xref: /openbmc/linux/fs/namei.c (revision 4800cd83)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36 
37 #include "internal.h"
38 
39 /* [Feb-1997 T. Schoebel-Theuer]
40  * Fundamental changes in the pathname lookup mechanisms (namei)
41  * were necessary because of omirr.  The reason is that omirr needs
42  * to know the _real_ pathname, not the user-supplied one, in case
43  * of symlinks (and also when transname replacements occur).
44  *
45  * The new code replaces the old recursive symlink resolution with
46  * an iterative one (in case of non-nested symlink chains).  It does
47  * this with calls to <fs>_follow_link().
48  * As a side effect, dir_namei(), _namei() and follow_link() are now
49  * replaced with a single function lookup_dentry() that can handle all
50  * the special cases of the former code.
51  *
52  * With the new dcache, the pathname is stored at each inode, at least as
53  * long as the refcount of the inode is positive.  As a side effect, the
54  * size of the dcache depends on the inode cache and thus is dynamic.
55  *
56  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57  * resolution to correspond with current state of the code.
58  *
59  * Note that the symlink resolution is not *completely* iterative.
60  * There is still a significant amount of tail- and mid- recursion in
61  * the algorithm.  Also, note that <fs>_readlink() is not used in
62  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63  * may return different results than <fs>_follow_link().  Many virtual
64  * filesystems (including /proc) exhibit this behavior.
65  */
66 
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69  * and the name already exists in form of a symlink, try to create the new
70  * name indicated by the symlink. The old code always complained that the
71  * name already exists, due to not following the symlink even if its target
72  * is nonexistent.  The new semantics affects also mknod() and link() when
73  * the name is a symlink pointing to a non-existant name.
74  *
75  * I don't know which semantics is the right one, since I have no access
76  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78  * "old" one. Personally, I think the new semantics is much more logical.
79  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80  * file does succeed in both HP-UX and SunOs, but not in Solaris
81  * and in the old Linux semantics.
82  */
83 
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85  * semantics.  See the comments in "open_namei" and "do_link" below.
86  *
87  * [10-Sep-98 Alan Modra] Another symlink change.
88  */
89 
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91  *	inside the path - always follow.
92  *	in the last component in creation/removal/renaming - never follow.
93  *	if LOOKUP_FOLLOW passed - follow.
94  *	if the pathname has trailing slashes - follow.
95  *	otherwise - don't follow.
96  * (applied in that order).
97  *
98  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100  * During the 2.4 we need to fix the userland stuff depending on it -
101  * hopefully we will be able to get rid of that wart in 2.5. So far only
102  * XEmacs seems to be relying on it...
103  */
104 /*
105  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
107  * any extra contention...
108  */
109 
110 /* In order to reduce some races, while at the same time doing additional
111  * checking and hopefully speeding things up, we copy filenames to the
112  * kernel data space before using them..
113  *
114  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115  * PATH_MAX includes the nul terminator --RR.
116  */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 	int retval;
120 	unsigned long len = PATH_MAX;
121 
122 	if (!segment_eq(get_fs(), KERNEL_DS)) {
123 		if ((unsigned long) filename >= TASK_SIZE)
124 			return -EFAULT;
125 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 			len = TASK_SIZE - (unsigned long) filename;
127 	}
128 
129 	retval = strncpy_from_user(page, filename, len);
130 	if (retval > 0) {
131 		if (retval < len)
132 			return 0;
133 		return -ENAMETOOLONG;
134 	} else if (!retval)
135 		retval = -ENOENT;
136 	return retval;
137 }
138 
139 char * getname(const char __user * filename)
140 {
141 	char *tmp, *result;
142 
143 	result = ERR_PTR(-ENOMEM);
144 	tmp = __getname();
145 	if (tmp)  {
146 		int retval = do_getname(filename, tmp);
147 
148 		result = tmp;
149 		if (retval < 0) {
150 			__putname(tmp);
151 			result = ERR_PTR(retval);
152 		}
153 	}
154 	audit_getname(result);
155 	return result;
156 }
157 
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 	if (unlikely(!audit_dummy_context()))
162 		audit_putname(name);
163 	else
164 		__putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168 
169 /*
170  * This does basic POSIX ACL permission checking
171  */
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 		int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
174 {
175 	umode_t			mode = inode->i_mode;
176 
177 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178 
179 	if (current_fsuid() == inode->i_uid)
180 		mode >>= 6;
181 	else {
182 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 			int error = check_acl(inode, mask, flags);
184 			if (error != -EAGAIN)
185 				return error;
186 		}
187 
188 		if (in_group_p(inode->i_gid))
189 			mode >>= 3;
190 	}
191 
192 	/*
193 	 * If the DACs are ok we don't need any capability check.
194 	 */
195 	if ((mask & ~mode) == 0)
196 		return 0;
197 	return -EACCES;
198 }
199 
200 /**
201  * generic_permission -  check for access rights on a Posix-like filesystem
202  * @inode:	inode to check access rights for
203  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204  * @check_acl:	optional callback to check for Posix ACLs
205  * @flags:	IPERM_FLAG_ flags.
206  *
207  * Used to check for read/write/execute permissions on a file.
208  * We use "fsuid" for this, letting us set arbitrary permissions
209  * for filesystem access without changing the "normal" uids which
210  * are used for other things.
211  *
212  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213  * request cannot be satisfied (eg. requires blocking or too much complexity).
214  * It would then be called again in ref-walk mode.
215  */
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 	int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
218 {
219 	int ret;
220 
221 	/*
222 	 * Do the basic POSIX ACL permission checks.
223 	 */
224 	ret = acl_permission_check(inode, mask, flags, check_acl);
225 	if (ret != -EACCES)
226 		return ret;
227 
228 	/*
229 	 * Read/write DACs are always overridable.
230 	 * Executable DACs are overridable if at least one exec bit is set.
231 	 */
232 	if (!(mask & MAY_EXEC) || execute_ok(inode))
233 		if (capable(CAP_DAC_OVERRIDE))
234 			return 0;
235 
236 	/*
237 	 * Searching includes executable on directories, else just read.
238 	 */
239 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 		if (capable(CAP_DAC_READ_SEARCH))
242 			return 0;
243 
244 	return -EACCES;
245 }
246 
247 /**
248  * inode_permission  -  check for access rights to a given inode
249  * @inode:	inode to check permission on
250  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
251  *
252  * Used to check for read/write/execute permissions on an inode.
253  * We use "fsuid" for this, letting us set arbitrary permissions
254  * for filesystem access without changing the "normal" uids which
255  * are used for other things.
256  */
257 int inode_permission(struct inode *inode, int mask)
258 {
259 	int retval;
260 
261 	if (mask & MAY_WRITE) {
262 		umode_t mode = inode->i_mode;
263 
264 		/*
265 		 * Nobody gets write access to a read-only fs.
266 		 */
267 		if (IS_RDONLY(inode) &&
268 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 			return -EROFS;
270 
271 		/*
272 		 * Nobody gets write access to an immutable file.
273 		 */
274 		if (IS_IMMUTABLE(inode))
275 			return -EACCES;
276 	}
277 
278 	if (inode->i_op->permission)
279 		retval = inode->i_op->permission(inode, mask, 0);
280 	else
281 		retval = generic_permission(inode, mask, 0,
282 				inode->i_op->check_acl);
283 
284 	if (retval)
285 		return retval;
286 
287 	retval = devcgroup_inode_permission(inode, mask);
288 	if (retval)
289 		return retval;
290 
291 	return security_inode_permission(inode, mask);
292 }
293 
294 /**
295  * file_permission  -  check for additional access rights to a given file
296  * @file:	file to check access rights for
297  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
298  *
299  * Used to check for read/write/execute permissions on an already opened
300  * file.
301  *
302  * Note:
303  *	Do not use this function in new code.  All access checks should
304  *	be done using inode_permission().
305  */
306 int file_permission(struct file *file, int mask)
307 {
308 	return inode_permission(file->f_path.dentry->d_inode, mask);
309 }
310 
311 /*
312  * get_write_access() gets write permission for a file.
313  * put_write_access() releases this write permission.
314  * This is used for regular files.
315  * We cannot support write (and maybe mmap read-write shared) accesses and
316  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317  * can have the following values:
318  * 0: no writers, no VM_DENYWRITE mappings
319  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320  * > 0: (i_writecount) users are writing to the file.
321  *
322  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323  * except for the cases where we don't hold i_writecount yet. Then we need to
324  * use {get,deny}_write_access() - these functions check the sign and refuse
325  * to do the change if sign is wrong. Exclusion between them is provided by
326  * the inode->i_lock spinlock.
327  */
328 
329 int get_write_access(struct inode * inode)
330 {
331 	spin_lock(&inode->i_lock);
332 	if (atomic_read(&inode->i_writecount) < 0) {
333 		spin_unlock(&inode->i_lock);
334 		return -ETXTBSY;
335 	}
336 	atomic_inc(&inode->i_writecount);
337 	spin_unlock(&inode->i_lock);
338 
339 	return 0;
340 }
341 
342 int deny_write_access(struct file * file)
343 {
344 	struct inode *inode = file->f_path.dentry->d_inode;
345 
346 	spin_lock(&inode->i_lock);
347 	if (atomic_read(&inode->i_writecount) > 0) {
348 		spin_unlock(&inode->i_lock);
349 		return -ETXTBSY;
350 	}
351 	atomic_dec(&inode->i_writecount);
352 	spin_unlock(&inode->i_lock);
353 
354 	return 0;
355 }
356 
357 /**
358  * path_get - get a reference to a path
359  * @path: path to get the reference to
360  *
361  * Given a path increment the reference count to the dentry and the vfsmount.
362  */
363 void path_get(struct path *path)
364 {
365 	mntget(path->mnt);
366 	dget(path->dentry);
367 }
368 EXPORT_SYMBOL(path_get);
369 
370 /**
371  * path_put - put a reference to a path
372  * @path: path to put the reference to
373  *
374  * Given a path decrement the reference count to the dentry and the vfsmount.
375  */
376 void path_put(struct path *path)
377 {
378 	dput(path->dentry);
379 	mntput(path->mnt);
380 }
381 EXPORT_SYMBOL(path_put);
382 
383 /**
384  * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385  * @nd: nameidata pathwalk data to drop
386  * Returns: 0 on success, -ECHILD on failure
387  *
388  * Path walking has 2 modes, rcu-walk and ref-walk (see
389  * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390  * to drop out of rcu-walk mode and take normal reference counts on dentries
391  * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392  * refcounts at the last known good point before rcu-walk got stuck, so
393  * ref-walk may continue from there. If this is not successful (eg. a seqcount
394  * has changed), then failure is returned and path walk restarts from the
395  * beginning in ref-walk mode.
396  *
397  * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398  * ref-walk. Must be called from rcu-walk context.
399  */
400 static int nameidata_drop_rcu(struct nameidata *nd)
401 {
402 	struct fs_struct *fs = current->fs;
403 	struct dentry *dentry = nd->path.dentry;
404 
405 	BUG_ON(!(nd->flags & LOOKUP_RCU));
406 	if (nd->root.mnt) {
407 		spin_lock(&fs->lock);
408 		if (nd->root.mnt != fs->root.mnt ||
409 				nd->root.dentry != fs->root.dentry)
410 			goto err_root;
411 	}
412 	spin_lock(&dentry->d_lock);
413 	if (!__d_rcu_to_refcount(dentry, nd->seq))
414 		goto err;
415 	BUG_ON(nd->inode != dentry->d_inode);
416 	spin_unlock(&dentry->d_lock);
417 	if (nd->root.mnt) {
418 		path_get(&nd->root);
419 		spin_unlock(&fs->lock);
420 	}
421 	mntget(nd->path.mnt);
422 
423 	rcu_read_unlock();
424 	br_read_unlock(vfsmount_lock);
425 	nd->flags &= ~LOOKUP_RCU;
426 	return 0;
427 err:
428 	spin_unlock(&dentry->d_lock);
429 err_root:
430 	if (nd->root.mnt)
431 		spin_unlock(&fs->lock);
432 	return -ECHILD;
433 }
434 
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
437 {
438 	if (nd->flags & LOOKUP_RCU)
439 		return nameidata_drop_rcu(nd);
440 	return 0;
441 }
442 
443 /**
444  * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445  * @nd: nameidata pathwalk data to drop
446  * @dentry: dentry to drop
447  * Returns: 0 on success, -ECHILD on failure
448  *
449  * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450  * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451  * @nd. Must be called from rcu-walk context.
452  */
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
454 {
455 	struct fs_struct *fs = current->fs;
456 	struct dentry *parent = nd->path.dentry;
457 
458 	BUG_ON(!(nd->flags & LOOKUP_RCU));
459 	if (nd->root.mnt) {
460 		spin_lock(&fs->lock);
461 		if (nd->root.mnt != fs->root.mnt ||
462 				nd->root.dentry != fs->root.dentry)
463 			goto err_root;
464 	}
465 	spin_lock(&parent->d_lock);
466 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
467 	if (!__d_rcu_to_refcount(dentry, nd->seq))
468 		goto err;
469 	/*
470 	 * If the sequence check on the child dentry passed, then the child has
471 	 * not been removed from its parent. This means the parent dentry must
472 	 * be valid and able to take a reference at this point.
473 	 */
474 	BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
475 	BUG_ON(!parent->d_count);
476 	parent->d_count++;
477 	spin_unlock(&dentry->d_lock);
478 	spin_unlock(&parent->d_lock);
479 	if (nd->root.mnt) {
480 		path_get(&nd->root);
481 		spin_unlock(&fs->lock);
482 	}
483 	mntget(nd->path.mnt);
484 
485 	rcu_read_unlock();
486 	br_read_unlock(vfsmount_lock);
487 	nd->flags &= ~LOOKUP_RCU;
488 	return 0;
489 err:
490 	spin_unlock(&dentry->d_lock);
491 	spin_unlock(&parent->d_lock);
492 err_root:
493 	if (nd->root.mnt)
494 		spin_unlock(&fs->lock);
495 	return -ECHILD;
496 }
497 
498 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
499 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
500 {
501 	if (nd->flags & LOOKUP_RCU)
502 		return nameidata_dentry_drop_rcu(nd, dentry);
503 	return 0;
504 }
505 
506 /**
507  * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
508  * @nd: nameidata pathwalk data to drop
509  * Returns: 0 on success, -ECHILD on failure
510  *
511  * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
512  * nd->path should be the final element of the lookup, so nd->root is discarded.
513  * Must be called from rcu-walk context.
514  */
515 static int nameidata_drop_rcu_last(struct nameidata *nd)
516 {
517 	struct dentry *dentry = nd->path.dentry;
518 
519 	BUG_ON(!(nd->flags & LOOKUP_RCU));
520 	nd->flags &= ~LOOKUP_RCU;
521 	nd->root.mnt = NULL;
522 	spin_lock(&dentry->d_lock);
523 	if (!__d_rcu_to_refcount(dentry, nd->seq))
524 		goto err_unlock;
525 	BUG_ON(nd->inode != dentry->d_inode);
526 	spin_unlock(&dentry->d_lock);
527 
528 	mntget(nd->path.mnt);
529 
530 	rcu_read_unlock();
531 	br_read_unlock(vfsmount_lock);
532 
533 	return 0;
534 
535 err_unlock:
536 	spin_unlock(&dentry->d_lock);
537 	rcu_read_unlock();
538 	br_read_unlock(vfsmount_lock);
539 	return -ECHILD;
540 }
541 
542 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing.  */
543 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
544 {
545 	if (likely(nd->flags & LOOKUP_RCU))
546 		return nameidata_drop_rcu_last(nd);
547 	return 0;
548 }
549 
550 /**
551  * release_open_intent - free up open intent resources
552  * @nd: pointer to nameidata
553  */
554 void release_open_intent(struct nameidata *nd)
555 {
556 	struct file *file = nd->intent.open.file;
557 
558 	if (file && !IS_ERR(file)) {
559 		if (file->f_path.dentry == NULL)
560 			put_filp(file);
561 		else
562 			fput(file);
563 	}
564 }
565 
566 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
567 {
568 	return dentry->d_op->d_revalidate(dentry, nd);
569 }
570 
571 static struct dentry *
572 do_revalidate(struct dentry *dentry, struct nameidata *nd)
573 {
574 	int status = d_revalidate(dentry, nd);
575 	if (unlikely(status <= 0)) {
576 		/*
577 		 * The dentry failed validation.
578 		 * If d_revalidate returned 0 attempt to invalidate
579 		 * the dentry otherwise d_revalidate is asking us
580 		 * to return a fail status.
581 		 */
582 		if (status < 0) {
583 			dput(dentry);
584 			dentry = ERR_PTR(status);
585 		} else if (!d_invalidate(dentry)) {
586 			dput(dentry);
587 			dentry = NULL;
588 		}
589 	}
590 	return dentry;
591 }
592 
593 static inline struct dentry *
594 do_revalidate_rcu(struct dentry *dentry, struct nameidata *nd)
595 {
596 	int status = d_revalidate(dentry, nd);
597 	if (likely(status > 0))
598 		return dentry;
599 	if (status == -ECHILD) {
600 		if (nameidata_dentry_drop_rcu(nd, dentry))
601 			return ERR_PTR(-ECHILD);
602 		return do_revalidate(dentry, nd);
603 	}
604 	if (status < 0)
605 		return ERR_PTR(status);
606 	/* Don't d_invalidate in rcu-walk mode */
607 	if (nameidata_dentry_drop_rcu(nd, dentry))
608 		return ERR_PTR(-ECHILD);
609 	if (!d_invalidate(dentry)) {
610 		dput(dentry);
611 		dentry = NULL;
612 	}
613 	return dentry;
614 }
615 
616 static inline int need_reval_dot(struct dentry *dentry)
617 {
618 	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
619 		return 0;
620 
621 	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
622 		return 0;
623 
624 	return 1;
625 }
626 
627 /*
628  * force_reval_path - force revalidation of a dentry
629  *
630  * In some situations the path walking code will trust dentries without
631  * revalidating them. This causes problems for filesystems that depend on
632  * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
633  * (which indicates that it's possible for the dentry to go stale), force
634  * a d_revalidate call before proceeding.
635  *
636  * Returns 0 if the revalidation was successful. If the revalidation fails,
637  * either return the error returned by d_revalidate or -ESTALE if the
638  * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
639  * invalidate the dentry. It's up to the caller to handle putting references
640  * to the path if necessary.
641  */
642 static int
643 force_reval_path(struct path *path, struct nameidata *nd)
644 {
645 	int status;
646 	struct dentry *dentry = path->dentry;
647 
648 	/*
649 	 * only check on filesystems where it's possible for the dentry to
650 	 * become stale.
651 	 */
652 	if (!need_reval_dot(dentry))
653 		return 0;
654 
655 	status = d_revalidate(dentry, nd);
656 	if (status > 0)
657 		return 0;
658 
659 	if (!status) {
660 		d_invalidate(dentry);
661 		status = -ESTALE;
662 	}
663 	return status;
664 }
665 
666 /*
667  * Short-cut version of permission(), for calling on directories
668  * during pathname resolution.  Combines parts of permission()
669  * and generic_permission(), and tests ONLY for MAY_EXEC permission.
670  *
671  * If appropriate, check DAC only.  If not appropriate, or
672  * short-cut DAC fails, then call ->permission() to do more
673  * complete permission check.
674  */
675 static inline int exec_permission(struct inode *inode, unsigned int flags)
676 {
677 	int ret;
678 
679 	if (inode->i_op->permission) {
680 		ret = inode->i_op->permission(inode, MAY_EXEC, flags);
681 	} else {
682 		ret = acl_permission_check(inode, MAY_EXEC, flags,
683 				inode->i_op->check_acl);
684 	}
685 	if (likely(!ret))
686 		goto ok;
687 	if (ret == -ECHILD)
688 		return ret;
689 
690 	if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
691 		goto ok;
692 
693 	return ret;
694 ok:
695 	return security_inode_exec_permission(inode, flags);
696 }
697 
698 static __always_inline void set_root(struct nameidata *nd)
699 {
700 	if (!nd->root.mnt)
701 		get_fs_root(current->fs, &nd->root);
702 }
703 
704 static int link_path_walk(const char *, struct nameidata *);
705 
706 static __always_inline void set_root_rcu(struct nameidata *nd)
707 {
708 	if (!nd->root.mnt) {
709 		struct fs_struct *fs = current->fs;
710 		unsigned seq;
711 
712 		do {
713 			seq = read_seqcount_begin(&fs->seq);
714 			nd->root = fs->root;
715 		} while (read_seqcount_retry(&fs->seq, seq));
716 	}
717 }
718 
719 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
720 {
721 	int ret;
722 
723 	if (IS_ERR(link))
724 		goto fail;
725 
726 	if (*link == '/') {
727 		set_root(nd);
728 		path_put(&nd->path);
729 		nd->path = nd->root;
730 		path_get(&nd->root);
731 	}
732 	nd->inode = nd->path.dentry->d_inode;
733 
734 	ret = link_path_walk(link, nd);
735 	return ret;
736 fail:
737 	path_put(&nd->path);
738 	return PTR_ERR(link);
739 }
740 
741 static void path_put_conditional(struct path *path, struct nameidata *nd)
742 {
743 	dput(path->dentry);
744 	if (path->mnt != nd->path.mnt)
745 		mntput(path->mnt);
746 }
747 
748 static inline void path_to_nameidata(const struct path *path,
749 					struct nameidata *nd)
750 {
751 	if (!(nd->flags & LOOKUP_RCU)) {
752 		dput(nd->path.dentry);
753 		if (nd->path.mnt != path->mnt)
754 			mntput(nd->path.mnt);
755 	}
756 	nd->path.mnt = path->mnt;
757 	nd->path.dentry = path->dentry;
758 }
759 
760 static __always_inline int
761 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
762 {
763 	int error;
764 	struct dentry *dentry = link->dentry;
765 
766 	BUG_ON(nd->flags & LOOKUP_RCU);
767 
768 	touch_atime(link->mnt, dentry);
769 	nd_set_link(nd, NULL);
770 
771 	if (link->mnt == nd->path.mnt)
772 		mntget(link->mnt);
773 
774 	nd->last_type = LAST_BIND;
775 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
776 	error = PTR_ERR(*p);
777 	if (!IS_ERR(*p)) {
778 		char *s = nd_get_link(nd);
779 		error = 0;
780 		if (s)
781 			error = __vfs_follow_link(nd, s);
782 		else if (nd->last_type == LAST_BIND) {
783 			error = force_reval_path(&nd->path, nd);
784 			if (error)
785 				path_put(&nd->path);
786 		}
787 	}
788 	return error;
789 }
790 
791 /*
792  * This limits recursive symlink follows to 8, while
793  * limiting consecutive symlinks to 40.
794  *
795  * Without that kind of total limit, nasty chains of consecutive
796  * symlinks can cause almost arbitrarily long lookups.
797  */
798 static inline int do_follow_link(struct inode *inode, struct path *path, struct nameidata *nd)
799 {
800 	void *cookie;
801 	int err = -ELOOP;
802 
803 	/* We drop rcu-walk here */
804 	if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
805 		return -ECHILD;
806 	BUG_ON(inode != path->dentry->d_inode);
807 
808 	if (current->link_count >= MAX_NESTED_LINKS)
809 		goto loop;
810 	if (current->total_link_count >= 40)
811 		goto loop;
812 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
813 	cond_resched();
814 	err = security_inode_follow_link(path->dentry, nd);
815 	if (err)
816 		goto loop;
817 	current->link_count++;
818 	current->total_link_count++;
819 	nd->depth++;
820 	err = __do_follow_link(path, nd, &cookie);
821 	if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
822 		path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
823 	path_put(path);
824 	current->link_count--;
825 	nd->depth--;
826 	return err;
827 loop:
828 	path_put_conditional(path, nd);
829 	path_put(&nd->path);
830 	return err;
831 }
832 
833 static int follow_up_rcu(struct path *path)
834 {
835 	struct vfsmount *parent;
836 	struct dentry *mountpoint;
837 
838 	parent = path->mnt->mnt_parent;
839 	if (parent == path->mnt)
840 		return 0;
841 	mountpoint = path->mnt->mnt_mountpoint;
842 	path->dentry = mountpoint;
843 	path->mnt = parent;
844 	return 1;
845 }
846 
847 int follow_up(struct path *path)
848 {
849 	struct vfsmount *parent;
850 	struct dentry *mountpoint;
851 
852 	br_read_lock(vfsmount_lock);
853 	parent = path->mnt->mnt_parent;
854 	if (parent == path->mnt) {
855 		br_read_unlock(vfsmount_lock);
856 		return 0;
857 	}
858 	mntget(parent);
859 	mountpoint = dget(path->mnt->mnt_mountpoint);
860 	br_read_unlock(vfsmount_lock);
861 	dput(path->dentry);
862 	path->dentry = mountpoint;
863 	mntput(path->mnt);
864 	path->mnt = parent;
865 	return 1;
866 }
867 
868 /*
869  * Perform an automount
870  * - return -EISDIR to tell follow_managed() to stop and return the path we
871  *   were called with.
872  */
873 static int follow_automount(struct path *path, unsigned flags,
874 			    bool *need_mntput)
875 {
876 	struct vfsmount *mnt;
877 	int err;
878 
879 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
880 		return -EREMOTE;
881 
882 	/* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
883 	 * and this is the terminal part of the path.
884 	 */
885 	if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
886 		return -EISDIR; /* we actually want to stop here */
887 
888 	/* We want to mount if someone is trying to open/create a file of any
889 	 * type under the mountpoint, wants to traverse through the mountpoint
890 	 * or wants to open the mounted directory.
891 	 *
892 	 * We don't want to mount if someone's just doing a stat and they've
893 	 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
894 	 * appended a '/' to the name.
895 	 */
896 	if (!(flags & LOOKUP_FOLLOW) &&
897 	    !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
898 		       LOOKUP_OPEN | LOOKUP_CREATE)))
899 		return -EISDIR;
900 
901 	current->total_link_count++;
902 	if (current->total_link_count >= 40)
903 		return -ELOOP;
904 
905 	mnt = path->dentry->d_op->d_automount(path);
906 	if (IS_ERR(mnt)) {
907 		/*
908 		 * The filesystem is allowed to return -EISDIR here to indicate
909 		 * it doesn't want to automount.  For instance, autofs would do
910 		 * this so that its userspace daemon can mount on this dentry.
911 		 *
912 		 * However, we can only permit this if it's a terminal point in
913 		 * the path being looked up; if it wasn't then the remainder of
914 		 * the path is inaccessible and we should say so.
915 		 */
916 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
917 			return -EREMOTE;
918 		return PTR_ERR(mnt);
919 	}
920 
921 	if (!mnt) /* mount collision */
922 		return 0;
923 
924 	err = finish_automount(mnt, path);
925 
926 	switch (err) {
927 	case -EBUSY:
928 		/* Someone else made a mount here whilst we were busy */
929 		return 0;
930 	case 0:
931 		dput(path->dentry);
932 		if (*need_mntput)
933 			mntput(path->mnt);
934 		path->mnt = mnt;
935 		path->dentry = dget(mnt->mnt_root);
936 		*need_mntput = true;
937 		return 0;
938 	default:
939 		return err;
940 	}
941 
942 }
943 
944 /*
945  * Handle a dentry that is managed in some way.
946  * - Flagged for transit management (autofs)
947  * - Flagged as mountpoint
948  * - Flagged as automount point
949  *
950  * This may only be called in refwalk mode.
951  *
952  * Serialization is taken care of in namespace.c
953  */
954 static int follow_managed(struct path *path, unsigned flags)
955 {
956 	unsigned managed;
957 	bool need_mntput = false;
958 	int ret;
959 
960 	/* Given that we're not holding a lock here, we retain the value in a
961 	 * local variable for each dentry as we look at it so that we don't see
962 	 * the components of that value change under us */
963 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
964 	       managed &= DCACHE_MANAGED_DENTRY,
965 	       unlikely(managed != 0)) {
966 		/* Allow the filesystem to manage the transit without i_mutex
967 		 * being held. */
968 		if (managed & DCACHE_MANAGE_TRANSIT) {
969 			BUG_ON(!path->dentry->d_op);
970 			BUG_ON(!path->dentry->d_op->d_manage);
971 			ret = path->dentry->d_op->d_manage(path->dentry,
972 							   false, false);
973 			if (ret < 0)
974 				return ret == -EISDIR ? 0 : ret;
975 		}
976 
977 		/* Transit to a mounted filesystem. */
978 		if (managed & DCACHE_MOUNTED) {
979 			struct vfsmount *mounted = lookup_mnt(path);
980 			if (mounted) {
981 				dput(path->dentry);
982 				if (need_mntput)
983 					mntput(path->mnt);
984 				path->mnt = mounted;
985 				path->dentry = dget(mounted->mnt_root);
986 				need_mntput = true;
987 				continue;
988 			}
989 
990 			/* Something is mounted on this dentry in another
991 			 * namespace and/or whatever was mounted there in this
992 			 * namespace got unmounted before we managed to get the
993 			 * vfsmount_lock */
994 		}
995 
996 		/* Handle an automount point */
997 		if (managed & DCACHE_NEED_AUTOMOUNT) {
998 			ret = follow_automount(path, flags, &need_mntput);
999 			if (ret < 0)
1000 				return ret == -EISDIR ? 0 : ret;
1001 			continue;
1002 		}
1003 
1004 		/* We didn't change the current path point */
1005 		break;
1006 	}
1007 	return 0;
1008 }
1009 
1010 int follow_down_one(struct path *path)
1011 {
1012 	struct vfsmount *mounted;
1013 
1014 	mounted = lookup_mnt(path);
1015 	if (mounted) {
1016 		dput(path->dentry);
1017 		mntput(path->mnt);
1018 		path->mnt = mounted;
1019 		path->dentry = dget(mounted->mnt_root);
1020 		return 1;
1021 	}
1022 	return 0;
1023 }
1024 
1025 /*
1026  * Skip to top of mountpoint pile in rcuwalk mode.  We abort the rcu-walk if we
1027  * meet a managed dentry and we're not walking to "..".  True is returned to
1028  * continue, false to abort.
1029  */
1030 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1031 			       struct inode **inode, bool reverse_transit)
1032 {
1033 	while (d_mountpoint(path->dentry)) {
1034 		struct vfsmount *mounted;
1035 		if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1036 		    !reverse_transit &&
1037 		    path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1038 			return false;
1039 		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1040 		if (!mounted)
1041 			break;
1042 		path->mnt = mounted;
1043 		path->dentry = mounted->mnt_root;
1044 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1045 		*inode = path->dentry->d_inode;
1046 	}
1047 
1048 	if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1049 		return reverse_transit;
1050 	return true;
1051 }
1052 
1053 static int follow_dotdot_rcu(struct nameidata *nd)
1054 {
1055 	struct inode *inode = nd->inode;
1056 
1057 	set_root_rcu(nd);
1058 
1059 	while (1) {
1060 		if (nd->path.dentry == nd->root.dentry &&
1061 		    nd->path.mnt == nd->root.mnt) {
1062 			break;
1063 		}
1064 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1065 			struct dentry *old = nd->path.dentry;
1066 			struct dentry *parent = old->d_parent;
1067 			unsigned seq;
1068 
1069 			seq = read_seqcount_begin(&parent->d_seq);
1070 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1071 				return -ECHILD;
1072 			inode = parent->d_inode;
1073 			nd->path.dentry = parent;
1074 			nd->seq = seq;
1075 			break;
1076 		}
1077 		if (!follow_up_rcu(&nd->path))
1078 			break;
1079 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1080 		inode = nd->path.dentry->d_inode;
1081 	}
1082 	__follow_mount_rcu(nd, &nd->path, &inode, true);
1083 	nd->inode = inode;
1084 
1085 	return 0;
1086 }
1087 
1088 /*
1089  * Follow down to the covering mount currently visible to userspace.  At each
1090  * point, the filesystem owning that dentry may be queried as to whether the
1091  * caller is permitted to proceed or not.
1092  *
1093  * Care must be taken as namespace_sem may be held (indicated by mounting_here
1094  * being true).
1095  */
1096 int follow_down(struct path *path, bool mounting_here)
1097 {
1098 	unsigned managed;
1099 	int ret;
1100 
1101 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1102 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1103 		/* Allow the filesystem to manage the transit without i_mutex
1104 		 * being held.
1105 		 *
1106 		 * We indicate to the filesystem if someone is trying to mount
1107 		 * something here.  This gives autofs the chance to deny anyone
1108 		 * other than its daemon the right to mount on its
1109 		 * superstructure.
1110 		 *
1111 		 * The filesystem may sleep at this point.
1112 		 */
1113 		if (managed & DCACHE_MANAGE_TRANSIT) {
1114 			BUG_ON(!path->dentry->d_op);
1115 			BUG_ON(!path->dentry->d_op->d_manage);
1116 			ret = path->dentry->d_op->d_manage(
1117 				path->dentry, mounting_here, false);
1118 			if (ret < 0)
1119 				return ret == -EISDIR ? 0 : ret;
1120 		}
1121 
1122 		/* Transit to a mounted filesystem. */
1123 		if (managed & DCACHE_MOUNTED) {
1124 			struct vfsmount *mounted = lookup_mnt(path);
1125 			if (!mounted)
1126 				break;
1127 			dput(path->dentry);
1128 			mntput(path->mnt);
1129 			path->mnt = mounted;
1130 			path->dentry = dget(mounted->mnt_root);
1131 			continue;
1132 		}
1133 
1134 		/* Don't handle automount points here */
1135 		break;
1136 	}
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1142  */
1143 static void follow_mount(struct path *path)
1144 {
1145 	while (d_mountpoint(path->dentry)) {
1146 		struct vfsmount *mounted = lookup_mnt(path);
1147 		if (!mounted)
1148 			break;
1149 		dput(path->dentry);
1150 		mntput(path->mnt);
1151 		path->mnt = mounted;
1152 		path->dentry = dget(mounted->mnt_root);
1153 	}
1154 }
1155 
1156 static void follow_dotdot(struct nameidata *nd)
1157 {
1158 	set_root(nd);
1159 
1160 	while(1) {
1161 		struct dentry *old = nd->path.dentry;
1162 
1163 		if (nd->path.dentry == nd->root.dentry &&
1164 		    nd->path.mnt == nd->root.mnt) {
1165 			break;
1166 		}
1167 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1168 			/* rare case of legitimate dget_parent()... */
1169 			nd->path.dentry = dget_parent(nd->path.dentry);
1170 			dput(old);
1171 			break;
1172 		}
1173 		if (!follow_up(&nd->path))
1174 			break;
1175 	}
1176 	follow_mount(&nd->path);
1177 	nd->inode = nd->path.dentry->d_inode;
1178 }
1179 
1180 /*
1181  * Allocate a dentry with name and parent, and perform a parent
1182  * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1183  * on error. parent->d_inode->i_mutex must be held. d_lookup must
1184  * have verified that no child exists while under i_mutex.
1185  */
1186 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1187 				struct qstr *name, struct nameidata *nd)
1188 {
1189 	struct inode *inode = parent->d_inode;
1190 	struct dentry *dentry;
1191 	struct dentry *old;
1192 
1193 	/* Don't create child dentry for a dead directory. */
1194 	if (unlikely(IS_DEADDIR(inode)))
1195 		return ERR_PTR(-ENOENT);
1196 
1197 	dentry = d_alloc(parent, name);
1198 	if (unlikely(!dentry))
1199 		return ERR_PTR(-ENOMEM);
1200 
1201 	old = inode->i_op->lookup(inode, dentry, nd);
1202 	if (unlikely(old)) {
1203 		dput(dentry);
1204 		dentry = old;
1205 	}
1206 	return dentry;
1207 }
1208 
1209 /*
1210  *  It's more convoluted than I'd like it to be, but... it's still fairly
1211  *  small and for now I'd prefer to have fast path as straight as possible.
1212  *  It _is_ time-critical.
1213  */
1214 static int do_lookup(struct nameidata *nd, struct qstr *name,
1215 			struct path *path, struct inode **inode)
1216 {
1217 	struct vfsmount *mnt = nd->path.mnt;
1218 	struct dentry *dentry, *parent = nd->path.dentry;
1219 	struct inode *dir;
1220 	int err;
1221 
1222 	/*
1223 	 * See if the low-level filesystem might want
1224 	 * to use its own hash..
1225 	 */
1226 	if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1227 		err = parent->d_op->d_hash(parent, nd->inode, name);
1228 		if (err < 0)
1229 			return err;
1230 	}
1231 
1232 	/*
1233 	 * Rename seqlock is not required here because in the off chance
1234 	 * of a false negative due to a concurrent rename, we're going to
1235 	 * do the non-racy lookup, below.
1236 	 */
1237 	if (nd->flags & LOOKUP_RCU) {
1238 		unsigned seq;
1239 
1240 		*inode = nd->inode;
1241 		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1242 		if (!dentry) {
1243 			if (nameidata_drop_rcu(nd))
1244 				return -ECHILD;
1245 			goto need_lookup;
1246 		}
1247 		/* Memory barrier in read_seqcount_begin of child is enough */
1248 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1249 			return -ECHILD;
1250 
1251 		nd->seq = seq;
1252 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1253 			dentry = do_revalidate_rcu(dentry, nd);
1254 			if (!dentry)
1255 				goto need_lookup;
1256 			if (IS_ERR(dentry))
1257 				goto fail;
1258 			if (!(nd->flags & LOOKUP_RCU))
1259 				goto done;
1260 		}
1261 		path->mnt = mnt;
1262 		path->dentry = dentry;
1263 		if (likely(__follow_mount_rcu(nd, path, inode, false)))
1264 			return 0;
1265 		if (nameidata_drop_rcu(nd))
1266 			return -ECHILD;
1267 		/* fallthru */
1268 	}
1269 	dentry = __d_lookup(parent, name);
1270 	if (!dentry)
1271 		goto need_lookup;
1272 found:
1273 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1274 		dentry = do_revalidate(dentry, nd);
1275 		if (!dentry)
1276 			goto need_lookup;
1277 		if (IS_ERR(dentry))
1278 			goto fail;
1279 	}
1280 done:
1281 	path->mnt = mnt;
1282 	path->dentry = dentry;
1283 	err = follow_managed(path, nd->flags);
1284 	if (unlikely(err < 0)) {
1285 		path_put_conditional(path, nd);
1286 		return err;
1287 	}
1288 	*inode = path->dentry->d_inode;
1289 	return 0;
1290 
1291 need_lookup:
1292 	dir = parent->d_inode;
1293 	BUG_ON(nd->inode != dir);
1294 
1295 	mutex_lock(&dir->i_mutex);
1296 	/*
1297 	 * First re-do the cached lookup just in case it was created
1298 	 * while we waited for the directory semaphore, or the first
1299 	 * lookup failed due to an unrelated rename.
1300 	 *
1301 	 * This could use version numbering or similar to avoid unnecessary
1302 	 * cache lookups, but then we'd have to do the first lookup in the
1303 	 * non-racy way. However in the common case here, everything should
1304 	 * be hot in cache, so would it be a big win?
1305 	 */
1306 	dentry = d_lookup(parent, name);
1307 	if (likely(!dentry)) {
1308 		dentry = d_alloc_and_lookup(parent, name, nd);
1309 		mutex_unlock(&dir->i_mutex);
1310 		if (IS_ERR(dentry))
1311 			goto fail;
1312 		goto done;
1313 	}
1314 	/*
1315 	 * Uhhuh! Nasty case: the cache was re-populated while
1316 	 * we waited on the semaphore. Need to revalidate.
1317 	 */
1318 	mutex_unlock(&dir->i_mutex);
1319 	goto found;
1320 
1321 fail:
1322 	return PTR_ERR(dentry);
1323 }
1324 
1325 /*
1326  * Name resolution.
1327  * This is the basic name resolution function, turning a pathname into
1328  * the final dentry. We expect 'base' to be positive and a directory.
1329  *
1330  * Returns 0 and nd will have valid dentry and mnt on success.
1331  * Returns error and drops reference to input namei data on failure.
1332  */
1333 static int link_path_walk(const char *name, struct nameidata *nd)
1334 {
1335 	struct path next;
1336 	int err;
1337 	unsigned int lookup_flags = nd->flags;
1338 
1339 	while (*name=='/')
1340 		name++;
1341 	if (!*name)
1342 		goto return_reval;
1343 
1344 	if (nd->depth)
1345 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1346 
1347 	/* At this point we know we have a real path component. */
1348 	for(;;) {
1349 		struct inode *inode;
1350 		unsigned long hash;
1351 		struct qstr this;
1352 		unsigned int c;
1353 
1354 		nd->flags |= LOOKUP_CONTINUE;
1355 		if (nd->flags & LOOKUP_RCU) {
1356 			err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1357 			if (err == -ECHILD) {
1358 				if (nameidata_drop_rcu(nd))
1359 					return -ECHILD;
1360 				goto exec_again;
1361 			}
1362 		} else {
1363 exec_again:
1364 			err = exec_permission(nd->inode, 0);
1365 		}
1366  		if (err)
1367 			break;
1368 
1369 		this.name = name;
1370 		c = *(const unsigned char *)name;
1371 
1372 		hash = init_name_hash();
1373 		do {
1374 			name++;
1375 			hash = partial_name_hash(c, hash);
1376 			c = *(const unsigned char *)name;
1377 		} while (c && (c != '/'));
1378 		this.len = name - (const char *) this.name;
1379 		this.hash = end_name_hash(hash);
1380 
1381 		/* remove trailing slashes? */
1382 		if (!c)
1383 			goto last_component;
1384 		while (*++name == '/');
1385 		if (!*name)
1386 			goto last_with_slashes;
1387 
1388 		/*
1389 		 * "." and ".." are special - ".." especially so because it has
1390 		 * to be able to know about the current root directory and
1391 		 * parent relationships.
1392 		 */
1393 		if (this.name[0] == '.') switch (this.len) {
1394 			default:
1395 				break;
1396 			case 2:
1397 				if (this.name[1] != '.')
1398 					break;
1399 				if (nd->flags & LOOKUP_RCU) {
1400 					if (follow_dotdot_rcu(nd))
1401 						return -ECHILD;
1402 				} else
1403 					follow_dotdot(nd);
1404 				/* fallthrough */
1405 			case 1:
1406 				continue;
1407 		}
1408 		/* This does the actual lookups.. */
1409 		err = do_lookup(nd, &this, &next, &inode);
1410 		if (err)
1411 			break;
1412 		err = -ENOENT;
1413 		if (!inode)
1414 			goto out_dput;
1415 
1416 		if (inode->i_op->follow_link) {
1417 			err = do_follow_link(inode, &next, nd);
1418 			if (err)
1419 				goto return_err;
1420 			nd->inode = nd->path.dentry->d_inode;
1421 			err = -ENOENT;
1422 			if (!nd->inode)
1423 				break;
1424 		} else {
1425 			path_to_nameidata(&next, nd);
1426 			nd->inode = inode;
1427 		}
1428 		err = -ENOTDIR;
1429 		if (!nd->inode->i_op->lookup)
1430 			break;
1431 		continue;
1432 		/* here ends the main loop */
1433 
1434 last_with_slashes:
1435 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1436 last_component:
1437 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
1438 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1439 		if (lookup_flags & LOOKUP_PARENT)
1440 			goto lookup_parent;
1441 		if (this.name[0] == '.') switch (this.len) {
1442 			default:
1443 				break;
1444 			case 2:
1445 				if (this.name[1] != '.')
1446 					break;
1447 				if (nd->flags & LOOKUP_RCU) {
1448 					if (follow_dotdot_rcu(nd))
1449 						return -ECHILD;
1450 				} else
1451 					follow_dotdot(nd);
1452 				/* fallthrough */
1453 			case 1:
1454 				goto return_reval;
1455 		}
1456 		err = do_lookup(nd, &this, &next, &inode);
1457 		if (err)
1458 			break;
1459 		if (inode && unlikely(inode->i_op->follow_link) &&
1460 		    (lookup_flags & LOOKUP_FOLLOW)) {
1461 			err = do_follow_link(inode, &next, nd);
1462 			if (err)
1463 				goto return_err;
1464 			nd->inode = nd->path.dentry->d_inode;
1465 		} else {
1466 			path_to_nameidata(&next, nd);
1467 			nd->inode = inode;
1468 		}
1469 		err = -ENOENT;
1470 		if (!nd->inode)
1471 			break;
1472 		if (lookup_flags & LOOKUP_DIRECTORY) {
1473 			err = -ENOTDIR;
1474 			if (!nd->inode->i_op->lookup)
1475 				break;
1476 		}
1477 		goto return_base;
1478 lookup_parent:
1479 		nd->last = this;
1480 		nd->last_type = LAST_NORM;
1481 		if (this.name[0] != '.')
1482 			goto return_base;
1483 		if (this.len == 1)
1484 			nd->last_type = LAST_DOT;
1485 		else if (this.len == 2 && this.name[1] == '.')
1486 			nd->last_type = LAST_DOTDOT;
1487 		else
1488 			goto return_base;
1489 return_reval:
1490 		/*
1491 		 * We bypassed the ordinary revalidation routines.
1492 		 * We may need to check the cached dentry for staleness.
1493 		 */
1494 		if (need_reval_dot(nd->path.dentry)) {
1495 			if (nameidata_drop_rcu_last_maybe(nd))
1496 				return -ECHILD;
1497 			/* Note: we do not d_invalidate() */
1498 			err = d_revalidate(nd->path.dentry, nd);
1499 			if (!err)
1500 				err = -ESTALE;
1501 			if (err < 0)
1502 				break;
1503 			return 0;
1504 		}
1505 return_base:
1506 		if (nameidata_drop_rcu_last_maybe(nd))
1507 			return -ECHILD;
1508 		return 0;
1509 out_dput:
1510 		if (!(nd->flags & LOOKUP_RCU))
1511 			path_put_conditional(&next, nd);
1512 		break;
1513 	}
1514 	if (!(nd->flags & LOOKUP_RCU))
1515 		path_put(&nd->path);
1516 return_err:
1517 	return err;
1518 }
1519 
1520 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1521 {
1522 	current->total_link_count = 0;
1523 
1524 	return link_path_walk(name, nd);
1525 }
1526 
1527 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1528 {
1529 	current->total_link_count = 0;
1530 
1531 	return link_path_walk(name, nd);
1532 }
1533 
1534 static int path_walk(const char *name, struct nameidata *nd)
1535 {
1536 	struct path save = nd->path;
1537 	int result;
1538 
1539 	current->total_link_count = 0;
1540 
1541 	/* make sure the stuff we saved doesn't go away */
1542 	path_get(&save);
1543 
1544 	result = link_path_walk(name, nd);
1545 	if (result == -ESTALE) {
1546 		/* nd->path had been dropped */
1547 		current->total_link_count = 0;
1548 		nd->path = save;
1549 		nd->inode = save.dentry->d_inode;
1550 		path_get(&nd->path);
1551 		nd->flags |= LOOKUP_REVAL;
1552 		result = link_path_walk(name, nd);
1553 	}
1554 
1555 	path_put(&save);
1556 
1557 	return result;
1558 }
1559 
1560 static void path_finish_rcu(struct nameidata *nd)
1561 {
1562 	if (nd->flags & LOOKUP_RCU) {
1563 		/* RCU dangling. Cancel it. */
1564 		nd->flags &= ~LOOKUP_RCU;
1565 		nd->root.mnt = NULL;
1566 		rcu_read_unlock();
1567 		br_read_unlock(vfsmount_lock);
1568 	}
1569 	if (nd->file)
1570 		fput(nd->file);
1571 }
1572 
1573 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1574 {
1575 	int retval = 0;
1576 	int fput_needed;
1577 	struct file *file;
1578 
1579 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1580 	nd->flags = flags | LOOKUP_RCU;
1581 	nd->depth = 0;
1582 	nd->root.mnt = NULL;
1583 	nd->file = NULL;
1584 
1585 	if (*name=='/') {
1586 		struct fs_struct *fs = current->fs;
1587 		unsigned seq;
1588 
1589 		br_read_lock(vfsmount_lock);
1590 		rcu_read_lock();
1591 
1592 		do {
1593 			seq = read_seqcount_begin(&fs->seq);
1594 			nd->root = fs->root;
1595 			nd->path = nd->root;
1596 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1597 		} while (read_seqcount_retry(&fs->seq, seq));
1598 
1599 	} else if (dfd == AT_FDCWD) {
1600 		struct fs_struct *fs = current->fs;
1601 		unsigned seq;
1602 
1603 		br_read_lock(vfsmount_lock);
1604 		rcu_read_lock();
1605 
1606 		do {
1607 			seq = read_seqcount_begin(&fs->seq);
1608 			nd->path = fs->pwd;
1609 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1610 		} while (read_seqcount_retry(&fs->seq, seq));
1611 
1612 	} else {
1613 		struct dentry *dentry;
1614 
1615 		file = fget_light(dfd, &fput_needed);
1616 		retval = -EBADF;
1617 		if (!file)
1618 			goto out_fail;
1619 
1620 		dentry = file->f_path.dentry;
1621 
1622 		retval = -ENOTDIR;
1623 		if (!S_ISDIR(dentry->d_inode->i_mode))
1624 			goto fput_fail;
1625 
1626 		retval = file_permission(file, MAY_EXEC);
1627 		if (retval)
1628 			goto fput_fail;
1629 
1630 		nd->path = file->f_path;
1631 		if (fput_needed)
1632 			nd->file = file;
1633 
1634 		nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1635 		br_read_lock(vfsmount_lock);
1636 		rcu_read_lock();
1637 	}
1638 	nd->inode = nd->path.dentry->d_inode;
1639 	return 0;
1640 
1641 fput_fail:
1642 	fput_light(file, fput_needed);
1643 out_fail:
1644 	return retval;
1645 }
1646 
1647 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1648 {
1649 	int retval = 0;
1650 	int fput_needed;
1651 	struct file *file;
1652 
1653 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1654 	nd->flags = flags;
1655 	nd->depth = 0;
1656 	nd->root.mnt = NULL;
1657 
1658 	if (*name=='/') {
1659 		set_root(nd);
1660 		nd->path = nd->root;
1661 		path_get(&nd->root);
1662 	} else if (dfd == AT_FDCWD) {
1663 		get_fs_pwd(current->fs, &nd->path);
1664 	} else {
1665 		struct dentry *dentry;
1666 
1667 		file = fget_light(dfd, &fput_needed);
1668 		retval = -EBADF;
1669 		if (!file)
1670 			goto out_fail;
1671 
1672 		dentry = file->f_path.dentry;
1673 
1674 		retval = -ENOTDIR;
1675 		if (!S_ISDIR(dentry->d_inode->i_mode))
1676 			goto fput_fail;
1677 
1678 		retval = file_permission(file, MAY_EXEC);
1679 		if (retval)
1680 			goto fput_fail;
1681 
1682 		nd->path = file->f_path;
1683 		path_get(&file->f_path);
1684 
1685 		fput_light(file, fput_needed);
1686 	}
1687 	nd->inode = nd->path.dentry->d_inode;
1688 	return 0;
1689 
1690 fput_fail:
1691 	fput_light(file, fput_needed);
1692 out_fail:
1693 	return retval;
1694 }
1695 
1696 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1697 static int do_path_lookup(int dfd, const char *name,
1698 				unsigned int flags, struct nameidata *nd)
1699 {
1700 	int retval;
1701 
1702 	/*
1703 	 * Path walking is largely split up into 2 different synchronisation
1704 	 * schemes, rcu-walk and ref-walk (explained in
1705 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1706 	 * path walk code, but some things particularly setup, cleanup, and
1707 	 * following mounts are sufficiently divergent that functions are
1708 	 * duplicated. Typically there is a function foo(), and its RCU
1709 	 * analogue, foo_rcu().
1710 	 *
1711 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1712 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1713 	 * be handled by restarting a traditional ref-walk (which will always
1714 	 * be able to complete).
1715 	 */
1716 	retval = path_init_rcu(dfd, name, flags, nd);
1717 	if (unlikely(retval))
1718 		return retval;
1719 	retval = path_walk_rcu(name, nd);
1720 	path_finish_rcu(nd);
1721 	if (nd->root.mnt) {
1722 		path_put(&nd->root);
1723 		nd->root.mnt = NULL;
1724 	}
1725 
1726 	if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1727 		/* slower, locked walk */
1728 		if (retval == -ESTALE)
1729 			flags |= LOOKUP_REVAL;
1730 		retval = path_init(dfd, name, flags, nd);
1731 		if (unlikely(retval))
1732 			return retval;
1733 		retval = path_walk(name, nd);
1734 		if (nd->root.mnt) {
1735 			path_put(&nd->root);
1736 			nd->root.mnt = NULL;
1737 		}
1738 	}
1739 
1740 	if (likely(!retval)) {
1741 		if (unlikely(!audit_dummy_context())) {
1742 			if (nd->path.dentry && nd->inode)
1743 				audit_inode(name, nd->path.dentry);
1744 		}
1745 	}
1746 
1747 	return retval;
1748 }
1749 
1750 int path_lookup(const char *name, unsigned int flags,
1751 			struct nameidata *nd)
1752 {
1753 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1754 }
1755 
1756 int kern_path(const char *name, unsigned int flags, struct path *path)
1757 {
1758 	struct nameidata nd;
1759 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1760 	if (!res)
1761 		*path = nd.path;
1762 	return res;
1763 }
1764 
1765 /**
1766  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1767  * @dentry:  pointer to dentry of the base directory
1768  * @mnt: pointer to vfs mount of the base directory
1769  * @name: pointer to file name
1770  * @flags: lookup flags
1771  * @nd: pointer to nameidata
1772  */
1773 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1774 		    const char *name, unsigned int flags,
1775 		    struct nameidata *nd)
1776 {
1777 	int retval;
1778 
1779 	/* same as do_path_lookup */
1780 	nd->last_type = LAST_ROOT;
1781 	nd->flags = flags;
1782 	nd->depth = 0;
1783 
1784 	nd->path.dentry = dentry;
1785 	nd->path.mnt = mnt;
1786 	path_get(&nd->path);
1787 	nd->root = nd->path;
1788 	path_get(&nd->root);
1789 	nd->inode = nd->path.dentry->d_inode;
1790 
1791 	retval = path_walk(name, nd);
1792 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1793 				nd->inode))
1794 		audit_inode(name, nd->path.dentry);
1795 
1796 	path_put(&nd->root);
1797 	nd->root.mnt = NULL;
1798 
1799 	return retval;
1800 }
1801 
1802 static struct dentry *__lookup_hash(struct qstr *name,
1803 		struct dentry *base, struct nameidata *nd)
1804 {
1805 	struct inode *inode = base->d_inode;
1806 	struct dentry *dentry;
1807 	int err;
1808 
1809 	err = exec_permission(inode, 0);
1810 	if (err)
1811 		return ERR_PTR(err);
1812 
1813 	/*
1814 	 * See if the low-level filesystem might want
1815 	 * to use its own hash..
1816 	 */
1817 	if (base->d_flags & DCACHE_OP_HASH) {
1818 		err = base->d_op->d_hash(base, inode, name);
1819 		dentry = ERR_PTR(err);
1820 		if (err < 0)
1821 			goto out;
1822 	}
1823 
1824 	/*
1825 	 * Don't bother with __d_lookup: callers are for creat as
1826 	 * well as unlink, so a lot of the time it would cost
1827 	 * a double lookup.
1828 	 */
1829 	dentry = d_lookup(base, name);
1830 
1831 	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1832 		dentry = do_revalidate(dentry, nd);
1833 
1834 	if (!dentry)
1835 		dentry = d_alloc_and_lookup(base, name, nd);
1836 out:
1837 	return dentry;
1838 }
1839 
1840 /*
1841  * Restricted form of lookup. Doesn't follow links, single-component only,
1842  * needs parent already locked. Doesn't follow mounts.
1843  * SMP-safe.
1844  */
1845 static struct dentry *lookup_hash(struct nameidata *nd)
1846 {
1847 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1848 }
1849 
1850 static int __lookup_one_len(const char *name, struct qstr *this,
1851 		struct dentry *base, int len)
1852 {
1853 	unsigned long hash;
1854 	unsigned int c;
1855 
1856 	this->name = name;
1857 	this->len = len;
1858 	if (!len)
1859 		return -EACCES;
1860 
1861 	hash = init_name_hash();
1862 	while (len--) {
1863 		c = *(const unsigned char *)name++;
1864 		if (c == '/' || c == '\0')
1865 			return -EACCES;
1866 		hash = partial_name_hash(c, hash);
1867 	}
1868 	this->hash = end_name_hash(hash);
1869 	return 0;
1870 }
1871 
1872 /**
1873  * lookup_one_len - filesystem helper to lookup single pathname component
1874  * @name:	pathname component to lookup
1875  * @base:	base directory to lookup from
1876  * @len:	maximum length @len should be interpreted to
1877  *
1878  * Note that this routine is purely a helper for filesystem usage and should
1879  * not be called by generic code.  Also note that by using this function the
1880  * nameidata argument is passed to the filesystem methods and a filesystem
1881  * using this helper needs to be prepared for that.
1882  */
1883 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1884 {
1885 	int err;
1886 	struct qstr this;
1887 
1888 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1889 
1890 	err = __lookup_one_len(name, &this, base, len);
1891 	if (err)
1892 		return ERR_PTR(err);
1893 
1894 	return __lookup_hash(&this, base, NULL);
1895 }
1896 
1897 int user_path_at(int dfd, const char __user *name, unsigned flags,
1898 		 struct path *path)
1899 {
1900 	struct nameidata nd;
1901 	char *tmp = getname(name);
1902 	int err = PTR_ERR(tmp);
1903 	if (!IS_ERR(tmp)) {
1904 
1905 		BUG_ON(flags & LOOKUP_PARENT);
1906 
1907 		err = do_path_lookup(dfd, tmp, flags, &nd);
1908 		putname(tmp);
1909 		if (!err)
1910 			*path = nd.path;
1911 	}
1912 	return err;
1913 }
1914 
1915 static int user_path_parent(int dfd, const char __user *path,
1916 			struct nameidata *nd, char **name)
1917 {
1918 	char *s = getname(path);
1919 	int error;
1920 
1921 	if (IS_ERR(s))
1922 		return PTR_ERR(s);
1923 
1924 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1925 	if (error)
1926 		putname(s);
1927 	else
1928 		*name = s;
1929 
1930 	return error;
1931 }
1932 
1933 /*
1934  * It's inline, so penalty for filesystems that don't use sticky bit is
1935  * minimal.
1936  */
1937 static inline int check_sticky(struct inode *dir, struct inode *inode)
1938 {
1939 	uid_t fsuid = current_fsuid();
1940 
1941 	if (!(dir->i_mode & S_ISVTX))
1942 		return 0;
1943 	if (inode->i_uid == fsuid)
1944 		return 0;
1945 	if (dir->i_uid == fsuid)
1946 		return 0;
1947 	return !capable(CAP_FOWNER);
1948 }
1949 
1950 /*
1951  *	Check whether we can remove a link victim from directory dir, check
1952  *  whether the type of victim is right.
1953  *  1. We can't do it if dir is read-only (done in permission())
1954  *  2. We should have write and exec permissions on dir
1955  *  3. We can't remove anything from append-only dir
1956  *  4. We can't do anything with immutable dir (done in permission())
1957  *  5. If the sticky bit on dir is set we should either
1958  *	a. be owner of dir, or
1959  *	b. be owner of victim, or
1960  *	c. have CAP_FOWNER capability
1961  *  6. If the victim is append-only or immutable we can't do antyhing with
1962  *     links pointing to it.
1963  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1964  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1965  *  9. We can't remove a root or mountpoint.
1966  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1967  *     nfs_async_unlink().
1968  */
1969 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1970 {
1971 	int error;
1972 
1973 	if (!victim->d_inode)
1974 		return -ENOENT;
1975 
1976 	BUG_ON(victim->d_parent->d_inode != dir);
1977 	audit_inode_child(victim, dir);
1978 
1979 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1980 	if (error)
1981 		return error;
1982 	if (IS_APPEND(dir))
1983 		return -EPERM;
1984 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1985 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1986 		return -EPERM;
1987 	if (isdir) {
1988 		if (!S_ISDIR(victim->d_inode->i_mode))
1989 			return -ENOTDIR;
1990 		if (IS_ROOT(victim))
1991 			return -EBUSY;
1992 	} else if (S_ISDIR(victim->d_inode->i_mode))
1993 		return -EISDIR;
1994 	if (IS_DEADDIR(dir))
1995 		return -ENOENT;
1996 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1997 		return -EBUSY;
1998 	return 0;
1999 }
2000 
2001 /*	Check whether we can create an object with dentry child in directory
2002  *  dir.
2003  *  1. We can't do it if child already exists (open has special treatment for
2004  *     this case, but since we are inlined it's OK)
2005  *  2. We can't do it if dir is read-only (done in permission())
2006  *  3. We should have write and exec permissions on dir
2007  *  4. We can't do it if dir is immutable (done in permission())
2008  */
2009 static inline int may_create(struct inode *dir, struct dentry *child)
2010 {
2011 	if (child->d_inode)
2012 		return -EEXIST;
2013 	if (IS_DEADDIR(dir))
2014 		return -ENOENT;
2015 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2016 }
2017 
2018 /*
2019  * p1 and p2 should be directories on the same fs.
2020  */
2021 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2022 {
2023 	struct dentry *p;
2024 
2025 	if (p1 == p2) {
2026 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2027 		return NULL;
2028 	}
2029 
2030 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2031 
2032 	p = d_ancestor(p2, p1);
2033 	if (p) {
2034 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2035 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2036 		return p;
2037 	}
2038 
2039 	p = d_ancestor(p1, p2);
2040 	if (p) {
2041 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2042 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2043 		return p;
2044 	}
2045 
2046 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2047 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2048 	return NULL;
2049 }
2050 
2051 void unlock_rename(struct dentry *p1, struct dentry *p2)
2052 {
2053 	mutex_unlock(&p1->d_inode->i_mutex);
2054 	if (p1 != p2) {
2055 		mutex_unlock(&p2->d_inode->i_mutex);
2056 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2057 	}
2058 }
2059 
2060 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2061 		struct nameidata *nd)
2062 {
2063 	int error = may_create(dir, dentry);
2064 
2065 	if (error)
2066 		return error;
2067 
2068 	if (!dir->i_op->create)
2069 		return -EACCES;	/* shouldn't it be ENOSYS? */
2070 	mode &= S_IALLUGO;
2071 	mode |= S_IFREG;
2072 	error = security_inode_create(dir, dentry, mode);
2073 	if (error)
2074 		return error;
2075 	error = dir->i_op->create(dir, dentry, mode, nd);
2076 	if (!error)
2077 		fsnotify_create(dir, dentry);
2078 	return error;
2079 }
2080 
2081 int may_open(struct path *path, int acc_mode, int flag)
2082 {
2083 	struct dentry *dentry = path->dentry;
2084 	struct inode *inode = dentry->d_inode;
2085 	int error;
2086 
2087 	if (!inode)
2088 		return -ENOENT;
2089 
2090 	switch (inode->i_mode & S_IFMT) {
2091 	case S_IFLNK:
2092 		return -ELOOP;
2093 	case S_IFDIR:
2094 		if (acc_mode & MAY_WRITE)
2095 			return -EISDIR;
2096 		break;
2097 	case S_IFBLK:
2098 	case S_IFCHR:
2099 		if (path->mnt->mnt_flags & MNT_NODEV)
2100 			return -EACCES;
2101 		/*FALLTHRU*/
2102 	case S_IFIFO:
2103 	case S_IFSOCK:
2104 		flag &= ~O_TRUNC;
2105 		break;
2106 	}
2107 
2108 	error = inode_permission(inode, acc_mode);
2109 	if (error)
2110 		return error;
2111 
2112 	/*
2113 	 * An append-only file must be opened in append mode for writing.
2114 	 */
2115 	if (IS_APPEND(inode)) {
2116 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2117 			return -EPERM;
2118 		if (flag & O_TRUNC)
2119 			return -EPERM;
2120 	}
2121 
2122 	/* O_NOATIME can only be set by the owner or superuser */
2123 	if (flag & O_NOATIME && !is_owner_or_cap(inode))
2124 		return -EPERM;
2125 
2126 	/*
2127 	 * Ensure there are no outstanding leases on the file.
2128 	 */
2129 	return break_lease(inode, flag);
2130 }
2131 
2132 static int handle_truncate(struct file *filp)
2133 {
2134 	struct path *path = &filp->f_path;
2135 	struct inode *inode = path->dentry->d_inode;
2136 	int error = get_write_access(inode);
2137 	if (error)
2138 		return error;
2139 	/*
2140 	 * Refuse to truncate files with mandatory locks held on them.
2141 	 */
2142 	error = locks_verify_locked(inode);
2143 	if (!error)
2144 		error = security_path_truncate(path);
2145 	if (!error) {
2146 		error = do_truncate(path->dentry, 0,
2147 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2148 				    filp);
2149 	}
2150 	put_write_access(inode);
2151 	return error;
2152 }
2153 
2154 /*
2155  * Be careful about ever adding any more callers of this
2156  * function.  Its flags must be in the namei format, not
2157  * what get passed to sys_open().
2158  */
2159 static int __open_namei_create(struct nameidata *nd, struct path *path,
2160 				int open_flag, int mode)
2161 {
2162 	int error;
2163 	struct dentry *dir = nd->path.dentry;
2164 
2165 	if (!IS_POSIXACL(dir->d_inode))
2166 		mode &= ~current_umask();
2167 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2168 	if (error)
2169 		goto out_unlock;
2170 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2171 out_unlock:
2172 	mutex_unlock(&dir->d_inode->i_mutex);
2173 	dput(nd->path.dentry);
2174 	nd->path.dentry = path->dentry;
2175 
2176 	if (error)
2177 		return error;
2178 	/* Don't check for write permission, don't truncate */
2179 	return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2180 }
2181 
2182 /*
2183  * Note that while the flag value (low two bits) for sys_open means:
2184  *	00 - read-only
2185  *	01 - write-only
2186  *	10 - read-write
2187  *	11 - special
2188  * it is changed into
2189  *	00 - no permissions needed
2190  *	01 - read-permission
2191  *	10 - write-permission
2192  *	11 - read-write
2193  * for the internal routines (ie open_namei()/follow_link() etc)
2194  * This is more logical, and also allows the 00 "no perm needed"
2195  * to be used for symlinks (where the permissions are checked
2196  * later).
2197  *
2198 */
2199 static inline int open_to_namei_flags(int flag)
2200 {
2201 	if ((flag+1) & O_ACCMODE)
2202 		flag++;
2203 	return flag;
2204 }
2205 
2206 static int open_will_truncate(int flag, struct inode *inode)
2207 {
2208 	/*
2209 	 * We'll never write to the fs underlying
2210 	 * a device file.
2211 	 */
2212 	if (special_file(inode->i_mode))
2213 		return 0;
2214 	return (flag & O_TRUNC);
2215 }
2216 
2217 static struct file *finish_open(struct nameidata *nd,
2218 				int open_flag, int acc_mode)
2219 {
2220 	struct file *filp;
2221 	int will_truncate;
2222 	int error;
2223 
2224 	will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2225 	if (will_truncate) {
2226 		error = mnt_want_write(nd->path.mnt);
2227 		if (error)
2228 			goto exit;
2229 	}
2230 	error = may_open(&nd->path, acc_mode, open_flag);
2231 	if (error) {
2232 		if (will_truncate)
2233 			mnt_drop_write(nd->path.mnt);
2234 		goto exit;
2235 	}
2236 	filp = nameidata_to_filp(nd);
2237 	if (!IS_ERR(filp)) {
2238 		error = ima_file_check(filp, acc_mode);
2239 		if (error) {
2240 			fput(filp);
2241 			filp = ERR_PTR(error);
2242 		}
2243 	}
2244 	if (!IS_ERR(filp)) {
2245 		if (will_truncate) {
2246 			error = handle_truncate(filp);
2247 			if (error) {
2248 				fput(filp);
2249 				filp = ERR_PTR(error);
2250 			}
2251 		}
2252 	}
2253 	/*
2254 	 * It is now safe to drop the mnt write
2255 	 * because the filp has had a write taken
2256 	 * on its behalf.
2257 	 */
2258 	if (will_truncate)
2259 		mnt_drop_write(nd->path.mnt);
2260 	path_put(&nd->path);
2261 	return filp;
2262 
2263 exit:
2264 	path_put(&nd->path);
2265 	return ERR_PTR(error);
2266 }
2267 
2268 /*
2269  * Handle O_CREAT case for do_filp_open
2270  */
2271 static struct file *do_last(struct nameidata *nd, struct path *path,
2272 			    int open_flag, int acc_mode,
2273 			    int mode, const char *pathname)
2274 {
2275 	struct dentry *dir = nd->path.dentry;
2276 	struct file *filp;
2277 	int error = -EISDIR;
2278 
2279 	switch (nd->last_type) {
2280 	case LAST_DOTDOT:
2281 		follow_dotdot(nd);
2282 		dir = nd->path.dentry;
2283 	case LAST_DOT:
2284 		if (need_reval_dot(dir)) {
2285 			int status = d_revalidate(nd->path.dentry, nd);
2286 			if (!status)
2287 				status = -ESTALE;
2288 			if (status < 0) {
2289 				error = status;
2290 				goto exit;
2291 			}
2292 		}
2293 		/* fallthrough */
2294 	case LAST_ROOT:
2295 		goto exit;
2296 	case LAST_BIND:
2297 		audit_inode(pathname, dir);
2298 		goto ok;
2299 	}
2300 
2301 	/* trailing slashes? */
2302 	if (nd->last.name[nd->last.len])
2303 		goto exit;
2304 
2305 	mutex_lock(&dir->d_inode->i_mutex);
2306 
2307 	path->dentry = lookup_hash(nd);
2308 	path->mnt = nd->path.mnt;
2309 
2310 	error = PTR_ERR(path->dentry);
2311 	if (IS_ERR(path->dentry)) {
2312 		mutex_unlock(&dir->d_inode->i_mutex);
2313 		goto exit;
2314 	}
2315 
2316 	if (IS_ERR(nd->intent.open.file)) {
2317 		error = PTR_ERR(nd->intent.open.file);
2318 		goto exit_mutex_unlock;
2319 	}
2320 
2321 	/* Negative dentry, just create the file */
2322 	if (!path->dentry->d_inode) {
2323 		/*
2324 		 * This write is needed to ensure that a
2325 		 * ro->rw transition does not occur between
2326 		 * the time when the file is created and when
2327 		 * a permanent write count is taken through
2328 		 * the 'struct file' in nameidata_to_filp().
2329 		 */
2330 		error = mnt_want_write(nd->path.mnt);
2331 		if (error)
2332 			goto exit_mutex_unlock;
2333 		error = __open_namei_create(nd, path, open_flag, mode);
2334 		if (error) {
2335 			mnt_drop_write(nd->path.mnt);
2336 			goto exit;
2337 		}
2338 		filp = nameidata_to_filp(nd);
2339 		mnt_drop_write(nd->path.mnt);
2340 		path_put(&nd->path);
2341 		if (!IS_ERR(filp)) {
2342 			error = ima_file_check(filp, acc_mode);
2343 			if (error) {
2344 				fput(filp);
2345 				filp = ERR_PTR(error);
2346 			}
2347 		}
2348 		return filp;
2349 	}
2350 
2351 	/*
2352 	 * It already exists.
2353 	 */
2354 	mutex_unlock(&dir->d_inode->i_mutex);
2355 	audit_inode(pathname, path->dentry);
2356 
2357 	error = -EEXIST;
2358 	if (open_flag & O_EXCL)
2359 		goto exit_dput;
2360 
2361 	error = follow_managed(path, nd->flags);
2362 	if (error < 0)
2363 		goto exit_dput;
2364 
2365 	error = -ENOENT;
2366 	if (!path->dentry->d_inode)
2367 		goto exit_dput;
2368 
2369 	if (path->dentry->d_inode->i_op->follow_link)
2370 		return NULL;
2371 
2372 	path_to_nameidata(path, nd);
2373 	nd->inode = path->dentry->d_inode;
2374 	error = -EISDIR;
2375 	if (S_ISDIR(nd->inode->i_mode))
2376 		goto exit;
2377 ok:
2378 	filp = finish_open(nd, open_flag, acc_mode);
2379 	return filp;
2380 
2381 exit_mutex_unlock:
2382 	mutex_unlock(&dir->d_inode->i_mutex);
2383 exit_dput:
2384 	path_put_conditional(path, nd);
2385 exit:
2386 	path_put(&nd->path);
2387 	return ERR_PTR(error);
2388 }
2389 
2390 /*
2391  * Note that the low bits of the passed in "open_flag"
2392  * are not the same as in the local variable "flag". See
2393  * open_to_namei_flags() for more details.
2394  */
2395 struct file *do_filp_open(int dfd, const char *pathname,
2396 		int open_flag, int mode, int acc_mode)
2397 {
2398 	struct file *filp;
2399 	struct nameidata nd;
2400 	int error;
2401 	struct path path;
2402 	int count = 0;
2403 	int flag = open_to_namei_flags(open_flag);
2404 	int flags;
2405 
2406 	if (!(open_flag & O_CREAT))
2407 		mode = 0;
2408 
2409 	/* Must never be set by userspace */
2410 	open_flag &= ~FMODE_NONOTIFY;
2411 
2412 	/*
2413 	 * O_SYNC is implemented as __O_SYNC|O_DSYNC.  As many places only
2414 	 * check for O_DSYNC if the need any syncing at all we enforce it's
2415 	 * always set instead of having to deal with possibly weird behaviour
2416 	 * for malicious applications setting only __O_SYNC.
2417 	 */
2418 	if (open_flag & __O_SYNC)
2419 		open_flag |= O_DSYNC;
2420 
2421 	if (!acc_mode)
2422 		acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2423 
2424 	/* O_TRUNC implies we need access checks for write permissions */
2425 	if (open_flag & O_TRUNC)
2426 		acc_mode |= MAY_WRITE;
2427 
2428 	/* Allow the LSM permission hook to distinguish append
2429 	   access from general write access. */
2430 	if (open_flag & O_APPEND)
2431 		acc_mode |= MAY_APPEND;
2432 
2433 	flags = LOOKUP_OPEN;
2434 	if (open_flag & O_CREAT) {
2435 		flags |= LOOKUP_CREATE;
2436 		if (open_flag & O_EXCL)
2437 			flags |= LOOKUP_EXCL;
2438 	}
2439 	if (open_flag & O_DIRECTORY)
2440 		flags |= LOOKUP_DIRECTORY;
2441 	if (!(open_flag & O_NOFOLLOW))
2442 		flags |= LOOKUP_FOLLOW;
2443 
2444 	filp = get_empty_filp();
2445 	if (!filp)
2446 		return ERR_PTR(-ENFILE);
2447 
2448 	filp->f_flags = open_flag;
2449 	nd.intent.open.file = filp;
2450 	nd.intent.open.flags = flag;
2451 	nd.intent.open.create_mode = mode;
2452 
2453 	if (open_flag & O_CREAT)
2454 		goto creat;
2455 
2456 	/* !O_CREAT, simple open */
2457 	error = do_path_lookup(dfd, pathname, flags, &nd);
2458 	if (unlikely(error))
2459 		goto out_filp2;
2460 	error = -ELOOP;
2461 	if (!(nd.flags & LOOKUP_FOLLOW)) {
2462 		if (nd.inode->i_op->follow_link)
2463 			goto out_path2;
2464 	}
2465 	error = -ENOTDIR;
2466 	if (nd.flags & LOOKUP_DIRECTORY) {
2467 		if (!nd.inode->i_op->lookup)
2468 			goto out_path2;
2469 	}
2470 	audit_inode(pathname, nd.path.dentry);
2471 	filp = finish_open(&nd, open_flag, acc_mode);
2472 out2:
2473 	release_open_intent(&nd);
2474 	return filp;
2475 
2476 out_path2:
2477 	path_put(&nd.path);
2478 out_filp2:
2479 	filp = ERR_PTR(error);
2480 	goto out2;
2481 
2482 creat:
2483 	/* OK, have to create the file. Find the parent. */
2484 	error = path_init_rcu(dfd, pathname,
2485 			LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2486 	if (error)
2487 		goto out_filp;
2488 	error = path_walk_rcu(pathname, &nd);
2489 	path_finish_rcu(&nd);
2490 	if (unlikely(error == -ECHILD || error == -ESTALE)) {
2491 		/* slower, locked walk */
2492 		if (error == -ESTALE) {
2493 reval:
2494 			flags |= LOOKUP_REVAL;
2495 		}
2496 		error = path_init(dfd, pathname,
2497 				LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2498 		if (error)
2499 			goto out_filp;
2500 
2501 		error = path_walk_simple(pathname, &nd);
2502 	}
2503 	if (unlikely(error))
2504 		goto out_filp;
2505 	if (unlikely(!audit_dummy_context()))
2506 		audit_inode(pathname, nd.path.dentry);
2507 
2508 	/*
2509 	 * We have the parent and last component.
2510 	 */
2511 	nd.flags = flags;
2512 	filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2513 	while (unlikely(!filp)) { /* trailing symlink */
2514 		struct path link = path;
2515 		struct inode *linki = link.dentry->d_inode;
2516 		void *cookie;
2517 		error = -ELOOP;
2518 		if (!(nd.flags & LOOKUP_FOLLOW))
2519 			goto exit_dput;
2520 		if (count++ == 32)
2521 			goto exit_dput;
2522 		/*
2523 		 * This is subtle. Instead of calling do_follow_link() we do
2524 		 * the thing by hands. The reason is that this way we have zero
2525 		 * link_count and path_walk() (called from ->follow_link)
2526 		 * honoring LOOKUP_PARENT.  After that we have the parent and
2527 		 * last component, i.e. we are in the same situation as after
2528 		 * the first path_walk().  Well, almost - if the last component
2529 		 * is normal we get its copy stored in nd->last.name and we will
2530 		 * have to putname() it when we are done. Procfs-like symlinks
2531 		 * just set LAST_BIND.
2532 		 */
2533 		nd.flags |= LOOKUP_PARENT;
2534 		error = security_inode_follow_link(link.dentry, &nd);
2535 		if (error)
2536 			goto exit_dput;
2537 		error = __do_follow_link(&link, &nd, &cookie);
2538 		if (unlikely(error)) {
2539 			if (!IS_ERR(cookie) && linki->i_op->put_link)
2540 				linki->i_op->put_link(link.dentry, &nd, cookie);
2541 			/* nd.path had been dropped */
2542 			nd.path = link;
2543 			goto out_path;
2544 		}
2545 		nd.flags &= ~LOOKUP_PARENT;
2546 		filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2547 		if (linki->i_op->put_link)
2548 			linki->i_op->put_link(link.dentry, &nd, cookie);
2549 		path_put(&link);
2550 	}
2551 out:
2552 	if (nd.root.mnt)
2553 		path_put(&nd.root);
2554 	if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2555 		goto reval;
2556 	release_open_intent(&nd);
2557 	return filp;
2558 
2559 exit_dput:
2560 	path_put_conditional(&path, &nd);
2561 out_path:
2562 	path_put(&nd.path);
2563 out_filp:
2564 	filp = ERR_PTR(error);
2565 	goto out;
2566 }
2567 
2568 /**
2569  * filp_open - open file and return file pointer
2570  *
2571  * @filename:	path to open
2572  * @flags:	open flags as per the open(2) second argument
2573  * @mode:	mode for the new file if O_CREAT is set, else ignored
2574  *
2575  * This is the helper to open a file from kernelspace if you really
2576  * have to.  But in generally you should not do this, so please move
2577  * along, nothing to see here..
2578  */
2579 struct file *filp_open(const char *filename, int flags, int mode)
2580 {
2581 	return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2582 }
2583 EXPORT_SYMBOL(filp_open);
2584 
2585 /**
2586  * lookup_create - lookup a dentry, creating it if it doesn't exist
2587  * @nd: nameidata info
2588  * @is_dir: directory flag
2589  *
2590  * Simple function to lookup and return a dentry and create it
2591  * if it doesn't exist.  Is SMP-safe.
2592  *
2593  * Returns with nd->path.dentry->d_inode->i_mutex locked.
2594  */
2595 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2596 {
2597 	struct dentry *dentry = ERR_PTR(-EEXIST);
2598 
2599 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2600 	/*
2601 	 * Yucky last component or no last component at all?
2602 	 * (foo/., foo/.., /////)
2603 	 */
2604 	if (nd->last_type != LAST_NORM)
2605 		goto fail;
2606 	nd->flags &= ~LOOKUP_PARENT;
2607 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2608 	nd->intent.open.flags = O_EXCL;
2609 
2610 	/*
2611 	 * Do the final lookup.
2612 	 */
2613 	dentry = lookup_hash(nd);
2614 	if (IS_ERR(dentry))
2615 		goto fail;
2616 
2617 	if (dentry->d_inode)
2618 		goto eexist;
2619 	/*
2620 	 * Special case - lookup gave negative, but... we had foo/bar/
2621 	 * From the vfs_mknod() POV we just have a negative dentry -
2622 	 * all is fine. Let's be bastards - you had / on the end, you've
2623 	 * been asking for (non-existent) directory. -ENOENT for you.
2624 	 */
2625 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2626 		dput(dentry);
2627 		dentry = ERR_PTR(-ENOENT);
2628 	}
2629 	return dentry;
2630 eexist:
2631 	dput(dentry);
2632 	dentry = ERR_PTR(-EEXIST);
2633 fail:
2634 	return dentry;
2635 }
2636 EXPORT_SYMBOL_GPL(lookup_create);
2637 
2638 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2639 {
2640 	int error = may_create(dir, dentry);
2641 
2642 	if (error)
2643 		return error;
2644 
2645 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2646 		return -EPERM;
2647 
2648 	if (!dir->i_op->mknod)
2649 		return -EPERM;
2650 
2651 	error = devcgroup_inode_mknod(mode, dev);
2652 	if (error)
2653 		return error;
2654 
2655 	error = security_inode_mknod(dir, dentry, mode, dev);
2656 	if (error)
2657 		return error;
2658 
2659 	error = dir->i_op->mknod(dir, dentry, mode, dev);
2660 	if (!error)
2661 		fsnotify_create(dir, dentry);
2662 	return error;
2663 }
2664 
2665 static int may_mknod(mode_t mode)
2666 {
2667 	switch (mode & S_IFMT) {
2668 	case S_IFREG:
2669 	case S_IFCHR:
2670 	case S_IFBLK:
2671 	case S_IFIFO:
2672 	case S_IFSOCK:
2673 	case 0: /* zero mode translates to S_IFREG */
2674 		return 0;
2675 	case S_IFDIR:
2676 		return -EPERM;
2677 	default:
2678 		return -EINVAL;
2679 	}
2680 }
2681 
2682 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2683 		unsigned, dev)
2684 {
2685 	int error;
2686 	char *tmp;
2687 	struct dentry *dentry;
2688 	struct nameidata nd;
2689 
2690 	if (S_ISDIR(mode))
2691 		return -EPERM;
2692 
2693 	error = user_path_parent(dfd, filename, &nd, &tmp);
2694 	if (error)
2695 		return error;
2696 
2697 	dentry = lookup_create(&nd, 0);
2698 	if (IS_ERR(dentry)) {
2699 		error = PTR_ERR(dentry);
2700 		goto out_unlock;
2701 	}
2702 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2703 		mode &= ~current_umask();
2704 	error = may_mknod(mode);
2705 	if (error)
2706 		goto out_dput;
2707 	error = mnt_want_write(nd.path.mnt);
2708 	if (error)
2709 		goto out_dput;
2710 	error = security_path_mknod(&nd.path, dentry, mode, dev);
2711 	if (error)
2712 		goto out_drop_write;
2713 	switch (mode & S_IFMT) {
2714 		case 0: case S_IFREG:
2715 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2716 			break;
2717 		case S_IFCHR: case S_IFBLK:
2718 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2719 					new_decode_dev(dev));
2720 			break;
2721 		case S_IFIFO: case S_IFSOCK:
2722 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2723 			break;
2724 	}
2725 out_drop_write:
2726 	mnt_drop_write(nd.path.mnt);
2727 out_dput:
2728 	dput(dentry);
2729 out_unlock:
2730 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2731 	path_put(&nd.path);
2732 	putname(tmp);
2733 
2734 	return error;
2735 }
2736 
2737 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2738 {
2739 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2740 }
2741 
2742 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2743 {
2744 	int error = may_create(dir, dentry);
2745 
2746 	if (error)
2747 		return error;
2748 
2749 	if (!dir->i_op->mkdir)
2750 		return -EPERM;
2751 
2752 	mode &= (S_IRWXUGO|S_ISVTX);
2753 	error = security_inode_mkdir(dir, dentry, mode);
2754 	if (error)
2755 		return error;
2756 
2757 	error = dir->i_op->mkdir(dir, dentry, mode);
2758 	if (!error)
2759 		fsnotify_mkdir(dir, dentry);
2760 	return error;
2761 }
2762 
2763 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2764 {
2765 	int error = 0;
2766 	char * tmp;
2767 	struct dentry *dentry;
2768 	struct nameidata nd;
2769 
2770 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2771 	if (error)
2772 		goto out_err;
2773 
2774 	dentry = lookup_create(&nd, 1);
2775 	error = PTR_ERR(dentry);
2776 	if (IS_ERR(dentry))
2777 		goto out_unlock;
2778 
2779 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2780 		mode &= ~current_umask();
2781 	error = mnt_want_write(nd.path.mnt);
2782 	if (error)
2783 		goto out_dput;
2784 	error = security_path_mkdir(&nd.path, dentry, mode);
2785 	if (error)
2786 		goto out_drop_write;
2787 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2788 out_drop_write:
2789 	mnt_drop_write(nd.path.mnt);
2790 out_dput:
2791 	dput(dentry);
2792 out_unlock:
2793 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2794 	path_put(&nd.path);
2795 	putname(tmp);
2796 out_err:
2797 	return error;
2798 }
2799 
2800 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2801 {
2802 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2803 }
2804 
2805 /*
2806  * We try to drop the dentry early: we should have
2807  * a usage count of 2 if we're the only user of this
2808  * dentry, and if that is true (possibly after pruning
2809  * the dcache), then we drop the dentry now.
2810  *
2811  * A low-level filesystem can, if it choses, legally
2812  * do a
2813  *
2814  *	if (!d_unhashed(dentry))
2815  *		return -EBUSY;
2816  *
2817  * if it cannot handle the case of removing a directory
2818  * that is still in use by something else..
2819  */
2820 void dentry_unhash(struct dentry *dentry)
2821 {
2822 	dget(dentry);
2823 	shrink_dcache_parent(dentry);
2824 	spin_lock(&dentry->d_lock);
2825 	if (dentry->d_count == 2)
2826 		__d_drop(dentry);
2827 	spin_unlock(&dentry->d_lock);
2828 }
2829 
2830 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2831 {
2832 	int error = may_delete(dir, dentry, 1);
2833 
2834 	if (error)
2835 		return error;
2836 
2837 	if (!dir->i_op->rmdir)
2838 		return -EPERM;
2839 
2840 	mutex_lock(&dentry->d_inode->i_mutex);
2841 	dentry_unhash(dentry);
2842 	if (d_mountpoint(dentry))
2843 		error = -EBUSY;
2844 	else {
2845 		error = security_inode_rmdir(dir, dentry);
2846 		if (!error) {
2847 			error = dir->i_op->rmdir(dir, dentry);
2848 			if (!error) {
2849 				dentry->d_inode->i_flags |= S_DEAD;
2850 				dont_mount(dentry);
2851 			}
2852 		}
2853 	}
2854 	mutex_unlock(&dentry->d_inode->i_mutex);
2855 	if (!error) {
2856 		d_delete(dentry);
2857 	}
2858 	dput(dentry);
2859 
2860 	return error;
2861 }
2862 
2863 static long do_rmdir(int dfd, const char __user *pathname)
2864 {
2865 	int error = 0;
2866 	char * name;
2867 	struct dentry *dentry;
2868 	struct nameidata nd;
2869 
2870 	error = user_path_parent(dfd, pathname, &nd, &name);
2871 	if (error)
2872 		return error;
2873 
2874 	switch(nd.last_type) {
2875 	case LAST_DOTDOT:
2876 		error = -ENOTEMPTY;
2877 		goto exit1;
2878 	case LAST_DOT:
2879 		error = -EINVAL;
2880 		goto exit1;
2881 	case LAST_ROOT:
2882 		error = -EBUSY;
2883 		goto exit1;
2884 	}
2885 
2886 	nd.flags &= ~LOOKUP_PARENT;
2887 
2888 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2889 	dentry = lookup_hash(&nd);
2890 	error = PTR_ERR(dentry);
2891 	if (IS_ERR(dentry))
2892 		goto exit2;
2893 	error = mnt_want_write(nd.path.mnt);
2894 	if (error)
2895 		goto exit3;
2896 	error = security_path_rmdir(&nd.path, dentry);
2897 	if (error)
2898 		goto exit4;
2899 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2900 exit4:
2901 	mnt_drop_write(nd.path.mnt);
2902 exit3:
2903 	dput(dentry);
2904 exit2:
2905 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2906 exit1:
2907 	path_put(&nd.path);
2908 	putname(name);
2909 	return error;
2910 }
2911 
2912 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2913 {
2914 	return do_rmdir(AT_FDCWD, pathname);
2915 }
2916 
2917 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2918 {
2919 	int error = may_delete(dir, dentry, 0);
2920 
2921 	if (error)
2922 		return error;
2923 
2924 	if (!dir->i_op->unlink)
2925 		return -EPERM;
2926 
2927 	mutex_lock(&dentry->d_inode->i_mutex);
2928 	if (d_mountpoint(dentry))
2929 		error = -EBUSY;
2930 	else {
2931 		error = security_inode_unlink(dir, dentry);
2932 		if (!error) {
2933 			error = dir->i_op->unlink(dir, dentry);
2934 			if (!error)
2935 				dont_mount(dentry);
2936 		}
2937 	}
2938 	mutex_unlock(&dentry->d_inode->i_mutex);
2939 
2940 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2941 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2942 		fsnotify_link_count(dentry->d_inode);
2943 		d_delete(dentry);
2944 	}
2945 
2946 	return error;
2947 }
2948 
2949 /*
2950  * Make sure that the actual truncation of the file will occur outside its
2951  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2952  * writeout happening, and we don't want to prevent access to the directory
2953  * while waiting on the I/O.
2954  */
2955 static long do_unlinkat(int dfd, const char __user *pathname)
2956 {
2957 	int error;
2958 	char *name;
2959 	struct dentry *dentry;
2960 	struct nameidata nd;
2961 	struct inode *inode = NULL;
2962 
2963 	error = user_path_parent(dfd, pathname, &nd, &name);
2964 	if (error)
2965 		return error;
2966 
2967 	error = -EISDIR;
2968 	if (nd.last_type != LAST_NORM)
2969 		goto exit1;
2970 
2971 	nd.flags &= ~LOOKUP_PARENT;
2972 
2973 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2974 	dentry = lookup_hash(&nd);
2975 	error = PTR_ERR(dentry);
2976 	if (!IS_ERR(dentry)) {
2977 		/* Why not before? Because we want correct error value */
2978 		if (nd.last.name[nd.last.len])
2979 			goto slashes;
2980 		inode = dentry->d_inode;
2981 		if (inode)
2982 			ihold(inode);
2983 		error = mnt_want_write(nd.path.mnt);
2984 		if (error)
2985 			goto exit2;
2986 		error = security_path_unlink(&nd.path, dentry);
2987 		if (error)
2988 			goto exit3;
2989 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2990 exit3:
2991 		mnt_drop_write(nd.path.mnt);
2992 	exit2:
2993 		dput(dentry);
2994 	}
2995 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2996 	if (inode)
2997 		iput(inode);	/* truncate the inode here */
2998 exit1:
2999 	path_put(&nd.path);
3000 	putname(name);
3001 	return error;
3002 
3003 slashes:
3004 	error = !dentry->d_inode ? -ENOENT :
3005 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3006 	goto exit2;
3007 }
3008 
3009 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3010 {
3011 	if ((flag & ~AT_REMOVEDIR) != 0)
3012 		return -EINVAL;
3013 
3014 	if (flag & AT_REMOVEDIR)
3015 		return do_rmdir(dfd, pathname);
3016 
3017 	return do_unlinkat(dfd, pathname);
3018 }
3019 
3020 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3021 {
3022 	return do_unlinkat(AT_FDCWD, pathname);
3023 }
3024 
3025 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3026 {
3027 	int error = may_create(dir, dentry);
3028 
3029 	if (error)
3030 		return error;
3031 
3032 	if (!dir->i_op->symlink)
3033 		return -EPERM;
3034 
3035 	error = security_inode_symlink(dir, dentry, oldname);
3036 	if (error)
3037 		return error;
3038 
3039 	error = dir->i_op->symlink(dir, dentry, oldname);
3040 	if (!error)
3041 		fsnotify_create(dir, dentry);
3042 	return error;
3043 }
3044 
3045 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3046 		int, newdfd, const char __user *, newname)
3047 {
3048 	int error;
3049 	char *from;
3050 	char *to;
3051 	struct dentry *dentry;
3052 	struct nameidata nd;
3053 
3054 	from = getname(oldname);
3055 	if (IS_ERR(from))
3056 		return PTR_ERR(from);
3057 
3058 	error = user_path_parent(newdfd, newname, &nd, &to);
3059 	if (error)
3060 		goto out_putname;
3061 
3062 	dentry = lookup_create(&nd, 0);
3063 	error = PTR_ERR(dentry);
3064 	if (IS_ERR(dentry))
3065 		goto out_unlock;
3066 
3067 	error = mnt_want_write(nd.path.mnt);
3068 	if (error)
3069 		goto out_dput;
3070 	error = security_path_symlink(&nd.path, dentry, from);
3071 	if (error)
3072 		goto out_drop_write;
3073 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3074 out_drop_write:
3075 	mnt_drop_write(nd.path.mnt);
3076 out_dput:
3077 	dput(dentry);
3078 out_unlock:
3079 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3080 	path_put(&nd.path);
3081 	putname(to);
3082 out_putname:
3083 	putname(from);
3084 	return error;
3085 }
3086 
3087 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3088 {
3089 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3090 }
3091 
3092 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3093 {
3094 	struct inode *inode = old_dentry->d_inode;
3095 	int error;
3096 
3097 	if (!inode)
3098 		return -ENOENT;
3099 
3100 	error = may_create(dir, new_dentry);
3101 	if (error)
3102 		return error;
3103 
3104 	if (dir->i_sb != inode->i_sb)
3105 		return -EXDEV;
3106 
3107 	/*
3108 	 * A link to an append-only or immutable file cannot be created.
3109 	 */
3110 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3111 		return -EPERM;
3112 	if (!dir->i_op->link)
3113 		return -EPERM;
3114 	if (S_ISDIR(inode->i_mode))
3115 		return -EPERM;
3116 
3117 	error = security_inode_link(old_dentry, dir, new_dentry);
3118 	if (error)
3119 		return error;
3120 
3121 	mutex_lock(&inode->i_mutex);
3122 	error = dir->i_op->link(old_dentry, dir, new_dentry);
3123 	mutex_unlock(&inode->i_mutex);
3124 	if (!error)
3125 		fsnotify_link(dir, inode, new_dentry);
3126 	return error;
3127 }
3128 
3129 /*
3130  * Hardlinks are often used in delicate situations.  We avoid
3131  * security-related surprises by not following symlinks on the
3132  * newname.  --KAB
3133  *
3134  * We don't follow them on the oldname either to be compatible
3135  * with linux 2.0, and to avoid hard-linking to directories
3136  * and other special files.  --ADM
3137  */
3138 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3139 		int, newdfd, const char __user *, newname, int, flags)
3140 {
3141 	struct dentry *new_dentry;
3142 	struct nameidata nd;
3143 	struct path old_path;
3144 	int error;
3145 	char *to;
3146 
3147 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3148 		return -EINVAL;
3149 
3150 	error = user_path_at(olddfd, oldname,
3151 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3152 			     &old_path);
3153 	if (error)
3154 		return error;
3155 
3156 	error = user_path_parent(newdfd, newname, &nd, &to);
3157 	if (error)
3158 		goto out;
3159 	error = -EXDEV;
3160 	if (old_path.mnt != nd.path.mnt)
3161 		goto out_release;
3162 	new_dentry = lookup_create(&nd, 0);
3163 	error = PTR_ERR(new_dentry);
3164 	if (IS_ERR(new_dentry))
3165 		goto out_unlock;
3166 	error = mnt_want_write(nd.path.mnt);
3167 	if (error)
3168 		goto out_dput;
3169 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3170 	if (error)
3171 		goto out_drop_write;
3172 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3173 out_drop_write:
3174 	mnt_drop_write(nd.path.mnt);
3175 out_dput:
3176 	dput(new_dentry);
3177 out_unlock:
3178 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3179 out_release:
3180 	path_put(&nd.path);
3181 	putname(to);
3182 out:
3183 	path_put(&old_path);
3184 
3185 	return error;
3186 }
3187 
3188 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3189 {
3190 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3191 }
3192 
3193 /*
3194  * The worst of all namespace operations - renaming directory. "Perverted"
3195  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3196  * Problems:
3197  *	a) we can get into loop creation. Check is done in is_subdir().
3198  *	b) race potential - two innocent renames can create a loop together.
3199  *	   That's where 4.4 screws up. Current fix: serialization on
3200  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3201  *	   story.
3202  *	c) we have to lock _three_ objects - parents and victim (if it exists).
3203  *	   And that - after we got ->i_mutex on parents (until then we don't know
3204  *	   whether the target exists).  Solution: try to be smart with locking
3205  *	   order for inodes.  We rely on the fact that tree topology may change
3206  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
3207  *	   move will be locked.  Thus we can rank directories by the tree
3208  *	   (ancestors first) and rank all non-directories after them.
3209  *	   That works since everybody except rename does "lock parent, lookup,
3210  *	   lock child" and rename is under ->s_vfs_rename_mutex.
3211  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
3212  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
3213  *	   we'd better make sure that there's no link(2) for them.
3214  *	d) some filesystems don't support opened-but-unlinked directories,
3215  *	   either because of layout or because they are not ready to deal with
3216  *	   all cases correctly. The latter will be fixed (taking this sort of
3217  *	   stuff into VFS), but the former is not going away. Solution: the same
3218  *	   trick as in rmdir().
3219  *	e) conversion from fhandle to dentry may come in the wrong moment - when
3220  *	   we are removing the target. Solution: we will have to grab ->i_mutex
3221  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3222  *	   ->i_mutex on parents, which works but leads to some truly excessive
3223  *	   locking].
3224  */
3225 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3226 			  struct inode *new_dir, struct dentry *new_dentry)
3227 {
3228 	int error = 0;
3229 	struct inode *target;
3230 
3231 	/*
3232 	 * If we are going to change the parent - check write permissions,
3233 	 * we'll need to flip '..'.
3234 	 */
3235 	if (new_dir != old_dir) {
3236 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3237 		if (error)
3238 			return error;
3239 	}
3240 
3241 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3242 	if (error)
3243 		return error;
3244 
3245 	target = new_dentry->d_inode;
3246 	if (target)
3247 		mutex_lock(&target->i_mutex);
3248 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3249 		error = -EBUSY;
3250 	else {
3251 		if (target)
3252 			dentry_unhash(new_dentry);
3253 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3254 	}
3255 	if (target) {
3256 		if (!error) {
3257 			target->i_flags |= S_DEAD;
3258 			dont_mount(new_dentry);
3259 		}
3260 		mutex_unlock(&target->i_mutex);
3261 		if (d_unhashed(new_dentry))
3262 			d_rehash(new_dentry);
3263 		dput(new_dentry);
3264 	}
3265 	if (!error)
3266 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3267 			d_move(old_dentry,new_dentry);
3268 	return error;
3269 }
3270 
3271 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3272 			    struct inode *new_dir, struct dentry *new_dentry)
3273 {
3274 	struct inode *target;
3275 	int error;
3276 
3277 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3278 	if (error)
3279 		return error;
3280 
3281 	dget(new_dentry);
3282 	target = new_dentry->d_inode;
3283 	if (target)
3284 		mutex_lock(&target->i_mutex);
3285 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3286 		error = -EBUSY;
3287 	else
3288 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3289 	if (!error) {
3290 		if (target)
3291 			dont_mount(new_dentry);
3292 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3293 			d_move(old_dentry, new_dentry);
3294 	}
3295 	if (target)
3296 		mutex_unlock(&target->i_mutex);
3297 	dput(new_dentry);
3298 	return error;
3299 }
3300 
3301 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3302 	       struct inode *new_dir, struct dentry *new_dentry)
3303 {
3304 	int error;
3305 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3306 	const unsigned char *old_name;
3307 
3308 	if (old_dentry->d_inode == new_dentry->d_inode)
3309  		return 0;
3310 
3311 	error = may_delete(old_dir, old_dentry, is_dir);
3312 	if (error)
3313 		return error;
3314 
3315 	if (!new_dentry->d_inode)
3316 		error = may_create(new_dir, new_dentry);
3317 	else
3318 		error = may_delete(new_dir, new_dentry, is_dir);
3319 	if (error)
3320 		return error;
3321 
3322 	if (!old_dir->i_op->rename)
3323 		return -EPERM;
3324 
3325 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3326 
3327 	if (is_dir)
3328 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3329 	else
3330 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3331 	if (!error)
3332 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3333 			      new_dentry->d_inode, old_dentry);
3334 	fsnotify_oldname_free(old_name);
3335 
3336 	return error;
3337 }
3338 
3339 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3340 		int, newdfd, const char __user *, newname)
3341 {
3342 	struct dentry *old_dir, *new_dir;
3343 	struct dentry *old_dentry, *new_dentry;
3344 	struct dentry *trap;
3345 	struct nameidata oldnd, newnd;
3346 	char *from;
3347 	char *to;
3348 	int error;
3349 
3350 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3351 	if (error)
3352 		goto exit;
3353 
3354 	error = user_path_parent(newdfd, newname, &newnd, &to);
3355 	if (error)
3356 		goto exit1;
3357 
3358 	error = -EXDEV;
3359 	if (oldnd.path.mnt != newnd.path.mnt)
3360 		goto exit2;
3361 
3362 	old_dir = oldnd.path.dentry;
3363 	error = -EBUSY;
3364 	if (oldnd.last_type != LAST_NORM)
3365 		goto exit2;
3366 
3367 	new_dir = newnd.path.dentry;
3368 	if (newnd.last_type != LAST_NORM)
3369 		goto exit2;
3370 
3371 	oldnd.flags &= ~LOOKUP_PARENT;
3372 	newnd.flags &= ~LOOKUP_PARENT;
3373 	newnd.flags |= LOOKUP_RENAME_TARGET;
3374 
3375 	trap = lock_rename(new_dir, old_dir);
3376 
3377 	old_dentry = lookup_hash(&oldnd);
3378 	error = PTR_ERR(old_dentry);
3379 	if (IS_ERR(old_dentry))
3380 		goto exit3;
3381 	/* source must exist */
3382 	error = -ENOENT;
3383 	if (!old_dentry->d_inode)
3384 		goto exit4;
3385 	/* unless the source is a directory trailing slashes give -ENOTDIR */
3386 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3387 		error = -ENOTDIR;
3388 		if (oldnd.last.name[oldnd.last.len])
3389 			goto exit4;
3390 		if (newnd.last.name[newnd.last.len])
3391 			goto exit4;
3392 	}
3393 	/* source should not be ancestor of target */
3394 	error = -EINVAL;
3395 	if (old_dentry == trap)
3396 		goto exit4;
3397 	new_dentry = lookup_hash(&newnd);
3398 	error = PTR_ERR(new_dentry);
3399 	if (IS_ERR(new_dentry))
3400 		goto exit4;
3401 	/* target should not be an ancestor of source */
3402 	error = -ENOTEMPTY;
3403 	if (new_dentry == trap)
3404 		goto exit5;
3405 
3406 	error = mnt_want_write(oldnd.path.mnt);
3407 	if (error)
3408 		goto exit5;
3409 	error = security_path_rename(&oldnd.path, old_dentry,
3410 				     &newnd.path, new_dentry);
3411 	if (error)
3412 		goto exit6;
3413 	error = vfs_rename(old_dir->d_inode, old_dentry,
3414 				   new_dir->d_inode, new_dentry);
3415 exit6:
3416 	mnt_drop_write(oldnd.path.mnt);
3417 exit5:
3418 	dput(new_dentry);
3419 exit4:
3420 	dput(old_dentry);
3421 exit3:
3422 	unlock_rename(new_dir, old_dir);
3423 exit2:
3424 	path_put(&newnd.path);
3425 	putname(to);
3426 exit1:
3427 	path_put(&oldnd.path);
3428 	putname(from);
3429 exit:
3430 	return error;
3431 }
3432 
3433 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3434 {
3435 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3436 }
3437 
3438 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3439 {
3440 	int len;
3441 
3442 	len = PTR_ERR(link);
3443 	if (IS_ERR(link))
3444 		goto out;
3445 
3446 	len = strlen(link);
3447 	if (len > (unsigned) buflen)
3448 		len = buflen;
3449 	if (copy_to_user(buffer, link, len))
3450 		len = -EFAULT;
3451 out:
3452 	return len;
3453 }
3454 
3455 /*
3456  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3457  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3458  * using) it for any given inode is up to filesystem.
3459  */
3460 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3461 {
3462 	struct nameidata nd;
3463 	void *cookie;
3464 	int res;
3465 
3466 	nd.depth = 0;
3467 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3468 	if (IS_ERR(cookie))
3469 		return PTR_ERR(cookie);
3470 
3471 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3472 	if (dentry->d_inode->i_op->put_link)
3473 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3474 	return res;
3475 }
3476 
3477 int vfs_follow_link(struct nameidata *nd, const char *link)
3478 {
3479 	return __vfs_follow_link(nd, link);
3480 }
3481 
3482 /* get the link contents into pagecache */
3483 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3484 {
3485 	char *kaddr;
3486 	struct page *page;
3487 	struct address_space *mapping = dentry->d_inode->i_mapping;
3488 	page = read_mapping_page(mapping, 0, NULL);
3489 	if (IS_ERR(page))
3490 		return (char*)page;
3491 	*ppage = page;
3492 	kaddr = kmap(page);
3493 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3494 	return kaddr;
3495 }
3496 
3497 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3498 {
3499 	struct page *page = NULL;
3500 	char *s = page_getlink(dentry, &page);
3501 	int res = vfs_readlink(dentry,buffer,buflen,s);
3502 	if (page) {
3503 		kunmap(page);
3504 		page_cache_release(page);
3505 	}
3506 	return res;
3507 }
3508 
3509 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3510 {
3511 	struct page *page = NULL;
3512 	nd_set_link(nd, page_getlink(dentry, &page));
3513 	return page;
3514 }
3515 
3516 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3517 {
3518 	struct page *page = cookie;
3519 
3520 	if (page) {
3521 		kunmap(page);
3522 		page_cache_release(page);
3523 	}
3524 }
3525 
3526 /*
3527  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3528  */
3529 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3530 {
3531 	struct address_space *mapping = inode->i_mapping;
3532 	struct page *page;
3533 	void *fsdata;
3534 	int err;
3535 	char *kaddr;
3536 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3537 	if (nofs)
3538 		flags |= AOP_FLAG_NOFS;
3539 
3540 retry:
3541 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3542 				flags, &page, &fsdata);
3543 	if (err)
3544 		goto fail;
3545 
3546 	kaddr = kmap_atomic(page, KM_USER0);
3547 	memcpy(kaddr, symname, len-1);
3548 	kunmap_atomic(kaddr, KM_USER0);
3549 
3550 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3551 							page, fsdata);
3552 	if (err < 0)
3553 		goto fail;
3554 	if (err < len-1)
3555 		goto retry;
3556 
3557 	mark_inode_dirty(inode);
3558 	return 0;
3559 fail:
3560 	return err;
3561 }
3562 
3563 int page_symlink(struct inode *inode, const char *symname, int len)
3564 {
3565 	return __page_symlink(inode, symname, len,
3566 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3567 }
3568 
3569 const struct inode_operations page_symlink_inode_operations = {
3570 	.readlink	= generic_readlink,
3571 	.follow_link	= page_follow_link_light,
3572 	.put_link	= page_put_link,
3573 };
3574 
3575 EXPORT_SYMBOL(user_path_at);
3576 EXPORT_SYMBOL(follow_down_one);
3577 EXPORT_SYMBOL(follow_down);
3578 EXPORT_SYMBOL(follow_up);
3579 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3580 EXPORT_SYMBOL(getname);
3581 EXPORT_SYMBOL(lock_rename);
3582 EXPORT_SYMBOL(lookup_one_len);
3583 EXPORT_SYMBOL(page_follow_link_light);
3584 EXPORT_SYMBOL(page_put_link);
3585 EXPORT_SYMBOL(page_readlink);
3586 EXPORT_SYMBOL(__page_symlink);
3587 EXPORT_SYMBOL(page_symlink);
3588 EXPORT_SYMBOL(page_symlink_inode_operations);
3589 EXPORT_SYMBOL(path_lookup);
3590 EXPORT_SYMBOL(kern_path);
3591 EXPORT_SYMBOL(vfs_path_lookup);
3592 EXPORT_SYMBOL(inode_permission);
3593 EXPORT_SYMBOL(file_permission);
3594 EXPORT_SYMBOL(unlock_rename);
3595 EXPORT_SYMBOL(vfs_create);
3596 EXPORT_SYMBOL(vfs_follow_link);
3597 EXPORT_SYMBOL(vfs_link);
3598 EXPORT_SYMBOL(vfs_mkdir);
3599 EXPORT_SYMBOL(vfs_mknod);
3600 EXPORT_SYMBOL(generic_permission);
3601 EXPORT_SYMBOL(vfs_readlink);
3602 EXPORT_SYMBOL(vfs_rename);
3603 EXPORT_SYMBOL(vfs_rmdir);
3604 EXPORT_SYMBOL(vfs_symlink);
3605 EXPORT_SYMBOL(vfs_unlink);
3606 EXPORT_SYMBOL(dentry_unhash);
3607 EXPORT_SYMBOL(generic_readlink);
3608