nd->path.mnt); 2336 goto exit; 2337 } 2338 filp = nameidata_to_filp(nd); 2339 mnt_drop_write(nd->path.mnt); 2340 path_put(&nd->path); 2341 if (!IS_ERR(filp)) { 2342 error = ima_file_check(filp, acc_mode); 2343 if (error) { 2344 fput(filp); 2345 filp = ERR_PTR(error); 2346 } 2347 } 2348 return filp; 2349 } 2350 2351 /* 2352 * It already exists. 2353 */ 2354 mutex_unlock(&dir->d_inode->i_mutex); 2355 audit_inode(pathname, path->dentry); 2356 2357 error = -EEXIST; 2358 if (open_flag & O_EXCL) 2359 goto exit_dput; 2360 2361 error = follow_managed(path, nd->flags); 2362 if (error < 0) 2363 goto exit_dput; 2364 2365 error = -ENOENT; 2366 if (!path->dentry->d_inode) 2367 goto exit_dput; 2368 2369 if (path->dentry->d_inode->i_op->follow_link) 2370 return NULL; 2371 2372 path_to_nameidata(path, nd); 2373 nd->inode = path->dentry->d_inode; 2374 error = -EISDIR; 2375 if (S_ISDIR(nd->inode->i_mode)) 2376 goto exit; 2377 ok: 2378 filp = finish_open(nd, open_flag, acc_mode); 2379 return filp; 2380 2381 exit_mutex_unlock: 2382 mutex_unlock(&dir->d_inode->i_mutex); 2383 exit_dput: 2384 path_put_conditional(path, nd); 2385 exit: 2386 path_put(&nd->path); 2387 return ERR_PTR(error); 2388 } 2389 2390 /* 2391 * Note that the low bits of the passed in "open_flag" 2392 * are not the same as in the local variable "flag". See 2393 * open_to_namei_flags() for more details. 2394 */ 2395 struct file *do_filp_open(int dfd, const char *pathname, 2396 int open_flag, int mode, int acc_mode) 2397 { 2398 struct file *filp; 2399 struct nameidata nd; 2400 int error; 2401 struct path path; 2402 int count = 0; 2403 int flag = open_to_namei_flags(open_flag); 2404 int flags; 2405 2406 if (!(open_flag & O_CREAT)) 2407 mode = 0; 2408 2409 /* Must never be set by userspace */ 2410 open_flag &= ~FMODE_NONOTIFY; 2411 2412 /* 2413 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only 2414 * check for O_DSYNC if the need any syncing at all we enforce it's 2415 * always set instead of having to deal with possibly weird behaviour 2416 * for malicious applications setting only __O_SYNC. 2417 */ 2418 if (open_flag & __O_SYNC) 2419 open_flag |= O_DSYNC; 2420 2421 if (!acc_mode) 2422 acc_mode = MAY_OPEN | ACC_MODE(open_flag); 2423 2424 /* O_TRUNC implies we need access checks for write permissions */ 2425 if (open_flag & O_TRUNC) 2426 acc_mode |= MAY_WRITE; 2427 2428 /* Allow the LSM permission hook to distinguish append 2429 access from general write access. */ 2430 if (open_flag & O_APPEND) 2431 acc_mode |= MAY_APPEND; 2432 2433 flags = LOOKUP_OPEN; 2434 if (open_flag & O_CREAT) { 2435 flags |= LOOKUP_CREATE; 2436 if (open_flag & O_EXCL) 2437 flags |= LOOKUP_EXCL; 2438 } 2439 if (open_flag & O_DIRECTORY) 2440 flags |= LOOKUP_DIRECTORY; 2441 if (!(open_flag & O_NOFOLLOW)) 2442 flags |= LOOKUP_FOLLOW; 2443 2444 filp = get_empty_filp(); 2445 if (!filp) 2446 return ERR_PTR(-ENFILE); 2447 2448 filp->f_flags = open_flag; 2449 nd.intent.open.file = filp; 2450 nd.intent.open.flags = flag; 2451 nd.intent.open.create_mode = mode; 2452 2453 if (open_flag & O_CREAT) 2454 goto creat; 2455 2456 /* !O_CREAT, simple open */ 2457 error = do_path_lookup(dfd, pathname, flags, &nd); 2458 if (unlikely(error)) 2459 goto out_filp2; 2460 error = -ELOOP; 2461 if (!(nd.flags & LOOKUP_FOLLOW)) { 2462 if (nd.inode->i_op->follow_link) 2463 goto out_path2; 2464 } 2465 error = -ENOTDIR; 2466 if (nd.flags & LOOKUP_DIRECTORY) { 2467 if (!nd.inode->i_op->lookup) 2468 goto out_path2; 2469 } 2470 audit_inode(pathname, nd.path.dentry); 2471 filp = finish_open(&nd, open_flag, acc_mode); 2472 out2: 2473 release_open_intent(&nd); 2474 return filp; 2475 2476 out_path2: 2477 path_put(&nd.path); 2478 out_filp2: 2479 filp = ERR_PTR(error); 2480 goto out2; 2481 2482 creat: 2483 /* OK, have to create the file. Find the parent. */ 2484 error = path_init_rcu(dfd, pathname, 2485 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd); 2486 if (error) 2487 goto out_filp; 2488 error = path_walk_rcu(pathname, &nd); 2489 path_finish_rcu(&nd); 2490 if (unlikely(error == -ECHILD || error == -ESTALE)) { 2491 /* slower, locked walk */ 2492 if (error == -ESTALE) { 2493 reval: 2494 flags |= LOOKUP_REVAL; 2495 } 2496 error = path_init(dfd, pathname, 2497 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd); 2498 if (error) 2499 goto out_filp; 2500 2501 error = path_walk_simple(pathname, &nd); 2502 } 2503 if (unlikely(error)) 2504 goto out_filp; 2505 if (unlikely(!audit_dummy_context())) 2506 audit_inode(pathname, nd.path.dentry); 2507 2508 /* 2509 * We have the parent and last component. 2510 */ 2511 nd.flags = flags; 2512 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 2513 while (unlikely(!filp)) { /* trailing symlink */ 2514 struct path link = path; 2515 struct inode *linki = link.dentry->d_inode; 2516 void *cookie; 2517 error = -ELOOP; 2518 if (!(nd.flags & LOOKUP_FOLLOW)) 2519 goto exit_dput; 2520 if (count++ == 32) 2521 goto exit_dput; 2522 /* 2523 * This is subtle. Instead of calling do_follow_link() we do 2524 * the thing by hands. The reason is that this way we have zero 2525 * link_count and path_walk() (called from ->follow_link) 2526 * honoring LOOKUP_PARENT. After that we have the parent and 2527 * last component, i.e. we are in the same situation as after 2528 * the first path_walk(). Well, almost - if the last component 2529 * is normal we get its copy stored in nd->last.name and we will 2530 * have to putname() it when we are done. Procfs-like symlinks 2531 * just set LAST_BIND. 2532 */ 2533 nd.flags |= LOOKUP_PARENT; 2534 error = security_inode_follow_link(link.dentry, &nd); 2535 if (error) 2536 goto exit_dput; 2537 error = __do_follow_link(&link, &nd, &cookie); 2538 if (unlikely(error)) { 2539 if (!IS_ERR(cookie) && linki->i_op->put_link) 2540 linki->i_op->put_link(link.dentry, &nd, cookie); 2541 /* nd.path had been dropped */ 2542 nd.path = link; 2543 goto out_path; 2544 } 2545 nd.flags &= ~LOOKUP_PARENT; 2546 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname); 2547 if (linki->i_op->put_link) 2548 linki->i_op->put_link(link.dentry, &nd, cookie); 2549 path_put(&link); 2550 } 2551 out: 2552 if (nd.root.mnt) 2553 path_put(&nd.root); 2554 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL)) 2555 goto reval; 2556 release_open_intent(&nd); 2557 return filp; 2558 2559 exit_dput: 2560 path_put_conditional(&path, &nd); 2561 out_path: 2562 path_put(&nd.path); 2563 out_filp: 2564 filp = ERR_PTR(error); 2565 goto out; 2566 } 2567 2568 /** 2569 * filp_open - open file and return file pointer 2570 * 2571 * @filename: path to open 2572 * @flags: open flags as per the open(2) second argument 2573 * @mode: mode for the new file if O_CREAT is set, else ignored 2574 * 2575 * This is the helper to open a file from kernelspace if you really 2576 * have to. But in generally you should not do this, so please move 2577 * along, nothing to see here.. 2578 */ 2579 struct file *filp_open(const char *filename, int flags, int mode) 2580 { 2581 return do_filp_open(AT_FDCWD, filename, flags, mode, 0); 2582 } 2583 EXPORT_SYMBOL(filp_open); 2584 2585 /** 2586 * lookup_create - lookup a dentry, creating it if it doesn't exist 2587 * @nd: nameidata info 2588 * @is_dir: directory flag 2589 * 2590 * Simple function to lookup and return a dentry and create it 2591 * if it doesn't exist. Is SMP-safe. 2592 * 2593 * Returns with nd->path.dentry->d_inode->i_mutex locked. 2594 */ 2595 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 2596 { 2597 struct dentry *dentry = ERR_PTR(-EEXIST); 2598 2599 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2600 /* 2601 * Yucky last component or no last component at all? 2602 * (foo/., foo/.., /////) 2603 */ 2604 if (nd->last_type != LAST_NORM) 2605 goto fail; 2606 nd->flags &= ~LOOKUP_PARENT; 2607 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL; 2608 nd->intent.open.flags = O_EXCL; 2609 2610 /* 2611 * Do the final lookup. 2612 */ 2613 dentry = lookup_hash(nd); 2614 if (IS_ERR(dentry)) 2615 goto fail; 2616 2617 if (dentry->d_inode) 2618 goto eexist; 2619 /* 2620 * Special case - lookup gave negative, but... we had foo/bar/ 2621 * From the vfs_mknod() POV we just have a negative dentry - 2622 * all is fine. Let's be bastards - you had / on the end, you've 2623 * been asking for (non-existent) directory. -ENOENT for you. 2624 */ 2625 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 2626 dput(dentry); 2627 dentry = ERR_PTR(-ENOENT); 2628 } 2629 return dentry; 2630 eexist: 2631 dput(dentry); 2632 dentry = ERR_PTR(-EEXIST); 2633 fail: 2634 return dentry; 2635 } 2636 EXPORT_SYMBOL_GPL(lookup_create); 2637 2638 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2639 { 2640 int error = may_create(dir, dentry); 2641 2642 if (error) 2643 return error; 2644 2645 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 2646 return -EPERM; 2647 2648 if (!dir->i_op->mknod) 2649 return -EPERM; 2650 2651 error = devcgroup_inode_mknod(mode, dev); 2652 if (error) 2653 return error; 2654 2655 error = security_inode_mknod(dir, dentry, mode, dev); 2656 if (error) 2657 return error; 2658 2659 error = dir->i_op->mknod(dir, dentry, mode, dev); 2660 if (!error) 2661 fsnotify_create(dir, dentry); 2662 return error; 2663 } 2664 2665 static int may_mknod(mode_t mode) 2666 { 2667 switch (mode & S_IFMT) { 2668 case S_IFREG: 2669 case S_IFCHR: 2670 case S_IFBLK: 2671 case S_IFIFO: 2672 case S_IFSOCK: 2673 case 0: /* zero mode translates to S_IFREG */ 2674 return 0; 2675 case S_IFDIR: 2676 return -EPERM; 2677 default: 2678 return -EINVAL; 2679 } 2680 } 2681 2682 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode, 2683 unsigned, dev) 2684 { 2685 int error; 2686 char *tmp; 2687 struct dentry *dentry; 2688 struct nameidata nd; 2689 2690 if (S_ISDIR(mode)) 2691 return -EPERM; 2692 2693 error = user_path_parent(dfd, filename, &nd, &tmp); 2694 if (error) 2695 return error; 2696 2697 dentry = lookup_create(&nd, 0); 2698 if (IS_ERR(dentry)) { 2699 error = PTR_ERR(dentry); 2700 goto out_unlock; 2701 } 2702 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2703 mode &= ~current_umask(); 2704 error = may_mknod(mode); 2705 if (error) 2706 goto out_dput; 2707 error = mnt_want_write(nd.path.mnt); 2708 if (error) 2709 goto out_dput; 2710 error = security_path_mknod(&nd.path, dentry, mode, dev); 2711 if (error) 2712 goto out_drop_write; 2713 switch (mode & S_IFMT) { 2714 case 0: case S_IFREG: 2715 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2716 break; 2717 case S_IFCHR: case S_IFBLK: 2718 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2719 new_decode_dev(dev)); 2720 break; 2721 case S_IFIFO: case S_IFSOCK: 2722 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2723 break; 2724 } 2725 out_drop_write: 2726 mnt_drop_write(nd.path.mnt); 2727 out_dput: 2728 dput(dentry); 2729 out_unlock: 2730 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2731 path_put(&nd.path); 2732 putname(tmp); 2733 2734 return error; 2735 } 2736 2737 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev) 2738 { 2739 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2740 } 2741 2742 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2743 { 2744 int error = may_create(dir, dentry); 2745 2746 if (error) 2747 return error; 2748 2749 if (!dir->i_op->mkdir) 2750 return -EPERM; 2751 2752 mode &= (S_IRWXUGO|S_ISVTX); 2753 error = security_inode_mkdir(dir, dentry, mode); 2754 if (error) 2755 return error; 2756 2757 error = dir->i_op->mkdir(dir, dentry, mode); 2758 if (!error) 2759 fsnotify_mkdir(dir, dentry); 2760 return error; 2761 } 2762 2763 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode) 2764 { 2765 int error = 0; 2766 char * tmp; 2767 struct dentry *dentry; 2768 struct nameidata nd; 2769 2770 error = user_path_parent(dfd, pathname, &nd, &tmp); 2771 if (error) 2772 goto out_err; 2773 2774 dentry = lookup_create(&nd, 1); 2775 error = PTR_ERR(dentry); 2776 if (IS_ERR(dentry)) 2777 goto out_unlock; 2778 2779 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2780 mode &= ~current_umask(); 2781 error = mnt_want_write(nd.path.mnt); 2782 if (error) 2783 goto out_dput; 2784 error = security_path_mkdir(&nd.path, dentry, mode); 2785 if (error) 2786 goto out_drop_write; 2787 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2788 out_drop_write: 2789 mnt_drop_write(nd.path.mnt); 2790 out_dput: 2791 dput(dentry); 2792 out_unlock: 2793 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2794 path_put(&nd.path); 2795 putname(tmp); 2796 out_err: 2797 return error; 2798 } 2799 2800 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode) 2801 { 2802 return sys_mkdirat(AT_FDCWD, pathname, mode); 2803 } 2804 2805 /* 2806 * We try to drop the dentry early: we should have 2807 * a usage count of 2 if we're the only user of this 2808 * dentry, and if that is true (possibly after pruning 2809 * the dcache), then we drop the dentry now. 2810 * 2811 * A low-level filesystem can, if it choses, legally 2812 * do a 2813 * 2814 * if (!d_unhashed(dentry)) 2815 * return -EBUSY; 2816 * 2817 * if it cannot handle the case of removing a directory 2818 * that is still in use by something else.. 2819 */ 2820 void dentry_unhash(struct dentry *dentry) 2821 { 2822 dget(dentry); 2823 shrink_dcache_parent(dentry); 2824 spin_lock(&dentry->d_lock); 2825 if (dentry->d_count == 2) 2826 __d_drop(dentry); 2827 spin_unlock(&dentry->d_lock); 2828 } 2829 2830 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2831 { 2832 int error = may_delete(dir, dentry, 1); 2833 2834 if (error) 2835 return error; 2836 2837 if (!dir->i_op->rmdir) 2838 return -EPERM; 2839 2840 mutex_lock(&dentry->d_inode->i_mutex); 2841 dentry_unhash(dentry); 2842 if (d_mountpoint(dentry)) 2843 error = -EBUSY; 2844 else { 2845 error = security_inode_rmdir(dir, dentry); 2846 if (!error) { 2847 error = dir->i_op->rmdir(dir, dentry); 2848 if (!error) { 2849 dentry->d_inode->i_flags |= S_DEAD; 2850 dont_mount(dentry); 2851 } 2852 } 2853 } 2854 mutex_unlock(&dentry->d_inode->i_mutex); 2855 if (!error) { 2856 d_delete(dentry); 2857 } 2858 dput(dentry); 2859 2860 return error; 2861 } 2862 2863 static long do_rmdir(int dfd, const char __user *pathname) 2864 { 2865 int error = 0; 2866 char * name; 2867 struct dentry *dentry; 2868 struct nameidata nd; 2869 2870 error = user_path_parent(dfd, pathname, &nd, &name); 2871 if (error) 2872 return error; 2873 2874 switch(nd.last_type) { 2875 case LAST_DOTDOT: 2876 error = -ENOTEMPTY; 2877 goto exit1; 2878 case LAST_DOT: 2879 error = -EINVAL; 2880 goto exit1; 2881 case LAST_ROOT: 2882 error = -EBUSY; 2883 goto exit1; 2884 } 2885 2886 nd.flags &= ~LOOKUP_PARENT; 2887 2888 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2889 dentry = lookup_hash(&nd); 2890 error = PTR_ERR(dentry); 2891 if (IS_ERR(dentry)) 2892 goto exit2; 2893 error = mnt_want_write(nd.path.mnt); 2894 if (error) 2895 goto exit3; 2896 error = security_path_rmdir(&nd.path, dentry); 2897 if (error) 2898 goto exit4; 2899 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2900 exit4: 2901 mnt_drop_write(nd.path.mnt); 2902 exit3: 2903 dput(dentry); 2904 exit2: 2905 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2906 exit1: 2907 path_put(&nd.path); 2908 putname(name); 2909 return error; 2910 } 2911 2912 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 2913 { 2914 return do_rmdir(AT_FDCWD, pathname); 2915 } 2916 2917 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2918 { 2919 int error = may_delete(dir, dentry, 0); 2920 2921 if (error) 2922 return error; 2923 2924 if (!dir->i_op->unlink) 2925 return -EPERM; 2926 2927 mutex_lock(&dentry->d_inode->i_mutex); 2928 if (d_mountpoint(dentry)) 2929 error = -EBUSY; 2930 else { 2931 error = security_inode_unlink(dir, dentry); 2932 if (!error) { 2933 error = dir->i_op->unlink(dir, dentry); 2934 if (!error) 2935 dont_mount(dentry); 2936 } 2937 } 2938 mutex_unlock(&dentry->d_inode->i_mutex); 2939 2940 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2941 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2942 fsnotify_link_count(dentry->d_inode); 2943 d_delete(dentry); 2944 } 2945 2946 return error; 2947 } 2948 2949 /* 2950 * Make sure that the actual truncation of the file will occur outside its 2951 * directory's i_mutex. Truncate can take a long time if there is a lot of 2952 * writeout happening, and we don't want to prevent access to the directory 2953 * while waiting on the I/O. 2954 */ 2955 static long do_unlinkat(int dfd, const char __user *pathname) 2956 { 2957 int error; 2958 char *name; 2959 struct dentry *dentry; 2960 struct nameidata nd; 2961 struct inode *inode = NULL; 2962 2963 error = user_path_parent(dfd, pathname, &nd, &name); 2964 if (error) 2965 return error; 2966 2967 error = -EISDIR; 2968 if (nd.last_type != LAST_NORM) 2969 goto exit1; 2970 2971 nd.flags &= ~LOOKUP_PARENT; 2972 2973 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2974 dentry = lookup_hash(&nd); 2975 error = PTR_ERR(dentry); 2976 if (!IS_ERR(dentry)) { 2977 /* Why not before? Because we want correct error value */ 2978 if (nd.last.name[nd.last.len]) 2979 goto slashes; 2980 inode = dentry->d_inode; 2981 if (inode) 2982 ihold(inode); 2983 error = mnt_want_write(nd.path.mnt); 2984 if (error) 2985 goto exit2; 2986 error = security_path_unlink(&nd.path, dentry); 2987 if (error) 2988 goto exit3; 2989 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2990 exit3: 2991 mnt_drop_write(nd.path.mnt); 2992 exit2: 2993 dput(dentry); 2994 } 2995 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2996 if (inode) 2997 iput(inode); /* truncate the inode here */ 2998 exit1: 2999 path_put(&nd.path); 3000 putname(name); 3001 return error; 3002 3003 slashes: 3004 error = !dentry->d_inode ? -ENOENT : 3005 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 3006 goto exit2; 3007 } 3008 3009 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3010 { 3011 if ((flag & ~AT_REMOVEDIR) != 0) 3012 return -EINVAL; 3013 3014 if (flag & AT_REMOVEDIR) 3015 return do_rmdir(dfd, pathname); 3016 3017 return do_unlinkat(dfd, pathname); 3018 } 3019 3020 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3021 { 3022 return do_unlinkat(AT_FDCWD, pathname); 3023 } 3024 3025 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3026 { 3027 int error = may_create(dir, dentry); 3028 3029 if (error) 3030 return error; 3031 3032 if (!dir->i_op->symlink) 3033 return -EPERM; 3034 3035 error = security_inode_symlink(dir, dentry, oldname); 3036 if (error) 3037 return error; 3038 3039 error = dir->i_op->symlink(dir, dentry, oldname); 3040 if (!error) 3041 fsnotify_create(dir, dentry); 3042 return error; 3043 } 3044 3045 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3046 int, newdfd, const char __user *, newname) 3047 { 3048 int error; 3049 char *from; 3050 char *to; 3051 struct dentry *dentry; 3052 struct nameidata nd; 3053 3054 from = getname(oldname); 3055 if (IS_ERR(from)) 3056 return PTR_ERR(from); 3057 3058 error = user_path_parent(newdfd, newname, &nd, &to); 3059 if (error) 3060 goto out_putname; 3061 3062 dentry = lookup_create(&nd, 0); 3063 error = PTR_ERR(dentry); 3064 if (IS_ERR(dentry)) 3065 goto out_unlock; 3066 3067 error = mnt_want_write(nd.path.mnt); 3068 if (error) 3069 goto out_dput; 3070 error = security_path_symlink(&nd.path, dentry, from); 3071 if (error) 3072 goto out_drop_write; 3073 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 3074 out_drop_write: 3075 mnt_drop_write(nd.path.mnt); 3076 out_dput: 3077 dput(dentry); 3078 out_unlock: 3079 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3080 path_put(&nd.path); 3081 putname(to); 3082 out_putname: 3083 putname(from); 3084 return error; 3085 } 3086 3087 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3088 { 3089 return sys_symlinkat(oldname, AT_FDCWD, newname); 3090 } 3091 3092 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3093 { 3094 struct inode *inode = old_dentry->d_inode; 3095 int error; 3096 3097 if (!inode) 3098 return -ENOENT; 3099 3100 error = may_create(dir, new_dentry); 3101 if (error) 3102 return error; 3103 3104 if (dir->i_sb != inode->i_sb) 3105 return -EXDEV; 3106 3107 /* 3108 * A link to an append-only or immutable file cannot be created. 3109 */ 3110 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3111 return -EPERM; 3112 if (!dir->i_op->link) 3113 return -EPERM; 3114 if (S_ISDIR(inode->i_mode)) 3115 return -EPERM; 3116 3117 error = security_inode_link(old_dentry, dir, new_dentry); 3118 if (error) 3119 return error; 3120 3121 mutex_lock(&inode->i_mutex); 3122 error = dir->i_op->link(old_dentry, dir, new_dentry); 3123 mutex_unlock(&inode->i_mutex); 3124 if (!error) 3125 fsnotify_link(dir, inode, new_dentry); 3126 return error; 3127 } 3128 3129 /* 3130 * Hardlinks are often used in delicate situations. We avoid 3131 * security-related surprises by not following symlinks on the 3132 * newname. --KAB 3133 * 3134 * We don't follow them on the oldname either to be compatible 3135 * with linux 2.0, and to avoid hard-linking to directories 3136 * and other special files. --ADM 3137 */ 3138 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3139 int, newdfd, const char __user *, newname, int, flags) 3140 { 3141 struct dentry *new_dentry; 3142 struct nameidata nd; 3143 struct path old_path; 3144 int error; 3145 char *to; 3146 3147 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 3148 return -EINVAL; 3149 3150 error = user_path_at(olddfd, oldname, 3151 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 3152 &old_path); 3153 if (error) 3154 return error; 3155 3156 error = user_path_parent(newdfd, newname, &nd, &to); 3157 if (error) 3158 goto out; 3159 error = -EXDEV; 3160 if (old_path.mnt != nd.path.mnt) 3161 goto out_release; 3162 new_dentry = lookup_create(&nd, 0); 3163 error = PTR_ERR(new_dentry); 3164 if (IS_ERR(new_dentry)) 3165 goto out_unlock; 3166 error = mnt_want_write(nd.path.mnt); 3167 if (error) 3168 goto out_dput; 3169 error = security_path_link(old_path.dentry, &nd.path, new_dentry); 3170 if (error) 3171 goto out_drop_write; 3172 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 3173 out_drop_write: 3174 mnt_drop_write(nd.path.mnt); 3175 out_dput: 3176 dput(new_dentry); 3177 out_unlock: 3178 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3179 out_release: 3180 path_put(&nd.path); 3181 putname(to); 3182 out: 3183 path_put(&old_path); 3184 3185 return error; 3186 } 3187 3188 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 3189 { 3190 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 3191 } 3192 3193 /* 3194 * The worst of all namespace operations - renaming directory. "Perverted" 3195 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 3196 * Problems: 3197 * a) we can get into loop creation. Check is done in is_subdir(). 3198 * b) race potential - two innocent renames can create a loop together. 3199 * That's where 4.4 screws up. Current fix: serialization on 3200 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 3201 * story. 3202 * c) we have to lock _three_ objects - parents and victim (if it exists). 3203 * And that - after we got ->i_mutex on parents (until then we don't know 3204 * whether the target exists). Solution: try to be smart with locking 3205 * order for inodes. We rely on the fact that tree topology may change 3206 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 3207 * move will be locked. Thus we can rank directories by the tree 3208 * (ancestors first) and rank all non-directories after them. 3209 * That works since everybody except rename does "lock parent, lookup, 3210 * lock child" and rename is under ->s_vfs_rename_mutex. 3211 * HOWEVER, it relies on the assumption that any object with ->lookup() 3212 * has no more than 1 dentry. If "hybrid" objects will ever appear, 3213 * we'd better make sure that there's no link(2) for them. 3214 * d) some filesystems don't support opened-but-unlinked directories, 3215 * either because of layout or because they are not ready to deal with 3216 * all cases correctly. The latter will be fixed (taking this sort of 3217 * stuff into VFS), but the former is not going away. Solution: the same 3218 * trick as in rmdir(). 3219 * e) conversion from fhandle to dentry may come in the wrong moment - when 3220 * we are removing the target. Solution: we will have to grab ->i_mutex 3221 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 3222 * ->i_mutex on parents, which works but leads to some truly excessive 3223 * locking]. 3224 */ 3225 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 3226 struct inode *new_dir, struct dentry *new_dentry) 3227 { 3228 int error = 0; 3229 struct inode *target; 3230 3231 /* 3232 * If we are going to change the parent - check write permissions, 3233 * we'll need to flip '..'. 3234 */ 3235 if (new_dir != old_dir) { 3236 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 3237 if (error) 3238 return error; 3239 } 3240 3241 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3242 if (error) 3243 return error; 3244 3245 target = new_dentry->d_inode; 3246 if (target) 3247 mutex_lock(&target->i_mutex); 3248 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3249 error = -EBUSY; 3250 else { 3251 if (target) 3252 dentry_unhash(new_dentry); 3253 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3254 } 3255 if (target) { 3256 if (!error) { 3257 target->i_flags |= S_DEAD; 3258 dont_mount(new_dentry); 3259 } 3260 mutex_unlock(&target->i_mutex); 3261 if (d_unhashed(new_dentry)) 3262 d_rehash(new_dentry); 3263 dput(new_dentry); 3264 } 3265 if (!error) 3266 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3267 d_move(old_dentry,new_dentry); 3268 return error; 3269 } 3270 3271 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 3272 struct inode *new_dir, struct dentry *new_dentry) 3273 { 3274 struct inode *target; 3275 int error; 3276 3277 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 3278 if (error) 3279 return error; 3280 3281 dget(new_dentry); 3282 target = new_dentry->d_inode; 3283 if (target) 3284 mutex_lock(&target->i_mutex); 3285 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 3286 error = -EBUSY; 3287 else 3288 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 3289 if (!error) { 3290 if (target) 3291 dont_mount(new_dentry); 3292 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 3293 d_move(old_dentry, new_dentry); 3294 } 3295 if (target) 3296 mutex_unlock(&target->i_mutex); 3297 dput(new_dentry); 3298 return error; 3299 } 3300 3301 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 3302 struct inode *new_dir, struct dentry *new_dentry) 3303 { 3304 int error; 3305 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 3306 const unsigned char *old_name; 3307 3308 if (old_dentry->d_inode == new_dentry->d_inode) 3309 return 0; 3310 3311 error = may_delete(old_dir, old_dentry, is_dir); 3312 if (error) 3313 return error; 3314 3315 if (!new_dentry->d_inode) 3316 error = may_create(new_dir, new_dentry); 3317 else 3318 error = may_delete(new_dir, new_dentry, is_dir); 3319 if (error) 3320 return error; 3321 3322 if (!old_dir->i_op->rename) 3323 return -EPERM; 3324 3325 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 3326 3327 if (is_dir) 3328 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 3329 else 3330 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 3331 if (!error) 3332 fsnotify_move(old_dir, new_dir, old_name, is_dir, 3333 new_dentry->d_inode, old_dentry); 3334 fsnotify_oldname_free(old_name); 3335 3336 return error; 3337 } 3338 3339 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 3340 int, newdfd, const char __user *, newname) 3341 { 3342 struct dentry *old_dir, *new_dir; 3343 struct dentry *old_dentry, *new_dentry; 3344 struct dentry *trap; 3345 struct nameidata oldnd, newnd; 3346 char *from; 3347 char *to; 3348 int error; 3349 3350 error = user_path_parent(olddfd, oldname, &oldnd, &from); 3351 if (error) 3352 goto exit; 3353 3354 error = user_path_parent(newdfd, newname, &newnd, &to); 3355 if (error) 3356 goto exit1; 3357 3358 error = -EXDEV; 3359 if (oldnd.path.mnt != newnd.path.mnt) 3360 goto exit2; 3361 3362 old_dir = oldnd.path.dentry; 3363 error = -EBUSY; 3364 if (oldnd.last_type != LAST_NORM) 3365 goto exit2; 3366 3367 new_dir = newnd.path.dentry; 3368 if (newnd.last_type != LAST_NORM) 3369 goto exit2; 3370 3371 oldnd.flags &= ~LOOKUP_PARENT; 3372 newnd.flags &= ~LOOKUP_PARENT; 3373 newnd.flags |= LOOKUP_RENAME_TARGET; 3374 3375 trap = lock_rename(new_dir, old_dir); 3376 3377 old_dentry = lookup_hash(&oldnd); 3378 error = PTR_ERR(old_dentry); 3379 if (IS_ERR(old_dentry)) 3380 goto exit3; 3381 /* source must exist */ 3382 error = -ENOENT; 3383 if (!old_dentry->d_inode) 3384 goto exit4; 3385 /* unless the source is a directory trailing slashes give -ENOTDIR */ 3386 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 3387 error = -ENOTDIR; 3388 if (oldnd.last.name[oldnd.last.len]) 3389 goto exit4; 3390 if (newnd.last.name[newnd.last.len]) 3391 goto exit4; 3392 } 3393 /* source should not be ancestor of target */ 3394 error = -EINVAL; 3395 if (old_dentry == trap) 3396 goto exit4; 3397 new_dentry = lookup_hash(&newnd); 3398 error = PTR_ERR(new_dentry); 3399 if (IS_ERR(new_dentry)) 3400 goto exit4; 3401 /* target should not be an ancestor of source */ 3402 error = -ENOTEMPTY; 3403 if (new_dentry == trap) 3404 goto exit5; 3405 3406 error = mnt_want_write(oldnd.path.mnt); 3407 if (error) 3408 goto exit5; 3409 error = security_path_rename(&oldnd.path, old_dentry, 3410 &newnd.path, new_dentry); 3411 if (error) 3412 goto exit6; 3413 error = vfs_rename(old_dir->d_inode, old_dentry, 3414 new_dir->d_inode, new_dentry); 3415 exit6: 3416 mnt_drop_write(oldnd.path.mnt); 3417 exit5: 3418 dput(new_dentry); 3419 exit4: 3420 dput(old_dentry); 3421 exit3: 3422 unlock_rename(new_dir, old_dir); 3423 exit2: 3424 path_put(&newnd.path); 3425 putname(to); 3426 exit1: 3427 path_put(&oldnd.path); 3428 putname(from); 3429 exit: 3430 return error; 3431 } 3432 3433 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 3434 { 3435 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 3436 } 3437 3438 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 3439 { 3440 int len; 3441 3442 len = PTR_ERR(link); 3443 if (IS_ERR(link)) 3444 goto out; 3445 3446 len = strlen(link); 3447 if (len > (unsigned) buflen) 3448 len = buflen; 3449 if (copy_to_user(buffer, link, len)) 3450 len = -EFAULT; 3451 out: 3452 return len; 3453 } 3454 3455 /* 3456 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 3457 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 3458 * using) it for any given inode is up to filesystem. 3459 */ 3460 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3461 { 3462 struct nameidata nd; 3463 void *cookie; 3464 int res; 3465 3466 nd.depth = 0; 3467 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 3468 if (IS_ERR(cookie)) 3469 return PTR_ERR(cookie); 3470 3471 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 3472 if (dentry->d_inode->i_op->put_link) 3473 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 3474 return res; 3475 } 3476 3477 int vfs_follow_link(struct nameidata *nd, const char *link) 3478 { 3479 return __vfs_follow_link(nd, link); 3480 } 3481 3482 /* get the link contents into pagecache */ 3483 static char *page_getlink(struct dentry * dentry, struct page **ppage) 3484 { 3485 char *kaddr; 3486 struct page *page; 3487 struct address_space *mapping = dentry->d_inode->i_mapping; 3488 page = read_mapping_page(mapping, 0, NULL); 3489 if (IS_ERR(page)) 3490 return (char*)page; 3491 *ppage = page; 3492 kaddr = kmap(page); 3493 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 3494 return kaddr; 3495 } 3496 3497 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 3498 { 3499 struct page *page = NULL; 3500 char *s = page_getlink(dentry, &page); 3501 int res = vfs_readlink(dentry,buffer,buflen,s); 3502 if (page) { 3503 kunmap(page); 3504 page_cache_release(page); 3505 } 3506 return res; 3507 } 3508 3509 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 3510 { 3511 struct page *page = NULL; 3512 nd_set_link(nd, page_getlink(dentry, &page)); 3513 return page; 3514 } 3515 3516 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 3517 { 3518 struct page *page = cookie; 3519 3520 if (page) { 3521 kunmap(page); 3522 page_cache_release(page); 3523 } 3524 } 3525 3526 /* 3527 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 3528 */ 3529 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 3530 { 3531 struct address_space *mapping = inode->i_mapping; 3532 struct page *page; 3533 void *fsdata; 3534 int err; 3535 char *kaddr; 3536 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 3537 if (nofs) 3538 flags |= AOP_FLAG_NOFS; 3539 3540 retry: 3541 err = pagecache_write_begin(NULL, mapping, 0, len-1, 3542 flags, &page, &fsdata); 3543 if (err) 3544 goto fail; 3545 3546 kaddr = kmap_atomic(page, KM_USER0); 3547 memcpy(kaddr, symname, len-1); 3548 kunmap_atomic(kaddr, KM_USER0); 3549 3550 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 3551 page, fsdata); 3552 if (err < 0) 3553 goto fail; 3554 if (err < len-1) 3555 goto retry; 3556 3557 mark_inode_dirty(inode); 3558 return 0; 3559 fail: 3560 return err; 3561 } 3562 3563 int page_symlink(struct inode *inode, const char *symname, int len) 3564 { 3565 return __page_symlink(inode, symname, len, 3566 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 3567 } 3568 3569 const struct inode_operations page_symlink_inode_operations = { 3570 .readlink = generic_readlink, 3571 .follow_link = page_follow_link_light, 3572 .put_link = page_put_link, 3573 }; 3574 3575 EXPORT_SYMBOL(user_path_at); 3576 EXPORT_SYMBOL(follow_down_one); 3577 EXPORT_SYMBOL(follow_down); 3578 EXPORT_SYMBOL(follow_up); 3579 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 3580 EXPORT_SYMBOL(getname); 3581 EXPORT_SYMBOL(lock_rename); 3582 EXPORT_SYMBOL(lookup_one_len); 3583 EXPORT_SYMBOL(page_follow_link_light); 3584 EXPORT_SYMBOL(page_put_link); 3585 EXPORT_SYMBOL(page_readlink); 3586 EXPORT_SYMBOL(__page_symlink); 3587 EXPORT_SYMBOL(page_symlink); 3588 EXPORT_SYMBOL(page_symlink_inode_operations); 3589 EXPORT_SYMBOL(path_lookup); 3590 EXPORT_SYMBOL(kern_path); 3591 EXPORT_SYMBOL(vfs_path_lookup); 3592 EXPORT_SYMBOL(inode_permission); 3593 EXPORT_SYMBOL(file_permission); 3594 EXPORT_SYMBOL(unlock_rename); 3595 EXPORT_SYMBOL(vfs_create); 3596 EXPORT_SYMBOL(vfs_follow_link); 3597 EXPORT_SYMBOL(vfs_link); 3598 EXPORT_SYMBOL(vfs_mkdir); 3599 EXPORT_SYMBOL(vfs_mknod); 3600 EXPORT_SYMBOL(generic_permission); 3601 EXPORT_SYMBOL(vfs_readlink); 3602 EXPORT_SYMBOL(vfs_rename); 3603 EXPORT_SYMBOL(vfs_rmdir); 3604 EXPORT_SYMBOL(vfs_symlink); 3605 EXPORT_SYMBOL(vfs_unlink); 3606 EXPORT_SYMBOL(dentry_unhash); 3607 EXPORT_SYMBOL(generic_readlink); 3608