xref: /openbmc/linux/fs/namei.c (revision 4161b450)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 void final_putname(struct filename *name)
122 {
123 	if (name->separate) {
124 		__putname(name->name);
125 		kfree(name);
126 	} else {
127 		__putname(name);
128 	}
129 }
130 
131 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
132 
133 struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 	struct filename *result, *err;
137 	int len;
138 	long max;
139 	char *kname;
140 
141 	result = audit_reusename(filename);
142 	if (result)
143 		return result;
144 
145 	result = __getname();
146 	if (unlikely(!result))
147 		return ERR_PTR(-ENOMEM);
148 
149 	/*
150 	 * First, try to embed the struct filename inside the names_cache
151 	 * allocation
152 	 */
153 	kname = (char *)result + sizeof(*result);
154 	result->name = kname;
155 	result->separate = false;
156 	max = EMBEDDED_NAME_MAX;
157 
158 recopy:
159 	len = strncpy_from_user(kname, filename, max);
160 	if (unlikely(len < 0)) {
161 		err = ERR_PTR(len);
162 		goto error;
163 	}
164 
165 	/*
166 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 	 * separate struct filename so we can dedicate the entire
168 	 * names_cache allocation for the pathname, and re-do the copy from
169 	 * userland.
170 	 */
171 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 		kname = (char *)result;
173 
174 		result = kzalloc(sizeof(*result), GFP_KERNEL);
175 		if (!result) {
176 			err = ERR_PTR(-ENOMEM);
177 			result = (struct filename *)kname;
178 			goto error;
179 		}
180 		result->name = kname;
181 		result->separate = true;
182 		max = PATH_MAX;
183 		goto recopy;
184 	}
185 
186 	/* The empty path is special. */
187 	if (unlikely(!len)) {
188 		if (empty)
189 			*empty = 1;
190 		err = ERR_PTR(-ENOENT);
191 		if (!(flags & LOOKUP_EMPTY))
192 			goto error;
193 	}
194 
195 	err = ERR_PTR(-ENAMETOOLONG);
196 	if (unlikely(len >= PATH_MAX))
197 		goto error;
198 
199 	result->uptr = filename;
200 	result->aname = NULL;
201 	audit_getname(result);
202 	return result;
203 
204 error:
205 	final_putname(result);
206 	return err;
207 }
208 
209 struct filename *
210 getname(const char __user * filename)
211 {
212 	return getname_flags(filename, 0, NULL);
213 }
214 
215 /*
216  * The "getname_kernel()" interface doesn't do pathnames longer
217  * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218  */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 	struct filename *result;
223 	char *kname;
224 	int len;
225 
226 	len = strlen(filename);
227 	if (len >= EMBEDDED_NAME_MAX)
228 		return ERR_PTR(-ENAMETOOLONG);
229 
230 	result = __getname();
231 	if (unlikely(!result))
232 		return ERR_PTR(-ENOMEM);
233 
234 	kname = (char *)result + sizeof(*result);
235 	result->name = kname;
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->separate = false;
239 
240 	strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 	return result;
242 }
243 
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 	if (unlikely(!audit_dummy_context()))
248 		return audit_putname(name);
249 	final_putname(name);
250 }
251 #endif
252 
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 	struct posix_acl *acl;
257 
258 	if (mask & MAY_NOT_BLOCK) {
259 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 	        if (!acl)
261 	                return -EAGAIN;
262 		/* no ->get_acl() calls in RCU mode... */
263 		if (acl == ACL_NOT_CACHED)
264 			return -ECHILD;
265 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 	}
267 
268 	acl = get_acl(inode, ACL_TYPE_ACCESS);
269 	if (IS_ERR(acl))
270 		return PTR_ERR(acl);
271 	if (acl) {
272 	        int error = posix_acl_permission(inode, acl, mask);
273 	        posix_acl_release(acl);
274 	        return error;
275 	}
276 #endif
277 
278 	return -EAGAIN;
279 }
280 
281 /*
282  * This does the basic permission checking
283  */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 	unsigned int mode = inode->i_mode;
287 
288 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 		mode >>= 6;
290 	else {
291 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 			int error = check_acl(inode, mask);
293 			if (error != -EAGAIN)
294 				return error;
295 		}
296 
297 		if (in_group_p(inode->i_gid))
298 			mode >>= 3;
299 	}
300 
301 	/*
302 	 * If the DACs are ok we don't need any capability check.
303 	 */
304 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 		return 0;
306 	return -EACCES;
307 }
308 
309 /**
310  * generic_permission -  check for access rights on a Posix-like filesystem
311  * @inode:	inode to check access rights for
312  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313  *
314  * Used to check for read/write/execute permissions on a file.
315  * We use "fsuid" for this, letting us set arbitrary permissions
316  * for filesystem access without changing the "normal" uids which
317  * are used for other things.
318  *
319  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320  * request cannot be satisfied (eg. requires blocking or too much complexity).
321  * It would then be called again in ref-walk mode.
322  */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 	int ret;
326 
327 	/*
328 	 * Do the basic permission checks.
329 	 */
330 	ret = acl_permission_check(inode, mask);
331 	if (ret != -EACCES)
332 		return ret;
333 
334 	if (S_ISDIR(inode->i_mode)) {
335 		/* DACs are overridable for directories */
336 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 			return 0;
338 		if (!(mask & MAY_WRITE))
339 			if (capable_wrt_inode_uidgid(inode,
340 						     CAP_DAC_READ_SEARCH))
341 				return 0;
342 		return -EACCES;
343 	}
344 	/*
345 	 * Read/write DACs are always overridable.
346 	 * Executable DACs are overridable when there is
347 	 * at least one exec bit set.
348 	 */
349 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 			return 0;
352 
353 	/*
354 	 * Searching includes executable on directories, else just read.
355 	 */
356 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 	if (mask == MAY_READ)
358 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 			return 0;
360 
361 	return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364 
365 /*
366  * We _really_ want to just do "generic_permission()" without
367  * even looking at the inode->i_op values. So we keep a cache
368  * flag in inode->i_opflags, that says "this has not special
369  * permission function, use the fast case".
370  */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 		if (likely(inode->i_op->permission))
375 			return inode->i_op->permission(inode, mask);
376 
377 		/* This gets set once for the inode lifetime */
378 		spin_lock(&inode->i_lock);
379 		inode->i_opflags |= IOP_FASTPERM;
380 		spin_unlock(&inode->i_lock);
381 	}
382 	return generic_permission(inode, mask);
383 }
384 
385 /**
386  * __inode_permission - Check for access rights to a given inode
387  * @inode: Inode to check permission on
388  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389  *
390  * Check for read/write/execute permissions on an inode.
391  *
392  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393  *
394  * This does not check for a read-only file system.  You probably want
395  * inode_permission().
396  */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 	int retval;
400 
401 	if (unlikely(mask & MAY_WRITE)) {
402 		/*
403 		 * Nobody gets write access to an immutable file.
404 		 */
405 		if (IS_IMMUTABLE(inode))
406 			return -EACCES;
407 	}
408 
409 	retval = do_inode_permission(inode, mask);
410 	if (retval)
411 		return retval;
412 
413 	retval = devcgroup_inode_permission(inode, mask);
414 	if (retval)
415 		return retval;
416 
417 	return security_inode_permission(inode, mask);
418 }
419 EXPORT_SYMBOL(__inode_permission);
420 
421 /**
422  * sb_permission - Check superblock-level permissions
423  * @sb: Superblock of inode to check permission on
424  * @inode: Inode to check permission on
425  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
426  *
427  * Separate out file-system wide checks from inode-specific permission checks.
428  */
429 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
430 {
431 	if (unlikely(mask & MAY_WRITE)) {
432 		umode_t mode = inode->i_mode;
433 
434 		/* Nobody gets write access to a read-only fs. */
435 		if ((sb->s_flags & MS_RDONLY) &&
436 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
437 			return -EROFS;
438 	}
439 	return 0;
440 }
441 
442 /**
443  * inode_permission - Check for access rights to a given inode
444  * @inode: Inode to check permission on
445  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
446  *
447  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
448  * this, letting us set arbitrary permissions for filesystem access without
449  * changing the "normal" UIDs which are used for other things.
450  *
451  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
452  */
453 int inode_permission(struct inode *inode, int mask)
454 {
455 	int retval;
456 
457 	retval = sb_permission(inode->i_sb, inode, mask);
458 	if (retval)
459 		return retval;
460 	return __inode_permission(inode, mask);
461 }
462 EXPORT_SYMBOL(inode_permission);
463 
464 /**
465  * path_get - get a reference to a path
466  * @path: path to get the reference to
467  *
468  * Given a path increment the reference count to the dentry and the vfsmount.
469  */
470 void path_get(const struct path *path)
471 {
472 	mntget(path->mnt);
473 	dget(path->dentry);
474 }
475 EXPORT_SYMBOL(path_get);
476 
477 /**
478  * path_put - put a reference to a path
479  * @path: path to put the reference to
480  *
481  * Given a path decrement the reference count to the dentry and the vfsmount.
482  */
483 void path_put(const struct path *path)
484 {
485 	dput(path->dentry);
486 	mntput(path->mnt);
487 }
488 EXPORT_SYMBOL(path_put);
489 
490 struct nameidata {
491 	struct path	path;
492 	struct qstr	last;
493 	struct path	root;
494 	struct inode	*inode; /* path.dentry.d_inode */
495 	unsigned int	flags;
496 	unsigned	seq, m_seq;
497 	int		last_type;
498 	unsigned	depth;
499 	struct file	*base;
500 	char *saved_names[MAX_NESTED_LINKS + 1];
501 };
502 
503 /*
504  * Path walking has 2 modes, rcu-walk and ref-walk (see
505  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
506  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
507  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
508  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
509  * got stuck, so ref-walk may continue from there. If this is not successful
510  * (eg. a seqcount has changed), then failure is returned and it's up to caller
511  * to restart the path walk from the beginning in ref-walk mode.
512  */
513 
514 /**
515  * unlazy_walk - try to switch to ref-walk mode.
516  * @nd: nameidata pathwalk data
517  * @dentry: child of nd->path.dentry or NULL
518  * Returns: 0 on success, -ECHILD on failure
519  *
520  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
521  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
522  * @nd or NULL.  Must be called from rcu-walk context.
523  */
524 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
525 {
526 	struct fs_struct *fs = current->fs;
527 	struct dentry *parent = nd->path.dentry;
528 
529 	BUG_ON(!(nd->flags & LOOKUP_RCU));
530 
531 	/*
532 	 * After legitimizing the bastards, terminate_walk()
533 	 * will do the right thing for non-RCU mode, and all our
534 	 * subsequent exit cases should rcu_read_unlock()
535 	 * before returning.  Do vfsmount first; if dentry
536 	 * can't be legitimized, just set nd->path.dentry to NULL
537 	 * and rely on dput(NULL) being a no-op.
538 	 */
539 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
540 		return -ECHILD;
541 	nd->flags &= ~LOOKUP_RCU;
542 
543 	if (!lockref_get_not_dead(&parent->d_lockref)) {
544 		nd->path.dentry = NULL;
545 		goto out;
546 	}
547 
548 	/*
549 	 * For a negative lookup, the lookup sequence point is the parents
550 	 * sequence point, and it only needs to revalidate the parent dentry.
551 	 *
552 	 * For a positive lookup, we need to move both the parent and the
553 	 * dentry from the RCU domain to be properly refcounted. And the
554 	 * sequence number in the dentry validates *both* dentry counters,
555 	 * since we checked the sequence number of the parent after we got
556 	 * the child sequence number. So we know the parent must still
557 	 * be valid if the child sequence number is still valid.
558 	 */
559 	if (!dentry) {
560 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
561 			goto out;
562 		BUG_ON(nd->inode != parent->d_inode);
563 	} else {
564 		if (!lockref_get_not_dead(&dentry->d_lockref))
565 			goto out;
566 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
567 			goto drop_dentry;
568 	}
569 
570 	/*
571 	 * Sequence counts matched. Now make sure that the root is
572 	 * still valid and get it if required.
573 	 */
574 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
575 		spin_lock(&fs->lock);
576 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
577 			goto unlock_and_drop_dentry;
578 		path_get(&nd->root);
579 		spin_unlock(&fs->lock);
580 	}
581 
582 	rcu_read_unlock();
583 	return 0;
584 
585 unlock_and_drop_dentry:
586 	spin_unlock(&fs->lock);
587 drop_dentry:
588 	rcu_read_unlock();
589 	dput(dentry);
590 	goto drop_root_mnt;
591 out:
592 	rcu_read_unlock();
593 drop_root_mnt:
594 	if (!(nd->flags & LOOKUP_ROOT))
595 		nd->root.mnt = NULL;
596 	return -ECHILD;
597 }
598 
599 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
600 {
601 	return dentry->d_op->d_revalidate(dentry, flags);
602 }
603 
604 /**
605  * complete_walk - successful completion of path walk
606  * @nd:  pointer nameidata
607  *
608  * If we had been in RCU mode, drop out of it and legitimize nd->path.
609  * Revalidate the final result, unless we'd already done that during
610  * the path walk or the filesystem doesn't ask for it.  Return 0 on
611  * success, -error on failure.  In case of failure caller does not
612  * need to drop nd->path.
613  */
614 static int complete_walk(struct nameidata *nd)
615 {
616 	struct dentry *dentry = nd->path.dentry;
617 	int status;
618 
619 	if (nd->flags & LOOKUP_RCU) {
620 		nd->flags &= ~LOOKUP_RCU;
621 		if (!(nd->flags & LOOKUP_ROOT))
622 			nd->root.mnt = NULL;
623 
624 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
625 			rcu_read_unlock();
626 			return -ECHILD;
627 		}
628 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
629 			rcu_read_unlock();
630 			mntput(nd->path.mnt);
631 			return -ECHILD;
632 		}
633 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
634 			rcu_read_unlock();
635 			dput(dentry);
636 			mntput(nd->path.mnt);
637 			return -ECHILD;
638 		}
639 		rcu_read_unlock();
640 	}
641 
642 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
643 		return 0;
644 
645 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
646 		return 0;
647 
648 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
649 	if (status > 0)
650 		return 0;
651 
652 	if (!status)
653 		status = -ESTALE;
654 
655 	path_put(&nd->path);
656 	return status;
657 }
658 
659 static __always_inline void set_root(struct nameidata *nd)
660 {
661 	get_fs_root(current->fs, &nd->root);
662 }
663 
664 static int link_path_walk(const char *, struct nameidata *);
665 
666 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
667 {
668 	struct fs_struct *fs = current->fs;
669 	unsigned seq, res;
670 
671 	do {
672 		seq = read_seqcount_begin(&fs->seq);
673 		nd->root = fs->root;
674 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
675 	} while (read_seqcount_retry(&fs->seq, seq));
676 	return res;
677 }
678 
679 static void path_put_conditional(struct path *path, struct nameidata *nd)
680 {
681 	dput(path->dentry);
682 	if (path->mnt != nd->path.mnt)
683 		mntput(path->mnt);
684 }
685 
686 static inline void path_to_nameidata(const struct path *path,
687 					struct nameidata *nd)
688 {
689 	if (!(nd->flags & LOOKUP_RCU)) {
690 		dput(nd->path.dentry);
691 		if (nd->path.mnt != path->mnt)
692 			mntput(nd->path.mnt);
693 	}
694 	nd->path.mnt = path->mnt;
695 	nd->path.dentry = path->dentry;
696 }
697 
698 /*
699  * Helper to directly jump to a known parsed path from ->follow_link,
700  * caller must have taken a reference to path beforehand.
701  */
702 void nd_jump_link(struct nameidata *nd, struct path *path)
703 {
704 	path_put(&nd->path);
705 
706 	nd->path = *path;
707 	nd->inode = nd->path.dentry->d_inode;
708 	nd->flags |= LOOKUP_JUMPED;
709 }
710 
711 void nd_set_link(struct nameidata *nd, char *path)
712 {
713 	nd->saved_names[nd->depth] = path;
714 }
715 EXPORT_SYMBOL(nd_set_link);
716 
717 char *nd_get_link(struct nameidata *nd)
718 {
719 	return nd->saved_names[nd->depth];
720 }
721 EXPORT_SYMBOL(nd_get_link);
722 
723 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
724 {
725 	struct inode *inode = link->dentry->d_inode;
726 	if (inode->i_op->put_link)
727 		inode->i_op->put_link(link->dentry, nd, cookie);
728 	path_put(link);
729 }
730 
731 int sysctl_protected_symlinks __read_mostly = 0;
732 int sysctl_protected_hardlinks __read_mostly = 0;
733 
734 /**
735  * may_follow_link - Check symlink following for unsafe situations
736  * @link: The path of the symlink
737  * @nd: nameidata pathwalk data
738  *
739  * In the case of the sysctl_protected_symlinks sysctl being enabled,
740  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
741  * in a sticky world-writable directory. This is to protect privileged
742  * processes from failing races against path names that may change out
743  * from under them by way of other users creating malicious symlinks.
744  * It will permit symlinks to be followed only when outside a sticky
745  * world-writable directory, or when the uid of the symlink and follower
746  * match, or when the directory owner matches the symlink's owner.
747  *
748  * Returns 0 if following the symlink is allowed, -ve on error.
749  */
750 static inline int may_follow_link(struct path *link, struct nameidata *nd)
751 {
752 	const struct inode *inode;
753 	const struct inode *parent;
754 
755 	if (!sysctl_protected_symlinks)
756 		return 0;
757 
758 	/* Allowed if owner and follower match. */
759 	inode = link->dentry->d_inode;
760 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
761 		return 0;
762 
763 	/* Allowed if parent directory not sticky and world-writable. */
764 	parent = nd->path.dentry->d_inode;
765 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
766 		return 0;
767 
768 	/* Allowed if parent directory and link owner match. */
769 	if (uid_eq(parent->i_uid, inode->i_uid))
770 		return 0;
771 
772 	audit_log_link_denied("follow_link", link);
773 	path_put_conditional(link, nd);
774 	path_put(&nd->path);
775 	return -EACCES;
776 }
777 
778 /**
779  * safe_hardlink_source - Check for safe hardlink conditions
780  * @inode: the source inode to hardlink from
781  *
782  * Return false if at least one of the following conditions:
783  *    - inode is not a regular file
784  *    - inode is setuid
785  *    - inode is setgid and group-exec
786  *    - access failure for read and write
787  *
788  * Otherwise returns true.
789  */
790 static bool safe_hardlink_source(struct inode *inode)
791 {
792 	umode_t mode = inode->i_mode;
793 
794 	/* Special files should not get pinned to the filesystem. */
795 	if (!S_ISREG(mode))
796 		return false;
797 
798 	/* Setuid files should not get pinned to the filesystem. */
799 	if (mode & S_ISUID)
800 		return false;
801 
802 	/* Executable setgid files should not get pinned to the filesystem. */
803 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
804 		return false;
805 
806 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
807 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
808 		return false;
809 
810 	return true;
811 }
812 
813 /**
814  * may_linkat - Check permissions for creating a hardlink
815  * @link: the source to hardlink from
816  *
817  * Block hardlink when all of:
818  *  - sysctl_protected_hardlinks enabled
819  *  - fsuid does not match inode
820  *  - hardlink source is unsafe (see safe_hardlink_source() above)
821  *  - not CAP_FOWNER
822  *
823  * Returns 0 if successful, -ve on error.
824  */
825 static int may_linkat(struct path *link)
826 {
827 	const struct cred *cred;
828 	struct inode *inode;
829 
830 	if (!sysctl_protected_hardlinks)
831 		return 0;
832 
833 	cred = current_cred();
834 	inode = link->dentry->d_inode;
835 
836 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
837 	 * otherwise, it must be a safe source.
838 	 */
839 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
840 	    capable(CAP_FOWNER))
841 		return 0;
842 
843 	audit_log_link_denied("linkat", link);
844 	return -EPERM;
845 }
846 
847 static __always_inline int
848 follow_link(struct path *link, struct nameidata *nd, void **p)
849 {
850 	struct dentry *dentry = link->dentry;
851 	int error;
852 	char *s;
853 
854 	BUG_ON(nd->flags & LOOKUP_RCU);
855 
856 	if (link->mnt == nd->path.mnt)
857 		mntget(link->mnt);
858 
859 	error = -ELOOP;
860 	if (unlikely(current->total_link_count >= 40))
861 		goto out_put_nd_path;
862 
863 	cond_resched();
864 	current->total_link_count++;
865 
866 	touch_atime(link);
867 	nd_set_link(nd, NULL);
868 
869 	error = security_inode_follow_link(link->dentry, nd);
870 	if (error)
871 		goto out_put_nd_path;
872 
873 	nd->last_type = LAST_BIND;
874 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
875 	error = PTR_ERR(*p);
876 	if (IS_ERR(*p))
877 		goto out_put_nd_path;
878 
879 	error = 0;
880 	s = nd_get_link(nd);
881 	if (s) {
882 		if (unlikely(IS_ERR(s))) {
883 			path_put(&nd->path);
884 			put_link(nd, link, *p);
885 			return PTR_ERR(s);
886 		}
887 		if (*s == '/') {
888 			if (!nd->root.mnt)
889 				set_root(nd);
890 			path_put(&nd->path);
891 			nd->path = nd->root;
892 			path_get(&nd->root);
893 			nd->flags |= LOOKUP_JUMPED;
894 		}
895 		nd->inode = nd->path.dentry->d_inode;
896 		error = link_path_walk(s, nd);
897 		if (unlikely(error))
898 			put_link(nd, link, *p);
899 	}
900 
901 	return error;
902 
903 out_put_nd_path:
904 	*p = NULL;
905 	path_put(&nd->path);
906 	path_put(link);
907 	return error;
908 }
909 
910 static int follow_up_rcu(struct path *path)
911 {
912 	struct mount *mnt = real_mount(path->mnt);
913 	struct mount *parent;
914 	struct dentry *mountpoint;
915 
916 	parent = mnt->mnt_parent;
917 	if (&parent->mnt == path->mnt)
918 		return 0;
919 	mountpoint = mnt->mnt_mountpoint;
920 	path->dentry = mountpoint;
921 	path->mnt = &parent->mnt;
922 	return 1;
923 }
924 
925 /*
926  * follow_up - Find the mountpoint of path's vfsmount
927  *
928  * Given a path, find the mountpoint of its source file system.
929  * Replace @path with the path of the mountpoint in the parent mount.
930  * Up is towards /.
931  *
932  * Return 1 if we went up a level and 0 if we were already at the
933  * root.
934  */
935 int follow_up(struct path *path)
936 {
937 	struct mount *mnt = real_mount(path->mnt);
938 	struct mount *parent;
939 	struct dentry *mountpoint;
940 
941 	read_seqlock_excl(&mount_lock);
942 	parent = mnt->mnt_parent;
943 	if (parent == mnt) {
944 		read_sequnlock_excl(&mount_lock);
945 		return 0;
946 	}
947 	mntget(&parent->mnt);
948 	mountpoint = dget(mnt->mnt_mountpoint);
949 	read_sequnlock_excl(&mount_lock);
950 	dput(path->dentry);
951 	path->dentry = mountpoint;
952 	mntput(path->mnt);
953 	path->mnt = &parent->mnt;
954 	return 1;
955 }
956 EXPORT_SYMBOL(follow_up);
957 
958 /*
959  * Perform an automount
960  * - return -EISDIR to tell follow_managed() to stop and return the path we
961  *   were called with.
962  */
963 static int follow_automount(struct path *path, unsigned flags,
964 			    bool *need_mntput)
965 {
966 	struct vfsmount *mnt;
967 	int err;
968 
969 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
970 		return -EREMOTE;
971 
972 	/* We don't want to mount if someone's just doing a stat -
973 	 * unless they're stat'ing a directory and appended a '/' to
974 	 * the name.
975 	 *
976 	 * We do, however, want to mount if someone wants to open or
977 	 * create a file of any type under the mountpoint, wants to
978 	 * traverse through the mountpoint or wants to open the
979 	 * mounted directory.  Also, autofs may mark negative dentries
980 	 * as being automount points.  These will need the attentions
981 	 * of the daemon to instantiate them before they can be used.
982 	 */
983 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
984 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
985 	    path->dentry->d_inode)
986 		return -EISDIR;
987 
988 	current->total_link_count++;
989 	if (current->total_link_count >= 40)
990 		return -ELOOP;
991 
992 	mnt = path->dentry->d_op->d_automount(path);
993 	if (IS_ERR(mnt)) {
994 		/*
995 		 * The filesystem is allowed to return -EISDIR here to indicate
996 		 * it doesn't want to automount.  For instance, autofs would do
997 		 * this so that its userspace daemon can mount on this dentry.
998 		 *
999 		 * However, we can only permit this if it's a terminal point in
1000 		 * the path being looked up; if it wasn't then the remainder of
1001 		 * the path is inaccessible and we should say so.
1002 		 */
1003 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1004 			return -EREMOTE;
1005 		return PTR_ERR(mnt);
1006 	}
1007 
1008 	if (!mnt) /* mount collision */
1009 		return 0;
1010 
1011 	if (!*need_mntput) {
1012 		/* lock_mount() may release path->mnt on error */
1013 		mntget(path->mnt);
1014 		*need_mntput = true;
1015 	}
1016 	err = finish_automount(mnt, path);
1017 
1018 	switch (err) {
1019 	case -EBUSY:
1020 		/* Someone else made a mount here whilst we were busy */
1021 		return 0;
1022 	case 0:
1023 		path_put(path);
1024 		path->mnt = mnt;
1025 		path->dentry = dget(mnt->mnt_root);
1026 		return 0;
1027 	default:
1028 		return err;
1029 	}
1030 
1031 }
1032 
1033 /*
1034  * Handle a dentry that is managed in some way.
1035  * - Flagged for transit management (autofs)
1036  * - Flagged as mountpoint
1037  * - Flagged as automount point
1038  *
1039  * This may only be called in refwalk mode.
1040  *
1041  * Serialization is taken care of in namespace.c
1042  */
1043 static int follow_managed(struct path *path, unsigned flags)
1044 {
1045 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1046 	unsigned managed;
1047 	bool need_mntput = false;
1048 	int ret = 0;
1049 
1050 	/* Given that we're not holding a lock here, we retain the value in a
1051 	 * local variable for each dentry as we look at it so that we don't see
1052 	 * the components of that value change under us */
1053 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1054 	       managed &= DCACHE_MANAGED_DENTRY,
1055 	       unlikely(managed != 0)) {
1056 		/* Allow the filesystem to manage the transit without i_mutex
1057 		 * being held. */
1058 		if (managed & DCACHE_MANAGE_TRANSIT) {
1059 			BUG_ON(!path->dentry->d_op);
1060 			BUG_ON(!path->dentry->d_op->d_manage);
1061 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1062 			if (ret < 0)
1063 				break;
1064 		}
1065 
1066 		/* Transit to a mounted filesystem. */
1067 		if (managed & DCACHE_MOUNTED) {
1068 			struct vfsmount *mounted = lookup_mnt(path);
1069 			if (mounted) {
1070 				dput(path->dentry);
1071 				if (need_mntput)
1072 					mntput(path->mnt);
1073 				path->mnt = mounted;
1074 				path->dentry = dget(mounted->mnt_root);
1075 				need_mntput = true;
1076 				continue;
1077 			}
1078 
1079 			/* Something is mounted on this dentry in another
1080 			 * namespace and/or whatever was mounted there in this
1081 			 * namespace got unmounted before lookup_mnt() could
1082 			 * get it */
1083 		}
1084 
1085 		/* Handle an automount point */
1086 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1087 			ret = follow_automount(path, flags, &need_mntput);
1088 			if (ret < 0)
1089 				break;
1090 			continue;
1091 		}
1092 
1093 		/* We didn't change the current path point */
1094 		break;
1095 	}
1096 
1097 	if (need_mntput && path->mnt == mnt)
1098 		mntput(path->mnt);
1099 	if (ret == -EISDIR)
1100 		ret = 0;
1101 	return ret < 0 ? ret : need_mntput;
1102 }
1103 
1104 int follow_down_one(struct path *path)
1105 {
1106 	struct vfsmount *mounted;
1107 
1108 	mounted = lookup_mnt(path);
1109 	if (mounted) {
1110 		dput(path->dentry);
1111 		mntput(path->mnt);
1112 		path->mnt = mounted;
1113 		path->dentry = dget(mounted->mnt_root);
1114 		return 1;
1115 	}
1116 	return 0;
1117 }
1118 EXPORT_SYMBOL(follow_down_one);
1119 
1120 static inline int managed_dentry_rcu(struct dentry *dentry)
1121 {
1122 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1123 		dentry->d_op->d_manage(dentry, true) : 0;
1124 }
1125 
1126 /*
1127  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1128  * we meet a managed dentry that would need blocking.
1129  */
1130 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1131 			       struct inode **inode)
1132 {
1133 	for (;;) {
1134 		struct mount *mounted;
1135 		/*
1136 		 * Don't forget we might have a non-mountpoint managed dentry
1137 		 * that wants to block transit.
1138 		 */
1139 		switch (managed_dentry_rcu(path->dentry)) {
1140 		case -ECHILD:
1141 		default:
1142 			return false;
1143 		case -EISDIR:
1144 			return true;
1145 		case 0:
1146 			break;
1147 		}
1148 
1149 		if (!d_mountpoint(path->dentry))
1150 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1151 
1152 		mounted = __lookup_mnt(path->mnt, path->dentry);
1153 		if (!mounted)
1154 			break;
1155 		path->mnt = &mounted->mnt;
1156 		path->dentry = mounted->mnt.mnt_root;
1157 		nd->flags |= LOOKUP_JUMPED;
1158 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1159 		/*
1160 		 * Update the inode too. We don't need to re-check the
1161 		 * dentry sequence number here after this d_inode read,
1162 		 * because a mount-point is always pinned.
1163 		 */
1164 		*inode = path->dentry->d_inode;
1165 	}
1166 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1167 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1168 }
1169 
1170 static int follow_dotdot_rcu(struct nameidata *nd)
1171 {
1172 	struct inode *inode = nd->inode;
1173 	if (!nd->root.mnt)
1174 		set_root_rcu(nd);
1175 
1176 	while (1) {
1177 		if (nd->path.dentry == nd->root.dentry &&
1178 		    nd->path.mnt == nd->root.mnt) {
1179 			break;
1180 		}
1181 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1182 			struct dentry *old = nd->path.dentry;
1183 			struct dentry *parent = old->d_parent;
1184 			unsigned seq;
1185 
1186 			inode = parent->d_inode;
1187 			seq = read_seqcount_begin(&parent->d_seq);
1188 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1189 				goto failed;
1190 			nd->path.dentry = parent;
1191 			nd->seq = seq;
1192 			break;
1193 		}
1194 		if (!follow_up_rcu(&nd->path))
1195 			break;
1196 		inode = nd->path.dentry->d_inode;
1197 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1198 	}
1199 	while (d_mountpoint(nd->path.dentry)) {
1200 		struct mount *mounted;
1201 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1202 		if (!mounted)
1203 			break;
1204 		nd->path.mnt = &mounted->mnt;
1205 		nd->path.dentry = mounted->mnt.mnt_root;
1206 		inode = nd->path.dentry->d_inode;
1207 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1208 		if (read_seqretry(&mount_lock, nd->m_seq))
1209 			goto failed;
1210 	}
1211 	nd->inode = inode;
1212 	return 0;
1213 
1214 failed:
1215 	nd->flags &= ~LOOKUP_RCU;
1216 	if (!(nd->flags & LOOKUP_ROOT))
1217 		nd->root.mnt = NULL;
1218 	rcu_read_unlock();
1219 	return -ECHILD;
1220 }
1221 
1222 /*
1223  * Follow down to the covering mount currently visible to userspace.  At each
1224  * point, the filesystem owning that dentry may be queried as to whether the
1225  * caller is permitted to proceed or not.
1226  */
1227 int follow_down(struct path *path)
1228 {
1229 	unsigned managed;
1230 	int ret;
1231 
1232 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1233 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1234 		/* Allow the filesystem to manage the transit without i_mutex
1235 		 * being held.
1236 		 *
1237 		 * We indicate to the filesystem if someone is trying to mount
1238 		 * something here.  This gives autofs the chance to deny anyone
1239 		 * other than its daemon the right to mount on its
1240 		 * superstructure.
1241 		 *
1242 		 * The filesystem may sleep at this point.
1243 		 */
1244 		if (managed & DCACHE_MANAGE_TRANSIT) {
1245 			BUG_ON(!path->dentry->d_op);
1246 			BUG_ON(!path->dentry->d_op->d_manage);
1247 			ret = path->dentry->d_op->d_manage(
1248 				path->dentry, false);
1249 			if (ret < 0)
1250 				return ret == -EISDIR ? 0 : ret;
1251 		}
1252 
1253 		/* Transit to a mounted filesystem. */
1254 		if (managed & DCACHE_MOUNTED) {
1255 			struct vfsmount *mounted = lookup_mnt(path);
1256 			if (!mounted)
1257 				break;
1258 			dput(path->dentry);
1259 			mntput(path->mnt);
1260 			path->mnt = mounted;
1261 			path->dentry = dget(mounted->mnt_root);
1262 			continue;
1263 		}
1264 
1265 		/* Don't handle automount points here */
1266 		break;
1267 	}
1268 	return 0;
1269 }
1270 EXPORT_SYMBOL(follow_down);
1271 
1272 /*
1273  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1274  */
1275 static void follow_mount(struct path *path)
1276 {
1277 	while (d_mountpoint(path->dentry)) {
1278 		struct vfsmount *mounted = lookup_mnt(path);
1279 		if (!mounted)
1280 			break;
1281 		dput(path->dentry);
1282 		mntput(path->mnt);
1283 		path->mnt = mounted;
1284 		path->dentry = dget(mounted->mnt_root);
1285 	}
1286 }
1287 
1288 static void follow_dotdot(struct nameidata *nd)
1289 {
1290 	if (!nd->root.mnt)
1291 		set_root(nd);
1292 
1293 	while(1) {
1294 		struct dentry *old = nd->path.dentry;
1295 
1296 		if (nd->path.dentry == nd->root.dentry &&
1297 		    nd->path.mnt == nd->root.mnt) {
1298 			break;
1299 		}
1300 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1301 			/* rare case of legitimate dget_parent()... */
1302 			nd->path.dentry = dget_parent(nd->path.dentry);
1303 			dput(old);
1304 			break;
1305 		}
1306 		if (!follow_up(&nd->path))
1307 			break;
1308 	}
1309 	follow_mount(&nd->path);
1310 	nd->inode = nd->path.dentry->d_inode;
1311 }
1312 
1313 /*
1314  * This looks up the name in dcache, possibly revalidates the old dentry and
1315  * allocates a new one if not found or not valid.  In the need_lookup argument
1316  * returns whether i_op->lookup is necessary.
1317  *
1318  * dir->d_inode->i_mutex must be held
1319  */
1320 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1321 				    unsigned int flags, bool *need_lookup)
1322 {
1323 	struct dentry *dentry;
1324 	int error;
1325 
1326 	*need_lookup = false;
1327 	dentry = d_lookup(dir, name);
1328 	if (dentry) {
1329 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1330 			error = d_revalidate(dentry, flags);
1331 			if (unlikely(error <= 0)) {
1332 				if (error < 0) {
1333 					dput(dentry);
1334 					return ERR_PTR(error);
1335 				} else {
1336 					d_invalidate(dentry);
1337 					dput(dentry);
1338 					dentry = NULL;
1339 				}
1340 			}
1341 		}
1342 	}
1343 
1344 	if (!dentry) {
1345 		dentry = d_alloc(dir, name);
1346 		if (unlikely(!dentry))
1347 			return ERR_PTR(-ENOMEM);
1348 
1349 		*need_lookup = true;
1350 	}
1351 	return dentry;
1352 }
1353 
1354 /*
1355  * Call i_op->lookup on the dentry.  The dentry must be negative and
1356  * unhashed.
1357  *
1358  * dir->d_inode->i_mutex must be held
1359  */
1360 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1361 				  unsigned int flags)
1362 {
1363 	struct dentry *old;
1364 
1365 	/* Don't create child dentry for a dead directory. */
1366 	if (unlikely(IS_DEADDIR(dir))) {
1367 		dput(dentry);
1368 		return ERR_PTR(-ENOENT);
1369 	}
1370 
1371 	old = dir->i_op->lookup(dir, dentry, flags);
1372 	if (unlikely(old)) {
1373 		dput(dentry);
1374 		dentry = old;
1375 	}
1376 	return dentry;
1377 }
1378 
1379 static struct dentry *__lookup_hash(struct qstr *name,
1380 		struct dentry *base, unsigned int flags)
1381 {
1382 	bool need_lookup;
1383 	struct dentry *dentry;
1384 
1385 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1386 	if (!need_lookup)
1387 		return dentry;
1388 
1389 	return lookup_real(base->d_inode, dentry, flags);
1390 }
1391 
1392 /*
1393  *  It's more convoluted than I'd like it to be, but... it's still fairly
1394  *  small and for now I'd prefer to have fast path as straight as possible.
1395  *  It _is_ time-critical.
1396  */
1397 static int lookup_fast(struct nameidata *nd,
1398 		       struct path *path, struct inode **inode)
1399 {
1400 	struct vfsmount *mnt = nd->path.mnt;
1401 	struct dentry *dentry, *parent = nd->path.dentry;
1402 	int need_reval = 1;
1403 	int status = 1;
1404 	int err;
1405 
1406 	/*
1407 	 * Rename seqlock is not required here because in the off chance
1408 	 * of a false negative due to a concurrent rename, we're going to
1409 	 * do the non-racy lookup, below.
1410 	 */
1411 	if (nd->flags & LOOKUP_RCU) {
1412 		unsigned seq;
1413 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1414 		if (!dentry)
1415 			goto unlazy;
1416 
1417 		/*
1418 		 * This sequence count validates that the inode matches
1419 		 * the dentry name information from lookup.
1420 		 */
1421 		*inode = dentry->d_inode;
1422 		if (read_seqcount_retry(&dentry->d_seq, seq))
1423 			return -ECHILD;
1424 
1425 		/*
1426 		 * This sequence count validates that the parent had no
1427 		 * changes while we did the lookup of the dentry above.
1428 		 *
1429 		 * The memory barrier in read_seqcount_begin of child is
1430 		 *  enough, we can use __read_seqcount_retry here.
1431 		 */
1432 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1433 			return -ECHILD;
1434 		nd->seq = seq;
1435 
1436 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1437 			status = d_revalidate(dentry, nd->flags);
1438 			if (unlikely(status <= 0)) {
1439 				if (status != -ECHILD)
1440 					need_reval = 0;
1441 				goto unlazy;
1442 			}
1443 		}
1444 		path->mnt = mnt;
1445 		path->dentry = dentry;
1446 		if (likely(__follow_mount_rcu(nd, path, inode)))
1447 			return 0;
1448 unlazy:
1449 		if (unlazy_walk(nd, dentry))
1450 			return -ECHILD;
1451 	} else {
1452 		dentry = __d_lookup(parent, &nd->last);
1453 	}
1454 
1455 	if (unlikely(!dentry))
1456 		goto need_lookup;
1457 
1458 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1459 		status = d_revalidate(dentry, nd->flags);
1460 	if (unlikely(status <= 0)) {
1461 		if (status < 0) {
1462 			dput(dentry);
1463 			return status;
1464 		}
1465 		d_invalidate(dentry);
1466 		dput(dentry);
1467 		goto need_lookup;
1468 	}
1469 
1470 	path->mnt = mnt;
1471 	path->dentry = dentry;
1472 	err = follow_managed(path, nd->flags);
1473 	if (unlikely(err < 0)) {
1474 		path_put_conditional(path, nd);
1475 		return err;
1476 	}
1477 	if (err)
1478 		nd->flags |= LOOKUP_JUMPED;
1479 	*inode = path->dentry->d_inode;
1480 	return 0;
1481 
1482 need_lookup:
1483 	return 1;
1484 }
1485 
1486 /* Fast lookup failed, do it the slow way */
1487 static int lookup_slow(struct nameidata *nd, struct path *path)
1488 {
1489 	struct dentry *dentry, *parent;
1490 	int err;
1491 
1492 	parent = nd->path.dentry;
1493 	BUG_ON(nd->inode != parent->d_inode);
1494 
1495 	mutex_lock(&parent->d_inode->i_mutex);
1496 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1497 	mutex_unlock(&parent->d_inode->i_mutex);
1498 	if (IS_ERR(dentry))
1499 		return PTR_ERR(dentry);
1500 	path->mnt = nd->path.mnt;
1501 	path->dentry = dentry;
1502 	err = follow_managed(path, nd->flags);
1503 	if (unlikely(err < 0)) {
1504 		path_put_conditional(path, nd);
1505 		return err;
1506 	}
1507 	if (err)
1508 		nd->flags |= LOOKUP_JUMPED;
1509 	return 0;
1510 }
1511 
1512 static inline int may_lookup(struct nameidata *nd)
1513 {
1514 	if (nd->flags & LOOKUP_RCU) {
1515 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1516 		if (err != -ECHILD)
1517 			return err;
1518 		if (unlazy_walk(nd, NULL))
1519 			return -ECHILD;
1520 	}
1521 	return inode_permission(nd->inode, MAY_EXEC);
1522 }
1523 
1524 static inline int handle_dots(struct nameidata *nd, int type)
1525 {
1526 	if (type == LAST_DOTDOT) {
1527 		if (nd->flags & LOOKUP_RCU) {
1528 			if (follow_dotdot_rcu(nd))
1529 				return -ECHILD;
1530 		} else
1531 			follow_dotdot(nd);
1532 	}
1533 	return 0;
1534 }
1535 
1536 static void terminate_walk(struct nameidata *nd)
1537 {
1538 	if (!(nd->flags & LOOKUP_RCU)) {
1539 		path_put(&nd->path);
1540 	} else {
1541 		nd->flags &= ~LOOKUP_RCU;
1542 		if (!(nd->flags & LOOKUP_ROOT))
1543 			nd->root.mnt = NULL;
1544 		rcu_read_unlock();
1545 	}
1546 }
1547 
1548 /*
1549  * Do we need to follow links? We _really_ want to be able
1550  * to do this check without having to look at inode->i_op,
1551  * so we keep a cache of "no, this doesn't need follow_link"
1552  * for the common case.
1553  */
1554 static inline int should_follow_link(struct dentry *dentry, int follow)
1555 {
1556 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1557 }
1558 
1559 static inline int walk_component(struct nameidata *nd, struct path *path,
1560 		int follow)
1561 {
1562 	struct inode *inode;
1563 	int err;
1564 	/*
1565 	 * "." and ".." are special - ".." especially so because it has
1566 	 * to be able to know about the current root directory and
1567 	 * parent relationships.
1568 	 */
1569 	if (unlikely(nd->last_type != LAST_NORM))
1570 		return handle_dots(nd, nd->last_type);
1571 	err = lookup_fast(nd, path, &inode);
1572 	if (unlikely(err)) {
1573 		if (err < 0)
1574 			goto out_err;
1575 
1576 		err = lookup_slow(nd, path);
1577 		if (err < 0)
1578 			goto out_err;
1579 
1580 		inode = path->dentry->d_inode;
1581 	}
1582 	err = -ENOENT;
1583 	if (!inode || d_is_negative(path->dentry))
1584 		goto out_path_put;
1585 
1586 	if (should_follow_link(path->dentry, follow)) {
1587 		if (nd->flags & LOOKUP_RCU) {
1588 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1589 				err = -ECHILD;
1590 				goto out_err;
1591 			}
1592 		}
1593 		BUG_ON(inode != path->dentry->d_inode);
1594 		return 1;
1595 	}
1596 	path_to_nameidata(path, nd);
1597 	nd->inode = inode;
1598 	return 0;
1599 
1600 out_path_put:
1601 	path_to_nameidata(path, nd);
1602 out_err:
1603 	terminate_walk(nd);
1604 	return err;
1605 }
1606 
1607 /*
1608  * This limits recursive symlink follows to 8, while
1609  * limiting consecutive symlinks to 40.
1610  *
1611  * Without that kind of total limit, nasty chains of consecutive
1612  * symlinks can cause almost arbitrarily long lookups.
1613  */
1614 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1615 {
1616 	int res;
1617 
1618 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1619 		path_put_conditional(path, nd);
1620 		path_put(&nd->path);
1621 		return -ELOOP;
1622 	}
1623 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1624 
1625 	nd->depth++;
1626 	current->link_count++;
1627 
1628 	do {
1629 		struct path link = *path;
1630 		void *cookie;
1631 
1632 		res = follow_link(&link, nd, &cookie);
1633 		if (res)
1634 			break;
1635 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1636 		put_link(nd, &link, cookie);
1637 	} while (res > 0);
1638 
1639 	current->link_count--;
1640 	nd->depth--;
1641 	return res;
1642 }
1643 
1644 /*
1645  * We can do the critical dentry name comparison and hashing
1646  * operations one word at a time, but we are limited to:
1647  *
1648  * - Architectures with fast unaligned word accesses. We could
1649  *   do a "get_unaligned()" if this helps and is sufficiently
1650  *   fast.
1651  *
1652  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1653  *   do not trap on the (extremely unlikely) case of a page
1654  *   crossing operation.
1655  *
1656  * - Furthermore, we need an efficient 64-bit compile for the
1657  *   64-bit case in order to generate the "number of bytes in
1658  *   the final mask". Again, that could be replaced with a
1659  *   efficient population count instruction or similar.
1660  */
1661 #ifdef CONFIG_DCACHE_WORD_ACCESS
1662 
1663 #include <asm/word-at-a-time.h>
1664 
1665 #ifdef CONFIG_64BIT
1666 
1667 static inline unsigned int fold_hash(unsigned long hash)
1668 {
1669 	return hash_64(hash, 32);
1670 }
1671 
1672 #else	/* 32-bit case */
1673 
1674 #define fold_hash(x) (x)
1675 
1676 #endif
1677 
1678 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1679 {
1680 	unsigned long a, mask;
1681 	unsigned long hash = 0;
1682 
1683 	for (;;) {
1684 		a = load_unaligned_zeropad(name);
1685 		if (len < sizeof(unsigned long))
1686 			break;
1687 		hash += a;
1688 		hash *= 9;
1689 		name += sizeof(unsigned long);
1690 		len -= sizeof(unsigned long);
1691 		if (!len)
1692 			goto done;
1693 	}
1694 	mask = bytemask_from_count(len);
1695 	hash += mask & a;
1696 done:
1697 	return fold_hash(hash);
1698 }
1699 EXPORT_SYMBOL(full_name_hash);
1700 
1701 /*
1702  * Calculate the length and hash of the path component, and
1703  * return the "hash_len" as the result.
1704  */
1705 static inline u64 hash_name(const char *name)
1706 {
1707 	unsigned long a, b, adata, bdata, mask, hash, len;
1708 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1709 
1710 	hash = a = 0;
1711 	len = -sizeof(unsigned long);
1712 	do {
1713 		hash = (hash + a) * 9;
1714 		len += sizeof(unsigned long);
1715 		a = load_unaligned_zeropad(name+len);
1716 		b = a ^ REPEAT_BYTE('/');
1717 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1718 
1719 	adata = prep_zero_mask(a, adata, &constants);
1720 	bdata = prep_zero_mask(b, bdata, &constants);
1721 
1722 	mask = create_zero_mask(adata | bdata);
1723 
1724 	hash += a & zero_bytemask(mask);
1725 	len += find_zero(mask);
1726 	return hashlen_create(fold_hash(hash), len);
1727 }
1728 
1729 #else
1730 
1731 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1732 {
1733 	unsigned long hash = init_name_hash();
1734 	while (len--)
1735 		hash = partial_name_hash(*name++, hash);
1736 	return end_name_hash(hash);
1737 }
1738 EXPORT_SYMBOL(full_name_hash);
1739 
1740 /*
1741  * We know there's a real path component here of at least
1742  * one character.
1743  */
1744 static inline u64 hash_name(const char *name)
1745 {
1746 	unsigned long hash = init_name_hash();
1747 	unsigned long len = 0, c;
1748 
1749 	c = (unsigned char)*name;
1750 	do {
1751 		len++;
1752 		hash = partial_name_hash(c, hash);
1753 		c = (unsigned char)name[len];
1754 	} while (c && c != '/');
1755 	return hashlen_create(end_name_hash(hash), len);
1756 }
1757 
1758 #endif
1759 
1760 /*
1761  * Name resolution.
1762  * This is the basic name resolution function, turning a pathname into
1763  * the final dentry. We expect 'base' to be positive and a directory.
1764  *
1765  * Returns 0 and nd will have valid dentry and mnt on success.
1766  * Returns error and drops reference to input namei data on failure.
1767  */
1768 static int link_path_walk(const char *name, struct nameidata *nd)
1769 {
1770 	struct path next;
1771 	int err;
1772 
1773 	while (*name=='/')
1774 		name++;
1775 	if (!*name)
1776 		return 0;
1777 
1778 	/* At this point we know we have a real path component. */
1779 	for(;;) {
1780 		u64 hash_len;
1781 		int type;
1782 
1783 		err = may_lookup(nd);
1784  		if (err)
1785 			break;
1786 
1787 		hash_len = hash_name(name);
1788 
1789 		type = LAST_NORM;
1790 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1791 			case 2:
1792 				if (name[1] == '.') {
1793 					type = LAST_DOTDOT;
1794 					nd->flags |= LOOKUP_JUMPED;
1795 				}
1796 				break;
1797 			case 1:
1798 				type = LAST_DOT;
1799 		}
1800 		if (likely(type == LAST_NORM)) {
1801 			struct dentry *parent = nd->path.dentry;
1802 			nd->flags &= ~LOOKUP_JUMPED;
1803 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1804 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1805 				err = parent->d_op->d_hash(parent, &this);
1806 				if (err < 0)
1807 					break;
1808 				hash_len = this.hash_len;
1809 				name = this.name;
1810 			}
1811 		}
1812 
1813 		nd->last.hash_len = hash_len;
1814 		nd->last.name = name;
1815 		nd->last_type = type;
1816 
1817 		name += hashlen_len(hash_len);
1818 		if (!*name)
1819 			return 0;
1820 		/*
1821 		 * If it wasn't NUL, we know it was '/'. Skip that
1822 		 * slash, and continue until no more slashes.
1823 		 */
1824 		do {
1825 			name++;
1826 		} while (unlikely(*name == '/'));
1827 		if (!*name)
1828 			return 0;
1829 
1830 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1831 		if (err < 0)
1832 			return err;
1833 
1834 		if (err) {
1835 			err = nested_symlink(&next, nd);
1836 			if (err)
1837 				return err;
1838 		}
1839 		if (!d_can_lookup(nd->path.dentry)) {
1840 			err = -ENOTDIR;
1841 			break;
1842 		}
1843 	}
1844 	terminate_walk(nd);
1845 	return err;
1846 }
1847 
1848 static int path_init(int dfd, const char *name, unsigned int flags,
1849 		     struct nameidata *nd)
1850 {
1851 	int retval = 0;
1852 
1853 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1854 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1855 	nd->depth = 0;
1856 	nd->base = NULL;
1857 	if (flags & LOOKUP_ROOT) {
1858 		struct dentry *root = nd->root.dentry;
1859 		struct inode *inode = root->d_inode;
1860 		if (*name) {
1861 			if (!d_can_lookup(root))
1862 				return -ENOTDIR;
1863 			retval = inode_permission(inode, MAY_EXEC);
1864 			if (retval)
1865 				return retval;
1866 		}
1867 		nd->path = nd->root;
1868 		nd->inode = inode;
1869 		if (flags & LOOKUP_RCU) {
1870 			rcu_read_lock();
1871 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1872 			nd->m_seq = read_seqbegin(&mount_lock);
1873 		} else {
1874 			path_get(&nd->path);
1875 		}
1876 		goto done;
1877 	}
1878 
1879 	nd->root.mnt = NULL;
1880 
1881 	nd->m_seq = read_seqbegin(&mount_lock);
1882 	if (*name=='/') {
1883 		if (flags & LOOKUP_RCU) {
1884 			rcu_read_lock();
1885 			nd->seq = set_root_rcu(nd);
1886 		} else {
1887 			set_root(nd);
1888 			path_get(&nd->root);
1889 		}
1890 		nd->path = nd->root;
1891 	} else if (dfd == AT_FDCWD) {
1892 		if (flags & LOOKUP_RCU) {
1893 			struct fs_struct *fs = current->fs;
1894 			unsigned seq;
1895 
1896 			rcu_read_lock();
1897 
1898 			do {
1899 				seq = read_seqcount_begin(&fs->seq);
1900 				nd->path = fs->pwd;
1901 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1902 			} while (read_seqcount_retry(&fs->seq, seq));
1903 		} else {
1904 			get_fs_pwd(current->fs, &nd->path);
1905 		}
1906 	} else {
1907 		/* Caller must check execute permissions on the starting path component */
1908 		struct fd f = fdget_raw(dfd);
1909 		struct dentry *dentry;
1910 
1911 		if (!f.file)
1912 			return -EBADF;
1913 
1914 		dentry = f.file->f_path.dentry;
1915 
1916 		if (*name) {
1917 			if (!d_can_lookup(dentry)) {
1918 				fdput(f);
1919 				return -ENOTDIR;
1920 			}
1921 		}
1922 
1923 		nd->path = f.file->f_path;
1924 		if (flags & LOOKUP_RCU) {
1925 			if (f.flags & FDPUT_FPUT)
1926 				nd->base = f.file;
1927 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1928 			rcu_read_lock();
1929 		} else {
1930 			path_get(&nd->path);
1931 			fdput(f);
1932 		}
1933 	}
1934 
1935 	nd->inode = nd->path.dentry->d_inode;
1936 	if (!(flags & LOOKUP_RCU))
1937 		goto done;
1938 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1939 		goto done;
1940 	if (!(nd->flags & LOOKUP_ROOT))
1941 		nd->root.mnt = NULL;
1942 	rcu_read_unlock();
1943 	return -ECHILD;
1944 done:
1945 	current->total_link_count = 0;
1946 	return link_path_walk(name, nd);
1947 }
1948 
1949 static void path_cleanup(struct nameidata *nd)
1950 {
1951 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1952 		path_put(&nd->root);
1953 		nd->root.mnt = NULL;
1954 	}
1955 	if (unlikely(nd->base))
1956 		fput(nd->base);
1957 }
1958 
1959 static inline int lookup_last(struct nameidata *nd, struct path *path)
1960 {
1961 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1962 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1963 
1964 	nd->flags &= ~LOOKUP_PARENT;
1965 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1966 }
1967 
1968 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1969 static int path_lookupat(int dfd, const char *name,
1970 				unsigned int flags, struct nameidata *nd)
1971 {
1972 	struct path path;
1973 	int err;
1974 
1975 	/*
1976 	 * Path walking is largely split up into 2 different synchronisation
1977 	 * schemes, rcu-walk and ref-walk (explained in
1978 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1979 	 * path walk code, but some things particularly setup, cleanup, and
1980 	 * following mounts are sufficiently divergent that functions are
1981 	 * duplicated. Typically there is a function foo(), and its RCU
1982 	 * analogue, foo_rcu().
1983 	 *
1984 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1985 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1986 	 * be handled by restarting a traditional ref-walk (which will always
1987 	 * be able to complete).
1988 	 */
1989 	err = path_init(dfd, name, flags, nd);
1990 	if (!err && !(flags & LOOKUP_PARENT)) {
1991 		err = lookup_last(nd, &path);
1992 		while (err > 0) {
1993 			void *cookie;
1994 			struct path link = path;
1995 			err = may_follow_link(&link, nd);
1996 			if (unlikely(err))
1997 				break;
1998 			nd->flags |= LOOKUP_PARENT;
1999 			err = follow_link(&link, nd, &cookie);
2000 			if (err)
2001 				break;
2002 			err = lookup_last(nd, &path);
2003 			put_link(nd, &link, cookie);
2004 		}
2005 	}
2006 
2007 	if (!err)
2008 		err = complete_walk(nd);
2009 
2010 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
2011 		if (!d_can_lookup(nd->path.dentry)) {
2012 			path_put(&nd->path);
2013 			err = -ENOTDIR;
2014 		}
2015 	}
2016 
2017 	path_cleanup(nd);
2018 	return err;
2019 }
2020 
2021 static int filename_lookup(int dfd, struct filename *name,
2022 				unsigned int flags, struct nameidata *nd)
2023 {
2024 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2025 	if (unlikely(retval == -ECHILD))
2026 		retval = path_lookupat(dfd, name->name, flags, nd);
2027 	if (unlikely(retval == -ESTALE))
2028 		retval = path_lookupat(dfd, name->name,
2029 						flags | LOOKUP_REVAL, nd);
2030 
2031 	if (likely(!retval))
2032 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2033 	return retval;
2034 }
2035 
2036 static int do_path_lookup(int dfd, const char *name,
2037 				unsigned int flags, struct nameidata *nd)
2038 {
2039 	struct filename filename = { .name = name };
2040 
2041 	return filename_lookup(dfd, &filename, flags, nd);
2042 }
2043 
2044 /* does lookup, returns the object with parent locked */
2045 struct dentry *kern_path_locked(const char *name, struct path *path)
2046 {
2047 	struct nameidata nd;
2048 	struct dentry *d;
2049 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2050 	if (err)
2051 		return ERR_PTR(err);
2052 	if (nd.last_type != LAST_NORM) {
2053 		path_put(&nd.path);
2054 		return ERR_PTR(-EINVAL);
2055 	}
2056 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2057 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2058 	if (IS_ERR(d)) {
2059 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2060 		path_put(&nd.path);
2061 		return d;
2062 	}
2063 	*path = nd.path;
2064 	return d;
2065 }
2066 
2067 int kern_path(const char *name, unsigned int flags, struct path *path)
2068 {
2069 	struct nameidata nd;
2070 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2071 	if (!res)
2072 		*path = nd.path;
2073 	return res;
2074 }
2075 EXPORT_SYMBOL(kern_path);
2076 
2077 /**
2078  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2079  * @dentry:  pointer to dentry of the base directory
2080  * @mnt: pointer to vfs mount of the base directory
2081  * @name: pointer to file name
2082  * @flags: lookup flags
2083  * @path: pointer to struct path to fill
2084  */
2085 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2086 		    const char *name, unsigned int flags,
2087 		    struct path *path)
2088 {
2089 	struct nameidata nd;
2090 	int err;
2091 	nd.root.dentry = dentry;
2092 	nd.root.mnt = mnt;
2093 	BUG_ON(flags & LOOKUP_PARENT);
2094 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2095 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2096 	if (!err)
2097 		*path = nd.path;
2098 	return err;
2099 }
2100 EXPORT_SYMBOL(vfs_path_lookup);
2101 
2102 /*
2103  * Restricted form of lookup. Doesn't follow links, single-component only,
2104  * needs parent already locked. Doesn't follow mounts.
2105  * SMP-safe.
2106  */
2107 static struct dentry *lookup_hash(struct nameidata *nd)
2108 {
2109 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2110 }
2111 
2112 /**
2113  * lookup_one_len - filesystem helper to lookup single pathname component
2114  * @name:	pathname component to lookup
2115  * @base:	base directory to lookup from
2116  * @len:	maximum length @len should be interpreted to
2117  *
2118  * Note that this routine is purely a helper for filesystem usage and should
2119  * not be called by generic code.  Also note that by using this function the
2120  * nameidata argument is passed to the filesystem methods and a filesystem
2121  * using this helper needs to be prepared for that.
2122  */
2123 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2124 {
2125 	struct qstr this;
2126 	unsigned int c;
2127 	int err;
2128 
2129 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2130 
2131 	this.name = name;
2132 	this.len = len;
2133 	this.hash = full_name_hash(name, len);
2134 	if (!len)
2135 		return ERR_PTR(-EACCES);
2136 
2137 	if (unlikely(name[0] == '.')) {
2138 		if (len < 2 || (len == 2 && name[1] == '.'))
2139 			return ERR_PTR(-EACCES);
2140 	}
2141 
2142 	while (len--) {
2143 		c = *(const unsigned char *)name++;
2144 		if (c == '/' || c == '\0')
2145 			return ERR_PTR(-EACCES);
2146 	}
2147 	/*
2148 	 * See if the low-level filesystem might want
2149 	 * to use its own hash..
2150 	 */
2151 	if (base->d_flags & DCACHE_OP_HASH) {
2152 		int err = base->d_op->d_hash(base, &this);
2153 		if (err < 0)
2154 			return ERR_PTR(err);
2155 	}
2156 
2157 	err = inode_permission(base->d_inode, MAY_EXEC);
2158 	if (err)
2159 		return ERR_PTR(err);
2160 
2161 	return __lookup_hash(&this, base, 0);
2162 }
2163 EXPORT_SYMBOL(lookup_one_len);
2164 
2165 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2166 		 struct path *path, int *empty)
2167 {
2168 	struct nameidata nd;
2169 	struct filename *tmp = getname_flags(name, flags, empty);
2170 	int err = PTR_ERR(tmp);
2171 	if (!IS_ERR(tmp)) {
2172 
2173 		BUG_ON(flags & LOOKUP_PARENT);
2174 
2175 		err = filename_lookup(dfd, tmp, flags, &nd);
2176 		putname(tmp);
2177 		if (!err)
2178 			*path = nd.path;
2179 	}
2180 	return err;
2181 }
2182 
2183 int user_path_at(int dfd, const char __user *name, unsigned flags,
2184 		 struct path *path)
2185 {
2186 	return user_path_at_empty(dfd, name, flags, path, NULL);
2187 }
2188 EXPORT_SYMBOL(user_path_at);
2189 
2190 /*
2191  * NB: most callers don't do anything directly with the reference to the
2192  *     to struct filename, but the nd->last pointer points into the name string
2193  *     allocated by getname. So we must hold the reference to it until all
2194  *     path-walking is complete.
2195  */
2196 static struct filename *
2197 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2198 		 unsigned int flags)
2199 {
2200 	struct filename *s = getname(path);
2201 	int error;
2202 
2203 	/* only LOOKUP_REVAL is allowed in extra flags */
2204 	flags &= LOOKUP_REVAL;
2205 
2206 	if (IS_ERR(s))
2207 		return s;
2208 
2209 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2210 	if (error) {
2211 		putname(s);
2212 		return ERR_PTR(error);
2213 	}
2214 
2215 	return s;
2216 }
2217 
2218 /**
2219  * mountpoint_last - look up last component for umount
2220  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2221  * @path: pointer to container for result
2222  *
2223  * This is a special lookup_last function just for umount. In this case, we
2224  * need to resolve the path without doing any revalidation.
2225  *
2226  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2227  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2228  * in almost all cases, this lookup will be served out of the dcache. The only
2229  * cases where it won't are if nd->last refers to a symlink or the path is
2230  * bogus and it doesn't exist.
2231  *
2232  * Returns:
2233  * -error: if there was an error during lookup. This includes -ENOENT if the
2234  *         lookup found a negative dentry. The nd->path reference will also be
2235  *         put in this case.
2236  *
2237  * 0:      if we successfully resolved nd->path and found it to not to be a
2238  *         symlink that needs to be followed. "path" will also be populated.
2239  *         The nd->path reference will also be put.
2240  *
2241  * 1:      if we successfully resolved nd->last and found it to be a symlink
2242  *         that needs to be followed. "path" will be populated with the path
2243  *         to the link, and nd->path will *not* be put.
2244  */
2245 static int
2246 mountpoint_last(struct nameidata *nd, struct path *path)
2247 {
2248 	int error = 0;
2249 	struct dentry *dentry;
2250 	struct dentry *dir = nd->path.dentry;
2251 
2252 	/* If we're in rcuwalk, drop out of it to handle last component */
2253 	if (nd->flags & LOOKUP_RCU) {
2254 		if (unlazy_walk(nd, NULL)) {
2255 			error = -ECHILD;
2256 			goto out;
2257 		}
2258 	}
2259 
2260 	nd->flags &= ~LOOKUP_PARENT;
2261 
2262 	if (unlikely(nd->last_type != LAST_NORM)) {
2263 		error = handle_dots(nd, nd->last_type);
2264 		if (error)
2265 			goto out;
2266 		dentry = dget(nd->path.dentry);
2267 		goto done;
2268 	}
2269 
2270 	mutex_lock(&dir->d_inode->i_mutex);
2271 	dentry = d_lookup(dir, &nd->last);
2272 	if (!dentry) {
2273 		/*
2274 		 * No cached dentry. Mounted dentries are pinned in the cache,
2275 		 * so that means that this dentry is probably a symlink or the
2276 		 * path doesn't actually point to a mounted dentry.
2277 		 */
2278 		dentry = d_alloc(dir, &nd->last);
2279 		if (!dentry) {
2280 			error = -ENOMEM;
2281 			mutex_unlock(&dir->d_inode->i_mutex);
2282 			goto out;
2283 		}
2284 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2285 		error = PTR_ERR(dentry);
2286 		if (IS_ERR(dentry)) {
2287 			mutex_unlock(&dir->d_inode->i_mutex);
2288 			goto out;
2289 		}
2290 	}
2291 	mutex_unlock(&dir->d_inode->i_mutex);
2292 
2293 done:
2294 	if (!dentry->d_inode || d_is_negative(dentry)) {
2295 		error = -ENOENT;
2296 		dput(dentry);
2297 		goto out;
2298 	}
2299 	path->dentry = dentry;
2300 	path->mnt = nd->path.mnt;
2301 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2302 		return 1;
2303 	mntget(path->mnt);
2304 	follow_mount(path);
2305 	error = 0;
2306 out:
2307 	terminate_walk(nd);
2308 	return error;
2309 }
2310 
2311 /**
2312  * path_mountpoint - look up a path to be umounted
2313  * @dfd:	directory file descriptor to start walk from
2314  * @name:	full pathname to walk
2315  * @path:	pointer to container for result
2316  * @flags:	lookup flags
2317  *
2318  * Look up the given name, but don't attempt to revalidate the last component.
2319  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2320  */
2321 static int
2322 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2323 {
2324 	struct nameidata nd;
2325 	int err;
2326 
2327 	err = path_init(dfd, name, flags, &nd);
2328 	if (unlikely(err))
2329 		goto out;
2330 
2331 	err = mountpoint_last(&nd, path);
2332 	while (err > 0) {
2333 		void *cookie;
2334 		struct path link = *path;
2335 		err = may_follow_link(&link, &nd);
2336 		if (unlikely(err))
2337 			break;
2338 		nd.flags |= LOOKUP_PARENT;
2339 		err = follow_link(&link, &nd, &cookie);
2340 		if (err)
2341 			break;
2342 		err = mountpoint_last(&nd, path);
2343 		put_link(&nd, &link, cookie);
2344 	}
2345 out:
2346 	path_cleanup(&nd);
2347 	return err;
2348 }
2349 
2350 static int
2351 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2352 			unsigned int flags)
2353 {
2354 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2355 	if (unlikely(error == -ECHILD))
2356 		error = path_mountpoint(dfd, s->name, path, flags);
2357 	if (unlikely(error == -ESTALE))
2358 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2359 	if (likely(!error))
2360 		audit_inode(s, path->dentry, 0);
2361 	return error;
2362 }
2363 
2364 /**
2365  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2366  * @dfd:	directory file descriptor
2367  * @name:	pathname from userland
2368  * @flags:	lookup flags
2369  * @path:	pointer to container to hold result
2370  *
2371  * A umount is a special case for path walking. We're not actually interested
2372  * in the inode in this situation, and ESTALE errors can be a problem. We
2373  * simply want track down the dentry and vfsmount attached at the mountpoint
2374  * and avoid revalidating the last component.
2375  *
2376  * Returns 0 and populates "path" on success.
2377  */
2378 int
2379 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2380 			struct path *path)
2381 {
2382 	struct filename *s = getname(name);
2383 	int error;
2384 	if (IS_ERR(s))
2385 		return PTR_ERR(s);
2386 	error = filename_mountpoint(dfd, s, path, flags);
2387 	putname(s);
2388 	return error;
2389 }
2390 
2391 int
2392 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2393 			unsigned int flags)
2394 {
2395 	struct filename s = {.name = name};
2396 	return filename_mountpoint(dfd, &s, path, flags);
2397 }
2398 EXPORT_SYMBOL(kern_path_mountpoint);
2399 
2400 int __check_sticky(struct inode *dir, struct inode *inode)
2401 {
2402 	kuid_t fsuid = current_fsuid();
2403 
2404 	if (uid_eq(inode->i_uid, fsuid))
2405 		return 0;
2406 	if (uid_eq(dir->i_uid, fsuid))
2407 		return 0;
2408 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2409 }
2410 EXPORT_SYMBOL(__check_sticky);
2411 
2412 /*
2413  *	Check whether we can remove a link victim from directory dir, check
2414  *  whether the type of victim is right.
2415  *  1. We can't do it if dir is read-only (done in permission())
2416  *  2. We should have write and exec permissions on dir
2417  *  3. We can't remove anything from append-only dir
2418  *  4. We can't do anything with immutable dir (done in permission())
2419  *  5. If the sticky bit on dir is set we should either
2420  *	a. be owner of dir, or
2421  *	b. be owner of victim, or
2422  *	c. have CAP_FOWNER capability
2423  *  6. If the victim is append-only or immutable we can't do antyhing with
2424  *     links pointing to it.
2425  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2426  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2427  *  9. We can't remove a root or mountpoint.
2428  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2429  *     nfs_async_unlink().
2430  */
2431 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2432 {
2433 	struct inode *inode = victim->d_inode;
2434 	int error;
2435 
2436 	if (d_is_negative(victim))
2437 		return -ENOENT;
2438 	BUG_ON(!inode);
2439 
2440 	BUG_ON(victim->d_parent->d_inode != dir);
2441 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2442 
2443 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2444 	if (error)
2445 		return error;
2446 	if (IS_APPEND(dir))
2447 		return -EPERM;
2448 
2449 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2450 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2451 		return -EPERM;
2452 	if (isdir) {
2453 		if (!d_is_dir(victim))
2454 			return -ENOTDIR;
2455 		if (IS_ROOT(victim))
2456 			return -EBUSY;
2457 	} else if (d_is_dir(victim))
2458 		return -EISDIR;
2459 	if (IS_DEADDIR(dir))
2460 		return -ENOENT;
2461 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2462 		return -EBUSY;
2463 	return 0;
2464 }
2465 
2466 /*	Check whether we can create an object with dentry child in directory
2467  *  dir.
2468  *  1. We can't do it if child already exists (open has special treatment for
2469  *     this case, but since we are inlined it's OK)
2470  *  2. We can't do it if dir is read-only (done in permission())
2471  *  3. We should have write and exec permissions on dir
2472  *  4. We can't do it if dir is immutable (done in permission())
2473  */
2474 static inline int may_create(struct inode *dir, struct dentry *child)
2475 {
2476 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2477 	if (child->d_inode)
2478 		return -EEXIST;
2479 	if (IS_DEADDIR(dir))
2480 		return -ENOENT;
2481 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2482 }
2483 
2484 /*
2485  * p1 and p2 should be directories on the same fs.
2486  */
2487 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2488 {
2489 	struct dentry *p;
2490 
2491 	if (p1 == p2) {
2492 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2493 		return NULL;
2494 	}
2495 
2496 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2497 
2498 	p = d_ancestor(p2, p1);
2499 	if (p) {
2500 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2501 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2502 		return p;
2503 	}
2504 
2505 	p = d_ancestor(p1, p2);
2506 	if (p) {
2507 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2508 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2509 		return p;
2510 	}
2511 
2512 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2513 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2514 	return NULL;
2515 }
2516 EXPORT_SYMBOL(lock_rename);
2517 
2518 void unlock_rename(struct dentry *p1, struct dentry *p2)
2519 {
2520 	mutex_unlock(&p1->d_inode->i_mutex);
2521 	if (p1 != p2) {
2522 		mutex_unlock(&p2->d_inode->i_mutex);
2523 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2524 	}
2525 }
2526 EXPORT_SYMBOL(unlock_rename);
2527 
2528 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2529 		bool want_excl)
2530 {
2531 	int error = may_create(dir, dentry);
2532 	if (error)
2533 		return error;
2534 
2535 	if (!dir->i_op->create)
2536 		return -EACCES;	/* shouldn't it be ENOSYS? */
2537 	mode &= S_IALLUGO;
2538 	mode |= S_IFREG;
2539 	error = security_inode_create(dir, dentry, mode);
2540 	if (error)
2541 		return error;
2542 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2543 	if (!error)
2544 		fsnotify_create(dir, dentry);
2545 	return error;
2546 }
2547 EXPORT_SYMBOL(vfs_create);
2548 
2549 static int may_open(struct path *path, int acc_mode, int flag)
2550 {
2551 	struct dentry *dentry = path->dentry;
2552 	struct inode *inode = dentry->d_inode;
2553 	int error;
2554 
2555 	/* O_PATH? */
2556 	if (!acc_mode)
2557 		return 0;
2558 
2559 	if (!inode)
2560 		return -ENOENT;
2561 
2562 	switch (inode->i_mode & S_IFMT) {
2563 	case S_IFLNK:
2564 		return -ELOOP;
2565 	case S_IFDIR:
2566 		if (acc_mode & MAY_WRITE)
2567 			return -EISDIR;
2568 		break;
2569 	case S_IFBLK:
2570 	case S_IFCHR:
2571 		if (path->mnt->mnt_flags & MNT_NODEV)
2572 			return -EACCES;
2573 		/*FALLTHRU*/
2574 	case S_IFIFO:
2575 	case S_IFSOCK:
2576 		flag &= ~O_TRUNC;
2577 		break;
2578 	}
2579 
2580 	error = inode_permission(inode, acc_mode);
2581 	if (error)
2582 		return error;
2583 
2584 	/*
2585 	 * An append-only file must be opened in append mode for writing.
2586 	 */
2587 	if (IS_APPEND(inode)) {
2588 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2589 			return -EPERM;
2590 		if (flag & O_TRUNC)
2591 			return -EPERM;
2592 	}
2593 
2594 	/* O_NOATIME can only be set by the owner or superuser */
2595 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2596 		return -EPERM;
2597 
2598 	return 0;
2599 }
2600 
2601 static int handle_truncate(struct file *filp)
2602 {
2603 	struct path *path = &filp->f_path;
2604 	struct inode *inode = path->dentry->d_inode;
2605 	int error = get_write_access(inode);
2606 	if (error)
2607 		return error;
2608 	/*
2609 	 * Refuse to truncate files with mandatory locks held on them.
2610 	 */
2611 	error = locks_verify_locked(filp);
2612 	if (!error)
2613 		error = security_path_truncate(path);
2614 	if (!error) {
2615 		error = do_truncate(path->dentry, 0,
2616 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2617 				    filp);
2618 	}
2619 	put_write_access(inode);
2620 	return error;
2621 }
2622 
2623 static inline int open_to_namei_flags(int flag)
2624 {
2625 	if ((flag & O_ACCMODE) == 3)
2626 		flag--;
2627 	return flag;
2628 }
2629 
2630 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2631 {
2632 	int error = security_path_mknod(dir, dentry, mode, 0);
2633 	if (error)
2634 		return error;
2635 
2636 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2637 	if (error)
2638 		return error;
2639 
2640 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2641 }
2642 
2643 /*
2644  * Attempt to atomically look up, create and open a file from a negative
2645  * dentry.
2646  *
2647  * Returns 0 if successful.  The file will have been created and attached to
2648  * @file by the filesystem calling finish_open().
2649  *
2650  * Returns 1 if the file was looked up only or didn't need creating.  The
2651  * caller will need to perform the open themselves.  @path will have been
2652  * updated to point to the new dentry.  This may be negative.
2653  *
2654  * Returns an error code otherwise.
2655  */
2656 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2657 			struct path *path, struct file *file,
2658 			const struct open_flags *op,
2659 			bool got_write, bool need_lookup,
2660 			int *opened)
2661 {
2662 	struct inode *dir =  nd->path.dentry->d_inode;
2663 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2664 	umode_t mode;
2665 	int error;
2666 	int acc_mode;
2667 	int create_error = 0;
2668 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2669 	bool excl;
2670 
2671 	BUG_ON(dentry->d_inode);
2672 
2673 	/* Don't create child dentry for a dead directory. */
2674 	if (unlikely(IS_DEADDIR(dir))) {
2675 		error = -ENOENT;
2676 		goto out;
2677 	}
2678 
2679 	mode = op->mode;
2680 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2681 		mode &= ~current_umask();
2682 
2683 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2684 	if (excl)
2685 		open_flag &= ~O_TRUNC;
2686 
2687 	/*
2688 	 * Checking write permission is tricky, bacuse we don't know if we are
2689 	 * going to actually need it: O_CREAT opens should work as long as the
2690 	 * file exists.  But checking existence breaks atomicity.  The trick is
2691 	 * to check access and if not granted clear O_CREAT from the flags.
2692 	 *
2693 	 * Another problem is returing the "right" error value (e.g. for an
2694 	 * O_EXCL open we want to return EEXIST not EROFS).
2695 	 */
2696 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2697 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2698 		if (!(open_flag & O_CREAT)) {
2699 			/*
2700 			 * No O_CREATE -> atomicity not a requirement -> fall
2701 			 * back to lookup + open
2702 			 */
2703 			goto no_open;
2704 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2705 			/* Fall back and fail with the right error */
2706 			create_error = -EROFS;
2707 			goto no_open;
2708 		} else {
2709 			/* No side effects, safe to clear O_CREAT */
2710 			create_error = -EROFS;
2711 			open_flag &= ~O_CREAT;
2712 		}
2713 	}
2714 
2715 	if (open_flag & O_CREAT) {
2716 		error = may_o_create(&nd->path, dentry, mode);
2717 		if (error) {
2718 			create_error = error;
2719 			if (open_flag & O_EXCL)
2720 				goto no_open;
2721 			open_flag &= ~O_CREAT;
2722 		}
2723 	}
2724 
2725 	if (nd->flags & LOOKUP_DIRECTORY)
2726 		open_flag |= O_DIRECTORY;
2727 
2728 	file->f_path.dentry = DENTRY_NOT_SET;
2729 	file->f_path.mnt = nd->path.mnt;
2730 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2731 				      opened);
2732 	if (error < 0) {
2733 		if (create_error && error == -ENOENT)
2734 			error = create_error;
2735 		goto out;
2736 	}
2737 
2738 	if (error) {	/* returned 1, that is */
2739 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2740 			error = -EIO;
2741 			goto out;
2742 		}
2743 		if (file->f_path.dentry) {
2744 			dput(dentry);
2745 			dentry = file->f_path.dentry;
2746 		}
2747 		if (*opened & FILE_CREATED)
2748 			fsnotify_create(dir, dentry);
2749 		if (!dentry->d_inode) {
2750 			WARN_ON(*opened & FILE_CREATED);
2751 			if (create_error) {
2752 				error = create_error;
2753 				goto out;
2754 			}
2755 		} else {
2756 			if (excl && !(*opened & FILE_CREATED)) {
2757 				error = -EEXIST;
2758 				goto out;
2759 			}
2760 		}
2761 		goto looked_up;
2762 	}
2763 
2764 	/*
2765 	 * We didn't have the inode before the open, so check open permission
2766 	 * here.
2767 	 */
2768 	acc_mode = op->acc_mode;
2769 	if (*opened & FILE_CREATED) {
2770 		WARN_ON(!(open_flag & O_CREAT));
2771 		fsnotify_create(dir, dentry);
2772 		acc_mode = MAY_OPEN;
2773 	}
2774 	error = may_open(&file->f_path, acc_mode, open_flag);
2775 	if (error)
2776 		fput(file);
2777 
2778 out:
2779 	dput(dentry);
2780 	return error;
2781 
2782 no_open:
2783 	if (need_lookup) {
2784 		dentry = lookup_real(dir, dentry, nd->flags);
2785 		if (IS_ERR(dentry))
2786 			return PTR_ERR(dentry);
2787 
2788 		if (create_error) {
2789 			int open_flag = op->open_flag;
2790 
2791 			error = create_error;
2792 			if ((open_flag & O_EXCL)) {
2793 				if (!dentry->d_inode)
2794 					goto out;
2795 			} else if (!dentry->d_inode) {
2796 				goto out;
2797 			} else if ((open_flag & O_TRUNC) &&
2798 				   S_ISREG(dentry->d_inode->i_mode)) {
2799 				goto out;
2800 			}
2801 			/* will fail later, go on to get the right error */
2802 		}
2803 	}
2804 looked_up:
2805 	path->dentry = dentry;
2806 	path->mnt = nd->path.mnt;
2807 	return 1;
2808 }
2809 
2810 /*
2811  * Look up and maybe create and open the last component.
2812  *
2813  * Must be called with i_mutex held on parent.
2814  *
2815  * Returns 0 if the file was successfully atomically created (if necessary) and
2816  * opened.  In this case the file will be returned attached to @file.
2817  *
2818  * Returns 1 if the file was not completely opened at this time, though lookups
2819  * and creations will have been performed and the dentry returned in @path will
2820  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2821  * specified then a negative dentry may be returned.
2822  *
2823  * An error code is returned otherwise.
2824  *
2825  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2826  * cleared otherwise prior to returning.
2827  */
2828 static int lookup_open(struct nameidata *nd, struct path *path,
2829 			struct file *file,
2830 			const struct open_flags *op,
2831 			bool got_write, int *opened)
2832 {
2833 	struct dentry *dir = nd->path.dentry;
2834 	struct inode *dir_inode = dir->d_inode;
2835 	struct dentry *dentry;
2836 	int error;
2837 	bool need_lookup;
2838 
2839 	*opened &= ~FILE_CREATED;
2840 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2841 	if (IS_ERR(dentry))
2842 		return PTR_ERR(dentry);
2843 
2844 	/* Cached positive dentry: will open in f_op->open */
2845 	if (!need_lookup && dentry->d_inode)
2846 		goto out_no_open;
2847 
2848 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2849 		return atomic_open(nd, dentry, path, file, op, got_write,
2850 				   need_lookup, opened);
2851 	}
2852 
2853 	if (need_lookup) {
2854 		BUG_ON(dentry->d_inode);
2855 
2856 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2857 		if (IS_ERR(dentry))
2858 			return PTR_ERR(dentry);
2859 	}
2860 
2861 	/* Negative dentry, just create the file */
2862 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2863 		umode_t mode = op->mode;
2864 		if (!IS_POSIXACL(dir->d_inode))
2865 			mode &= ~current_umask();
2866 		/*
2867 		 * This write is needed to ensure that a
2868 		 * rw->ro transition does not occur between
2869 		 * the time when the file is created and when
2870 		 * a permanent write count is taken through
2871 		 * the 'struct file' in finish_open().
2872 		 */
2873 		if (!got_write) {
2874 			error = -EROFS;
2875 			goto out_dput;
2876 		}
2877 		*opened |= FILE_CREATED;
2878 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2879 		if (error)
2880 			goto out_dput;
2881 		error = vfs_create(dir->d_inode, dentry, mode,
2882 				   nd->flags & LOOKUP_EXCL);
2883 		if (error)
2884 			goto out_dput;
2885 	}
2886 out_no_open:
2887 	path->dentry = dentry;
2888 	path->mnt = nd->path.mnt;
2889 	return 1;
2890 
2891 out_dput:
2892 	dput(dentry);
2893 	return error;
2894 }
2895 
2896 /*
2897  * Handle the last step of open()
2898  */
2899 static int do_last(struct nameidata *nd, struct path *path,
2900 		   struct file *file, const struct open_flags *op,
2901 		   int *opened, struct filename *name)
2902 {
2903 	struct dentry *dir = nd->path.dentry;
2904 	int open_flag = op->open_flag;
2905 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2906 	bool got_write = false;
2907 	int acc_mode = op->acc_mode;
2908 	struct inode *inode;
2909 	bool symlink_ok = false;
2910 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2911 	bool retried = false;
2912 	int error;
2913 
2914 	nd->flags &= ~LOOKUP_PARENT;
2915 	nd->flags |= op->intent;
2916 
2917 	if (nd->last_type != LAST_NORM) {
2918 		error = handle_dots(nd, nd->last_type);
2919 		if (error)
2920 			return error;
2921 		goto finish_open;
2922 	}
2923 
2924 	if (!(open_flag & O_CREAT)) {
2925 		if (nd->last.name[nd->last.len])
2926 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2927 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2928 			symlink_ok = true;
2929 		/* we _can_ be in RCU mode here */
2930 		error = lookup_fast(nd, path, &inode);
2931 		if (likely(!error))
2932 			goto finish_lookup;
2933 
2934 		if (error < 0)
2935 			goto out;
2936 
2937 		BUG_ON(nd->inode != dir->d_inode);
2938 	} else {
2939 		/* create side of things */
2940 		/*
2941 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2942 		 * has been cleared when we got to the last component we are
2943 		 * about to look up
2944 		 */
2945 		error = complete_walk(nd);
2946 		if (error)
2947 			return error;
2948 
2949 		audit_inode(name, dir, LOOKUP_PARENT);
2950 		error = -EISDIR;
2951 		/* trailing slashes? */
2952 		if (nd->last.name[nd->last.len])
2953 			goto out;
2954 	}
2955 
2956 retry_lookup:
2957 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2958 		error = mnt_want_write(nd->path.mnt);
2959 		if (!error)
2960 			got_write = true;
2961 		/*
2962 		 * do _not_ fail yet - we might not need that or fail with
2963 		 * a different error; let lookup_open() decide; we'll be
2964 		 * dropping this one anyway.
2965 		 */
2966 	}
2967 	mutex_lock(&dir->d_inode->i_mutex);
2968 	error = lookup_open(nd, path, file, op, got_write, opened);
2969 	mutex_unlock(&dir->d_inode->i_mutex);
2970 
2971 	if (error <= 0) {
2972 		if (error)
2973 			goto out;
2974 
2975 		if ((*opened & FILE_CREATED) ||
2976 		    !S_ISREG(file_inode(file)->i_mode))
2977 			will_truncate = false;
2978 
2979 		audit_inode(name, file->f_path.dentry, 0);
2980 		goto opened;
2981 	}
2982 
2983 	if (*opened & FILE_CREATED) {
2984 		/* Don't check for write permission, don't truncate */
2985 		open_flag &= ~O_TRUNC;
2986 		will_truncate = false;
2987 		acc_mode = MAY_OPEN;
2988 		path_to_nameidata(path, nd);
2989 		goto finish_open_created;
2990 	}
2991 
2992 	/*
2993 	 * create/update audit record if it already exists.
2994 	 */
2995 	if (d_is_positive(path->dentry))
2996 		audit_inode(name, path->dentry, 0);
2997 
2998 	/*
2999 	 * If atomic_open() acquired write access it is dropped now due to
3000 	 * possible mount and symlink following (this might be optimized away if
3001 	 * necessary...)
3002 	 */
3003 	if (got_write) {
3004 		mnt_drop_write(nd->path.mnt);
3005 		got_write = false;
3006 	}
3007 
3008 	error = -EEXIST;
3009 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3010 		goto exit_dput;
3011 
3012 	error = follow_managed(path, nd->flags);
3013 	if (error < 0)
3014 		goto exit_dput;
3015 
3016 	if (error)
3017 		nd->flags |= LOOKUP_JUMPED;
3018 
3019 	BUG_ON(nd->flags & LOOKUP_RCU);
3020 	inode = path->dentry->d_inode;
3021 finish_lookup:
3022 	/* we _can_ be in RCU mode here */
3023 	error = -ENOENT;
3024 	if (!inode || d_is_negative(path->dentry)) {
3025 		path_to_nameidata(path, nd);
3026 		goto out;
3027 	}
3028 
3029 	if (should_follow_link(path->dentry, !symlink_ok)) {
3030 		if (nd->flags & LOOKUP_RCU) {
3031 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3032 				error = -ECHILD;
3033 				goto out;
3034 			}
3035 		}
3036 		BUG_ON(inode != path->dentry->d_inode);
3037 		return 1;
3038 	}
3039 
3040 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3041 		path_to_nameidata(path, nd);
3042 	} else {
3043 		save_parent.dentry = nd->path.dentry;
3044 		save_parent.mnt = mntget(path->mnt);
3045 		nd->path.dentry = path->dentry;
3046 
3047 	}
3048 	nd->inode = inode;
3049 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3050 finish_open:
3051 	error = complete_walk(nd);
3052 	if (error) {
3053 		path_put(&save_parent);
3054 		return error;
3055 	}
3056 	audit_inode(name, nd->path.dentry, 0);
3057 	error = -EISDIR;
3058 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3059 		goto out;
3060 	error = -ENOTDIR;
3061 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3062 		goto out;
3063 	if (!S_ISREG(nd->inode->i_mode))
3064 		will_truncate = false;
3065 
3066 	if (will_truncate) {
3067 		error = mnt_want_write(nd->path.mnt);
3068 		if (error)
3069 			goto out;
3070 		got_write = true;
3071 	}
3072 finish_open_created:
3073 	error = may_open(&nd->path, acc_mode, open_flag);
3074 	if (error)
3075 		goto out;
3076 
3077 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3078 	error = vfs_open(&nd->path, file, current_cred());
3079 	if (!error) {
3080 		*opened |= FILE_OPENED;
3081 	} else {
3082 		if (error == -EOPENSTALE)
3083 			goto stale_open;
3084 		goto out;
3085 	}
3086 opened:
3087 	error = open_check_o_direct(file);
3088 	if (error)
3089 		goto exit_fput;
3090 	error = ima_file_check(file, op->acc_mode, *opened);
3091 	if (error)
3092 		goto exit_fput;
3093 
3094 	if (will_truncate) {
3095 		error = handle_truncate(file);
3096 		if (error)
3097 			goto exit_fput;
3098 	}
3099 out:
3100 	if (got_write)
3101 		mnt_drop_write(nd->path.mnt);
3102 	path_put(&save_parent);
3103 	terminate_walk(nd);
3104 	return error;
3105 
3106 exit_dput:
3107 	path_put_conditional(path, nd);
3108 	goto out;
3109 exit_fput:
3110 	fput(file);
3111 	goto out;
3112 
3113 stale_open:
3114 	/* If no saved parent or already retried then can't retry */
3115 	if (!save_parent.dentry || retried)
3116 		goto out;
3117 
3118 	BUG_ON(save_parent.dentry != dir);
3119 	path_put(&nd->path);
3120 	nd->path = save_parent;
3121 	nd->inode = dir->d_inode;
3122 	save_parent.mnt = NULL;
3123 	save_parent.dentry = NULL;
3124 	if (got_write) {
3125 		mnt_drop_write(nd->path.mnt);
3126 		got_write = false;
3127 	}
3128 	retried = true;
3129 	goto retry_lookup;
3130 }
3131 
3132 static int do_tmpfile(int dfd, struct filename *pathname,
3133 		struct nameidata *nd, int flags,
3134 		const struct open_flags *op,
3135 		struct file *file, int *opened)
3136 {
3137 	static const struct qstr name = QSTR_INIT("/", 1);
3138 	struct dentry *dentry, *child;
3139 	struct inode *dir;
3140 	int error = path_lookupat(dfd, pathname->name,
3141 				  flags | LOOKUP_DIRECTORY, nd);
3142 	if (unlikely(error))
3143 		return error;
3144 	error = mnt_want_write(nd->path.mnt);
3145 	if (unlikely(error))
3146 		goto out;
3147 	/* we want directory to be writable */
3148 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3149 	if (error)
3150 		goto out2;
3151 	dentry = nd->path.dentry;
3152 	dir = dentry->d_inode;
3153 	if (!dir->i_op->tmpfile) {
3154 		error = -EOPNOTSUPP;
3155 		goto out2;
3156 	}
3157 	child = d_alloc(dentry, &name);
3158 	if (unlikely(!child)) {
3159 		error = -ENOMEM;
3160 		goto out2;
3161 	}
3162 	nd->flags &= ~LOOKUP_DIRECTORY;
3163 	nd->flags |= op->intent;
3164 	dput(nd->path.dentry);
3165 	nd->path.dentry = child;
3166 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3167 	if (error)
3168 		goto out2;
3169 	audit_inode(pathname, nd->path.dentry, 0);
3170 	/* Don't check for other permissions, the inode was just created */
3171 	error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3172 	if (error)
3173 		goto out2;
3174 	file->f_path.mnt = nd->path.mnt;
3175 	error = finish_open(file, nd->path.dentry, NULL, opened);
3176 	if (error)
3177 		goto out2;
3178 	error = open_check_o_direct(file);
3179 	if (error) {
3180 		fput(file);
3181 	} else if (!(op->open_flag & O_EXCL)) {
3182 		struct inode *inode = file_inode(file);
3183 		spin_lock(&inode->i_lock);
3184 		inode->i_state |= I_LINKABLE;
3185 		spin_unlock(&inode->i_lock);
3186 	}
3187 out2:
3188 	mnt_drop_write(nd->path.mnt);
3189 out:
3190 	path_put(&nd->path);
3191 	return error;
3192 }
3193 
3194 static struct file *path_openat(int dfd, struct filename *pathname,
3195 		struct nameidata *nd, const struct open_flags *op, int flags)
3196 {
3197 	struct file *file;
3198 	struct path path;
3199 	int opened = 0;
3200 	int error;
3201 
3202 	file = get_empty_filp();
3203 	if (IS_ERR(file))
3204 		return file;
3205 
3206 	file->f_flags = op->open_flag;
3207 
3208 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3209 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3210 		goto out;
3211 	}
3212 
3213 	error = path_init(dfd, pathname->name, flags, nd);
3214 	if (unlikely(error))
3215 		goto out;
3216 
3217 	error = do_last(nd, &path, file, op, &opened, pathname);
3218 	while (unlikely(error > 0)) { /* trailing symlink */
3219 		struct path link = path;
3220 		void *cookie;
3221 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3222 			path_put_conditional(&path, nd);
3223 			path_put(&nd->path);
3224 			error = -ELOOP;
3225 			break;
3226 		}
3227 		error = may_follow_link(&link, nd);
3228 		if (unlikely(error))
3229 			break;
3230 		nd->flags |= LOOKUP_PARENT;
3231 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3232 		error = follow_link(&link, nd, &cookie);
3233 		if (unlikely(error))
3234 			break;
3235 		error = do_last(nd, &path, file, op, &opened, pathname);
3236 		put_link(nd, &link, cookie);
3237 	}
3238 out:
3239 	path_cleanup(nd);
3240 	if (!(opened & FILE_OPENED)) {
3241 		BUG_ON(!error);
3242 		put_filp(file);
3243 	}
3244 	if (unlikely(error)) {
3245 		if (error == -EOPENSTALE) {
3246 			if (flags & LOOKUP_RCU)
3247 				error = -ECHILD;
3248 			else
3249 				error = -ESTALE;
3250 		}
3251 		file = ERR_PTR(error);
3252 	}
3253 	return file;
3254 }
3255 
3256 struct file *do_filp_open(int dfd, struct filename *pathname,
3257 		const struct open_flags *op)
3258 {
3259 	struct nameidata nd;
3260 	int flags = op->lookup_flags;
3261 	struct file *filp;
3262 
3263 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3264 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3265 		filp = path_openat(dfd, pathname, &nd, op, flags);
3266 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3267 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3268 	return filp;
3269 }
3270 
3271 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3272 		const char *name, const struct open_flags *op)
3273 {
3274 	struct nameidata nd;
3275 	struct file *file;
3276 	struct filename filename = { .name = name };
3277 	int flags = op->lookup_flags | LOOKUP_ROOT;
3278 
3279 	nd.root.mnt = mnt;
3280 	nd.root.dentry = dentry;
3281 
3282 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3283 		return ERR_PTR(-ELOOP);
3284 
3285 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3286 	if (unlikely(file == ERR_PTR(-ECHILD)))
3287 		file = path_openat(-1, &filename, &nd, op, flags);
3288 	if (unlikely(file == ERR_PTR(-ESTALE)))
3289 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3290 	return file;
3291 }
3292 
3293 struct dentry *kern_path_create(int dfd, const char *pathname,
3294 				struct path *path, unsigned int lookup_flags)
3295 {
3296 	struct dentry *dentry = ERR_PTR(-EEXIST);
3297 	struct nameidata nd;
3298 	int err2;
3299 	int error;
3300 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3301 
3302 	/*
3303 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3304 	 * other flags passed in are ignored!
3305 	 */
3306 	lookup_flags &= LOOKUP_REVAL;
3307 
3308 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3309 	if (error)
3310 		return ERR_PTR(error);
3311 
3312 	/*
3313 	 * Yucky last component or no last component at all?
3314 	 * (foo/., foo/.., /////)
3315 	 */
3316 	if (nd.last_type != LAST_NORM)
3317 		goto out;
3318 	nd.flags &= ~LOOKUP_PARENT;
3319 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3320 
3321 	/* don't fail immediately if it's r/o, at least try to report other errors */
3322 	err2 = mnt_want_write(nd.path.mnt);
3323 	/*
3324 	 * Do the final lookup.
3325 	 */
3326 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3327 	dentry = lookup_hash(&nd);
3328 	if (IS_ERR(dentry))
3329 		goto unlock;
3330 
3331 	error = -EEXIST;
3332 	if (d_is_positive(dentry))
3333 		goto fail;
3334 
3335 	/*
3336 	 * Special case - lookup gave negative, but... we had foo/bar/
3337 	 * From the vfs_mknod() POV we just have a negative dentry -
3338 	 * all is fine. Let's be bastards - you had / on the end, you've
3339 	 * been asking for (non-existent) directory. -ENOENT for you.
3340 	 */
3341 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3342 		error = -ENOENT;
3343 		goto fail;
3344 	}
3345 	if (unlikely(err2)) {
3346 		error = err2;
3347 		goto fail;
3348 	}
3349 	*path = nd.path;
3350 	return dentry;
3351 fail:
3352 	dput(dentry);
3353 	dentry = ERR_PTR(error);
3354 unlock:
3355 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3356 	if (!err2)
3357 		mnt_drop_write(nd.path.mnt);
3358 out:
3359 	path_put(&nd.path);
3360 	return dentry;
3361 }
3362 EXPORT_SYMBOL(kern_path_create);
3363 
3364 void done_path_create(struct path *path, struct dentry *dentry)
3365 {
3366 	dput(dentry);
3367 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3368 	mnt_drop_write(path->mnt);
3369 	path_put(path);
3370 }
3371 EXPORT_SYMBOL(done_path_create);
3372 
3373 struct dentry *user_path_create(int dfd, const char __user *pathname,
3374 				struct path *path, unsigned int lookup_flags)
3375 {
3376 	struct filename *tmp = getname(pathname);
3377 	struct dentry *res;
3378 	if (IS_ERR(tmp))
3379 		return ERR_CAST(tmp);
3380 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3381 	putname(tmp);
3382 	return res;
3383 }
3384 EXPORT_SYMBOL(user_path_create);
3385 
3386 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3387 {
3388 	int error = may_create(dir, dentry);
3389 
3390 	if (error)
3391 		return error;
3392 
3393 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3394 		return -EPERM;
3395 
3396 	if (!dir->i_op->mknod)
3397 		return -EPERM;
3398 
3399 	error = devcgroup_inode_mknod(mode, dev);
3400 	if (error)
3401 		return error;
3402 
3403 	error = security_inode_mknod(dir, dentry, mode, dev);
3404 	if (error)
3405 		return error;
3406 
3407 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3408 	if (!error)
3409 		fsnotify_create(dir, dentry);
3410 	return error;
3411 }
3412 EXPORT_SYMBOL(vfs_mknod);
3413 
3414 static int may_mknod(umode_t mode)
3415 {
3416 	switch (mode & S_IFMT) {
3417 	case S_IFREG:
3418 	case S_IFCHR:
3419 	case S_IFBLK:
3420 	case S_IFIFO:
3421 	case S_IFSOCK:
3422 	case 0: /* zero mode translates to S_IFREG */
3423 		return 0;
3424 	case S_IFDIR:
3425 		return -EPERM;
3426 	default:
3427 		return -EINVAL;
3428 	}
3429 }
3430 
3431 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3432 		unsigned, dev)
3433 {
3434 	struct dentry *dentry;
3435 	struct path path;
3436 	int error;
3437 	unsigned int lookup_flags = 0;
3438 
3439 	error = may_mknod(mode);
3440 	if (error)
3441 		return error;
3442 retry:
3443 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3444 	if (IS_ERR(dentry))
3445 		return PTR_ERR(dentry);
3446 
3447 	if (!IS_POSIXACL(path.dentry->d_inode))
3448 		mode &= ~current_umask();
3449 	error = security_path_mknod(&path, dentry, mode, dev);
3450 	if (error)
3451 		goto out;
3452 	switch (mode & S_IFMT) {
3453 		case 0: case S_IFREG:
3454 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3455 			break;
3456 		case S_IFCHR: case S_IFBLK:
3457 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3458 					new_decode_dev(dev));
3459 			break;
3460 		case S_IFIFO: case S_IFSOCK:
3461 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3462 			break;
3463 	}
3464 out:
3465 	done_path_create(&path, dentry);
3466 	if (retry_estale(error, lookup_flags)) {
3467 		lookup_flags |= LOOKUP_REVAL;
3468 		goto retry;
3469 	}
3470 	return error;
3471 }
3472 
3473 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3474 {
3475 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3476 }
3477 
3478 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3479 {
3480 	int error = may_create(dir, dentry);
3481 	unsigned max_links = dir->i_sb->s_max_links;
3482 
3483 	if (error)
3484 		return error;
3485 
3486 	if (!dir->i_op->mkdir)
3487 		return -EPERM;
3488 
3489 	mode &= (S_IRWXUGO|S_ISVTX);
3490 	error = security_inode_mkdir(dir, dentry, mode);
3491 	if (error)
3492 		return error;
3493 
3494 	if (max_links && dir->i_nlink >= max_links)
3495 		return -EMLINK;
3496 
3497 	error = dir->i_op->mkdir(dir, dentry, mode);
3498 	if (!error)
3499 		fsnotify_mkdir(dir, dentry);
3500 	return error;
3501 }
3502 EXPORT_SYMBOL(vfs_mkdir);
3503 
3504 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3505 {
3506 	struct dentry *dentry;
3507 	struct path path;
3508 	int error;
3509 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3510 
3511 retry:
3512 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3513 	if (IS_ERR(dentry))
3514 		return PTR_ERR(dentry);
3515 
3516 	if (!IS_POSIXACL(path.dentry->d_inode))
3517 		mode &= ~current_umask();
3518 	error = security_path_mkdir(&path, dentry, mode);
3519 	if (!error)
3520 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3521 	done_path_create(&path, dentry);
3522 	if (retry_estale(error, lookup_flags)) {
3523 		lookup_flags |= LOOKUP_REVAL;
3524 		goto retry;
3525 	}
3526 	return error;
3527 }
3528 
3529 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3530 {
3531 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3532 }
3533 
3534 /*
3535  * The dentry_unhash() helper will try to drop the dentry early: we
3536  * should have a usage count of 1 if we're the only user of this
3537  * dentry, and if that is true (possibly after pruning the dcache),
3538  * then we drop the dentry now.
3539  *
3540  * A low-level filesystem can, if it choses, legally
3541  * do a
3542  *
3543  *	if (!d_unhashed(dentry))
3544  *		return -EBUSY;
3545  *
3546  * if it cannot handle the case of removing a directory
3547  * that is still in use by something else..
3548  */
3549 void dentry_unhash(struct dentry *dentry)
3550 {
3551 	shrink_dcache_parent(dentry);
3552 	spin_lock(&dentry->d_lock);
3553 	if (dentry->d_lockref.count == 1)
3554 		__d_drop(dentry);
3555 	spin_unlock(&dentry->d_lock);
3556 }
3557 EXPORT_SYMBOL(dentry_unhash);
3558 
3559 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3560 {
3561 	int error = may_delete(dir, dentry, 1);
3562 
3563 	if (error)
3564 		return error;
3565 
3566 	if (!dir->i_op->rmdir)
3567 		return -EPERM;
3568 
3569 	dget(dentry);
3570 	mutex_lock(&dentry->d_inode->i_mutex);
3571 
3572 	error = -EBUSY;
3573 	if (is_local_mountpoint(dentry))
3574 		goto out;
3575 
3576 	error = security_inode_rmdir(dir, dentry);
3577 	if (error)
3578 		goto out;
3579 
3580 	shrink_dcache_parent(dentry);
3581 	error = dir->i_op->rmdir(dir, dentry);
3582 	if (error)
3583 		goto out;
3584 
3585 	dentry->d_inode->i_flags |= S_DEAD;
3586 	dont_mount(dentry);
3587 	detach_mounts(dentry);
3588 
3589 out:
3590 	mutex_unlock(&dentry->d_inode->i_mutex);
3591 	dput(dentry);
3592 	if (!error)
3593 		d_delete(dentry);
3594 	return error;
3595 }
3596 EXPORT_SYMBOL(vfs_rmdir);
3597 
3598 static long do_rmdir(int dfd, const char __user *pathname)
3599 {
3600 	int error = 0;
3601 	struct filename *name;
3602 	struct dentry *dentry;
3603 	struct nameidata nd;
3604 	unsigned int lookup_flags = 0;
3605 retry:
3606 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3607 	if (IS_ERR(name))
3608 		return PTR_ERR(name);
3609 
3610 	switch(nd.last_type) {
3611 	case LAST_DOTDOT:
3612 		error = -ENOTEMPTY;
3613 		goto exit1;
3614 	case LAST_DOT:
3615 		error = -EINVAL;
3616 		goto exit1;
3617 	case LAST_ROOT:
3618 		error = -EBUSY;
3619 		goto exit1;
3620 	}
3621 
3622 	nd.flags &= ~LOOKUP_PARENT;
3623 	error = mnt_want_write(nd.path.mnt);
3624 	if (error)
3625 		goto exit1;
3626 
3627 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3628 	dentry = lookup_hash(&nd);
3629 	error = PTR_ERR(dentry);
3630 	if (IS_ERR(dentry))
3631 		goto exit2;
3632 	if (!dentry->d_inode) {
3633 		error = -ENOENT;
3634 		goto exit3;
3635 	}
3636 	error = security_path_rmdir(&nd.path, dentry);
3637 	if (error)
3638 		goto exit3;
3639 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3640 exit3:
3641 	dput(dentry);
3642 exit2:
3643 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3644 	mnt_drop_write(nd.path.mnt);
3645 exit1:
3646 	path_put(&nd.path);
3647 	putname(name);
3648 	if (retry_estale(error, lookup_flags)) {
3649 		lookup_flags |= LOOKUP_REVAL;
3650 		goto retry;
3651 	}
3652 	return error;
3653 }
3654 
3655 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3656 {
3657 	return do_rmdir(AT_FDCWD, pathname);
3658 }
3659 
3660 /**
3661  * vfs_unlink - unlink a filesystem object
3662  * @dir:	parent directory
3663  * @dentry:	victim
3664  * @delegated_inode: returns victim inode, if the inode is delegated.
3665  *
3666  * The caller must hold dir->i_mutex.
3667  *
3668  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3669  * return a reference to the inode in delegated_inode.  The caller
3670  * should then break the delegation on that inode and retry.  Because
3671  * breaking a delegation may take a long time, the caller should drop
3672  * dir->i_mutex before doing so.
3673  *
3674  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3675  * be appropriate for callers that expect the underlying filesystem not
3676  * to be NFS exported.
3677  */
3678 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3679 {
3680 	struct inode *target = dentry->d_inode;
3681 	int error = may_delete(dir, dentry, 0);
3682 
3683 	if (error)
3684 		return error;
3685 
3686 	if (!dir->i_op->unlink)
3687 		return -EPERM;
3688 
3689 	mutex_lock(&target->i_mutex);
3690 	if (is_local_mountpoint(dentry))
3691 		error = -EBUSY;
3692 	else {
3693 		error = security_inode_unlink(dir, dentry);
3694 		if (!error) {
3695 			error = try_break_deleg(target, delegated_inode);
3696 			if (error)
3697 				goto out;
3698 			error = dir->i_op->unlink(dir, dentry);
3699 			if (!error) {
3700 				dont_mount(dentry);
3701 				detach_mounts(dentry);
3702 			}
3703 		}
3704 	}
3705 out:
3706 	mutex_unlock(&target->i_mutex);
3707 
3708 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3709 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3710 		fsnotify_link_count(target);
3711 		d_delete(dentry);
3712 	}
3713 
3714 	return error;
3715 }
3716 EXPORT_SYMBOL(vfs_unlink);
3717 
3718 /*
3719  * Make sure that the actual truncation of the file will occur outside its
3720  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3721  * writeout happening, and we don't want to prevent access to the directory
3722  * while waiting on the I/O.
3723  */
3724 static long do_unlinkat(int dfd, const char __user *pathname)
3725 {
3726 	int error;
3727 	struct filename *name;
3728 	struct dentry *dentry;
3729 	struct nameidata nd;
3730 	struct inode *inode = NULL;
3731 	struct inode *delegated_inode = NULL;
3732 	unsigned int lookup_flags = 0;
3733 retry:
3734 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3735 	if (IS_ERR(name))
3736 		return PTR_ERR(name);
3737 
3738 	error = -EISDIR;
3739 	if (nd.last_type != LAST_NORM)
3740 		goto exit1;
3741 
3742 	nd.flags &= ~LOOKUP_PARENT;
3743 	error = mnt_want_write(nd.path.mnt);
3744 	if (error)
3745 		goto exit1;
3746 retry_deleg:
3747 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3748 	dentry = lookup_hash(&nd);
3749 	error = PTR_ERR(dentry);
3750 	if (!IS_ERR(dentry)) {
3751 		/* Why not before? Because we want correct error value */
3752 		if (nd.last.name[nd.last.len])
3753 			goto slashes;
3754 		inode = dentry->d_inode;
3755 		if (d_is_negative(dentry))
3756 			goto slashes;
3757 		ihold(inode);
3758 		error = security_path_unlink(&nd.path, dentry);
3759 		if (error)
3760 			goto exit2;
3761 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3762 exit2:
3763 		dput(dentry);
3764 	}
3765 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3766 	if (inode)
3767 		iput(inode);	/* truncate the inode here */
3768 	inode = NULL;
3769 	if (delegated_inode) {
3770 		error = break_deleg_wait(&delegated_inode);
3771 		if (!error)
3772 			goto retry_deleg;
3773 	}
3774 	mnt_drop_write(nd.path.mnt);
3775 exit1:
3776 	path_put(&nd.path);
3777 	putname(name);
3778 	if (retry_estale(error, lookup_flags)) {
3779 		lookup_flags |= LOOKUP_REVAL;
3780 		inode = NULL;
3781 		goto retry;
3782 	}
3783 	return error;
3784 
3785 slashes:
3786 	if (d_is_negative(dentry))
3787 		error = -ENOENT;
3788 	else if (d_is_dir(dentry))
3789 		error = -EISDIR;
3790 	else
3791 		error = -ENOTDIR;
3792 	goto exit2;
3793 }
3794 
3795 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3796 {
3797 	if ((flag & ~AT_REMOVEDIR) != 0)
3798 		return -EINVAL;
3799 
3800 	if (flag & AT_REMOVEDIR)
3801 		return do_rmdir(dfd, pathname);
3802 
3803 	return do_unlinkat(dfd, pathname);
3804 }
3805 
3806 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3807 {
3808 	return do_unlinkat(AT_FDCWD, pathname);
3809 }
3810 
3811 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3812 {
3813 	int error = may_create(dir, dentry);
3814 
3815 	if (error)
3816 		return error;
3817 
3818 	if (!dir->i_op->symlink)
3819 		return -EPERM;
3820 
3821 	error = security_inode_symlink(dir, dentry, oldname);
3822 	if (error)
3823 		return error;
3824 
3825 	error = dir->i_op->symlink(dir, dentry, oldname);
3826 	if (!error)
3827 		fsnotify_create(dir, dentry);
3828 	return error;
3829 }
3830 EXPORT_SYMBOL(vfs_symlink);
3831 
3832 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3833 		int, newdfd, const char __user *, newname)
3834 {
3835 	int error;
3836 	struct filename *from;
3837 	struct dentry *dentry;
3838 	struct path path;
3839 	unsigned int lookup_flags = 0;
3840 
3841 	from = getname(oldname);
3842 	if (IS_ERR(from))
3843 		return PTR_ERR(from);
3844 retry:
3845 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3846 	error = PTR_ERR(dentry);
3847 	if (IS_ERR(dentry))
3848 		goto out_putname;
3849 
3850 	error = security_path_symlink(&path, dentry, from->name);
3851 	if (!error)
3852 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3853 	done_path_create(&path, dentry);
3854 	if (retry_estale(error, lookup_flags)) {
3855 		lookup_flags |= LOOKUP_REVAL;
3856 		goto retry;
3857 	}
3858 out_putname:
3859 	putname(from);
3860 	return error;
3861 }
3862 
3863 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3864 {
3865 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3866 }
3867 
3868 /**
3869  * vfs_link - create a new link
3870  * @old_dentry:	object to be linked
3871  * @dir:	new parent
3872  * @new_dentry:	where to create the new link
3873  * @delegated_inode: returns inode needing a delegation break
3874  *
3875  * The caller must hold dir->i_mutex
3876  *
3877  * If vfs_link discovers a delegation on the to-be-linked file in need
3878  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3879  * inode in delegated_inode.  The caller should then break the delegation
3880  * and retry.  Because breaking a delegation may take a long time, the
3881  * caller should drop the i_mutex before doing so.
3882  *
3883  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3884  * be appropriate for callers that expect the underlying filesystem not
3885  * to be NFS exported.
3886  */
3887 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3888 {
3889 	struct inode *inode = old_dentry->d_inode;
3890 	unsigned max_links = dir->i_sb->s_max_links;
3891 	int error;
3892 
3893 	if (!inode)
3894 		return -ENOENT;
3895 
3896 	error = may_create(dir, new_dentry);
3897 	if (error)
3898 		return error;
3899 
3900 	if (dir->i_sb != inode->i_sb)
3901 		return -EXDEV;
3902 
3903 	/*
3904 	 * A link to an append-only or immutable file cannot be created.
3905 	 */
3906 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3907 		return -EPERM;
3908 	if (!dir->i_op->link)
3909 		return -EPERM;
3910 	if (S_ISDIR(inode->i_mode))
3911 		return -EPERM;
3912 
3913 	error = security_inode_link(old_dentry, dir, new_dentry);
3914 	if (error)
3915 		return error;
3916 
3917 	mutex_lock(&inode->i_mutex);
3918 	/* Make sure we don't allow creating hardlink to an unlinked file */
3919 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3920 		error =  -ENOENT;
3921 	else if (max_links && inode->i_nlink >= max_links)
3922 		error = -EMLINK;
3923 	else {
3924 		error = try_break_deleg(inode, delegated_inode);
3925 		if (!error)
3926 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3927 	}
3928 
3929 	if (!error && (inode->i_state & I_LINKABLE)) {
3930 		spin_lock(&inode->i_lock);
3931 		inode->i_state &= ~I_LINKABLE;
3932 		spin_unlock(&inode->i_lock);
3933 	}
3934 	mutex_unlock(&inode->i_mutex);
3935 	if (!error)
3936 		fsnotify_link(dir, inode, new_dentry);
3937 	return error;
3938 }
3939 EXPORT_SYMBOL(vfs_link);
3940 
3941 /*
3942  * Hardlinks are often used in delicate situations.  We avoid
3943  * security-related surprises by not following symlinks on the
3944  * newname.  --KAB
3945  *
3946  * We don't follow them on the oldname either to be compatible
3947  * with linux 2.0, and to avoid hard-linking to directories
3948  * and other special files.  --ADM
3949  */
3950 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3951 		int, newdfd, const char __user *, newname, int, flags)
3952 {
3953 	struct dentry *new_dentry;
3954 	struct path old_path, new_path;
3955 	struct inode *delegated_inode = NULL;
3956 	int how = 0;
3957 	int error;
3958 
3959 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3960 		return -EINVAL;
3961 	/*
3962 	 * To use null names we require CAP_DAC_READ_SEARCH
3963 	 * This ensures that not everyone will be able to create
3964 	 * handlink using the passed filedescriptor.
3965 	 */
3966 	if (flags & AT_EMPTY_PATH) {
3967 		if (!capable(CAP_DAC_READ_SEARCH))
3968 			return -ENOENT;
3969 		how = LOOKUP_EMPTY;
3970 	}
3971 
3972 	if (flags & AT_SYMLINK_FOLLOW)
3973 		how |= LOOKUP_FOLLOW;
3974 retry:
3975 	error = user_path_at(olddfd, oldname, how, &old_path);
3976 	if (error)
3977 		return error;
3978 
3979 	new_dentry = user_path_create(newdfd, newname, &new_path,
3980 					(how & LOOKUP_REVAL));
3981 	error = PTR_ERR(new_dentry);
3982 	if (IS_ERR(new_dentry))
3983 		goto out;
3984 
3985 	error = -EXDEV;
3986 	if (old_path.mnt != new_path.mnt)
3987 		goto out_dput;
3988 	error = may_linkat(&old_path);
3989 	if (unlikely(error))
3990 		goto out_dput;
3991 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3992 	if (error)
3993 		goto out_dput;
3994 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3995 out_dput:
3996 	done_path_create(&new_path, new_dentry);
3997 	if (delegated_inode) {
3998 		error = break_deleg_wait(&delegated_inode);
3999 		if (!error) {
4000 			path_put(&old_path);
4001 			goto retry;
4002 		}
4003 	}
4004 	if (retry_estale(error, how)) {
4005 		path_put(&old_path);
4006 		how |= LOOKUP_REVAL;
4007 		goto retry;
4008 	}
4009 out:
4010 	path_put(&old_path);
4011 
4012 	return error;
4013 }
4014 
4015 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4016 {
4017 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4018 }
4019 
4020 /**
4021  * vfs_rename - rename a filesystem object
4022  * @old_dir:	parent of source
4023  * @old_dentry:	source
4024  * @new_dir:	parent of destination
4025  * @new_dentry:	destination
4026  * @delegated_inode: returns an inode needing a delegation break
4027  * @flags:	rename flags
4028  *
4029  * The caller must hold multiple mutexes--see lock_rename()).
4030  *
4031  * If vfs_rename discovers a delegation in need of breaking at either
4032  * the source or destination, it will return -EWOULDBLOCK and return a
4033  * reference to the inode in delegated_inode.  The caller should then
4034  * break the delegation and retry.  Because breaking a delegation may
4035  * take a long time, the caller should drop all locks before doing
4036  * so.
4037  *
4038  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4039  * be appropriate for callers that expect the underlying filesystem not
4040  * to be NFS exported.
4041  *
4042  * The worst of all namespace operations - renaming directory. "Perverted"
4043  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4044  * Problems:
4045  *	a) we can get into loop creation.
4046  *	b) race potential - two innocent renames can create a loop together.
4047  *	   That's where 4.4 screws up. Current fix: serialization on
4048  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4049  *	   story.
4050  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4051  *	   and source (if it is not a directory).
4052  *	   And that - after we got ->i_mutex on parents (until then we don't know
4053  *	   whether the target exists).  Solution: try to be smart with locking
4054  *	   order for inodes.  We rely on the fact that tree topology may change
4055  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4056  *	   move will be locked.  Thus we can rank directories by the tree
4057  *	   (ancestors first) and rank all non-directories after them.
4058  *	   That works since everybody except rename does "lock parent, lookup,
4059  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4060  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4061  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4062  *	   we'd better make sure that there's no link(2) for them.
4063  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4064  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4065  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4066  *	   ->i_mutex on parents, which works but leads to some truly excessive
4067  *	   locking].
4068  */
4069 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4070 	       struct inode *new_dir, struct dentry *new_dentry,
4071 	       struct inode **delegated_inode, unsigned int flags)
4072 {
4073 	int error;
4074 	bool is_dir = d_is_dir(old_dentry);
4075 	const unsigned char *old_name;
4076 	struct inode *source = old_dentry->d_inode;
4077 	struct inode *target = new_dentry->d_inode;
4078 	bool new_is_dir = false;
4079 	unsigned max_links = new_dir->i_sb->s_max_links;
4080 
4081 	if (source == target)
4082 		return 0;
4083 
4084 	error = may_delete(old_dir, old_dentry, is_dir);
4085 	if (error)
4086 		return error;
4087 
4088 	if (!target) {
4089 		error = may_create(new_dir, new_dentry);
4090 	} else {
4091 		new_is_dir = d_is_dir(new_dentry);
4092 
4093 		if (!(flags & RENAME_EXCHANGE))
4094 			error = may_delete(new_dir, new_dentry, is_dir);
4095 		else
4096 			error = may_delete(new_dir, new_dentry, new_is_dir);
4097 	}
4098 	if (error)
4099 		return error;
4100 
4101 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4102 		return -EPERM;
4103 
4104 	if (flags && !old_dir->i_op->rename2)
4105 		return -EINVAL;
4106 
4107 	/*
4108 	 * If we are going to change the parent - check write permissions,
4109 	 * we'll need to flip '..'.
4110 	 */
4111 	if (new_dir != old_dir) {
4112 		if (is_dir) {
4113 			error = inode_permission(source, MAY_WRITE);
4114 			if (error)
4115 				return error;
4116 		}
4117 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4118 			error = inode_permission(target, MAY_WRITE);
4119 			if (error)
4120 				return error;
4121 		}
4122 	}
4123 
4124 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4125 				      flags);
4126 	if (error)
4127 		return error;
4128 
4129 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4130 	dget(new_dentry);
4131 	if (!is_dir || (flags & RENAME_EXCHANGE))
4132 		lock_two_nondirectories(source, target);
4133 	else if (target)
4134 		mutex_lock(&target->i_mutex);
4135 
4136 	error = -EBUSY;
4137 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4138 		goto out;
4139 
4140 	if (max_links && new_dir != old_dir) {
4141 		error = -EMLINK;
4142 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4143 			goto out;
4144 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4145 		    old_dir->i_nlink >= max_links)
4146 			goto out;
4147 	}
4148 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4149 		shrink_dcache_parent(new_dentry);
4150 	if (!is_dir) {
4151 		error = try_break_deleg(source, delegated_inode);
4152 		if (error)
4153 			goto out;
4154 	}
4155 	if (target && !new_is_dir) {
4156 		error = try_break_deleg(target, delegated_inode);
4157 		if (error)
4158 			goto out;
4159 	}
4160 	if (!old_dir->i_op->rename2) {
4161 		error = old_dir->i_op->rename(old_dir, old_dentry,
4162 					      new_dir, new_dentry);
4163 	} else {
4164 		WARN_ON(old_dir->i_op->rename != NULL);
4165 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4166 					       new_dir, new_dentry, flags);
4167 	}
4168 	if (error)
4169 		goto out;
4170 
4171 	if (!(flags & RENAME_EXCHANGE) && target) {
4172 		if (is_dir)
4173 			target->i_flags |= S_DEAD;
4174 		dont_mount(new_dentry);
4175 		detach_mounts(new_dentry);
4176 	}
4177 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4178 		if (!(flags & RENAME_EXCHANGE))
4179 			d_move(old_dentry, new_dentry);
4180 		else
4181 			d_exchange(old_dentry, new_dentry);
4182 	}
4183 out:
4184 	if (!is_dir || (flags & RENAME_EXCHANGE))
4185 		unlock_two_nondirectories(source, target);
4186 	else if (target)
4187 		mutex_unlock(&target->i_mutex);
4188 	dput(new_dentry);
4189 	if (!error) {
4190 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4191 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4192 		if (flags & RENAME_EXCHANGE) {
4193 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4194 				      new_is_dir, NULL, new_dentry);
4195 		}
4196 	}
4197 	fsnotify_oldname_free(old_name);
4198 
4199 	return error;
4200 }
4201 EXPORT_SYMBOL(vfs_rename);
4202 
4203 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4204 		int, newdfd, const char __user *, newname, unsigned int, flags)
4205 {
4206 	struct dentry *old_dir, *new_dir;
4207 	struct dentry *old_dentry, *new_dentry;
4208 	struct dentry *trap;
4209 	struct nameidata oldnd, newnd;
4210 	struct inode *delegated_inode = NULL;
4211 	struct filename *from;
4212 	struct filename *to;
4213 	unsigned int lookup_flags = 0;
4214 	bool should_retry = false;
4215 	int error;
4216 
4217 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4218 		return -EINVAL;
4219 
4220 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4221 	    (flags & RENAME_EXCHANGE))
4222 		return -EINVAL;
4223 
4224 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4225 		return -EPERM;
4226 
4227 retry:
4228 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4229 	if (IS_ERR(from)) {
4230 		error = PTR_ERR(from);
4231 		goto exit;
4232 	}
4233 
4234 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4235 	if (IS_ERR(to)) {
4236 		error = PTR_ERR(to);
4237 		goto exit1;
4238 	}
4239 
4240 	error = -EXDEV;
4241 	if (oldnd.path.mnt != newnd.path.mnt)
4242 		goto exit2;
4243 
4244 	old_dir = oldnd.path.dentry;
4245 	error = -EBUSY;
4246 	if (oldnd.last_type != LAST_NORM)
4247 		goto exit2;
4248 
4249 	new_dir = newnd.path.dentry;
4250 	if (flags & RENAME_NOREPLACE)
4251 		error = -EEXIST;
4252 	if (newnd.last_type != LAST_NORM)
4253 		goto exit2;
4254 
4255 	error = mnt_want_write(oldnd.path.mnt);
4256 	if (error)
4257 		goto exit2;
4258 
4259 	oldnd.flags &= ~LOOKUP_PARENT;
4260 	newnd.flags &= ~LOOKUP_PARENT;
4261 	if (!(flags & RENAME_EXCHANGE))
4262 		newnd.flags |= LOOKUP_RENAME_TARGET;
4263 
4264 retry_deleg:
4265 	trap = lock_rename(new_dir, old_dir);
4266 
4267 	old_dentry = lookup_hash(&oldnd);
4268 	error = PTR_ERR(old_dentry);
4269 	if (IS_ERR(old_dentry))
4270 		goto exit3;
4271 	/* source must exist */
4272 	error = -ENOENT;
4273 	if (d_is_negative(old_dentry))
4274 		goto exit4;
4275 	new_dentry = lookup_hash(&newnd);
4276 	error = PTR_ERR(new_dentry);
4277 	if (IS_ERR(new_dentry))
4278 		goto exit4;
4279 	error = -EEXIST;
4280 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4281 		goto exit5;
4282 	if (flags & RENAME_EXCHANGE) {
4283 		error = -ENOENT;
4284 		if (d_is_negative(new_dentry))
4285 			goto exit5;
4286 
4287 		if (!d_is_dir(new_dentry)) {
4288 			error = -ENOTDIR;
4289 			if (newnd.last.name[newnd.last.len])
4290 				goto exit5;
4291 		}
4292 	}
4293 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4294 	if (!d_is_dir(old_dentry)) {
4295 		error = -ENOTDIR;
4296 		if (oldnd.last.name[oldnd.last.len])
4297 			goto exit5;
4298 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4299 			goto exit5;
4300 	}
4301 	/* source should not be ancestor of target */
4302 	error = -EINVAL;
4303 	if (old_dentry == trap)
4304 		goto exit5;
4305 	/* target should not be an ancestor of source */
4306 	if (!(flags & RENAME_EXCHANGE))
4307 		error = -ENOTEMPTY;
4308 	if (new_dentry == trap)
4309 		goto exit5;
4310 
4311 	error = security_path_rename(&oldnd.path, old_dentry,
4312 				     &newnd.path, new_dentry, flags);
4313 	if (error)
4314 		goto exit5;
4315 	error = vfs_rename(old_dir->d_inode, old_dentry,
4316 			   new_dir->d_inode, new_dentry,
4317 			   &delegated_inode, flags);
4318 exit5:
4319 	dput(new_dentry);
4320 exit4:
4321 	dput(old_dentry);
4322 exit3:
4323 	unlock_rename(new_dir, old_dir);
4324 	if (delegated_inode) {
4325 		error = break_deleg_wait(&delegated_inode);
4326 		if (!error)
4327 			goto retry_deleg;
4328 	}
4329 	mnt_drop_write(oldnd.path.mnt);
4330 exit2:
4331 	if (retry_estale(error, lookup_flags))
4332 		should_retry = true;
4333 	path_put(&newnd.path);
4334 	putname(to);
4335 exit1:
4336 	path_put(&oldnd.path);
4337 	putname(from);
4338 	if (should_retry) {
4339 		should_retry = false;
4340 		lookup_flags |= LOOKUP_REVAL;
4341 		goto retry;
4342 	}
4343 exit:
4344 	return error;
4345 }
4346 
4347 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4348 		int, newdfd, const char __user *, newname)
4349 {
4350 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4351 }
4352 
4353 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4354 {
4355 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4356 }
4357 
4358 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4359 {
4360 	int error = may_create(dir, dentry);
4361 	if (error)
4362 		return error;
4363 
4364 	if (!dir->i_op->mknod)
4365 		return -EPERM;
4366 
4367 	return dir->i_op->mknod(dir, dentry,
4368 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4369 }
4370 EXPORT_SYMBOL(vfs_whiteout);
4371 
4372 int readlink_copy(char __user *buffer, int buflen, const char *link)
4373 {
4374 	int len = PTR_ERR(link);
4375 	if (IS_ERR(link))
4376 		goto out;
4377 
4378 	len = strlen(link);
4379 	if (len > (unsigned) buflen)
4380 		len = buflen;
4381 	if (copy_to_user(buffer, link, len))
4382 		len = -EFAULT;
4383 out:
4384 	return len;
4385 }
4386 EXPORT_SYMBOL(readlink_copy);
4387 
4388 /*
4389  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4390  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4391  * using) it for any given inode is up to filesystem.
4392  */
4393 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4394 {
4395 	struct nameidata nd;
4396 	void *cookie;
4397 	int res;
4398 
4399 	nd.depth = 0;
4400 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4401 	if (IS_ERR(cookie))
4402 		return PTR_ERR(cookie);
4403 
4404 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4405 	if (dentry->d_inode->i_op->put_link)
4406 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4407 	return res;
4408 }
4409 EXPORT_SYMBOL(generic_readlink);
4410 
4411 /* get the link contents into pagecache */
4412 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4413 {
4414 	char *kaddr;
4415 	struct page *page;
4416 	struct address_space *mapping = dentry->d_inode->i_mapping;
4417 	page = read_mapping_page(mapping, 0, NULL);
4418 	if (IS_ERR(page))
4419 		return (char*)page;
4420 	*ppage = page;
4421 	kaddr = kmap(page);
4422 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4423 	return kaddr;
4424 }
4425 
4426 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4427 {
4428 	struct page *page = NULL;
4429 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4430 	if (page) {
4431 		kunmap(page);
4432 		page_cache_release(page);
4433 	}
4434 	return res;
4435 }
4436 EXPORT_SYMBOL(page_readlink);
4437 
4438 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4439 {
4440 	struct page *page = NULL;
4441 	nd_set_link(nd, page_getlink(dentry, &page));
4442 	return page;
4443 }
4444 EXPORT_SYMBOL(page_follow_link_light);
4445 
4446 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4447 {
4448 	struct page *page = cookie;
4449 
4450 	if (page) {
4451 		kunmap(page);
4452 		page_cache_release(page);
4453 	}
4454 }
4455 EXPORT_SYMBOL(page_put_link);
4456 
4457 /*
4458  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4459  */
4460 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4461 {
4462 	struct address_space *mapping = inode->i_mapping;
4463 	struct page *page;
4464 	void *fsdata;
4465 	int err;
4466 	char *kaddr;
4467 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4468 	if (nofs)
4469 		flags |= AOP_FLAG_NOFS;
4470 
4471 retry:
4472 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4473 				flags, &page, &fsdata);
4474 	if (err)
4475 		goto fail;
4476 
4477 	kaddr = kmap_atomic(page);
4478 	memcpy(kaddr, symname, len-1);
4479 	kunmap_atomic(kaddr);
4480 
4481 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4482 							page, fsdata);
4483 	if (err < 0)
4484 		goto fail;
4485 	if (err < len-1)
4486 		goto retry;
4487 
4488 	mark_inode_dirty(inode);
4489 	return 0;
4490 fail:
4491 	return err;
4492 }
4493 EXPORT_SYMBOL(__page_symlink);
4494 
4495 int page_symlink(struct inode *inode, const char *symname, int len)
4496 {
4497 	return __page_symlink(inode, symname, len,
4498 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4499 }
4500 EXPORT_SYMBOL(page_symlink);
4501 
4502 const struct inode_operations page_symlink_inode_operations = {
4503 	.readlink	= generic_readlink,
4504 	.follow_link	= page_follow_link_light,
4505 	.put_link	= page_put_link,
4506 };
4507 EXPORT_SYMBOL(page_symlink_inode_operations);
4508