1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 struct filename *tmp; 226 227 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 228 if (unlikely(!tmp)) { 229 __putname(result); 230 return ERR_PTR(-ENOMEM); 231 } 232 tmp->name = (char *)result; 233 result = tmp; 234 } else { 235 __putname(result); 236 return ERR_PTR(-ENAMETOOLONG); 237 } 238 memcpy((char *)result->name, filename, len); 239 result->uptr = NULL; 240 result->aname = NULL; 241 result->refcnt = 1; 242 audit_getname(result); 243 244 return result; 245 } 246 247 void putname(struct filename *name) 248 { 249 BUG_ON(name->refcnt <= 0); 250 251 if (--name->refcnt > 0) 252 return; 253 254 if (name->name != name->iname) { 255 __putname(name->name); 256 kfree(name); 257 } else 258 __putname(name); 259 } 260 261 static int check_acl(struct inode *inode, int mask) 262 { 263 #ifdef CONFIG_FS_POSIX_ACL 264 struct posix_acl *acl; 265 266 if (mask & MAY_NOT_BLOCK) { 267 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 268 if (!acl) 269 return -EAGAIN; 270 /* no ->get_acl() calls in RCU mode... */ 271 if (is_uncached_acl(acl)) 272 return -ECHILD; 273 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 274 } 275 276 acl = get_acl(inode, ACL_TYPE_ACCESS); 277 if (IS_ERR(acl)) 278 return PTR_ERR(acl); 279 if (acl) { 280 int error = posix_acl_permission(inode, acl, mask); 281 posix_acl_release(acl); 282 return error; 283 } 284 #endif 285 286 return -EAGAIN; 287 } 288 289 /* 290 * This does the basic permission checking 291 */ 292 static int acl_permission_check(struct inode *inode, int mask) 293 { 294 unsigned int mode = inode->i_mode; 295 296 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 297 mode >>= 6; 298 else { 299 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 300 int error = check_acl(inode, mask); 301 if (error != -EAGAIN) 302 return error; 303 } 304 305 if (in_group_p(inode->i_gid)) 306 mode >>= 3; 307 } 308 309 /* 310 * If the DACs are ok we don't need any capability check. 311 */ 312 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 313 return 0; 314 return -EACCES; 315 } 316 317 /** 318 * generic_permission - check for access rights on a Posix-like filesystem 319 * @inode: inode to check access rights for 320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 321 * 322 * Used to check for read/write/execute permissions on a file. 323 * We use "fsuid" for this, letting us set arbitrary permissions 324 * for filesystem access without changing the "normal" uids which 325 * are used for other things. 326 * 327 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 328 * request cannot be satisfied (eg. requires blocking or too much complexity). 329 * It would then be called again in ref-walk mode. 330 */ 331 int generic_permission(struct inode *inode, int mask) 332 { 333 int ret; 334 335 /* 336 * Do the basic permission checks. 337 */ 338 ret = acl_permission_check(inode, mask); 339 if (ret != -EACCES) 340 return ret; 341 342 if (S_ISDIR(inode->i_mode)) { 343 /* DACs are overridable for directories */ 344 if (!(mask & MAY_WRITE)) 345 if (capable_wrt_inode_uidgid(inode, 346 CAP_DAC_READ_SEARCH)) 347 return 0; 348 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 349 return 0; 350 return -EACCES; 351 } 352 353 /* 354 * Searching includes executable on directories, else just read. 355 */ 356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 357 if (mask == MAY_READ) 358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 359 return 0; 360 /* 361 * Read/write DACs are always overridable. 362 * Executable DACs are overridable when there is 363 * at least one exec bit set. 364 */ 365 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 366 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 367 return 0; 368 369 return -EACCES; 370 } 371 EXPORT_SYMBOL(generic_permission); 372 373 /* 374 * We _really_ want to just do "generic_permission()" without 375 * even looking at the inode->i_op values. So we keep a cache 376 * flag in inode->i_opflags, that says "this has not special 377 * permission function, use the fast case". 378 */ 379 static inline int do_inode_permission(struct inode *inode, int mask) 380 { 381 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 382 if (likely(inode->i_op->permission)) 383 return inode->i_op->permission(inode, mask); 384 385 /* This gets set once for the inode lifetime */ 386 spin_lock(&inode->i_lock); 387 inode->i_opflags |= IOP_FASTPERM; 388 spin_unlock(&inode->i_lock); 389 } 390 return generic_permission(inode, mask); 391 } 392 393 /** 394 * sb_permission - Check superblock-level permissions 395 * @sb: Superblock of inode to check permission on 396 * @inode: Inode to check permission on 397 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 398 * 399 * Separate out file-system wide checks from inode-specific permission checks. 400 */ 401 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 402 { 403 if (unlikely(mask & MAY_WRITE)) { 404 umode_t mode = inode->i_mode; 405 406 /* Nobody gets write access to a read-only fs. */ 407 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 408 return -EROFS; 409 } 410 return 0; 411 } 412 413 /** 414 * inode_permission - Check for access rights to a given inode 415 * @inode: Inode to check permission on 416 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 417 * 418 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 419 * this, letting us set arbitrary permissions for filesystem access without 420 * changing the "normal" UIDs which are used for other things. 421 * 422 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 423 */ 424 int inode_permission(struct inode *inode, int mask) 425 { 426 int retval; 427 428 retval = sb_permission(inode->i_sb, inode, mask); 429 if (retval) 430 return retval; 431 432 if (unlikely(mask & MAY_WRITE)) { 433 /* 434 * Nobody gets write access to an immutable file. 435 */ 436 if (IS_IMMUTABLE(inode)) 437 return -EPERM; 438 439 /* 440 * Updating mtime will likely cause i_uid and i_gid to be 441 * written back improperly if their true value is unknown 442 * to the vfs. 443 */ 444 if (HAS_UNMAPPED_ID(inode)) 445 return -EACCES; 446 } 447 448 retval = do_inode_permission(inode, mask); 449 if (retval) 450 return retval; 451 452 retval = devcgroup_inode_permission(inode, mask); 453 if (retval) 454 return retval; 455 456 return security_inode_permission(inode, mask); 457 } 458 EXPORT_SYMBOL(inode_permission); 459 460 /** 461 * path_get - get a reference to a path 462 * @path: path to get the reference to 463 * 464 * Given a path increment the reference count to the dentry and the vfsmount. 465 */ 466 void path_get(const struct path *path) 467 { 468 mntget(path->mnt); 469 dget(path->dentry); 470 } 471 EXPORT_SYMBOL(path_get); 472 473 /** 474 * path_put - put a reference to a path 475 * @path: path to put the reference to 476 * 477 * Given a path decrement the reference count to the dentry and the vfsmount. 478 */ 479 void path_put(const struct path *path) 480 { 481 dput(path->dentry); 482 mntput(path->mnt); 483 } 484 EXPORT_SYMBOL(path_put); 485 486 #define EMBEDDED_LEVELS 2 487 struct nameidata { 488 struct path path; 489 struct qstr last; 490 struct path root; 491 struct inode *inode; /* path.dentry.d_inode */ 492 unsigned int flags; 493 unsigned seq, m_seq; 494 int last_type; 495 unsigned depth; 496 int total_link_count; 497 struct saved { 498 struct path link; 499 struct delayed_call done; 500 const char *name; 501 unsigned seq; 502 } *stack, internal[EMBEDDED_LEVELS]; 503 struct filename *name; 504 struct nameidata *saved; 505 struct inode *link_inode; 506 unsigned root_seq; 507 int dfd; 508 } __randomize_layout; 509 510 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 511 { 512 struct nameidata *old = current->nameidata; 513 p->stack = p->internal; 514 p->dfd = dfd; 515 p->name = name; 516 p->total_link_count = old ? old->total_link_count : 0; 517 p->saved = old; 518 current->nameidata = p; 519 } 520 521 static void restore_nameidata(void) 522 { 523 struct nameidata *now = current->nameidata, *old = now->saved; 524 525 current->nameidata = old; 526 if (old) 527 old->total_link_count = now->total_link_count; 528 if (now->stack != now->internal) 529 kfree(now->stack); 530 } 531 532 static int __nd_alloc_stack(struct nameidata *nd) 533 { 534 struct saved *p; 535 536 if (nd->flags & LOOKUP_RCU) { 537 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 538 GFP_ATOMIC); 539 if (unlikely(!p)) 540 return -ECHILD; 541 } else { 542 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 543 GFP_KERNEL); 544 if (unlikely(!p)) 545 return -ENOMEM; 546 } 547 memcpy(p, nd->internal, sizeof(nd->internal)); 548 nd->stack = p; 549 return 0; 550 } 551 552 /** 553 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 554 * @path: nameidate to verify 555 * 556 * Rename can sometimes move a file or directory outside of a bind 557 * mount, path_connected allows those cases to be detected. 558 */ 559 static bool path_connected(const struct path *path) 560 { 561 struct vfsmount *mnt = path->mnt; 562 563 /* Only bind mounts can have disconnected paths */ 564 if (mnt->mnt_root == mnt->mnt_sb->s_root) 565 return true; 566 567 return is_subdir(path->dentry, mnt->mnt_root); 568 } 569 570 static inline int nd_alloc_stack(struct nameidata *nd) 571 { 572 if (likely(nd->depth != EMBEDDED_LEVELS)) 573 return 0; 574 if (likely(nd->stack != nd->internal)) 575 return 0; 576 return __nd_alloc_stack(nd); 577 } 578 579 static void drop_links(struct nameidata *nd) 580 { 581 int i = nd->depth; 582 while (i--) { 583 struct saved *last = nd->stack + i; 584 do_delayed_call(&last->done); 585 clear_delayed_call(&last->done); 586 } 587 } 588 589 static void terminate_walk(struct nameidata *nd) 590 { 591 drop_links(nd); 592 if (!(nd->flags & LOOKUP_RCU)) { 593 int i; 594 path_put(&nd->path); 595 for (i = 0; i < nd->depth; i++) 596 path_put(&nd->stack[i].link); 597 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 598 path_put(&nd->root); 599 nd->root.mnt = NULL; 600 } 601 } else { 602 nd->flags &= ~LOOKUP_RCU; 603 if (!(nd->flags & LOOKUP_ROOT)) 604 nd->root.mnt = NULL; 605 rcu_read_unlock(); 606 } 607 nd->depth = 0; 608 } 609 610 /* path_put is needed afterwards regardless of success or failure */ 611 static bool legitimize_path(struct nameidata *nd, 612 struct path *path, unsigned seq) 613 { 614 int res = __legitimize_mnt(path->mnt, nd->m_seq); 615 if (unlikely(res)) { 616 if (res > 0) 617 path->mnt = NULL; 618 path->dentry = NULL; 619 return false; 620 } 621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 622 path->dentry = NULL; 623 return false; 624 } 625 return !read_seqcount_retry(&path->dentry->d_seq, seq); 626 } 627 628 static bool legitimize_links(struct nameidata *nd) 629 { 630 int i; 631 for (i = 0; i < nd->depth; i++) { 632 struct saved *last = nd->stack + i; 633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 634 drop_links(nd); 635 nd->depth = i + 1; 636 return false; 637 } 638 } 639 return true; 640 } 641 642 /* 643 * Path walking has 2 modes, rcu-walk and ref-walk (see 644 * Documentation/filesystems/path-lookup.txt). In situations when we can't 645 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 646 * normal reference counts on dentries and vfsmounts to transition to ref-walk 647 * mode. Refcounts are grabbed at the last known good point before rcu-walk 648 * got stuck, so ref-walk may continue from there. If this is not successful 649 * (eg. a seqcount has changed), then failure is returned and it's up to caller 650 * to restart the path walk from the beginning in ref-walk mode. 651 */ 652 653 /** 654 * unlazy_walk - try to switch to ref-walk mode. 655 * @nd: nameidata pathwalk data 656 * Returns: 0 on success, -ECHILD on failure 657 * 658 * unlazy_walk attempts to legitimize the current nd->path and nd->root 659 * for ref-walk mode. 660 * Must be called from rcu-walk context. 661 * Nothing should touch nameidata between unlazy_walk() failure and 662 * terminate_walk(). 663 */ 664 static int unlazy_walk(struct nameidata *nd) 665 { 666 struct dentry *parent = nd->path.dentry; 667 668 BUG_ON(!(nd->flags & LOOKUP_RCU)); 669 670 nd->flags &= ~LOOKUP_RCU; 671 if (unlikely(!legitimize_links(nd))) 672 goto out2; 673 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 674 goto out1; 675 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 676 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) 677 goto out; 678 } 679 rcu_read_unlock(); 680 BUG_ON(nd->inode != parent->d_inode); 681 return 0; 682 683 out2: 684 nd->path.mnt = NULL; 685 nd->path.dentry = NULL; 686 out1: 687 if (!(nd->flags & LOOKUP_ROOT)) 688 nd->root.mnt = NULL; 689 out: 690 rcu_read_unlock(); 691 return -ECHILD; 692 } 693 694 /** 695 * unlazy_child - try to switch to ref-walk mode. 696 * @nd: nameidata pathwalk data 697 * @dentry: child of nd->path.dentry 698 * @seq: seq number to check dentry against 699 * Returns: 0 on success, -ECHILD on failure 700 * 701 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 702 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 703 * @nd. Must be called from rcu-walk context. 704 * Nothing should touch nameidata between unlazy_child() failure and 705 * terminate_walk(). 706 */ 707 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 708 { 709 BUG_ON(!(nd->flags & LOOKUP_RCU)); 710 711 nd->flags &= ~LOOKUP_RCU; 712 if (unlikely(!legitimize_links(nd))) 713 goto out2; 714 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 715 goto out2; 716 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 717 goto out1; 718 719 /* 720 * We need to move both the parent and the dentry from the RCU domain 721 * to be properly refcounted. And the sequence number in the dentry 722 * validates *both* dentry counters, since we checked the sequence 723 * number of the parent after we got the child sequence number. So we 724 * know the parent must still be valid if the child sequence number is 725 */ 726 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 727 goto out; 728 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) { 729 rcu_read_unlock(); 730 dput(dentry); 731 goto drop_root_mnt; 732 } 733 /* 734 * Sequence counts matched. Now make sure that the root is 735 * still valid and get it if required. 736 */ 737 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 738 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 739 rcu_read_unlock(); 740 dput(dentry); 741 return -ECHILD; 742 } 743 } 744 745 rcu_read_unlock(); 746 return 0; 747 748 out2: 749 nd->path.mnt = NULL; 750 out1: 751 nd->path.dentry = NULL; 752 out: 753 rcu_read_unlock(); 754 drop_root_mnt: 755 if (!(nd->flags & LOOKUP_ROOT)) 756 nd->root.mnt = NULL; 757 return -ECHILD; 758 } 759 760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 761 { 762 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 763 return dentry->d_op->d_revalidate(dentry, flags); 764 else 765 return 1; 766 } 767 768 /** 769 * complete_walk - successful completion of path walk 770 * @nd: pointer nameidata 771 * 772 * If we had been in RCU mode, drop out of it and legitimize nd->path. 773 * Revalidate the final result, unless we'd already done that during 774 * the path walk or the filesystem doesn't ask for it. Return 0 on 775 * success, -error on failure. In case of failure caller does not 776 * need to drop nd->path. 777 */ 778 static int complete_walk(struct nameidata *nd) 779 { 780 struct dentry *dentry = nd->path.dentry; 781 int status; 782 783 if (nd->flags & LOOKUP_RCU) { 784 if (!(nd->flags & LOOKUP_ROOT)) 785 nd->root.mnt = NULL; 786 if (unlikely(unlazy_walk(nd))) 787 return -ECHILD; 788 } 789 790 if (likely(!(nd->flags & LOOKUP_JUMPED))) 791 return 0; 792 793 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 794 return 0; 795 796 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 797 if (status > 0) 798 return 0; 799 800 if (!status) 801 status = -ESTALE; 802 803 return status; 804 } 805 806 static void set_root(struct nameidata *nd) 807 { 808 struct fs_struct *fs = current->fs; 809 810 if (nd->flags & LOOKUP_RCU) { 811 unsigned seq; 812 813 do { 814 seq = read_seqcount_begin(&fs->seq); 815 nd->root = fs->root; 816 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 817 } while (read_seqcount_retry(&fs->seq, seq)); 818 } else { 819 get_fs_root(fs, &nd->root); 820 } 821 } 822 823 static void path_put_conditional(struct path *path, struct nameidata *nd) 824 { 825 dput(path->dentry); 826 if (path->mnt != nd->path.mnt) 827 mntput(path->mnt); 828 } 829 830 static inline void path_to_nameidata(const struct path *path, 831 struct nameidata *nd) 832 { 833 if (!(nd->flags & LOOKUP_RCU)) { 834 dput(nd->path.dentry); 835 if (nd->path.mnt != path->mnt) 836 mntput(nd->path.mnt); 837 } 838 nd->path.mnt = path->mnt; 839 nd->path.dentry = path->dentry; 840 } 841 842 static int nd_jump_root(struct nameidata *nd) 843 { 844 if (nd->flags & LOOKUP_RCU) { 845 struct dentry *d; 846 nd->path = nd->root; 847 d = nd->path.dentry; 848 nd->inode = d->d_inode; 849 nd->seq = nd->root_seq; 850 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 851 return -ECHILD; 852 } else { 853 path_put(&nd->path); 854 nd->path = nd->root; 855 path_get(&nd->path); 856 nd->inode = nd->path.dentry->d_inode; 857 } 858 nd->flags |= LOOKUP_JUMPED; 859 return 0; 860 } 861 862 /* 863 * Helper to directly jump to a known parsed path from ->get_link, 864 * caller must have taken a reference to path beforehand. 865 */ 866 void nd_jump_link(struct path *path) 867 { 868 struct nameidata *nd = current->nameidata; 869 path_put(&nd->path); 870 871 nd->path = *path; 872 nd->inode = nd->path.dentry->d_inode; 873 nd->flags |= LOOKUP_JUMPED; 874 } 875 876 static inline void put_link(struct nameidata *nd) 877 { 878 struct saved *last = nd->stack + --nd->depth; 879 do_delayed_call(&last->done); 880 if (!(nd->flags & LOOKUP_RCU)) 881 path_put(&last->link); 882 } 883 884 int sysctl_protected_symlinks __read_mostly = 0; 885 int sysctl_protected_hardlinks __read_mostly = 0; 886 887 /** 888 * may_follow_link - Check symlink following for unsafe situations 889 * @nd: nameidata pathwalk data 890 * 891 * In the case of the sysctl_protected_symlinks sysctl being enabled, 892 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 893 * in a sticky world-writable directory. This is to protect privileged 894 * processes from failing races against path names that may change out 895 * from under them by way of other users creating malicious symlinks. 896 * It will permit symlinks to be followed only when outside a sticky 897 * world-writable directory, or when the uid of the symlink and follower 898 * match, or when the directory owner matches the symlink's owner. 899 * 900 * Returns 0 if following the symlink is allowed, -ve on error. 901 */ 902 static inline int may_follow_link(struct nameidata *nd) 903 { 904 const struct inode *inode; 905 const struct inode *parent; 906 kuid_t puid; 907 908 if (!sysctl_protected_symlinks) 909 return 0; 910 911 /* Allowed if owner and follower match. */ 912 inode = nd->link_inode; 913 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 914 return 0; 915 916 /* Allowed if parent directory not sticky and world-writable. */ 917 parent = nd->inode; 918 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 919 return 0; 920 921 /* Allowed if parent directory and link owner match. */ 922 puid = parent->i_uid; 923 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 924 return 0; 925 926 if (nd->flags & LOOKUP_RCU) 927 return -ECHILD; 928 929 audit_log_link_denied("follow_link", &nd->stack[0].link); 930 return -EACCES; 931 } 932 933 /** 934 * safe_hardlink_source - Check for safe hardlink conditions 935 * @inode: the source inode to hardlink from 936 * 937 * Return false if at least one of the following conditions: 938 * - inode is not a regular file 939 * - inode is setuid 940 * - inode is setgid and group-exec 941 * - access failure for read and write 942 * 943 * Otherwise returns true. 944 */ 945 static bool safe_hardlink_source(struct inode *inode) 946 { 947 umode_t mode = inode->i_mode; 948 949 /* Special files should not get pinned to the filesystem. */ 950 if (!S_ISREG(mode)) 951 return false; 952 953 /* Setuid files should not get pinned to the filesystem. */ 954 if (mode & S_ISUID) 955 return false; 956 957 /* Executable setgid files should not get pinned to the filesystem. */ 958 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 959 return false; 960 961 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 962 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 963 return false; 964 965 return true; 966 } 967 968 /** 969 * may_linkat - Check permissions for creating a hardlink 970 * @link: the source to hardlink from 971 * 972 * Block hardlink when all of: 973 * - sysctl_protected_hardlinks enabled 974 * - fsuid does not match inode 975 * - hardlink source is unsafe (see safe_hardlink_source() above) 976 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 977 * 978 * Returns 0 if successful, -ve on error. 979 */ 980 static int may_linkat(struct path *link) 981 { 982 struct inode *inode; 983 984 if (!sysctl_protected_hardlinks) 985 return 0; 986 987 inode = link->dentry->d_inode; 988 989 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 990 * otherwise, it must be a safe source. 991 */ 992 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 993 return 0; 994 995 audit_log_link_denied("linkat", link); 996 return -EPERM; 997 } 998 999 static __always_inline 1000 const char *get_link(struct nameidata *nd) 1001 { 1002 struct saved *last = nd->stack + nd->depth - 1; 1003 struct dentry *dentry = last->link.dentry; 1004 struct inode *inode = nd->link_inode; 1005 int error; 1006 const char *res; 1007 1008 if (!(nd->flags & LOOKUP_RCU)) { 1009 touch_atime(&last->link); 1010 cond_resched(); 1011 } else if (atime_needs_update_rcu(&last->link, inode)) { 1012 if (unlikely(unlazy_walk(nd))) 1013 return ERR_PTR(-ECHILD); 1014 touch_atime(&last->link); 1015 } 1016 1017 error = security_inode_follow_link(dentry, inode, 1018 nd->flags & LOOKUP_RCU); 1019 if (unlikely(error)) 1020 return ERR_PTR(error); 1021 1022 nd->last_type = LAST_BIND; 1023 res = inode->i_link; 1024 if (!res) { 1025 const char * (*get)(struct dentry *, struct inode *, 1026 struct delayed_call *); 1027 get = inode->i_op->get_link; 1028 if (nd->flags & LOOKUP_RCU) { 1029 res = get(NULL, inode, &last->done); 1030 if (res == ERR_PTR(-ECHILD)) { 1031 if (unlikely(unlazy_walk(nd))) 1032 return ERR_PTR(-ECHILD); 1033 res = get(dentry, inode, &last->done); 1034 } 1035 } else { 1036 res = get(dentry, inode, &last->done); 1037 } 1038 if (IS_ERR_OR_NULL(res)) 1039 return res; 1040 } 1041 if (*res == '/') { 1042 if (!nd->root.mnt) 1043 set_root(nd); 1044 if (unlikely(nd_jump_root(nd))) 1045 return ERR_PTR(-ECHILD); 1046 while (unlikely(*++res == '/')) 1047 ; 1048 } 1049 if (!*res) 1050 res = NULL; 1051 return res; 1052 } 1053 1054 /* 1055 * follow_up - Find the mountpoint of path's vfsmount 1056 * 1057 * Given a path, find the mountpoint of its source file system. 1058 * Replace @path with the path of the mountpoint in the parent mount. 1059 * Up is towards /. 1060 * 1061 * Return 1 if we went up a level and 0 if we were already at the 1062 * root. 1063 */ 1064 int follow_up(struct path *path) 1065 { 1066 struct mount *mnt = real_mount(path->mnt); 1067 struct mount *parent; 1068 struct dentry *mountpoint; 1069 1070 read_seqlock_excl(&mount_lock); 1071 parent = mnt->mnt_parent; 1072 if (parent == mnt) { 1073 read_sequnlock_excl(&mount_lock); 1074 return 0; 1075 } 1076 mntget(&parent->mnt); 1077 mountpoint = dget(mnt->mnt_mountpoint); 1078 read_sequnlock_excl(&mount_lock); 1079 dput(path->dentry); 1080 path->dentry = mountpoint; 1081 mntput(path->mnt); 1082 path->mnt = &parent->mnt; 1083 return 1; 1084 } 1085 EXPORT_SYMBOL(follow_up); 1086 1087 /* 1088 * Perform an automount 1089 * - return -EISDIR to tell follow_managed() to stop and return the path we 1090 * were called with. 1091 */ 1092 static int follow_automount(struct path *path, struct nameidata *nd, 1093 bool *need_mntput) 1094 { 1095 struct vfsmount *mnt; 1096 int err; 1097 1098 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1099 return -EREMOTE; 1100 1101 /* We don't want to mount if someone's just doing a stat - 1102 * unless they're stat'ing a directory and appended a '/' to 1103 * the name. 1104 * 1105 * We do, however, want to mount if someone wants to open or 1106 * create a file of any type under the mountpoint, wants to 1107 * traverse through the mountpoint or wants to open the 1108 * mounted directory. Also, autofs may mark negative dentries 1109 * as being automount points. These will need the attentions 1110 * of the daemon to instantiate them before they can be used. 1111 */ 1112 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1113 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1114 path->dentry->d_inode) 1115 return -EISDIR; 1116 1117 nd->total_link_count++; 1118 if (nd->total_link_count >= 40) 1119 return -ELOOP; 1120 1121 mnt = path->dentry->d_op->d_automount(path); 1122 if (IS_ERR(mnt)) { 1123 /* 1124 * The filesystem is allowed to return -EISDIR here to indicate 1125 * it doesn't want to automount. For instance, autofs would do 1126 * this so that its userspace daemon can mount on this dentry. 1127 * 1128 * However, we can only permit this if it's a terminal point in 1129 * the path being looked up; if it wasn't then the remainder of 1130 * the path is inaccessible and we should say so. 1131 */ 1132 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1133 return -EREMOTE; 1134 return PTR_ERR(mnt); 1135 } 1136 1137 if (!mnt) /* mount collision */ 1138 return 0; 1139 1140 if (!*need_mntput) { 1141 /* lock_mount() may release path->mnt on error */ 1142 mntget(path->mnt); 1143 *need_mntput = true; 1144 } 1145 err = finish_automount(mnt, path); 1146 1147 switch (err) { 1148 case -EBUSY: 1149 /* Someone else made a mount here whilst we were busy */ 1150 return 0; 1151 case 0: 1152 path_put(path); 1153 path->mnt = mnt; 1154 path->dentry = dget(mnt->mnt_root); 1155 return 0; 1156 default: 1157 return err; 1158 } 1159 1160 } 1161 1162 /* 1163 * Handle a dentry that is managed in some way. 1164 * - Flagged for transit management (autofs) 1165 * - Flagged as mountpoint 1166 * - Flagged as automount point 1167 * 1168 * This may only be called in refwalk mode. 1169 * 1170 * Serialization is taken care of in namespace.c 1171 */ 1172 static int follow_managed(struct path *path, struct nameidata *nd) 1173 { 1174 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1175 unsigned managed; 1176 bool need_mntput = false; 1177 int ret = 0; 1178 1179 /* Given that we're not holding a lock here, we retain the value in a 1180 * local variable for each dentry as we look at it so that we don't see 1181 * the components of that value change under us */ 1182 while (managed = READ_ONCE(path->dentry->d_flags), 1183 managed &= DCACHE_MANAGED_DENTRY, 1184 unlikely(managed != 0)) { 1185 /* Allow the filesystem to manage the transit without i_mutex 1186 * being held. */ 1187 if (managed & DCACHE_MANAGE_TRANSIT) { 1188 BUG_ON(!path->dentry->d_op); 1189 BUG_ON(!path->dentry->d_op->d_manage); 1190 ret = path->dentry->d_op->d_manage(path, false); 1191 if (ret < 0) 1192 break; 1193 } 1194 1195 /* Transit to a mounted filesystem. */ 1196 if (managed & DCACHE_MOUNTED) { 1197 struct vfsmount *mounted = lookup_mnt(path); 1198 if (mounted) { 1199 dput(path->dentry); 1200 if (need_mntput) 1201 mntput(path->mnt); 1202 path->mnt = mounted; 1203 path->dentry = dget(mounted->mnt_root); 1204 need_mntput = true; 1205 continue; 1206 } 1207 1208 /* Something is mounted on this dentry in another 1209 * namespace and/or whatever was mounted there in this 1210 * namespace got unmounted before lookup_mnt() could 1211 * get it */ 1212 } 1213 1214 /* Handle an automount point */ 1215 if (managed & DCACHE_NEED_AUTOMOUNT) { 1216 ret = follow_automount(path, nd, &need_mntput); 1217 if (ret < 0) 1218 break; 1219 continue; 1220 } 1221 1222 /* We didn't change the current path point */ 1223 break; 1224 } 1225 1226 if (need_mntput && path->mnt == mnt) 1227 mntput(path->mnt); 1228 if (ret == -EISDIR || !ret) 1229 ret = 1; 1230 if (need_mntput) 1231 nd->flags |= LOOKUP_JUMPED; 1232 if (unlikely(ret < 0)) 1233 path_put_conditional(path, nd); 1234 return ret; 1235 } 1236 1237 int follow_down_one(struct path *path) 1238 { 1239 struct vfsmount *mounted; 1240 1241 mounted = lookup_mnt(path); 1242 if (mounted) { 1243 dput(path->dentry); 1244 mntput(path->mnt); 1245 path->mnt = mounted; 1246 path->dentry = dget(mounted->mnt_root); 1247 return 1; 1248 } 1249 return 0; 1250 } 1251 EXPORT_SYMBOL(follow_down_one); 1252 1253 static inline int managed_dentry_rcu(const struct path *path) 1254 { 1255 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1256 path->dentry->d_op->d_manage(path, true) : 0; 1257 } 1258 1259 /* 1260 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1261 * we meet a managed dentry that would need blocking. 1262 */ 1263 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1264 struct inode **inode, unsigned *seqp) 1265 { 1266 for (;;) { 1267 struct mount *mounted; 1268 /* 1269 * Don't forget we might have a non-mountpoint managed dentry 1270 * that wants to block transit. 1271 */ 1272 switch (managed_dentry_rcu(path)) { 1273 case -ECHILD: 1274 default: 1275 return false; 1276 case -EISDIR: 1277 return true; 1278 case 0: 1279 break; 1280 } 1281 1282 if (!d_mountpoint(path->dentry)) 1283 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1284 1285 mounted = __lookup_mnt(path->mnt, path->dentry); 1286 if (!mounted) 1287 break; 1288 path->mnt = &mounted->mnt; 1289 path->dentry = mounted->mnt.mnt_root; 1290 nd->flags |= LOOKUP_JUMPED; 1291 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1292 /* 1293 * Update the inode too. We don't need to re-check the 1294 * dentry sequence number here after this d_inode read, 1295 * because a mount-point is always pinned. 1296 */ 1297 *inode = path->dentry->d_inode; 1298 } 1299 return !read_seqretry(&mount_lock, nd->m_seq) && 1300 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1301 } 1302 1303 static int follow_dotdot_rcu(struct nameidata *nd) 1304 { 1305 struct inode *inode = nd->inode; 1306 1307 while (1) { 1308 if (path_equal(&nd->path, &nd->root)) 1309 break; 1310 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1311 struct dentry *old = nd->path.dentry; 1312 struct dentry *parent = old->d_parent; 1313 unsigned seq; 1314 1315 inode = parent->d_inode; 1316 seq = read_seqcount_begin(&parent->d_seq); 1317 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1318 return -ECHILD; 1319 nd->path.dentry = parent; 1320 nd->seq = seq; 1321 if (unlikely(!path_connected(&nd->path))) 1322 return -ENOENT; 1323 break; 1324 } else { 1325 struct mount *mnt = real_mount(nd->path.mnt); 1326 struct mount *mparent = mnt->mnt_parent; 1327 struct dentry *mountpoint = mnt->mnt_mountpoint; 1328 struct inode *inode2 = mountpoint->d_inode; 1329 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1330 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1331 return -ECHILD; 1332 if (&mparent->mnt == nd->path.mnt) 1333 break; 1334 /* we know that mountpoint was pinned */ 1335 nd->path.dentry = mountpoint; 1336 nd->path.mnt = &mparent->mnt; 1337 inode = inode2; 1338 nd->seq = seq; 1339 } 1340 } 1341 while (unlikely(d_mountpoint(nd->path.dentry))) { 1342 struct mount *mounted; 1343 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1344 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1345 return -ECHILD; 1346 if (!mounted) 1347 break; 1348 nd->path.mnt = &mounted->mnt; 1349 nd->path.dentry = mounted->mnt.mnt_root; 1350 inode = nd->path.dentry->d_inode; 1351 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1352 } 1353 nd->inode = inode; 1354 return 0; 1355 } 1356 1357 /* 1358 * Follow down to the covering mount currently visible to userspace. At each 1359 * point, the filesystem owning that dentry may be queried as to whether the 1360 * caller is permitted to proceed or not. 1361 */ 1362 int follow_down(struct path *path) 1363 { 1364 unsigned managed; 1365 int ret; 1366 1367 while (managed = READ_ONCE(path->dentry->d_flags), 1368 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1369 /* Allow the filesystem to manage the transit without i_mutex 1370 * being held. 1371 * 1372 * We indicate to the filesystem if someone is trying to mount 1373 * something here. This gives autofs the chance to deny anyone 1374 * other than its daemon the right to mount on its 1375 * superstructure. 1376 * 1377 * The filesystem may sleep at this point. 1378 */ 1379 if (managed & DCACHE_MANAGE_TRANSIT) { 1380 BUG_ON(!path->dentry->d_op); 1381 BUG_ON(!path->dentry->d_op->d_manage); 1382 ret = path->dentry->d_op->d_manage(path, false); 1383 if (ret < 0) 1384 return ret == -EISDIR ? 0 : ret; 1385 } 1386 1387 /* Transit to a mounted filesystem. */ 1388 if (managed & DCACHE_MOUNTED) { 1389 struct vfsmount *mounted = lookup_mnt(path); 1390 if (!mounted) 1391 break; 1392 dput(path->dentry); 1393 mntput(path->mnt); 1394 path->mnt = mounted; 1395 path->dentry = dget(mounted->mnt_root); 1396 continue; 1397 } 1398 1399 /* Don't handle automount points here */ 1400 break; 1401 } 1402 return 0; 1403 } 1404 EXPORT_SYMBOL(follow_down); 1405 1406 /* 1407 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1408 */ 1409 static void follow_mount(struct path *path) 1410 { 1411 while (d_mountpoint(path->dentry)) { 1412 struct vfsmount *mounted = lookup_mnt(path); 1413 if (!mounted) 1414 break; 1415 dput(path->dentry); 1416 mntput(path->mnt); 1417 path->mnt = mounted; 1418 path->dentry = dget(mounted->mnt_root); 1419 } 1420 } 1421 1422 static int path_parent_directory(struct path *path) 1423 { 1424 struct dentry *old = path->dentry; 1425 /* rare case of legitimate dget_parent()... */ 1426 path->dentry = dget_parent(path->dentry); 1427 dput(old); 1428 if (unlikely(!path_connected(path))) 1429 return -ENOENT; 1430 return 0; 1431 } 1432 1433 static int follow_dotdot(struct nameidata *nd) 1434 { 1435 while(1) { 1436 if (nd->path.dentry == nd->root.dentry && 1437 nd->path.mnt == nd->root.mnt) { 1438 break; 1439 } 1440 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1441 int ret = path_parent_directory(&nd->path); 1442 if (ret) 1443 return ret; 1444 break; 1445 } 1446 if (!follow_up(&nd->path)) 1447 break; 1448 } 1449 follow_mount(&nd->path); 1450 nd->inode = nd->path.dentry->d_inode; 1451 return 0; 1452 } 1453 1454 /* 1455 * This looks up the name in dcache and possibly revalidates the found dentry. 1456 * NULL is returned if the dentry does not exist in the cache. 1457 */ 1458 static struct dentry *lookup_dcache(const struct qstr *name, 1459 struct dentry *dir, 1460 unsigned int flags) 1461 { 1462 struct dentry *dentry = d_lookup(dir, name); 1463 if (dentry) { 1464 int error = d_revalidate(dentry, flags); 1465 if (unlikely(error <= 0)) { 1466 if (!error) 1467 d_invalidate(dentry); 1468 dput(dentry); 1469 return ERR_PTR(error); 1470 } 1471 } 1472 return dentry; 1473 } 1474 1475 /* 1476 * Call i_op->lookup on the dentry. The dentry must be negative and 1477 * unhashed. 1478 * 1479 * dir->d_inode->i_mutex must be held 1480 */ 1481 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1482 unsigned int flags) 1483 { 1484 struct dentry *old; 1485 1486 /* Don't create child dentry for a dead directory. */ 1487 if (unlikely(IS_DEADDIR(dir))) { 1488 dput(dentry); 1489 return ERR_PTR(-ENOENT); 1490 } 1491 1492 old = dir->i_op->lookup(dir, dentry, flags); 1493 if (unlikely(old)) { 1494 dput(dentry); 1495 dentry = old; 1496 } 1497 return dentry; 1498 } 1499 1500 static struct dentry *__lookup_hash(const struct qstr *name, 1501 struct dentry *base, unsigned int flags) 1502 { 1503 struct dentry *dentry = lookup_dcache(name, base, flags); 1504 1505 if (dentry) 1506 return dentry; 1507 1508 dentry = d_alloc(base, name); 1509 if (unlikely(!dentry)) 1510 return ERR_PTR(-ENOMEM); 1511 1512 return lookup_real(base->d_inode, dentry, flags); 1513 } 1514 1515 static int lookup_fast(struct nameidata *nd, 1516 struct path *path, struct inode **inode, 1517 unsigned *seqp) 1518 { 1519 struct vfsmount *mnt = nd->path.mnt; 1520 struct dentry *dentry, *parent = nd->path.dentry; 1521 int status = 1; 1522 int err; 1523 1524 /* 1525 * Rename seqlock is not required here because in the off chance 1526 * of a false negative due to a concurrent rename, the caller is 1527 * going to fall back to non-racy lookup. 1528 */ 1529 if (nd->flags & LOOKUP_RCU) { 1530 unsigned seq; 1531 bool negative; 1532 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1533 if (unlikely(!dentry)) { 1534 if (unlazy_walk(nd)) 1535 return -ECHILD; 1536 return 0; 1537 } 1538 1539 /* 1540 * This sequence count validates that the inode matches 1541 * the dentry name information from lookup. 1542 */ 1543 *inode = d_backing_inode(dentry); 1544 negative = d_is_negative(dentry); 1545 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1546 return -ECHILD; 1547 1548 /* 1549 * This sequence count validates that the parent had no 1550 * changes while we did the lookup of the dentry above. 1551 * 1552 * The memory barrier in read_seqcount_begin of child is 1553 * enough, we can use __read_seqcount_retry here. 1554 */ 1555 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1556 return -ECHILD; 1557 1558 *seqp = seq; 1559 status = d_revalidate(dentry, nd->flags); 1560 if (likely(status > 0)) { 1561 /* 1562 * Note: do negative dentry check after revalidation in 1563 * case that drops it. 1564 */ 1565 if (unlikely(negative)) 1566 return -ENOENT; 1567 path->mnt = mnt; 1568 path->dentry = dentry; 1569 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1570 return 1; 1571 } 1572 if (unlazy_child(nd, dentry, seq)) 1573 return -ECHILD; 1574 if (unlikely(status == -ECHILD)) 1575 /* we'd been told to redo it in non-rcu mode */ 1576 status = d_revalidate(dentry, nd->flags); 1577 } else { 1578 dentry = __d_lookup(parent, &nd->last); 1579 if (unlikely(!dentry)) 1580 return 0; 1581 status = d_revalidate(dentry, nd->flags); 1582 } 1583 if (unlikely(status <= 0)) { 1584 if (!status) 1585 d_invalidate(dentry); 1586 dput(dentry); 1587 return status; 1588 } 1589 if (unlikely(d_is_negative(dentry))) { 1590 dput(dentry); 1591 return -ENOENT; 1592 } 1593 1594 path->mnt = mnt; 1595 path->dentry = dentry; 1596 err = follow_managed(path, nd); 1597 if (likely(err > 0)) 1598 *inode = d_backing_inode(path->dentry); 1599 return err; 1600 } 1601 1602 /* Fast lookup failed, do it the slow way */ 1603 static struct dentry *lookup_slow(const struct qstr *name, 1604 struct dentry *dir, 1605 unsigned int flags) 1606 { 1607 struct dentry *dentry = ERR_PTR(-ENOENT), *old; 1608 struct inode *inode = dir->d_inode; 1609 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1610 1611 inode_lock_shared(inode); 1612 /* Don't go there if it's already dead */ 1613 if (unlikely(IS_DEADDIR(inode))) 1614 goto out; 1615 again: 1616 dentry = d_alloc_parallel(dir, name, &wq); 1617 if (IS_ERR(dentry)) 1618 goto out; 1619 if (unlikely(!d_in_lookup(dentry))) { 1620 if (!(flags & LOOKUP_NO_REVAL)) { 1621 int error = d_revalidate(dentry, flags); 1622 if (unlikely(error <= 0)) { 1623 if (!error) { 1624 d_invalidate(dentry); 1625 dput(dentry); 1626 goto again; 1627 } 1628 dput(dentry); 1629 dentry = ERR_PTR(error); 1630 } 1631 } 1632 } else { 1633 old = inode->i_op->lookup(inode, dentry, flags); 1634 d_lookup_done(dentry); 1635 if (unlikely(old)) { 1636 dput(dentry); 1637 dentry = old; 1638 } 1639 } 1640 out: 1641 inode_unlock_shared(inode); 1642 return dentry; 1643 } 1644 1645 static inline int may_lookup(struct nameidata *nd) 1646 { 1647 if (nd->flags & LOOKUP_RCU) { 1648 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1649 if (err != -ECHILD) 1650 return err; 1651 if (unlazy_walk(nd)) 1652 return -ECHILD; 1653 } 1654 return inode_permission(nd->inode, MAY_EXEC); 1655 } 1656 1657 static inline int handle_dots(struct nameidata *nd, int type) 1658 { 1659 if (type == LAST_DOTDOT) { 1660 if (!nd->root.mnt) 1661 set_root(nd); 1662 if (nd->flags & LOOKUP_RCU) { 1663 return follow_dotdot_rcu(nd); 1664 } else 1665 return follow_dotdot(nd); 1666 } 1667 return 0; 1668 } 1669 1670 static int pick_link(struct nameidata *nd, struct path *link, 1671 struct inode *inode, unsigned seq) 1672 { 1673 int error; 1674 struct saved *last; 1675 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1676 path_to_nameidata(link, nd); 1677 return -ELOOP; 1678 } 1679 if (!(nd->flags & LOOKUP_RCU)) { 1680 if (link->mnt == nd->path.mnt) 1681 mntget(link->mnt); 1682 } 1683 error = nd_alloc_stack(nd); 1684 if (unlikely(error)) { 1685 if (error == -ECHILD) { 1686 if (unlikely(!legitimize_path(nd, link, seq))) { 1687 drop_links(nd); 1688 nd->depth = 0; 1689 nd->flags &= ~LOOKUP_RCU; 1690 nd->path.mnt = NULL; 1691 nd->path.dentry = NULL; 1692 if (!(nd->flags & LOOKUP_ROOT)) 1693 nd->root.mnt = NULL; 1694 rcu_read_unlock(); 1695 } else if (likely(unlazy_walk(nd)) == 0) 1696 error = nd_alloc_stack(nd); 1697 } 1698 if (error) { 1699 path_put(link); 1700 return error; 1701 } 1702 } 1703 1704 last = nd->stack + nd->depth++; 1705 last->link = *link; 1706 clear_delayed_call(&last->done); 1707 nd->link_inode = inode; 1708 last->seq = seq; 1709 return 1; 1710 } 1711 1712 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1713 1714 /* 1715 * Do we need to follow links? We _really_ want to be able 1716 * to do this check without having to look at inode->i_op, 1717 * so we keep a cache of "no, this doesn't need follow_link" 1718 * for the common case. 1719 */ 1720 static inline int step_into(struct nameidata *nd, struct path *path, 1721 int flags, struct inode *inode, unsigned seq) 1722 { 1723 if (!(flags & WALK_MORE) && nd->depth) 1724 put_link(nd); 1725 if (likely(!d_is_symlink(path->dentry)) || 1726 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1727 /* not a symlink or should not follow */ 1728 path_to_nameidata(path, nd); 1729 nd->inode = inode; 1730 nd->seq = seq; 1731 return 0; 1732 } 1733 /* make sure that d_is_symlink above matches inode */ 1734 if (nd->flags & LOOKUP_RCU) { 1735 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1736 return -ECHILD; 1737 } 1738 return pick_link(nd, path, inode, seq); 1739 } 1740 1741 static int walk_component(struct nameidata *nd, int flags) 1742 { 1743 struct path path; 1744 struct inode *inode; 1745 unsigned seq; 1746 int err; 1747 /* 1748 * "." and ".." are special - ".." especially so because it has 1749 * to be able to know about the current root directory and 1750 * parent relationships. 1751 */ 1752 if (unlikely(nd->last_type != LAST_NORM)) { 1753 err = handle_dots(nd, nd->last_type); 1754 if (!(flags & WALK_MORE) && nd->depth) 1755 put_link(nd); 1756 return err; 1757 } 1758 err = lookup_fast(nd, &path, &inode, &seq); 1759 if (unlikely(err <= 0)) { 1760 if (err < 0) 1761 return err; 1762 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1763 nd->flags); 1764 if (IS_ERR(path.dentry)) 1765 return PTR_ERR(path.dentry); 1766 1767 path.mnt = nd->path.mnt; 1768 err = follow_managed(&path, nd); 1769 if (unlikely(err < 0)) 1770 return err; 1771 1772 if (unlikely(d_is_negative(path.dentry))) { 1773 path_to_nameidata(&path, nd); 1774 return -ENOENT; 1775 } 1776 1777 seq = 0; /* we are already out of RCU mode */ 1778 inode = d_backing_inode(path.dentry); 1779 } 1780 1781 return step_into(nd, &path, flags, inode, seq); 1782 } 1783 1784 /* 1785 * We can do the critical dentry name comparison and hashing 1786 * operations one word at a time, but we are limited to: 1787 * 1788 * - Architectures with fast unaligned word accesses. We could 1789 * do a "get_unaligned()" if this helps and is sufficiently 1790 * fast. 1791 * 1792 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1793 * do not trap on the (extremely unlikely) case of a page 1794 * crossing operation. 1795 * 1796 * - Furthermore, we need an efficient 64-bit compile for the 1797 * 64-bit case in order to generate the "number of bytes in 1798 * the final mask". Again, that could be replaced with a 1799 * efficient population count instruction or similar. 1800 */ 1801 #ifdef CONFIG_DCACHE_WORD_ACCESS 1802 1803 #include <asm/word-at-a-time.h> 1804 1805 #ifdef HASH_MIX 1806 1807 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1808 1809 #elif defined(CONFIG_64BIT) 1810 /* 1811 * Register pressure in the mixing function is an issue, particularly 1812 * on 32-bit x86, but almost any function requires one state value and 1813 * one temporary. Instead, use a function designed for two state values 1814 * and no temporaries. 1815 * 1816 * This function cannot create a collision in only two iterations, so 1817 * we have two iterations to achieve avalanche. In those two iterations, 1818 * we have six layers of mixing, which is enough to spread one bit's 1819 * influence out to 2^6 = 64 state bits. 1820 * 1821 * Rotate constants are scored by considering either 64 one-bit input 1822 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1823 * probability of that delta causing a change to each of the 128 output 1824 * bits, using a sample of random initial states. 1825 * 1826 * The Shannon entropy of the computed probabilities is then summed 1827 * to produce a score. Ideally, any input change has a 50% chance of 1828 * toggling any given output bit. 1829 * 1830 * Mixing scores (in bits) for (12,45): 1831 * Input delta: 1-bit 2-bit 1832 * 1 round: 713.3 42542.6 1833 * 2 rounds: 2753.7 140389.8 1834 * 3 rounds: 5954.1 233458.2 1835 * 4 rounds: 7862.6 256672.2 1836 * Perfect: 8192 258048 1837 * (64*128) (64*63/2 * 128) 1838 */ 1839 #define HASH_MIX(x, y, a) \ 1840 ( x ^= (a), \ 1841 y ^= x, x = rol64(x,12),\ 1842 x += y, y = rol64(y,45),\ 1843 y *= 9 ) 1844 1845 /* 1846 * Fold two longs into one 32-bit hash value. This must be fast, but 1847 * latency isn't quite as critical, as there is a fair bit of additional 1848 * work done before the hash value is used. 1849 */ 1850 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1851 { 1852 y ^= x * GOLDEN_RATIO_64; 1853 y *= GOLDEN_RATIO_64; 1854 return y >> 32; 1855 } 1856 1857 #else /* 32-bit case */ 1858 1859 /* 1860 * Mixing scores (in bits) for (7,20): 1861 * Input delta: 1-bit 2-bit 1862 * 1 round: 330.3 9201.6 1863 * 2 rounds: 1246.4 25475.4 1864 * 3 rounds: 1907.1 31295.1 1865 * 4 rounds: 2042.3 31718.6 1866 * Perfect: 2048 31744 1867 * (32*64) (32*31/2 * 64) 1868 */ 1869 #define HASH_MIX(x, y, a) \ 1870 ( x ^= (a), \ 1871 y ^= x, x = rol32(x, 7),\ 1872 x += y, y = rol32(y,20),\ 1873 y *= 9 ) 1874 1875 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1876 { 1877 /* Use arch-optimized multiply if one exists */ 1878 return __hash_32(y ^ __hash_32(x)); 1879 } 1880 1881 #endif 1882 1883 /* 1884 * Return the hash of a string of known length. This is carfully 1885 * designed to match hash_name(), which is the more critical function. 1886 * In particular, we must end by hashing a final word containing 0..7 1887 * payload bytes, to match the way that hash_name() iterates until it 1888 * finds the delimiter after the name. 1889 */ 1890 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1891 { 1892 unsigned long a, x = 0, y = (unsigned long)salt; 1893 1894 for (;;) { 1895 if (!len) 1896 goto done; 1897 a = load_unaligned_zeropad(name); 1898 if (len < sizeof(unsigned long)) 1899 break; 1900 HASH_MIX(x, y, a); 1901 name += sizeof(unsigned long); 1902 len -= sizeof(unsigned long); 1903 } 1904 x ^= a & bytemask_from_count(len); 1905 done: 1906 return fold_hash(x, y); 1907 } 1908 EXPORT_SYMBOL(full_name_hash); 1909 1910 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1911 u64 hashlen_string(const void *salt, const char *name) 1912 { 1913 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1914 unsigned long adata, mask, len; 1915 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1916 1917 len = 0; 1918 goto inside; 1919 1920 do { 1921 HASH_MIX(x, y, a); 1922 len += sizeof(unsigned long); 1923 inside: 1924 a = load_unaligned_zeropad(name+len); 1925 } while (!has_zero(a, &adata, &constants)); 1926 1927 adata = prep_zero_mask(a, adata, &constants); 1928 mask = create_zero_mask(adata); 1929 x ^= a & zero_bytemask(mask); 1930 1931 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1932 } 1933 EXPORT_SYMBOL(hashlen_string); 1934 1935 /* 1936 * Calculate the length and hash of the path component, and 1937 * return the "hash_len" as the result. 1938 */ 1939 static inline u64 hash_name(const void *salt, const char *name) 1940 { 1941 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1942 unsigned long adata, bdata, mask, len; 1943 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1944 1945 len = 0; 1946 goto inside; 1947 1948 do { 1949 HASH_MIX(x, y, a); 1950 len += sizeof(unsigned long); 1951 inside: 1952 a = load_unaligned_zeropad(name+len); 1953 b = a ^ REPEAT_BYTE('/'); 1954 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1955 1956 adata = prep_zero_mask(a, adata, &constants); 1957 bdata = prep_zero_mask(b, bdata, &constants); 1958 mask = create_zero_mask(adata | bdata); 1959 x ^= a & zero_bytemask(mask); 1960 1961 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1962 } 1963 1964 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 1965 1966 /* Return the hash of a string of known length */ 1967 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1968 { 1969 unsigned long hash = init_name_hash(salt); 1970 while (len--) 1971 hash = partial_name_hash((unsigned char)*name++, hash); 1972 return end_name_hash(hash); 1973 } 1974 EXPORT_SYMBOL(full_name_hash); 1975 1976 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1977 u64 hashlen_string(const void *salt, const char *name) 1978 { 1979 unsigned long hash = init_name_hash(salt); 1980 unsigned long len = 0, c; 1981 1982 c = (unsigned char)*name; 1983 while (c) { 1984 len++; 1985 hash = partial_name_hash(c, hash); 1986 c = (unsigned char)name[len]; 1987 } 1988 return hashlen_create(end_name_hash(hash), len); 1989 } 1990 EXPORT_SYMBOL(hashlen_string); 1991 1992 /* 1993 * We know there's a real path component here of at least 1994 * one character. 1995 */ 1996 static inline u64 hash_name(const void *salt, const char *name) 1997 { 1998 unsigned long hash = init_name_hash(salt); 1999 unsigned long len = 0, c; 2000 2001 c = (unsigned char)*name; 2002 do { 2003 len++; 2004 hash = partial_name_hash(c, hash); 2005 c = (unsigned char)name[len]; 2006 } while (c && c != '/'); 2007 return hashlen_create(end_name_hash(hash), len); 2008 } 2009 2010 #endif 2011 2012 /* 2013 * Name resolution. 2014 * This is the basic name resolution function, turning a pathname into 2015 * the final dentry. We expect 'base' to be positive and a directory. 2016 * 2017 * Returns 0 and nd will have valid dentry and mnt on success. 2018 * Returns error and drops reference to input namei data on failure. 2019 */ 2020 static int link_path_walk(const char *name, struct nameidata *nd) 2021 { 2022 int err; 2023 2024 while (*name=='/') 2025 name++; 2026 if (!*name) 2027 return 0; 2028 2029 /* At this point we know we have a real path component. */ 2030 for(;;) { 2031 u64 hash_len; 2032 int type; 2033 2034 err = may_lookup(nd); 2035 if (err) 2036 return err; 2037 2038 hash_len = hash_name(nd->path.dentry, name); 2039 2040 type = LAST_NORM; 2041 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2042 case 2: 2043 if (name[1] == '.') { 2044 type = LAST_DOTDOT; 2045 nd->flags |= LOOKUP_JUMPED; 2046 } 2047 break; 2048 case 1: 2049 type = LAST_DOT; 2050 } 2051 if (likely(type == LAST_NORM)) { 2052 struct dentry *parent = nd->path.dentry; 2053 nd->flags &= ~LOOKUP_JUMPED; 2054 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2055 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2056 err = parent->d_op->d_hash(parent, &this); 2057 if (err < 0) 2058 return err; 2059 hash_len = this.hash_len; 2060 name = this.name; 2061 } 2062 } 2063 2064 nd->last.hash_len = hash_len; 2065 nd->last.name = name; 2066 nd->last_type = type; 2067 2068 name += hashlen_len(hash_len); 2069 if (!*name) 2070 goto OK; 2071 /* 2072 * If it wasn't NUL, we know it was '/'. Skip that 2073 * slash, and continue until no more slashes. 2074 */ 2075 do { 2076 name++; 2077 } while (unlikely(*name == '/')); 2078 if (unlikely(!*name)) { 2079 OK: 2080 /* pathname body, done */ 2081 if (!nd->depth) 2082 return 0; 2083 name = nd->stack[nd->depth - 1].name; 2084 /* trailing symlink, done */ 2085 if (!name) 2086 return 0; 2087 /* last component of nested symlink */ 2088 err = walk_component(nd, WALK_FOLLOW); 2089 } else { 2090 /* not the last component */ 2091 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2092 } 2093 if (err < 0) 2094 return err; 2095 2096 if (err) { 2097 const char *s = get_link(nd); 2098 2099 if (IS_ERR(s)) 2100 return PTR_ERR(s); 2101 err = 0; 2102 if (unlikely(!s)) { 2103 /* jumped */ 2104 put_link(nd); 2105 } else { 2106 nd->stack[nd->depth - 1].name = name; 2107 name = s; 2108 continue; 2109 } 2110 } 2111 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2112 if (nd->flags & LOOKUP_RCU) { 2113 if (unlazy_walk(nd)) 2114 return -ECHILD; 2115 } 2116 return -ENOTDIR; 2117 } 2118 } 2119 } 2120 2121 static const char *path_init(struct nameidata *nd, unsigned flags) 2122 { 2123 const char *s = nd->name->name; 2124 2125 if (!*s) 2126 flags &= ~LOOKUP_RCU; 2127 2128 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2129 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2130 nd->depth = 0; 2131 if (flags & LOOKUP_ROOT) { 2132 struct dentry *root = nd->root.dentry; 2133 struct inode *inode = root->d_inode; 2134 if (*s && unlikely(!d_can_lookup(root))) 2135 return ERR_PTR(-ENOTDIR); 2136 nd->path = nd->root; 2137 nd->inode = inode; 2138 if (flags & LOOKUP_RCU) { 2139 rcu_read_lock(); 2140 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2141 nd->root_seq = nd->seq; 2142 nd->m_seq = read_seqbegin(&mount_lock); 2143 } else { 2144 path_get(&nd->path); 2145 } 2146 return s; 2147 } 2148 2149 nd->root.mnt = NULL; 2150 nd->path.mnt = NULL; 2151 nd->path.dentry = NULL; 2152 2153 nd->m_seq = read_seqbegin(&mount_lock); 2154 if (*s == '/') { 2155 if (flags & LOOKUP_RCU) 2156 rcu_read_lock(); 2157 set_root(nd); 2158 if (likely(!nd_jump_root(nd))) 2159 return s; 2160 nd->root.mnt = NULL; 2161 rcu_read_unlock(); 2162 return ERR_PTR(-ECHILD); 2163 } else if (nd->dfd == AT_FDCWD) { 2164 if (flags & LOOKUP_RCU) { 2165 struct fs_struct *fs = current->fs; 2166 unsigned seq; 2167 2168 rcu_read_lock(); 2169 2170 do { 2171 seq = read_seqcount_begin(&fs->seq); 2172 nd->path = fs->pwd; 2173 nd->inode = nd->path.dentry->d_inode; 2174 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2175 } while (read_seqcount_retry(&fs->seq, seq)); 2176 } else { 2177 get_fs_pwd(current->fs, &nd->path); 2178 nd->inode = nd->path.dentry->d_inode; 2179 } 2180 return s; 2181 } else { 2182 /* Caller must check execute permissions on the starting path component */ 2183 struct fd f = fdget_raw(nd->dfd); 2184 struct dentry *dentry; 2185 2186 if (!f.file) 2187 return ERR_PTR(-EBADF); 2188 2189 dentry = f.file->f_path.dentry; 2190 2191 if (*s) { 2192 if (!d_can_lookup(dentry)) { 2193 fdput(f); 2194 return ERR_PTR(-ENOTDIR); 2195 } 2196 } 2197 2198 nd->path = f.file->f_path; 2199 if (flags & LOOKUP_RCU) { 2200 rcu_read_lock(); 2201 nd->inode = nd->path.dentry->d_inode; 2202 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2203 } else { 2204 path_get(&nd->path); 2205 nd->inode = nd->path.dentry->d_inode; 2206 } 2207 fdput(f); 2208 return s; 2209 } 2210 } 2211 2212 static const char *trailing_symlink(struct nameidata *nd) 2213 { 2214 const char *s; 2215 int error = may_follow_link(nd); 2216 if (unlikely(error)) 2217 return ERR_PTR(error); 2218 nd->flags |= LOOKUP_PARENT; 2219 nd->stack[0].name = NULL; 2220 s = get_link(nd); 2221 return s ? s : ""; 2222 } 2223 2224 static inline int lookup_last(struct nameidata *nd) 2225 { 2226 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2227 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2228 2229 nd->flags &= ~LOOKUP_PARENT; 2230 return walk_component(nd, 0); 2231 } 2232 2233 static int handle_lookup_down(struct nameidata *nd) 2234 { 2235 struct path path = nd->path; 2236 struct inode *inode = nd->inode; 2237 unsigned seq = nd->seq; 2238 int err; 2239 2240 if (nd->flags & LOOKUP_RCU) { 2241 /* 2242 * don't bother with unlazy_walk on failure - we are 2243 * at the very beginning of walk, so we lose nothing 2244 * if we simply redo everything in non-RCU mode 2245 */ 2246 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2247 return -ECHILD; 2248 } else { 2249 dget(path.dentry); 2250 err = follow_managed(&path, nd); 2251 if (unlikely(err < 0)) 2252 return err; 2253 inode = d_backing_inode(path.dentry); 2254 seq = 0; 2255 } 2256 path_to_nameidata(&path, nd); 2257 nd->inode = inode; 2258 nd->seq = seq; 2259 return 0; 2260 } 2261 2262 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2263 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2264 { 2265 const char *s = path_init(nd, flags); 2266 int err; 2267 2268 if (IS_ERR(s)) 2269 return PTR_ERR(s); 2270 2271 if (unlikely(flags & LOOKUP_DOWN)) { 2272 err = handle_lookup_down(nd); 2273 if (unlikely(err < 0)) { 2274 terminate_walk(nd); 2275 return err; 2276 } 2277 } 2278 2279 while (!(err = link_path_walk(s, nd)) 2280 && ((err = lookup_last(nd)) > 0)) { 2281 s = trailing_symlink(nd); 2282 if (IS_ERR(s)) { 2283 err = PTR_ERR(s); 2284 break; 2285 } 2286 } 2287 if (!err) 2288 err = complete_walk(nd); 2289 2290 if (!err && nd->flags & LOOKUP_DIRECTORY) 2291 if (!d_can_lookup(nd->path.dentry)) 2292 err = -ENOTDIR; 2293 if (!err) { 2294 *path = nd->path; 2295 nd->path.mnt = NULL; 2296 nd->path.dentry = NULL; 2297 } 2298 terminate_walk(nd); 2299 return err; 2300 } 2301 2302 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2303 struct path *path, struct path *root) 2304 { 2305 int retval; 2306 struct nameidata nd; 2307 if (IS_ERR(name)) 2308 return PTR_ERR(name); 2309 if (unlikely(root)) { 2310 nd.root = *root; 2311 flags |= LOOKUP_ROOT; 2312 } 2313 set_nameidata(&nd, dfd, name); 2314 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2315 if (unlikely(retval == -ECHILD)) 2316 retval = path_lookupat(&nd, flags, path); 2317 if (unlikely(retval == -ESTALE)) 2318 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2319 2320 if (likely(!retval)) 2321 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2322 restore_nameidata(); 2323 putname(name); 2324 return retval; 2325 } 2326 2327 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2328 static int path_parentat(struct nameidata *nd, unsigned flags, 2329 struct path *parent) 2330 { 2331 const char *s = path_init(nd, flags); 2332 int err; 2333 if (IS_ERR(s)) 2334 return PTR_ERR(s); 2335 err = link_path_walk(s, nd); 2336 if (!err) 2337 err = complete_walk(nd); 2338 if (!err) { 2339 *parent = nd->path; 2340 nd->path.mnt = NULL; 2341 nd->path.dentry = NULL; 2342 } 2343 terminate_walk(nd); 2344 return err; 2345 } 2346 2347 static struct filename *filename_parentat(int dfd, struct filename *name, 2348 unsigned int flags, struct path *parent, 2349 struct qstr *last, int *type) 2350 { 2351 int retval; 2352 struct nameidata nd; 2353 2354 if (IS_ERR(name)) 2355 return name; 2356 set_nameidata(&nd, dfd, name); 2357 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2358 if (unlikely(retval == -ECHILD)) 2359 retval = path_parentat(&nd, flags, parent); 2360 if (unlikely(retval == -ESTALE)) 2361 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2362 if (likely(!retval)) { 2363 *last = nd.last; 2364 *type = nd.last_type; 2365 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2366 } else { 2367 putname(name); 2368 name = ERR_PTR(retval); 2369 } 2370 restore_nameidata(); 2371 return name; 2372 } 2373 2374 /* does lookup, returns the object with parent locked */ 2375 struct dentry *kern_path_locked(const char *name, struct path *path) 2376 { 2377 struct filename *filename; 2378 struct dentry *d; 2379 struct qstr last; 2380 int type; 2381 2382 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2383 &last, &type); 2384 if (IS_ERR(filename)) 2385 return ERR_CAST(filename); 2386 if (unlikely(type != LAST_NORM)) { 2387 path_put(path); 2388 putname(filename); 2389 return ERR_PTR(-EINVAL); 2390 } 2391 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2392 d = __lookup_hash(&last, path->dentry, 0); 2393 if (IS_ERR(d)) { 2394 inode_unlock(path->dentry->d_inode); 2395 path_put(path); 2396 } 2397 putname(filename); 2398 return d; 2399 } 2400 2401 int kern_path(const char *name, unsigned int flags, struct path *path) 2402 { 2403 return filename_lookup(AT_FDCWD, getname_kernel(name), 2404 flags, path, NULL); 2405 } 2406 EXPORT_SYMBOL(kern_path); 2407 2408 /** 2409 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2410 * @dentry: pointer to dentry of the base directory 2411 * @mnt: pointer to vfs mount of the base directory 2412 * @name: pointer to file name 2413 * @flags: lookup flags 2414 * @path: pointer to struct path to fill 2415 */ 2416 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2417 const char *name, unsigned int flags, 2418 struct path *path) 2419 { 2420 struct path root = {.mnt = mnt, .dentry = dentry}; 2421 /* the first argument of filename_lookup() is ignored with root */ 2422 return filename_lookup(AT_FDCWD, getname_kernel(name), 2423 flags , path, &root); 2424 } 2425 EXPORT_SYMBOL(vfs_path_lookup); 2426 2427 /** 2428 * lookup_one_len - filesystem helper to lookup single pathname component 2429 * @name: pathname component to lookup 2430 * @base: base directory to lookup from 2431 * @len: maximum length @len should be interpreted to 2432 * 2433 * Note that this routine is purely a helper for filesystem usage and should 2434 * not be called by generic code. 2435 * 2436 * The caller must hold base->i_mutex. 2437 */ 2438 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2439 { 2440 struct qstr this; 2441 unsigned int c; 2442 int err; 2443 2444 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2445 2446 this.name = name; 2447 this.len = len; 2448 this.hash = full_name_hash(base, name, len); 2449 if (!len) 2450 return ERR_PTR(-EACCES); 2451 2452 if (unlikely(name[0] == '.')) { 2453 if (len < 2 || (len == 2 && name[1] == '.')) 2454 return ERR_PTR(-EACCES); 2455 } 2456 2457 while (len--) { 2458 c = *(const unsigned char *)name++; 2459 if (c == '/' || c == '\0') 2460 return ERR_PTR(-EACCES); 2461 } 2462 /* 2463 * See if the low-level filesystem might want 2464 * to use its own hash.. 2465 */ 2466 if (base->d_flags & DCACHE_OP_HASH) { 2467 int err = base->d_op->d_hash(base, &this); 2468 if (err < 0) 2469 return ERR_PTR(err); 2470 } 2471 2472 err = inode_permission(base->d_inode, MAY_EXEC); 2473 if (err) 2474 return ERR_PTR(err); 2475 2476 return __lookup_hash(&this, base, 0); 2477 } 2478 EXPORT_SYMBOL(lookup_one_len); 2479 2480 /** 2481 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2482 * @name: pathname component to lookup 2483 * @base: base directory to lookup from 2484 * @len: maximum length @len should be interpreted to 2485 * 2486 * Note that this routine is purely a helper for filesystem usage and should 2487 * not be called by generic code. 2488 * 2489 * Unlike lookup_one_len, it should be called without the parent 2490 * i_mutex held, and will take the i_mutex itself if necessary. 2491 */ 2492 struct dentry *lookup_one_len_unlocked(const char *name, 2493 struct dentry *base, int len) 2494 { 2495 struct qstr this; 2496 unsigned int c; 2497 int err; 2498 struct dentry *ret; 2499 2500 this.name = name; 2501 this.len = len; 2502 this.hash = full_name_hash(base, name, len); 2503 if (!len) 2504 return ERR_PTR(-EACCES); 2505 2506 if (unlikely(name[0] == '.')) { 2507 if (len < 2 || (len == 2 && name[1] == '.')) 2508 return ERR_PTR(-EACCES); 2509 } 2510 2511 while (len--) { 2512 c = *(const unsigned char *)name++; 2513 if (c == '/' || c == '\0') 2514 return ERR_PTR(-EACCES); 2515 } 2516 /* 2517 * See if the low-level filesystem might want 2518 * to use its own hash.. 2519 */ 2520 if (base->d_flags & DCACHE_OP_HASH) { 2521 int err = base->d_op->d_hash(base, &this); 2522 if (err < 0) 2523 return ERR_PTR(err); 2524 } 2525 2526 err = inode_permission(base->d_inode, MAY_EXEC); 2527 if (err) 2528 return ERR_PTR(err); 2529 2530 ret = lookup_dcache(&this, base, 0); 2531 if (!ret) 2532 ret = lookup_slow(&this, base, 0); 2533 return ret; 2534 } 2535 EXPORT_SYMBOL(lookup_one_len_unlocked); 2536 2537 #ifdef CONFIG_UNIX98_PTYS 2538 int path_pts(struct path *path) 2539 { 2540 /* Find something mounted on "pts" in the same directory as 2541 * the input path. 2542 */ 2543 struct dentry *child, *parent; 2544 struct qstr this; 2545 int ret; 2546 2547 ret = path_parent_directory(path); 2548 if (ret) 2549 return ret; 2550 2551 parent = path->dentry; 2552 this.name = "pts"; 2553 this.len = 3; 2554 child = d_hash_and_lookup(parent, &this); 2555 if (!child) 2556 return -ENOENT; 2557 2558 path->dentry = child; 2559 dput(parent); 2560 follow_mount(path); 2561 return 0; 2562 } 2563 #endif 2564 2565 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2566 struct path *path, int *empty) 2567 { 2568 return filename_lookup(dfd, getname_flags(name, flags, empty), 2569 flags, path, NULL); 2570 } 2571 EXPORT_SYMBOL(user_path_at_empty); 2572 2573 /** 2574 * mountpoint_last - look up last component for umount 2575 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2576 * 2577 * This is a special lookup_last function just for umount. In this case, we 2578 * need to resolve the path without doing any revalidation. 2579 * 2580 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2581 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2582 * in almost all cases, this lookup will be served out of the dcache. The only 2583 * cases where it won't are if nd->last refers to a symlink or the path is 2584 * bogus and it doesn't exist. 2585 * 2586 * Returns: 2587 * -error: if there was an error during lookup. This includes -ENOENT if the 2588 * lookup found a negative dentry. 2589 * 2590 * 0: if we successfully resolved nd->last and found it to not to be a 2591 * symlink that needs to be followed. 2592 * 2593 * 1: if we successfully resolved nd->last and found it to be a symlink 2594 * that needs to be followed. 2595 */ 2596 static int 2597 mountpoint_last(struct nameidata *nd) 2598 { 2599 int error = 0; 2600 struct dentry *dir = nd->path.dentry; 2601 struct path path; 2602 2603 /* If we're in rcuwalk, drop out of it to handle last component */ 2604 if (nd->flags & LOOKUP_RCU) { 2605 if (unlazy_walk(nd)) 2606 return -ECHILD; 2607 } 2608 2609 nd->flags &= ~LOOKUP_PARENT; 2610 2611 if (unlikely(nd->last_type != LAST_NORM)) { 2612 error = handle_dots(nd, nd->last_type); 2613 if (error) 2614 return error; 2615 path.dentry = dget(nd->path.dentry); 2616 } else { 2617 path.dentry = d_lookup(dir, &nd->last); 2618 if (!path.dentry) { 2619 /* 2620 * No cached dentry. Mounted dentries are pinned in the 2621 * cache, so that means that this dentry is probably 2622 * a symlink or the path doesn't actually point 2623 * to a mounted dentry. 2624 */ 2625 path.dentry = lookup_slow(&nd->last, dir, 2626 nd->flags | LOOKUP_NO_REVAL); 2627 if (IS_ERR(path.dentry)) 2628 return PTR_ERR(path.dentry); 2629 } 2630 } 2631 if (d_is_negative(path.dentry)) { 2632 dput(path.dentry); 2633 return -ENOENT; 2634 } 2635 path.mnt = nd->path.mnt; 2636 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2637 } 2638 2639 /** 2640 * path_mountpoint - look up a path to be umounted 2641 * @nd: lookup context 2642 * @flags: lookup flags 2643 * @path: pointer to container for result 2644 * 2645 * Look up the given name, but don't attempt to revalidate the last component. 2646 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2647 */ 2648 static int 2649 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2650 { 2651 const char *s = path_init(nd, flags); 2652 int err; 2653 if (IS_ERR(s)) 2654 return PTR_ERR(s); 2655 while (!(err = link_path_walk(s, nd)) && 2656 (err = mountpoint_last(nd)) > 0) { 2657 s = trailing_symlink(nd); 2658 if (IS_ERR(s)) { 2659 err = PTR_ERR(s); 2660 break; 2661 } 2662 } 2663 if (!err) { 2664 *path = nd->path; 2665 nd->path.mnt = NULL; 2666 nd->path.dentry = NULL; 2667 follow_mount(path); 2668 } 2669 terminate_walk(nd); 2670 return err; 2671 } 2672 2673 static int 2674 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2675 unsigned int flags) 2676 { 2677 struct nameidata nd; 2678 int error; 2679 if (IS_ERR(name)) 2680 return PTR_ERR(name); 2681 set_nameidata(&nd, dfd, name); 2682 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2683 if (unlikely(error == -ECHILD)) 2684 error = path_mountpoint(&nd, flags, path); 2685 if (unlikely(error == -ESTALE)) 2686 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2687 if (likely(!error)) 2688 audit_inode(name, path->dentry, 0); 2689 restore_nameidata(); 2690 putname(name); 2691 return error; 2692 } 2693 2694 /** 2695 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2696 * @dfd: directory file descriptor 2697 * @name: pathname from userland 2698 * @flags: lookup flags 2699 * @path: pointer to container to hold result 2700 * 2701 * A umount is a special case for path walking. We're not actually interested 2702 * in the inode in this situation, and ESTALE errors can be a problem. We 2703 * simply want track down the dentry and vfsmount attached at the mountpoint 2704 * and avoid revalidating the last component. 2705 * 2706 * Returns 0 and populates "path" on success. 2707 */ 2708 int 2709 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2710 struct path *path) 2711 { 2712 return filename_mountpoint(dfd, getname(name), path, flags); 2713 } 2714 2715 int 2716 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2717 unsigned int flags) 2718 { 2719 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2720 } 2721 EXPORT_SYMBOL(kern_path_mountpoint); 2722 2723 int __check_sticky(struct inode *dir, struct inode *inode) 2724 { 2725 kuid_t fsuid = current_fsuid(); 2726 2727 if (uid_eq(inode->i_uid, fsuid)) 2728 return 0; 2729 if (uid_eq(dir->i_uid, fsuid)) 2730 return 0; 2731 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2732 } 2733 EXPORT_SYMBOL(__check_sticky); 2734 2735 /* 2736 * Check whether we can remove a link victim from directory dir, check 2737 * whether the type of victim is right. 2738 * 1. We can't do it if dir is read-only (done in permission()) 2739 * 2. We should have write and exec permissions on dir 2740 * 3. We can't remove anything from append-only dir 2741 * 4. We can't do anything with immutable dir (done in permission()) 2742 * 5. If the sticky bit on dir is set we should either 2743 * a. be owner of dir, or 2744 * b. be owner of victim, or 2745 * c. have CAP_FOWNER capability 2746 * 6. If the victim is append-only or immutable we can't do antyhing with 2747 * links pointing to it. 2748 * 7. If the victim has an unknown uid or gid we can't change the inode. 2749 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2750 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2751 * 10. We can't remove a root or mountpoint. 2752 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2753 * nfs_async_unlink(). 2754 */ 2755 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2756 { 2757 struct inode *inode = d_backing_inode(victim); 2758 int error; 2759 2760 if (d_is_negative(victim)) 2761 return -ENOENT; 2762 BUG_ON(!inode); 2763 2764 BUG_ON(victim->d_parent->d_inode != dir); 2765 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2766 2767 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2768 if (error) 2769 return error; 2770 if (IS_APPEND(dir)) 2771 return -EPERM; 2772 2773 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2774 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2775 return -EPERM; 2776 if (isdir) { 2777 if (!d_is_dir(victim)) 2778 return -ENOTDIR; 2779 if (IS_ROOT(victim)) 2780 return -EBUSY; 2781 } else if (d_is_dir(victim)) 2782 return -EISDIR; 2783 if (IS_DEADDIR(dir)) 2784 return -ENOENT; 2785 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2786 return -EBUSY; 2787 return 0; 2788 } 2789 2790 /* Check whether we can create an object with dentry child in directory 2791 * dir. 2792 * 1. We can't do it if child already exists (open has special treatment for 2793 * this case, but since we are inlined it's OK) 2794 * 2. We can't do it if dir is read-only (done in permission()) 2795 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2796 * 4. We should have write and exec permissions on dir 2797 * 5. We can't do it if dir is immutable (done in permission()) 2798 */ 2799 static inline int may_create(struct inode *dir, struct dentry *child) 2800 { 2801 struct user_namespace *s_user_ns; 2802 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2803 if (child->d_inode) 2804 return -EEXIST; 2805 if (IS_DEADDIR(dir)) 2806 return -ENOENT; 2807 s_user_ns = dir->i_sb->s_user_ns; 2808 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2809 !kgid_has_mapping(s_user_ns, current_fsgid())) 2810 return -EOVERFLOW; 2811 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2812 } 2813 2814 /* 2815 * p1 and p2 should be directories on the same fs. 2816 */ 2817 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2818 { 2819 struct dentry *p; 2820 2821 if (p1 == p2) { 2822 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2823 return NULL; 2824 } 2825 2826 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2827 2828 p = d_ancestor(p2, p1); 2829 if (p) { 2830 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2831 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2832 return p; 2833 } 2834 2835 p = d_ancestor(p1, p2); 2836 if (p) { 2837 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2838 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2839 return p; 2840 } 2841 2842 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2843 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2844 return NULL; 2845 } 2846 EXPORT_SYMBOL(lock_rename); 2847 2848 void unlock_rename(struct dentry *p1, struct dentry *p2) 2849 { 2850 inode_unlock(p1->d_inode); 2851 if (p1 != p2) { 2852 inode_unlock(p2->d_inode); 2853 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2854 } 2855 } 2856 EXPORT_SYMBOL(unlock_rename); 2857 2858 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2859 bool want_excl) 2860 { 2861 int error = may_create(dir, dentry); 2862 if (error) 2863 return error; 2864 2865 if (!dir->i_op->create) 2866 return -EACCES; /* shouldn't it be ENOSYS? */ 2867 mode &= S_IALLUGO; 2868 mode |= S_IFREG; 2869 error = security_inode_create(dir, dentry, mode); 2870 if (error) 2871 return error; 2872 error = dir->i_op->create(dir, dentry, mode, want_excl); 2873 if (!error) 2874 fsnotify_create(dir, dentry); 2875 return error; 2876 } 2877 EXPORT_SYMBOL(vfs_create); 2878 2879 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2880 int (*f)(struct dentry *, umode_t, void *), 2881 void *arg) 2882 { 2883 struct inode *dir = dentry->d_parent->d_inode; 2884 int error = may_create(dir, dentry); 2885 if (error) 2886 return error; 2887 2888 mode &= S_IALLUGO; 2889 mode |= S_IFREG; 2890 error = security_inode_create(dir, dentry, mode); 2891 if (error) 2892 return error; 2893 error = f(dentry, mode, arg); 2894 if (!error) 2895 fsnotify_create(dir, dentry); 2896 return error; 2897 } 2898 EXPORT_SYMBOL(vfs_mkobj); 2899 2900 bool may_open_dev(const struct path *path) 2901 { 2902 return !(path->mnt->mnt_flags & MNT_NODEV) && 2903 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2904 } 2905 2906 static int may_open(const struct path *path, int acc_mode, int flag) 2907 { 2908 struct dentry *dentry = path->dentry; 2909 struct inode *inode = dentry->d_inode; 2910 int error; 2911 2912 if (!inode) 2913 return -ENOENT; 2914 2915 switch (inode->i_mode & S_IFMT) { 2916 case S_IFLNK: 2917 return -ELOOP; 2918 case S_IFDIR: 2919 if (acc_mode & MAY_WRITE) 2920 return -EISDIR; 2921 break; 2922 case S_IFBLK: 2923 case S_IFCHR: 2924 if (!may_open_dev(path)) 2925 return -EACCES; 2926 /*FALLTHRU*/ 2927 case S_IFIFO: 2928 case S_IFSOCK: 2929 flag &= ~O_TRUNC; 2930 break; 2931 } 2932 2933 error = inode_permission(inode, MAY_OPEN | acc_mode); 2934 if (error) 2935 return error; 2936 2937 /* 2938 * An append-only file must be opened in append mode for writing. 2939 */ 2940 if (IS_APPEND(inode)) { 2941 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2942 return -EPERM; 2943 if (flag & O_TRUNC) 2944 return -EPERM; 2945 } 2946 2947 /* O_NOATIME can only be set by the owner or superuser */ 2948 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2949 return -EPERM; 2950 2951 return 0; 2952 } 2953 2954 static int handle_truncate(struct file *filp) 2955 { 2956 const struct path *path = &filp->f_path; 2957 struct inode *inode = path->dentry->d_inode; 2958 int error = get_write_access(inode); 2959 if (error) 2960 return error; 2961 /* 2962 * Refuse to truncate files with mandatory locks held on them. 2963 */ 2964 error = locks_verify_locked(filp); 2965 if (!error) 2966 error = security_path_truncate(path); 2967 if (!error) { 2968 error = do_truncate(path->dentry, 0, 2969 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2970 filp); 2971 } 2972 put_write_access(inode); 2973 return error; 2974 } 2975 2976 static inline int open_to_namei_flags(int flag) 2977 { 2978 if ((flag & O_ACCMODE) == 3) 2979 flag--; 2980 return flag; 2981 } 2982 2983 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2984 { 2985 struct user_namespace *s_user_ns; 2986 int error = security_path_mknod(dir, dentry, mode, 0); 2987 if (error) 2988 return error; 2989 2990 s_user_ns = dir->dentry->d_sb->s_user_ns; 2991 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2992 !kgid_has_mapping(s_user_ns, current_fsgid())) 2993 return -EOVERFLOW; 2994 2995 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2996 if (error) 2997 return error; 2998 2999 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3000 } 3001 3002 /* 3003 * Attempt to atomically look up, create and open a file from a negative 3004 * dentry. 3005 * 3006 * Returns 0 if successful. The file will have been created and attached to 3007 * @file by the filesystem calling finish_open(). 3008 * 3009 * Returns 1 if the file was looked up only or didn't need creating. The 3010 * caller will need to perform the open themselves. @path will have been 3011 * updated to point to the new dentry. This may be negative. 3012 * 3013 * Returns an error code otherwise. 3014 */ 3015 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3016 struct path *path, struct file *file, 3017 const struct open_flags *op, 3018 int open_flag, umode_t mode, 3019 int *opened) 3020 { 3021 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3022 struct inode *dir = nd->path.dentry->d_inode; 3023 int error; 3024 3025 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3026 open_flag &= ~O_TRUNC; 3027 3028 if (nd->flags & LOOKUP_DIRECTORY) 3029 open_flag |= O_DIRECTORY; 3030 3031 file->f_path.dentry = DENTRY_NOT_SET; 3032 file->f_path.mnt = nd->path.mnt; 3033 error = dir->i_op->atomic_open(dir, dentry, file, 3034 open_to_namei_flags(open_flag), 3035 mode, opened); 3036 d_lookup_done(dentry); 3037 if (!error) { 3038 /* 3039 * We didn't have the inode before the open, so check open 3040 * permission here. 3041 */ 3042 int acc_mode = op->acc_mode; 3043 if (*opened & FILE_CREATED) { 3044 WARN_ON(!(open_flag & O_CREAT)); 3045 fsnotify_create(dir, dentry); 3046 acc_mode = 0; 3047 } 3048 error = may_open(&file->f_path, acc_mode, open_flag); 3049 if (WARN_ON(error > 0)) 3050 error = -EINVAL; 3051 } else if (error > 0) { 3052 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3053 error = -EIO; 3054 } else { 3055 if (file->f_path.dentry) { 3056 dput(dentry); 3057 dentry = file->f_path.dentry; 3058 } 3059 if (*opened & FILE_CREATED) 3060 fsnotify_create(dir, dentry); 3061 if (unlikely(d_is_negative(dentry))) { 3062 error = -ENOENT; 3063 } else { 3064 path->dentry = dentry; 3065 path->mnt = nd->path.mnt; 3066 return 1; 3067 } 3068 } 3069 } 3070 dput(dentry); 3071 return error; 3072 } 3073 3074 /* 3075 * Look up and maybe create and open the last component. 3076 * 3077 * Must be called with i_mutex held on parent. 3078 * 3079 * Returns 0 if the file was successfully atomically created (if necessary) and 3080 * opened. In this case the file will be returned attached to @file. 3081 * 3082 * Returns 1 if the file was not completely opened at this time, though lookups 3083 * and creations will have been performed and the dentry returned in @path will 3084 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 3085 * specified then a negative dentry may be returned. 3086 * 3087 * An error code is returned otherwise. 3088 * 3089 * FILE_CREATE will be set in @*opened if the dentry was created and will be 3090 * cleared otherwise prior to returning. 3091 */ 3092 static int lookup_open(struct nameidata *nd, struct path *path, 3093 struct file *file, 3094 const struct open_flags *op, 3095 bool got_write, int *opened) 3096 { 3097 struct dentry *dir = nd->path.dentry; 3098 struct inode *dir_inode = dir->d_inode; 3099 int open_flag = op->open_flag; 3100 struct dentry *dentry; 3101 int error, create_error = 0; 3102 umode_t mode = op->mode; 3103 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3104 3105 if (unlikely(IS_DEADDIR(dir_inode))) 3106 return -ENOENT; 3107 3108 *opened &= ~FILE_CREATED; 3109 dentry = d_lookup(dir, &nd->last); 3110 for (;;) { 3111 if (!dentry) { 3112 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3113 if (IS_ERR(dentry)) 3114 return PTR_ERR(dentry); 3115 } 3116 if (d_in_lookup(dentry)) 3117 break; 3118 3119 error = d_revalidate(dentry, nd->flags); 3120 if (likely(error > 0)) 3121 break; 3122 if (error) 3123 goto out_dput; 3124 d_invalidate(dentry); 3125 dput(dentry); 3126 dentry = NULL; 3127 } 3128 if (dentry->d_inode) { 3129 /* Cached positive dentry: will open in f_op->open */ 3130 goto out_no_open; 3131 } 3132 3133 /* 3134 * Checking write permission is tricky, bacuse we don't know if we are 3135 * going to actually need it: O_CREAT opens should work as long as the 3136 * file exists. But checking existence breaks atomicity. The trick is 3137 * to check access and if not granted clear O_CREAT from the flags. 3138 * 3139 * Another problem is returing the "right" error value (e.g. for an 3140 * O_EXCL open we want to return EEXIST not EROFS). 3141 */ 3142 if (open_flag & O_CREAT) { 3143 if (!IS_POSIXACL(dir->d_inode)) 3144 mode &= ~current_umask(); 3145 if (unlikely(!got_write)) { 3146 create_error = -EROFS; 3147 open_flag &= ~O_CREAT; 3148 if (open_flag & (O_EXCL | O_TRUNC)) 3149 goto no_open; 3150 /* No side effects, safe to clear O_CREAT */ 3151 } else { 3152 create_error = may_o_create(&nd->path, dentry, mode); 3153 if (create_error) { 3154 open_flag &= ~O_CREAT; 3155 if (open_flag & O_EXCL) 3156 goto no_open; 3157 } 3158 } 3159 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3160 unlikely(!got_write)) { 3161 /* 3162 * No O_CREATE -> atomicity not a requirement -> fall 3163 * back to lookup + open 3164 */ 3165 goto no_open; 3166 } 3167 3168 if (dir_inode->i_op->atomic_open) { 3169 error = atomic_open(nd, dentry, path, file, op, open_flag, 3170 mode, opened); 3171 if (unlikely(error == -ENOENT) && create_error) 3172 error = create_error; 3173 return error; 3174 } 3175 3176 no_open: 3177 if (d_in_lookup(dentry)) { 3178 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3179 nd->flags); 3180 d_lookup_done(dentry); 3181 if (unlikely(res)) { 3182 if (IS_ERR(res)) { 3183 error = PTR_ERR(res); 3184 goto out_dput; 3185 } 3186 dput(dentry); 3187 dentry = res; 3188 } 3189 } 3190 3191 /* Negative dentry, just create the file */ 3192 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3193 *opened |= FILE_CREATED; 3194 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3195 if (!dir_inode->i_op->create) { 3196 error = -EACCES; 3197 goto out_dput; 3198 } 3199 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3200 open_flag & O_EXCL); 3201 if (error) 3202 goto out_dput; 3203 fsnotify_create(dir_inode, dentry); 3204 } 3205 if (unlikely(create_error) && !dentry->d_inode) { 3206 error = create_error; 3207 goto out_dput; 3208 } 3209 out_no_open: 3210 path->dentry = dentry; 3211 path->mnt = nd->path.mnt; 3212 return 1; 3213 3214 out_dput: 3215 dput(dentry); 3216 return error; 3217 } 3218 3219 /* 3220 * Handle the last step of open() 3221 */ 3222 static int do_last(struct nameidata *nd, 3223 struct file *file, const struct open_flags *op, 3224 int *opened) 3225 { 3226 struct dentry *dir = nd->path.dentry; 3227 int open_flag = op->open_flag; 3228 bool will_truncate = (open_flag & O_TRUNC) != 0; 3229 bool got_write = false; 3230 int acc_mode = op->acc_mode; 3231 unsigned seq; 3232 struct inode *inode; 3233 struct path path; 3234 int error; 3235 3236 nd->flags &= ~LOOKUP_PARENT; 3237 nd->flags |= op->intent; 3238 3239 if (nd->last_type != LAST_NORM) { 3240 error = handle_dots(nd, nd->last_type); 3241 if (unlikely(error)) 3242 return error; 3243 goto finish_open; 3244 } 3245 3246 if (!(open_flag & O_CREAT)) { 3247 if (nd->last.name[nd->last.len]) 3248 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3249 /* we _can_ be in RCU mode here */ 3250 error = lookup_fast(nd, &path, &inode, &seq); 3251 if (likely(error > 0)) 3252 goto finish_lookup; 3253 3254 if (error < 0) 3255 return error; 3256 3257 BUG_ON(nd->inode != dir->d_inode); 3258 BUG_ON(nd->flags & LOOKUP_RCU); 3259 } else { 3260 /* create side of things */ 3261 /* 3262 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3263 * has been cleared when we got to the last component we are 3264 * about to look up 3265 */ 3266 error = complete_walk(nd); 3267 if (error) 3268 return error; 3269 3270 audit_inode(nd->name, dir, LOOKUP_PARENT); 3271 /* trailing slashes? */ 3272 if (unlikely(nd->last.name[nd->last.len])) 3273 return -EISDIR; 3274 } 3275 3276 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3277 error = mnt_want_write(nd->path.mnt); 3278 if (!error) 3279 got_write = true; 3280 /* 3281 * do _not_ fail yet - we might not need that or fail with 3282 * a different error; let lookup_open() decide; we'll be 3283 * dropping this one anyway. 3284 */ 3285 } 3286 if (open_flag & O_CREAT) 3287 inode_lock(dir->d_inode); 3288 else 3289 inode_lock_shared(dir->d_inode); 3290 error = lookup_open(nd, &path, file, op, got_write, opened); 3291 if (open_flag & O_CREAT) 3292 inode_unlock(dir->d_inode); 3293 else 3294 inode_unlock_shared(dir->d_inode); 3295 3296 if (error <= 0) { 3297 if (error) 3298 goto out; 3299 3300 if ((*opened & FILE_CREATED) || 3301 !S_ISREG(file_inode(file)->i_mode)) 3302 will_truncate = false; 3303 3304 audit_inode(nd->name, file->f_path.dentry, 0); 3305 goto opened; 3306 } 3307 3308 if (*opened & FILE_CREATED) { 3309 /* Don't check for write permission, don't truncate */ 3310 open_flag &= ~O_TRUNC; 3311 will_truncate = false; 3312 acc_mode = 0; 3313 path_to_nameidata(&path, nd); 3314 goto finish_open_created; 3315 } 3316 3317 /* 3318 * If atomic_open() acquired write access it is dropped now due to 3319 * possible mount and symlink following (this might be optimized away if 3320 * necessary...) 3321 */ 3322 if (got_write) { 3323 mnt_drop_write(nd->path.mnt); 3324 got_write = false; 3325 } 3326 3327 error = follow_managed(&path, nd); 3328 if (unlikely(error < 0)) 3329 return error; 3330 3331 if (unlikely(d_is_negative(path.dentry))) { 3332 path_to_nameidata(&path, nd); 3333 return -ENOENT; 3334 } 3335 3336 /* 3337 * create/update audit record if it already exists. 3338 */ 3339 audit_inode(nd->name, path.dentry, 0); 3340 3341 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3342 path_to_nameidata(&path, nd); 3343 return -EEXIST; 3344 } 3345 3346 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3347 inode = d_backing_inode(path.dentry); 3348 finish_lookup: 3349 error = step_into(nd, &path, 0, inode, seq); 3350 if (unlikely(error)) 3351 return error; 3352 finish_open: 3353 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3354 error = complete_walk(nd); 3355 if (error) 3356 return error; 3357 audit_inode(nd->name, nd->path.dentry, 0); 3358 error = -EISDIR; 3359 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3360 goto out; 3361 error = -ENOTDIR; 3362 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3363 goto out; 3364 if (!d_is_reg(nd->path.dentry)) 3365 will_truncate = false; 3366 3367 if (will_truncate) { 3368 error = mnt_want_write(nd->path.mnt); 3369 if (error) 3370 goto out; 3371 got_write = true; 3372 } 3373 finish_open_created: 3374 error = may_open(&nd->path, acc_mode, open_flag); 3375 if (error) 3376 goto out; 3377 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3378 error = vfs_open(&nd->path, file, current_cred()); 3379 if (error) 3380 goto out; 3381 *opened |= FILE_OPENED; 3382 opened: 3383 error = open_check_o_direct(file); 3384 if (!error) 3385 error = ima_file_check(file, op->acc_mode, *opened); 3386 if (!error && will_truncate) 3387 error = handle_truncate(file); 3388 out: 3389 if (unlikely(error) && (*opened & FILE_OPENED)) 3390 fput(file); 3391 if (unlikely(error > 0)) { 3392 WARN_ON(1); 3393 error = -EINVAL; 3394 } 3395 if (got_write) 3396 mnt_drop_write(nd->path.mnt); 3397 return error; 3398 } 3399 3400 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3401 { 3402 struct dentry *child = NULL; 3403 struct inode *dir = dentry->d_inode; 3404 struct inode *inode; 3405 int error; 3406 3407 /* we want directory to be writable */ 3408 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3409 if (error) 3410 goto out_err; 3411 error = -EOPNOTSUPP; 3412 if (!dir->i_op->tmpfile) 3413 goto out_err; 3414 error = -ENOMEM; 3415 child = d_alloc(dentry, &slash_name); 3416 if (unlikely(!child)) 3417 goto out_err; 3418 error = dir->i_op->tmpfile(dir, child, mode); 3419 if (error) 3420 goto out_err; 3421 error = -ENOENT; 3422 inode = child->d_inode; 3423 if (unlikely(!inode)) 3424 goto out_err; 3425 if (!(open_flag & O_EXCL)) { 3426 spin_lock(&inode->i_lock); 3427 inode->i_state |= I_LINKABLE; 3428 spin_unlock(&inode->i_lock); 3429 } 3430 return child; 3431 3432 out_err: 3433 dput(child); 3434 return ERR_PTR(error); 3435 } 3436 EXPORT_SYMBOL(vfs_tmpfile); 3437 3438 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3439 const struct open_flags *op, 3440 struct file *file, int *opened) 3441 { 3442 struct dentry *child; 3443 struct path path; 3444 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3445 if (unlikely(error)) 3446 return error; 3447 error = mnt_want_write(path.mnt); 3448 if (unlikely(error)) 3449 goto out; 3450 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3451 error = PTR_ERR(child); 3452 if (IS_ERR(child)) 3453 goto out2; 3454 dput(path.dentry); 3455 path.dentry = child; 3456 audit_inode(nd->name, child, 0); 3457 /* Don't check for other permissions, the inode was just created */ 3458 error = may_open(&path, 0, op->open_flag); 3459 if (error) 3460 goto out2; 3461 file->f_path.mnt = path.mnt; 3462 error = finish_open(file, child, NULL, opened); 3463 if (error) 3464 goto out2; 3465 error = open_check_o_direct(file); 3466 if (error) 3467 fput(file); 3468 out2: 3469 mnt_drop_write(path.mnt); 3470 out: 3471 path_put(&path); 3472 return error; 3473 } 3474 3475 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3476 { 3477 struct path path; 3478 int error = path_lookupat(nd, flags, &path); 3479 if (!error) { 3480 audit_inode(nd->name, path.dentry, 0); 3481 error = vfs_open(&path, file, current_cred()); 3482 path_put(&path); 3483 } 3484 return error; 3485 } 3486 3487 static struct file *path_openat(struct nameidata *nd, 3488 const struct open_flags *op, unsigned flags) 3489 { 3490 const char *s; 3491 struct file *file; 3492 int opened = 0; 3493 int error; 3494 3495 file = get_empty_filp(); 3496 if (IS_ERR(file)) 3497 return file; 3498 3499 file->f_flags = op->open_flag; 3500 3501 if (unlikely(file->f_flags & __O_TMPFILE)) { 3502 error = do_tmpfile(nd, flags, op, file, &opened); 3503 goto out2; 3504 } 3505 3506 if (unlikely(file->f_flags & O_PATH)) { 3507 error = do_o_path(nd, flags, file); 3508 if (!error) 3509 opened |= FILE_OPENED; 3510 goto out2; 3511 } 3512 3513 s = path_init(nd, flags); 3514 if (IS_ERR(s)) { 3515 put_filp(file); 3516 return ERR_CAST(s); 3517 } 3518 while (!(error = link_path_walk(s, nd)) && 3519 (error = do_last(nd, file, op, &opened)) > 0) { 3520 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3521 s = trailing_symlink(nd); 3522 if (IS_ERR(s)) { 3523 error = PTR_ERR(s); 3524 break; 3525 } 3526 } 3527 terminate_walk(nd); 3528 out2: 3529 if (!(opened & FILE_OPENED)) { 3530 BUG_ON(!error); 3531 put_filp(file); 3532 } 3533 if (unlikely(error)) { 3534 if (error == -EOPENSTALE) { 3535 if (flags & LOOKUP_RCU) 3536 error = -ECHILD; 3537 else 3538 error = -ESTALE; 3539 } 3540 file = ERR_PTR(error); 3541 } 3542 return file; 3543 } 3544 3545 struct file *do_filp_open(int dfd, struct filename *pathname, 3546 const struct open_flags *op) 3547 { 3548 struct nameidata nd; 3549 int flags = op->lookup_flags; 3550 struct file *filp; 3551 3552 set_nameidata(&nd, dfd, pathname); 3553 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3554 if (unlikely(filp == ERR_PTR(-ECHILD))) 3555 filp = path_openat(&nd, op, flags); 3556 if (unlikely(filp == ERR_PTR(-ESTALE))) 3557 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3558 restore_nameidata(); 3559 return filp; 3560 } 3561 3562 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3563 const char *name, const struct open_flags *op) 3564 { 3565 struct nameidata nd; 3566 struct file *file; 3567 struct filename *filename; 3568 int flags = op->lookup_flags | LOOKUP_ROOT; 3569 3570 nd.root.mnt = mnt; 3571 nd.root.dentry = dentry; 3572 3573 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3574 return ERR_PTR(-ELOOP); 3575 3576 filename = getname_kernel(name); 3577 if (IS_ERR(filename)) 3578 return ERR_CAST(filename); 3579 3580 set_nameidata(&nd, -1, filename); 3581 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3582 if (unlikely(file == ERR_PTR(-ECHILD))) 3583 file = path_openat(&nd, op, flags); 3584 if (unlikely(file == ERR_PTR(-ESTALE))) 3585 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3586 restore_nameidata(); 3587 putname(filename); 3588 return file; 3589 } 3590 3591 static struct dentry *filename_create(int dfd, struct filename *name, 3592 struct path *path, unsigned int lookup_flags) 3593 { 3594 struct dentry *dentry = ERR_PTR(-EEXIST); 3595 struct qstr last; 3596 int type; 3597 int err2; 3598 int error; 3599 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3600 3601 /* 3602 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3603 * other flags passed in are ignored! 3604 */ 3605 lookup_flags &= LOOKUP_REVAL; 3606 3607 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3608 if (IS_ERR(name)) 3609 return ERR_CAST(name); 3610 3611 /* 3612 * Yucky last component or no last component at all? 3613 * (foo/., foo/.., /////) 3614 */ 3615 if (unlikely(type != LAST_NORM)) 3616 goto out; 3617 3618 /* don't fail immediately if it's r/o, at least try to report other errors */ 3619 err2 = mnt_want_write(path->mnt); 3620 /* 3621 * Do the final lookup. 3622 */ 3623 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3624 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3625 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3626 if (IS_ERR(dentry)) 3627 goto unlock; 3628 3629 error = -EEXIST; 3630 if (d_is_positive(dentry)) 3631 goto fail; 3632 3633 /* 3634 * Special case - lookup gave negative, but... we had foo/bar/ 3635 * From the vfs_mknod() POV we just have a negative dentry - 3636 * all is fine. Let's be bastards - you had / on the end, you've 3637 * been asking for (non-existent) directory. -ENOENT for you. 3638 */ 3639 if (unlikely(!is_dir && last.name[last.len])) { 3640 error = -ENOENT; 3641 goto fail; 3642 } 3643 if (unlikely(err2)) { 3644 error = err2; 3645 goto fail; 3646 } 3647 putname(name); 3648 return dentry; 3649 fail: 3650 dput(dentry); 3651 dentry = ERR_PTR(error); 3652 unlock: 3653 inode_unlock(path->dentry->d_inode); 3654 if (!err2) 3655 mnt_drop_write(path->mnt); 3656 out: 3657 path_put(path); 3658 putname(name); 3659 return dentry; 3660 } 3661 3662 struct dentry *kern_path_create(int dfd, const char *pathname, 3663 struct path *path, unsigned int lookup_flags) 3664 { 3665 return filename_create(dfd, getname_kernel(pathname), 3666 path, lookup_flags); 3667 } 3668 EXPORT_SYMBOL(kern_path_create); 3669 3670 void done_path_create(struct path *path, struct dentry *dentry) 3671 { 3672 dput(dentry); 3673 inode_unlock(path->dentry->d_inode); 3674 mnt_drop_write(path->mnt); 3675 path_put(path); 3676 } 3677 EXPORT_SYMBOL(done_path_create); 3678 3679 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3680 struct path *path, unsigned int lookup_flags) 3681 { 3682 return filename_create(dfd, getname(pathname), path, lookup_flags); 3683 } 3684 EXPORT_SYMBOL(user_path_create); 3685 3686 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3687 { 3688 int error = may_create(dir, dentry); 3689 3690 if (error) 3691 return error; 3692 3693 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3694 return -EPERM; 3695 3696 if (!dir->i_op->mknod) 3697 return -EPERM; 3698 3699 error = devcgroup_inode_mknod(mode, dev); 3700 if (error) 3701 return error; 3702 3703 error = security_inode_mknod(dir, dentry, mode, dev); 3704 if (error) 3705 return error; 3706 3707 error = dir->i_op->mknod(dir, dentry, mode, dev); 3708 if (!error) 3709 fsnotify_create(dir, dentry); 3710 return error; 3711 } 3712 EXPORT_SYMBOL(vfs_mknod); 3713 3714 static int may_mknod(umode_t mode) 3715 { 3716 switch (mode & S_IFMT) { 3717 case S_IFREG: 3718 case S_IFCHR: 3719 case S_IFBLK: 3720 case S_IFIFO: 3721 case S_IFSOCK: 3722 case 0: /* zero mode translates to S_IFREG */ 3723 return 0; 3724 case S_IFDIR: 3725 return -EPERM; 3726 default: 3727 return -EINVAL; 3728 } 3729 } 3730 3731 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3732 unsigned, dev) 3733 { 3734 struct dentry *dentry; 3735 struct path path; 3736 int error; 3737 unsigned int lookup_flags = 0; 3738 3739 error = may_mknod(mode); 3740 if (error) 3741 return error; 3742 retry: 3743 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3744 if (IS_ERR(dentry)) 3745 return PTR_ERR(dentry); 3746 3747 if (!IS_POSIXACL(path.dentry->d_inode)) 3748 mode &= ~current_umask(); 3749 error = security_path_mknod(&path, dentry, mode, dev); 3750 if (error) 3751 goto out; 3752 switch (mode & S_IFMT) { 3753 case 0: case S_IFREG: 3754 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3755 if (!error) 3756 ima_post_path_mknod(dentry); 3757 break; 3758 case S_IFCHR: case S_IFBLK: 3759 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3760 new_decode_dev(dev)); 3761 break; 3762 case S_IFIFO: case S_IFSOCK: 3763 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3764 break; 3765 } 3766 out: 3767 done_path_create(&path, dentry); 3768 if (retry_estale(error, lookup_flags)) { 3769 lookup_flags |= LOOKUP_REVAL; 3770 goto retry; 3771 } 3772 return error; 3773 } 3774 3775 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3776 { 3777 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3778 } 3779 3780 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3781 { 3782 int error = may_create(dir, dentry); 3783 unsigned max_links = dir->i_sb->s_max_links; 3784 3785 if (error) 3786 return error; 3787 3788 if (!dir->i_op->mkdir) 3789 return -EPERM; 3790 3791 mode &= (S_IRWXUGO|S_ISVTX); 3792 error = security_inode_mkdir(dir, dentry, mode); 3793 if (error) 3794 return error; 3795 3796 if (max_links && dir->i_nlink >= max_links) 3797 return -EMLINK; 3798 3799 error = dir->i_op->mkdir(dir, dentry, mode); 3800 if (!error) 3801 fsnotify_mkdir(dir, dentry); 3802 return error; 3803 } 3804 EXPORT_SYMBOL(vfs_mkdir); 3805 3806 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3807 { 3808 struct dentry *dentry; 3809 struct path path; 3810 int error; 3811 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3812 3813 retry: 3814 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3815 if (IS_ERR(dentry)) 3816 return PTR_ERR(dentry); 3817 3818 if (!IS_POSIXACL(path.dentry->d_inode)) 3819 mode &= ~current_umask(); 3820 error = security_path_mkdir(&path, dentry, mode); 3821 if (!error) 3822 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3823 done_path_create(&path, dentry); 3824 if (retry_estale(error, lookup_flags)) { 3825 lookup_flags |= LOOKUP_REVAL; 3826 goto retry; 3827 } 3828 return error; 3829 } 3830 3831 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3832 { 3833 return sys_mkdirat(AT_FDCWD, pathname, mode); 3834 } 3835 3836 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3837 { 3838 int error = may_delete(dir, dentry, 1); 3839 3840 if (error) 3841 return error; 3842 3843 if (!dir->i_op->rmdir) 3844 return -EPERM; 3845 3846 dget(dentry); 3847 inode_lock(dentry->d_inode); 3848 3849 error = -EBUSY; 3850 if (is_local_mountpoint(dentry)) 3851 goto out; 3852 3853 error = security_inode_rmdir(dir, dentry); 3854 if (error) 3855 goto out; 3856 3857 shrink_dcache_parent(dentry); 3858 error = dir->i_op->rmdir(dir, dentry); 3859 if (error) 3860 goto out; 3861 3862 dentry->d_inode->i_flags |= S_DEAD; 3863 dont_mount(dentry); 3864 detach_mounts(dentry); 3865 3866 out: 3867 inode_unlock(dentry->d_inode); 3868 dput(dentry); 3869 if (!error) 3870 d_delete(dentry); 3871 return error; 3872 } 3873 EXPORT_SYMBOL(vfs_rmdir); 3874 3875 static long do_rmdir(int dfd, const char __user *pathname) 3876 { 3877 int error = 0; 3878 struct filename *name; 3879 struct dentry *dentry; 3880 struct path path; 3881 struct qstr last; 3882 int type; 3883 unsigned int lookup_flags = 0; 3884 retry: 3885 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3886 &path, &last, &type); 3887 if (IS_ERR(name)) 3888 return PTR_ERR(name); 3889 3890 switch (type) { 3891 case LAST_DOTDOT: 3892 error = -ENOTEMPTY; 3893 goto exit1; 3894 case LAST_DOT: 3895 error = -EINVAL; 3896 goto exit1; 3897 case LAST_ROOT: 3898 error = -EBUSY; 3899 goto exit1; 3900 } 3901 3902 error = mnt_want_write(path.mnt); 3903 if (error) 3904 goto exit1; 3905 3906 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3907 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3908 error = PTR_ERR(dentry); 3909 if (IS_ERR(dentry)) 3910 goto exit2; 3911 if (!dentry->d_inode) { 3912 error = -ENOENT; 3913 goto exit3; 3914 } 3915 error = security_path_rmdir(&path, dentry); 3916 if (error) 3917 goto exit3; 3918 error = vfs_rmdir(path.dentry->d_inode, dentry); 3919 exit3: 3920 dput(dentry); 3921 exit2: 3922 inode_unlock(path.dentry->d_inode); 3923 mnt_drop_write(path.mnt); 3924 exit1: 3925 path_put(&path); 3926 putname(name); 3927 if (retry_estale(error, lookup_flags)) { 3928 lookup_flags |= LOOKUP_REVAL; 3929 goto retry; 3930 } 3931 return error; 3932 } 3933 3934 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3935 { 3936 return do_rmdir(AT_FDCWD, pathname); 3937 } 3938 3939 /** 3940 * vfs_unlink - unlink a filesystem object 3941 * @dir: parent directory 3942 * @dentry: victim 3943 * @delegated_inode: returns victim inode, if the inode is delegated. 3944 * 3945 * The caller must hold dir->i_mutex. 3946 * 3947 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3948 * return a reference to the inode in delegated_inode. The caller 3949 * should then break the delegation on that inode and retry. Because 3950 * breaking a delegation may take a long time, the caller should drop 3951 * dir->i_mutex before doing so. 3952 * 3953 * Alternatively, a caller may pass NULL for delegated_inode. This may 3954 * be appropriate for callers that expect the underlying filesystem not 3955 * to be NFS exported. 3956 */ 3957 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3958 { 3959 struct inode *target = dentry->d_inode; 3960 int error = may_delete(dir, dentry, 0); 3961 3962 if (error) 3963 return error; 3964 3965 if (!dir->i_op->unlink) 3966 return -EPERM; 3967 3968 inode_lock(target); 3969 if (is_local_mountpoint(dentry)) 3970 error = -EBUSY; 3971 else { 3972 error = security_inode_unlink(dir, dentry); 3973 if (!error) { 3974 error = try_break_deleg(target, delegated_inode); 3975 if (error) 3976 goto out; 3977 error = dir->i_op->unlink(dir, dentry); 3978 if (!error) { 3979 dont_mount(dentry); 3980 detach_mounts(dentry); 3981 } 3982 } 3983 } 3984 out: 3985 inode_unlock(target); 3986 3987 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3988 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3989 fsnotify_link_count(target); 3990 d_delete(dentry); 3991 } 3992 3993 return error; 3994 } 3995 EXPORT_SYMBOL(vfs_unlink); 3996 3997 /* 3998 * Make sure that the actual truncation of the file will occur outside its 3999 * directory's i_mutex. Truncate can take a long time if there is a lot of 4000 * writeout happening, and we don't want to prevent access to the directory 4001 * while waiting on the I/O. 4002 */ 4003 long do_unlinkat(int dfd, struct filename *name) 4004 { 4005 int error; 4006 struct dentry *dentry; 4007 struct path path; 4008 struct qstr last; 4009 int type; 4010 struct inode *inode = NULL; 4011 struct inode *delegated_inode = NULL; 4012 unsigned int lookup_flags = 0; 4013 retry: 4014 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4015 if (IS_ERR(name)) 4016 return PTR_ERR(name); 4017 4018 error = -EISDIR; 4019 if (type != LAST_NORM) 4020 goto exit1; 4021 4022 error = mnt_want_write(path.mnt); 4023 if (error) 4024 goto exit1; 4025 retry_deleg: 4026 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4027 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4028 error = PTR_ERR(dentry); 4029 if (!IS_ERR(dentry)) { 4030 /* Why not before? Because we want correct error value */ 4031 if (last.name[last.len]) 4032 goto slashes; 4033 inode = dentry->d_inode; 4034 if (d_is_negative(dentry)) 4035 goto slashes; 4036 ihold(inode); 4037 error = security_path_unlink(&path, dentry); 4038 if (error) 4039 goto exit2; 4040 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4041 exit2: 4042 dput(dentry); 4043 } 4044 inode_unlock(path.dentry->d_inode); 4045 if (inode) 4046 iput(inode); /* truncate the inode here */ 4047 inode = NULL; 4048 if (delegated_inode) { 4049 error = break_deleg_wait(&delegated_inode); 4050 if (!error) 4051 goto retry_deleg; 4052 } 4053 mnt_drop_write(path.mnt); 4054 exit1: 4055 path_put(&path); 4056 if (retry_estale(error, lookup_flags)) { 4057 lookup_flags |= LOOKUP_REVAL; 4058 inode = NULL; 4059 goto retry; 4060 } 4061 putname(name); 4062 return error; 4063 4064 slashes: 4065 if (d_is_negative(dentry)) 4066 error = -ENOENT; 4067 else if (d_is_dir(dentry)) 4068 error = -EISDIR; 4069 else 4070 error = -ENOTDIR; 4071 goto exit2; 4072 } 4073 4074 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4075 { 4076 if ((flag & ~AT_REMOVEDIR) != 0) 4077 return -EINVAL; 4078 4079 if (flag & AT_REMOVEDIR) 4080 return do_rmdir(dfd, pathname); 4081 4082 return do_unlinkat(dfd, getname(pathname)); 4083 } 4084 4085 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4086 { 4087 return do_unlinkat(AT_FDCWD, getname(pathname)); 4088 } 4089 4090 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4091 { 4092 int error = may_create(dir, dentry); 4093 4094 if (error) 4095 return error; 4096 4097 if (!dir->i_op->symlink) 4098 return -EPERM; 4099 4100 error = security_inode_symlink(dir, dentry, oldname); 4101 if (error) 4102 return error; 4103 4104 error = dir->i_op->symlink(dir, dentry, oldname); 4105 if (!error) 4106 fsnotify_create(dir, dentry); 4107 return error; 4108 } 4109 EXPORT_SYMBOL(vfs_symlink); 4110 4111 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4112 int, newdfd, const char __user *, newname) 4113 { 4114 int error; 4115 struct filename *from; 4116 struct dentry *dentry; 4117 struct path path; 4118 unsigned int lookup_flags = 0; 4119 4120 from = getname(oldname); 4121 if (IS_ERR(from)) 4122 return PTR_ERR(from); 4123 retry: 4124 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4125 error = PTR_ERR(dentry); 4126 if (IS_ERR(dentry)) 4127 goto out_putname; 4128 4129 error = security_path_symlink(&path, dentry, from->name); 4130 if (!error) 4131 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4132 done_path_create(&path, dentry); 4133 if (retry_estale(error, lookup_flags)) { 4134 lookup_flags |= LOOKUP_REVAL; 4135 goto retry; 4136 } 4137 out_putname: 4138 putname(from); 4139 return error; 4140 } 4141 4142 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4143 { 4144 return sys_symlinkat(oldname, AT_FDCWD, newname); 4145 } 4146 4147 /** 4148 * vfs_link - create a new link 4149 * @old_dentry: object to be linked 4150 * @dir: new parent 4151 * @new_dentry: where to create the new link 4152 * @delegated_inode: returns inode needing a delegation break 4153 * 4154 * The caller must hold dir->i_mutex 4155 * 4156 * If vfs_link discovers a delegation on the to-be-linked file in need 4157 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4158 * inode in delegated_inode. The caller should then break the delegation 4159 * and retry. Because breaking a delegation may take a long time, the 4160 * caller should drop the i_mutex before doing so. 4161 * 4162 * Alternatively, a caller may pass NULL for delegated_inode. This may 4163 * be appropriate for callers that expect the underlying filesystem not 4164 * to be NFS exported. 4165 */ 4166 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4167 { 4168 struct inode *inode = old_dentry->d_inode; 4169 unsigned max_links = dir->i_sb->s_max_links; 4170 int error; 4171 4172 if (!inode) 4173 return -ENOENT; 4174 4175 error = may_create(dir, new_dentry); 4176 if (error) 4177 return error; 4178 4179 if (dir->i_sb != inode->i_sb) 4180 return -EXDEV; 4181 4182 /* 4183 * A link to an append-only or immutable file cannot be created. 4184 */ 4185 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4186 return -EPERM; 4187 /* 4188 * Updating the link count will likely cause i_uid and i_gid to 4189 * be writen back improperly if their true value is unknown to 4190 * the vfs. 4191 */ 4192 if (HAS_UNMAPPED_ID(inode)) 4193 return -EPERM; 4194 if (!dir->i_op->link) 4195 return -EPERM; 4196 if (S_ISDIR(inode->i_mode)) 4197 return -EPERM; 4198 4199 error = security_inode_link(old_dentry, dir, new_dentry); 4200 if (error) 4201 return error; 4202 4203 inode_lock(inode); 4204 /* Make sure we don't allow creating hardlink to an unlinked file */ 4205 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4206 error = -ENOENT; 4207 else if (max_links && inode->i_nlink >= max_links) 4208 error = -EMLINK; 4209 else { 4210 error = try_break_deleg(inode, delegated_inode); 4211 if (!error) 4212 error = dir->i_op->link(old_dentry, dir, new_dentry); 4213 } 4214 4215 if (!error && (inode->i_state & I_LINKABLE)) { 4216 spin_lock(&inode->i_lock); 4217 inode->i_state &= ~I_LINKABLE; 4218 spin_unlock(&inode->i_lock); 4219 } 4220 inode_unlock(inode); 4221 if (!error) 4222 fsnotify_link(dir, inode, new_dentry); 4223 return error; 4224 } 4225 EXPORT_SYMBOL(vfs_link); 4226 4227 /* 4228 * Hardlinks are often used in delicate situations. We avoid 4229 * security-related surprises by not following symlinks on the 4230 * newname. --KAB 4231 * 4232 * We don't follow them on the oldname either to be compatible 4233 * with linux 2.0, and to avoid hard-linking to directories 4234 * and other special files. --ADM 4235 */ 4236 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4237 int, newdfd, const char __user *, newname, int, flags) 4238 { 4239 struct dentry *new_dentry; 4240 struct path old_path, new_path; 4241 struct inode *delegated_inode = NULL; 4242 int how = 0; 4243 int error; 4244 4245 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4246 return -EINVAL; 4247 /* 4248 * To use null names we require CAP_DAC_READ_SEARCH 4249 * This ensures that not everyone will be able to create 4250 * handlink using the passed filedescriptor. 4251 */ 4252 if (flags & AT_EMPTY_PATH) { 4253 if (!capable(CAP_DAC_READ_SEARCH)) 4254 return -ENOENT; 4255 how = LOOKUP_EMPTY; 4256 } 4257 4258 if (flags & AT_SYMLINK_FOLLOW) 4259 how |= LOOKUP_FOLLOW; 4260 retry: 4261 error = user_path_at(olddfd, oldname, how, &old_path); 4262 if (error) 4263 return error; 4264 4265 new_dentry = user_path_create(newdfd, newname, &new_path, 4266 (how & LOOKUP_REVAL)); 4267 error = PTR_ERR(new_dentry); 4268 if (IS_ERR(new_dentry)) 4269 goto out; 4270 4271 error = -EXDEV; 4272 if (old_path.mnt != new_path.mnt) 4273 goto out_dput; 4274 error = may_linkat(&old_path); 4275 if (unlikely(error)) 4276 goto out_dput; 4277 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4278 if (error) 4279 goto out_dput; 4280 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4281 out_dput: 4282 done_path_create(&new_path, new_dentry); 4283 if (delegated_inode) { 4284 error = break_deleg_wait(&delegated_inode); 4285 if (!error) { 4286 path_put(&old_path); 4287 goto retry; 4288 } 4289 } 4290 if (retry_estale(error, how)) { 4291 path_put(&old_path); 4292 how |= LOOKUP_REVAL; 4293 goto retry; 4294 } 4295 out: 4296 path_put(&old_path); 4297 4298 return error; 4299 } 4300 4301 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4302 { 4303 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4304 } 4305 4306 /** 4307 * vfs_rename - rename a filesystem object 4308 * @old_dir: parent of source 4309 * @old_dentry: source 4310 * @new_dir: parent of destination 4311 * @new_dentry: destination 4312 * @delegated_inode: returns an inode needing a delegation break 4313 * @flags: rename flags 4314 * 4315 * The caller must hold multiple mutexes--see lock_rename()). 4316 * 4317 * If vfs_rename discovers a delegation in need of breaking at either 4318 * the source or destination, it will return -EWOULDBLOCK and return a 4319 * reference to the inode in delegated_inode. The caller should then 4320 * break the delegation and retry. Because breaking a delegation may 4321 * take a long time, the caller should drop all locks before doing 4322 * so. 4323 * 4324 * Alternatively, a caller may pass NULL for delegated_inode. This may 4325 * be appropriate for callers that expect the underlying filesystem not 4326 * to be NFS exported. 4327 * 4328 * The worst of all namespace operations - renaming directory. "Perverted" 4329 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4330 * Problems: 4331 * 4332 * a) we can get into loop creation. 4333 * b) race potential - two innocent renames can create a loop together. 4334 * That's where 4.4 screws up. Current fix: serialization on 4335 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4336 * story. 4337 * c) we have to lock _four_ objects - parents and victim (if it exists), 4338 * and source (if it is not a directory). 4339 * And that - after we got ->i_mutex on parents (until then we don't know 4340 * whether the target exists). Solution: try to be smart with locking 4341 * order for inodes. We rely on the fact that tree topology may change 4342 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4343 * move will be locked. Thus we can rank directories by the tree 4344 * (ancestors first) and rank all non-directories after them. 4345 * That works since everybody except rename does "lock parent, lookup, 4346 * lock child" and rename is under ->s_vfs_rename_mutex. 4347 * HOWEVER, it relies on the assumption that any object with ->lookup() 4348 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4349 * we'd better make sure that there's no link(2) for them. 4350 * d) conversion from fhandle to dentry may come in the wrong moment - when 4351 * we are removing the target. Solution: we will have to grab ->i_mutex 4352 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4353 * ->i_mutex on parents, which works but leads to some truly excessive 4354 * locking]. 4355 */ 4356 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4357 struct inode *new_dir, struct dentry *new_dentry, 4358 struct inode **delegated_inode, unsigned int flags) 4359 { 4360 int error; 4361 bool is_dir = d_is_dir(old_dentry); 4362 struct inode *source = old_dentry->d_inode; 4363 struct inode *target = new_dentry->d_inode; 4364 bool new_is_dir = false; 4365 unsigned max_links = new_dir->i_sb->s_max_links; 4366 struct name_snapshot old_name; 4367 4368 if (source == target) 4369 return 0; 4370 4371 error = may_delete(old_dir, old_dentry, is_dir); 4372 if (error) 4373 return error; 4374 4375 if (!target) { 4376 error = may_create(new_dir, new_dentry); 4377 } else { 4378 new_is_dir = d_is_dir(new_dentry); 4379 4380 if (!(flags & RENAME_EXCHANGE)) 4381 error = may_delete(new_dir, new_dentry, is_dir); 4382 else 4383 error = may_delete(new_dir, new_dentry, new_is_dir); 4384 } 4385 if (error) 4386 return error; 4387 4388 if (!old_dir->i_op->rename) 4389 return -EPERM; 4390 4391 /* 4392 * If we are going to change the parent - check write permissions, 4393 * we'll need to flip '..'. 4394 */ 4395 if (new_dir != old_dir) { 4396 if (is_dir) { 4397 error = inode_permission(source, MAY_WRITE); 4398 if (error) 4399 return error; 4400 } 4401 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4402 error = inode_permission(target, MAY_WRITE); 4403 if (error) 4404 return error; 4405 } 4406 } 4407 4408 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4409 flags); 4410 if (error) 4411 return error; 4412 4413 take_dentry_name_snapshot(&old_name, old_dentry); 4414 dget(new_dentry); 4415 if (!is_dir || (flags & RENAME_EXCHANGE)) 4416 lock_two_nondirectories(source, target); 4417 else if (target) 4418 inode_lock(target); 4419 4420 error = -EBUSY; 4421 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4422 goto out; 4423 4424 if (max_links && new_dir != old_dir) { 4425 error = -EMLINK; 4426 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4427 goto out; 4428 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4429 old_dir->i_nlink >= max_links) 4430 goto out; 4431 } 4432 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4433 shrink_dcache_parent(new_dentry); 4434 if (!is_dir) { 4435 error = try_break_deleg(source, delegated_inode); 4436 if (error) 4437 goto out; 4438 } 4439 if (target && !new_is_dir) { 4440 error = try_break_deleg(target, delegated_inode); 4441 if (error) 4442 goto out; 4443 } 4444 error = old_dir->i_op->rename(old_dir, old_dentry, 4445 new_dir, new_dentry, flags); 4446 if (error) 4447 goto out; 4448 4449 if (!(flags & RENAME_EXCHANGE) && target) { 4450 if (is_dir) 4451 target->i_flags |= S_DEAD; 4452 dont_mount(new_dentry); 4453 detach_mounts(new_dentry); 4454 } 4455 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4456 if (!(flags & RENAME_EXCHANGE)) 4457 d_move(old_dentry, new_dentry); 4458 else 4459 d_exchange(old_dentry, new_dentry); 4460 } 4461 out: 4462 if (!is_dir || (flags & RENAME_EXCHANGE)) 4463 unlock_two_nondirectories(source, target); 4464 else if (target) 4465 inode_unlock(target); 4466 dput(new_dentry); 4467 if (!error) { 4468 fsnotify_move(old_dir, new_dir, old_name.name, is_dir, 4469 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4470 if (flags & RENAME_EXCHANGE) { 4471 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4472 new_is_dir, NULL, new_dentry); 4473 } 4474 } 4475 release_dentry_name_snapshot(&old_name); 4476 4477 return error; 4478 } 4479 EXPORT_SYMBOL(vfs_rename); 4480 4481 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4482 int, newdfd, const char __user *, newname, unsigned int, flags) 4483 { 4484 struct dentry *old_dentry, *new_dentry; 4485 struct dentry *trap; 4486 struct path old_path, new_path; 4487 struct qstr old_last, new_last; 4488 int old_type, new_type; 4489 struct inode *delegated_inode = NULL; 4490 struct filename *from; 4491 struct filename *to; 4492 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4493 bool should_retry = false; 4494 int error; 4495 4496 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4497 return -EINVAL; 4498 4499 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4500 (flags & RENAME_EXCHANGE)) 4501 return -EINVAL; 4502 4503 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4504 return -EPERM; 4505 4506 if (flags & RENAME_EXCHANGE) 4507 target_flags = 0; 4508 4509 retry: 4510 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4511 &old_path, &old_last, &old_type); 4512 if (IS_ERR(from)) { 4513 error = PTR_ERR(from); 4514 goto exit; 4515 } 4516 4517 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4518 &new_path, &new_last, &new_type); 4519 if (IS_ERR(to)) { 4520 error = PTR_ERR(to); 4521 goto exit1; 4522 } 4523 4524 error = -EXDEV; 4525 if (old_path.mnt != new_path.mnt) 4526 goto exit2; 4527 4528 error = -EBUSY; 4529 if (old_type != LAST_NORM) 4530 goto exit2; 4531 4532 if (flags & RENAME_NOREPLACE) 4533 error = -EEXIST; 4534 if (new_type != LAST_NORM) 4535 goto exit2; 4536 4537 error = mnt_want_write(old_path.mnt); 4538 if (error) 4539 goto exit2; 4540 4541 retry_deleg: 4542 trap = lock_rename(new_path.dentry, old_path.dentry); 4543 4544 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4545 error = PTR_ERR(old_dentry); 4546 if (IS_ERR(old_dentry)) 4547 goto exit3; 4548 /* source must exist */ 4549 error = -ENOENT; 4550 if (d_is_negative(old_dentry)) 4551 goto exit4; 4552 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4553 error = PTR_ERR(new_dentry); 4554 if (IS_ERR(new_dentry)) 4555 goto exit4; 4556 error = -EEXIST; 4557 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4558 goto exit5; 4559 if (flags & RENAME_EXCHANGE) { 4560 error = -ENOENT; 4561 if (d_is_negative(new_dentry)) 4562 goto exit5; 4563 4564 if (!d_is_dir(new_dentry)) { 4565 error = -ENOTDIR; 4566 if (new_last.name[new_last.len]) 4567 goto exit5; 4568 } 4569 } 4570 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4571 if (!d_is_dir(old_dentry)) { 4572 error = -ENOTDIR; 4573 if (old_last.name[old_last.len]) 4574 goto exit5; 4575 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4576 goto exit5; 4577 } 4578 /* source should not be ancestor of target */ 4579 error = -EINVAL; 4580 if (old_dentry == trap) 4581 goto exit5; 4582 /* target should not be an ancestor of source */ 4583 if (!(flags & RENAME_EXCHANGE)) 4584 error = -ENOTEMPTY; 4585 if (new_dentry == trap) 4586 goto exit5; 4587 4588 error = security_path_rename(&old_path, old_dentry, 4589 &new_path, new_dentry, flags); 4590 if (error) 4591 goto exit5; 4592 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4593 new_path.dentry->d_inode, new_dentry, 4594 &delegated_inode, flags); 4595 exit5: 4596 dput(new_dentry); 4597 exit4: 4598 dput(old_dentry); 4599 exit3: 4600 unlock_rename(new_path.dentry, old_path.dentry); 4601 if (delegated_inode) { 4602 error = break_deleg_wait(&delegated_inode); 4603 if (!error) 4604 goto retry_deleg; 4605 } 4606 mnt_drop_write(old_path.mnt); 4607 exit2: 4608 if (retry_estale(error, lookup_flags)) 4609 should_retry = true; 4610 path_put(&new_path); 4611 putname(to); 4612 exit1: 4613 path_put(&old_path); 4614 putname(from); 4615 if (should_retry) { 4616 should_retry = false; 4617 lookup_flags |= LOOKUP_REVAL; 4618 goto retry; 4619 } 4620 exit: 4621 return error; 4622 } 4623 4624 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4625 int, newdfd, const char __user *, newname) 4626 { 4627 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4628 } 4629 4630 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4631 { 4632 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4633 } 4634 4635 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4636 { 4637 int error = may_create(dir, dentry); 4638 if (error) 4639 return error; 4640 4641 if (!dir->i_op->mknod) 4642 return -EPERM; 4643 4644 return dir->i_op->mknod(dir, dentry, 4645 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4646 } 4647 EXPORT_SYMBOL(vfs_whiteout); 4648 4649 int readlink_copy(char __user *buffer, int buflen, const char *link) 4650 { 4651 int len = PTR_ERR(link); 4652 if (IS_ERR(link)) 4653 goto out; 4654 4655 len = strlen(link); 4656 if (len > (unsigned) buflen) 4657 len = buflen; 4658 if (copy_to_user(buffer, link, len)) 4659 len = -EFAULT; 4660 out: 4661 return len; 4662 } 4663 4664 /* 4665 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4666 * have ->get_link() not calling nd_jump_link(). Using (or not using) it 4667 * for any given inode is up to filesystem. 4668 */ 4669 static int generic_readlink(struct dentry *dentry, char __user *buffer, 4670 int buflen) 4671 { 4672 DEFINE_DELAYED_CALL(done); 4673 struct inode *inode = d_inode(dentry); 4674 const char *link = inode->i_link; 4675 int res; 4676 4677 if (!link) { 4678 link = inode->i_op->get_link(dentry, inode, &done); 4679 if (IS_ERR(link)) 4680 return PTR_ERR(link); 4681 } 4682 res = readlink_copy(buffer, buflen, link); 4683 do_delayed_call(&done); 4684 return res; 4685 } 4686 4687 /** 4688 * vfs_readlink - copy symlink body into userspace buffer 4689 * @dentry: dentry on which to get symbolic link 4690 * @buffer: user memory pointer 4691 * @buflen: size of buffer 4692 * 4693 * Does not touch atime. That's up to the caller if necessary 4694 * 4695 * Does not call security hook. 4696 */ 4697 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4698 { 4699 struct inode *inode = d_inode(dentry); 4700 4701 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4702 if (unlikely(inode->i_op->readlink)) 4703 return inode->i_op->readlink(dentry, buffer, buflen); 4704 4705 if (!d_is_symlink(dentry)) 4706 return -EINVAL; 4707 4708 spin_lock(&inode->i_lock); 4709 inode->i_opflags |= IOP_DEFAULT_READLINK; 4710 spin_unlock(&inode->i_lock); 4711 } 4712 4713 return generic_readlink(dentry, buffer, buflen); 4714 } 4715 EXPORT_SYMBOL(vfs_readlink); 4716 4717 /** 4718 * vfs_get_link - get symlink body 4719 * @dentry: dentry on which to get symbolic link 4720 * @done: caller needs to free returned data with this 4721 * 4722 * Calls security hook and i_op->get_link() on the supplied inode. 4723 * 4724 * It does not touch atime. That's up to the caller if necessary. 4725 * 4726 * Does not work on "special" symlinks like /proc/$$/fd/N 4727 */ 4728 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4729 { 4730 const char *res = ERR_PTR(-EINVAL); 4731 struct inode *inode = d_inode(dentry); 4732 4733 if (d_is_symlink(dentry)) { 4734 res = ERR_PTR(security_inode_readlink(dentry)); 4735 if (!res) 4736 res = inode->i_op->get_link(dentry, inode, done); 4737 } 4738 return res; 4739 } 4740 EXPORT_SYMBOL(vfs_get_link); 4741 4742 /* get the link contents into pagecache */ 4743 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4744 struct delayed_call *callback) 4745 { 4746 char *kaddr; 4747 struct page *page; 4748 struct address_space *mapping = inode->i_mapping; 4749 4750 if (!dentry) { 4751 page = find_get_page(mapping, 0); 4752 if (!page) 4753 return ERR_PTR(-ECHILD); 4754 if (!PageUptodate(page)) { 4755 put_page(page); 4756 return ERR_PTR(-ECHILD); 4757 } 4758 } else { 4759 page = read_mapping_page(mapping, 0, NULL); 4760 if (IS_ERR(page)) 4761 return (char*)page; 4762 } 4763 set_delayed_call(callback, page_put_link, page); 4764 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4765 kaddr = page_address(page); 4766 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4767 return kaddr; 4768 } 4769 4770 EXPORT_SYMBOL(page_get_link); 4771 4772 void page_put_link(void *arg) 4773 { 4774 put_page(arg); 4775 } 4776 EXPORT_SYMBOL(page_put_link); 4777 4778 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4779 { 4780 DEFINE_DELAYED_CALL(done); 4781 int res = readlink_copy(buffer, buflen, 4782 page_get_link(dentry, d_inode(dentry), 4783 &done)); 4784 do_delayed_call(&done); 4785 return res; 4786 } 4787 EXPORT_SYMBOL(page_readlink); 4788 4789 /* 4790 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4791 */ 4792 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4793 { 4794 struct address_space *mapping = inode->i_mapping; 4795 struct page *page; 4796 void *fsdata; 4797 int err; 4798 unsigned int flags = 0; 4799 if (nofs) 4800 flags |= AOP_FLAG_NOFS; 4801 4802 retry: 4803 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4804 flags, &page, &fsdata); 4805 if (err) 4806 goto fail; 4807 4808 memcpy(page_address(page), symname, len-1); 4809 4810 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4811 page, fsdata); 4812 if (err < 0) 4813 goto fail; 4814 if (err < len-1) 4815 goto retry; 4816 4817 mark_inode_dirty(inode); 4818 return 0; 4819 fail: 4820 return err; 4821 } 4822 EXPORT_SYMBOL(__page_symlink); 4823 4824 int page_symlink(struct inode *inode, const char *symname, int len) 4825 { 4826 return __page_symlink(inode, symname, len, 4827 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4828 } 4829 EXPORT_SYMBOL(page_symlink); 4830 4831 const struct inode_operations page_symlink_inode_operations = { 4832 .get_link = page_get_link, 4833 }; 4834 EXPORT_SYMBOL(page_symlink_inode_operations); 4835