1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic permission checking 292 */ 293 static int acl_permission_check(struct inode *inode, int mask) 294 { 295 unsigned int mode = inode->i_mode; 296 297 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 298 mode >>= 6; 299 else { 300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 301 int error = check_acl(inode, mask); 302 if (error != -EAGAIN) 303 return error; 304 } 305 306 if (in_group_p(inode->i_gid)) 307 mode >>= 3; 308 } 309 310 /* 311 * If the DACs are ok we don't need any capability check. 312 */ 313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 314 return 0; 315 return -EACCES; 316 } 317 318 /** 319 * generic_permission - check for access rights on a Posix-like filesystem 320 * @inode: inode to check access rights for 321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 322 * 323 * Used to check for read/write/execute permissions on a file. 324 * We use "fsuid" for this, letting us set arbitrary permissions 325 * for filesystem access without changing the "normal" uids which 326 * are used for other things. 327 * 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 329 * request cannot be satisfied (eg. requires blocking or too much complexity). 330 * It would then be called again in ref-walk mode. 331 */ 332 int generic_permission(struct inode *inode, int mask) 333 { 334 int ret; 335 336 /* 337 * Do the basic permission checks. 338 */ 339 ret = acl_permission_check(inode, mask); 340 if (ret != -EACCES) 341 return ret; 342 343 if (S_ISDIR(inode->i_mode)) { 344 /* DACs are overridable for directories */ 345 if (!(mask & MAY_WRITE)) 346 if (capable_wrt_inode_uidgid(inode, 347 CAP_DAC_READ_SEARCH)) 348 return 0; 349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 350 return 0; 351 return -EACCES; 352 } 353 354 /* 355 * Searching includes executable on directories, else just read. 356 */ 357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 358 if (mask == MAY_READ) 359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 360 return 0; 361 /* 362 * Read/write DACs are always overridable. 363 * Executable DACs are overridable when there is 364 * at least one exec bit set. 365 */ 366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 368 return 0; 369 370 return -EACCES; 371 } 372 EXPORT_SYMBOL(generic_permission); 373 374 /* 375 * We _really_ want to just do "generic_permission()" without 376 * even looking at the inode->i_op values. So we keep a cache 377 * flag in inode->i_opflags, that says "this has not special 378 * permission function, use the fast case". 379 */ 380 static inline int do_inode_permission(struct inode *inode, int mask) 381 { 382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 383 if (likely(inode->i_op->permission)) 384 return inode->i_op->permission(inode, mask); 385 386 /* This gets set once for the inode lifetime */ 387 spin_lock(&inode->i_lock); 388 inode->i_opflags |= IOP_FASTPERM; 389 spin_unlock(&inode->i_lock); 390 } 391 return generic_permission(inode, mask); 392 } 393 394 /** 395 * sb_permission - Check superblock-level permissions 396 * @sb: Superblock of inode to check permission on 397 * @inode: Inode to check permission on 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 399 * 400 * Separate out file-system wide checks from inode-specific permission checks. 401 */ 402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 403 { 404 if (unlikely(mask & MAY_WRITE)) { 405 umode_t mode = inode->i_mode; 406 407 /* Nobody gets write access to a read-only fs. */ 408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 409 return -EROFS; 410 } 411 return 0; 412 } 413 414 /** 415 * inode_permission - Check for access rights to a given inode 416 * @inode: Inode to check permission on 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 418 * 419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 420 * this, letting us set arbitrary permissions for filesystem access without 421 * changing the "normal" UIDs which are used for other things. 422 * 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 424 */ 425 int inode_permission(struct inode *inode, int mask) 426 { 427 int retval; 428 429 retval = sb_permission(inode->i_sb, inode, mask); 430 if (retval) 431 return retval; 432 433 if (unlikely(mask & MAY_WRITE)) { 434 /* 435 * Nobody gets write access to an immutable file. 436 */ 437 if (IS_IMMUTABLE(inode)) 438 return -EPERM; 439 440 /* 441 * Updating mtime will likely cause i_uid and i_gid to be 442 * written back improperly if their true value is unknown 443 * to the vfs. 444 */ 445 if (HAS_UNMAPPED_ID(inode)) 446 return -EACCES; 447 } 448 449 retval = do_inode_permission(inode, mask); 450 if (retval) 451 return retval; 452 453 retval = devcgroup_inode_permission(inode, mask); 454 if (retval) 455 return retval; 456 457 return security_inode_permission(inode, mask); 458 } 459 EXPORT_SYMBOL(inode_permission); 460 461 /** 462 * path_get - get a reference to a path 463 * @path: path to get the reference to 464 * 465 * Given a path increment the reference count to the dentry and the vfsmount. 466 */ 467 void path_get(const struct path *path) 468 { 469 mntget(path->mnt); 470 dget(path->dentry); 471 } 472 EXPORT_SYMBOL(path_get); 473 474 /** 475 * path_put - put a reference to a path 476 * @path: path to put the reference to 477 * 478 * Given a path decrement the reference count to the dentry and the vfsmount. 479 */ 480 void path_put(const struct path *path) 481 { 482 dput(path->dentry); 483 mntput(path->mnt); 484 } 485 EXPORT_SYMBOL(path_put); 486 487 #define EMBEDDED_LEVELS 2 488 struct nameidata { 489 struct path path; 490 struct qstr last; 491 struct path root; 492 struct inode *inode; /* path.dentry.d_inode */ 493 unsigned int flags; 494 unsigned seq, m_seq; 495 int last_type; 496 unsigned depth; 497 int total_link_count; 498 struct saved { 499 struct path link; 500 struct delayed_call done; 501 const char *name; 502 unsigned seq; 503 } *stack, internal[EMBEDDED_LEVELS]; 504 struct filename *name; 505 struct nameidata *saved; 506 struct inode *link_inode; 507 unsigned root_seq; 508 int dfd; 509 } __randomize_layout; 510 511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 512 { 513 struct nameidata *old = current->nameidata; 514 p->stack = p->internal; 515 p->dfd = dfd; 516 p->name = name; 517 p->total_link_count = old ? old->total_link_count : 0; 518 p->saved = old; 519 current->nameidata = p; 520 } 521 522 static void restore_nameidata(void) 523 { 524 struct nameidata *now = current->nameidata, *old = now->saved; 525 526 current->nameidata = old; 527 if (old) 528 old->total_link_count = now->total_link_count; 529 if (now->stack != now->internal) 530 kfree(now->stack); 531 } 532 533 static int __nd_alloc_stack(struct nameidata *nd) 534 { 535 struct saved *p; 536 537 if (nd->flags & LOOKUP_RCU) { 538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 539 GFP_ATOMIC); 540 if (unlikely(!p)) 541 return -ECHILD; 542 } else { 543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 544 GFP_KERNEL); 545 if (unlikely(!p)) 546 return -ENOMEM; 547 } 548 memcpy(p, nd->internal, sizeof(nd->internal)); 549 nd->stack = p; 550 return 0; 551 } 552 553 /** 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 555 * @path: nameidate to verify 556 * 557 * Rename can sometimes move a file or directory outside of a bind 558 * mount, path_connected allows those cases to be detected. 559 */ 560 static bool path_connected(const struct path *path) 561 { 562 struct vfsmount *mnt = path->mnt; 563 struct super_block *sb = mnt->mnt_sb; 564 565 /* Bind mounts and multi-root filesystems can have disconnected paths */ 566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root)) 567 return true; 568 569 return is_subdir(path->dentry, mnt->mnt_root); 570 } 571 572 static inline int nd_alloc_stack(struct nameidata *nd) 573 { 574 if (likely(nd->depth != EMBEDDED_LEVELS)) 575 return 0; 576 if (likely(nd->stack != nd->internal)) 577 return 0; 578 return __nd_alloc_stack(nd); 579 } 580 581 static void drop_links(struct nameidata *nd) 582 { 583 int i = nd->depth; 584 while (i--) { 585 struct saved *last = nd->stack + i; 586 do_delayed_call(&last->done); 587 clear_delayed_call(&last->done); 588 } 589 } 590 591 static void terminate_walk(struct nameidata *nd) 592 { 593 drop_links(nd); 594 if (!(nd->flags & LOOKUP_RCU)) { 595 int i; 596 path_put(&nd->path); 597 for (i = 0; i < nd->depth; i++) 598 path_put(&nd->stack[i].link); 599 if (nd->flags & LOOKUP_ROOT_GRABBED) { 600 path_put(&nd->root); 601 nd->flags &= ~LOOKUP_ROOT_GRABBED; 602 } 603 } else { 604 nd->flags &= ~LOOKUP_RCU; 605 rcu_read_unlock(); 606 } 607 nd->depth = 0; 608 } 609 610 /* path_put is needed afterwards regardless of success or failure */ 611 static bool legitimize_path(struct nameidata *nd, 612 struct path *path, unsigned seq) 613 { 614 int res = __legitimize_mnt(path->mnt, nd->m_seq); 615 if (unlikely(res)) { 616 if (res > 0) 617 path->mnt = NULL; 618 path->dentry = NULL; 619 return false; 620 } 621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 622 path->dentry = NULL; 623 return false; 624 } 625 return !read_seqcount_retry(&path->dentry->d_seq, seq); 626 } 627 628 static bool legitimize_links(struct nameidata *nd) 629 { 630 int i; 631 for (i = 0; i < nd->depth; i++) { 632 struct saved *last = nd->stack + i; 633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 634 drop_links(nd); 635 nd->depth = i + 1; 636 return false; 637 } 638 } 639 return true; 640 } 641 642 static bool legitimize_root(struct nameidata *nd) 643 { 644 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 645 return true; 646 nd->flags |= LOOKUP_ROOT_GRABBED; 647 return legitimize_path(nd, &nd->root, nd->root_seq); 648 } 649 650 /* 651 * Path walking has 2 modes, rcu-walk and ref-walk (see 652 * Documentation/filesystems/path-lookup.txt). In situations when we can't 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk 655 * mode. Refcounts are grabbed at the last known good point before rcu-walk 656 * got stuck, so ref-walk may continue from there. If this is not successful 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller 658 * to restart the path walk from the beginning in ref-walk mode. 659 */ 660 661 /** 662 * unlazy_walk - try to switch to ref-walk mode. 663 * @nd: nameidata pathwalk data 664 * Returns: 0 on success, -ECHILD on failure 665 * 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root 667 * for ref-walk mode. 668 * Must be called from rcu-walk context. 669 * Nothing should touch nameidata between unlazy_walk() failure and 670 * terminate_walk(). 671 */ 672 static int unlazy_walk(struct nameidata *nd) 673 { 674 struct dentry *parent = nd->path.dentry; 675 676 BUG_ON(!(nd->flags & LOOKUP_RCU)); 677 678 nd->flags &= ~LOOKUP_RCU; 679 if (unlikely(!legitimize_links(nd))) 680 goto out1; 681 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 682 goto out; 683 if (unlikely(!legitimize_root(nd))) 684 goto out; 685 rcu_read_unlock(); 686 BUG_ON(nd->inode != parent->d_inode); 687 return 0; 688 689 out1: 690 nd->path.mnt = NULL; 691 nd->path.dentry = NULL; 692 out: 693 rcu_read_unlock(); 694 return -ECHILD; 695 } 696 697 /** 698 * unlazy_child - try to switch to ref-walk mode. 699 * @nd: nameidata pathwalk data 700 * @dentry: child of nd->path.dentry 701 * @seq: seq number to check dentry against 702 * Returns: 0 on success, -ECHILD on failure 703 * 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 705 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 706 * @nd. Must be called from rcu-walk context. 707 * Nothing should touch nameidata between unlazy_child() failure and 708 * terminate_walk(). 709 */ 710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 711 { 712 BUG_ON(!(nd->flags & LOOKUP_RCU)); 713 714 nd->flags &= ~LOOKUP_RCU; 715 if (unlikely(!legitimize_links(nd))) 716 goto out2; 717 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 718 goto out2; 719 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 720 goto out1; 721 722 /* 723 * We need to move both the parent and the dentry from the RCU domain 724 * to be properly refcounted. And the sequence number in the dentry 725 * validates *both* dentry counters, since we checked the sequence 726 * number of the parent after we got the child sequence number. So we 727 * know the parent must still be valid if the child sequence number is 728 */ 729 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 730 goto out; 731 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 732 goto out_dput; 733 /* 734 * Sequence counts matched. Now make sure that the root is 735 * still valid and get it if required. 736 */ 737 if (unlikely(!legitimize_root(nd))) 738 goto out_dput; 739 rcu_read_unlock(); 740 return 0; 741 742 out2: 743 nd->path.mnt = NULL; 744 out1: 745 nd->path.dentry = NULL; 746 out: 747 rcu_read_unlock(); 748 return -ECHILD; 749 out_dput: 750 rcu_read_unlock(); 751 dput(dentry); 752 return -ECHILD; 753 } 754 755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 756 { 757 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 758 return dentry->d_op->d_revalidate(dentry, flags); 759 else 760 return 1; 761 } 762 763 /** 764 * complete_walk - successful completion of path walk 765 * @nd: pointer nameidata 766 * 767 * If we had been in RCU mode, drop out of it and legitimize nd->path. 768 * Revalidate the final result, unless we'd already done that during 769 * the path walk or the filesystem doesn't ask for it. Return 0 on 770 * success, -error on failure. In case of failure caller does not 771 * need to drop nd->path. 772 */ 773 static int complete_walk(struct nameidata *nd) 774 { 775 struct dentry *dentry = nd->path.dentry; 776 int status; 777 778 if (nd->flags & LOOKUP_RCU) { 779 if (!(nd->flags & LOOKUP_ROOT)) 780 nd->root.mnt = NULL; 781 if (unlikely(unlazy_walk(nd))) 782 return -ECHILD; 783 } 784 785 if (likely(!(nd->flags & LOOKUP_JUMPED))) 786 return 0; 787 788 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 789 return 0; 790 791 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 792 if (status > 0) 793 return 0; 794 795 if (!status) 796 status = -ESTALE; 797 798 return status; 799 } 800 801 static void set_root(struct nameidata *nd) 802 { 803 struct fs_struct *fs = current->fs; 804 805 if (nd->flags & LOOKUP_RCU) { 806 unsigned seq; 807 808 do { 809 seq = read_seqcount_begin(&fs->seq); 810 nd->root = fs->root; 811 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 812 } while (read_seqcount_retry(&fs->seq, seq)); 813 } else { 814 get_fs_root(fs, &nd->root); 815 nd->flags |= LOOKUP_ROOT_GRABBED; 816 } 817 } 818 819 static void path_put_conditional(struct path *path, struct nameidata *nd) 820 { 821 dput(path->dentry); 822 if (path->mnt != nd->path.mnt) 823 mntput(path->mnt); 824 } 825 826 static inline void path_to_nameidata(const struct path *path, 827 struct nameidata *nd) 828 { 829 if (!(nd->flags & LOOKUP_RCU)) { 830 dput(nd->path.dentry); 831 if (nd->path.mnt != path->mnt) 832 mntput(nd->path.mnt); 833 } 834 nd->path.mnt = path->mnt; 835 nd->path.dentry = path->dentry; 836 } 837 838 static int nd_jump_root(struct nameidata *nd) 839 { 840 if (nd->flags & LOOKUP_RCU) { 841 struct dentry *d; 842 nd->path = nd->root; 843 d = nd->path.dentry; 844 nd->inode = d->d_inode; 845 nd->seq = nd->root_seq; 846 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 847 return -ECHILD; 848 } else { 849 path_put(&nd->path); 850 nd->path = nd->root; 851 path_get(&nd->path); 852 nd->inode = nd->path.dentry->d_inode; 853 } 854 nd->flags |= LOOKUP_JUMPED; 855 return 0; 856 } 857 858 /* 859 * Helper to directly jump to a known parsed path from ->get_link, 860 * caller must have taken a reference to path beforehand. 861 */ 862 void nd_jump_link(struct path *path) 863 { 864 struct nameidata *nd = current->nameidata; 865 path_put(&nd->path); 866 867 nd->path = *path; 868 nd->inode = nd->path.dentry->d_inode; 869 nd->flags |= LOOKUP_JUMPED; 870 } 871 872 static inline void put_link(struct nameidata *nd) 873 { 874 struct saved *last = nd->stack + --nd->depth; 875 do_delayed_call(&last->done); 876 if (!(nd->flags & LOOKUP_RCU)) 877 path_put(&last->link); 878 } 879 880 int sysctl_protected_symlinks __read_mostly = 0; 881 int sysctl_protected_hardlinks __read_mostly = 0; 882 int sysctl_protected_fifos __read_mostly; 883 int sysctl_protected_regular __read_mostly; 884 885 /** 886 * may_follow_link - Check symlink following for unsafe situations 887 * @nd: nameidata pathwalk data 888 * 889 * In the case of the sysctl_protected_symlinks sysctl being enabled, 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 891 * in a sticky world-writable directory. This is to protect privileged 892 * processes from failing races against path names that may change out 893 * from under them by way of other users creating malicious symlinks. 894 * It will permit symlinks to be followed only when outside a sticky 895 * world-writable directory, or when the uid of the symlink and follower 896 * match, or when the directory owner matches the symlink's owner. 897 * 898 * Returns 0 if following the symlink is allowed, -ve on error. 899 */ 900 static inline int may_follow_link(struct nameidata *nd) 901 { 902 const struct inode *inode; 903 const struct inode *parent; 904 kuid_t puid; 905 906 if (!sysctl_protected_symlinks) 907 return 0; 908 909 /* Allowed if owner and follower match. */ 910 inode = nd->link_inode; 911 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 912 return 0; 913 914 /* Allowed if parent directory not sticky and world-writable. */ 915 parent = nd->inode; 916 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 917 return 0; 918 919 /* Allowed if parent directory and link owner match. */ 920 puid = parent->i_uid; 921 if (uid_valid(puid) && uid_eq(puid, inode->i_uid)) 922 return 0; 923 924 if (nd->flags & LOOKUP_RCU) 925 return -ECHILD; 926 927 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 928 audit_log_link_denied("follow_link"); 929 return -EACCES; 930 } 931 932 /** 933 * safe_hardlink_source - Check for safe hardlink conditions 934 * @inode: the source inode to hardlink from 935 * 936 * Return false if at least one of the following conditions: 937 * - inode is not a regular file 938 * - inode is setuid 939 * - inode is setgid and group-exec 940 * - access failure for read and write 941 * 942 * Otherwise returns true. 943 */ 944 static bool safe_hardlink_source(struct inode *inode) 945 { 946 umode_t mode = inode->i_mode; 947 948 /* Special files should not get pinned to the filesystem. */ 949 if (!S_ISREG(mode)) 950 return false; 951 952 /* Setuid files should not get pinned to the filesystem. */ 953 if (mode & S_ISUID) 954 return false; 955 956 /* Executable setgid files should not get pinned to the filesystem. */ 957 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 958 return false; 959 960 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 961 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 962 return false; 963 964 return true; 965 } 966 967 /** 968 * may_linkat - Check permissions for creating a hardlink 969 * @link: the source to hardlink from 970 * 971 * Block hardlink when all of: 972 * - sysctl_protected_hardlinks enabled 973 * - fsuid does not match inode 974 * - hardlink source is unsafe (see safe_hardlink_source() above) 975 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 976 * 977 * Returns 0 if successful, -ve on error. 978 */ 979 static int may_linkat(struct path *link) 980 { 981 struct inode *inode = link->dentry->d_inode; 982 983 /* Inode writeback is not safe when the uid or gid are invalid. */ 984 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 985 return -EOVERFLOW; 986 987 if (!sysctl_protected_hardlinks) 988 return 0; 989 990 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 991 * otherwise, it must be a safe source. 992 */ 993 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 994 return 0; 995 996 audit_log_link_denied("linkat"); 997 return -EPERM; 998 } 999 1000 /** 1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1002 * should be allowed, or not, on files that already 1003 * exist. 1004 * @dir: the sticky parent directory 1005 * @inode: the inode of the file to open 1006 * 1007 * Block an O_CREAT open of a FIFO (or a regular file) when: 1008 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1009 * - the file already exists 1010 * - we are in a sticky directory 1011 * - we don't own the file 1012 * - the owner of the directory doesn't own the file 1013 * - the directory is world writable 1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1015 * the directory doesn't have to be world writable: being group writable will 1016 * be enough. 1017 * 1018 * Returns 0 if the open is allowed, -ve on error. 1019 */ 1020 static int may_create_in_sticky(struct dentry * const dir, 1021 struct inode * const inode) 1022 { 1023 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1024 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1025 likely(!(dir->d_inode->i_mode & S_ISVTX)) || 1026 uid_eq(inode->i_uid, dir->d_inode->i_uid) || 1027 uid_eq(current_fsuid(), inode->i_uid)) 1028 return 0; 1029 1030 if (likely(dir->d_inode->i_mode & 0002) || 1031 (dir->d_inode->i_mode & 0020 && 1032 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1033 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1034 return -EACCES; 1035 } 1036 return 0; 1037 } 1038 1039 static __always_inline 1040 const char *get_link(struct nameidata *nd) 1041 { 1042 struct saved *last = nd->stack + nd->depth - 1; 1043 struct dentry *dentry = last->link.dentry; 1044 struct inode *inode = nd->link_inode; 1045 int error; 1046 const char *res; 1047 1048 if (!(nd->flags & LOOKUP_RCU)) { 1049 touch_atime(&last->link); 1050 cond_resched(); 1051 } else if (atime_needs_update(&last->link, inode)) { 1052 if (unlikely(unlazy_walk(nd))) 1053 return ERR_PTR(-ECHILD); 1054 touch_atime(&last->link); 1055 } 1056 1057 error = security_inode_follow_link(dentry, inode, 1058 nd->flags & LOOKUP_RCU); 1059 if (unlikely(error)) 1060 return ERR_PTR(error); 1061 1062 nd->last_type = LAST_BIND; 1063 res = READ_ONCE(inode->i_link); 1064 if (!res) { 1065 const char * (*get)(struct dentry *, struct inode *, 1066 struct delayed_call *); 1067 get = inode->i_op->get_link; 1068 if (nd->flags & LOOKUP_RCU) { 1069 res = get(NULL, inode, &last->done); 1070 if (res == ERR_PTR(-ECHILD)) { 1071 if (unlikely(unlazy_walk(nd))) 1072 return ERR_PTR(-ECHILD); 1073 res = get(dentry, inode, &last->done); 1074 } 1075 } else { 1076 res = get(dentry, inode, &last->done); 1077 } 1078 if (IS_ERR_OR_NULL(res)) 1079 return res; 1080 } 1081 if (*res == '/') { 1082 if (!nd->root.mnt) 1083 set_root(nd); 1084 if (unlikely(nd_jump_root(nd))) 1085 return ERR_PTR(-ECHILD); 1086 while (unlikely(*++res == '/')) 1087 ; 1088 } 1089 if (!*res) 1090 res = NULL; 1091 return res; 1092 } 1093 1094 /* 1095 * follow_up - Find the mountpoint of path's vfsmount 1096 * 1097 * Given a path, find the mountpoint of its source file system. 1098 * Replace @path with the path of the mountpoint in the parent mount. 1099 * Up is towards /. 1100 * 1101 * Return 1 if we went up a level and 0 if we were already at the 1102 * root. 1103 */ 1104 int follow_up(struct path *path) 1105 { 1106 struct mount *mnt = real_mount(path->mnt); 1107 struct mount *parent; 1108 struct dentry *mountpoint; 1109 1110 read_seqlock_excl(&mount_lock); 1111 parent = mnt->mnt_parent; 1112 if (parent == mnt) { 1113 read_sequnlock_excl(&mount_lock); 1114 return 0; 1115 } 1116 mntget(&parent->mnt); 1117 mountpoint = dget(mnt->mnt_mountpoint); 1118 read_sequnlock_excl(&mount_lock); 1119 dput(path->dentry); 1120 path->dentry = mountpoint; 1121 mntput(path->mnt); 1122 path->mnt = &parent->mnt; 1123 return 1; 1124 } 1125 EXPORT_SYMBOL(follow_up); 1126 1127 /* 1128 * Perform an automount 1129 * - return -EISDIR to tell follow_managed() to stop and return the path we 1130 * were called with. 1131 */ 1132 static int follow_automount(struct path *path, struct nameidata *nd, 1133 bool *need_mntput) 1134 { 1135 struct vfsmount *mnt; 1136 int err; 1137 1138 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1139 return -EREMOTE; 1140 1141 /* We don't want to mount if someone's just doing a stat - 1142 * unless they're stat'ing a directory and appended a '/' to 1143 * the name. 1144 * 1145 * We do, however, want to mount if someone wants to open or 1146 * create a file of any type under the mountpoint, wants to 1147 * traverse through the mountpoint or wants to open the 1148 * mounted directory. Also, autofs may mark negative dentries 1149 * as being automount points. These will need the attentions 1150 * of the daemon to instantiate them before they can be used. 1151 */ 1152 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1153 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1154 path->dentry->d_inode) 1155 return -EISDIR; 1156 1157 nd->total_link_count++; 1158 if (nd->total_link_count >= 40) 1159 return -ELOOP; 1160 1161 mnt = path->dentry->d_op->d_automount(path); 1162 if (IS_ERR(mnt)) { 1163 /* 1164 * The filesystem is allowed to return -EISDIR here to indicate 1165 * it doesn't want to automount. For instance, autofs would do 1166 * this so that its userspace daemon can mount on this dentry. 1167 * 1168 * However, we can only permit this if it's a terminal point in 1169 * the path being looked up; if it wasn't then the remainder of 1170 * the path is inaccessible and we should say so. 1171 */ 1172 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1173 return -EREMOTE; 1174 return PTR_ERR(mnt); 1175 } 1176 1177 if (!mnt) /* mount collision */ 1178 return 0; 1179 1180 if (!*need_mntput) { 1181 /* lock_mount() may release path->mnt on error */ 1182 mntget(path->mnt); 1183 *need_mntput = true; 1184 } 1185 err = finish_automount(mnt, path); 1186 1187 switch (err) { 1188 case -EBUSY: 1189 /* Someone else made a mount here whilst we were busy */ 1190 return 0; 1191 case 0: 1192 path_put(path); 1193 path->mnt = mnt; 1194 path->dentry = dget(mnt->mnt_root); 1195 return 0; 1196 default: 1197 return err; 1198 } 1199 1200 } 1201 1202 /* 1203 * Handle a dentry that is managed in some way. 1204 * - Flagged for transit management (autofs) 1205 * - Flagged as mountpoint 1206 * - Flagged as automount point 1207 * 1208 * This may only be called in refwalk mode. 1209 * 1210 * Serialization is taken care of in namespace.c 1211 */ 1212 static int follow_managed(struct path *path, struct nameidata *nd) 1213 { 1214 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1215 unsigned managed; 1216 bool need_mntput = false; 1217 int ret = 0; 1218 1219 /* Given that we're not holding a lock here, we retain the value in a 1220 * local variable for each dentry as we look at it so that we don't see 1221 * the components of that value change under us */ 1222 while (managed = READ_ONCE(path->dentry->d_flags), 1223 managed &= DCACHE_MANAGED_DENTRY, 1224 unlikely(managed != 0)) { 1225 /* Allow the filesystem to manage the transit without i_mutex 1226 * being held. */ 1227 if (managed & DCACHE_MANAGE_TRANSIT) { 1228 BUG_ON(!path->dentry->d_op); 1229 BUG_ON(!path->dentry->d_op->d_manage); 1230 ret = path->dentry->d_op->d_manage(path, false); 1231 if (ret < 0) 1232 break; 1233 } 1234 1235 /* Transit to a mounted filesystem. */ 1236 if (managed & DCACHE_MOUNTED) { 1237 struct vfsmount *mounted = lookup_mnt(path); 1238 if (mounted) { 1239 dput(path->dentry); 1240 if (need_mntput) 1241 mntput(path->mnt); 1242 path->mnt = mounted; 1243 path->dentry = dget(mounted->mnt_root); 1244 need_mntput = true; 1245 continue; 1246 } 1247 1248 /* Something is mounted on this dentry in another 1249 * namespace and/or whatever was mounted there in this 1250 * namespace got unmounted before lookup_mnt() could 1251 * get it */ 1252 } 1253 1254 /* Handle an automount point */ 1255 if (managed & DCACHE_NEED_AUTOMOUNT) { 1256 ret = follow_automount(path, nd, &need_mntput); 1257 if (ret < 0) 1258 break; 1259 continue; 1260 } 1261 1262 /* We didn't change the current path point */ 1263 break; 1264 } 1265 1266 if (need_mntput && path->mnt == mnt) 1267 mntput(path->mnt); 1268 if (ret == -EISDIR || !ret) 1269 ret = 1; 1270 if (need_mntput) 1271 nd->flags |= LOOKUP_JUMPED; 1272 if (unlikely(ret < 0)) 1273 path_put_conditional(path, nd); 1274 return ret; 1275 } 1276 1277 int follow_down_one(struct path *path) 1278 { 1279 struct vfsmount *mounted; 1280 1281 mounted = lookup_mnt(path); 1282 if (mounted) { 1283 dput(path->dentry); 1284 mntput(path->mnt); 1285 path->mnt = mounted; 1286 path->dentry = dget(mounted->mnt_root); 1287 return 1; 1288 } 1289 return 0; 1290 } 1291 EXPORT_SYMBOL(follow_down_one); 1292 1293 static inline int managed_dentry_rcu(const struct path *path) 1294 { 1295 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1296 path->dentry->d_op->d_manage(path, true) : 0; 1297 } 1298 1299 /* 1300 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1301 * we meet a managed dentry that would need blocking. 1302 */ 1303 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1304 struct inode **inode, unsigned *seqp) 1305 { 1306 for (;;) { 1307 struct mount *mounted; 1308 /* 1309 * Don't forget we might have a non-mountpoint managed dentry 1310 * that wants to block transit. 1311 */ 1312 switch (managed_dentry_rcu(path)) { 1313 case -ECHILD: 1314 default: 1315 return false; 1316 case -EISDIR: 1317 return true; 1318 case 0: 1319 break; 1320 } 1321 1322 if (!d_mountpoint(path->dentry)) 1323 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1324 1325 mounted = __lookup_mnt(path->mnt, path->dentry); 1326 if (!mounted) 1327 break; 1328 path->mnt = &mounted->mnt; 1329 path->dentry = mounted->mnt.mnt_root; 1330 nd->flags |= LOOKUP_JUMPED; 1331 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1332 /* 1333 * Update the inode too. We don't need to re-check the 1334 * dentry sequence number here after this d_inode read, 1335 * because a mount-point is always pinned. 1336 */ 1337 *inode = path->dentry->d_inode; 1338 } 1339 return !read_seqretry(&mount_lock, nd->m_seq) && 1340 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1341 } 1342 1343 static int follow_dotdot_rcu(struct nameidata *nd) 1344 { 1345 struct inode *inode = nd->inode; 1346 1347 while (1) { 1348 if (path_equal(&nd->path, &nd->root)) 1349 break; 1350 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1351 struct dentry *old = nd->path.dentry; 1352 struct dentry *parent = old->d_parent; 1353 unsigned seq; 1354 1355 inode = parent->d_inode; 1356 seq = read_seqcount_begin(&parent->d_seq); 1357 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1358 return -ECHILD; 1359 nd->path.dentry = parent; 1360 nd->seq = seq; 1361 if (unlikely(!path_connected(&nd->path))) 1362 return -ENOENT; 1363 break; 1364 } else { 1365 struct mount *mnt = real_mount(nd->path.mnt); 1366 struct mount *mparent = mnt->mnt_parent; 1367 struct dentry *mountpoint = mnt->mnt_mountpoint; 1368 struct inode *inode2 = mountpoint->d_inode; 1369 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1370 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1371 return -ECHILD; 1372 if (&mparent->mnt == nd->path.mnt) 1373 break; 1374 /* we know that mountpoint was pinned */ 1375 nd->path.dentry = mountpoint; 1376 nd->path.mnt = &mparent->mnt; 1377 inode = inode2; 1378 nd->seq = seq; 1379 } 1380 } 1381 while (unlikely(d_mountpoint(nd->path.dentry))) { 1382 struct mount *mounted; 1383 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1384 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1385 return -ECHILD; 1386 if (!mounted) 1387 break; 1388 nd->path.mnt = &mounted->mnt; 1389 nd->path.dentry = mounted->mnt.mnt_root; 1390 inode = nd->path.dentry->d_inode; 1391 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1392 } 1393 nd->inode = inode; 1394 return 0; 1395 } 1396 1397 /* 1398 * Follow down to the covering mount currently visible to userspace. At each 1399 * point, the filesystem owning that dentry may be queried as to whether the 1400 * caller is permitted to proceed or not. 1401 */ 1402 int follow_down(struct path *path) 1403 { 1404 unsigned managed; 1405 int ret; 1406 1407 while (managed = READ_ONCE(path->dentry->d_flags), 1408 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1409 /* Allow the filesystem to manage the transit without i_mutex 1410 * being held. 1411 * 1412 * We indicate to the filesystem if someone is trying to mount 1413 * something here. This gives autofs the chance to deny anyone 1414 * other than its daemon the right to mount on its 1415 * superstructure. 1416 * 1417 * The filesystem may sleep at this point. 1418 */ 1419 if (managed & DCACHE_MANAGE_TRANSIT) { 1420 BUG_ON(!path->dentry->d_op); 1421 BUG_ON(!path->dentry->d_op->d_manage); 1422 ret = path->dentry->d_op->d_manage(path, false); 1423 if (ret < 0) 1424 return ret == -EISDIR ? 0 : ret; 1425 } 1426 1427 /* Transit to a mounted filesystem. */ 1428 if (managed & DCACHE_MOUNTED) { 1429 struct vfsmount *mounted = lookup_mnt(path); 1430 if (!mounted) 1431 break; 1432 dput(path->dentry); 1433 mntput(path->mnt); 1434 path->mnt = mounted; 1435 path->dentry = dget(mounted->mnt_root); 1436 continue; 1437 } 1438 1439 /* Don't handle automount points here */ 1440 break; 1441 } 1442 return 0; 1443 } 1444 EXPORT_SYMBOL(follow_down); 1445 1446 /* 1447 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1448 */ 1449 static void follow_mount(struct path *path) 1450 { 1451 while (d_mountpoint(path->dentry)) { 1452 struct vfsmount *mounted = lookup_mnt(path); 1453 if (!mounted) 1454 break; 1455 dput(path->dentry); 1456 mntput(path->mnt); 1457 path->mnt = mounted; 1458 path->dentry = dget(mounted->mnt_root); 1459 } 1460 } 1461 1462 static int path_parent_directory(struct path *path) 1463 { 1464 struct dentry *old = path->dentry; 1465 /* rare case of legitimate dget_parent()... */ 1466 path->dentry = dget_parent(path->dentry); 1467 dput(old); 1468 if (unlikely(!path_connected(path))) 1469 return -ENOENT; 1470 return 0; 1471 } 1472 1473 static int follow_dotdot(struct nameidata *nd) 1474 { 1475 while(1) { 1476 if (path_equal(&nd->path, &nd->root)) 1477 break; 1478 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1479 int ret = path_parent_directory(&nd->path); 1480 if (ret) 1481 return ret; 1482 break; 1483 } 1484 if (!follow_up(&nd->path)) 1485 break; 1486 } 1487 follow_mount(&nd->path); 1488 nd->inode = nd->path.dentry->d_inode; 1489 return 0; 1490 } 1491 1492 /* 1493 * This looks up the name in dcache and possibly revalidates the found dentry. 1494 * NULL is returned if the dentry does not exist in the cache. 1495 */ 1496 static struct dentry *lookup_dcache(const struct qstr *name, 1497 struct dentry *dir, 1498 unsigned int flags) 1499 { 1500 struct dentry *dentry = d_lookup(dir, name); 1501 if (dentry) { 1502 int error = d_revalidate(dentry, flags); 1503 if (unlikely(error <= 0)) { 1504 if (!error) 1505 d_invalidate(dentry); 1506 dput(dentry); 1507 return ERR_PTR(error); 1508 } 1509 } 1510 return dentry; 1511 } 1512 1513 /* 1514 * Parent directory has inode locked exclusive. This is one 1515 * and only case when ->lookup() gets called on non in-lookup 1516 * dentries - as the matter of fact, this only gets called 1517 * when directory is guaranteed to have no in-lookup children 1518 * at all. 1519 */ 1520 static struct dentry *__lookup_hash(const struct qstr *name, 1521 struct dentry *base, unsigned int flags) 1522 { 1523 struct dentry *dentry = lookup_dcache(name, base, flags); 1524 struct dentry *old; 1525 struct inode *dir = base->d_inode; 1526 1527 if (dentry) 1528 return dentry; 1529 1530 /* Don't create child dentry for a dead directory. */ 1531 if (unlikely(IS_DEADDIR(dir))) 1532 return ERR_PTR(-ENOENT); 1533 1534 dentry = d_alloc(base, name); 1535 if (unlikely(!dentry)) 1536 return ERR_PTR(-ENOMEM); 1537 1538 old = dir->i_op->lookup(dir, dentry, flags); 1539 if (unlikely(old)) { 1540 dput(dentry); 1541 dentry = old; 1542 } 1543 return dentry; 1544 } 1545 1546 static int lookup_fast(struct nameidata *nd, 1547 struct path *path, struct inode **inode, 1548 unsigned *seqp) 1549 { 1550 struct vfsmount *mnt = nd->path.mnt; 1551 struct dentry *dentry, *parent = nd->path.dentry; 1552 int status = 1; 1553 int err; 1554 1555 /* 1556 * Rename seqlock is not required here because in the off chance 1557 * of a false negative due to a concurrent rename, the caller is 1558 * going to fall back to non-racy lookup. 1559 */ 1560 if (nd->flags & LOOKUP_RCU) { 1561 unsigned seq; 1562 bool negative; 1563 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1564 if (unlikely(!dentry)) { 1565 if (unlazy_walk(nd)) 1566 return -ECHILD; 1567 return 0; 1568 } 1569 1570 /* 1571 * This sequence count validates that the inode matches 1572 * the dentry name information from lookup. 1573 */ 1574 *inode = d_backing_inode(dentry); 1575 negative = d_is_negative(dentry); 1576 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1577 return -ECHILD; 1578 1579 /* 1580 * This sequence count validates that the parent had no 1581 * changes while we did the lookup of the dentry above. 1582 * 1583 * The memory barrier in read_seqcount_begin of child is 1584 * enough, we can use __read_seqcount_retry here. 1585 */ 1586 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1587 return -ECHILD; 1588 1589 *seqp = seq; 1590 status = d_revalidate(dentry, nd->flags); 1591 if (likely(status > 0)) { 1592 /* 1593 * Note: do negative dentry check after revalidation in 1594 * case that drops it. 1595 */ 1596 if (unlikely(negative)) 1597 return -ENOENT; 1598 path->mnt = mnt; 1599 path->dentry = dentry; 1600 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1601 return 1; 1602 } 1603 if (unlazy_child(nd, dentry, seq)) 1604 return -ECHILD; 1605 if (unlikely(status == -ECHILD)) 1606 /* we'd been told to redo it in non-rcu mode */ 1607 status = d_revalidate(dentry, nd->flags); 1608 } else { 1609 dentry = __d_lookup(parent, &nd->last); 1610 if (unlikely(!dentry)) 1611 return 0; 1612 status = d_revalidate(dentry, nd->flags); 1613 } 1614 if (unlikely(status <= 0)) { 1615 if (!status) 1616 d_invalidate(dentry); 1617 dput(dentry); 1618 return status; 1619 } 1620 if (unlikely(d_is_negative(dentry))) { 1621 dput(dentry); 1622 return -ENOENT; 1623 } 1624 1625 path->mnt = mnt; 1626 path->dentry = dentry; 1627 err = follow_managed(path, nd); 1628 if (likely(err > 0)) 1629 *inode = d_backing_inode(path->dentry); 1630 return err; 1631 } 1632 1633 /* Fast lookup failed, do it the slow way */ 1634 static struct dentry *__lookup_slow(const struct qstr *name, 1635 struct dentry *dir, 1636 unsigned int flags) 1637 { 1638 struct dentry *dentry, *old; 1639 struct inode *inode = dir->d_inode; 1640 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1641 1642 /* Don't go there if it's already dead */ 1643 if (unlikely(IS_DEADDIR(inode))) 1644 return ERR_PTR(-ENOENT); 1645 again: 1646 dentry = d_alloc_parallel(dir, name, &wq); 1647 if (IS_ERR(dentry)) 1648 return dentry; 1649 if (unlikely(!d_in_lookup(dentry))) { 1650 if (!(flags & LOOKUP_NO_REVAL)) { 1651 int error = d_revalidate(dentry, flags); 1652 if (unlikely(error <= 0)) { 1653 if (!error) { 1654 d_invalidate(dentry); 1655 dput(dentry); 1656 goto again; 1657 } 1658 dput(dentry); 1659 dentry = ERR_PTR(error); 1660 } 1661 } 1662 } else { 1663 old = inode->i_op->lookup(inode, dentry, flags); 1664 d_lookup_done(dentry); 1665 if (unlikely(old)) { 1666 dput(dentry); 1667 dentry = old; 1668 } 1669 } 1670 return dentry; 1671 } 1672 1673 static struct dentry *lookup_slow(const struct qstr *name, 1674 struct dentry *dir, 1675 unsigned int flags) 1676 { 1677 struct inode *inode = dir->d_inode; 1678 struct dentry *res; 1679 inode_lock_shared(inode); 1680 res = __lookup_slow(name, dir, flags); 1681 inode_unlock_shared(inode); 1682 return res; 1683 } 1684 1685 static inline int may_lookup(struct nameidata *nd) 1686 { 1687 if (nd->flags & LOOKUP_RCU) { 1688 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1689 if (err != -ECHILD) 1690 return err; 1691 if (unlazy_walk(nd)) 1692 return -ECHILD; 1693 } 1694 return inode_permission(nd->inode, MAY_EXEC); 1695 } 1696 1697 static inline int handle_dots(struct nameidata *nd, int type) 1698 { 1699 if (type == LAST_DOTDOT) { 1700 if (!nd->root.mnt) 1701 set_root(nd); 1702 if (nd->flags & LOOKUP_RCU) { 1703 return follow_dotdot_rcu(nd); 1704 } else 1705 return follow_dotdot(nd); 1706 } 1707 return 0; 1708 } 1709 1710 static int pick_link(struct nameidata *nd, struct path *link, 1711 struct inode *inode, unsigned seq) 1712 { 1713 int error; 1714 struct saved *last; 1715 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1716 path_to_nameidata(link, nd); 1717 return -ELOOP; 1718 } 1719 if (!(nd->flags & LOOKUP_RCU)) { 1720 if (link->mnt == nd->path.mnt) 1721 mntget(link->mnt); 1722 } 1723 error = nd_alloc_stack(nd); 1724 if (unlikely(error)) { 1725 if (error == -ECHILD) { 1726 if (unlikely(!legitimize_path(nd, link, seq))) { 1727 drop_links(nd); 1728 nd->depth = 0; 1729 nd->flags &= ~LOOKUP_RCU; 1730 nd->path.mnt = NULL; 1731 nd->path.dentry = NULL; 1732 rcu_read_unlock(); 1733 } else if (likely(unlazy_walk(nd)) == 0) 1734 error = nd_alloc_stack(nd); 1735 } 1736 if (error) { 1737 path_put(link); 1738 return error; 1739 } 1740 } 1741 1742 last = nd->stack + nd->depth++; 1743 last->link = *link; 1744 clear_delayed_call(&last->done); 1745 nd->link_inode = inode; 1746 last->seq = seq; 1747 return 1; 1748 } 1749 1750 enum {WALK_FOLLOW = 1, WALK_MORE = 2}; 1751 1752 /* 1753 * Do we need to follow links? We _really_ want to be able 1754 * to do this check without having to look at inode->i_op, 1755 * so we keep a cache of "no, this doesn't need follow_link" 1756 * for the common case. 1757 */ 1758 static inline int step_into(struct nameidata *nd, struct path *path, 1759 int flags, struct inode *inode, unsigned seq) 1760 { 1761 if (!(flags & WALK_MORE) && nd->depth) 1762 put_link(nd); 1763 if (likely(!d_is_symlink(path->dentry)) || 1764 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) { 1765 /* not a symlink or should not follow */ 1766 path_to_nameidata(path, nd); 1767 nd->inode = inode; 1768 nd->seq = seq; 1769 return 0; 1770 } 1771 /* make sure that d_is_symlink above matches inode */ 1772 if (nd->flags & LOOKUP_RCU) { 1773 if (read_seqcount_retry(&path->dentry->d_seq, seq)) 1774 return -ECHILD; 1775 } 1776 return pick_link(nd, path, inode, seq); 1777 } 1778 1779 static int walk_component(struct nameidata *nd, int flags) 1780 { 1781 struct path path; 1782 struct inode *inode; 1783 unsigned seq; 1784 int err; 1785 /* 1786 * "." and ".." are special - ".." especially so because it has 1787 * to be able to know about the current root directory and 1788 * parent relationships. 1789 */ 1790 if (unlikely(nd->last_type != LAST_NORM)) { 1791 err = handle_dots(nd, nd->last_type); 1792 if (!(flags & WALK_MORE) && nd->depth) 1793 put_link(nd); 1794 return err; 1795 } 1796 err = lookup_fast(nd, &path, &inode, &seq); 1797 if (unlikely(err <= 0)) { 1798 if (err < 0) 1799 return err; 1800 path.dentry = lookup_slow(&nd->last, nd->path.dentry, 1801 nd->flags); 1802 if (IS_ERR(path.dentry)) 1803 return PTR_ERR(path.dentry); 1804 1805 path.mnt = nd->path.mnt; 1806 err = follow_managed(&path, nd); 1807 if (unlikely(err < 0)) 1808 return err; 1809 1810 if (unlikely(d_is_negative(path.dentry))) { 1811 path_to_nameidata(&path, nd); 1812 return -ENOENT; 1813 } 1814 1815 seq = 0; /* we are already out of RCU mode */ 1816 inode = d_backing_inode(path.dentry); 1817 } 1818 1819 return step_into(nd, &path, flags, inode, seq); 1820 } 1821 1822 /* 1823 * We can do the critical dentry name comparison and hashing 1824 * operations one word at a time, but we are limited to: 1825 * 1826 * - Architectures with fast unaligned word accesses. We could 1827 * do a "get_unaligned()" if this helps and is sufficiently 1828 * fast. 1829 * 1830 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1831 * do not trap on the (extremely unlikely) case of a page 1832 * crossing operation. 1833 * 1834 * - Furthermore, we need an efficient 64-bit compile for the 1835 * 64-bit case in order to generate the "number of bytes in 1836 * the final mask". Again, that could be replaced with a 1837 * efficient population count instruction or similar. 1838 */ 1839 #ifdef CONFIG_DCACHE_WORD_ACCESS 1840 1841 #include <asm/word-at-a-time.h> 1842 1843 #ifdef HASH_MIX 1844 1845 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1846 1847 #elif defined(CONFIG_64BIT) 1848 /* 1849 * Register pressure in the mixing function is an issue, particularly 1850 * on 32-bit x86, but almost any function requires one state value and 1851 * one temporary. Instead, use a function designed for two state values 1852 * and no temporaries. 1853 * 1854 * This function cannot create a collision in only two iterations, so 1855 * we have two iterations to achieve avalanche. In those two iterations, 1856 * we have six layers of mixing, which is enough to spread one bit's 1857 * influence out to 2^6 = 64 state bits. 1858 * 1859 * Rotate constants are scored by considering either 64 one-bit input 1860 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1861 * probability of that delta causing a change to each of the 128 output 1862 * bits, using a sample of random initial states. 1863 * 1864 * The Shannon entropy of the computed probabilities is then summed 1865 * to produce a score. Ideally, any input change has a 50% chance of 1866 * toggling any given output bit. 1867 * 1868 * Mixing scores (in bits) for (12,45): 1869 * Input delta: 1-bit 2-bit 1870 * 1 round: 713.3 42542.6 1871 * 2 rounds: 2753.7 140389.8 1872 * 3 rounds: 5954.1 233458.2 1873 * 4 rounds: 7862.6 256672.2 1874 * Perfect: 8192 258048 1875 * (64*128) (64*63/2 * 128) 1876 */ 1877 #define HASH_MIX(x, y, a) \ 1878 ( x ^= (a), \ 1879 y ^= x, x = rol64(x,12),\ 1880 x += y, y = rol64(y,45),\ 1881 y *= 9 ) 1882 1883 /* 1884 * Fold two longs into one 32-bit hash value. This must be fast, but 1885 * latency isn't quite as critical, as there is a fair bit of additional 1886 * work done before the hash value is used. 1887 */ 1888 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1889 { 1890 y ^= x * GOLDEN_RATIO_64; 1891 y *= GOLDEN_RATIO_64; 1892 return y >> 32; 1893 } 1894 1895 #else /* 32-bit case */ 1896 1897 /* 1898 * Mixing scores (in bits) for (7,20): 1899 * Input delta: 1-bit 2-bit 1900 * 1 round: 330.3 9201.6 1901 * 2 rounds: 1246.4 25475.4 1902 * 3 rounds: 1907.1 31295.1 1903 * 4 rounds: 2042.3 31718.6 1904 * Perfect: 2048 31744 1905 * (32*64) (32*31/2 * 64) 1906 */ 1907 #define HASH_MIX(x, y, a) \ 1908 ( x ^= (a), \ 1909 y ^= x, x = rol32(x, 7),\ 1910 x += y, y = rol32(y,20),\ 1911 y *= 9 ) 1912 1913 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1914 { 1915 /* Use arch-optimized multiply if one exists */ 1916 return __hash_32(y ^ __hash_32(x)); 1917 } 1918 1919 #endif 1920 1921 /* 1922 * Return the hash of a string of known length. This is carfully 1923 * designed to match hash_name(), which is the more critical function. 1924 * In particular, we must end by hashing a final word containing 0..7 1925 * payload bytes, to match the way that hash_name() iterates until it 1926 * finds the delimiter after the name. 1927 */ 1928 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1929 { 1930 unsigned long a, x = 0, y = (unsigned long)salt; 1931 1932 for (;;) { 1933 if (!len) 1934 goto done; 1935 a = load_unaligned_zeropad(name); 1936 if (len < sizeof(unsigned long)) 1937 break; 1938 HASH_MIX(x, y, a); 1939 name += sizeof(unsigned long); 1940 len -= sizeof(unsigned long); 1941 } 1942 x ^= a & bytemask_from_count(len); 1943 done: 1944 return fold_hash(x, y); 1945 } 1946 EXPORT_SYMBOL(full_name_hash); 1947 1948 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1949 u64 hashlen_string(const void *salt, const char *name) 1950 { 1951 unsigned long a = 0, x = 0, y = (unsigned long)salt; 1952 unsigned long adata, mask, len; 1953 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1954 1955 len = 0; 1956 goto inside; 1957 1958 do { 1959 HASH_MIX(x, y, a); 1960 len += sizeof(unsigned long); 1961 inside: 1962 a = load_unaligned_zeropad(name+len); 1963 } while (!has_zero(a, &adata, &constants)); 1964 1965 adata = prep_zero_mask(a, adata, &constants); 1966 mask = create_zero_mask(adata); 1967 x ^= a & zero_bytemask(mask); 1968 1969 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 1970 } 1971 EXPORT_SYMBOL(hashlen_string); 1972 1973 /* 1974 * Calculate the length and hash of the path component, and 1975 * return the "hash_len" as the result. 1976 */ 1977 static inline u64 hash_name(const void *salt, const char *name) 1978 { 1979 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 1980 unsigned long adata, bdata, mask, len; 1981 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1982 1983 len = 0; 1984 goto inside; 1985 1986 do { 1987 HASH_MIX(x, y, a); 1988 len += sizeof(unsigned long); 1989 inside: 1990 a = load_unaligned_zeropad(name+len); 1991 b = a ^ REPEAT_BYTE('/'); 1992 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1993 1994 adata = prep_zero_mask(a, adata, &constants); 1995 bdata = prep_zero_mask(b, bdata, &constants); 1996 mask = create_zero_mask(adata | bdata); 1997 x ^= a & zero_bytemask(mask); 1998 1999 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2000 } 2001 2002 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2003 2004 /* Return the hash of a string of known length */ 2005 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2006 { 2007 unsigned long hash = init_name_hash(salt); 2008 while (len--) 2009 hash = partial_name_hash((unsigned char)*name++, hash); 2010 return end_name_hash(hash); 2011 } 2012 EXPORT_SYMBOL(full_name_hash); 2013 2014 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2015 u64 hashlen_string(const void *salt, const char *name) 2016 { 2017 unsigned long hash = init_name_hash(salt); 2018 unsigned long len = 0, c; 2019 2020 c = (unsigned char)*name; 2021 while (c) { 2022 len++; 2023 hash = partial_name_hash(c, hash); 2024 c = (unsigned char)name[len]; 2025 } 2026 return hashlen_create(end_name_hash(hash), len); 2027 } 2028 EXPORT_SYMBOL(hashlen_string); 2029 2030 /* 2031 * We know there's a real path component here of at least 2032 * one character. 2033 */ 2034 static inline u64 hash_name(const void *salt, const char *name) 2035 { 2036 unsigned long hash = init_name_hash(salt); 2037 unsigned long len = 0, c; 2038 2039 c = (unsigned char)*name; 2040 do { 2041 len++; 2042 hash = partial_name_hash(c, hash); 2043 c = (unsigned char)name[len]; 2044 } while (c && c != '/'); 2045 return hashlen_create(end_name_hash(hash), len); 2046 } 2047 2048 #endif 2049 2050 /* 2051 * Name resolution. 2052 * This is the basic name resolution function, turning a pathname into 2053 * the final dentry. We expect 'base' to be positive and a directory. 2054 * 2055 * Returns 0 and nd will have valid dentry and mnt on success. 2056 * Returns error and drops reference to input namei data on failure. 2057 */ 2058 static int link_path_walk(const char *name, struct nameidata *nd) 2059 { 2060 int err; 2061 2062 if (IS_ERR(name)) 2063 return PTR_ERR(name); 2064 while (*name=='/') 2065 name++; 2066 if (!*name) 2067 return 0; 2068 2069 /* At this point we know we have a real path component. */ 2070 for(;;) { 2071 u64 hash_len; 2072 int type; 2073 2074 err = may_lookup(nd); 2075 if (err) 2076 return err; 2077 2078 hash_len = hash_name(nd->path.dentry, name); 2079 2080 type = LAST_NORM; 2081 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2082 case 2: 2083 if (name[1] == '.') { 2084 type = LAST_DOTDOT; 2085 nd->flags |= LOOKUP_JUMPED; 2086 } 2087 break; 2088 case 1: 2089 type = LAST_DOT; 2090 } 2091 if (likely(type == LAST_NORM)) { 2092 struct dentry *parent = nd->path.dentry; 2093 nd->flags &= ~LOOKUP_JUMPED; 2094 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2095 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2096 err = parent->d_op->d_hash(parent, &this); 2097 if (err < 0) 2098 return err; 2099 hash_len = this.hash_len; 2100 name = this.name; 2101 } 2102 } 2103 2104 nd->last.hash_len = hash_len; 2105 nd->last.name = name; 2106 nd->last_type = type; 2107 2108 name += hashlen_len(hash_len); 2109 if (!*name) 2110 goto OK; 2111 /* 2112 * If it wasn't NUL, we know it was '/'. Skip that 2113 * slash, and continue until no more slashes. 2114 */ 2115 do { 2116 name++; 2117 } while (unlikely(*name == '/')); 2118 if (unlikely(!*name)) { 2119 OK: 2120 /* pathname body, done */ 2121 if (!nd->depth) 2122 return 0; 2123 name = nd->stack[nd->depth - 1].name; 2124 /* trailing symlink, done */ 2125 if (!name) 2126 return 0; 2127 /* last component of nested symlink */ 2128 err = walk_component(nd, WALK_FOLLOW); 2129 } else { 2130 /* not the last component */ 2131 err = walk_component(nd, WALK_FOLLOW | WALK_MORE); 2132 } 2133 if (err < 0) 2134 return err; 2135 2136 if (err) { 2137 const char *s = get_link(nd); 2138 2139 if (IS_ERR(s)) 2140 return PTR_ERR(s); 2141 err = 0; 2142 if (unlikely(!s)) { 2143 /* jumped */ 2144 put_link(nd); 2145 } else { 2146 nd->stack[nd->depth - 1].name = name; 2147 name = s; 2148 continue; 2149 } 2150 } 2151 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2152 if (nd->flags & LOOKUP_RCU) { 2153 if (unlazy_walk(nd)) 2154 return -ECHILD; 2155 } 2156 return -ENOTDIR; 2157 } 2158 } 2159 } 2160 2161 /* must be paired with terminate_walk() */ 2162 static const char *path_init(struct nameidata *nd, unsigned flags) 2163 { 2164 const char *s = nd->name->name; 2165 2166 if (!*s) 2167 flags &= ~LOOKUP_RCU; 2168 if (flags & LOOKUP_RCU) 2169 rcu_read_lock(); 2170 2171 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2172 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2173 nd->depth = 0; 2174 if (flags & LOOKUP_ROOT) { 2175 struct dentry *root = nd->root.dentry; 2176 struct inode *inode = root->d_inode; 2177 if (*s && unlikely(!d_can_lookup(root))) 2178 return ERR_PTR(-ENOTDIR); 2179 nd->path = nd->root; 2180 nd->inode = inode; 2181 if (flags & LOOKUP_RCU) { 2182 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2183 nd->root_seq = nd->seq; 2184 nd->m_seq = read_seqbegin(&mount_lock); 2185 } else { 2186 path_get(&nd->path); 2187 } 2188 return s; 2189 } 2190 2191 nd->root.mnt = NULL; 2192 nd->path.mnt = NULL; 2193 nd->path.dentry = NULL; 2194 2195 nd->m_seq = read_seqbegin(&mount_lock); 2196 if (*s == '/') { 2197 set_root(nd); 2198 if (likely(!nd_jump_root(nd))) 2199 return s; 2200 return ERR_PTR(-ECHILD); 2201 } else if (nd->dfd == AT_FDCWD) { 2202 if (flags & LOOKUP_RCU) { 2203 struct fs_struct *fs = current->fs; 2204 unsigned seq; 2205 2206 do { 2207 seq = read_seqcount_begin(&fs->seq); 2208 nd->path = fs->pwd; 2209 nd->inode = nd->path.dentry->d_inode; 2210 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2211 } while (read_seqcount_retry(&fs->seq, seq)); 2212 } else { 2213 get_fs_pwd(current->fs, &nd->path); 2214 nd->inode = nd->path.dentry->d_inode; 2215 } 2216 return s; 2217 } else { 2218 /* Caller must check execute permissions on the starting path component */ 2219 struct fd f = fdget_raw(nd->dfd); 2220 struct dentry *dentry; 2221 2222 if (!f.file) 2223 return ERR_PTR(-EBADF); 2224 2225 dentry = f.file->f_path.dentry; 2226 2227 if (*s && unlikely(!d_can_lookup(dentry))) { 2228 fdput(f); 2229 return ERR_PTR(-ENOTDIR); 2230 } 2231 2232 nd->path = f.file->f_path; 2233 if (flags & LOOKUP_RCU) { 2234 nd->inode = nd->path.dentry->d_inode; 2235 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2236 } else { 2237 path_get(&nd->path); 2238 nd->inode = nd->path.dentry->d_inode; 2239 } 2240 fdput(f); 2241 return s; 2242 } 2243 } 2244 2245 static const char *trailing_symlink(struct nameidata *nd) 2246 { 2247 const char *s; 2248 int error = may_follow_link(nd); 2249 if (unlikely(error)) 2250 return ERR_PTR(error); 2251 nd->flags |= LOOKUP_PARENT; 2252 nd->stack[0].name = NULL; 2253 s = get_link(nd); 2254 return s ? s : ""; 2255 } 2256 2257 static inline int lookup_last(struct nameidata *nd) 2258 { 2259 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2260 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2261 2262 nd->flags &= ~LOOKUP_PARENT; 2263 return walk_component(nd, 0); 2264 } 2265 2266 static int handle_lookup_down(struct nameidata *nd) 2267 { 2268 struct path path = nd->path; 2269 struct inode *inode = nd->inode; 2270 unsigned seq = nd->seq; 2271 int err; 2272 2273 if (nd->flags & LOOKUP_RCU) { 2274 /* 2275 * don't bother with unlazy_walk on failure - we are 2276 * at the very beginning of walk, so we lose nothing 2277 * if we simply redo everything in non-RCU mode 2278 */ 2279 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq))) 2280 return -ECHILD; 2281 } else { 2282 dget(path.dentry); 2283 err = follow_managed(&path, nd); 2284 if (unlikely(err < 0)) 2285 return err; 2286 inode = d_backing_inode(path.dentry); 2287 seq = 0; 2288 } 2289 path_to_nameidata(&path, nd); 2290 nd->inode = inode; 2291 nd->seq = seq; 2292 return 0; 2293 } 2294 2295 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2296 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2297 { 2298 const char *s = path_init(nd, flags); 2299 int err; 2300 2301 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2302 err = handle_lookup_down(nd); 2303 if (unlikely(err < 0)) 2304 s = ERR_PTR(err); 2305 } 2306 2307 while (!(err = link_path_walk(s, nd)) 2308 && ((err = lookup_last(nd)) > 0)) { 2309 s = trailing_symlink(nd); 2310 } 2311 if (!err) 2312 err = complete_walk(nd); 2313 2314 if (!err && nd->flags & LOOKUP_DIRECTORY) 2315 if (!d_can_lookup(nd->path.dentry)) 2316 err = -ENOTDIR; 2317 if (!err) { 2318 *path = nd->path; 2319 nd->path.mnt = NULL; 2320 nd->path.dentry = NULL; 2321 } 2322 terminate_walk(nd); 2323 return err; 2324 } 2325 2326 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2327 struct path *path, struct path *root) 2328 { 2329 int retval; 2330 struct nameidata nd; 2331 if (IS_ERR(name)) 2332 return PTR_ERR(name); 2333 if (unlikely(root)) { 2334 nd.root = *root; 2335 flags |= LOOKUP_ROOT; 2336 } 2337 set_nameidata(&nd, dfd, name); 2338 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2339 if (unlikely(retval == -ECHILD)) 2340 retval = path_lookupat(&nd, flags, path); 2341 if (unlikely(retval == -ESTALE)) 2342 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2343 2344 if (likely(!retval)) 2345 audit_inode(name, path->dentry, 0); 2346 restore_nameidata(); 2347 putname(name); 2348 return retval; 2349 } 2350 2351 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2352 static int path_parentat(struct nameidata *nd, unsigned flags, 2353 struct path *parent) 2354 { 2355 const char *s = path_init(nd, flags); 2356 int err = link_path_walk(s, nd); 2357 if (!err) 2358 err = complete_walk(nd); 2359 if (!err) { 2360 *parent = nd->path; 2361 nd->path.mnt = NULL; 2362 nd->path.dentry = NULL; 2363 } 2364 terminate_walk(nd); 2365 return err; 2366 } 2367 2368 static struct filename *filename_parentat(int dfd, struct filename *name, 2369 unsigned int flags, struct path *parent, 2370 struct qstr *last, int *type) 2371 { 2372 int retval; 2373 struct nameidata nd; 2374 2375 if (IS_ERR(name)) 2376 return name; 2377 set_nameidata(&nd, dfd, name); 2378 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2379 if (unlikely(retval == -ECHILD)) 2380 retval = path_parentat(&nd, flags, parent); 2381 if (unlikely(retval == -ESTALE)) 2382 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2383 if (likely(!retval)) { 2384 *last = nd.last; 2385 *type = nd.last_type; 2386 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2387 } else { 2388 putname(name); 2389 name = ERR_PTR(retval); 2390 } 2391 restore_nameidata(); 2392 return name; 2393 } 2394 2395 /* does lookup, returns the object with parent locked */ 2396 struct dentry *kern_path_locked(const char *name, struct path *path) 2397 { 2398 struct filename *filename; 2399 struct dentry *d; 2400 struct qstr last; 2401 int type; 2402 2403 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2404 &last, &type); 2405 if (IS_ERR(filename)) 2406 return ERR_CAST(filename); 2407 if (unlikely(type != LAST_NORM)) { 2408 path_put(path); 2409 putname(filename); 2410 return ERR_PTR(-EINVAL); 2411 } 2412 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2413 d = __lookup_hash(&last, path->dentry, 0); 2414 if (IS_ERR(d)) { 2415 inode_unlock(path->dentry->d_inode); 2416 path_put(path); 2417 } 2418 putname(filename); 2419 return d; 2420 } 2421 2422 int kern_path(const char *name, unsigned int flags, struct path *path) 2423 { 2424 return filename_lookup(AT_FDCWD, getname_kernel(name), 2425 flags, path, NULL); 2426 } 2427 EXPORT_SYMBOL(kern_path); 2428 2429 /** 2430 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2431 * @dentry: pointer to dentry of the base directory 2432 * @mnt: pointer to vfs mount of the base directory 2433 * @name: pointer to file name 2434 * @flags: lookup flags 2435 * @path: pointer to struct path to fill 2436 */ 2437 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2438 const char *name, unsigned int flags, 2439 struct path *path) 2440 { 2441 struct path root = {.mnt = mnt, .dentry = dentry}; 2442 /* the first argument of filename_lookup() is ignored with root */ 2443 return filename_lookup(AT_FDCWD, getname_kernel(name), 2444 flags , path, &root); 2445 } 2446 EXPORT_SYMBOL(vfs_path_lookup); 2447 2448 static int lookup_one_len_common(const char *name, struct dentry *base, 2449 int len, struct qstr *this) 2450 { 2451 this->name = name; 2452 this->len = len; 2453 this->hash = full_name_hash(base, name, len); 2454 if (!len) 2455 return -EACCES; 2456 2457 if (unlikely(name[0] == '.')) { 2458 if (len < 2 || (len == 2 && name[1] == '.')) 2459 return -EACCES; 2460 } 2461 2462 while (len--) { 2463 unsigned int c = *(const unsigned char *)name++; 2464 if (c == '/' || c == '\0') 2465 return -EACCES; 2466 } 2467 /* 2468 * See if the low-level filesystem might want 2469 * to use its own hash.. 2470 */ 2471 if (base->d_flags & DCACHE_OP_HASH) { 2472 int err = base->d_op->d_hash(base, this); 2473 if (err < 0) 2474 return err; 2475 } 2476 2477 return inode_permission(base->d_inode, MAY_EXEC); 2478 } 2479 2480 /** 2481 * try_lookup_one_len - filesystem helper to lookup single pathname component 2482 * @name: pathname component to lookup 2483 * @base: base directory to lookup from 2484 * @len: maximum length @len should be interpreted to 2485 * 2486 * Look up a dentry by name in the dcache, returning NULL if it does not 2487 * currently exist. The function does not try to create a dentry. 2488 * 2489 * Note that this routine is purely a helper for filesystem usage and should 2490 * not be called by generic code. 2491 * 2492 * The caller must hold base->i_mutex. 2493 */ 2494 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2495 { 2496 struct qstr this; 2497 int err; 2498 2499 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2500 2501 err = lookup_one_len_common(name, base, len, &this); 2502 if (err) 2503 return ERR_PTR(err); 2504 2505 return lookup_dcache(&this, base, 0); 2506 } 2507 EXPORT_SYMBOL(try_lookup_one_len); 2508 2509 /** 2510 * lookup_one_len - filesystem helper to lookup single pathname component 2511 * @name: pathname component to lookup 2512 * @base: base directory to lookup from 2513 * @len: maximum length @len should be interpreted to 2514 * 2515 * Note that this routine is purely a helper for filesystem usage and should 2516 * not be called by generic code. 2517 * 2518 * The caller must hold base->i_mutex. 2519 */ 2520 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2521 { 2522 struct dentry *dentry; 2523 struct qstr this; 2524 int err; 2525 2526 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2527 2528 err = lookup_one_len_common(name, base, len, &this); 2529 if (err) 2530 return ERR_PTR(err); 2531 2532 dentry = lookup_dcache(&this, base, 0); 2533 return dentry ? dentry : __lookup_slow(&this, base, 0); 2534 } 2535 EXPORT_SYMBOL(lookup_one_len); 2536 2537 /** 2538 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2539 * @name: pathname component to lookup 2540 * @base: base directory to lookup from 2541 * @len: maximum length @len should be interpreted to 2542 * 2543 * Note that this routine is purely a helper for filesystem usage and should 2544 * not be called by generic code. 2545 * 2546 * Unlike lookup_one_len, it should be called without the parent 2547 * i_mutex held, and will take the i_mutex itself if necessary. 2548 */ 2549 struct dentry *lookup_one_len_unlocked(const char *name, 2550 struct dentry *base, int len) 2551 { 2552 struct qstr this; 2553 int err; 2554 struct dentry *ret; 2555 2556 err = lookup_one_len_common(name, base, len, &this); 2557 if (err) 2558 return ERR_PTR(err); 2559 2560 ret = lookup_dcache(&this, base, 0); 2561 if (!ret) 2562 ret = lookup_slow(&this, base, 0); 2563 return ret; 2564 } 2565 EXPORT_SYMBOL(lookup_one_len_unlocked); 2566 2567 #ifdef CONFIG_UNIX98_PTYS 2568 int path_pts(struct path *path) 2569 { 2570 /* Find something mounted on "pts" in the same directory as 2571 * the input path. 2572 */ 2573 struct dentry *child, *parent; 2574 struct qstr this; 2575 int ret; 2576 2577 ret = path_parent_directory(path); 2578 if (ret) 2579 return ret; 2580 2581 parent = path->dentry; 2582 this.name = "pts"; 2583 this.len = 3; 2584 child = d_hash_and_lookup(parent, &this); 2585 if (!child) 2586 return -ENOENT; 2587 2588 path->dentry = child; 2589 dput(parent); 2590 follow_mount(path); 2591 return 0; 2592 } 2593 #endif 2594 2595 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2596 struct path *path, int *empty) 2597 { 2598 return filename_lookup(dfd, getname_flags(name, flags, empty), 2599 flags, path, NULL); 2600 } 2601 EXPORT_SYMBOL(user_path_at_empty); 2602 2603 /** 2604 * mountpoint_last - look up last component for umount 2605 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2606 * 2607 * This is a special lookup_last function just for umount. In this case, we 2608 * need to resolve the path without doing any revalidation. 2609 * 2610 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2611 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2612 * in almost all cases, this lookup will be served out of the dcache. The only 2613 * cases where it won't are if nd->last refers to a symlink or the path is 2614 * bogus and it doesn't exist. 2615 * 2616 * Returns: 2617 * -error: if there was an error during lookup. This includes -ENOENT if the 2618 * lookup found a negative dentry. 2619 * 2620 * 0: if we successfully resolved nd->last and found it to not to be a 2621 * symlink that needs to be followed. 2622 * 2623 * 1: if we successfully resolved nd->last and found it to be a symlink 2624 * that needs to be followed. 2625 */ 2626 static int 2627 mountpoint_last(struct nameidata *nd) 2628 { 2629 int error = 0; 2630 struct dentry *dir = nd->path.dentry; 2631 struct path path; 2632 2633 /* If we're in rcuwalk, drop out of it to handle last component */ 2634 if (nd->flags & LOOKUP_RCU) { 2635 if (unlazy_walk(nd)) 2636 return -ECHILD; 2637 } 2638 2639 nd->flags &= ~LOOKUP_PARENT; 2640 2641 if (unlikely(nd->last_type != LAST_NORM)) { 2642 error = handle_dots(nd, nd->last_type); 2643 if (error) 2644 return error; 2645 path.dentry = dget(nd->path.dentry); 2646 } else { 2647 path.dentry = d_lookup(dir, &nd->last); 2648 if (!path.dentry) { 2649 /* 2650 * No cached dentry. Mounted dentries are pinned in the 2651 * cache, so that means that this dentry is probably 2652 * a symlink or the path doesn't actually point 2653 * to a mounted dentry. 2654 */ 2655 path.dentry = lookup_slow(&nd->last, dir, 2656 nd->flags | LOOKUP_NO_REVAL); 2657 if (IS_ERR(path.dentry)) 2658 return PTR_ERR(path.dentry); 2659 } 2660 } 2661 if (d_is_negative(path.dentry)) { 2662 dput(path.dentry); 2663 return -ENOENT; 2664 } 2665 path.mnt = nd->path.mnt; 2666 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0); 2667 } 2668 2669 /** 2670 * path_mountpoint - look up a path to be umounted 2671 * @nd: lookup context 2672 * @flags: lookup flags 2673 * @path: pointer to container for result 2674 * 2675 * Look up the given name, but don't attempt to revalidate the last component. 2676 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2677 */ 2678 static int 2679 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2680 { 2681 const char *s = path_init(nd, flags); 2682 int err; 2683 2684 while (!(err = link_path_walk(s, nd)) && 2685 (err = mountpoint_last(nd)) > 0) { 2686 s = trailing_symlink(nd); 2687 } 2688 if (!err) { 2689 *path = nd->path; 2690 nd->path.mnt = NULL; 2691 nd->path.dentry = NULL; 2692 follow_mount(path); 2693 } 2694 terminate_walk(nd); 2695 return err; 2696 } 2697 2698 static int 2699 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2700 unsigned int flags) 2701 { 2702 struct nameidata nd; 2703 int error; 2704 if (IS_ERR(name)) 2705 return PTR_ERR(name); 2706 set_nameidata(&nd, dfd, name); 2707 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2708 if (unlikely(error == -ECHILD)) 2709 error = path_mountpoint(&nd, flags, path); 2710 if (unlikely(error == -ESTALE)) 2711 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2712 if (likely(!error)) 2713 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL); 2714 restore_nameidata(); 2715 putname(name); 2716 return error; 2717 } 2718 2719 /** 2720 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2721 * @dfd: directory file descriptor 2722 * @name: pathname from userland 2723 * @flags: lookup flags 2724 * @path: pointer to container to hold result 2725 * 2726 * A umount is a special case for path walking. We're not actually interested 2727 * in the inode in this situation, and ESTALE errors can be a problem. We 2728 * simply want track down the dentry and vfsmount attached at the mountpoint 2729 * and avoid revalidating the last component. 2730 * 2731 * Returns 0 and populates "path" on success. 2732 */ 2733 int 2734 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2735 struct path *path) 2736 { 2737 return filename_mountpoint(dfd, getname(name), path, flags); 2738 } 2739 2740 int 2741 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2742 unsigned int flags) 2743 { 2744 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2745 } 2746 EXPORT_SYMBOL(kern_path_mountpoint); 2747 2748 int __check_sticky(struct inode *dir, struct inode *inode) 2749 { 2750 kuid_t fsuid = current_fsuid(); 2751 2752 if (uid_eq(inode->i_uid, fsuid)) 2753 return 0; 2754 if (uid_eq(dir->i_uid, fsuid)) 2755 return 0; 2756 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2757 } 2758 EXPORT_SYMBOL(__check_sticky); 2759 2760 /* 2761 * Check whether we can remove a link victim from directory dir, check 2762 * whether the type of victim is right. 2763 * 1. We can't do it if dir is read-only (done in permission()) 2764 * 2. We should have write and exec permissions on dir 2765 * 3. We can't remove anything from append-only dir 2766 * 4. We can't do anything with immutable dir (done in permission()) 2767 * 5. If the sticky bit on dir is set we should either 2768 * a. be owner of dir, or 2769 * b. be owner of victim, or 2770 * c. have CAP_FOWNER capability 2771 * 6. If the victim is append-only or immutable we can't do antyhing with 2772 * links pointing to it. 2773 * 7. If the victim has an unknown uid or gid we can't change the inode. 2774 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2775 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2776 * 10. We can't remove a root or mountpoint. 2777 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2778 * nfs_async_unlink(). 2779 */ 2780 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2781 { 2782 struct inode *inode = d_backing_inode(victim); 2783 int error; 2784 2785 if (d_is_negative(victim)) 2786 return -ENOENT; 2787 BUG_ON(!inode); 2788 2789 BUG_ON(victim->d_parent->d_inode != dir); 2790 2791 /* Inode writeback is not safe when the uid or gid are invalid. */ 2792 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2793 return -EOVERFLOW; 2794 2795 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2796 2797 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2798 if (error) 2799 return error; 2800 if (IS_APPEND(dir)) 2801 return -EPERM; 2802 2803 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2804 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2805 return -EPERM; 2806 if (isdir) { 2807 if (!d_is_dir(victim)) 2808 return -ENOTDIR; 2809 if (IS_ROOT(victim)) 2810 return -EBUSY; 2811 } else if (d_is_dir(victim)) 2812 return -EISDIR; 2813 if (IS_DEADDIR(dir)) 2814 return -ENOENT; 2815 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2816 return -EBUSY; 2817 return 0; 2818 } 2819 2820 /* Check whether we can create an object with dentry child in directory 2821 * dir. 2822 * 1. We can't do it if child already exists (open has special treatment for 2823 * this case, but since we are inlined it's OK) 2824 * 2. We can't do it if dir is read-only (done in permission()) 2825 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2826 * 4. We should have write and exec permissions on dir 2827 * 5. We can't do it if dir is immutable (done in permission()) 2828 */ 2829 static inline int may_create(struct inode *dir, struct dentry *child) 2830 { 2831 struct user_namespace *s_user_ns; 2832 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2833 if (child->d_inode) 2834 return -EEXIST; 2835 if (IS_DEADDIR(dir)) 2836 return -ENOENT; 2837 s_user_ns = dir->i_sb->s_user_ns; 2838 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2839 !kgid_has_mapping(s_user_ns, current_fsgid())) 2840 return -EOVERFLOW; 2841 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2842 } 2843 2844 /* 2845 * p1 and p2 should be directories on the same fs. 2846 */ 2847 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2848 { 2849 struct dentry *p; 2850 2851 if (p1 == p2) { 2852 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2853 return NULL; 2854 } 2855 2856 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2857 2858 p = d_ancestor(p2, p1); 2859 if (p) { 2860 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2861 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2862 return p; 2863 } 2864 2865 p = d_ancestor(p1, p2); 2866 if (p) { 2867 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2868 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2869 return p; 2870 } 2871 2872 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2873 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2874 return NULL; 2875 } 2876 EXPORT_SYMBOL(lock_rename); 2877 2878 void unlock_rename(struct dentry *p1, struct dentry *p2) 2879 { 2880 inode_unlock(p1->d_inode); 2881 if (p1 != p2) { 2882 inode_unlock(p2->d_inode); 2883 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2884 } 2885 } 2886 EXPORT_SYMBOL(unlock_rename); 2887 2888 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2889 bool want_excl) 2890 { 2891 int error = may_create(dir, dentry); 2892 if (error) 2893 return error; 2894 2895 if (!dir->i_op->create) 2896 return -EACCES; /* shouldn't it be ENOSYS? */ 2897 mode &= S_IALLUGO; 2898 mode |= S_IFREG; 2899 error = security_inode_create(dir, dentry, mode); 2900 if (error) 2901 return error; 2902 error = dir->i_op->create(dir, dentry, mode, want_excl); 2903 if (!error) 2904 fsnotify_create(dir, dentry); 2905 return error; 2906 } 2907 EXPORT_SYMBOL(vfs_create); 2908 2909 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2910 int (*f)(struct dentry *, umode_t, void *), 2911 void *arg) 2912 { 2913 struct inode *dir = dentry->d_parent->d_inode; 2914 int error = may_create(dir, dentry); 2915 if (error) 2916 return error; 2917 2918 mode &= S_IALLUGO; 2919 mode |= S_IFREG; 2920 error = security_inode_create(dir, dentry, mode); 2921 if (error) 2922 return error; 2923 error = f(dentry, mode, arg); 2924 if (!error) 2925 fsnotify_create(dir, dentry); 2926 return error; 2927 } 2928 EXPORT_SYMBOL(vfs_mkobj); 2929 2930 bool may_open_dev(const struct path *path) 2931 { 2932 return !(path->mnt->mnt_flags & MNT_NODEV) && 2933 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2934 } 2935 2936 static int may_open(const struct path *path, int acc_mode, int flag) 2937 { 2938 struct dentry *dentry = path->dentry; 2939 struct inode *inode = dentry->d_inode; 2940 int error; 2941 2942 if (!inode) 2943 return -ENOENT; 2944 2945 switch (inode->i_mode & S_IFMT) { 2946 case S_IFLNK: 2947 return -ELOOP; 2948 case S_IFDIR: 2949 if (acc_mode & MAY_WRITE) 2950 return -EISDIR; 2951 break; 2952 case S_IFBLK: 2953 case S_IFCHR: 2954 if (!may_open_dev(path)) 2955 return -EACCES; 2956 /*FALLTHRU*/ 2957 case S_IFIFO: 2958 case S_IFSOCK: 2959 flag &= ~O_TRUNC; 2960 break; 2961 } 2962 2963 error = inode_permission(inode, MAY_OPEN | acc_mode); 2964 if (error) 2965 return error; 2966 2967 /* 2968 * An append-only file must be opened in append mode for writing. 2969 */ 2970 if (IS_APPEND(inode)) { 2971 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2972 return -EPERM; 2973 if (flag & O_TRUNC) 2974 return -EPERM; 2975 } 2976 2977 /* O_NOATIME can only be set by the owner or superuser */ 2978 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2979 return -EPERM; 2980 2981 return 0; 2982 } 2983 2984 static int handle_truncate(struct file *filp) 2985 { 2986 const struct path *path = &filp->f_path; 2987 struct inode *inode = path->dentry->d_inode; 2988 int error = get_write_access(inode); 2989 if (error) 2990 return error; 2991 /* 2992 * Refuse to truncate files with mandatory locks held on them. 2993 */ 2994 error = locks_verify_locked(filp); 2995 if (!error) 2996 error = security_path_truncate(path); 2997 if (!error) { 2998 error = do_truncate(path->dentry, 0, 2999 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3000 filp); 3001 } 3002 put_write_access(inode); 3003 return error; 3004 } 3005 3006 static inline int open_to_namei_flags(int flag) 3007 { 3008 if ((flag & O_ACCMODE) == 3) 3009 flag--; 3010 return flag; 3011 } 3012 3013 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 3014 { 3015 struct user_namespace *s_user_ns; 3016 int error = security_path_mknod(dir, dentry, mode, 0); 3017 if (error) 3018 return error; 3019 3020 s_user_ns = dir->dentry->d_sb->s_user_ns; 3021 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 3022 !kgid_has_mapping(s_user_ns, current_fsgid())) 3023 return -EOVERFLOW; 3024 3025 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 3026 if (error) 3027 return error; 3028 3029 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3030 } 3031 3032 /* 3033 * Attempt to atomically look up, create and open a file from a negative 3034 * dentry. 3035 * 3036 * Returns 0 if successful. The file will have been created and attached to 3037 * @file by the filesystem calling finish_open(). 3038 * 3039 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3040 * be set. The caller will need to perform the open themselves. @path will 3041 * have been updated to point to the new dentry. This may be negative. 3042 * 3043 * Returns an error code otherwise. 3044 */ 3045 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 3046 struct path *path, struct file *file, 3047 const struct open_flags *op, 3048 int open_flag, umode_t mode) 3049 { 3050 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3051 struct inode *dir = nd->path.dentry->d_inode; 3052 int error; 3053 3054 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */ 3055 open_flag &= ~O_TRUNC; 3056 3057 if (nd->flags & LOOKUP_DIRECTORY) 3058 open_flag |= O_DIRECTORY; 3059 3060 file->f_path.dentry = DENTRY_NOT_SET; 3061 file->f_path.mnt = nd->path.mnt; 3062 error = dir->i_op->atomic_open(dir, dentry, file, 3063 open_to_namei_flags(open_flag), mode); 3064 d_lookup_done(dentry); 3065 if (!error) { 3066 if (file->f_mode & FMODE_OPENED) { 3067 /* 3068 * We didn't have the inode before the open, so check open 3069 * permission here. 3070 */ 3071 int acc_mode = op->acc_mode; 3072 if (file->f_mode & FMODE_CREATED) { 3073 WARN_ON(!(open_flag & O_CREAT)); 3074 fsnotify_create(dir, dentry); 3075 acc_mode = 0; 3076 } 3077 error = may_open(&file->f_path, acc_mode, open_flag); 3078 if (WARN_ON(error > 0)) 3079 error = -EINVAL; 3080 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3081 error = -EIO; 3082 } else { 3083 if (file->f_path.dentry) { 3084 dput(dentry); 3085 dentry = file->f_path.dentry; 3086 } 3087 if (file->f_mode & FMODE_CREATED) 3088 fsnotify_create(dir, dentry); 3089 if (unlikely(d_is_negative(dentry))) { 3090 error = -ENOENT; 3091 } else { 3092 path->dentry = dentry; 3093 path->mnt = nd->path.mnt; 3094 return 0; 3095 } 3096 } 3097 } 3098 dput(dentry); 3099 return error; 3100 } 3101 3102 /* 3103 * Look up and maybe create and open the last component. 3104 * 3105 * Must be called with parent locked (exclusive in O_CREAT case). 3106 * 3107 * Returns 0 on success, that is, if 3108 * the file was successfully atomically created (if necessary) and opened, or 3109 * the file was not completely opened at this time, though lookups and 3110 * creations were performed. 3111 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3112 * In the latter case dentry returned in @path might be negative if O_CREAT 3113 * hadn't been specified. 3114 * 3115 * An error code is returned on failure. 3116 */ 3117 static int lookup_open(struct nameidata *nd, struct path *path, 3118 struct file *file, 3119 const struct open_flags *op, 3120 bool got_write) 3121 { 3122 struct dentry *dir = nd->path.dentry; 3123 struct inode *dir_inode = dir->d_inode; 3124 int open_flag = op->open_flag; 3125 struct dentry *dentry; 3126 int error, create_error = 0; 3127 umode_t mode = op->mode; 3128 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3129 3130 if (unlikely(IS_DEADDIR(dir_inode))) 3131 return -ENOENT; 3132 3133 file->f_mode &= ~FMODE_CREATED; 3134 dentry = d_lookup(dir, &nd->last); 3135 for (;;) { 3136 if (!dentry) { 3137 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3138 if (IS_ERR(dentry)) 3139 return PTR_ERR(dentry); 3140 } 3141 if (d_in_lookup(dentry)) 3142 break; 3143 3144 error = d_revalidate(dentry, nd->flags); 3145 if (likely(error > 0)) 3146 break; 3147 if (error) 3148 goto out_dput; 3149 d_invalidate(dentry); 3150 dput(dentry); 3151 dentry = NULL; 3152 } 3153 if (dentry->d_inode) { 3154 /* Cached positive dentry: will open in f_op->open */ 3155 goto out_no_open; 3156 } 3157 3158 /* 3159 * Checking write permission is tricky, bacuse we don't know if we are 3160 * going to actually need it: O_CREAT opens should work as long as the 3161 * file exists. But checking existence breaks atomicity. The trick is 3162 * to check access and if not granted clear O_CREAT from the flags. 3163 * 3164 * Another problem is returing the "right" error value (e.g. for an 3165 * O_EXCL open we want to return EEXIST not EROFS). 3166 */ 3167 if (open_flag & O_CREAT) { 3168 if (!IS_POSIXACL(dir->d_inode)) 3169 mode &= ~current_umask(); 3170 if (unlikely(!got_write)) { 3171 create_error = -EROFS; 3172 open_flag &= ~O_CREAT; 3173 if (open_flag & (O_EXCL | O_TRUNC)) 3174 goto no_open; 3175 /* No side effects, safe to clear O_CREAT */ 3176 } else { 3177 create_error = may_o_create(&nd->path, dentry, mode); 3178 if (create_error) { 3179 open_flag &= ~O_CREAT; 3180 if (open_flag & O_EXCL) 3181 goto no_open; 3182 } 3183 } 3184 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) && 3185 unlikely(!got_write)) { 3186 /* 3187 * No O_CREATE -> atomicity not a requirement -> fall 3188 * back to lookup + open 3189 */ 3190 goto no_open; 3191 } 3192 3193 if (dir_inode->i_op->atomic_open) { 3194 error = atomic_open(nd, dentry, path, file, op, open_flag, 3195 mode); 3196 if (unlikely(error == -ENOENT) && create_error) 3197 error = create_error; 3198 return error; 3199 } 3200 3201 no_open: 3202 if (d_in_lookup(dentry)) { 3203 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3204 nd->flags); 3205 d_lookup_done(dentry); 3206 if (unlikely(res)) { 3207 if (IS_ERR(res)) { 3208 error = PTR_ERR(res); 3209 goto out_dput; 3210 } 3211 dput(dentry); 3212 dentry = res; 3213 } 3214 } 3215 3216 /* Negative dentry, just create the file */ 3217 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3218 file->f_mode |= FMODE_CREATED; 3219 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3220 if (!dir_inode->i_op->create) { 3221 error = -EACCES; 3222 goto out_dput; 3223 } 3224 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3225 open_flag & O_EXCL); 3226 if (error) 3227 goto out_dput; 3228 fsnotify_create(dir_inode, dentry); 3229 } 3230 if (unlikely(create_error) && !dentry->d_inode) { 3231 error = create_error; 3232 goto out_dput; 3233 } 3234 out_no_open: 3235 path->dentry = dentry; 3236 path->mnt = nd->path.mnt; 3237 return 0; 3238 3239 out_dput: 3240 dput(dentry); 3241 return error; 3242 } 3243 3244 /* 3245 * Handle the last step of open() 3246 */ 3247 static int do_last(struct nameidata *nd, 3248 struct file *file, const struct open_flags *op) 3249 { 3250 struct dentry *dir = nd->path.dentry; 3251 int open_flag = op->open_flag; 3252 bool will_truncate = (open_flag & O_TRUNC) != 0; 3253 bool got_write = false; 3254 int acc_mode = op->acc_mode; 3255 unsigned seq; 3256 struct inode *inode; 3257 struct path path; 3258 int error; 3259 3260 nd->flags &= ~LOOKUP_PARENT; 3261 nd->flags |= op->intent; 3262 3263 if (nd->last_type != LAST_NORM) { 3264 error = handle_dots(nd, nd->last_type); 3265 if (unlikely(error)) 3266 return error; 3267 goto finish_open; 3268 } 3269 3270 if (!(open_flag & O_CREAT)) { 3271 if (nd->last.name[nd->last.len]) 3272 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3273 /* we _can_ be in RCU mode here */ 3274 error = lookup_fast(nd, &path, &inode, &seq); 3275 if (likely(error > 0)) 3276 goto finish_lookup; 3277 3278 if (error < 0) 3279 return error; 3280 3281 BUG_ON(nd->inode != dir->d_inode); 3282 BUG_ON(nd->flags & LOOKUP_RCU); 3283 } else { 3284 /* create side of things */ 3285 /* 3286 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3287 * has been cleared when we got to the last component we are 3288 * about to look up 3289 */ 3290 error = complete_walk(nd); 3291 if (error) 3292 return error; 3293 3294 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3295 /* trailing slashes? */ 3296 if (unlikely(nd->last.name[nd->last.len])) 3297 return -EISDIR; 3298 } 3299 3300 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3301 error = mnt_want_write(nd->path.mnt); 3302 if (!error) 3303 got_write = true; 3304 /* 3305 * do _not_ fail yet - we might not need that or fail with 3306 * a different error; let lookup_open() decide; we'll be 3307 * dropping this one anyway. 3308 */ 3309 } 3310 if (open_flag & O_CREAT) 3311 inode_lock(dir->d_inode); 3312 else 3313 inode_lock_shared(dir->d_inode); 3314 error = lookup_open(nd, &path, file, op, got_write); 3315 if (open_flag & O_CREAT) 3316 inode_unlock(dir->d_inode); 3317 else 3318 inode_unlock_shared(dir->d_inode); 3319 3320 if (error) 3321 goto out; 3322 3323 if (file->f_mode & FMODE_OPENED) { 3324 if ((file->f_mode & FMODE_CREATED) || 3325 !S_ISREG(file_inode(file)->i_mode)) 3326 will_truncate = false; 3327 3328 audit_inode(nd->name, file->f_path.dentry, 0); 3329 goto opened; 3330 } 3331 3332 if (file->f_mode & FMODE_CREATED) { 3333 /* Don't check for write permission, don't truncate */ 3334 open_flag &= ~O_TRUNC; 3335 will_truncate = false; 3336 acc_mode = 0; 3337 path_to_nameidata(&path, nd); 3338 goto finish_open_created; 3339 } 3340 3341 /* 3342 * If atomic_open() acquired write access it is dropped now due to 3343 * possible mount and symlink following (this might be optimized away if 3344 * necessary...) 3345 */ 3346 if (got_write) { 3347 mnt_drop_write(nd->path.mnt); 3348 got_write = false; 3349 } 3350 3351 error = follow_managed(&path, nd); 3352 if (unlikely(error < 0)) 3353 return error; 3354 3355 if (unlikely(d_is_negative(path.dentry))) { 3356 path_to_nameidata(&path, nd); 3357 return -ENOENT; 3358 } 3359 3360 /* 3361 * create/update audit record if it already exists. 3362 */ 3363 audit_inode(nd->name, path.dentry, 0); 3364 3365 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3366 path_to_nameidata(&path, nd); 3367 return -EEXIST; 3368 } 3369 3370 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3371 inode = d_backing_inode(path.dentry); 3372 finish_lookup: 3373 error = step_into(nd, &path, 0, inode, seq); 3374 if (unlikely(error)) 3375 return error; 3376 finish_open: 3377 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3378 error = complete_walk(nd); 3379 if (error) 3380 return error; 3381 audit_inode(nd->name, nd->path.dentry, 0); 3382 if (open_flag & O_CREAT) { 3383 error = -EISDIR; 3384 if (d_is_dir(nd->path.dentry)) 3385 goto out; 3386 error = may_create_in_sticky(dir, 3387 d_backing_inode(nd->path.dentry)); 3388 if (unlikely(error)) 3389 goto out; 3390 } 3391 error = -ENOTDIR; 3392 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3393 goto out; 3394 if (!d_is_reg(nd->path.dentry)) 3395 will_truncate = false; 3396 3397 if (will_truncate) { 3398 error = mnt_want_write(nd->path.mnt); 3399 if (error) 3400 goto out; 3401 got_write = true; 3402 } 3403 finish_open_created: 3404 error = may_open(&nd->path, acc_mode, open_flag); 3405 if (error) 3406 goto out; 3407 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ 3408 error = vfs_open(&nd->path, file); 3409 if (error) 3410 goto out; 3411 opened: 3412 error = ima_file_check(file, op->acc_mode); 3413 if (!error && will_truncate) 3414 error = handle_truncate(file); 3415 out: 3416 if (unlikely(error > 0)) { 3417 WARN_ON(1); 3418 error = -EINVAL; 3419 } 3420 if (got_write) 3421 mnt_drop_write(nd->path.mnt); 3422 return error; 3423 } 3424 3425 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3426 { 3427 struct dentry *child = NULL; 3428 struct inode *dir = dentry->d_inode; 3429 struct inode *inode; 3430 int error; 3431 3432 /* we want directory to be writable */ 3433 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3434 if (error) 3435 goto out_err; 3436 error = -EOPNOTSUPP; 3437 if (!dir->i_op->tmpfile) 3438 goto out_err; 3439 error = -ENOMEM; 3440 child = d_alloc(dentry, &slash_name); 3441 if (unlikely(!child)) 3442 goto out_err; 3443 error = dir->i_op->tmpfile(dir, child, mode); 3444 if (error) 3445 goto out_err; 3446 error = -ENOENT; 3447 inode = child->d_inode; 3448 if (unlikely(!inode)) 3449 goto out_err; 3450 if (!(open_flag & O_EXCL)) { 3451 spin_lock(&inode->i_lock); 3452 inode->i_state |= I_LINKABLE; 3453 spin_unlock(&inode->i_lock); 3454 } 3455 ima_post_create_tmpfile(inode); 3456 return child; 3457 3458 out_err: 3459 dput(child); 3460 return ERR_PTR(error); 3461 } 3462 EXPORT_SYMBOL(vfs_tmpfile); 3463 3464 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3465 const struct open_flags *op, 3466 struct file *file) 3467 { 3468 struct dentry *child; 3469 struct path path; 3470 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3471 if (unlikely(error)) 3472 return error; 3473 error = mnt_want_write(path.mnt); 3474 if (unlikely(error)) 3475 goto out; 3476 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3477 error = PTR_ERR(child); 3478 if (IS_ERR(child)) 3479 goto out2; 3480 dput(path.dentry); 3481 path.dentry = child; 3482 audit_inode(nd->name, child, 0); 3483 /* Don't check for other permissions, the inode was just created */ 3484 error = may_open(&path, 0, op->open_flag); 3485 if (error) 3486 goto out2; 3487 file->f_path.mnt = path.mnt; 3488 error = finish_open(file, child, NULL); 3489 out2: 3490 mnt_drop_write(path.mnt); 3491 out: 3492 path_put(&path); 3493 return error; 3494 } 3495 3496 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3497 { 3498 struct path path; 3499 int error = path_lookupat(nd, flags, &path); 3500 if (!error) { 3501 audit_inode(nd->name, path.dentry, 0); 3502 error = vfs_open(&path, file); 3503 path_put(&path); 3504 } 3505 return error; 3506 } 3507 3508 static struct file *path_openat(struct nameidata *nd, 3509 const struct open_flags *op, unsigned flags) 3510 { 3511 struct file *file; 3512 int error; 3513 3514 file = alloc_empty_file(op->open_flag, current_cred()); 3515 if (IS_ERR(file)) 3516 return file; 3517 3518 if (unlikely(file->f_flags & __O_TMPFILE)) { 3519 error = do_tmpfile(nd, flags, op, file); 3520 } else if (unlikely(file->f_flags & O_PATH)) { 3521 error = do_o_path(nd, flags, file); 3522 } else { 3523 const char *s = path_init(nd, flags); 3524 while (!(error = link_path_walk(s, nd)) && 3525 (error = do_last(nd, file, op)) > 0) { 3526 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3527 s = trailing_symlink(nd); 3528 } 3529 terminate_walk(nd); 3530 } 3531 if (likely(!error)) { 3532 if (likely(file->f_mode & FMODE_OPENED)) 3533 return file; 3534 WARN_ON(1); 3535 error = -EINVAL; 3536 } 3537 fput(file); 3538 if (error == -EOPENSTALE) { 3539 if (flags & LOOKUP_RCU) 3540 error = -ECHILD; 3541 else 3542 error = -ESTALE; 3543 } 3544 return ERR_PTR(error); 3545 } 3546 3547 struct file *do_filp_open(int dfd, struct filename *pathname, 3548 const struct open_flags *op) 3549 { 3550 struct nameidata nd; 3551 int flags = op->lookup_flags; 3552 struct file *filp; 3553 3554 set_nameidata(&nd, dfd, pathname); 3555 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3556 if (unlikely(filp == ERR_PTR(-ECHILD))) 3557 filp = path_openat(&nd, op, flags); 3558 if (unlikely(filp == ERR_PTR(-ESTALE))) 3559 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3560 restore_nameidata(); 3561 return filp; 3562 } 3563 3564 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3565 const char *name, const struct open_flags *op) 3566 { 3567 struct nameidata nd; 3568 struct file *file; 3569 struct filename *filename; 3570 int flags = op->lookup_flags | LOOKUP_ROOT; 3571 3572 nd.root.mnt = mnt; 3573 nd.root.dentry = dentry; 3574 3575 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3576 return ERR_PTR(-ELOOP); 3577 3578 filename = getname_kernel(name); 3579 if (IS_ERR(filename)) 3580 return ERR_CAST(filename); 3581 3582 set_nameidata(&nd, -1, filename); 3583 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3584 if (unlikely(file == ERR_PTR(-ECHILD))) 3585 file = path_openat(&nd, op, flags); 3586 if (unlikely(file == ERR_PTR(-ESTALE))) 3587 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3588 restore_nameidata(); 3589 putname(filename); 3590 return file; 3591 } 3592 3593 static struct dentry *filename_create(int dfd, struct filename *name, 3594 struct path *path, unsigned int lookup_flags) 3595 { 3596 struct dentry *dentry = ERR_PTR(-EEXIST); 3597 struct qstr last; 3598 int type; 3599 int err2; 3600 int error; 3601 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3602 3603 /* 3604 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3605 * other flags passed in are ignored! 3606 */ 3607 lookup_flags &= LOOKUP_REVAL; 3608 3609 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3610 if (IS_ERR(name)) 3611 return ERR_CAST(name); 3612 3613 /* 3614 * Yucky last component or no last component at all? 3615 * (foo/., foo/.., /////) 3616 */ 3617 if (unlikely(type != LAST_NORM)) 3618 goto out; 3619 3620 /* don't fail immediately if it's r/o, at least try to report other errors */ 3621 err2 = mnt_want_write(path->mnt); 3622 /* 3623 * Do the final lookup. 3624 */ 3625 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3626 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3627 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3628 if (IS_ERR(dentry)) 3629 goto unlock; 3630 3631 error = -EEXIST; 3632 if (d_is_positive(dentry)) 3633 goto fail; 3634 3635 /* 3636 * Special case - lookup gave negative, but... we had foo/bar/ 3637 * From the vfs_mknod() POV we just have a negative dentry - 3638 * all is fine. Let's be bastards - you had / on the end, you've 3639 * been asking for (non-existent) directory. -ENOENT for you. 3640 */ 3641 if (unlikely(!is_dir && last.name[last.len])) { 3642 error = -ENOENT; 3643 goto fail; 3644 } 3645 if (unlikely(err2)) { 3646 error = err2; 3647 goto fail; 3648 } 3649 putname(name); 3650 return dentry; 3651 fail: 3652 dput(dentry); 3653 dentry = ERR_PTR(error); 3654 unlock: 3655 inode_unlock(path->dentry->d_inode); 3656 if (!err2) 3657 mnt_drop_write(path->mnt); 3658 out: 3659 path_put(path); 3660 putname(name); 3661 return dentry; 3662 } 3663 3664 struct dentry *kern_path_create(int dfd, const char *pathname, 3665 struct path *path, unsigned int lookup_flags) 3666 { 3667 return filename_create(dfd, getname_kernel(pathname), 3668 path, lookup_flags); 3669 } 3670 EXPORT_SYMBOL(kern_path_create); 3671 3672 void done_path_create(struct path *path, struct dentry *dentry) 3673 { 3674 dput(dentry); 3675 inode_unlock(path->dentry->d_inode); 3676 mnt_drop_write(path->mnt); 3677 path_put(path); 3678 } 3679 EXPORT_SYMBOL(done_path_create); 3680 3681 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3682 struct path *path, unsigned int lookup_flags) 3683 { 3684 return filename_create(dfd, getname(pathname), path, lookup_flags); 3685 } 3686 EXPORT_SYMBOL(user_path_create); 3687 3688 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3689 { 3690 int error = may_create(dir, dentry); 3691 3692 if (error) 3693 return error; 3694 3695 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3696 return -EPERM; 3697 3698 if (!dir->i_op->mknod) 3699 return -EPERM; 3700 3701 error = devcgroup_inode_mknod(mode, dev); 3702 if (error) 3703 return error; 3704 3705 error = security_inode_mknod(dir, dentry, mode, dev); 3706 if (error) 3707 return error; 3708 3709 error = dir->i_op->mknod(dir, dentry, mode, dev); 3710 if (!error) 3711 fsnotify_create(dir, dentry); 3712 return error; 3713 } 3714 EXPORT_SYMBOL(vfs_mknod); 3715 3716 static int may_mknod(umode_t mode) 3717 { 3718 switch (mode & S_IFMT) { 3719 case S_IFREG: 3720 case S_IFCHR: 3721 case S_IFBLK: 3722 case S_IFIFO: 3723 case S_IFSOCK: 3724 case 0: /* zero mode translates to S_IFREG */ 3725 return 0; 3726 case S_IFDIR: 3727 return -EPERM; 3728 default: 3729 return -EINVAL; 3730 } 3731 } 3732 3733 long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3734 unsigned int dev) 3735 { 3736 struct dentry *dentry; 3737 struct path path; 3738 int error; 3739 unsigned int lookup_flags = 0; 3740 3741 error = may_mknod(mode); 3742 if (error) 3743 return error; 3744 retry: 3745 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3746 if (IS_ERR(dentry)) 3747 return PTR_ERR(dentry); 3748 3749 if (!IS_POSIXACL(path.dentry->d_inode)) 3750 mode &= ~current_umask(); 3751 error = security_path_mknod(&path, dentry, mode, dev); 3752 if (error) 3753 goto out; 3754 switch (mode & S_IFMT) { 3755 case 0: case S_IFREG: 3756 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3757 if (!error) 3758 ima_post_path_mknod(dentry); 3759 break; 3760 case S_IFCHR: case S_IFBLK: 3761 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3762 new_decode_dev(dev)); 3763 break; 3764 case S_IFIFO: case S_IFSOCK: 3765 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3766 break; 3767 } 3768 out: 3769 done_path_create(&path, dentry); 3770 if (retry_estale(error, lookup_flags)) { 3771 lookup_flags |= LOOKUP_REVAL; 3772 goto retry; 3773 } 3774 return error; 3775 } 3776 3777 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3778 unsigned int, dev) 3779 { 3780 return do_mknodat(dfd, filename, mode, dev); 3781 } 3782 3783 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3784 { 3785 return do_mknodat(AT_FDCWD, filename, mode, dev); 3786 } 3787 3788 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3789 { 3790 int error = may_create(dir, dentry); 3791 unsigned max_links = dir->i_sb->s_max_links; 3792 3793 if (error) 3794 return error; 3795 3796 if (!dir->i_op->mkdir) 3797 return -EPERM; 3798 3799 mode &= (S_IRWXUGO|S_ISVTX); 3800 error = security_inode_mkdir(dir, dentry, mode); 3801 if (error) 3802 return error; 3803 3804 if (max_links && dir->i_nlink >= max_links) 3805 return -EMLINK; 3806 3807 error = dir->i_op->mkdir(dir, dentry, mode); 3808 if (!error) 3809 fsnotify_mkdir(dir, dentry); 3810 return error; 3811 } 3812 EXPORT_SYMBOL(vfs_mkdir); 3813 3814 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3815 { 3816 struct dentry *dentry; 3817 struct path path; 3818 int error; 3819 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3820 3821 retry: 3822 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3823 if (IS_ERR(dentry)) 3824 return PTR_ERR(dentry); 3825 3826 if (!IS_POSIXACL(path.dentry->d_inode)) 3827 mode &= ~current_umask(); 3828 error = security_path_mkdir(&path, dentry, mode); 3829 if (!error) 3830 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3831 done_path_create(&path, dentry); 3832 if (retry_estale(error, lookup_flags)) { 3833 lookup_flags |= LOOKUP_REVAL; 3834 goto retry; 3835 } 3836 return error; 3837 } 3838 3839 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3840 { 3841 return do_mkdirat(dfd, pathname, mode); 3842 } 3843 3844 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3845 { 3846 return do_mkdirat(AT_FDCWD, pathname, mode); 3847 } 3848 3849 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3850 { 3851 int error = may_delete(dir, dentry, 1); 3852 3853 if (error) 3854 return error; 3855 3856 if (!dir->i_op->rmdir) 3857 return -EPERM; 3858 3859 dget(dentry); 3860 inode_lock(dentry->d_inode); 3861 3862 error = -EBUSY; 3863 if (is_local_mountpoint(dentry)) 3864 goto out; 3865 3866 error = security_inode_rmdir(dir, dentry); 3867 if (error) 3868 goto out; 3869 3870 error = dir->i_op->rmdir(dir, dentry); 3871 if (error) 3872 goto out; 3873 3874 shrink_dcache_parent(dentry); 3875 dentry->d_inode->i_flags |= S_DEAD; 3876 dont_mount(dentry); 3877 detach_mounts(dentry); 3878 fsnotify_rmdir(dir, dentry); 3879 3880 out: 3881 inode_unlock(dentry->d_inode); 3882 dput(dentry); 3883 if (!error) 3884 d_delete(dentry); 3885 return error; 3886 } 3887 EXPORT_SYMBOL(vfs_rmdir); 3888 3889 long do_rmdir(int dfd, const char __user *pathname) 3890 { 3891 int error = 0; 3892 struct filename *name; 3893 struct dentry *dentry; 3894 struct path path; 3895 struct qstr last; 3896 int type; 3897 unsigned int lookup_flags = 0; 3898 retry: 3899 name = filename_parentat(dfd, getname(pathname), lookup_flags, 3900 &path, &last, &type); 3901 if (IS_ERR(name)) 3902 return PTR_ERR(name); 3903 3904 switch (type) { 3905 case LAST_DOTDOT: 3906 error = -ENOTEMPTY; 3907 goto exit1; 3908 case LAST_DOT: 3909 error = -EINVAL; 3910 goto exit1; 3911 case LAST_ROOT: 3912 error = -EBUSY; 3913 goto exit1; 3914 } 3915 3916 error = mnt_want_write(path.mnt); 3917 if (error) 3918 goto exit1; 3919 3920 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3921 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3922 error = PTR_ERR(dentry); 3923 if (IS_ERR(dentry)) 3924 goto exit2; 3925 if (!dentry->d_inode) { 3926 error = -ENOENT; 3927 goto exit3; 3928 } 3929 error = security_path_rmdir(&path, dentry); 3930 if (error) 3931 goto exit3; 3932 error = vfs_rmdir(path.dentry->d_inode, dentry); 3933 exit3: 3934 dput(dentry); 3935 exit2: 3936 inode_unlock(path.dentry->d_inode); 3937 mnt_drop_write(path.mnt); 3938 exit1: 3939 path_put(&path); 3940 putname(name); 3941 if (retry_estale(error, lookup_flags)) { 3942 lookup_flags |= LOOKUP_REVAL; 3943 goto retry; 3944 } 3945 return error; 3946 } 3947 3948 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3949 { 3950 return do_rmdir(AT_FDCWD, pathname); 3951 } 3952 3953 /** 3954 * vfs_unlink - unlink a filesystem object 3955 * @dir: parent directory 3956 * @dentry: victim 3957 * @delegated_inode: returns victim inode, if the inode is delegated. 3958 * 3959 * The caller must hold dir->i_mutex. 3960 * 3961 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3962 * return a reference to the inode in delegated_inode. The caller 3963 * should then break the delegation on that inode and retry. Because 3964 * breaking a delegation may take a long time, the caller should drop 3965 * dir->i_mutex before doing so. 3966 * 3967 * Alternatively, a caller may pass NULL for delegated_inode. This may 3968 * be appropriate for callers that expect the underlying filesystem not 3969 * to be NFS exported. 3970 */ 3971 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3972 { 3973 struct inode *target = dentry->d_inode; 3974 int error = may_delete(dir, dentry, 0); 3975 3976 if (error) 3977 return error; 3978 3979 if (!dir->i_op->unlink) 3980 return -EPERM; 3981 3982 inode_lock(target); 3983 if (is_local_mountpoint(dentry)) 3984 error = -EBUSY; 3985 else { 3986 error = security_inode_unlink(dir, dentry); 3987 if (!error) { 3988 error = try_break_deleg(target, delegated_inode); 3989 if (error) 3990 goto out; 3991 error = dir->i_op->unlink(dir, dentry); 3992 if (!error) { 3993 dont_mount(dentry); 3994 detach_mounts(dentry); 3995 fsnotify_unlink(dir, dentry); 3996 } 3997 } 3998 } 3999 out: 4000 inode_unlock(target); 4001 4002 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4003 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4004 fsnotify_link_count(target); 4005 d_delete(dentry); 4006 } 4007 4008 return error; 4009 } 4010 EXPORT_SYMBOL(vfs_unlink); 4011 4012 /* 4013 * Make sure that the actual truncation of the file will occur outside its 4014 * directory's i_mutex. Truncate can take a long time if there is a lot of 4015 * writeout happening, and we don't want to prevent access to the directory 4016 * while waiting on the I/O. 4017 */ 4018 long do_unlinkat(int dfd, struct filename *name) 4019 { 4020 int error; 4021 struct dentry *dentry; 4022 struct path path; 4023 struct qstr last; 4024 int type; 4025 struct inode *inode = NULL; 4026 struct inode *delegated_inode = NULL; 4027 unsigned int lookup_flags = 0; 4028 retry: 4029 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4030 if (IS_ERR(name)) 4031 return PTR_ERR(name); 4032 4033 error = -EISDIR; 4034 if (type != LAST_NORM) 4035 goto exit1; 4036 4037 error = mnt_want_write(path.mnt); 4038 if (error) 4039 goto exit1; 4040 retry_deleg: 4041 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4042 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4043 error = PTR_ERR(dentry); 4044 if (!IS_ERR(dentry)) { 4045 /* Why not before? Because we want correct error value */ 4046 if (last.name[last.len]) 4047 goto slashes; 4048 inode = dentry->d_inode; 4049 if (d_is_negative(dentry)) 4050 goto slashes; 4051 ihold(inode); 4052 error = security_path_unlink(&path, dentry); 4053 if (error) 4054 goto exit2; 4055 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 4056 exit2: 4057 dput(dentry); 4058 } 4059 inode_unlock(path.dentry->d_inode); 4060 if (inode) 4061 iput(inode); /* truncate the inode here */ 4062 inode = NULL; 4063 if (delegated_inode) { 4064 error = break_deleg_wait(&delegated_inode); 4065 if (!error) 4066 goto retry_deleg; 4067 } 4068 mnt_drop_write(path.mnt); 4069 exit1: 4070 path_put(&path); 4071 if (retry_estale(error, lookup_flags)) { 4072 lookup_flags |= LOOKUP_REVAL; 4073 inode = NULL; 4074 goto retry; 4075 } 4076 putname(name); 4077 return error; 4078 4079 slashes: 4080 if (d_is_negative(dentry)) 4081 error = -ENOENT; 4082 else if (d_is_dir(dentry)) 4083 error = -EISDIR; 4084 else 4085 error = -ENOTDIR; 4086 goto exit2; 4087 } 4088 4089 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4090 { 4091 if ((flag & ~AT_REMOVEDIR) != 0) 4092 return -EINVAL; 4093 4094 if (flag & AT_REMOVEDIR) 4095 return do_rmdir(dfd, pathname); 4096 4097 return do_unlinkat(dfd, getname(pathname)); 4098 } 4099 4100 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4101 { 4102 return do_unlinkat(AT_FDCWD, getname(pathname)); 4103 } 4104 4105 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 4106 { 4107 int error = may_create(dir, dentry); 4108 4109 if (error) 4110 return error; 4111 4112 if (!dir->i_op->symlink) 4113 return -EPERM; 4114 4115 error = security_inode_symlink(dir, dentry, oldname); 4116 if (error) 4117 return error; 4118 4119 error = dir->i_op->symlink(dir, dentry, oldname); 4120 if (!error) 4121 fsnotify_create(dir, dentry); 4122 return error; 4123 } 4124 EXPORT_SYMBOL(vfs_symlink); 4125 4126 long do_symlinkat(const char __user *oldname, int newdfd, 4127 const char __user *newname) 4128 { 4129 int error; 4130 struct filename *from; 4131 struct dentry *dentry; 4132 struct path path; 4133 unsigned int lookup_flags = 0; 4134 4135 from = getname(oldname); 4136 if (IS_ERR(from)) 4137 return PTR_ERR(from); 4138 retry: 4139 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4140 error = PTR_ERR(dentry); 4141 if (IS_ERR(dentry)) 4142 goto out_putname; 4143 4144 error = security_path_symlink(&path, dentry, from->name); 4145 if (!error) 4146 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 4147 done_path_create(&path, dentry); 4148 if (retry_estale(error, lookup_flags)) { 4149 lookup_flags |= LOOKUP_REVAL; 4150 goto retry; 4151 } 4152 out_putname: 4153 putname(from); 4154 return error; 4155 } 4156 4157 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4158 int, newdfd, const char __user *, newname) 4159 { 4160 return do_symlinkat(oldname, newdfd, newname); 4161 } 4162 4163 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4164 { 4165 return do_symlinkat(oldname, AT_FDCWD, newname); 4166 } 4167 4168 /** 4169 * vfs_link - create a new link 4170 * @old_dentry: object to be linked 4171 * @dir: new parent 4172 * @new_dentry: where to create the new link 4173 * @delegated_inode: returns inode needing a delegation break 4174 * 4175 * The caller must hold dir->i_mutex 4176 * 4177 * If vfs_link discovers a delegation on the to-be-linked file in need 4178 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4179 * inode in delegated_inode. The caller should then break the delegation 4180 * and retry. Because breaking a delegation may take a long time, the 4181 * caller should drop the i_mutex before doing so. 4182 * 4183 * Alternatively, a caller may pass NULL for delegated_inode. This may 4184 * be appropriate for callers that expect the underlying filesystem not 4185 * to be NFS exported. 4186 */ 4187 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4188 { 4189 struct inode *inode = old_dentry->d_inode; 4190 unsigned max_links = dir->i_sb->s_max_links; 4191 int error; 4192 4193 if (!inode) 4194 return -ENOENT; 4195 4196 error = may_create(dir, new_dentry); 4197 if (error) 4198 return error; 4199 4200 if (dir->i_sb != inode->i_sb) 4201 return -EXDEV; 4202 4203 /* 4204 * A link to an append-only or immutable file cannot be created. 4205 */ 4206 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4207 return -EPERM; 4208 /* 4209 * Updating the link count will likely cause i_uid and i_gid to 4210 * be writen back improperly if their true value is unknown to 4211 * the vfs. 4212 */ 4213 if (HAS_UNMAPPED_ID(inode)) 4214 return -EPERM; 4215 if (!dir->i_op->link) 4216 return -EPERM; 4217 if (S_ISDIR(inode->i_mode)) 4218 return -EPERM; 4219 4220 error = security_inode_link(old_dentry, dir, new_dentry); 4221 if (error) 4222 return error; 4223 4224 inode_lock(inode); 4225 /* Make sure we don't allow creating hardlink to an unlinked file */ 4226 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4227 error = -ENOENT; 4228 else if (max_links && inode->i_nlink >= max_links) 4229 error = -EMLINK; 4230 else { 4231 error = try_break_deleg(inode, delegated_inode); 4232 if (!error) 4233 error = dir->i_op->link(old_dentry, dir, new_dentry); 4234 } 4235 4236 if (!error && (inode->i_state & I_LINKABLE)) { 4237 spin_lock(&inode->i_lock); 4238 inode->i_state &= ~I_LINKABLE; 4239 spin_unlock(&inode->i_lock); 4240 } 4241 inode_unlock(inode); 4242 if (!error) 4243 fsnotify_link(dir, inode, new_dentry); 4244 return error; 4245 } 4246 EXPORT_SYMBOL(vfs_link); 4247 4248 /* 4249 * Hardlinks are often used in delicate situations. We avoid 4250 * security-related surprises by not following symlinks on the 4251 * newname. --KAB 4252 * 4253 * We don't follow them on the oldname either to be compatible 4254 * with linux 2.0, and to avoid hard-linking to directories 4255 * and other special files. --ADM 4256 */ 4257 int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4258 const char __user *newname, int flags) 4259 { 4260 struct dentry *new_dentry; 4261 struct path old_path, new_path; 4262 struct inode *delegated_inode = NULL; 4263 int how = 0; 4264 int error; 4265 4266 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4267 return -EINVAL; 4268 /* 4269 * To use null names we require CAP_DAC_READ_SEARCH 4270 * This ensures that not everyone will be able to create 4271 * handlink using the passed filedescriptor. 4272 */ 4273 if (flags & AT_EMPTY_PATH) { 4274 if (!capable(CAP_DAC_READ_SEARCH)) 4275 return -ENOENT; 4276 how = LOOKUP_EMPTY; 4277 } 4278 4279 if (flags & AT_SYMLINK_FOLLOW) 4280 how |= LOOKUP_FOLLOW; 4281 retry: 4282 error = user_path_at(olddfd, oldname, how, &old_path); 4283 if (error) 4284 return error; 4285 4286 new_dentry = user_path_create(newdfd, newname, &new_path, 4287 (how & LOOKUP_REVAL)); 4288 error = PTR_ERR(new_dentry); 4289 if (IS_ERR(new_dentry)) 4290 goto out; 4291 4292 error = -EXDEV; 4293 if (old_path.mnt != new_path.mnt) 4294 goto out_dput; 4295 error = may_linkat(&old_path); 4296 if (unlikely(error)) 4297 goto out_dput; 4298 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4299 if (error) 4300 goto out_dput; 4301 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4302 out_dput: 4303 done_path_create(&new_path, new_dentry); 4304 if (delegated_inode) { 4305 error = break_deleg_wait(&delegated_inode); 4306 if (!error) { 4307 path_put(&old_path); 4308 goto retry; 4309 } 4310 } 4311 if (retry_estale(error, how)) { 4312 path_put(&old_path); 4313 how |= LOOKUP_REVAL; 4314 goto retry; 4315 } 4316 out: 4317 path_put(&old_path); 4318 4319 return error; 4320 } 4321 4322 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4323 int, newdfd, const char __user *, newname, int, flags) 4324 { 4325 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4326 } 4327 4328 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4329 { 4330 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4331 } 4332 4333 /** 4334 * vfs_rename - rename a filesystem object 4335 * @old_dir: parent of source 4336 * @old_dentry: source 4337 * @new_dir: parent of destination 4338 * @new_dentry: destination 4339 * @delegated_inode: returns an inode needing a delegation break 4340 * @flags: rename flags 4341 * 4342 * The caller must hold multiple mutexes--see lock_rename()). 4343 * 4344 * If vfs_rename discovers a delegation in need of breaking at either 4345 * the source or destination, it will return -EWOULDBLOCK and return a 4346 * reference to the inode in delegated_inode. The caller should then 4347 * break the delegation and retry. Because breaking a delegation may 4348 * take a long time, the caller should drop all locks before doing 4349 * so. 4350 * 4351 * Alternatively, a caller may pass NULL for delegated_inode. This may 4352 * be appropriate for callers that expect the underlying filesystem not 4353 * to be NFS exported. 4354 * 4355 * The worst of all namespace operations - renaming directory. "Perverted" 4356 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4357 * Problems: 4358 * 4359 * a) we can get into loop creation. 4360 * b) race potential - two innocent renames can create a loop together. 4361 * That's where 4.4 screws up. Current fix: serialization on 4362 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4363 * story. 4364 * c) we have to lock _four_ objects - parents and victim (if it exists), 4365 * and source (if it is not a directory). 4366 * And that - after we got ->i_mutex on parents (until then we don't know 4367 * whether the target exists). Solution: try to be smart with locking 4368 * order for inodes. We rely on the fact that tree topology may change 4369 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4370 * move will be locked. Thus we can rank directories by the tree 4371 * (ancestors first) and rank all non-directories after them. 4372 * That works since everybody except rename does "lock parent, lookup, 4373 * lock child" and rename is under ->s_vfs_rename_mutex. 4374 * HOWEVER, it relies on the assumption that any object with ->lookup() 4375 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4376 * we'd better make sure that there's no link(2) for them. 4377 * d) conversion from fhandle to dentry may come in the wrong moment - when 4378 * we are removing the target. Solution: we will have to grab ->i_mutex 4379 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4380 * ->i_mutex on parents, which works but leads to some truly excessive 4381 * locking]. 4382 */ 4383 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4384 struct inode *new_dir, struct dentry *new_dentry, 4385 struct inode **delegated_inode, unsigned int flags) 4386 { 4387 int error; 4388 bool is_dir = d_is_dir(old_dentry); 4389 struct inode *source = old_dentry->d_inode; 4390 struct inode *target = new_dentry->d_inode; 4391 bool new_is_dir = false; 4392 unsigned max_links = new_dir->i_sb->s_max_links; 4393 struct name_snapshot old_name; 4394 4395 if (source == target) 4396 return 0; 4397 4398 error = may_delete(old_dir, old_dentry, is_dir); 4399 if (error) 4400 return error; 4401 4402 if (!target) { 4403 error = may_create(new_dir, new_dentry); 4404 } else { 4405 new_is_dir = d_is_dir(new_dentry); 4406 4407 if (!(flags & RENAME_EXCHANGE)) 4408 error = may_delete(new_dir, new_dentry, is_dir); 4409 else 4410 error = may_delete(new_dir, new_dentry, new_is_dir); 4411 } 4412 if (error) 4413 return error; 4414 4415 if (!old_dir->i_op->rename) 4416 return -EPERM; 4417 4418 /* 4419 * If we are going to change the parent - check write permissions, 4420 * we'll need to flip '..'. 4421 */ 4422 if (new_dir != old_dir) { 4423 if (is_dir) { 4424 error = inode_permission(source, MAY_WRITE); 4425 if (error) 4426 return error; 4427 } 4428 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4429 error = inode_permission(target, MAY_WRITE); 4430 if (error) 4431 return error; 4432 } 4433 } 4434 4435 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4436 flags); 4437 if (error) 4438 return error; 4439 4440 take_dentry_name_snapshot(&old_name, old_dentry); 4441 dget(new_dentry); 4442 if (!is_dir || (flags & RENAME_EXCHANGE)) 4443 lock_two_nondirectories(source, target); 4444 else if (target) 4445 inode_lock(target); 4446 4447 error = -EBUSY; 4448 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4449 goto out; 4450 4451 if (max_links && new_dir != old_dir) { 4452 error = -EMLINK; 4453 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4454 goto out; 4455 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4456 old_dir->i_nlink >= max_links) 4457 goto out; 4458 } 4459 if (!is_dir) { 4460 error = try_break_deleg(source, delegated_inode); 4461 if (error) 4462 goto out; 4463 } 4464 if (target && !new_is_dir) { 4465 error = try_break_deleg(target, delegated_inode); 4466 if (error) 4467 goto out; 4468 } 4469 error = old_dir->i_op->rename(old_dir, old_dentry, 4470 new_dir, new_dentry, flags); 4471 if (error) 4472 goto out; 4473 4474 if (!(flags & RENAME_EXCHANGE) && target) { 4475 if (is_dir) { 4476 shrink_dcache_parent(new_dentry); 4477 target->i_flags |= S_DEAD; 4478 } 4479 dont_mount(new_dentry); 4480 detach_mounts(new_dentry); 4481 } 4482 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4483 if (!(flags & RENAME_EXCHANGE)) 4484 d_move(old_dentry, new_dentry); 4485 else 4486 d_exchange(old_dentry, new_dentry); 4487 } 4488 out: 4489 if (!is_dir || (flags & RENAME_EXCHANGE)) 4490 unlock_two_nondirectories(source, target); 4491 else if (target) 4492 inode_unlock(target); 4493 dput(new_dentry); 4494 if (!error) { 4495 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4496 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4497 if (flags & RENAME_EXCHANGE) { 4498 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4499 new_is_dir, NULL, new_dentry); 4500 } 4501 } 4502 release_dentry_name_snapshot(&old_name); 4503 4504 return error; 4505 } 4506 EXPORT_SYMBOL(vfs_rename); 4507 4508 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd, 4509 const char __user *newname, unsigned int flags) 4510 { 4511 struct dentry *old_dentry, *new_dentry; 4512 struct dentry *trap; 4513 struct path old_path, new_path; 4514 struct qstr old_last, new_last; 4515 int old_type, new_type; 4516 struct inode *delegated_inode = NULL; 4517 struct filename *from; 4518 struct filename *to; 4519 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4520 bool should_retry = false; 4521 int error; 4522 4523 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4524 return -EINVAL; 4525 4526 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4527 (flags & RENAME_EXCHANGE)) 4528 return -EINVAL; 4529 4530 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4531 return -EPERM; 4532 4533 if (flags & RENAME_EXCHANGE) 4534 target_flags = 0; 4535 4536 retry: 4537 from = filename_parentat(olddfd, getname(oldname), lookup_flags, 4538 &old_path, &old_last, &old_type); 4539 if (IS_ERR(from)) { 4540 error = PTR_ERR(from); 4541 goto exit; 4542 } 4543 4544 to = filename_parentat(newdfd, getname(newname), lookup_flags, 4545 &new_path, &new_last, &new_type); 4546 if (IS_ERR(to)) { 4547 error = PTR_ERR(to); 4548 goto exit1; 4549 } 4550 4551 error = -EXDEV; 4552 if (old_path.mnt != new_path.mnt) 4553 goto exit2; 4554 4555 error = -EBUSY; 4556 if (old_type != LAST_NORM) 4557 goto exit2; 4558 4559 if (flags & RENAME_NOREPLACE) 4560 error = -EEXIST; 4561 if (new_type != LAST_NORM) 4562 goto exit2; 4563 4564 error = mnt_want_write(old_path.mnt); 4565 if (error) 4566 goto exit2; 4567 4568 retry_deleg: 4569 trap = lock_rename(new_path.dentry, old_path.dentry); 4570 4571 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4572 error = PTR_ERR(old_dentry); 4573 if (IS_ERR(old_dentry)) 4574 goto exit3; 4575 /* source must exist */ 4576 error = -ENOENT; 4577 if (d_is_negative(old_dentry)) 4578 goto exit4; 4579 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4580 error = PTR_ERR(new_dentry); 4581 if (IS_ERR(new_dentry)) 4582 goto exit4; 4583 error = -EEXIST; 4584 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4585 goto exit5; 4586 if (flags & RENAME_EXCHANGE) { 4587 error = -ENOENT; 4588 if (d_is_negative(new_dentry)) 4589 goto exit5; 4590 4591 if (!d_is_dir(new_dentry)) { 4592 error = -ENOTDIR; 4593 if (new_last.name[new_last.len]) 4594 goto exit5; 4595 } 4596 } 4597 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4598 if (!d_is_dir(old_dentry)) { 4599 error = -ENOTDIR; 4600 if (old_last.name[old_last.len]) 4601 goto exit5; 4602 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4603 goto exit5; 4604 } 4605 /* source should not be ancestor of target */ 4606 error = -EINVAL; 4607 if (old_dentry == trap) 4608 goto exit5; 4609 /* target should not be an ancestor of source */ 4610 if (!(flags & RENAME_EXCHANGE)) 4611 error = -ENOTEMPTY; 4612 if (new_dentry == trap) 4613 goto exit5; 4614 4615 error = security_path_rename(&old_path, old_dentry, 4616 &new_path, new_dentry, flags); 4617 if (error) 4618 goto exit5; 4619 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4620 new_path.dentry->d_inode, new_dentry, 4621 &delegated_inode, flags); 4622 exit5: 4623 dput(new_dentry); 4624 exit4: 4625 dput(old_dentry); 4626 exit3: 4627 unlock_rename(new_path.dentry, old_path.dentry); 4628 if (delegated_inode) { 4629 error = break_deleg_wait(&delegated_inode); 4630 if (!error) 4631 goto retry_deleg; 4632 } 4633 mnt_drop_write(old_path.mnt); 4634 exit2: 4635 if (retry_estale(error, lookup_flags)) 4636 should_retry = true; 4637 path_put(&new_path); 4638 putname(to); 4639 exit1: 4640 path_put(&old_path); 4641 putname(from); 4642 if (should_retry) { 4643 should_retry = false; 4644 lookup_flags |= LOOKUP_REVAL; 4645 goto retry; 4646 } 4647 exit: 4648 return error; 4649 } 4650 4651 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4652 int, newdfd, const char __user *, newname, unsigned int, flags) 4653 { 4654 return do_renameat2(olddfd, oldname, newdfd, newname, flags); 4655 } 4656 4657 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4658 int, newdfd, const char __user *, newname) 4659 { 4660 return do_renameat2(olddfd, oldname, newdfd, newname, 0); 4661 } 4662 4663 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4664 { 4665 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4666 } 4667 4668 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4669 { 4670 int error = may_create(dir, dentry); 4671 if (error) 4672 return error; 4673 4674 if (!dir->i_op->mknod) 4675 return -EPERM; 4676 4677 return dir->i_op->mknod(dir, dentry, 4678 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4679 } 4680 EXPORT_SYMBOL(vfs_whiteout); 4681 4682 int readlink_copy(char __user *buffer, int buflen, const char *link) 4683 { 4684 int len = PTR_ERR(link); 4685 if (IS_ERR(link)) 4686 goto out; 4687 4688 len = strlen(link); 4689 if (len > (unsigned) buflen) 4690 len = buflen; 4691 if (copy_to_user(buffer, link, len)) 4692 len = -EFAULT; 4693 out: 4694 return len; 4695 } 4696 4697 /** 4698 * vfs_readlink - copy symlink body into userspace buffer 4699 * @dentry: dentry on which to get symbolic link 4700 * @buffer: user memory pointer 4701 * @buflen: size of buffer 4702 * 4703 * Does not touch atime. That's up to the caller if necessary 4704 * 4705 * Does not call security hook. 4706 */ 4707 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4708 { 4709 struct inode *inode = d_inode(dentry); 4710 DEFINE_DELAYED_CALL(done); 4711 const char *link; 4712 int res; 4713 4714 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4715 if (unlikely(inode->i_op->readlink)) 4716 return inode->i_op->readlink(dentry, buffer, buflen); 4717 4718 if (!d_is_symlink(dentry)) 4719 return -EINVAL; 4720 4721 spin_lock(&inode->i_lock); 4722 inode->i_opflags |= IOP_DEFAULT_READLINK; 4723 spin_unlock(&inode->i_lock); 4724 } 4725 4726 link = READ_ONCE(inode->i_link); 4727 if (!link) { 4728 link = inode->i_op->get_link(dentry, inode, &done); 4729 if (IS_ERR(link)) 4730 return PTR_ERR(link); 4731 } 4732 res = readlink_copy(buffer, buflen, link); 4733 do_delayed_call(&done); 4734 return res; 4735 } 4736 EXPORT_SYMBOL(vfs_readlink); 4737 4738 /** 4739 * vfs_get_link - get symlink body 4740 * @dentry: dentry on which to get symbolic link 4741 * @done: caller needs to free returned data with this 4742 * 4743 * Calls security hook and i_op->get_link() on the supplied inode. 4744 * 4745 * It does not touch atime. That's up to the caller if necessary. 4746 * 4747 * Does not work on "special" symlinks like /proc/$$/fd/N 4748 */ 4749 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4750 { 4751 const char *res = ERR_PTR(-EINVAL); 4752 struct inode *inode = d_inode(dentry); 4753 4754 if (d_is_symlink(dentry)) { 4755 res = ERR_PTR(security_inode_readlink(dentry)); 4756 if (!res) 4757 res = inode->i_op->get_link(dentry, inode, done); 4758 } 4759 return res; 4760 } 4761 EXPORT_SYMBOL(vfs_get_link); 4762 4763 /* get the link contents into pagecache */ 4764 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4765 struct delayed_call *callback) 4766 { 4767 char *kaddr; 4768 struct page *page; 4769 struct address_space *mapping = inode->i_mapping; 4770 4771 if (!dentry) { 4772 page = find_get_page(mapping, 0); 4773 if (!page) 4774 return ERR_PTR(-ECHILD); 4775 if (!PageUptodate(page)) { 4776 put_page(page); 4777 return ERR_PTR(-ECHILD); 4778 } 4779 } else { 4780 page = read_mapping_page(mapping, 0, NULL); 4781 if (IS_ERR(page)) 4782 return (char*)page; 4783 } 4784 set_delayed_call(callback, page_put_link, page); 4785 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4786 kaddr = page_address(page); 4787 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4788 return kaddr; 4789 } 4790 4791 EXPORT_SYMBOL(page_get_link); 4792 4793 void page_put_link(void *arg) 4794 { 4795 put_page(arg); 4796 } 4797 EXPORT_SYMBOL(page_put_link); 4798 4799 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4800 { 4801 DEFINE_DELAYED_CALL(done); 4802 int res = readlink_copy(buffer, buflen, 4803 page_get_link(dentry, d_inode(dentry), 4804 &done)); 4805 do_delayed_call(&done); 4806 return res; 4807 } 4808 EXPORT_SYMBOL(page_readlink); 4809 4810 /* 4811 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4812 */ 4813 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4814 { 4815 struct address_space *mapping = inode->i_mapping; 4816 struct page *page; 4817 void *fsdata; 4818 int err; 4819 unsigned int flags = 0; 4820 if (nofs) 4821 flags |= AOP_FLAG_NOFS; 4822 4823 retry: 4824 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4825 flags, &page, &fsdata); 4826 if (err) 4827 goto fail; 4828 4829 memcpy(page_address(page), symname, len-1); 4830 4831 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4832 page, fsdata); 4833 if (err < 0) 4834 goto fail; 4835 if (err < len-1) 4836 goto retry; 4837 4838 mark_inode_dirty(inode); 4839 return 0; 4840 fail: 4841 return err; 4842 } 4843 EXPORT_SYMBOL(__page_symlink); 4844 4845 int page_symlink(struct inode *inode, const char *symname, int len) 4846 { 4847 return __page_symlink(inode, symname, len, 4848 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4849 } 4850 EXPORT_SYMBOL(page_symlink); 4851 4852 const struct inode_operations page_symlink_inode_operations = { 4853 .get_link = page_get_link, 4854 }; 4855 EXPORT_SYMBOL(page_symlink_inode_operations); 4856