xref: /openbmc/linux/fs/namei.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		struct filename *tmp;
226 
227 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
228 		if (unlikely(!tmp)) {
229 			__putname(result);
230 			return ERR_PTR(-ENOMEM);
231 		}
232 		tmp->name = (char *)result;
233 		result = tmp;
234 	} else {
235 		__putname(result);
236 		return ERR_PTR(-ENAMETOOLONG);
237 	}
238 	memcpy((char *)result->name, filename, len);
239 	result->uptr = NULL;
240 	result->aname = NULL;
241 	result->refcnt = 1;
242 	audit_getname(result);
243 
244 	return result;
245 }
246 
247 void putname(struct filename *name)
248 {
249 	BUG_ON(name->refcnt <= 0);
250 
251 	if (--name->refcnt > 0)
252 		return;
253 
254 	if (name->name != name->iname) {
255 		__putname(name->name);
256 		kfree(name);
257 	} else
258 		__putname(name);
259 }
260 
261 static int check_acl(struct inode *inode, int mask)
262 {
263 #ifdef CONFIG_FS_POSIX_ACL
264 	struct posix_acl *acl;
265 
266 	if (mask & MAY_NOT_BLOCK) {
267 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268 	        if (!acl)
269 	                return -EAGAIN;
270 		/* no ->get_acl() calls in RCU mode... */
271 		if (is_uncached_acl(acl))
272 			return -ECHILD;
273 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
274 	}
275 
276 	acl = get_acl(inode, ACL_TYPE_ACCESS);
277 	if (IS_ERR(acl))
278 		return PTR_ERR(acl);
279 	if (acl) {
280 	        int error = posix_acl_permission(inode, acl, mask);
281 	        posix_acl_release(acl);
282 	        return error;
283 	}
284 #endif
285 
286 	return -EAGAIN;
287 }
288 
289 /*
290  * This does the basic permission checking
291  */
292 static int acl_permission_check(struct inode *inode, int mask)
293 {
294 	unsigned int mode = inode->i_mode;
295 
296 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297 		mode >>= 6;
298 	else {
299 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
300 			int error = check_acl(inode, mask);
301 			if (error != -EAGAIN)
302 				return error;
303 		}
304 
305 		if (in_group_p(inode->i_gid))
306 			mode >>= 3;
307 	}
308 
309 	/*
310 	 * If the DACs are ok we don't need any capability check.
311 	 */
312 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
313 		return 0;
314 	return -EACCES;
315 }
316 
317 /**
318  * generic_permission -  check for access rights on a Posix-like filesystem
319  * @inode:	inode to check access rights for
320  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321  *
322  * Used to check for read/write/execute permissions on a file.
323  * We use "fsuid" for this, letting us set arbitrary permissions
324  * for filesystem access without changing the "normal" uids which
325  * are used for other things.
326  *
327  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
328  * request cannot be satisfied (eg. requires blocking or too much complexity).
329  * It would then be called again in ref-walk mode.
330  */
331 int generic_permission(struct inode *inode, int mask)
332 {
333 	int ret;
334 
335 	/*
336 	 * Do the basic permission checks.
337 	 */
338 	ret = acl_permission_check(inode, mask);
339 	if (ret != -EACCES)
340 		return ret;
341 
342 	if (S_ISDIR(inode->i_mode)) {
343 		/* DACs are overridable for directories */
344 		if (!(mask & MAY_WRITE))
345 			if (capable_wrt_inode_uidgid(inode,
346 						     CAP_DAC_READ_SEARCH))
347 				return 0;
348 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
349 			return 0;
350 		return -EACCES;
351 	}
352 
353 	/*
354 	 * Searching includes executable on directories, else just read.
355 	 */
356 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 	if (mask == MAY_READ)
358 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 			return 0;
360 	/*
361 	 * Read/write DACs are always overridable.
362 	 * Executable DACs are overridable when there is
363 	 * at least one exec bit set.
364 	 */
365 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
366 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
367 			return 0;
368 
369 	return -EACCES;
370 }
371 EXPORT_SYMBOL(generic_permission);
372 
373 /*
374  * We _really_ want to just do "generic_permission()" without
375  * even looking at the inode->i_op values. So we keep a cache
376  * flag in inode->i_opflags, that says "this has not special
377  * permission function, use the fast case".
378  */
379 static inline int do_inode_permission(struct inode *inode, int mask)
380 {
381 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
382 		if (likely(inode->i_op->permission))
383 			return inode->i_op->permission(inode, mask);
384 
385 		/* This gets set once for the inode lifetime */
386 		spin_lock(&inode->i_lock);
387 		inode->i_opflags |= IOP_FASTPERM;
388 		spin_unlock(&inode->i_lock);
389 	}
390 	return generic_permission(inode, mask);
391 }
392 
393 /**
394  * sb_permission - Check superblock-level permissions
395  * @sb: Superblock of inode to check permission on
396  * @inode: Inode to check permission on
397  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
398  *
399  * Separate out file-system wide checks from inode-specific permission checks.
400  */
401 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
402 {
403 	if (unlikely(mask & MAY_WRITE)) {
404 		umode_t mode = inode->i_mode;
405 
406 		/* Nobody gets write access to a read-only fs. */
407 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
408 			return -EROFS;
409 	}
410 	return 0;
411 }
412 
413 /**
414  * inode_permission - Check for access rights to a given inode
415  * @inode: Inode to check permission on
416  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
417  *
418  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
419  * this, letting us set arbitrary permissions for filesystem access without
420  * changing the "normal" UIDs which are used for other things.
421  *
422  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
423  */
424 int inode_permission(struct inode *inode, int mask)
425 {
426 	int retval;
427 
428 	retval = sb_permission(inode->i_sb, inode, mask);
429 	if (retval)
430 		return retval;
431 
432 	if (unlikely(mask & MAY_WRITE)) {
433 		/*
434 		 * Nobody gets write access to an immutable file.
435 		 */
436 		if (IS_IMMUTABLE(inode))
437 			return -EPERM;
438 
439 		/*
440 		 * Updating mtime will likely cause i_uid and i_gid to be
441 		 * written back improperly if their true value is unknown
442 		 * to the vfs.
443 		 */
444 		if (HAS_UNMAPPED_ID(inode))
445 			return -EACCES;
446 	}
447 
448 	retval = do_inode_permission(inode, mask);
449 	if (retval)
450 		return retval;
451 
452 	retval = devcgroup_inode_permission(inode, mask);
453 	if (retval)
454 		return retval;
455 
456 	return security_inode_permission(inode, mask);
457 }
458 EXPORT_SYMBOL(inode_permission);
459 
460 /**
461  * path_get - get a reference to a path
462  * @path: path to get the reference to
463  *
464  * Given a path increment the reference count to the dentry and the vfsmount.
465  */
466 void path_get(const struct path *path)
467 {
468 	mntget(path->mnt);
469 	dget(path->dentry);
470 }
471 EXPORT_SYMBOL(path_get);
472 
473 /**
474  * path_put - put a reference to a path
475  * @path: path to put the reference to
476  *
477  * Given a path decrement the reference count to the dentry and the vfsmount.
478  */
479 void path_put(const struct path *path)
480 {
481 	dput(path->dentry);
482 	mntput(path->mnt);
483 }
484 EXPORT_SYMBOL(path_put);
485 
486 #define EMBEDDED_LEVELS 2
487 struct nameidata {
488 	struct path	path;
489 	struct qstr	last;
490 	struct path	root;
491 	struct inode	*inode; /* path.dentry.d_inode */
492 	unsigned int	flags;
493 	unsigned	seq, m_seq;
494 	int		last_type;
495 	unsigned	depth;
496 	int		total_link_count;
497 	struct saved {
498 		struct path link;
499 		struct delayed_call done;
500 		const char *name;
501 		unsigned seq;
502 	} *stack, internal[EMBEDDED_LEVELS];
503 	struct filename	*name;
504 	struct nameidata *saved;
505 	struct inode	*link_inode;
506 	unsigned	root_seq;
507 	int		dfd;
508 } __randomize_layout;
509 
510 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
511 {
512 	struct nameidata *old = current->nameidata;
513 	p->stack = p->internal;
514 	p->dfd = dfd;
515 	p->name = name;
516 	p->total_link_count = old ? old->total_link_count : 0;
517 	p->saved = old;
518 	current->nameidata = p;
519 }
520 
521 static void restore_nameidata(void)
522 {
523 	struct nameidata *now = current->nameidata, *old = now->saved;
524 
525 	current->nameidata = old;
526 	if (old)
527 		old->total_link_count = now->total_link_count;
528 	if (now->stack != now->internal)
529 		kfree(now->stack);
530 }
531 
532 static int __nd_alloc_stack(struct nameidata *nd)
533 {
534 	struct saved *p;
535 
536 	if (nd->flags & LOOKUP_RCU) {
537 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
538 				  GFP_ATOMIC);
539 		if (unlikely(!p))
540 			return -ECHILD;
541 	} else {
542 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
543 				  GFP_KERNEL);
544 		if (unlikely(!p))
545 			return -ENOMEM;
546 	}
547 	memcpy(p, nd->internal, sizeof(nd->internal));
548 	nd->stack = p;
549 	return 0;
550 }
551 
552 /**
553  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
554  * @path: nameidate to verify
555  *
556  * Rename can sometimes move a file or directory outside of a bind
557  * mount, path_connected allows those cases to be detected.
558  */
559 static bool path_connected(const struct path *path)
560 {
561 	struct vfsmount *mnt = path->mnt;
562 
563 	/* Only bind mounts can have disconnected paths */
564 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
565 		return true;
566 
567 	return is_subdir(path->dentry, mnt->mnt_root);
568 }
569 
570 static inline int nd_alloc_stack(struct nameidata *nd)
571 {
572 	if (likely(nd->depth != EMBEDDED_LEVELS))
573 		return 0;
574 	if (likely(nd->stack != nd->internal))
575 		return 0;
576 	return __nd_alloc_stack(nd);
577 }
578 
579 static void drop_links(struct nameidata *nd)
580 {
581 	int i = nd->depth;
582 	while (i--) {
583 		struct saved *last = nd->stack + i;
584 		do_delayed_call(&last->done);
585 		clear_delayed_call(&last->done);
586 	}
587 }
588 
589 static void terminate_walk(struct nameidata *nd)
590 {
591 	drop_links(nd);
592 	if (!(nd->flags & LOOKUP_RCU)) {
593 		int i;
594 		path_put(&nd->path);
595 		for (i = 0; i < nd->depth; i++)
596 			path_put(&nd->stack[i].link);
597 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
598 			path_put(&nd->root);
599 			nd->root.mnt = NULL;
600 		}
601 	} else {
602 		nd->flags &= ~LOOKUP_RCU;
603 		if (!(nd->flags & LOOKUP_ROOT))
604 			nd->root.mnt = NULL;
605 		rcu_read_unlock();
606 	}
607 	nd->depth = 0;
608 }
609 
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 			    struct path *path, unsigned seq)
613 {
614 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 	if (unlikely(res)) {
616 		if (res > 0)
617 			path->mnt = NULL;
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
626 }
627 
628 static bool legitimize_links(struct nameidata *nd)
629 {
630 	int i;
631 	for (i = 0; i < nd->depth; i++) {
632 		struct saved *last = nd->stack + i;
633 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 			drop_links(nd);
635 			nd->depth = i + 1;
636 			return false;
637 		}
638 	}
639 	return true;
640 }
641 
642 /*
643  * Path walking has 2 modes, rcu-walk and ref-walk (see
644  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
645  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
646  * normal reference counts on dentries and vfsmounts to transition to ref-walk
647  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
648  * got stuck, so ref-walk may continue from there. If this is not successful
649  * (eg. a seqcount has changed), then failure is returned and it's up to caller
650  * to restart the path walk from the beginning in ref-walk mode.
651  */
652 
653 /**
654  * unlazy_walk - try to switch to ref-walk mode.
655  * @nd: nameidata pathwalk data
656  * Returns: 0 on success, -ECHILD on failure
657  *
658  * unlazy_walk attempts to legitimize the current nd->path and nd->root
659  * for ref-walk mode.
660  * Must be called from rcu-walk context.
661  * Nothing should touch nameidata between unlazy_walk() failure and
662  * terminate_walk().
663  */
664 static int unlazy_walk(struct nameidata *nd)
665 {
666 	struct dentry *parent = nd->path.dentry;
667 
668 	BUG_ON(!(nd->flags & LOOKUP_RCU));
669 
670 	nd->flags &= ~LOOKUP_RCU;
671 	if (unlikely(!legitimize_links(nd)))
672 		goto out2;
673 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
674 		goto out1;
675 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
676 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
677 			goto out;
678 	}
679 	rcu_read_unlock();
680 	BUG_ON(nd->inode != parent->d_inode);
681 	return 0;
682 
683 out2:
684 	nd->path.mnt = NULL;
685 	nd->path.dentry = NULL;
686 out1:
687 	if (!(nd->flags & LOOKUP_ROOT))
688 		nd->root.mnt = NULL;
689 out:
690 	rcu_read_unlock();
691 	return -ECHILD;
692 }
693 
694 /**
695  * unlazy_child - try to switch to ref-walk mode.
696  * @nd: nameidata pathwalk data
697  * @dentry: child of nd->path.dentry
698  * @seq: seq number to check dentry against
699  * Returns: 0 on success, -ECHILD on failure
700  *
701  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
702  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
703  * @nd.  Must be called from rcu-walk context.
704  * Nothing should touch nameidata between unlazy_child() failure and
705  * terminate_walk().
706  */
707 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
708 {
709 	BUG_ON(!(nd->flags & LOOKUP_RCU));
710 
711 	nd->flags &= ~LOOKUP_RCU;
712 	if (unlikely(!legitimize_links(nd)))
713 		goto out2;
714 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
715 		goto out2;
716 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
717 		goto out1;
718 
719 	/*
720 	 * We need to move both the parent and the dentry from the RCU domain
721 	 * to be properly refcounted. And the sequence number in the dentry
722 	 * validates *both* dentry counters, since we checked the sequence
723 	 * number of the parent after we got the child sequence number. So we
724 	 * know the parent must still be valid if the child sequence number is
725 	 */
726 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
727 		goto out;
728 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
729 		rcu_read_unlock();
730 		dput(dentry);
731 		goto drop_root_mnt;
732 	}
733 	/*
734 	 * Sequence counts matched. Now make sure that the root is
735 	 * still valid and get it if required.
736 	 */
737 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
738 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
739 			rcu_read_unlock();
740 			dput(dentry);
741 			return -ECHILD;
742 		}
743 	}
744 
745 	rcu_read_unlock();
746 	return 0;
747 
748 out2:
749 	nd->path.mnt = NULL;
750 out1:
751 	nd->path.dentry = NULL;
752 out:
753 	rcu_read_unlock();
754 drop_root_mnt:
755 	if (!(nd->flags & LOOKUP_ROOT))
756 		nd->root.mnt = NULL;
757 	return -ECHILD;
758 }
759 
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
763 		return dentry->d_op->d_revalidate(dentry, flags);
764 	else
765 		return 1;
766 }
767 
768 /**
769  * complete_walk - successful completion of path walk
770  * @nd:  pointer nameidata
771  *
772  * If we had been in RCU mode, drop out of it and legitimize nd->path.
773  * Revalidate the final result, unless we'd already done that during
774  * the path walk or the filesystem doesn't ask for it.  Return 0 on
775  * success, -error on failure.  In case of failure caller does not
776  * need to drop nd->path.
777  */
778 static int complete_walk(struct nameidata *nd)
779 {
780 	struct dentry *dentry = nd->path.dentry;
781 	int status;
782 
783 	if (nd->flags & LOOKUP_RCU) {
784 		if (!(nd->flags & LOOKUP_ROOT))
785 			nd->root.mnt = NULL;
786 		if (unlikely(unlazy_walk(nd)))
787 			return -ECHILD;
788 	}
789 
790 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
791 		return 0;
792 
793 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
794 		return 0;
795 
796 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
797 	if (status > 0)
798 		return 0;
799 
800 	if (!status)
801 		status = -ESTALE;
802 
803 	return status;
804 }
805 
806 static void set_root(struct nameidata *nd)
807 {
808 	struct fs_struct *fs = current->fs;
809 
810 	if (nd->flags & LOOKUP_RCU) {
811 		unsigned seq;
812 
813 		do {
814 			seq = read_seqcount_begin(&fs->seq);
815 			nd->root = fs->root;
816 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
817 		} while (read_seqcount_retry(&fs->seq, seq));
818 	} else {
819 		get_fs_root(fs, &nd->root);
820 	}
821 }
822 
823 static void path_put_conditional(struct path *path, struct nameidata *nd)
824 {
825 	dput(path->dentry);
826 	if (path->mnt != nd->path.mnt)
827 		mntput(path->mnt);
828 }
829 
830 static inline void path_to_nameidata(const struct path *path,
831 					struct nameidata *nd)
832 {
833 	if (!(nd->flags & LOOKUP_RCU)) {
834 		dput(nd->path.dentry);
835 		if (nd->path.mnt != path->mnt)
836 			mntput(nd->path.mnt);
837 	}
838 	nd->path.mnt = path->mnt;
839 	nd->path.dentry = path->dentry;
840 }
841 
842 static int nd_jump_root(struct nameidata *nd)
843 {
844 	if (nd->flags & LOOKUP_RCU) {
845 		struct dentry *d;
846 		nd->path = nd->root;
847 		d = nd->path.dentry;
848 		nd->inode = d->d_inode;
849 		nd->seq = nd->root_seq;
850 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
851 			return -ECHILD;
852 	} else {
853 		path_put(&nd->path);
854 		nd->path = nd->root;
855 		path_get(&nd->path);
856 		nd->inode = nd->path.dentry->d_inode;
857 	}
858 	nd->flags |= LOOKUP_JUMPED;
859 	return 0;
860 }
861 
862 /*
863  * Helper to directly jump to a known parsed path from ->get_link,
864  * caller must have taken a reference to path beforehand.
865  */
866 void nd_jump_link(struct path *path)
867 {
868 	struct nameidata *nd = current->nameidata;
869 	path_put(&nd->path);
870 
871 	nd->path = *path;
872 	nd->inode = nd->path.dentry->d_inode;
873 	nd->flags |= LOOKUP_JUMPED;
874 }
875 
876 static inline void put_link(struct nameidata *nd)
877 {
878 	struct saved *last = nd->stack + --nd->depth;
879 	do_delayed_call(&last->done);
880 	if (!(nd->flags & LOOKUP_RCU))
881 		path_put(&last->link);
882 }
883 
884 int sysctl_protected_symlinks __read_mostly = 0;
885 int sysctl_protected_hardlinks __read_mostly = 0;
886 
887 /**
888  * may_follow_link - Check symlink following for unsafe situations
889  * @nd: nameidata pathwalk data
890  *
891  * In the case of the sysctl_protected_symlinks sysctl being enabled,
892  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
893  * in a sticky world-writable directory. This is to protect privileged
894  * processes from failing races against path names that may change out
895  * from under them by way of other users creating malicious symlinks.
896  * It will permit symlinks to be followed only when outside a sticky
897  * world-writable directory, or when the uid of the symlink and follower
898  * match, or when the directory owner matches the symlink's owner.
899  *
900  * Returns 0 if following the symlink is allowed, -ve on error.
901  */
902 static inline int may_follow_link(struct nameidata *nd)
903 {
904 	const struct inode *inode;
905 	const struct inode *parent;
906 	kuid_t puid;
907 
908 	if (!sysctl_protected_symlinks)
909 		return 0;
910 
911 	/* Allowed if owner and follower match. */
912 	inode = nd->link_inode;
913 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
914 		return 0;
915 
916 	/* Allowed if parent directory not sticky and world-writable. */
917 	parent = nd->inode;
918 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
919 		return 0;
920 
921 	/* Allowed if parent directory and link owner match. */
922 	puid = parent->i_uid;
923 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
924 		return 0;
925 
926 	if (nd->flags & LOOKUP_RCU)
927 		return -ECHILD;
928 
929 	audit_log_link_denied("follow_link", &nd->stack[0].link);
930 	return -EACCES;
931 }
932 
933 /**
934  * safe_hardlink_source - Check for safe hardlink conditions
935  * @inode: the source inode to hardlink from
936  *
937  * Return false if at least one of the following conditions:
938  *    - inode is not a regular file
939  *    - inode is setuid
940  *    - inode is setgid and group-exec
941  *    - access failure for read and write
942  *
943  * Otherwise returns true.
944  */
945 static bool safe_hardlink_source(struct inode *inode)
946 {
947 	umode_t mode = inode->i_mode;
948 
949 	/* Special files should not get pinned to the filesystem. */
950 	if (!S_ISREG(mode))
951 		return false;
952 
953 	/* Setuid files should not get pinned to the filesystem. */
954 	if (mode & S_ISUID)
955 		return false;
956 
957 	/* Executable setgid files should not get pinned to the filesystem. */
958 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
959 		return false;
960 
961 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
962 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
963 		return false;
964 
965 	return true;
966 }
967 
968 /**
969  * may_linkat - Check permissions for creating a hardlink
970  * @link: the source to hardlink from
971  *
972  * Block hardlink when all of:
973  *  - sysctl_protected_hardlinks enabled
974  *  - fsuid does not match inode
975  *  - hardlink source is unsafe (see safe_hardlink_source() above)
976  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
977  *
978  * Returns 0 if successful, -ve on error.
979  */
980 static int may_linkat(struct path *link)
981 {
982 	struct inode *inode;
983 
984 	if (!sysctl_protected_hardlinks)
985 		return 0;
986 
987 	inode = link->dentry->d_inode;
988 
989 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
990 	 * otherwise, it must be a safe source.
991 	 */
992 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
993 		return 0;
994 
995 	audit_log_link_denied("linkat", link);
996 	return -EPERM;
997 }
998 
999 static __always_inline
1000 const char *get_link(struct nameidata *nd)
1001 {
1002 	struct saved *last = nd->stack + nd->depth - 1;
1003 	struct dentry *dentry = last->link.dentry;
1004 	struct inode *inode = nd->link_inode;
1005 	int error;
1006 	const char *res;
1007 
1008 	if (!(nd->flags & LOOKUP_RCU)) {
1009 		touch_atime(&last->link);
1010 		cond_resched();
1011 	} else if (atime_needs_update_rcu(&last->link, inode)) {
1012 		if (unlikely(unlazy_walk(nd)))
1013 			return ERR_PTR(-ECHILD);
1014 		touch_atime(&last->link);
1015 	}
1016 
1017 	error = security_inode_follow_link(dentry, inode,
1018 					   nd->flags & LOOKUP_RCU);
1019 	if (unlikely(error))
1020 		return ERR_PTR(error);
1021 
1022 	nd->last_type = LAST_BIND;
1023 	res = inode->i_link;
1024 	if (!res) {
1025 		const char * (*get)(struct dentry *, struct inode *,
1026 				struct delayed_call *);
1027 		get = inode->i_op->get_link;
1028 		if (nd->flags & LOOKUP_RCU) {
1029 			res = get(NULL, inode, &last->done);
1030 			if (res == ERR_PTR(-ECHILD)) {
1031 				if (unlikely(unlazy_walk(nd)))
1032 					return ERR_PTR(-ECHILD);
1033 				res = get(dentry, inode, &last->done);
1034 			}
1035 		} else {
1036 			res = get(dentry, inode, &last->done);
1037 		}
1038 		if (IS_ERR_OR_NULL(res))
1039 			return res;
1040 	}
1041 	if (*res == '/') {
1042 		if (!nd->root.mnt)
1043 			set_root(nd);
1044 		if (unlikely(nd_jump_root(nd)))
1045 			return ERR_PTR(-ECHILD);
1046 		while (unlikely(*++res == '/'))
1047 			;
1048 	}
1049 	if (!*res)
1050 		res = NULL;
1051 	return res;
1052 }
1053 
1054 /*
1055  * follow_up - Find the mountpoint of path's vfsmount
1056  *
1057  * Given a path, find the mountpoint of its source file system.
1058  * Replace @path with the path of the mountpoint in the parent mount.
1059  * Up is towards /.
1060  *
1061  * Return 1 if we went up a level and 0 if we were already at the
1062  * root.
1063  */
1064 int follow_up(struct path *path)
1065 {
1066 	struct mount *mnt = real_mount(path->mnt);
1067 	struct mount *parent;
1068 	struct dentry *mountpoint;
1069 
1070 	read_seqlock_excl(&mount_lock);
1071 	parent = mnt->mnt_parent;
1072 	if (parent == mnt) {
1073 		read_sequnlock_excl(&mount_lock);
1074 		return 0;
1075 	}
1076 	mntget(&parent->mnt);
1077 	mountpoint = dget(mnt->mnt_mountpoint);
1078 	read_sequnlock_excl(&mount_lock);
1079 	dput(path->dentry);
1080 	path->dentry = mountpoint;
1081 	mntput(path->mnt);
1082 	path->mnt = &parent->mnt;
1083 	return 1;
1084 }
1085 EXPORT_SYMBOL(follow_up);
1086 
1087 /*
1088  * Perform an automount
1089  * - return -EISDIR to tell follow_managed() to stop and return the path we
1090  *   were called with.
1091  */
1092 static int follow_automount(struct path *path, struct nameidata *nd,
1093 			    bool *need_mntput)
1094 {
1095 	struct vfsmount *mnt;
1096 	int err;
1097 
1098 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1099 		return -EREMOTE;
1100 
1101 	/* We don't want to mount if someone's just doing a stat -
1102 	 * unless they're stat'ing a directory and appended a '/' to
1103 	 * the name.
1104 	 *
1105 	 * We do, however, want to mount if someone wants to open or
1106 	 * create a file of any type under the mountpoint, wants to
1107 	 * traverse through the mountpoint or wants to open the
1108 	 * mounted directory.  Also, autofs may mark negative dentries
1109 	 * as being automount points.  These will need the attentions
1110 	 * of the daemon to instantiate them before they can be used.
1111 	 */
1112 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1113 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1114 	    path->dentry->d_inode)
1115 		return -EISDIR;
1116 
1117 	nd->total_link_count++;
1118 	if (nd->total_link_count >= 40)
1119 		return -ELOOP;
1120 
1121 	mnt = path->dentry->d_op->d_automount(path);
1122 	if (IS_ERR(mnt)) {
1123 		/*
1124 		 * The filesystem is allowed to return -EISDIR here to indicate
1125 		 * it doesn't want to automount.  For instance, autofs would do
1126 		 * this so that its userspace daemon can mount on this dentry.
1127 		 *
1128 		 * However, we can only permit this if it's a terminal point in
1129 		 * the path being looked up; if it wasn't then the remainder of
1130 		 * the path is inaccessible and we should say so.
1131 		 */
1132 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1133 			return -EREMOTE;
1134 		return PTR_ERR(mnt);
1135 	}
1136 
1137 	if (!mnt) /* mount collision */
1138 		return 0;
1139 
1140 	if (!*need_mntput) {
1141 		/* lock_mount() may release path->mnt on error */
1142 		mntget(path->mnt);
1143 		*need_mntput = true;
1144 	}
1145 	err = finish_automount(mnt, path);
1146 
1147 	switch (err) {
1148 	case -EBUSY:
1149 		/* Someone else made a mount here whilst we were busy */
1150 		return 0;
1151 	case 0:
1152 		path_put(path);
1153 		path->mnt = mnt;
1154 		path->dentry = dget(mnt->mnt_root);
1155 		return 0;
1156 	default:
1157 		return err;
1158 	}
1159 
1160 }
1161 
1162 /*
1163  * Handle a dentry that is managed in some way.
1164  * - Flagged for transit management (autofs)
1165  * - Flagged as mountpoint
1166  * - Flagged as automount point
1167  *
1168  * This may only be called in refwalk mode.
1169  *
1170  * Serialization is taken care of in namespace.c
1171  */
1172 static int follow_managed(struct path *path, struct nameidata *nd)
1173 {
1174 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1175 	unsigned managed;
1176 	bool need_mntput = false;
1177 	int ret = 0;
1178 
1179 	/* Given that we're not holding a lock here, we retain the value in a
1180 	 * local variable for each dentry as we look at it so that we don't see
1181 	 * the components of that value change under us */
1182 	while (managed = READ_ONCE(path->dentry->d_flags),
1183 	       managed &= DCACHE_MANAGED_DENTRY,
1184 	       unlikely(managed != 0)) {
1185 		/* Allow the filesystem to manage the transit without i_mutex
1186 		 * being held. */
1187 		if (managed & DCACHE_MANAGE_TRANSIT) {
1188 			BUG_ON(!path->dentry->d_op);
1189 			BUG_ON(!path->dentry->d_op->d_manage);
1190 			ret = path->dentry->d_op->d_manage(path, false);
1191 			if (ret < 0)
1192 				break;
1193 		}
1194 
1195 		/* Transit to a mounted filesystem. */
1196 		if (managed & DCACHE_MOUNTED) {
1197 			struct vfsmount *mounted = lookup_mnt(path);
1198 			if (mounted) {
1199 				dput(path->dentry);
1200 				if (need_mntput)
1201 					mntput(path->mnt);
1202 				path->mnt = mounted;
1203 				path->dentry = dget(mounted->mnt_root);
1204 				need_mntput = true;
1205 				continue;
1206 			}
1207 
1208 			/* Something is mounted on this dentry in another
1209 			 * namespace and/or whatever was mounted there in this
1210 			 * namespace got unmounted before lookup_mnt() could
1211 			 * get it */
1212 		}
1213 
1214 		/* Handle an automount point */
1215 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1216 			ret = follow_automount(path, nd, &need_mntput);
1217 			if (ret < 0)
1218 				break;
1219 			continue;
1220 		}
1221 
1222 		/* We didn't change the current path point */
1223 		break;
1224 	}
1225 
1226 	if (need_mntput && path->mnt == mnt)
1227 		mntput(path->mnt);
1228 	if (ret == -EISDIR || !ret)
1229 		ret = 1;
1230 	if (need_mntput)
1231 		nd->flags |= LOOKUP_JUMPED;
1232 	if (unlikely(ret < 0))
1233 		path_put_conditional(path, nd);
1234 	return ret;
1235 }
1236 
1237 int follow_down_one(struct path *path)
1238 {
1239 	struct vfsmount *mounted;
1240 
1241 	mounted = lookup_mnt(path);
1242 	if (mounted) {
1243 		dput(path->dentry);
1244 		mntput(path->mnt);
1245 		path->mnt = mounted;
1246 		path->dentry = dget(mounted->mnt_root);
1247 		return 1;
1248 	}
1249 	return 0;
1250 }
1251 EXPORT_SYMBOL(follow_down_one);
1252 
1253 static inline int managed_dentry_rcu(const struct path *path)
1254 {
1255 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1256 		path->dentry->d_op->d_manage(path, true) : 0;
1257 }
1258 
1259 /*
1260  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1261  * we meet a managed dentry that would need blocking.
1262  */
1263 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1264 			       struct inode **inode, unsigned *seqp)
1265 {
1266 	for (;;) {
1267 		struct mount *mounted;
1268 		/*
1269 		 * Don't forget we might have a non-mountpoint managed dentry
1270 		 * that wants to block transit.
1271 		 */
1272 		switch (managed_dentry_rcu(path)) {
1273 		case -ECHILD:
1274 		default:
1275 			return false;
1276 		case -EISDIR:
1277 			return true;
1278 		case 0:
1279 			break;
1280 		}
1281 
1282 		if (!d_mountpoint(path->dentry))
1283 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1284 
1285 		mounted = __lookup_mnt(path->mnt, path->dentry);
1286 		if (!mounted)
1287 			break;
1288 		path->mnt = &mounted->mnt;
1289 		path->dentry = mounted->mnt.mnt_root;
1290 		nd->flags |= LOOKUP_JUMPED;
1291 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1292 		/*
1293 		 * Update the inode too. We don't need to re-check the
1294 		 * dentry sequence number here after this d_inode read,
1295 		 * because a mount-point is always pinned.
1296 		 */
1297 		*inode = path->dentry->d_inode;
1298 	}
1299 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1300 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1301 }
1302 
1303 static int follow_dotdot_rcu(struct nameidata *nd)
1304 {
1305 	struct inode *inode = nd->inode;
1306 
1307 	while (1) {
1308 		if (path_equal(&nd->path, &nd->root))
1309 			break;
1310 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1311 			struct dentry *old = nd->path.dentry;
1312 			struct dentry *parent = old->d_parent;
1313 			unsigned seq;
1314 
1315 			inode = parent->d_inode;
1316 			seq = read_seqcount_begin(&parent->d_seq);
1317 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1318 				return -ECHILD;
1319 			nd->path.dentry = parent;
1320 			nd->seq = seq;
1321 			if (unlikely(!path_connected(&nd->path)))
1322 				return -ENOENT;
1323 			break;
1324 		} else {
1325 			struct mount *mnt = real_mount(nd->path.mnt);
1326 			struct mount *mparent = mnt->mnt_parent;
1327 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1328 			struct inode *inode2 = mountpoint->d_inode;
1329 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1330 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1331 				return -ECHILD;
1332 			if (&mparent->mnt == nd->path.mnt)
1333 				break;
1334 			/* we know that mountpoint was pinned */
1335 			nd->path.dentry = mountpoint;
1336 			nd->path.mnt = &mparent->mnt;
1337 			inode = inode2;
1338 			nd->seq = seq;
1339 		}
1340 	}
1341 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1342 		struct mount *mounted;
1343 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1344 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1345 			return -ECHILD;
1346 		if (!mounted)
1347 			break;
1348 		nd->path.mnt = &mounted->mnt;
1349 		nd->path.dentry = mounted->mnt.mnt_root;
1350 		inode = nd->path.dentry->d_inode;
1351 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1352 	}
1353 	nd->inode = inode;
1354 	return 0;
1355 }
1356 
1357 /*
1358  * Follow down to the covering mount currently visible to userspace.  At each
1359  * point, the filesystem owning that dentry may be queried as to whether the
1360  * caller is permitted to proceed or not.
1361  */
1362 int follow_down(struct path *path)
1363 {
1364 	unsigned managed;
1365 	int ret;
1366 
1367 	while (managed = READ_ONCE(path->dentry->d_flags),
1368 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1369 		/* Allow the filesystem to manage the transit without i_mutex
1370 		 * being held.
1371 		 *
1372 		 * We indicate to the filesystem if someone is trying to mount
1373 		 * something here.  This gives autofs the chance to deny anyone
1374 		 * other than its daemon the right to mount on its
1375 		 * superstructure.
1376 		 *
1377 		 * The filesystem may sleep at this point.
1378 		 */
1379 		if (managed & DCACHE_MANAGE_TRANSIT) {
1380 			BUG_ON(!path->dentry->d_op);
1381 			BUG_ON(!path->dentry->d_op->d_manage);
1382 			ret = path->dentry->d_op->d_manage(path, false);
1383 			if (ret < 0)
1384 				return ret == -EISDIR ? 0 : ret;
1385 		}
1386 
1387 		/* Transit to a mounted filesystem. */
1388 		if (managed & DCACHE_MOUNTED) {
1389 			struct vfsmount *mounted = lookup_mnt(path);
1390 			if (!mounted)
1391 				break;
1392 			dput(path->dentry);
1393 			mntput(path->mnt);
1394 			path->mnt = mounted;
1395 			path->dentry = dget(mounted->mnt_root);
1396 			continue;
1397 		}
1398 
1399 		/* Don't handle automount points here */
1400 		break;
1401 	}
1402 	return 0;
1403 }
1404 EXPORT_SYMBOL(follow_down);
1405 
1406 /*
1407  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1408  */
1409 static void follow_mount(struct path *path)
1410 {
1411 	while (d_mountpoint(path->dentry)) {
1412 		struct vfsmount *mounted = lookup_mnt(path);
1413 		if (!mounted)
1414 			break;
1415 		dput(path->dentry);
1416 		mntput(path->mnt);
1417 		path->mnt = mounted;
1418 		path->dentry = dget(mounted->mnt_root);
1419 	}
1420 }
1421 
1422 static int path_parent_directory(struct path *path)
1423 {
1424 	struct dentry *old = path->dentry;
1425 	/* rare case of legitimate dget_parent()... */
1426 	path->dentry = dget_parent(path->dentry);
1427 	dput(old);
1428 	if (unlikely(!path_connected(path)))
1429 		return -ENOENT;
1430 	return 0;
1431 }
1432 
1433 static int follow_dotdot(struct nameidata *nd)
1434 {
1435 	while(1) {
1436 		if (nd->path.dentry == nd->root.dentry &&
1437 		    nd->path.mnt == nd->root.mnt) {
1438 			break;
1439 		}
1440 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1441 			int ret = path_parent_directory(&nd->path);
1442 			if (ret)
1443 				return ret;
1444 			break;
1445 		}
1446 		if (!follow_up(&nd->path))
1447 			break;
1448 	}
1449 	follow_mount(&nd->path);
1450 	nd->inode = nd->path.dentry->d_inode;
1451 	return 0;
1452 }
1453 
1454 /*
1455  * This looks up the name in dcache and possibly revalidates the found dentry.
1456  * NULL is returned if the dentry does not exist in the cache.
1457  */
1458 static struct dentry *lookup_dcache(const struct qstr *name,
1459 				    struct dentry *dir,
1460 				    unsigned int flags)
1461 {
1462 	struct dentry *dentry = d_lookup(dir, name);
1463 	if (dentry) {
1464 		int error = d_revalidate(dentry, flags);
1465 		if (unlikely(error <= 0)) {
1466 			if (!error)
1467 				d_invalidate(dentry);
1468 			dput(dentry);
1469 			return ERR_PTR(error);
1470 		}
1471 	}
1472 	return dentry;
1473 }
1474 
1475 /*
1476  * Call i_op->lookup on the dentry.  The dentry must be negative and
1477  * unhashed.
1478  *
1479  * dir->d_inode->i_mutex must be held
1480  */
1481 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1482 				  unsigned int flags)
1483 {
1484 	struct dentry *old;
1485 
1486 	/* Don't create child dentry for a dead directory. */
1487 	if (unlikely(IS_DEADDIR(dir))) {
1488 		dput(dentry);
1489 		return ERR_PTR(-ENOENT);
1490 	}
1491 
1492 	old = dir->i_op->lookup(dir, dentry, flags);
1493 	if (unlikely(old)) {
1494 		dput(dentry);
1495 		dentry = old;
1496 	}
1497 	return dentry;
1498 }
1499 
1500 static struct dentry *__lookup_hash(const struct qstr *name,
1501 		struct dentry *base, unsigned int flags)
1502 {
1503 	struct dentry *dentry = lookup_dcache(name, base, flags);
1504 
1505 	if (dentry)
1506 		return dentry;
1507 
1508 	dentry = d_alloc(base, name);
1509 	if (unlikely(!dentry))
1510 		return ERR_PTR(-ENOMEM);
1511 
1512 	return lookup_real(base->d_inode, dentry, flags);
1513 }
1514 
1515 static int lookup_fast(struct nameidata *nd,
1516 		       struct path *path, struct inode **inode,
1517 		       unsigned *seqp)
1518 {
1519 	struct vfsmount *mnt = nd->path.mnt;
1520 	struct dentry *dentry, *parent = nd->path.dentry;
1521 	int status = 1;
1522 	int err;
1523 
1524 	/*
1525 	 * Rename seqlock is not required here because in the off chance
1526 	 * of a false negative due to a concurrent rename, the caller is
1527 	 * going to fall back to non-racy lookup.
1528 	 */
1529 	if (nd->flags & LOOKUP_RCU) {
1530 		unsigned seq;
1531 		bool negative;
1532 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1533 		if (unlikely(!dentry)) {
1534 			if (unlazy_walk(nd))
1535 				return -ECHILD;
1536 			return 0;
1537 		}
1538 
1539 		/*
1540 		 * This sequence count validates that the inode matches
1541 		 * the dentry name information from lookup.
1542 		 */
1543 		*inode = d_backing_inode(dentry);
1544 		negative = d_is_negative(dentry);
1545 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1546 			return -ECHILD;
1547 
1548 		/*
1549 		 * This sequence count validates that the parent had no
1550 		 * changes while we did the lookup of the dentry above.
1551 		 *
1552 		 * The memory barrier in read_seqcount_begin of child is
1553 		 *  enough, we can use __read_seqcount_retry here.
1554 		 */
1555 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1556 			return -ECHILD;
1557 
1558 		*seqp = seq;
1559 		status = d_revalidate(dentry, nd->flags);
1560 		if (likely(status > 0)) {
1561 			/*
1562 			 * Note: do negative dentry check after revalidation in
1563 			 * case that drops it.
1564 			 */
1565 			if (unlikely(negative))
1566 				return -ENOENT;
1567 			path->mnt = mnt;
1568 			path->dentry = dentry;
1569 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1570 				return 1;
1571 		}
1572 		if (unlazy_child(nd, dentry, seq))
1573 			return -ECHILD;
1574 		if (unlikely(status == -ECHILD))
1575 			/* we'd been told to redo it in non-rcu mode */
1576 			status = d_revalidate(dentry, nd->flags);
1577 	} else {
1578 		dentry = __d_lookup(parent, &nd->last);
1579 		if (unlikely(!dentry))
1580 			return 0;
1581 		status = d_revalidate(dentry, nd->flags);
1582 	}
1583 	if (unlikely(status <= 0)) {
1584 		if (!status)
1585 			d_invalidate(dentry);
1586 		dput(dentry);
1587 		return status;
1588 	}
1589 	if (unlikely(d_is_negative(dentry))) {
1590 		dput(dentry);
1591 		return -ENOENT;
1592 	}
1593 
1594 	path->mnt = mnt;
1595 	path->dentry = dentry;
1596 	err = follow_managed(path, nd);
1597 	if (likely(err > 0))
1598 		*inode = d_backing_inode(path->dentry);
1599 	return err;
1600 }
1601 
1602 /* Fast lookup failed, do it the slow way */
1603 static struct dentry *lookup_slow(const struct qstr *name,
1604 				  struct dentry *dir,
1605 				  unsigned int flags)
1606 {
1607 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1608 	struct inode *inode = dir->d_inode;
1609 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1610 
1611 	inode_lock_shared(inode);
1612 	/* Don't go there if it's already dead */
1613 	if (unlikely(IS_DEADDIR(inode)))
1614 		goto out;
1615 again:
1616 	dentry = d_alloc_parallel(dir, name, &wq);
1617 	if (IS_ERR(dentry))
1618 		goto out;
1619 	if (unlikely(!d_in_lookup(dentry))) {
1620 		if (!(flags & LOOKUP_NO_REVAL)) {
1621 			int error = d_revalidate(dentry, flags);
1622 			if (unlikely(error <= 0)) {
1623 				if (!error) {
1624 					d_invalidate(dentry);
1625 					dput(dentry);
1626 					goto again;
1627 				}
1628 				dput(dentry);
1629 				dentry = ERR_PTR(error);
1630 			}
1631 		}
1632 	} else {
1633 		old = inode->i_op->lookup(inode, dentry, flags);
1634 		d_lookup_done(dentry);
1635 		if (unlikely(old)) {
1636 			dput(dentry);
1637 			dentry = old;
1638 		}
1639 	}
1640 out:
1641 	inode_unlock_shared(inode);
1642 	return dentry;
1643 }
1644 
1645 static inline int may_lookup(struct nameidata *nd)
1646 {
1647 	if (nd->flags & LOOKUP_RCU) {
1648 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1649 		if (err != -ECHILD)
1650 			return err;
1651 		if (unlazy_walk(nd))
1652 			return -ECHILD;
1653 	}
1654 	return inode_permission(nd->inode, MAY_EXEC);
1655 }
1656 
1657 static inline int handle_dots(struct nameidata *nd, int type)
1658 {
1659 	if (type == LAST_DOTDOT) {
1660 		if (!nd->root.mnt)
1661 			set_root(nd);
1662 		if (nd->flags & LOOKUP_RCU) {
1663 			return follow_dotdot_rcu(nd);
1664 		} else
1665 			return follow_dotdot(nd);
1666 	}
1667 	return 0;
1668 }
1669 
1670 static int pick_link(struct nameidata *nd, struct path *link,
1671 		     struct inode *inode, unsigned seq)
1672 {
1673 	int error;
1674 	struct saved *last;
1675 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1676 		path_to_nameidata(link, nd);
1677 		return -ELOOP;
1678 	}
1679 	if (!(nd->flags & LOOKUP_RCU)) {
1680 		if (link->mnt == nd->path.mnt)
1681 			mntget(link->mnt);
1682 	}
1683 	error = nd_alloc_stack(nd);
1684 	if (unlikely(error)) {
1685 		if (error == -ECHILD) {
1686 			if (unlikely(!legitimize_path(nd, link, seq))) {
1687 				drop_links(nd);
1688 				nd->depth = 0;
1689 				nd->flags &= ~LOOKUP_RCU;
1690 				nd->path.mnt = NULL;
1691 				nd->path.dentry = NULL;
1692 				if (!(nd->flags & LOOKUP_ROOT))
1693 					nd->root.mnt = NULL;
1694 				rcu_read_unlock();
1695 			} else if (likely(unlazy_walk(nd)) == 0)
1696 				error = nd_alloc_stack(nd);
1697 		}
1698 		if (error) {
1699 			path_put(link);
1700 			return error;
1701 		}
1702 	}
1703 
1704 	last = nd->stack + nd->depth++;
1705 	last->link = *link;
1706 	clear_delayed_call(&last->done);
1707 	nd->link_inode = inode;
1708 	last->seq = seq;
1709 	return 1;
1710 }
1711 
1712 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1713 
1714 /*
1715  * Do we need to follow links? We _really_ want to be able
1716  * to do this check without having to look at inode->i_op,
1717  * so we keep a cache of "no, this doesn't need follow_link"
1718  * for the common case.
1719  */
1720 static inline int step_into(struct nameidata *nd, struct path *path,
1721 			    int flags, struct inode *inode, unsigned seq)
1722 {
1723 	if (!(flags & WALK_MORE) && nd->depth)
1724 		put_link(nd);
1725 	if (likely(!d_is_symlink(path->dentry)) ||
1726 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1727 		/* not a symlink or should not follow */
1728 		path_to_nameidata(path, nd);
1729 		nd->inode = inode;
1730 		nd->seq = seq;
1731 		return 0;
1732 	}
1733 	/* make sure that d_is_symlink above matches inode */
1734 	if (nd->flags & LOOKUP_RCU) {
1735 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1736 			return -ECHILD;
1737 	}
1738 	return pick_link(nd, path, inode, seq);
1739 }
1740 
1741 static int walk_component(struct nameidata *nd, int flags)
1742 {
1743 	struct path path;
1744 	struct inode *inode;
1745 	unsigned seq;
1746 	int err;
1747 	/*
1748 	 * "." and ".." are special - ".." especially so because it has
1749 	 * to be able to know about the current root directory and
1750 	 * parent relationships.
1751 	 */
1752 	if (unlikely(nd->last_type != LAST_NORM)) {
1753 		err = handle_dots(nd, nd->last_type);
1754 		if (!(flags & WALK_MORE) && nd->depth)
1755 			put_link(nd);
1756 		return err;
1757 	}
1758 	err = lookup_fast(nd, &path, &inode, &seq);
1759 	if (unlikely(err <= 0)) {
1760 		if (err < 0)
1761 			return err;
1762 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1763 					  nd->flags);
1764 		if (IS_ERR(path.dentry))
1765 			return PTR_ERR(path.dentry);
1766 
1767 		path.mnt = nd->path.mnt;
1768 		err = follow_managed(&path, nd);
1769 		if (unlikely(err < 0))
1770 			return err;
1771 
1772 		if (unlikely(d_is_negative(path.dentry))) {
1773 			path_to_nameidata(&path, nd);
1774 			return -ENOENT;
1775 		}
1776 
1777 		seq = 0;	/* we are already out of RCU mode */
1778 		inode = d_backing_inode(path.dentry);
1779 	}
1780 
1781 	return step_into(nd, &path, flags, inode, seq);
1782 }
1783 
1784 /*
1785  * We can do the critical dentry name comparison and hashing
1786  * operations one word at a time, but we are limited to:
1787  *
1788  * - Architectures with fast unaligned word accesses. We could
1789  *   do a "get_unaligned()" if this helps and is sufficiently
1790  *   fast.
1791  *
1792  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1793  *   do not trap on the (extremely unlikely) case of a page
1794  *   crossing operation.
1795  *
1796  * - Furthermore, we need an efficient 64-bit compile for the
1797  *   64-bit case in order to generate the "number of bytes in
1798  *   the final mask". Again, that could be replaced with a
1799  *   efficient population count instruction or similar.
1800  */
1801 #ifdef CONFIG_DCACHE_WORD_ACCESS
1802 
1803 #include <asm/word-at-a-time.h>
1804 
1805 #ifdef HASH_MIX
1806 
1807 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1808 
1809 #elif defined(CONFIG_64BIT)
1810 /*
1811  * Register pressure in the mixing function is an issue, particularly
1812  * on 32-bit x86, but almost any function requires one state value and
1813  * one temporary.  Instead, use a function designed for two state values
1814  * and no temporaries.
1815  *
1816  * This function cannot create a collision in only two iterations, so
1817  * we have two iterations to achieve avalanche.  In those two iterations,
1818  * we have six layers of mixing, which is enough to spread one bit's
1819  * influence out to 2^6 = 64 state bits.
1820  *
1821  * Rotate constants are scored by considering either 64 one-bit input
1822  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1823  * probability of that delta causing a change to each of the 128 output
1824  * bits, using a sample of random initial states.
1825  *
1826  * The Shannon entropy of the computed probabilities is then summed
1827  * to produce a score.  Ideally, any input change has a 50% chance of
1828  * toggling any given output bit.
1829  *
1830  * Mixing scores (in bits) for (12,45):
1831  * Input delta: 1-bit      2-bit
1832  * 1 round:     713.3    42542.6
1833  * 2 rounds:   2753.7   140389.8
1834  * 3 rounds:   5954.1   233458.2
1835  * 4 rounds:   7862.6   256672.2
1836  * Perfect:    8192     258048
1837  *            (64*128) (64*63/2 * 128)
1838  */
1839 #define HASH_MIX(x, y, a)	\
1840 	(	x ^= (a),	\
1841 	y ^= x,	x = rol64(x,12),\
1842 	x += y,	y = rol64(y,45),\
1843 	y *= 9			)
1844 
1845 /*
1846  * Fold two longs into one 32-bit hash value.  This must be fast, but
1847  * latency isn't quite as critical, as there is a fair bit of additional
1848  * work done before the hash value is used.
1849  */
1850 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1851 {
1852 	y ^= x * GOLDEN_RATIO_64;
1853 	y *= GOLDEN_RATIO_64;
1854 	return y >> 32;
1855 }
1856 
1857 #else	/* 32-bit case */
1858 
1859 /*
1860  * Mixing scores (in bits) for (7,20):
1861  * Input delta: 1-bit      2-bit
1862  * 1 round:     330.3     9201.6
1863  * 2 rounds:   1246.4    25475.4
1864  * 3 rounds:   1907.1    31295.1
1865  * 4 rounds:   2042.3    31718.6
1866  * Perfect:    2048      31744
1867  *            (32*64)   (32*31/2 * 64)
1868  */
1869 #define HASH_MIX(x, y, a)	\
1870 	(	x ^= (a),	\
1871 	y ^= x,	x = rol32(x, 7),\
1872 	x += y,	y = rol32(y,20),\
1873 	y *= 9			)
1874 
1875 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1876 {
1877 	/* Use arch-optimized multiply if one exists */
1878 	return __hash_32(y ^ __hash_32(x));
1879 }
1880 
1881 #endif
1882 
1883 /*
1884  * Return the hash of a string of known length.  This is carfully
1885  * designed to match hash_name(), which is the more critical function.
1886  * In particular, we must end by hashing a final word containing 0..7
1887  * payload bytes, to match the way that hash_name() iterates until it
1888  * finds the delimiter after the name.
1889  */
1890 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1891 {
1892 	unsigned long a, x = 0, y = (unsigned long)salt;
1893 
1894 	for (;;) {
1895 		if (!len)
1896 			goto done;
1897 		a = load_unaligned_zeropad(name);
1898 		if (len < sizeof(unsigned long))
1899 			break;
1900 		HASH_MIX(x, y, a);
1901 		name += sizeof(unsigned long);
1902 		len -= sizeof(unsigned long);
1903 	}
1904 	x ^= a & bytemask_from_count(len);
1905 done:
1906 	return fold_hash(x, y);
1907 }
1908 EXPORT_SYMBOL(full_name_hash);
1909 
1910 /* Return the "hash_len" (hash and length) of a null-terminated string */
1911 u64 hashlen_string(const void *salt, const char *name)
1912 {
1913 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1914 	unsigned long adata, mask, len;
1915 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1916 
1917 	len = 0;
1918 	goto inside;
1919 
1920 	do {
1921 		HASH_MIX(x, y, a);
1922 		len += sizeof(unsigned long);
1923 inside:
1924 		a = load_unaligned_zeropad(name+len);
1925 	} while (!has_zero(a, &adata, &constants));
1926 
1927 	adata = prep_zero_mask(a, adata, &constants);
1928 	mask = create_zero_mask(adata);
1929 	x ^= a & zero_bytemask(mask);
1930 
1931 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1932 }
1933 EXPORT_SYMBOL(hashlen_string);
1934 
1935 /*
1936  * Calculate the length and hash of the path component, and
1937  * return the "hash_len" as the result.
1938  */
1939 static inline u64 hash_name(const void *salt, const char *name)
1940 {
1941 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1942 	unsigned long adata, bdata, mask, len;
1943 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1944 
1945 	len = 0;
1946 	goto inside;
1947 
1948 	do {
1949 		HASH_MIX(x, y, a);
1950 		len += sizeof(unsigned long);
1951 inside:
1952 		a = load_unaligned_zeropad(name+len);
1953 		b = a ^ REPEAT_BYTE('/');
1954 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1955 
1956 	adata = prep_zero_mask(a, adata, &constants);
1957 	bdata = prep_zero_mask(b, bdata, &constants);
1958 	mask = create_zero_mask(adata | bdata);
1959 	x ^= a & zero_bytemask(mask);
1960 
1961 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1962 }
1963 
1964 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1965 
1966 /* Return the hash of a string of known length */
1967 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1968 {
1969 	unsigned long hash = init_name_hash(salt);
1970 	while (len--)
1971 		hash = partial_name_hash((unsigned char)*name++, hash);
1972 	return end_name_hash(hash);
1973 }
1974 EXPORT_SYMBOL(full_name_hash);
1975 
1976 /* Return the "hash_len" (hash and length) of a null-terminated string */
1977 u64 hashlen_string(const void *salt, const char *name)
1978 {
1979 	unsigned long hash = init_name_hash(salt);
1980 	unsigned long len = 0, c;
1981 
1982 	c = (unsigned char)*name;
1983 	while (c) {
1984 		len++;
1985 		hash = partial_name_hash(c, hash);
1986 		c = (unsigned char)name[len];
1987 	}
1988 	return hashlen_create(end_name_hash(hash), len);
1989 }
1990 EXPORT_SYMBOL(hashlen_string);
1991 
1992 /*
1993  * We know there's a real path component here of at least
1994  * one character.
1995  */
1996 static inline u64 hash_name(const void *salt, const char *name)
1997 {
1998 	unsigned long hash = init_name_hash(salt);
1999 	unsigned long len = 0, c;
2000 
2001 	c = (unsigned char)*name;
2002 	do {
2003 		len++;
2004 		hash = partial_name_hash(c, hash);
2005 		c = (unsigned char)name[len];
2006 	} while (c && c != '/');
2007 	return hashlen_create(end_name_hash(hash), len);
2008 }
2009 
2010 #endif
2011 
2012 /*
2013  * Name resolution.
2014  * This is the basic name resolution function, turning a pathname into
2015  * the final dentry. We expect 'base' to be positive and a directory.
2016  *
2017  * Returns 0 and nd will have valid dentry and mnt on success.
2018  * Returns error and drops reference to input namei data on failure.
2019  */
2020 static int link_path_walk(const char *name, struct nameidata *nd)
2021 {
2022 	int err;
2023 
2024 	while (*name=='/')
2025 		name++;
2026 	if (!*name)
2027 		return 0;
2028 
2029 	/* At this point we know we have a real path component. */
2030 	for(;;) {
2031 		u64 hash_len;
2032 		int type;
2033 
2034 		err = may_lookup(nd);
2035 		if (err)
2036 			return err;
2037 
2038 		hash_len = hash_name(nd->path.dentry, name);
2039 
2040 		type = LAST_NORM;
2041 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2042 			case 2:
2043 				if (name[1] == '.') {
2044 					type = LAST_DOTDOT;
2045 					nd->flags |= LOOKUP_JUMPED;
2046 				}
2047 				break;
2048 			case 1:
2049 				type = LAST_DOT;
2050 		}
2051 		if (likely(type == LAST_NORM)) {
2052 			struct dentry *parent = nd->path.dentry;
2053 			nd->flags &= ~LOOKUP_JUMPED;
2054 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2055 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2056 				err = parent->d_op->d_hash(parent, &this);
2057 				if (err < 0)
2058 					return err;
2059 				hash_len = this.hash_len;
2060 				name = this.name;
2061 			}
2062 		}
2063 
2064 		nd->last.hash_len = hash_len;
2065 		nd->last.name = name;
2066 		nd->last_type = type;
2067 
2068 		name += hashlen_len(hash_len);
2069 		if (!*name)
2070 			goto OK;
2071 		/*
2072 		 * If it wasn't NUL, we know it was '/'. Skip that
2073 		 * slash, and continue until no more slashes.
2074 		 */
2075 		do {
2076 			name++;
2077 		} while (unlikely(*name == '/'));
2078 		if (unlikely(!*name)) {
2079 OK:
2080 			/* pathname body, done */
2081 			if (!nd->depth)
2082 				return 0;
2083 			name = nd->stack[nd->depth - 1].name;
2084 			/* trailing symlink, done */
2085 			if (!name)
2086 				return 0;
2087 			/* last component of nested symlink */
2088 			err = walk_component(nd, WALK_FOLLOW);
2089 		} else {
2090 			/* not the last component */
2091 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2092 		}
2093 		if (err < 0)
2094 			return err;
2095 
2096 		if (err) {
2097 			const char *s = get_link(nd);
2098 
2099 			if (IS_ERR(s))
2100 				return PTR_ERR(s);
2101 			err = 0;
2102 			if (unlikely(!s)) {
2103 				/* jumped */
2104 				put_link(nd);
2105 			} else {
2106 				nd->stack[nd->depth - 1].name = name;
2107 				name = s;
2108 				continue;
2109 			}
2110 		}
2111 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2112 			if (nd->flags & LOOKUP_RCU) {
2113 				if (unlazy_walk(nd))
2114 					return -ECHILD;
2115 			}
2116 			return -ENOTDIR;
2117 		}
2118 	}
2119 }
2120 
2121 static const char *path_init(struct nameidata *nd, unsigned flags)
2122 {
2123 	const char *s = nd->name->name;
2124 
2125 	if (!*s)
2126 		flags &= ~LOOKUP_RCU;
2127 
2128 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2129 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2130 	nd->depth = 0;
2131 	if (flags & LOOKUP_ROOT) {
2132 		struct dentry *root = nd->root.dentry;
2133 		struct inode *inode = root->d_inode;
2134 		if (*s && unlikely(!d_can_lookup(root)))
2135 			return ERR_PTR(-ENOTDIR);
2136 		nd->path = nd->root;
2137 		nd->inode = inode;
2138 		if (flags & LOOKUP_RCU) {
2139 			rcu_read_lock();
2140 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2141 			nd->root_seq = nd->seq;
2142 			nd->m_seq = read_seqbegin(&mount_lock);
2143 		} else {
2144 			path_get(&nd->path);
2145 		}
2146 		return s;
2147 	}
2148 
2149 	nd->root.mnt = NULL;
2150 	nd->path.mnt = NULL;
2151 	nd->path.dentry = NULL;
2152 
2153 	nd->m_seq = read_seqbegin(&mount_lock);
2154 	if (*s == '/') {
2155 		if (flags & LOOKUP_RCU)
2156 			rcu_read_lock();
2157 		set_root(nd);
2158 		if (likely(!nd_jump_root(nd)))
2159 			return s;
2160 		nd->root.mnt = NULL;
2161 		rcu_read_unlock();
2162 		return ERR_PTR(-ECHILD);
2163 	} else if (nd->dfd == AT_FDCWD) {
2164 		if (flags & LOOKUP_RCU) {
2165 			struct fs_struct *fs = current->fs;
2166 			unsigned seq;
2167 
2168 			rcu_read_lock();
2169 
2170 			do {
2171 				seq = read_seqcount_begin(&fs->seq);
2172 				nd->path = fs->pwd;
2173 				nd->inode = nd->path.dentry->d_inode;
2174 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2175 			} while (read_seqcount_retry(&fs->seq, seq));
2176 		} else {
2177 			get_fs_pwd(current->fs, &nd->path);
2178 			nd->inode = nd->path.dentry->d_inode;
2179 		}
2180 		return s;
2181 	} else {
2182 		/* Caller must check execute permissions on the starting path component */
2183 		struct fd f = fdget_raw(nd->dfd);
2184 		struct dentry *dentry;
2185 
2186 		if (!f.file)
2187 			return ERR_PTR(-EBADF);
2188 
2189 		dentry = f.file->f_path.dentry;
2190 
2191 		if (*s) {
2192 			if (!d_can_lookup(dentry)) {
2193 				fdput(f);
2194 				return ERR_PTR(-ENOTDIR);
2195 			}
2196 		}
2197 
2198 		nd->path = f.file->f_path;
2199 		if (flags & LOOKUP_RCU) {
2200 			rcu_read_lock();
2201 			nd->inode = nd->path.dentry->d_inode;
2202 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2203 		} else {
2204 			path_get(&nd->path);
2205 			nd->inode = nd->path.dentry->d_inode;
2206 		}
2207 		fdput(f);
2208 		return s;
2209 	}
2210 }
2211 
2212 static const char *trailing_symlink(struct nameidata *nd)
2213 {
2214 	const char *s;
2215 	int error = may_follow_link(nd);
2216 	if (unlikely(error))
2217 		return ERR_PTR(error);
2218 	nd->flags |= LOOKUP_PARENT;
2219 	nd->stack[0].name = NULL;
2220 	s = get_link(nd);
2221 	return s ? s : "";
2222 }
2223 
2224 static inline int lookup_last(struct nameidata *nd)
2225 {
2226 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2227 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2228 
2229 	nd->flags &= ~LOOKUP_PARENT;
2230 	return walk_component(nd, 0);
2231 }
2232 
2233 static int handle_lookup_down(struct nameidata *nd)
2234 {
2235 	struct path path = nd->path;
2236 	struct inode *inode = nd->inode;
2237 	unsigned seq = nd->seq;
2238 	int err;
2239 
2240 	if (nd->flags & LOOKUP_RCU) {
2241 		/*
2242 		 * don't bother with unlazy_walk on failure - we are
2243 		 * at the very beginning of walk, so we lose nothing
2244 		 * if we simply redo everything in non-RCU mode
2245 		 */
2246 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2247 			return -ECHILD;
2248 	} else {
2249 		dget(path.dentry);
2250 		err = follow_managed(&path, nd);
2251 		if (unlikely(err < 0))
2252 			return err;
2253 		inode = d_backing_inode(path.dentry);
2254 		seq = 0;
2255 	}
2256 	path_to_nameidata(&path, nd);
2257 	nd->inode = inode;
2258 	nd->seq = seq;
2259 	return 0;
2260 }
2261 
2262 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2263 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2264 {
2265 	const char *s = path_init(nd, flags);
2266 	int err;
2267 
2268 	if (IS_ERR(s))
2269 		return PTR_ERR(s);
2270 
2271 	if (unlikely(flags & LOOKUP_DOWN)) {
2272 		err = handle_lookup_down(nd);
2273 		if (unlikely(err < 0)) {
2274 			terminate_walk(nd);
2275 			return err;
2276 		}
2277 	}
2278 
2279 	while (!(err = link_path_walk(s, nd))
2280 		&& ((err = lookup_last(nd)) > 0)) {
2281 		s = trailing_symlink(nd);
2282 		if (IS_ERR(s)) {
2283 			err = PTR_ERR(s);
2284 			break;
2285 		}
2286 	}
2287 	if (!err)
2288 		err = complete_walk(nd);
2289 
2290 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2291 		if (!d_can_lookup(nd->path.dentry))
2292 			err = -ENOTDIR;
2293 	if (!err) {
2294 		*path = nd->path;
2295 		nd->path.mnt = NULL;
2296 		nd->path.dentry = NULL;
2297 	}
2298 	terminate_walk(nd);
2299 	return err;
2300 }
2301 
2302 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2303 			   struct path *path, struct path *root)
2304 {
2305 	int retval;
2306 	struct nameidata nd;
2307 	if (IS_ERR(name))
2308 		return PTR_ERR(name);
2309 	if (unlikely(root)) {
2310 		nd.root = *root;
2311 		flags |= LOOKUP_ROOT;
2312 	}
2313 	set_nameidata(&nd, dfd, name);
2314 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2315 	if (unlikely(retval == -ECHILD))
2316 		retval = path_lookupat(&nd, flags, path);
2317 	if (unlikely(retval == -ESTALE))
2318 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2319 
2320 	if (likely(!retval))
2321 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2322 	restore_nameidata();
2323 	putname(name);
2324 	return retval;
2325 }
2326 
2327 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2328 static int path_parentat(struct nameidata *nd, unsigned flags,
2329 				struct path *parent)
2330 {
2331 	const char *s = path_init(nd, flags);
2332 	int err;
2333 	if (IS_ERR(s))
2334 		return PTR_ERR(s);
2335 	err = link_path_walk(s, nd);
2336 	if (!err)
2337 		err = complete_walk(nd);
2338 	if (!err) {
2339 		*parent = nd->path;
2340 		nd->path.mnt = NULL;
2341 		nd->path.dentry = NULL;
2342 	}
2343 	terminate_walk(nd);
2344 	return err;
2345 }
2346 
2347 static struct filename *filename_parentat(int dfd, struct filename *name,
2348 				unsigned int flags, struct path *parent,
2349 				struct qstr *last, int *type)
2350 {
2351 	int retval;
2352 	struct nameidata nd;
2353 
2354 	if (IS_ERR(name))
2355 		return name;
2356 	set_nameidata(&nd, dfd, name);
2357 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2358 	if (unlikely(retval == -ECHILD))
2359 		retval = path_parentat(&nd, flags, parent);
2360 	if (unlikely(retval == -ESTALE))
2361 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2362 	if (likely(!retval)) {
2363 		*last = nd.last;
2364 		*type = nd.last_type;
2365 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2366 	} else {
2367 		putname(name);
2368 		name = ERR_PTR(retval);
2369 	}
2370 	restore_nameidata();
2371 	return name;
2372 }
2373 
2374 /* does lookup, returns the object with parent locked */
2375 struct dentry *kern_path_locked(const char *name, struct path *path)
2376 {
2377 	struct filename *filename;
2378 	struct dentry *d;
2379 	struct qstr last;
2380 	int type;
2381 
2382 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2383 				    &last, &type);
2384 	if (IS_ERR(filename))
2385 		return ERR_CAST(filename);
2386 	if (unlikely(type != LAST_NORM)) {
2387 		path_put(path);
2388 		putname(filename);
2389 		return ERR_PTR(-EINVAL);
2390 	}
2391 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2392 	d = __lookup_hash(&last, path->dentry, 0);
2393 	if (IS_ERR(d)) {
2394 		inode_unlock(path->dentry->d_inode);
2395 		path_put(path);
2396 	}
2397 	putname(filename);
2398 	return d;
2399 }
2400 
2401 int kern_path(const char *name, unsigned int flags, struct path *path)
2402 {
2403 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2404 			       flags, path, NULL);
2405 }
2406 EXPORT_SYMBOL(kern_path);
2407 
2408 /**
2409  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2410  * @dentry:  pointer to dentry of the base directory
2411  * @mnt: pointer to vfs mount of the base directory
2412  * @name: pointer to file name
2413  * @flags: lookup flags
2414  * @path: pointer to struct path to fill
2415  */
2416 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2417 		    const char *name, unsigned int flags,
2418 		    struct path *path)
2419 {
2420 	struct path root = {.mnt = mnt, .dentry = dentry};
2421 	/* the first argument of filename_lookup() is ignored with root */
2422 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2423 			       flags , path, &root);
2424 }
2425 EXPORT_SYMBOL(vfs_path_lookup);
2426 
2427 /**
2428  * lookup_one_len - filesystem helper to lookup single pathname component
2429  * @name:	pathname component to lookup
2430  * @base:	base directory to lookup from
2431  * @len:	maximum length @len should be interpreted to
2432  *
2433  * Note that this routine is purely a helper for filesystem usage and should
2434  * not be called by generic code.
2435  *
2436  * The caller must hold base->i_mutex.
2437  */
2438 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2439 {
2440 	struct qstr this;
2441 	unsigned int c;
2442 	int err;
2443 
2444 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2445 
2446 	this.name = name;
2447 	this.len = len;
2448 	this.hash = full_name_hash(base, name, len);
2449 	if (!len)
2450 		return ERR_PTR(-EACCES);
2451 
2452 	if (unlikely(name[0] == '.')) {
2453 		if (len < 2 || (len == 2 && name[1] == '.'))
2454 			return ERR_PTR(-EACCES);
2455 	}
2456 
2457 	while (len--) {
2458 		c = *(const unsigned char *)name++;
2459 		if (c == '/' || c == '\0')
2460 			return ERR_PTR(-EACCES);
2461 	}
2462 	/*
2463 	 * See if the low-level filesystem might want
2464 	 * to use its own hash..
2465 	 */
2466 	if (base->d_flags & DCACHE_OP_HASH) {
2467 		int err = base->d_op->d_hash(base, &this);
2468 		if (err < 0)
2469 			return ERR_PTR(err);
2470 	}
2471 
2472 	err = inode_permission(base->d_inode, MAY_EXEC);
2473 	if (err)
2474 		return ERR_PTR(err);
2475 
2476 	return __lookup_hash(&this, base, 0);
2477 }
2478 EXPORT_SYMBOL(lookup_one_len);
2479 
2480 /**
2481  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2482  * @name:	pathname component to lookup
2483  * @base:	base directory to lookup from
2484  * @len:	maximum length @len should be interpreted to
2485  *
2486  * Note that this routine is purely a helper for filesystem usage and should
2487  * not be called by generic code.
2488  *
2489  * Unlike lookup_one_len, it should be called without the parent
2490  * i_mutex held, and will take the i_mutex itself if necessary.
2491  */
2492 struct dentry *lookup_one_len_unlocked(const char *name,
2493 				       struct dentry *base, int len)
2494 {
2495 	struct qstr this;
2496 	unsigned int c;
2497 	int err;
2498 	struct dentry *ret;
2499 
2500 	this.name = name;
2501 	this.len = len;
2502 	this.hash = full_name_hash(base, name, len);
2503 	if (!len)
2504 		return ERR_PTR(-EACCES);
2505 
2506 	if (unlikely(name[0] == '.')) {
2507 		if (len < 2 || (len == 2 && name[1] == '.'))
2508 			return ERR_PTR(-EACCES);
2509 	}
2510 
2511 	while (len--) {
2512 		c = *(const unsigned char *)name++;
2513 		if (c == '/' || c == '\0')
2514 			return ERR_PTR(-EACCES);
2515 	}
2516 	/*
2517 	 * See if the low-level filesystem might want
2518 	 * to use its own hash..
2519 	 */
2520 	if (base->d_flags & DCACHE_OP_HASH) {
2521 		int err = base->d_op->d_hash(base, &this);
2522 		if (err < 0)
2523 			return ERR_PTR(err);
2524 	}
2525 
2526 	err = inode_permission(base->d_inode, MAY_EXEC);
2527 	if (err)
2528 		return ERR_PTR(err);
2529 
2530 	ret = lookup_dcache(&this, base, 0);
2531 	if (!ret)
2532 		ret = lookup_slow(&this, base, 0);
2533 	return ret;
2534 }
2535 EXPORT_SYMBOL(lookup_one_len_unlocked);
2536 
2537 #ifdef CONFIG_UNIX98_PTYS
2538 int path_pts(struct path *path)
2539 {
2540 	/* Find something mounted on "pts" in the same directory as
2541 	 * the input path.
2542 	 */
2543 	struct dentry *child, *parent;
2544 	struct qstr this;
2545 	int ret;
2546 
2547 	ret = path_parent_directory(path);
2548 	if (ret)
2549 		return ret;
2550 
2551 	parent = path->dentry;
2552 	this.name = "pts";
2553 	this.len = 3;
2554 	child = d_hash_and_lookup(parent, &this);
2555 	if (!child)
2556 		return -ENOENT;
2557 
2558 	path->dentry = child;
2559 	dput(parent);
2560 	follow_mount(path);
2561 	return 0;
2562 }
2563 #endif
2564 
2565 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2566 		 struct path *path, int *empty)
2567 {
2568 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2569 			       flags, path, NULL);
2570 }
2571 EXPORT_SYMBOL(user_path_at_empty);
2572 
2573 /**
2574  * mountpoint_last - look up last component for umount
2575  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2576  *
2577  * This is a special lookup_last function just for umount. In this case, we
2578  * need to resolve the path without doing any revalidation.
2579  *
2580  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2581  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2582  * in almost all cases, this lookup will be served out of the dcache. The only
2583  * cases where it won't are if nd->last refers to a symlink or the path is
2584  * bogus and it doesn't exist.
2585  *
2586  * Returns:
2587  * -error: if there was an error during lookup. This includes -ENOENT if the
2588  *         lookup found a negative dentry.
2589  *
2590  * 0:      if we successfully resolved nd->last and found it to not to be a
2591  *         symlink that needs to be followed.
2592  *
2593  * 1:      if we successfully resolved nd->last and found it to be a symlink
2594  *         that needs to be followed.
2595  */
2596 static int
2597 mountpoint_last(struct nameidata *nd)
2598 {
2599 	int error = 0;
2600 	struct dentry *dir = nd->path.dentry;
2601 	struct path path;
2602 
2603 	/* If we're in rcuwalk, drop out of it to handle last component */
2604 	if (nd->flags & LOOKUP_RCU) {
2605 		if (unlazy_walk(nd))
2606 			return -ECHILD;
2607 	}
2608 
2609 	nd->flags &= ~LOOKUP_PARENT;
2610 
2611 	if (unlikely(nd->last_type != LAST_NORM)) {
2612 		error = handle_dots(nd, nd->last_type);
2613 		if (error)
2614 			return error;
2615 		path.dentry = dget(nd->path.dentry);
2616 	} else {
2617 		path.dentry = d_lookup(dir, &nd->last);
2618 		if (!path.dentry) {
2619 			/*
2620 			 * No cached dentry. Mounted dentries are pinned in the
2621 			 * cache, so that means that this dentry is probably
2622 			 * a symlink or the path doesn't actually point
2623 			 * to a mounted dentry.
2624 			 */
2625 			path.dentry = lookup_slow(&nd->last, dir,
2626 					     nd->flags | LOOKUP_NO_REVAL);
2627 			if (IS_ERR(path.dentry))
2628 				return PTR_ERR(path.dentry);
2629 		}
2630 	}
2631 	if (d_is_negative(path.dentry)) {
2632 		dput(path.dentry);
2633 		return -ENOENT;
2634 	}
2635 	path.mnt = nd->path.mnt;
2636 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2637 }
2638 
2639 /**
2640  * path_mountpoint - look up a path to be umounted
2641  * @nd:		lookup context
2642  * @flags:	lookup flags
2643  * @path:	pointer to container for result
2644  *
2645  * Look up the given name, but don't attempt to revalidate the last component.
2646  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2647  */
2648 static int
2649 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2650 {
2651 	const char *s = path_init(nd, flags);
2652 	int err;
2653 	if (IS_ERR(s))
2654 		return PTR_ERR(s);
2655 	while (!(err = link_path_walk(s, nd)) &&
2656 		(err = mountpoint_last(nd)) > 0) {
2657 		s = trailing_symlink(nd);
2658 		if (IS_ERR(s)) {
2659 			err = PTR_ERR(s);
2660 			break;
2661 		}
2662 	}
2663 	if (!err) {
2664 		*path = nd->path;
2665 		nd->path.mnt = NULL;
2666 		nd->path.dentry = NULL;
2667 		follow_mount(path);
2668 	}
2669 	terminate_walk(nd);
2670 	return err;
2671 }
2672 
2673 static int
2674 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2675 			unsigned int flags)
2676 {
2677 	struct nameidata nd;
2678 	int error;
2679 	if (IS_ERR(name))
2680 		return PTR_ERR(name);
2681 	set_nameidata(&nd, dfd, name);
2682 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2683 	if (unlikely(error == -ECHILD))
2684 		error = path_mountpoint(&nd, flags, path);
2685 	if (unlikely(error == -ESTALE))
2686 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2687 	if (likely(!error))
2688 		audit_inode(name, path->dentry, 0);
2689 	restore_nameidata();
2690 	putname(name);
2691 	return error;
2692 }
2693 
2694 /**
2695  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2696  * @dfd:	directory file descriptor
2697  * @name:	pathname from userland
2698  * @flags:	lookup flags
2699  * @path:	pointer to container to hold result
2700  *
2701  * A umount is a special case for path walking. We're not actually interested
2702  * in the inode in this situation, and ESTALE errors can be a problem. We
2703  * simply want track down the dentry and vfsmount attached at the mountpoint
2704  * and avoid revalidating the last component.
2705  *
2706  * Returns 0 and populates "path" on success.
2707  */
2708 int
2709 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2710 			struct path *path)
2711 {
2712 	return filename_mountpoint(dfd, getname(name), path, flags);
2713 }
2714 
2715 int
2716 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2717 			unsigned int flags)
2718 {
2719 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2720 }
2721 EXPORT_SYMBOL(kern_path_mountpoint);
2722 
2723 int __check_sticky(struct inode *dir, struct inode *inode)
2724 {
2725 	kuid_t fsuid = current_fsuid();
2726 
2727 	if (uid_eq(inode->i_uid, fsuid))
2728 		return 0;
2729 	if (uid_eq(dir->i_uid, fsuid))
2730 		return 0;
2731 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2732 }
2733 EXPORT_SYMBOL(__check_sticky);
2734 
2735 /*
2736  *	Check whether we can remove a link victim from directory dir, check
2737  *  whether the type of victim is right.
2738  *  1. We can't do it if dir is read-only (done in permission())
2739  *  2. We should have write and exec permissions on dir
2740  *  3. We can't remove anything from append-only dir
2741  *  4. We can't do anything with immutable dir (done in permission())
2742  *  5. If the sticky bit on dir is set we should either
2743  *	a. be owner of dir, or
2744  *	b. be owner of victim, or
2745  *	c. have CAP_FOWNER capability
2746  *  6. If the victim is append-only or immutable we can't do antyhing with
2747  *     links pointing to it.
2748  *  7. If the victim has an unknown uid or gid we can't change the inode.
2749  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2750  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2751  * 10. We can't remove a root or mountpoint.
2752  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2753  *     nfs_async_unlink().
2754  */
2755 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2756 {
2757 	struct inode *inode = d_backing_inode(victim);
2758 	int error;
2759 
2760 	if (d_is_negative(victim))
2761 		return -ENOENT;
2762 	BUG_ON(!inode);
2763 
2764 	BUG_ON(victim->d_parent->d_inode != dir);
2765 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2766 
2767 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2768 	if (error)
2769 		return error;
2770 	if (IS_APPEND(dir))
2771 		return -EPERM;
2772 
2773 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2774 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2775 		return -EPERM;
2776 	if (isdir) {
2777 		if (!d_is_dir(victim))
2778 			return -ENOTDIR;
2779 		if (IS_ROOT(victim))
2780 			return -EBUSY;
2781 	} else if (d_is_dir(victim))
2782 		return -EISDIR;
2783 	if (IS_DEADDIR(dir))
2784 		return -ENOENT;
2785 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2786 		return -EBUSY;
2787 	return 0;
2788 }
2789 
2790 /*	Check whether we can create an object with dentry child in directory
2791  *  dir.
2792  *  1. We can't do it if child already exists (open has special treatment for
2793  *     this case, but since we are inlined it's OK)
2794  *  2. We can't do it if dir is read-only (done in permission())
2795  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2796  *  4. We should have write and exec permissions on dir
2797  *  5. We can't do it if dir is immutable (done in permission())
2798  */
2799 static inline int may_create(struct inode *dir, struct dentry *child)
2800 {
2801 	struct user_namespace *s_user_ns;
2802 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2803 	if (child->d_inode)
2804 		return -EEXIST;
2805 	if (IS_DEADDIR(dir))
2806 		return -ENOENT;
2807 	s_user_ns = dir->i_sb->s_user_ns;
2808 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2809 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2810 		return -EOVERFLOW;
2811 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2812 }
2813 
2814 /*
2815  * p1 and p2 should be directories on the same fs.
2816  */
2817 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2818 {
2819 	struct dentry *p;
2820 
2821 	if (p1 == p2) {
2822 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2823 		return NULL;
2824 	}
2825 
2826 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2827 
2828 	p = d_ancestor(p2, p1);
2829 	if (p) {
2830 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2831 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2832 		return p;
2833 	}
2834 
2835 	p = d_ancestor(p1, p2);
2836 	if (p) {
2837 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2838 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2839 		return p;
2840 	}
2841 
2842 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2843 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2844 	return NULL;
2845 }
2846 EXPORT_SYMBOL(lock_rename);
2847 
2848 void unlock_rename(struct dentry *p1, struct dentry *p2)
2849 {
2850 	inode_unlock(p1->d_inode);
2851 	if (p1 != p2) {
2852 		inode_unlock(p2->d_inode);
2853 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2854 	}
2855 }
2856 EXPORT_SYMBOL(unlock_rename);
2857 
2858 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2859 		bool want_excl)
2860 {
2861 	int error = may_create(dir, dentry);
2862 	if (error)
2863 		return error;
2864 
2865 	if (!dir->i_op->create)
2866 		return -EACCES;	/* shouldn't it be ENOSYS? */
2867 	mode &= S_IALLUGO;
2868 	mode |= S_IFREG;
2869 	error = security_inode_create(dir, dentry, mode);
2870 	if (error)
2871 		return error;
2872 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2873 	if (!error)
2874 		fsnotify_create(dir, dentry);
2875 	return error;
2876 }
2877 EXPORT_SYMBOL(vfs_create);
2878 
2879 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2880 		int (*f)(struct dentry *, umode_t, void *),
2881 		void *arg)
2882 {
2883 	struct inode *dir = dentry->d_parent->d_inode;
2884 	int error = may_create(dir, dentry);
2885 	if (error)
2886 		return error;
2887 
2888 	mode &= S_IALLUGO;
2889 	mode |= S_IFREG;
2890 	error = security_inode_create(dir, dentry, mode);
2891 	if (error)
2892 		return error;
2893 	error = f(dentry, mode, arg);
2894 	if (!error)
2895 		fsnotify_create(dir, dentry);
2896 	return error;
2897 }
2898 EXPORT_SYMBOL(vfs_mkobj);
2899 
2900 bool may_open_dev(const struct path *path)
2901 {
2902 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2903 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2904 }
2905 
2906 static int may_open(const struct path *path, int acc_mode, int flag)
2907 {
2908 	struct dentry *dentry = path->dentry;
2909 	struct inode *inode = dentry->d_inode;
2910 	int error;
2911 
2912 	if (!inode)
2913 		return -ENOENT;
2914 
2915 	switch (inode->i_mode & S_IFMT) {
2916 	case S_IFLNK:
2917 		return -ELOOP;
2918 	case S_IFDIR:
2919 		if (acc_mode & MAY_WRITE)
2920 			return -EISDIR;
2921 		break;
2922 	case S_IFBLK:
2923 	case S_IFCHR:
2924 		if (!may_open_dev(path))
2925 			return -EACCES;
2926 		/*FALLTHRU*/
2927 	case S_IFIFO:
2928 	case S_IFSOCK:
2929 		flag &= ~O_TRUNC;
2930 		break;
2931 	}
2932 
2933 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2934 	if (error)
2935 		return error;
2936 
2937 	/*
2938 	 * An append-only file must be opened in append mode for writing.
2939 	 */
2940 	if (IS_APPEND(inode)) {
2941 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2942 			return -EPERM;
2943 		if (flag & O_TRUNC)
2944 			return -EPERM;
2945 	}
2946 
2947 	/* O_NOATIME can only be set by the owner or superuser */
2948 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2949 		return -EPERM;
2950 
2951 	return 0;
2952 }
2953 
2954 static int handle_truncate(struct file *filp)
2955 {
2956 	const struct path *path = &filp->f_path;
2957 	struct inode *inode = path->dentry->d_inode;
2958 	int error = get_write_access(inode);
2959 	if (error)
2960 		return error;
2961 	/*
2962 	 * Refuse to truncate files with mandatory locks held on them.
2963 	 */
2964 	error = locks_verify_locked(filp);
2965 	if (!error)
2966 		error = security_path_truncate(path);
2967 	if (!error) {
2968 		error = do_truncate(path->dentry, 0,
2969 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2970 				    filp);
2971 	}
2972 	put_write_access(inode);
2973 	return error;
2974 }
2975 
2976 static inline int open_to_namei_flags(int flag)
2977 {
2978 	if ((flag & O_ACCMODE) == 3)
2979 		flag--;
2980 	return flag;
2981 }
2982 
2983 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2984 {
2985 	struct user_namespace *s_user_ns;
2986 	int error = security_path_mknod(dir, dentry, mode, 0);
2987 	if (error)
2988 		return error;
2989 
2990 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2991 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2992 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2993 		return -EOVERFLOW;
2994 
2995 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2996 	if (error)
2997 		return error;
2998 
2999 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3000 }
3001 
3002 /*
3003  * Attempt to atomically look up, create and open a file from a negative
3004  * dentry.
3005  *
3006  * Returns 0 if successful.  The file will have been created and attached to
3007  * @file by the filesystem calling finish_open().
3008  *
3009  * Returns 1 if the file was looked up only or didn't need creating.  The
3010  * caller will need to perform the open themselves.  @path will have been
3011  * updated to point to the new dentry.  This may be negative.
3012  *
3013  * Returns an error code otherwise.
3014  */
3015 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3016 			struct path *path, struct file *file,
3017 			const struct open_flags *op,
3018 			int open_flag, umode_t mode,
3019 			int *opened)
3020 {
3021 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3022 	struct inode *dir =  nd->path.dentry->d_inode;
3023 	int error;
3024 
3025 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3026 		open_flag &= ~O_TRUNC;
3027 
3028 	if (nd->flags & LOOKUP_DIRECTORY)
3029 		open_flag |= O_DIRECTORY;
3030 
3031 	file->f_path.dentry = DENTRY_NOT_SET;
3032 	file->f_path.mnt = nd->path.mnt;
3033 	error = dir->i_op->atomic_open(dir, dentry, file,
3034 				       open_to_namei_flags(open_flag),
3035 				       mode, opened);
3036 	d_lookup_done(dentry);
3037 	if (!error) {
3038 		/*
3039 		 * We didn't have the inode before the open, so check open
3040 		 * permission here.
3041 		 */
3042 		int acc_mode = op->acc_mode;
3043 		if (*opened & FILE_CREATED) {
3044 			WARN_ON(!(open_flag & O_CREAT));
3045 			fsnotify_create(dir, dentry);
3046 			acc_mode = 0;
3047 		}
3048 		error = may_open(&file->f_path, acc_mode, open_flag);
3049 		if (WARN_ON(error > 0))
3050 			error = -EINVAL;
3051 	} else if (error > 0) {
3052 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3053 			error = -EIO;
3054 		} else {
3055 			if (file->f_path.dentry) {
3056 				dput(dentry);
3057 				dentry = file->f_path.dentry;
3058 			}
3059 			if (*opened & FILE_CREATED)
3060 				fsnotify_create(dir, dentry);
3061 			if (unlikely(d_is_negative(dentry))) {
3062 				error = -ENOENT;
3063 			} else {
3064 				path->dentry = dentry;
3065 				path->mnt = nd->path.mnt;
3066 				return 1;
3067 			}
3068 		}
3069 	}
3070 	dput(dentry);
3071 	return error;
3072 }
3073 
3074 /*
3075  * Look up and maybe create and open the last component.
3076  *
3077  * Must be called with i_mutex held on parent.
3078  *
3079  * Returns 0 if the file was successfully atomically created (if necessary) and
3080  * opened.  In this case the file will be returned attached to @file.
3081  *
3082  * Returns 1 if the file was not completely opened at this time, though lookups
3083  * and creations will have been performed and the dentry returned in @path will
3084  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3085  * specified then a negative dentry may be returned.
3086  *
3087  * An error code is returned otherwise.
3088  *
3089  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3090  * cleared otherwise prior to returning.
3091  */
3092 static int lookup_open(struct nameidata *nd, struct path *path,
3093 			struct file *file,
3094 			const struct open_flags *op,
3095 			bool got_write, int *opened)
3096 {
3097 	struct dentry *dir = nd->path.dentry;
3098 	struct inode *dir_inode = dir->d_inode;
3099 	int open_flag = op->open_flag;
3100 	struct dentry *dentry;
3101 	int error, create_error = 0;
3102 	umode_t mode = op->mode;
3103 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3104 
3105 	if (unlikely(IS_DEADDIR(dir_inode)))
3106 		return -ENOENT;
3107 
3108 	*opened &= ~FILE_CREATED;
3109 	dentry = d_lookup(dir, &nd->last);
3110 	for (;;) {
3111 		if (!dentry) {
3112 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3113 			if (IS_ERR(dentry))
3114 				return PTR_ERR(dentry);
3115 		}
3116 		if (d_in_lookup(dentry))
3117 			break;
3118 
3119 		error = d_revalidate(dentry, nd->flags);
3120 		if (likely(error > 0))
3121 			break;
3122 		if (error)
3123 			goto out_dput;
3124 		d_invalidate(dentry);
3125 		dput(dentry);
3126 		dentry = NULL;
3127 	}
3128 	if (dentry->d_inode) {
3129 		/* Cached positive dentry: will open in f_op->open */
3130 		goto out_no_open;
3131 	}
3132 
3133 	/*
3134 	 * Checking write permission is tricky, bacuse we don't know if we are
3135 	 * going to actually need it: O_CREAT opens should work as long as the
3136 	 * file exists.  But checking existence breaks atomicity.  The trick is
3137 	 * to check access and if not granted clear O_CREAT from the flags.
3138 	 *
3139 	 * Another problem is returing the "right" error value (e.g. for an
3140 	 * O_EXCL open we want to return EEXIST not EROFS).
3141 	 */
3142 	if (open_flag & O_CREAT) {
3143 		if (!IS_POSIXACL(dir->d_inode))
3144 			mode &= ~current_umask();
3145 		if (unlikely(!got_write)) {
3146 			create_error = -EROFS;
3147 			open_flag &= ~O_CREAT;
3148 			if (open_flag & (O_EXCL | O_TRUNC))
3149 				goto no_open;
3150 			/* No side effects, safe to clear O_CREAT */
3151 		} else {
3152 			create_error = may_o_create(&nd->path, dentry, mode);
3153 			if (create_error) {
3154 				open_flag &= ~O_CREAT;
3155 				if (open_flag & O_EXCL)
3156 					goto no_open;
3157 			}
3158 		}
3159 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3160 		   unlikely(!got_write)) {
3161 		/*
3162 		 * No O_CREATE -> atomicity not a requirement -> fall
3163 		 * back to lookup + open
3164 		 */
3165 		goto no_open;
3166 	}
3167 
3168 	if (dir_inode->i_op->atomic_open) {
3169 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3170 				    mode, opened);
3171 		if (unlikely(error == -ENOENT) && create_error)
3172 			error = create_error;
3173 		return error;
3174 	}
3175 
3176 no_open:
3177 	if (d_in_lookup(dentry)) {
3178 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3179 							     nd->flags);
3180 		d_lookup_done(dentry);
3181 		if (unlikely(res)) {
3182 			if (IS_ERR(res)) {
3183 				error = PTR_ERR(res);
3184 				goto out_dput;
3185 			}
3186 			dput(dentry);
3187 			dentry = res;
3188 		}
3189 	}
3190 
3191 	/* Negative dentry, just create the file */
3192 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3193 		*opened |= FILE_CREATED;
3194 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3195 		if (!dir_inode->i_op->create) {
3196 			error = -EACCES;
3197 			goto out_dput;
3198 		}
3199 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3200 						open_flag & O_EXCL);
3201 		if (error)
3202 			goto out_dput;
3203 		fsnotify_create(dir_inode, dentry);
3204 	}
3205 	if (unlikely(create_error) && !dentry->d_inode) {
3206 		error = create_error;
3207 		goto out_dput;
3208 	}
3209 out_no_open:
3210 	path->dentry = dentry;
3211 	path->mnt = nd->path.mnt;
3212 	return 1;
3213 
3214 out_dput:
3215 	dput(dentry);
3216 	return error;
3217 }
3218 
3219 /*
3220  * Handle the last step of open()
3221  */
3222 static int do_last(struct nameidata *nd,
3223 		   struct file *file, const struct open_flags *op,
3224 		   int *opened)
3225 {
3226 	struct dentry *dir = nd->path.dentry;
3227 	int open_flag = op->open_flag;
3228 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3229 	bool got_write = false;
3230 	int acc_mode = op->acc_mode;
3231 	unsigned seq;
3232 	struct inode *inode;
3233 	struct path path;
3234 	int error;
3235 
3236 	nd->flags &= ~LOOKUP_PARENT;
3237 	nd->flags |= op->intent;
3238 
3239 	if (nd->last_type != LAST_NORM) {
3240 		error = handle_dots(nd, nd->last_type);
3241 		if (unlikely(error))
3242 			return error;
3243 		goto finish_open;
3244 	}
3245 
3246 	if (!(open_flag & O_CREAT)) {
3247 		if (nd->last.name[nd->last.len])
3248 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3249 		/* we _can_ be in RCU mode here */
3250 		error = lookup_fast(nd, &path, &inode, &seq);
3251 		if (likely(error > 0))
3252 			goto finish_lookup;
3253 
3254 		if (error < 0)
3255 			return error;
3256 
3257 		BUG_ON(nd->inode != dir->d_inode);
3258 		BUG_ON(nd->flags & LOOKUP_RCU);
3259 	} else {
3260 		/* create side of things */
3261 		/*
3262 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3263 		 * has been cleared when we got to the last component we are
3264 		 * about to look up
3265 		 */
3266 		error = complete_walk(nd);
3267 		if (error)
3268 			return error;
3269 
3270 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3271 		/* trailing slashes? */
3272 		if (unlikely(nd->last.name[nd->last.len]))
3273 			return -EISDIR;
3274 	}
3275 
3276 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3277 		error = mnt_want_write(nd->path.mnt);
3278 		if (!error)
3279 			got_write = true;
3280 		/*
3281 		 * do _not_ fail yet - we might not need that or fail with
3282 		 * a different error; let lookup_open() decide; we'll be
3283 		 * dropping this one anyway.
3284 		 */
3285 	}
3286 	if (open_flag & O_CREAT)
3287 		inode_lock(dir->d_inode);
3288 	else
3289 		inode_lock_shared(dir->d_inode);
3290 	error = lookup_open(nd, &path, file, op, got_write, opened);
3291 	if (open_flag & O_CREAT)
3292 		inode_unlock(dir->d_inode);
3293 	else
3294 		inode_unlock_shared(dir->d_inode);
3295 
3296 	if (error <= 0) {
3297 		if (error)
3298 			goto out;
3299 
3300 		if ((*opened & FILE_CREATED) ||
3301 		    !S_ISREG(file_inode(file)->i_mode))
3302 			will_truncate = false;
3303 
3304 		audit_inode(nd->name, file->f_path.dentry, 0);
3305 		goto opened;
3306 	}
3307 
3308 	if (*opened & FILE_CREATED) {
3309 		/* Don't check for write permission, don't truncate */
3310 		open_flag &= ~O_TRUNC;
3311 		will_truncate = false;
3312 		acc_mode = 0;
3313 		path_to_nameidata(&path, nd);
3314 		goto finish_open_created;
3315 	}
3316 
3317 	/*
3318 	 * If atomic_open() acquired write access it is dropped now due to
3319 	 * possible mount and symlink following (this might be optimized away if
3320 	 * necessary...)
3321 	 */
3322 	if (got_write) {
3323 		mnt_drop_write(nd->path.mnt);
3324 		got_write = false;
3325 	}
3326 
3327 	error = follow_managed(&path, nd);
3328 	if (unlikely(error < 0))
3329 		return error;
3330 
3331 	if (unlikely(d_is_negative(path.dentry))) {
3332 		path_to_nameidata(&path, nd);
3333 		return -ENOENT;
3334 	}
3335 
3336 	/*
3337 	 * create/update audit record if it already exists.
3338 	 */
3339 	audit_inode(nd->name, path.dentry, 0);
3340 
3341 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3342 		path_to_nameidata(&path, nd);
3343 		return -EEXIST;
3344 	}
3345 
3346 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3347 	inode = d_backing_inode(path.dentry);
3348 finish_lookup:
3349 	error = step_into(nd, &path, 0, inode, seq);
3350 	if (unlikely(error))
3351 		return error;
3352 finish_open:
3353 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3354 	error = complete_walk(nd);
3355 	if (error)
3356 		return error;
3357 	audit_inode(nd->name, nd->path.dentry, 0);
3358 	error = -EISDIR;
3359 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3360 		goto out;
3361 	error = -ENOTDIR;
3362 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3363 		goto out;
3364 	if (!d_is_reg(nd->path.dentry))
3365 		will_truncate = false;
3366 
3367 	if (will_truncate) {
3368 		error = mnt_want_write(nd->path.mnt);
3369 		if (error)
3370 			goto out;
3371 		got_write = true;
3372 	}
3373 finish_open_created:
3374 	error = may_open(&nd->path, acc_mode, open_flag);
3375 	if (error)
3376 		goto out;
3377 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3378 	error = vfs_open(&nd->path, file, current_cred());
3379 	if (error)
3380 		goto out;
3381 	*opened |= FILE_OPENED;
3382 opened:
3383 	error = open_check_o_direct(file);
3384 	if (!error)
3385 		error = ima_file_check(file, op->acc_mode, *opened);
3386 	if (!error && will_truncate)
3387 		error = handle_truncate(file);
3388 out:
3389 	if (unlikely(error) && (*opened & FILE_OPENED))
3390 		fput(file);
3391 	if (unlikely(error > 0)) {
3392 		WARN_ON(1);
3393 		error = -EINVAL;
3394 	}
3395 	if (got_write)
3396 		mnt_drop_write(nd->path.mnt);
3397 	return error;
3398 }
3399 
3400 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3401 {
3402 	struct dentry *child = NULL;
3403 	struct inode *dir = dentry->d_inode;
3404 	struct inode *inode;
3405 	int error;
3406 
3407 	/* we want directory to be writable */
3408 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3409 	if (error)
3410 		goto out_err;
3411 	error = -EOPNOTSUPP;
3412 	if (!dir->i_op->tmpfile)
3413 		goto out_err;
3414 	error = -ENOMEM;
3415 	child = d_alloc(dentry, &slash_name);
3416 	if (unlikely(!child))
3417 		goto out_err;
3418 	error = dir->i_op->tmpfile(dir, child, mode);
3419 	if (error)
3420 		goto out_err;
3421 	error = -ENOENT;
3422 	inode = child->d_inode;
3423 	if (unlikely(!inode))
3424 		goto out_err;
3425 	if (!(open_flag & O_EXCL)) {
3426 		spin_lock(&inode->i_lock);
3427 		inode->i_state |= I_LINKABLE;
3428 		spin_unlock(&inode->i_lock);
3429 	}
3430 	return child;
3431 
3432 out_err:
3433 	dput(child);
3434 	return ERR_PTR(error);
3435 }
3436 EXPORT_SYMBOL(vfs_tmpfile);
3437 
3438 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3439 		const struct open_flags *op,
3440 		struct file *file, int *opened)
3441 {
3442 	struct dentry *child;
3443 	struct path path;
3444 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3445 	if (unlikely(error))
3446 		return error;
3447 	error = mnt_want_write(path.mnt);
3448 	if (unlikely(error))
3449 		goto out;
3450 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3451 	error = PTR_ERR(child);
3452 	if (IS_ERR(child))
3453 		goto out2;
3454 	dput(path.dentry);
3455 	path.dentry = child;
3456 	audit_inode(nd->name, child, 0);
3457 	/* Don't check for other permissions, the inode was just created */
3458 	error = may_open(&path, 0, op->open_flag);
3459 	if (error)
3460 		goto out2;
3461 	file->f_path.mnt = path.mnt;
3462 	error = finish_open(file, child, NULL, opened);
3463 	if (error)
3464 		goto out2;
3465 	error = open_check_o_direct(file);
3466 	if (error)
3467 		fput(file);
3468 out2:
3469 	mnt_drop_write(path.mnt);
3470 out:
3471 	path_put(&path);
3472 	return error;
3473 }
3474 
3475 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3476 {
3477 	struct path path;
3478 	int error = path_lookupat(nd, flags, &path);
3479 	if (!error) {
3480 		audit_inode(nd->name, path.dentry, 0);
3481 		error = vfs_open(&path, file, current_cred());
3482 		path_put(&path);
3483 	}
3484 	return error;
3485 }
3486 
3487 static struct file *path_openat(struct nameidata *nd,
3488 			const struct open_flags *op, unsigned flags)
3489 {
3490 	const char *s;
3491 	struct file *file;
3492 	int opened = 0;
3493 	int error;
3494 
3495 	file = get_empty_filp();
3496 	if (IS_ERR(file))
3497 		return file;
3498 
3499 	file->f_flags = op->open_flag;
3500 
3501 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3502 		error = do_tmpfile(nd, flags, op, file, &opened);
3503 		goto out2;
3504 	}
3505 
3506 	if (unlikely(file->f_flags & O_PATH)) {
3507 		error = do_o_path(nd, flags, file);
3508 		if (!error)
3509 			opened |= FILE_OPENED;
3510 		goto out2;
3511 	}
3512 
3513 	s = path_init(nd, flags);
3514 	if (IS_ERR(s)) {
3515 		put_filp(file);
3516 		return ERR_CAST(s);
3517 	}
3518 	while (!(error = link_path_walk(s, nd)) &&
3519 		(error = do_last(nd, file, op, &opened)) > 0) {
3520 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3521 		s = trailing_symlink(nd);
3522 		if (IS_ERR(s)) {
3523 			error = PTR_ERR(s);
3524 			break;
3525 		}
3526 	}
3527 	terminate_walk(nd);
3528 out2:
3529 	if (!(opened & FILE_OPENED)) {
3530 		BUG_ON(!error);
3531 		put_filp(file);
3532 	}
3533 	if (unlikely(error)) {
3534 		if (error == -EOPENSTALE) {
3535 			if (flags & LOOKUP_RCU)
3536 				error = -ECHILD;
3537 			else
3538 				error = -ESTALE;
3539 		}
3540 		file = ERR_PTR(error);
3541 	}
3542 	return file;
3543 }
3544 
3545 struct file *do_filp_open(int dfd, struct filename *pathname,
3546 		const struct open_flags *op)
3547 {
3548 	struct nameidata nd;
3549 	int flags = op->lookup_flags;
3550 	struct file *filp;
3551 
3552 	set_nameidata(&nd, dfd, pathname);
3553 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3554 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3555 		filp = path_openat(&nd, op, flags);
3556 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3557 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3558 	restore_nameidata();
3559 	return filp;
3560 }
3561 
3562 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3563 		const char *name, const struct open_flags *op)
3564 {
3565 	struct nameidata nd;
3566 	struct file *file;
3567 	struct filename *filename;
3568 	int flags = op->lookup_flags | LOOKUP_ROOT;
3569 
3570 	nd.root.mnt = mnt;
3571 	nd.root.dentry = dentry;
3572 
3573 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3574 		return ERR_PTR(-ELOOP);
3575 
3576 	filename = getname_kernel(name);
3577 	if (IS_ERR(filename))
3578 		return ERR_CAST(filename);
3579 
3580 	set_nameidata(&nd, -1, filename);
3581 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3582 	if (unlikely(file == ERR_PTR(-ECHILD)))
3583 		file = path_openat(&nd, op, flags);
3584 	if (unlikely(file == ERR_PTR(-ESTALE)))
3585 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3586 	restore_nameidata();
3587 	putname(filename);
3588 	return file;
3589 }
3590 
3591 static struct dentry *filename_create(int dfd, struct filename *name,
3592 				struct path *path, unsigned int lookup_flags)
3593 {
3594 	struct dentry *dentry = ERR_PTR(-EEXIST);
3595 	struct qstr last;
3596 	int type;
3597 	int err2;
3598 	int error;
3599 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3600 
3601 	/*
3602 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3603 	 * other flags passed in are ignored!
3604 	 */
3605 	lookup_flags &= LOOKUP_REVAL;
3606 
3607 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3608 	if (IS_ERR(name))
3609 		return ERR_CAST(name);
3610 
3611 	/*
3612 	 * Yucky last component or no last component at all?
3613 	 * (foo/., foo/.., /////)
3614 	 */
3615 	if (unlikely(type != LAST_NORM))
3616 		goto out;
3617 
3618 	/* don't fail immediately if it's r/o, at least try to report other errors */
3619 	err2 = mnt_want_write(path->mnt);
3620 	/*
3621 	 * Do the final lookup.
3622 	 */
3623 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3624 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3625 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3626 	if (IS_ERR(dentry))
3627 		goto unlock;
3628 
3629 	error = -EEXIST;
3630 	if (d_is_positive(dentry))
3631 		goto fail;
3632 
3633 	/*
3634 	 * Special case - lookup gave negative, but... we had foo/bar/
3635 	 * From the vfs_mknod() POV we just have a negative dentry -
3636 	 * all is fine. Let's be bastards - you had / on the end, you've
3637 	 * been asking for (non-existent) directory. -ENOENT for you.
3638 	 */
3639 	if (unlikely(!is_dir && last.name[last.len])) {
3640 		error = -ENOENT;
3641 		goto fail;
3642 	}
3643 	if (unlikely(err2)) {
3644 		error = err2;
3645 		goto fail;
3646 	}
3647 	putname(name);
3648 	return dentry;
3649 fail:
3650 	dput(dentry);
3651 	dentry = ERR_PTR(error);
3652 unlock:
3653 	inode_unlock(path->dentry->d_inode);
3654 	if (!err2)
3655 		mnt_drop_write(path->mnt);
3656 out:
3657 	path_put(path);
3658 	putname(name);
3659 	return dentry;
3660 }
3661 
3662 struct dentry *kern_path_create(int dfd, const char *pathname,
3663 				struct path *path, unsigned int lookup_flags)
3664 {
3665 	return filename_create(dfd, getname_kernel(pathname),
3666 				path, lookup_flags);
3667 }
3668 EXPORT_SYMBOL(kern_path_create);
3669 
3670 void done_path_create(struct path *path, struct dentry *dentry)
3671 {
3672 	dput(dentry);
3673 	inode_unlock(path->dentry->d_inode);
3674 	mnt_drop_write(path->mnt);
3675 	path_put(path);
3676 }
3677 EXPORT_SYMBOL(done_path_create);
3678 
3679 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3680 				struct path *path, unsigned int lookup_flags)
3681 {
3682 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3683 }
3684 EXPORT_SYMBOL(user_path_create);
3685 
3686 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3687 {
3688 	int error = may_create(dir, dentry);
3689 
3690 	if (error)
3691 		return error;
3692 
3693 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3694 		return -EPERM;
3695 
3696 	if (!dir->i_op->mknod)
3697 		return -EPERM;
3698 
3699 	error = devcgroup_inode_mknod(mode, dev);
3700 	if (error)
3701 		return error;
3702 
3703 	error = security_inode_mknod(dir, dentry, mode, dev);
3704 	if (error)
3705 		return error;
3706 
3707 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3708 	if (!error)
3709 		fsnotify_create(dir, dentry);
3710 	return error;
3711 }
3712 EXPORT_SYMBOL(vfs_mknod);
3713 
3714 static int may_mknod(umode_t mode)
3715 {
3716 	switch (mode & S_IFMT) {
3717 	case S_IFREG:
3718 	case S_IFCHR:
3719 	case S_IFBLK:
3720 	case S_IFIFO:
3721 	case S_IFSOCK:
3722 	case 0: /* zero mode translates to S_IFREG */
3723 		return 0;
3724 	case S_IFDIR:
3725 		return -EPERM;
3726 	default:
3727 		return -EINVAL;
3728 	}
3729 }
3730 
3731 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3732 		unsigned, dev)
3733 {
3734 	struct dentry *dentry;
3735 	struct path path;
3736 	int error;
3737 	unsigned int lookup_flags = 0;
3738 
3739 	error = may_mknod(mode);
3740 	if (error)
3741 		return error;
3742 retry:
3743 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3744 	if (IS_ERR(dentry))
3745 		return PTR_ERR(dentry);
3746 
3747 	if (!IS_POSIXACL(path.dentry->d_inode))
3748 		mode &= ~current_umask();
3749 	error = security_path_mknod(&path, dentry, mode, dev);
3750 	if (error)
3751 		goto out;
3752 	switch (mode & S_IFMT) {
3753 		case 0: case S_IFREG:
3754 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3755 			if (!error)
3756 				ima_post_path_mknod(dentry);
3757 			break;
3758 		case S_IFCHR: case S_IFBLK:
3759 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3760 					new_decode_dev(dev));
3761 			break;
3762 		case S_IFIFO: case S_IFSOCK:
3763 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3764 			break;
3765 	}
3766 out:
3767 	done_path_create(&path, dentry);
3768 	if (retry_estale(error, lookup_flags)) {
3769 		lookup_flags |= LOOKUP_REVAL;
3770 		goto retry;
3771 	}
3772 	return error;
3773 }
3774 
3775 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3776 {
3777 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3778 }
3779 
3780 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3781 {
3782 	int error = may_create(dir, dentry);
3783 	unsigned max_links = dir->i_sb->s_max_links;
3784 
3785 	if (error)
3786 		return error;
3787 
3788 	if (!dir->i_op->mkdir)
3789 		return -EPERM;
3790 
3791 	mode &= (S_IRWXUGO|S_ISVTX);
3792 	error = security_inode_mkdir(dir, dentry, mode);
3793 	if (error)
3794 		return error;
3795 
3796 	if (max_links && dir->i_nlink >= max_links)
3797 		return -EMLINK;
3798 
3799 	error = dir->i_op->mkdir(dir, dentry, mode);
3800 	if (!error)
3801 		fsnotify_mkdir(dir, dentry);
3802 	return error;
3803 }
3804 EXPORT_SYMBOL(vfs_mkdir);
3805 
3806 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3807 {
3808 	struct dentry *dentry;
3809 	struct path path;
3810 	int error;
3811 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3812 
3813 retry:
3814 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3815 	if (IS_ERR(dentry))
3816 		return PTR_ERR(dentry);
3817 
3818 	if (!IS_POSIXACL(path.dentry->d_inode))
3819 		mode &= ~current_umask();
3820 	error = security_path_mkdir(&path, dentry, mode);
3821 	if (!error)
3822 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3823 	done_path_create(&path, dentry);
3824 	if (retry_estale(error, lookup_flags)) {
3825 		lookup_flags |= LOOKUP_REVAL;
3826 		goto retry;
3827 	}
3828 	return error;
3829 }
3830 
3831 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3832 {
3833 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3834 }
3835 
3836 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3837 {
3838 	int error = may_delete(dir, dentry, 1);
3839 
3840 	if (error)
3841 		return error;
3842 
3843 	if (!dir->i_op->rmdir)
3844 		return -EPERM;
3845 
3846 	dget(dentry);
3847 	inode_lock(dentry->d_inode);
3848 
3849 	error = -EBUSY;
3850 	if (is_local_mountpoint(dentry))
3851 		goto out;
3852 
3853 	error = security_inode_rmdir(dir, dentry);
3854 	if (error)
3855 		goto out;
3856 
3857 	shrink_dcache_parent(dentry);
3858 	error = dir->i_op->rmdir(dir, dentry);
3859 	if (error)
3860 		goto out;
3861 
3862 	dentry->d_inode->i_flags |= S_DEAD;
3863 	dont_mount(dentry);
3864 	detach_mounts(dentry);
3865 
3866 out:
3867 	inode_unlock(dentry->d_inode);
3868 	dput(dentry);
3869 	if (!error)
3870 		d_delete(dentry);
3871 	return error;
3872 }
3873 EXPORT_SYMBOL(vfs_rmdir);
3874 
3875 static long do_rmdir(int dfd, const char __user *pathname)
3876 {
3877 	int error = 0;
3878 	struct filename *name;
3879 	struct dentry *dentry;
3880 	struct path path;
3881 	struct qstr last;
3882 	int type;
3883 	unsigned int lookup_flags = 0;
3884 retry:
3885 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3886 				&path, &last, &type);
3887 	if (IS_ERR(name))
3888 		return PTR_ERR(name);
3889 
3890 	switch (type) {
3891 	case LAST_DOTDOT:
3892 		error = -ENOTEMPTY;
3893 		goto exit1;
3894 	case LAST_DOT:
3895 		error = -EINVAL;
3896 		goto exit1;
3897 	case LAST_ROOT:
3898 		error = -EBUSY;
3899 		goto exit1;
3900 	}
3901 
3902 	error = mnt_want_write(path.mnt);
3903 	if (error)
3904 		goto exit1;
3905 
3906 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3907 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3908 	error = PTR_ERR(dentry);
3909 	if (IS_ERR(dentry))
3910 		goto exit2;
3911 	if (!dentry->d_inode) {
3912 		error = -ENOENT;
3913 		goto exit3;
3914 	}
3915 	error = security_path_rmdir(&path, dentry);
3916 	if (error)
3917 		goto exit3;
3918 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3919 exit3:
3920 	dput(dentry);
3921 exit2:
3922 	inode_unlock(path.dentry->d_inode);
3923 	mnt_drop_write(path.mnt);
3924 exit1:
3925 	path_put(&path);
3926 	putname(name);
3927 	if (retry_estale(error, lookup_flags)) {
3928 		lookup_flags |= LOOKUP_REVAL;
3929 		goto retry;
3930 	}
3931 	return error;
3932 }
3933 
3934 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3935 {
3936 	return do_rmdir(AT_FDCWD, pathname);
3937 }
3938 
3939 /**
3940  * vfs_unlink - unlink a filesystem object
3941  * @dir:	parent directory
3942  * @dentry:	victim
3943  * @delegated_inode: returns victim inode, if the inode is delegated.
3944  *
3945  * The caller must hold dir->i_mutex.
3946  *
3947  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3948  * return a reference to the inode in delegated_inode.  The caller
3949  * should then break the delegation on that inode and retry.  Because
3950  * breaking a delegation may take a long time, the caller should drop
3951  * dir->i_mutex before doing so.
3952  *
3953  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3954  * be appropriate for callers that expect the underlying filesystem not
3955  * to be NFS exported.
3956  */
3957 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3958 {
3959 	struct inode *target = dentry->d_inode;
3960 	int error = may_delete(dir, dentry, 0);
3961 
3962 	if (error)
3963 		return error;
3964 
3965 	if (!dir->i_op->unlink)
3966 		return -EPERM;
3967 
3968 	inode_lock(target);
3969 	if (is_local_mountpoint(dentry))
3970 		error = -EBUSY;
3971 	else {
3972 		error = security_inode_unlink(dir, dentry);
3973 		if (!error) {
3974 			error = try_break_deleg(target, delegated_inode);
3975 			if (error)
3976 				goto out;
3977 			error = dir->i_op->unlink(dir, dentry);
3978 			if (!error) {
3979 				dont_mount(dentry);
3980 				detach_mounts(dentry);
3981 			}
3982 		}
3983 	}
3984 out:
3985 	inode_unlock(target);
3986 
3987 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3988 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3989 		fsnotify_link_count(target);
3990 		d_delete(dentry);
3991 	}
3992 
3993 	return error;
3994 }
3995 EXPORT_SYMBOL(vfs_unlink);
3996 
3997 /*
3998  * Make sure that the actual truncation of the file will occur outside its
3999  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4000  * writeout happening, and we don't want to prevent access to the directory
4001  * while waiting on the I/O.
4002  */
4003 long do_unlinkat(int dfd, struct filename *name)
4004 {
4005 	int error;
4006 	struct dentry *dentry;
4007 	struct path path;
4008 	struct qstr last;
4009 	int type;
4010 	struct inode *inode = NULL;
4011 	struct inode *delegated_inode = NULL;
4012 	unsigned int lookup_flags = 0;
4013 retry:
4014 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4015 	if (IS_ERR(name))
4016 		return PTR_ERR(name);
4017 
4018 	error = -EISDIR;
4019 	if (type != LAST_NORM)
4020 		goto exit1;
4021 
4022 	error = mnt_want_write(path.mnt);
4023 	if (error)
4024 		goto exit1;
4025 retry_deleg:
4026 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4027 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4028 	error = PTR_ERR(dentry);
4029 	if (!IS_ERR(dentry)) {
4030 		/* Why not before? Because we want correct error value */
4031 		if (last.name[last.len])
4032 			goto slashes;
4033 		inode = dentry->d_inode;
4034 		if (d_is_negative(dentry))
4035 			goto slashes;
4036 		ihold(inode);
4037 		error = security_path_unlink(&path, dentry);
4038 		if (error)
4039 			goto exit2;
4040 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4041 exit2:
4042 		dput(dentry);
4043 	}
4044 	inode_unlock(path.dentry->d_inode);
4045 	if (inode)
4046 		iput(inode);	/* truncate the inode here */
4047 	inode = NULL;
4048 	if (delegated_inode) {
4049 		error = break_deleg_wait(&delegated_inode);
4050 		if (!error)
4051 			goto retry_deleg;
4052 	}
4053 	mnt_drop_write(path.mnt);
4054 exit1:
4055 	path_put(&path);
4056 	if (retry_estale(error, lookup_flags)) {
4057 		lookup_flags |= LOOKUP_REVAL;
4058 		inode = NULL;
4059 		goto retry;
4060 	}
4061 	putname(name);
4062 	return error;
4063 
4064 slashes:
4065 	if (d_is_negative(dentry))
4066 		error = -ENOENT;
4067 	else if (d_is_dir(dentry))
4068 		error = -EISDIR;
4069 	else
4070 		error = -ENOTDIR;
4071 	goto exit2;
4072 }
4073 
4074 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4075 {
4076 	if ((flag & ~AT_REMOVEDIR) != 0)
4077 		return -EINVAL;
4078 
4079 	if (flag & AT_REMOVEDIR)
4080 		return do_rmdir(dfd, pathname);
4081 
4082 	return do_unlinkat(dfd, getname(pathname));
4083 }
4084 
4085 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4086 {
4087 	return do_unlinkat(AT_FDCWD, getname(pathname));
4088 }
4089 
4090 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4091 {
4092 	int error = may_create(dir, dentry);
4093 
4094 	if (error)
4095 		return error;
4096 
4097 	if (!dir->i_op->symlink)
4098 		return -EPERM;
4099 
4100 	error = security_inode_symlink(dir, dentry, oldname);
4101 	if (error)
4102 		return error;
4103 
4104 	error = dir->i_op->symlink(dir, dentry, oldname);
4105 	if (!error)
4106 		fsnotify_create(dir, dentry);
4107 	return error;
4108 }
4109 EXPORT_SYMBOL(vfs_symlink);
4110 
4111 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4112 		int, newdfd, const char __user *, newname)
4113 {
4114 	int error;
4115 	struct filename *from;
4116 	struct dentry *dentry;
4117 	struct path path;
4118 	unsigned int lookup_flags = 0;
4119 
4120 	from = getname(oldname);
4121 	if (IS_ERR(from))
4122 		return PTR_ERR(from);
4123 retry:
4124 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4125 	error = PTR_ERR(dentry);
4126 	if (IS_ERR(dentry))
4127 		goto out_putname;
4128 
4129 	error = security_path_symlink(&path, dentry, from->name);
4130 	if (!error)
4131 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4132 	done_path_create(&path, dentry);
4133 	if (retry_estale(error, lookup_flags)) {
4134 		lookup_flags |= LOOKUP_REVAL;
4135 		goto retry;
4136 	}
4137 out_putname:
4138 	putname(from);
4139 	return error;
4140 }
4141 
4142 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4143 {
4144 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4145 }
4146 
4147 /**
4148  * vfs_link - create a new link
4149  * @old_dentry:	object to be linked
4150  * @dir:	new parent
4151  * @new_dentry:	where to create the new link
4152  * @delegated_inode: returns inode needing a delegation break
4153  *
4154  * The caller must hold dir->i_mutex
4155  *
4156  * If vfs_link discovers a delegation on the to-be-linked file in need
4157  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4158  * inode in delegated_inode.  The caller should then break the delegation
4159  * and retry.  Because breaking a delegation may take a long time, the
4160  * caller should drop the i_mutex before doing so.
4161  *
4162  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4163  * be appropriate for callers that expect the underlying filesystem not
4164  * to be NFS exported.
4165  */
4166 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4167 {
4168 	struct inode *inode = old_dentry->d_inode;
4169 	unsigned max_links = dir->i_sb->s_max_links;
4170 	int error;
4171 
4172 	if (!inode)
4173 		return -ENOENT;
4174 
4175 	error = may_create(dir, new_dentry);
4176 	if (error)
4177 		return error;
4178 
4179 	if (dir->i_sb != inode->i_sb)
4180 		return -EXDEV;
4181 
4182 	/*
4183 	 * A link to an append-only or immutable file cannot be created.
4184 	 */
4185 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4186 		return -EPERM;
4187 	/*
4188 	 * Updating the link count will likely cause i_uid and i_gid to
4189 	 * be writen back improperly if their true value is unknown to
4190 	 * the vfs.
4191 	 */
4192 	if (HAS_UNMAPPED_ID(inode))
4193 		return -EPERM;
4194 	if (!dir->i_op->link)
4195 		return -EPERM;
4196 	if (S_ISDIR(inode->i_mode))
4197 		return -EPERM;
4198 
4199 	error = security_inode_link(old_dentry, dir, new_dentry);
4200 	if (error)
4201 		return error;
4202 
4203 	inode_lock(inode);
4204 	/* Make sure we don't allow creating hardlink to an unlinked file */
4205 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4206 		error =  -ENOENT;
4207 	else if (max_links && inode->i_nlink >= max_links)
4208 		error = -EMLINK;
4209 	else {
4210 		error = try_break_deleg(inode, delegated_inode);
4211 		if (!error)
4212 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4213 	}
4214 
4215 	if (!error && (inode->i_state & I_LINKABLE)) {
4216 		spin_lock(&inode->i_lock);
4217 		inode->i_state &= ~I_LINKABLE;
4218 		spin_unlock(&inode->i_lock);
4219 	}
4220 	inode_unlock(inode);
4221 	if (!error)
4222 		fsnotify_link(dir, inode, new_dentry);
4223 	return error;
4224 }
4225 EXPORT_SYMBOL(vfs_link);
4226 
4227 /*
4228  * Hardlinks are often used in delicate situations.  We avoid
4229  * security-related surprises by not following symlinks on the
4230  * newname.  --KAB
4231  *
4232  * We don't follow them on the oldname either to be compatible
4233  * with linux 2.0, and to avoid hard-linking to directories
4234  * and other special files.  --ADM
4235  */
4236 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4237 		int, newdfd, const char __user *, newname, int, flags)
4238 {
4239 	struct dentry *new_dentry;
4240 	struct path old_path, new_path;
4241 	struct inode *delegated_inode = NULL;
4242 	int how = 0;
4243 	int error;
4244 
4245 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4246 		return -EINVAL;
4247 	/*
4248 	 * To use null names we require CAP_DAC_READ_SEARCH
4249 	 * This ensures that not everyone will be able to create
4250 	 * handlink using the passed filedescriptor.
4251 	 */
4252 	if (flags & AT_EMPTY_PATH) {
4253 		if (!capable(CAP_DAC_READ_SEARCH))
4254 			return -ENOENT;
4255 		how = LOOKUP_EMPTY;
4256 	}
4257 
4258 	if (flags & AT_SYMLINK_FOLLOW)
4259 		how |= LOOKUP_FOLLOW;
4260 retry:
4261 	error = user_path_at(olddfd, oldname, how, &old_path);
4262 	if (error)
4263 		return error;
4264 
4265 	new_dentry = user_path_create(newdfd, newname, &new_path,
4266 					(how & LOOKUP_REVAL));
4267 	error = PTR_ERR(new_dentry);
4268 	if (IS_ERR(new_dentry))
4269 		goto out;
4270 
4271 	error = -EXDEV;
4272 	if (old_path.mnt != new_path.mnt)
4273 		goto out_dput;
4274 	error = may_linkat(&old_path);
4275 	if (unlikely(error))
4276 		goto out_dput;
4277 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4278 	if (error)
4279 		goto out_dput;
4280 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4281 out_dput:
4282 	done_path_create(&new_path, new_dentry);
4283 	if (delegated_inode) {
4284 		error = break_deleg_wait(&delegated_inode);
4285 		if (!error) {
4286 			path_put(&old_path);
4287 			goto retry;
4288 		}
4289 	}
4290 	if (retry_estale(error, how)) {
4291 		path_put(&old_path);
4292 		how |= LOOKUP_REVAL;
4293 		goto retry;
4294 	}
4295 out:
4296 	path_put(&old_path);
4297 
4298 	return error;
4299 }
4300 
4301 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4302 {
4303 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4304 }
4305 
4306 /**
4307  * vfs_rename - rename a filesystem object
4308  * @old_dir:	parent of source
4309  * @old_dentry:	source
4310  * @new_dir:	parent of destination
4311  * @new_dentry:	destination
4312  * @delegated_inode: returns an inode needing a delegation break
4313  * @flags:	rename flags
4314  *
4315  * The caller must hold multiple mutexes--see lock_rename()).
4316  *
4317  * If vfs_rename discovers a delegation in need of breaking at either
4318  * the source or destination, it will return -EWOULDBLOCK and return a
4319  * reference to the inode in delegated_inode.  The caller should then
4320  * break the delegation and retry.  Because breaking a delegation may
4321  * take a long time, the caller should drop all locks before doing
4322  * so.
4323  *
4324  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4325  * be appropriate for callers that expect the underlying filesystem not
4326  * to be NFS exported.
4327  *
4328  * The worst of all namespace operations - renaming directory. "Perverted"
4329  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4330  * Problems:
4331  *
4332  *	a) we can get into loop creation.
4333  *	b) race potential - two innocent renames can create a loop together.
4334  *	   That's where 4.4 screws up. Current fix: serialization on
4335  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4336  *	   story.
4337  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4338  *	   and source (if it is not a directory).
4339  *	   And that - after we got ->i_mutex on parents (until then we don't know
4340  *	   whether the target exists).  Solution: try to be smart with locking
4341  *	   order for inodes.  We rely on the fact that tree topology may change
4342  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4343  *	   move will be locked.  Thus we can rank directories by the tree
4344  *	   (ancestors first) and rank all non-directories after them.
4345  *	   That works since everybody except rename does "lock parent, lookup,
4346  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4347  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4348  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4349  *	   we'd better make sure that there's no link(2) for them.
4350  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4351  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4352  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4353  *	   ->i_mutex on parents, which works but leads to some truly excessive
4354  *	   locking].
4355  */
4356 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4357 	       struct inode *new_dir, struct dentry *new_dentry,
4358 	       struct inode **delegated_inode, unsigned int flags)
4359 {
4360 	int error;
4361 	bool is_dir = d_is_dir(old_dentry);
4362 	struct inode *source = old_dentry->d_inode;
4363 	struct inode *target = new_dentry->d_inode;
4364 	bool new_is_dir = false;
4365 	unsigned max_links = new_dir->i_sb->s_max_links;
4366 	struct name_snapshot old_name;
4367 
4368 	if (source == target)
4369 		return 0;
4370 
4371 	error = may_delete(old_dir, old_dentry, is_dir);
4372 	if (error)
4373 		return error;
4374 
4375 	if (!target) {
4376 		error = may_create(new_dir, new_dentry);
4377 	} else {
4378 		new_is_dir = d_is_dir(new_dentry);
4379 
4380 		if (!(flags & RENAME_EXCHANGE))
4381 			error = may_delete(new_dir, new_dentry, is_dir);
4382 		else
4383 			error = may_delete(new_dir, new_dentry, new_is_dir);
4384 	}
4385 	if (error)
4386 		return error;
4387 
4388 	if (!old_dir->i_op->rename)
4389 		return -EPERM;
4390 
4391 	/*
4392 	 * If we are going to change the parent - check write permissions,
4393 	 * we'll need to flip '..'.
4394 	 */
4395 	if (new_dir != old_dir) {
4396 		if (is_dir) {
4397 			error = inode_permission(source, MAY_WRITE);
4398 			if (error)
4399 				return error;
4400 		}
4401 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4402 			error = inode_permission(target, MAY_WRITE);
4403 			if (error)
4404 				return error;
4405 		}
4406 	}
4407 
4408 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4409 				      flags);
4410 	if (error)
4411 		return error;
4412 
4413 	take_dentry_name_snapshot(&old_name, old_dentry);
4414 	dget(new_dentry);
4415 	if (!is_dir || (flags & RENAME_EXCHANGE))
4416 		lock_two_nondirectories(source, target);
4417 	else if (target)
4418 		inode_lock(target);
4419 
4420 	error = -EBUSY;
4421 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4422 		goto out;
4423 
4424 	if (max_links && new_dir != old_dir) {
4425 		error = -EMLINK;
4426 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4427 			goto out;
4428 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4429 		    old_dir->i_nlink >= max_links)
4430 			goto out;
4431 	}
4432 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4433 		shrink_dcache_parent(new_dentry);
4434 	if (!is_dir) {
4435 		error = try_break_deleg(source, delegated_inode);
4436 		if (error)
4437 			goto out;
4438 	}
4439 	if (target && !new_is_dir) {
4440 		error = try_break_deleg(target, delegated_inode);
4441 		if (error)
4442 			goto out;
4443 	}
4444 	error = old_dir->i_op->rename(old_dir, old_dentry,
4445 				       new_dir, new_dentry, flags);
4446 	if (error)
4447 		goto out;
4448 
4449 	if (!(flags & RENAME_EXCHANGE) && target) {
4450 		if (is_dir)
4451 			target->i_flags |= S_DEAD;
4452 		dont_mount(new_dentry);
4453 		detach_mounts(new_dentry);
4454 	}
4455 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4456 		if (!(flags & RENAME_EXCHANGE))
4457 			d_move(old_dentry, new_dentry);
4458 		else
4459 			d_exchange(old_dentry, new_dentry);
4460 	}
4461 out:
4462 	if (!is_dir || (flags & RENAME_EXCHANGE))
4463 		unlock_two_nondirectories(source, target);
4464 	else if (target)
4465 		inode_unlock(target);
4466 	dput(new_dentry);
4467 	if (!error) {
4468 		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4469 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4470 		if (flags & RENAME_EXCHANGE) {
4471 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4472 				      new_is_dir, NULL, new_dentry);
4473 		}
4474 	}
4475 	release_dentry_name_snapshot(&old_name);
4476 
4477 	return error;
4478 }
4479 EXPORT_SYMBOL(vfs_rename);
4480 
4481 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4482 		int, newdfd, const char __user *, newname, unsigned int, flags)
4483 {
4484 	struct dentry *old_dentry, *new_dentry;
4485 	struct dentry *trap;
4486 	struct path old_path, new_path;
4487 	struct qstr old_last, new_last;
4488 	int old_type, new_type;
4489 	struct inode *delegated_inode = NULL;
4490 	struct filename *from;
4491 	struct filename *to;
4492 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4493 	bool should_retry = false;
4494 	int error;
4495 
4496 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4497 		return -EINVAL;
4498 
4499 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4500 	    (flags & RENAME_EXCHANGE))
4501 		return -EINVAL;
4502 
4503 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4504 		return -EPERM;
4505 
4506 	if (flags & RENAME_EXCHANGE)
4507 		target_flags = 0;
4508 
4509 retry:
4510 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4511 				&old_path, &old_last, &old_type);
4512 	if (IS_ERR(from)) {
4513 		error = PTR_ERR(from);
4514 		goto exit;
4515 	}
4516 
4517 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4518 				&new_path, &new_last, &new_type);
4519 	if (IS_ERR(to)) {
4520 		error = PTR_ERR(to);
4521 		goto exit1;
4522 	}
4523 
4524 	error = -EXDEV;
4525 	if (old_path.mnt != new_path.mnt)
4526 		goto exit2;
4527 
4528 	error = -EBUSY;
4529 	if (old_type != LAST_NORM)
4530 		goto exit2;
4531 
4532 	if (flags & RENAME_NOREPLACE)
4533 		error = -EEXIST;
4534 	if (new_type != LAST_NORM)
4535 		goto exit2;
4536 
4537 	error = mnt_want_write(old_path.mnt);
4538 	if (error)
4539 		goto exit2;
4540 
4541 retry_deleg:
4542 	trap = lock_rename(new_path.dentry, old_path.dentry);
4543 
4544 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4545 	error = PTR_ERR(old_dentry);
4546 	if (IS_ERR(old_dentry))
4547 		goto exit3;
4548 	/* source must exist */
4549 	error = -ENOENT;
4550 	if (d_is_negative(old_dentry))
4551 		goto exit4;
4552 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4553 	error = PTR_ERR(new_dentry);
4554 	if (IS_ERR(new_dentry))
4555 		goto exit4;
4556 	error = -EEXIST;
4557 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4558 		goto exit5;
4559 	if (flags & RENAME_EXCHANGE) {
4560 		error = -ENOENT;
4561 		if (d_is_negative(new_dentry))
4562 			goto exit5;
4563 
4564 		if (!d_is_dir(new_dentry)) {
4565 			error = -ENOTDIR;
4566 			if (new_last.name[new_last.len])
4567 				goto exit5;
4568 		}
4569 	}
4570 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4571 	if (!d_is_dir(old_dentry)) {
4572 		error = -ENOTDIR;
4573 		if (old_last.name[old_last.len])
4574 			goto exit5;
4575 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4576 			goto exit5;
4577 	}
4578 	/* source should not be ancestor of target */
4579 	error = -EINVAL;
4580 	if (old_dentry == trap)
4581 		goto exit5;
4582 	/* target should not be an ancestor of source */
4583 	if (!(flags & RENAME_EXCHANGE))
4584 		error = -ENOTEMPTY;
4585 	if (new_dentry == trap)
4586 		goto exit5;
4587 
4588 	error = security_path_rename(&old_path, old_dentry,
4589 				     &new_path, new_dentry, flags);
4590 	if (error)
4591 		goto exit5;
4592 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4593 			   new_path.dentry->d_inode, new_dentry,
4594 			   &delegated_inode, flags);
4595 exit5:
4596 	dput(new_dentry);
4597 exit4:
4598 	dput(old_dentry);
4599 exit3:
4600 	unlock_rename(new_path.dentry, old_path.dentry);
4601 	if (delegated_inode) {
4602 		error = break_deleg_wait(&delegated_inode);
4603 		if (!error)
4604 			goto retry_deleg;
4605 	}
4606 	mnt_drop_write(old_path.mnt);
4607 exit2:
4608 	if (retry_estale(error, lookup_flags))
4609 		should_retry = true;
4610 	path_put(&new_path);
4611 	putname(to);
4612 exit1:
4613 	path_put(&old_path);
4614 	putname(from);
4615 	if (should_retry) {
4616 		should_retry = false;
4617 		lookup_flags |= LOOKUP_REVAL;
4618 		goto retry;
4619 	}
4620 exit:
4621 	return error;
4622 }
4623 
4624 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4625 		int, newdfd, const char __user *, newname)
4626 {
4627 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4628 }
4629 
4630 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4631 {
4632 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4633 }
4634 
4635 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4636 {
4637 	int error = may_create(dir, dentry);
4638 	if (error)
4639 		return error;
4640 
4641 	if (!dir->i_op->mknod)
4642 		return -EPERM;
4643 
4644 	return dir->i_op->mknod(dir, dentry,
4645 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4646 }
4647 EXPORT_SYMBOL(vfs_whiteout);
4648 
4649 int readlink_copy(char __user *buffer, int buflen, const char *link)
4650 {
4651 	int len = PTR_ERR(link);
4652 	if (IS_ERR(link))
4653 		goto out;
4654 
4655 	len = strlen(link);
4656 	if (len > (unsigned) buflen)
4657 		len = buflen;
4658 	if (copy_to_user(buffer, link, len))
4659 		len = -EFAULT;
4660 out:
4661 	return len;
4662 }
4663 
4664 /*
4665  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4666  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4667  * for any given inode is up to filesystem.
4668  */
4669 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4670 			    int buflen)
4671 {
4672 	DEFINE_DELAYED_CALL(done);
4673 	struct inode *inode = d_inode(dentry);
4674 	const char *link = inode->i_link;
4675 	int res;
4676 
4677 	if (!link) {
4678 		link = inode->i_op->get_link(dentry, inode, &done);
4679 		if (IS_ERR(link))
4680 			return PTR_ERR(link);
4681 	}
4682 	res = readlink_copy(buffer, buflen, link);
4683 	do_delayed_call(&done);
4684 	return res;
4685 }
4686 
4687 /**
4688  * vfs_readlink - copy symlink body into userspace buffer
4689  * @dentry: dentry on which to get symbolic link
4690  * @buffer: user memory pointer
4691  * @buflen: size of buffer
4692  *
4693  * Does not touch atime.  That's up to the caller if necessary
4694  *
4695  * Does not call security hook.
4696  */
4697 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4698 {
4699 	struct inode *inode = d_inode(dentry);
4700 
4701 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4702 		if (unlikely(inode->i_op->readlink))
4703 			return inode->i_op->readlink(dentry, buffer, buflen);
4704 
4705 		if (!d_is_symlink(dentry))
4706 			return -EINVAL;
4707 
4708 		spin_lock(&inode->i_lock);
4709 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4710 		spin_unlock(&inode->i_lock);
4711 	}
4712 
4713 	return generic_readlink(dentry, buffer, buflen);
4714 }
4715 EXPORT_SYMBOL(vfs_readlink);
4716 
4717 /**
4718  * vfs_get_link - get symlink body
4719  * @dentry: dentry on which to get symbolic link
4720  * @done: caller needs to free returned data with this
4721  *
4722  * Calls security hook and i_op->get_link() on the supplied inode.
4723  *
4724  * It does not touch atime.  That's up to the caller if necessary.
4725  *
4726  * Does not work on "special" symlinks like /proc/$$/fd/N
4727  */
4728 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4729 {
4730 	const char *res = ERR_PTR(-EINVAL);
4731 	struct inode *inode = d_inode(dentry);
4732 
4733 	if (d_is_symlink(dentry)) {
4734 		res = ERR_PTR(security_inode_readlink(dentry));
4735 		if (!res)
4736 			res = inode->i_op->get_link(dentry, inode, done);
4737 	}
4738 	return res;
4739 }
4740 EXPORT_SYMBOL(vfs_get_link);
4741 
4742 /* get the link contents into pagecache */
4743 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4744 			  struct delayed_call *callback)
4745 {
4746 	char *kaddr;
4747 	struct page *page;
4748 	struct address_space *mapping = inode->i_mapping;
4749 
4750 	if (!dentry) {
4751 		page = find_get_page(mapping, 0);
4752 		if (!page)
4753 			return ERR_PTR(-ECHILD);
4754 		if (!PageUptodate(page)) {
4755 			put_page(page);
4756 			return ERR_PTR(-ECHILD);
4757 		}
4758 	} else {
4759 		page = read_mapping_page(mapping, 0, NULL);
4760 		if (IS_ERR(page))
4761 			return (char*)page;
4762 	}
4763 	set_delayed_call(callback, page_put_link, page);
4764 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4765 	kaddr = page_address(page);
4766 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4767 	return kaddr;
4768 }
4769 
4770 EXPORT_SYMBOL(page_get_link);
4771 
4772 void page_put_link(void *arg)
4773 {
4774 	put_page(arg);
4775 }
4776 EXPORT_SYMBOL(page_put_link);
4777 
4778 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4779 {
4780 	DEFINE_DELAYED_CALL(done);
4781 	int res = readlink_copy(buffer, buflen,
4782 				page_get_link(dentry, d_inode(dentry),
4783 					      &done));
4784 	do_delayed_call(&done);
4785 	return res;
4786 }
4787 EXPORT_SYMBOL(page_readlink);
4788 
4789 /*
4790  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4791  */
4792 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4793 {
4794 	struct address_space *mapping = inode->i_mapping;
4795 	struct page *page;
4796 	void *fsdata;
4797 	int err;
4798 	unsigned int flags = 0;
4799 	if (nofs)
4800 		flags |= AOP_FLAG_NOFS;
4801 
4802 retry:
4803 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4804 				flags, &page, &fsdata);
4805 	if (err)
4806 		goto fail;
4807 
4808 	memcpy(page_address(page), symname, len-1);
4809 
4810 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4811 							page, fsdata);
4812 	if (err < 0)
4813 		goto fail;
4814 	if (err < len-1)
4815 		goto retry;
4816 
4817 	mark_inode_dirty(inode);
4818 	return 0;
4819 fail:
4820 	return err;
4821 }
4822 EXPORT_SYMBOL(__page_symlink);
4823 
4824 int page_symlink(struct inode *inode, const char *symname, int len)
4825 {
4826 	return __page_symlink(inode, symname, len,
4827 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4828 }
4829 EXPORT_SYMBOL(page_symlink);
4830 
4831 const struct inode_operations page_symlink_inode_operations = {
4832 	.get_link	= page_get_link,
4833 };
4834 EXPORT_SYMBOL(page_symlink_inode_operations);
4835