xref: /openbmc/linux/fs/namei.c (revision 3932b9ca)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 void final_putname(struct filename *name)
122 {
123 	if (name->separate) {
124 		__putname(name->name);
125 		kfree(name);
126 	} else {
127 		__putname(name);
128 	}
129 }
130 
131 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
132 
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 	struct filename *result, *err;
137 	int len;
138 	long max;
139 	char *kname;
140 
141 	result = audit_reusename(filename);
142 	if (result)
143 		return result;
144 
145 	result = __getname();
146 	if (unlikely(!result))
147 		return ERR_PTR(-ENOMEM);
148 
149 	/*
150 	 * First, try to embed the struct filename inside the names_cache
151 	 * allocation
152 	 */
153 	kname = (char *)result + sizeof(*result);
154 	result->name = kname;
155 	result->separate = false;
156 	max = EMBEDDED_NAME_MAX;
157 
158 recopy:
159 	len = strncpy_from_user(kname, filename, max);
160 	if (unlikely(len < 0)) {
161 		err = ERR_PTR(len);
162 		goto error;
163 	}
164 
165 	/*
166 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 	 * separate struct filename so we can dedicate the entire
168 	 * names_cache allocation for the pathname, and re-do the copy from
169 	 * userland.
170 	 */
171 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 		kname = (char *)result;
173 
174 		result = kzalloc(sizeof(*result), GFP_KERNEL);
175 		if (!result) {
176 			err = ERR_PTR(-ENOMEM);
177 			result = (struct filename *)kname;
178 			goto error;
179 		}
180 		result->name = kname;
181 		result->separate = true;
182 		max = PATH_MAX;
183 		goto recopy;
184 	}
185 
186 	/* The empty path is special. */
187 	if (unlikely(!len)) {
188 		if (empty)
189 			*empty = 1;
190 		err = ERR_PTR(-ENOENT);
191 		if (!(flags & LOOKUP_EMPTY))
192 			goto error;
193 	}
194 
195 	err = ERR_PTR(-ENAMETOOLONG);
196 	if (unlikely(len >= PATH_MAX))
197 		goto error;
198 
199 	result->uptr = filename;
200 	result->aname = NULL;
201 	audit_getname(result);
202 	return result;
203 
204 error:
205 	final_putname(result);
206 	return err;
207 }
208 
209 struct filename *
210 getname(const char __user * filename)
211 {
212 	return getname_flags(filename, 0, NULL);
213 }
214 
215 /*
216  * The "getname_kernel()" interface doesn't do pathnames longer
217  * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218  */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 	struct filename *result;
223 	char *kname;
224 	int len;
225 
226 	len = strlen(filename);
227 	if (len >= EMBEDDED_NAME_MAX)
228 		return ERR_PTR(-ENAMETOOLONG);
229 
230 	result = __getname();
231 	if (unlikely(!result))
232 		return ERR_PTR(-ENOMEM);
233 
234 	kname = (char *)result + sizeof(*result);
235 	result->name = kname;
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->separate = false;
239 
240 	strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 	return result;
242 }
243 
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 	if (unlikely(!audit_dummy_context()))
248 		return audit_putname(name);
249 	final_putname(name);
250 }
251 #endif
252 
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 	struct posix_acl *acl;
257 
258 	if (mask & MAY_NOT_BLOCK) {
259 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 	        if (!acl)
261 	                return -EAGAIN;
262 		/* no ->get_acl() calls in RCU mode... */
263 		if (acl == ACL_NOT_CACHED)
264 			return -ECHILD;
265 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 	}
267 
268 	acl = get_acl(inode, ACL_TYPE_ACCESS);
269 	if (IS_ERR(acl))
270 		return PTR_ERR(acl);
271 	if (acl) {
272 	        int error = posix_acl_permission(inode, acl, mask);
273 	        posix_acl_release(acl);
274 	        return error;
275 	}
276 #endif
277 
278 	return -EAGAIN;
279 }
280 
281 /*
282  * This does the basic permission checking
283  */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 	unsigned int mode = inode->i_mode;
287 
288 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 		mode >>= 6;
290 	else {
291 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 			int error = check_acl(inode, mask);
293 			if (error != -EAGAIN)
294 				return error;
295 		}
296 
297 		if (in_group_p(inode->i_gid))
298 			mode >>= 3;
299 	}
300 
301 	/*
302 	 * If the DACs are ok we don't need any capability check.
303 	 */
304 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 		return 0;
306 	return -EACCES;
307 }
308 
309 /**
310  * generic_permission -  check for access rights on a Posix-like filesystem
311  * @inode:	inode to check access rights for
312  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313  *
314  * Used to check for read/write/execute permissions on a file.
315  * We use "fsuid" for this, letting us set arbitrary permissions
316  * for filesystem access without changing the "normal" uids which
317  * are used for other things.
318  *
319  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320  * request cannot be satisfied (eg. requires blocking or too much complexity).
321  * It would then be called again in ref-walk mode.
322  */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 	int ret;
326 
327 	/*
328 	 * Do the basic permission checks.
329 	 */
330 	ret = acl_permission_check(inode, mask);
331 	if (ret != -EACCES)
332 		return ret;
333 
334 	if (S_ISDIR(inode->i_mode)) {
335 		/* DACs are overridable for directories */
336 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 			return 0;
338 		if (!(mask & MAY_WRITE))
339 			if (capable_wrt_inode_uidgid(inode,
340 						     CAP_DAC_READ_SEARCH))
341 				return 0;
342 		return -EACCES;
343 	}
344 	/*
345 	 * Read/write DACs are always overridable.
346 	 * Executable DACs are overridable when there is
347 	 * at least one exec bit set.
348 	 */
349 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 			return 0;
352 
353 	/*
354 	 * Searching includes executable on directories, else just read.
355 	 */
356 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 	if (mask == MAY_READ)
358 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 			return 0;
360 
361 	return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364 
365 /*
366  * We _really_ want to just do "generic_permission()" without
367  * even looking at the inode->i_op values. So we keep a cache
368  * flag in inode->i_opflags, that says "this has not special
369  * permission function, use the fast case".
370  */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 		if (likely(inode->i_op->permission))
375 			return inode->i_op->permission(inode, mask);
376 
377 		/* This gets set once for the inode lifetime */
378 		spin_lock(&inode->i_lock);
379 		inode->i_opflags |= IOP_FASTPERM;
380 		spin_unlock(&inode->i_lock);
381 	}
382 	return generic_permission(inode, mask);
383 }
384 
385 /**
386  * __inode_permission - Check for access rights to a given inode
387  * @inode: Inode to check permission on
388  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389  *
390  * Check for read/write/execute permissions on an inode.
391  *
392  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393  *
394  * This does not check for a read-only file system.  You probably want
395  * inode_permission().
396  */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 	int retval;
400 
401 	if (unlikely(mask & MAY_WRITE)) {
402 		/*
403 		 * Nobody gets write access to an immutable file.
404 		 */
405 		if (IS_IMMUTABLE(inode))
406 			return -EACCES;
407 	}
408 
409 	retval = do_inode_permission(inode, mask);
410 	if (retval)
411 		return retval;
412 
413 	retval = devcgroup_inode_permission(inode, mask);
414 	if (retval)
415 		return retval;
416 
417 	return security_inode_permission(inode, mask);
418 }
419 
420 /**
421  * sb_permission - Check superblock-level permissions
422  * @sb: Superblock of inode to check permission on
423  * @inode: Inode to check permission on
424  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
425  *
426  * Separate out file-system wide checks from inode-specific permission checks.
427  */
428 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
429 {
430 	if (unlikely(mask & MAY_WRITE)) {
431 		umode_t mode = inode->i_mode;
432 
433 		/* Nobody gets write access to a read-only fs. */
434 		if ((sb->s_flags & MS_RDONLY) &&
435 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
436 			return -EROFS;
437 	}
438 	return 0;
439 }
440 
441 /**
442  * inode_permission - Check for access rights to a given inode
443  * @inode: Inode to check permission on
444  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
445  *
446  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
447  * this, letting us set arbitrary permissions for filesystem access without
448  * changing the "normal" UIDs which are used for other things.
449  *
450  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
451  */
452 int inode_permission(struct inode *inode, int mask)
453 {
454 	int retval;
455 
456 	retval = sb_permission(inode->i_sb, inode, mask);
457 	if (retval)
458 		return retval;
459 	return __inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462 
463 /**
464  * path_get - get a reference to a path
465  * @path: path to get the reference to
466  *
467  * Given a path increment the reference count to the dentry and the vfsmount.
468  */
469 void path_get(const struct path *path)
470 {
471 	mntget(path->mnt);
472 	dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475 
476 /**
477  * path_put - put a reference to a path
478  * @path: path to put the reference to
479  *
480  * Given a path decrement the reference count to the dentry and the vfsmount.
481  */
482 void path_put(const struct path *path)
483 {
484 	dput(path->dentry);
485 	mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488 
489 /*
490  * Path walking has 2 modes, rcu-walk and ref-walk (see
491  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
492  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
493  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
494  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
495  * got stuck, so ref-walk may continue from there. If this is not successful
496  * (eg. a seqcount has changed), then failure is returned and it's up to caller
497  * to restart the path walk from the beginning in ref-walk mode.
498  */
499 
500 /**
501  * unlazy_walk - try to switch to ref-walk mode.
502  * @nd: nameidata pathwalk data
503  * @dentry: child of nd->path.dentry or NULL
504  * Returns: 0 on success, -ECHILD on failure
505  *
506  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
507  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
508  * @nd or NULL.  Must be called from rcu-walk context.
509  */
510 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
511 {
512 	struct fs_struct *fs = current->fs;
513 	struct dentry *parent = nd->path.dentry;
514 
515 	BUG_ON(!(nd->flags & LOOKUP_RCU));
516 
517 	/*
518 	 * After legitimizing the bastards, terminate_walk()
519 	 * will do the right thing for non-RCU mode, and all our
520 	 * subsequent exit cases should rcu_read_unlock()
521 	 * before returning.  Do vfsmount first; if dentry
522 	 * can't be legitimized, just set nd->path.dentry to NULL
523 	 * and rely on dput(NULL) being a no-op.
524 	 */
525 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
526 		return -ECHILD;
527 	nd->flags &= ~LOOKUP_RCU;
528 
529 	if (!lockref_get_not_dead(&parent->d_lockref)) {
530 		nd->path.dentry = NULL;
531 		goto out;
532 	}
533 
534 	/*
535 	 * For a negative lookup, the lookup sequence point is the parents
536 	 * sequence point, and it only needs to revalidate the parent dentry.
537 	 *
538 	 * For a positive lookup, we need to move both the parent and the
539 	 * dentry from the RCU domain to be properly refcounted. And the
540 	 * sequence number in the dentry validates *both* dentry counters,
541 	 * since we checked the sequence number of the parent after we got
542 	 * the child sequence number. So we know the parent must still
543 	 * be valid if the child sequence number is still valid.
544 	 */
545 	if (!dentry) {
546 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
547 			goto out;
548 		BUG_ON(nd->inode != parent->d_inode);
549 	} else {
550 		if (!lockref_get_not_dead(&dentry->d_lockref))
551 			goto out;
552 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
553 			goto drop_dentry;
554 	}
555 
556 	/*
557 	 * Sequence counts matched. Now make sure that the root is
558 	 * still valid and get it if required.
559 	 */
560 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
561 		spin_lock(&fs->lock);
562 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
563 			goto unlock_and_drop_dentry;
564 		path_get(&nd->root);
565 		spin_unlock(&fs->lock);
566 	}
567 
568 	rcu_read_unlock();
569 	return 0;
570 
571 unlock_and_drop_dentry:
572 	spin_unlock(&fs->lock);
573 drop_dentry:
574 	rcu_read_unlock();
575 	dput(dentry);
576 	goto drop_root_mnt;
577 out:
578 	rcu_read_unlock();
579 drop_root_mnt:
580 	if (!(nd->flags & LOOKUP_ROOT))
581 		nd->root.mnt = NULL;
582 	return -ECHILD;
583 }
584 
585 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
586 {
587 	return dentry->d_op->d_revalidate(dentry, flags);
588 }
589 
590 /**
591  * complete_walk - successful completion of path walk
592  * @nd:  pointer nameidata
593  *
594  * If we had been in RCU mode, drop out of it and legitimize nd->path.
595  * Revalidate the final result, unless we'd already done that during
596  * the path walk or the filesystem doesn't ask for it.  Return 0 on
597  * success, -error on failure.  In case of failure caller does not
598  * need to drop nd->path.
599  */
600 static int complete_walk(struct nameidata *nd)
601 {
602 	struct dentry *dentry = nd->path.dentry;
603 	int status;
604 
605 	if (nd->flags & LOOKUP_RCU) {
606 		nd->flags &= ~LOOKUP_RCU;
607 		if (!(nd->flags & LOOKUP_ROOT))
608 			nd->root.mnt = NULL;
609 
610 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
611 			rcu_read_unlock();
612 			return -ECHILD;
613 		}
614 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
615 			rcu_read_unlock();
616 			mntput(nd->path.mnt);
617 			return -ECHILD;
618 		}
619 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
620 			rcu_read_unlock();
621 			dput(dentry);
622 			mntput(nd->path.mnt);
623 			return -ECHILD;
624 		}
625 		rcu_read_unlock();
626 	}
627 
628 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
629 		return 0;
630 
631 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
632 		return 0;
633 
634 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
635 	if (status > 0)
636 		return 0;
637 
638 	if (!status)
639 		status = -ESTALE;
640 
641 	path_put(&nd->path);
642 	return status;
643 }
644 
645 static __always_inline void set_root(struct nameidata *nd)
646 {
647 	get_fs_root(current->fs, &nd->root);
648 }
649 
650 static int link_path_walk(const char *, struct nameidata *);
651 
652 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
653 {
654 	struct fs_struct *fs = current->fs;
655 	unsigned seq, res;
656 
657 	do {
658 		seq = read_seqcount_begin(&fs->seq);
659 		nd->root = fs->root;
660 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
661 	} while (read_seqcount_retry(&fs->seq, seq));
662 	return res;
663 }
664 
665 static void path_put_conditional(struct path *path, struct nameidata *nd)
666 {
667 	dput(path->dentry);
668 	if (path->mnt != nd->path.mnt)
669 		mntput(path->mnt);
670 }
671 
672 static inline void path_to_nameidata(const struct path *path,
673 					struct nameidata *nd)
674 {
675 	if (!(nd->flags & LOOKUP_RCU)) {
676 		dput(nd->path.dentry);
677 		if (nd->path.mnt != path->mnt)
678 			mntput(nd->path.mnt);
679 	}
680 	nd->path.mnt = path->mnt;
681 	nd->path.dentry = path->dentry;
682 }
683 
684 /*
685  * Helper to directly jump to a known parsed path from ->follow_link,
686  * caller must have taken a reference to path beforehand.
687  */
688 void nd_jump_link(struct nameidata *nd, struct path *path)
689 {
690 	path_put(&nd->path);
691 
692 	nd->path = *path;
693 	nd->inode = nd->path.dentry->d_inode;
694 	nd->flags |= LOOKUP_JUMPED;
695 }
696 
697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
698 {
699 	struct inode *inode = link->dentry->d_inode;
700 	if (inode->i_op->put_link)
701 		inode->i_op->put_link(link->dentry, nd, cookie);
702 	path_put(link);
703 }
704 
705 int sysctl_protected_symlinks __read_mostly = 0;
706 int sysctl_protected_hardlinks __read_mostly = 0;
707 
708 /**
709  * may_follow_link - Check symlink following for unsafe situations
710  * @link: The path of the symlink
711  * @nd: nameidata pathwalk data
712  *
713  * In the case of the sysctl_protected_symlinks sysctl being enabled,
714  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
715  * in a sticky world-writable directory. This is to protect privileged
716  * processes from failing races against path names that may change out
717  * from under them by way of other users creating malicious symlinks.
718  * It will permit symlinks to be followed only when outside a sticky
719  * world-writable directory, or when the uid of the symlink and follower
720  * match, or when the directory owner matches the symlink's owner.
721  *
722  * Returns 0 if following the symlink is allowed, -ve on error.
723  */
724 static inline int may_follow_link(struct path *link, struct nameidata *nd)
725 {
726 	const struct inode *inode;
727 	const struct inode *parent;
728 
729 	if (!sysctl_protected_symlinks)
730 		return 0;
731 
732 	/* Allowed if owner and follower match. */
733 	inode = link->dentry->d_inode;
734 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
735 		return 0;
736 
737 	/* Allowed if parent directory not sticky and world-writable. */
738 	parent = nd->path.dentry->d_inode;
739 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
740 		return 0;
741 
742 	/* Allowed if parent directory and link owner match. */
743 	if (uid_eq(parent->i_uid, inode->i_uid))
744 		return 0;
745 
746 	audit_log_link_denied("follow_link", link);
747 	path_put_conditional(link, nd);
748 	path_put(&nd->path);
749 	return -EACCES;
750 }
751 
752 /**
753  * safe_hardlink_source - Check for safe hardlink conditions
754  * @inode: the source inode to hardlink from
755  *
756  * Return false if at least one of the following conditions:
757  *    - inode is not a regular file
758  *    - inode is setuid
759  *    - inode is setgid and group-exec
760  *    - access failure for read and write
761  *
762  * Otherwise returns true.
763  */
764 static bool safe_hardlink_source(struct inode *inode)
765 {
766 	umode_t mode = inode->i_mode;
767 
768 	/* Special files should not get pinned to the filesystem. */
769 	if (!S_ISREG(mode))
770 		return false;
771 
772 	/* Setuid files should not get pinned to the filesystem. */
773 	if (mode & S_ISUID)
774 		return false;
775 
776 	/* Executable setgid files should not get pinned to the filesystem. */
777 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
778 		return false;
779 
780 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
781 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
782 		return false;
783 
784 	return true;
785 }
786 
787 /**
788  * may_linkat - Check permissions for creating a hardlink
789  * @link: the source to hardlink from
790  *
791  * Block hardlink when all of:
792  *  - sysctl_protected_hardlinks enabled
793  *  - fsuid does not match inode
794  *  - hardlink source is unsafe (see safe_hardlink_source() above)
795  *  - not CAP_FOWNER
796  *
797  * Returns 0 if successful, -ve on error.
798  */
799 static int may_linkat(struct path *link)
800 {
801 	const struct cred *cred;
802 	struct inode *inode;
803 
804 	if (!sysctl_protected_hardlinks)
805 		return 0;
806 
807 	cred = current_cred();
808 	inode = link->dentry->d_inode;
809 
810 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
811 	 * otherwise, it must be a safe source.
812 	 */
813 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
814 	    capable(CAP_FOWNER))
815 		return 0;
816 
817 	audit_log_link_denied("linkat", link);
818 	return -EPERM;
819 }
820 
821 static __always_inline int
822 follow_link(struct path *link, struct nameidata *nd, void **p)
823 {
824 	struct dentry *dentry = link->dentry;
825 	int error;
826 	char *s;
827 
828 	BUG_ON(nd->flags & LOOKUP_RCU);
829 
830 	if (link->mnt == nd->path.mnt)
831 		mntget(link->mnt);
832 
833 	error = -ELOOP;
834 	if (unlikely(current->total_link_count >= 40))
835 		goto out_put_nd_path;
836 
837 	cond_resched();
838 	current->total_link_count++;
839 
840 	touch_atime(link);
841 	nd_set_link(nd, NULL);
842 
843 	error = security_inode_follow_link(link->dentry, nd);
844 	if (error)
845 		goto out_put_nd_path;
846 
847 	nd->last_type = LAST_BIND;
848 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
849 	error = PTR_ERR(*p);
850 	if (IS_ERR(*p))
851 		goto out_put_nd_path;
852 
853 	error = 0;
854 	s = nd_get_link(nd);
855 	if (s) {
856 		if (unlikely(IS_ERR(s))) {
857 			path_put(&nd->path);
858 			put_link(nd, link, *p);
859 			return PTR_ERR(s);
860 		}
861 		if (*s == '/') {
862 			if (!nd->root.mnt)
863 				set_root(nd);
864 			path_put(&nd->path);
865 			nd->path = nd->root;
866 			path_get(&nd->root);
867 			nd->flags |= LOOKUP_JUMPED;
868 		}
869 		nd->inode = nd->path.dentry->d_inode;
870 		error = link_path_walk(s, nd);
871 		if (unlikely(error))
872 			put_link(nd, link, *p);
873 	}
874 
875 	return error;
876 
877 out_put_nd_path:
878 	*p = NULL;
879 	path_put(&nd->path);
880 	path_put(link);
881 	return error;
882 }
883 
884 static int follow_up_rcu(struct path *path)
885 {
886 	struct mount *mnt = real_mount(path->mnt);
887 	struct mount *parent;
888 	struct dentry *mountpoint;
889 
890 	parent = mnt->mnt_parent;
891 	if (&parent->mnt == path->mnt)
892 		return 0;
893 	mountpoint = mnt->mnt_mountpoint;
894 	path->dentry = mountpoint;
895 	path->mnt = &parent->mnt;
896 	return 1;
897 }
898 
899 /*
900  * follow_up - Find the mountpoint of path's vfsmount
901  *
902  * Given a path, find the mountpoint of its source file system.
903  * Replace @path with the path of the mountpoint in the parent mount.
904  * Up is towards /.
905  *
906  * Return 1 if we went up a level and 0 if we were already at the
907  * root.
908  */
909 int follow_up(struct path *path)
910 {
911 	struct mount *mnt = real_mount(path->mnt);
912 	struct mount *parent;
913 	struct dentry *mountpoint;
914 
915 	read_seqlock_excl(&mount_lock);
916 	parent = mnt->mnt_parent;
917 	if (parent == mnt) {
918 		read_sequnlock_excl(&mount_lock);
919 		return 0;
920 	}
921 	mntget(&parent->mnt);
922 	mountpoint = dget(mnt->mnt_mountpoint);
923 	read_sequnlock_excl(&mount_lock);
924 	dput(path->dentry);
925 	path->dentry = mountpoint;
926 	mntput(path->mnt);
927 	path->mnt = &parent->mnt;
928 	return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931 
932 /*
933  * Perform an automount
934  * - return -EISDIR to tell follow_managed() to stop and return the path we
935  *   were called with.
936  */
937 static int follow_automount(struct path *path, unsigned flags,
938 			    bool *need_mntput)
939 {
940 	struct vfsmount *mnt;
941 	int err;
942 
943 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 		return -EREMOTE;
945 
946 	/* We don't want to mount if someone's just doing a stat -
947 	 * unless they're stat'ing a directory and appended a '/' to
948 	 * the name.
949 	 *
950 	 * We do, however, want to mount if someone wants to open or
951 	 * create a file of any type under the mountpoint, wants to
952 	 * traverse through the mountpoint or wants to open the
953 	 * mounted directory.  Also, autofs may mark negative dentries
954 	 * as being automount points.  These will need the attentions
955 	 * of the daemon to instantiate them before they can be used.
956 	 */
957 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 	    path->dentry->d_inode)
960 		return -EISDIR;
961 
962 	current->total_link_count++;
963 	if (current->total_link_count >= 40)
964 		return -ELOOP;
965 
966 	mnt = path->dentry->d_op->d_automount(path);
967 	if (IS_ERR(mnt)) {
968 		/*
969 		 * The filesystem is allowed to return -EISDIR here to indicate
970 		 * it doesn't want to automount.  For instance, autofs would do
971 		 * this so that its userspace daemon can mount on this dentry.
972 		 *
973 		 * However, we can only permit this if it's a terminal point in
974 		 * the path being looked up; if it wasn't then the remainder of
975 		 * the path is inaccessible and we should say so.
976 		 */
977 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 			return -EREMOTE;
979 		return PTR_ERR(mnt);
980 	}
981 
982 	if (!mnt) /* mount collision */
983 		return 0;
984 
985 	if (!*need_mntput) {
986 		/* lock_mount() may release path->mnt on error */
987 		mntget(path->mnt);
988 		*need_mntput = true;
989 	}
990 	err = finish_automount(mnt, path);
991 
992 	switch (err) {
993 	case -EBUSY:
994 		/* Someone else made a mount here whilst we were busy */
995 		return 0;
996 	case 0:
997 		path_put(path);
998 		path->mnt = mnt;
999 		path->dentry = dget(mnt->mnt_root);
1000 		return 0;
1001 	default:
1002 		return err;
1003 	}
1004 
1005 }
1006 
1007 /*
1008  * Handle a dentry that is managed in some way.
1009  * - Flagged for transit management (autofs)
1010  * - Flagged as mountpoint
1011  * - Flagged as automount point
1012  *
1013  * This may only be called in refwalk mode.
1014  *
1015  * Serialization is taken care of in namespace.c
1016  */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 	unsigned managed;
1021 	bool need_mntput = false;
1022 	int ret = 0;
1023 
1024 	/* Given that we're not holding a lock here, we retain the value in a
1025 	 * local variable for each dentry as we look at it so that we don't see
1026 	 * the components of that value change under us */
1027 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 	       managed &= DCACHE_MANAGED_DENTRY,
1029 	       unlikely(managed != 0)) {
1030 		/* Allow the filesystem to manage the transit without i_mutex
1031 		 * being held. */
1032 		if (managed & DCACHE_MANAGE_TRANSIT) {
1033 			BUG_ON(!path->dentry->d_op);
1034 			BUG_ON(!path->dentry->d_op->d_manage);
1035 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 			if (ret < 0)
1037 				break;
1038 		}
1039 
1040 		/* Transit to a mounted filesystem. */
1041 		if (managed & DCACHE_MOUNTED) {
1042 			struct vfsmount *mounted = lookup_mnt(path);
1043 			if (mounted) {
1044 				dput(path->dentry);
1045 				if (need_mntput)
1046 					mntput(path->mnt);
1047 				path->mnt = mounted;
1048 				path->dentry = dget(mounted->mnt_root);
1049 				need_mntput = true;
1050 				continue;
1051 			}
1052 
1053 			/* Something is mounted on this dentry in another
1054 			 * namespace and/or whatever was mounted there in this
1055 			 * namespace got unmounted before lookup_mnt() could
1056 			 * get it */
1057 		}
1058 
1059 		/* Handle an automount point */
1060 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 			ret = follow_automount(path, flags, &need_mntput);
1062 			if (ret < 0)
1063 				break;
1064 			continue;
1065 		}
1066 
1067 		/* We didn't change the current path point */
1068 		break;
1069 	}
1070 
1071 	if (need_mntput && path->mnt == mnt)
1072 		mntput(path->mnt);
1073 	if (ret == -EISDIR)
1074 		ret = 0;
1075 	return ret < 0 ? ret : need_mntput;
1076 }
1077 
1078 int follow_down_one(struct path *path)
1079 {
1080 	struct vfsmount *mounted;
1081 
1082 	mounted = lookup_mnt(path);
1083 	if (mounted) {
1084 		dput(path->dentry);
1085 		mntput(path->mnt);
1086 		path->mnt = mounted;
1087 		path->dentry = dget(mounted->mnt_root);
1088 		return 1;
1089 	}
1090 	return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093 
1094 static inline int managed_dentry_rcu(struct dentry *dentry)
1095 {
1096 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1097 		dentry->d_op->d_manage(dentry, true) : 0;
1098 }
1099 
1100 /*
1101  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1102  * we meet a managed dentry that would need blocking.
1103  */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 			       struct inode **inode)
1106 {
1107 	for (;;) {
1108 		struct mount *mounted;
1109 		/*
1110 		 * Don't forget we might have a non-mountpoint managed dentry
1111 		 * that wants to block transit.
1112 		 */
1113 		switch (managed_dentry_rcu(path->dentry)) {
1114 		case -ECHILD:
1115 		default:
1116 			return false;
1117 		case -EISDIR:
1118 			return true;
1119 		case 0:
1120 			break;
1121 		}
1122 
1123 		if (!d_mountpoint(path->dentry))
1124 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1125 
1126 		mounted = __lookup_mnt(path->mnt, path->dentry);
1127 		if (!mounted)
1128 			break;
1129 		path->mnt = &mounted->mnt;
1130 		path->dentry = mounted->mnt.mnt_root;
1131 		nd->flags |= LOOKUP_JUMPED;
1132 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1133 		/*
1134 		 * Update the inode too. We don't need to re-check the
1135 		 * dentry sequence number here after this d_inode read,
1136 		 * because a mount-point is always pinned.
1137 		 */
1138 		*inode = path->dentry->d_inode;
1139 	}
1140 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1141 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1142 }
1143 
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 	struct inode *inode = nd->inode;
1147 	if (!nd->root.mnt)
1148 		set_root_rcu(nd);
1149 
1150 	while (1) {
1151 		if (nd->path.dentry == nd->root.dentry &&
1152 		    nd->path.mnt == nd->root.mnt) {
1153 			break;
1154 		}
1155 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1156 			struct dentry *old = nd->path.dentry;
1157 			struct dentry *parent = old->d_parent;
1158 			unsigned seq;
1159 
1160 			inode = parent->d_inode;
1161 			seq = read_seqcount_begin(&parent->d_seq);
1162 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1163 				goto failed;
1164 			nd->path.dentry = parent;
1165 			nd->seq = seq;
1166 			break;
1167 		}
1168 		if (!follow_up_rcu(&nd->path))
1169 			break;
1170 		inode = nd->path.dentry->d_inode;
1171 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1172 	}
1173 	while (d_mountpoint(nd->path.dentry)) {
1174 		struct mount *mounted;
1175 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1176 		if (!mounted)
1177 			break;
1178 		nd->path.mnt = &mounted->mnt;
1179 		nd->path.dentry = mounted->mnt.mnt_root;
1180 		inode = nd->path.dentry->d_inode;
1181 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1182 		if (read_seqretry(&mount_lock, nd->m_seq))
1183 			goto failed;
1184 	}
1185 	nd->inode = inode;
1186 	return 0;
1187 
1188 failed:
1189 	nd->flags &= ~LOOKUP_RCU;
1190 	if (!(nd->flags & LOOKUP_ROOT))
1191 		nd->root.mnt = NULL;
1192 	rcu_read_unlock();
1193 	return -ECHILD;
1194 }
1195 
1196 /*
1197  * Follow down to the covering mount currently visible to userspace.  At each
1198  * point, the filesystem owning that dentry may be queried as to whether the
1199  * caller is permitted to proceed or not.
1200  */
1201 int follow_down(struct path *path)
1202 {
1203 	unsigned managed;
1204 	int ret;
1205 
1206 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1207 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1208 		/* Allow the filesystem to manage the transit without i_mutex
1209 		 * being held.
1210 		 *
1211 		 * We indicate to the filesystem if someone is trying to mount
1212 		 * something here.  This gives autofs the chance to deny anyone
1213 		 * other than its daemon the right to mount on its
1214 		 * superstructure.
1215 		 *
1216 		 * The filesystem may sleep at this point.
1217 		 */
1218 		if (managed & DCACHE_MANAGE_TRANSIT) {
1219 			BUG_ON(!path->dentry->d_op);
1220 			BUG_ON(!path->dentry->d_op->d_manage);
1221 			ret = path->dentry->d_op->d_manage(
1222 				path->dentry, false);
1223 			if (ret < 0)
1224 				return ret == -EISDIR ? 0 : ret;
1225 		}
1226 
1227 		/* Transit to a mounted filesystem. */
1228 		if (managed & DCACHE_MOUNTED) {
1229 			struct vfsmount *mounted = lookup_mnt(path);
1230 			if (!mounted)
1231 				break;
1232 			dput(path->dentry);
1233 			mntput(path->mnt);
1234 			path->mnt = mounted;
1235 			path->dentry = dget(mounted->mnt_root);
1236 			continue;
1237 		}
1238 
1239 		/* Don't handle automount points here */
1240 		break;
1241 	}
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(follow_down);
1245 
1246 /*
1247  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1248  */
1249 static void follow_mount(struct path *path)
1250 {
1251 	while (d_mountpoint(path->dentry)) {
1252 		struct vfsmount *mounted = lookup_mnt(path);
1253 		if (!mounted)
1254 			break;
1255 		dput(path->dentry);
1256 		mntput(path->mnt);
1257 		path->mnt = mounted;
1258 		path->dentry = dget(mounted->mnt_root);
1259 	}
1260 }
1261 
1262 static void follow_dotdot(struct nameidata *nd)
1263 {
1264 	if (!nd->root.mnt)
1265 		set_root(nd);
1266 
1267 	while(1) {
1268 		struct dentry *old = nd->path.dentry;
1269 
1270 		if (nd->path.dentry == nd->root.dentry &&
1271 		    nd->path.mnt == nd->root.mnt) {
1272 			break;
1273 		}
1274 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1275 			/* rare case of legitimate dget_parent()... */
1276 			nd->path.dentry = dget_parent(nd->path.dentry);
1277 			dput(old);
1278 			break;
1279 		}
1280 		if (!follow_up(&nd->path))
1281 			break;
1282 	}
1283 	follow_mount(&nd->path);
1284 	nd->inode = nd->path.dentry->d_inode;
1285 }
1286 
1287 /*
1288  * This looks up the name in dcache, possibly revalidates the old dentry and
1289  * allocates a new one if not found or not valid.  In the need_lookup argument
1290  * returns whether i_op->lookup is necessary.
1291  *
1292  * dir->d_inode->i_mutex must be held
1293  */
1294 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1295 				    unsigned int flags, bool *need_lookup)
1296 {
1297 	struct dentry *dentry;
1298 	int error;
1299 
1300 	*need_lookup = false;
1301 	dentry = d_lookup(dir, name);
1302 	if (dentry) {
1303 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1304 			error = d_revalidate(dentry, flags);
1305 			if (unlikely(error <= 0)) {
1306 				if (error < 0) {
1307 					dput(dentry);
1308 					return ERR_PTR(error);
1309 				} else if (!d_invalidate(dentry)) {
1310 					dput(dentry);
1311 					dentry = NULL;
1312 				}
1313 			}
1314 		}
1315 	}
1316 
1317 	if (!dentry) {
1318 		dentry = d_alloc(dir, name);
1319 		if (unlikely(!dentry))
1320 			return ERR_PTR(-ENOMEM);
1321 
1322 		*need_lookup = true;
1323 	}
1324 	return dentry;
1325 }
1326 
1327 /*
1328  * Call i_op->lookup on the dentry.  The dentry must be negative and
1329  * unhashed.
1330  *
1331  * dir->d_inode->i_mutex must be held
1332  */
1333 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1334 				  unsigned int flags)
1335 {
1336 	struct dentry *old;
1337 
1338 	/* Don't create child dentry for a dead directory. */
1339 	if (unlikely(IS_DEADDIR(dir))) {
1340 		dput(dentry);
1341 		return ERR_PTR(-ENOENT);
1342 	}
1343 
1344 	old = dir->i_op->lookup(dir, dentry, flags);
1345 	if (unlikely(old)) {
1346 		dput(dentry);
1347 		dentry = old;
1348 	}
1349 	return dentry;
1350 }
1351 
1352 static struct dentry *__lookup_hash(struct qstr *name,
1353 		struct dentry *base, unsigned int flags)
1354 {
1355 	bool need_lookup;
1356 	struct dentry *dentry;
1357 
1358 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1359 	if (!need_lookup)
1360 		return dentry;
1361 
1362 	return lookup_real(base->d_inode, dentry, flags);
1363 }
1364 
1365 /*
1366  *  It's more convoluted than I'd like it to be, but... it's still fairly
1367  *  small and for now I'd prefer to have fast path as straight as possible.
1368  *  It _is_ time-critical.
1369  */
1370 static int lookup_fast(struct nameidata *nd,
1371 		       struct path *path, struct inode **inode)
1372 {
1373 	struct vfsmount *mnt = nd->path.mnt;
1374 	struct dentry *dentry, *parent = nd->path.dentry;
1375 	int need_reval = 1;
1376 	int status = 1;
1377 	int err;
1378 
1379 	/*
1380 	 * Rename seqlock is not required here because in the off chance
1381 	 * of a false negative due to a concurrent rename, we're going to
1382 	 * do the non-racy lookup, below.
1383 	 */
1384 	if (nd->flags & LOOKUP_RCU) {
1385 		unsigned seq;
1386 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1387 		if (!dentry)
1388 			goto unlazy;
1389 
1390 		/*
1391 		 * This sequence count validates that the inode matches
1392 		 * the dentry name information from lookup.
1393 		 */
1394 		*inode = dentry->d_inode;
1395 		if (read_seqcount_retry(&dentry->d_seq, seq))
1396 			return -ECHILD;
1397 
1398 		/*
1399 		 * This sequence count validates that the parent had no
1400 		 * changes while we did the lookup of the dentry above.
1401 		 *
1402 		 * The memory barrier in read_seqcount_begin of child is
1403 		 *  enough, we can use __read_seqcount_retry here.
1404 		 */
1405 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1406 			return -ECHILD;
1407 		nd->seq = seq;
1408 
1409 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1410 			status = d_revalidate(dentry, nd->flags);
1411 			if (unlikely(status <= 0)) {
1412 				if (status != -ECHILD)
1413 					need_reval = 0;
1414 				goto unlazy;
1415 			}
1416 		}
1417 		path->mnt = mnt;
1418 		path->dentry = dentry;
1419 		if (likely(__follow_mount_rcu(nd, path, inode)))
1420 			return 0;
1421 unlazy:
1422 		if (unlazy_walk(nd, dentry))
1423 			return -ECHILD;
1424 	} else {
1425 		dentry = __d_lookup(parent, &nd->last);
1426 	}
1427 
1428 	if (unlikely(!dentry))
1429 		goto need_lookup;
1430 
1431 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1432 		status = d_revalidate(dentry, nd->flags);
1433 	if (unlikely(status <= 0)) {
1434 		if (status < 0) {
1435 			dput(dentry);
1436 			return status;
1437 		}
1438 		if (!d_invalidate(dentry)) {
1439 			dput(dentry);
1440 			goto need_lookup;
1441 		}
1442 	}
1443 
1444 	path->mnt = mnt;
1445 	path->dentry = dentry;
1446 	err = follow_managed(path, nd->flags);
1447 	if (unlikely(err < 0)) {
1448 		path_put_conditional(path, nd);
1449 		return err;
1450 	}
1451 	if (err)
1452 		nd->flags |= LOOKUP_JUMPED;
1453 	*inode = path->dentry->d_inode;
1454 	return 0;
1455 
1456 need_lookup:
1457 	return 1;
1458 }
1459 
1460 /* Fast lookup failed, do it the slow way */
1461 static int lookup_slow(struct nameidata *nd, struct path *path)
1462 {
1463 	struct dentry *dentry, *parent;
1464 	int err;
1465 
1466 	parent = nd->path.dentry;
1467 	BUG_ON(nd->inode != parent->d_inode);
1468 
1469 	mutex_lock(&parent->d_inode->i_mutex);
1470 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1471 	mutex_unlock(&parent->d_inode->i_mutex);
1472 	if (IS_ERR(dentry))
1473 		return PTR_ERR(dentry);
1474 	path->mnt = nd->path.mnt;
1475 	path->dentry = dentry;
1476 	err = follow_managed(path, nd->flags);
1477 	if (unlikely(err < 0)) {
1478 		path_put_conditional(path, nd);
1479 		return err;
1480 	}
1481 	if (err)
1482 		nd->flags |= LOOKUP_JUMPED;
1483 	return 0;
1484 }
1485 
1486 static inline int may_lookup(struct nameidata *nd)
1487 {
1488 	if (nd->flags & LOOKUP_RCU) {
1489 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1490 		if (err != -ECHILD)
1491 			return err;
1492 		if (unlazy_walk(nd, NULL))
1493 			return -ECHILD;
1494 	}
1495 	return inode_permission(nd->inode, MAY_EXEC);
1496 }
1497 
1498 static inline int handle_dots(struct nameidata *nd, int type)
1499 {
1500 	if (type == LAST_DOTDOT) {
1501 		if (nd->flags & LOOKUP_RCU) {
1502 			if (follow_dotdot_rcu(nd))
1503 				return -ECHILD;
1504 		} else
1505 			follow_dotdot(nd);
1506 	}
1507 	return 0;
1508 }
1509 
1510 static void terminate_walk(struct nameidata *nd)
1511 {
1512 	if (!(nd->flags & LOOKUP_RCU)) {
1513 		path_put(&nd->path);
1514 	} else {
1515 		nd->flags &= ~LOOKUP_RCU;
1516 		if (!(nd->flags & LOOKUP_ROOT))
1517 			nd->root.mnt = NULL;
1518 		rcu_read_unlock();
1519 	}
1520 }
1521 
1522 /*
1523  * Do we need to follow links? We _really_ want to be able
1524  * to do this check without having to look at inode->i_op,
1525  * so we keep a cache of "no, this doesn't need follow_link"
1526  * for the common case.
1527  */
1528 static inline int should_follow_link(struct dentry *dentry, int follow)
1529 {
1530 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1531 }
1532 
1533 static inline int walk_component(struct nameidata *nd, struct path *path,
1534 		int follow)
1535 {
1536 	struct inode *inode;
1537 	int err;
1538 	/*
1539 	 * "." and ".." are special - ".." especially so because it has
1540 	 * to be able to know about the current root directory and
1541 	 * parent relationships.
1542 	 */
1543 	if (unlikely(nd->last_type != LAST_NORM))
1544 		return handle_dots(nd, nd->last_type);
1545 	err = lookup_fast(nd, path, &inode);
1546 	if (unlikely(err)) {
1547 		if (err < 0)
1548 			goto out_err;
1549 
1550 		err = lookup_slow(nd, path);
1551 		if (err < 0)
1552 			goto out_err;
1553 
1554 		inode = path->dentry->d_inode;
1555 	}
1556 	err = -ENOENT;
1557 	if (!inode || d_is_negative(path->dentry))
1558 		goto out_path_put;
1559 
1560 	if (should_follow_link(path->dentry, follow)) {
1561 		if (nd->flags & LOOKUP_RCU) {
1562 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1563 				err = -ECHILD;
1564 				goto out_err;
1565 			}
1566 		}
1567 		BUG_ON(inode != path->dentry->d_inode);
1568 		return 1;
1569 	}
1570 	path_to_nameidata(path, nd);
1571 	nd->inode = inode;
1572 	return 0;
1573 
1574 out_path_put:
1575 	path_to_nameidata(path, nd);
1576 out_err:
1577 	terminate_walk(nd);
1578 	return err;
1579 }
1580 
1581 /*
1582  * This limits recursive symlink follows to 8, while
1583  * limiting consecutive symlinks to 40.
1584  *
1585  * Without that kind of total limit, nasty chains of consecutive
1586  * symlinks can cause almost arbitrarily long lookups.
1587  */
1588 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1589 {
1590 	int res;
1591 
1592 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1593 		path_put_conditional(path, nd);
1594 		path_put(&nd->path);
1595 		return -ELOOP;
1596 	}
1597 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1598 
1599 	nd->depth++;
1600 	current->link_count++;
1601 
1602 	do {
1603 		struct path link = *path;
1604 		void *cookie;
1605 
1606 		res = follow_link(&link, nd, &cookie);
1607 		if (res)
1608 			break;
1609 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1610 		put_link(nd, &link, cookie);
1611 	} while (res > 0);
1612 
1613 	current->link_count--;
1614 	nd->depth--;
1615 	return res;
1616 }
1617 
1618 /*
1619  * We can do the critical dentry name comparison and hashing
1620  * operations one word at a time, but we are limited to:
1621  *
1622  * - Architectures with fast unaligned word accesses. We could
1623  *   do a "get_unaligned()" if this helps and is sufficiently
1624  *   fast.
1625  *
1626  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1627  *   do not trap on the (extremely unlikely) case of a page
1628  *   crossing operation.
1629  *
1630  * - Furthermore, we need an efficient 64-bit compile for the
1631  *   64-bit case in order to generate the "number of bytes in
1632  *   the final mask". Again, that could be replaced with a
1633  *   efficient population count instruction or similar.
1634  */
1635 #ifdef CONFIG_DCACHE_WORD_ACCESS
1636 
1637 #include <asm/word-at-a-time.h>
1638 
1639 #ifdef CONFIG_64BIT
1640 
1641 static inline unsigned int fold_hash(unsigned long hash)
1642 {
1643 	return hash_64(hash, 32);
1644 }
1645 
1646 #else	/* 32-bit case */
1647 
1648 #define fold_hash(x) (x)
1649 
1650 #endif
1651 
1652 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1653 {
1654 	unsigned long a, mask;
1655 	unsigned long hash = 0;
1656 
1657 	for (;;) {
1658 		a = load_unaligned_zeropad(name);
1659 		if (len < sizeof(unsigned long))
1660 			break;
1661 		hash += a;
1662 		hash *= 9;
1663 		name += sizeof(unsigned long);
1664 		len -= sizeof(unsigned long);
1665 		if (!len)
1666 			goto done;
1667 	}
1668 	mask = bytemask_from_count(len);
1669 	hash += mask & a;
1670 done:
1671 	return fold_hash(hash);
1672 }
1673 EXPORT_SYMBOL(full_name_hash);
1674 
1675 /*
1676  * Calculate the length and hash of the path component, and
1677  * return the "hash_len" as the result.
1678  */
1679 static inline u64 hash_name(const char *name)
1680 {
1681 	unsigned long a, b, adata, bdata, mask, hash, len;
1682 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1683 
1684 	hash = a = 0;
1685 	len = -sizeof(unsigned long);
1686 	do {
1687 		hash = (hash + a) * 9;
1688 		len += sizeof(unsigned long);
1689 		a = load_unaligned_zeropad(name+len);
1690 		b = a ^ REPEAT_BYTE('/');
1691 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1692 
1693 	adata = prep_zero_mask(a, adata, &constants);
1694 	bdata = prep_zero_mask(b, bdata, &constants);
1695 
1696 	mask = create_zero_mask(adata | bdata);
1697 
1698 	hash += a & zero_bytemask(mask);
1699 	len += find_zero(mask);
1700 	return hashlen_create(fold_hash(hash), len);
1701 }
1702 
1703 #else
1704 
1705 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1706 {
1707 	unsigned long hash = init_name_hash();
1708 	while (len--)
1709 		hash = partial_name_hash(*name++, hash);
1710 	return end_name_hash(hash);
1711 }
1712 EXPORT_SYMBOL(full_name_hash);
1713 
1714 /*
1715  * We know there's a real path component here of at least
1716  * one character.
1717  */
1718 static inline u64 hash_name(const char *name)
1719 {
1720 	unsigned long hash = init_name_hash();
1721 	unsigned long len = 0, c;
1722 
1723 	c = (unsigned char)*name;
1724 	do {
1725 		len++;
1726 		hash = partial_name_hash(c, hash);
1727 		c = (unsigned char)name[len];
1728 	} while (c && c != '/');
1729 	return hashlen_create(end_name_hash(hash), len);
1730 }
1731 
1732 #endif
1733 
1734 /*
1735  * Name resolution.
1736  * This is the basic name resolution function, turning a pathname into
1737  * the final dentry. We expect 'base' to be positive and a directory.
1738  *
1739  * Returns 0 and nd will have valid dentry and mnt on success.
1740  * Returns error and drops reference to input namei data on failure.
1741  */
1742 static int link_path_walk(const char *name, struct nameidata *nd)
1743 {
1744 	struct path next;
1745 	int err;
1746 
1747 	while (*name=='/')
1748 		name++;
1749 	if (!*name)
1750 		return 0;
1751 
1752 	/* At this point we know we have a real path component. */
1753 	for(;;) {
1754 		u64 hash_len;
1755 		int type;
1756 
1757 		err = may_lookup(nd);
1758  		if (err)
1759 			break;
1760 
1761 		hash_len = hash_name(name);
1762 
1763 		type = LAST_NORM;
1764 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1765 			case 2:
1766 				if (name[1] == '.') {
1767 					type = LAST_DOTDOT;
1768 					nd->flags |= LOOKUP_JUMPED;
1769 				}
1770 				break;
1771 			case 1:
1772 				type = LAST_DOT;
1773 		}
1774 		if (likely(type == LAST_NORM)) {
1775 			struct dentry *parent = nd->path.dentry;
1776 			nd->flags &= ~LOOKUP_JUMPED;
1777 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1778 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1779 				err = parent->d_op->d_hash(parent, &this);
1780 				if (err < 0)
1781 					break;
1782 				hash_len = this.hash_len;
1783 				name = this.name;
1784 			}
1785 		}
1786 
1787 		nd->last.hash_len = hash_len;
1788 		nd->last.name = name;
1789 		nd->last_type = type;
1790 
1791 		name += hashlen_len(hash_len);
1792 		if (!*name)
1793 			return 0;
1794 		/*
1795 		 * If it wasn't NUL, we know it was '/'. Skip that
1796 		 * slash, and continue until no more slashes.
1797 		 */
1798 		do {
1799 			name++;
1800 		} while (unlikely(*name == '/'));
1801 		if (!*name)
1802 			return 0;
1803 
1804 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1805 		if (err < 0)
1806 			return err;
1807 
1808 		if (err) {
1809 			err = nested_symlink(&next, nd);
1810 			if (err)
1811 				return err;
1812 		}
1813 		if (!d_can_lookup(nd->path.dentry)) {
1814 			err = -ENOTDIR;
1815 			break;
1816 		}
1817 	}
1818 	terminate_walk(nd);
1819 	return err;
1820 }
1821 
1822 static int path_init(int dfd, const char *name, unsigned int flags,
1823 		     struct nameidata *nd, struct file **fp)
1824 {
1825 	int retval = 0;
1826 
1827 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1828 	nd->flags = flags | LOOKUP_JUMPED;
1829 	nd->depth = 0;
1830 	if (flags & LOOKUP_ROOT) {
1831 		struct dentry *root = nd->root.dentry;
1832 		struct inode *inode = root->d_inode;
1833 		if (*name) {
1834 			if (!d_can_lookup(root))
1835 				return -ENOTDIR;
1836 			retval = inode_permission(inode, MAY_EXEC);
1837 			if (retval)
1838 				return retval;
1839 		}
1840 		nd->path = nd->root;
1841 		nd->inode = inode;
1842 		if (flags & LOOKUP_RCU) {
1843 			rcu_read_lock();
1844 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1845 			nd->m_seq = read_seqbegin(&mount_lock);
1846 		} else {
1847 			path_get(&nd->path);
1848 		}
1849 		return 0;
1850 	}
1851 
1852 	nd->root.mnt = NULL;
1853 
1854 	nd->m_seq = read_seqbegin(&mount_lock);
1855 	if (*name=='/') {
1856 		if (flags & LOOKUP_RCU) {
1857 			rcu_read_lock();
1858 			nd->seq = set_root_rcu(nd);
1859 		} else {
1860 			set_root(nd);
1861 			path_get(&nd->root);
1862 		}
1863 		nd->path = nd->root;
1864 	} else if (dfd == AT_FDCWD) {
1865 		if (flags & LOOKUP_RCU) {
1866 			struct fs_struct *fs = current->fs;
1867 			unsigned seq;
1868 
1869 			rcu_read_lock();
1870 
1871 			do {
1872 				seq = read_seqcount_begin(&fs->seq);
1873 				nd->path = fs->pwd;
1874 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1875 			} while (read_seqcount_retry(&fs->seq, seq));
1876 		} else {
1877 			get_fs_pwd(current->fs, &nd->path);
1878 		}
1879 	} else {
1880 		/* Caller must check execute permissions on the starting path component */
1881 		struct fd f = fdget_raw(dfd);
1882 		struct dentry *dentry;
1883 
1884 		if (!f.file)
1885 			return -EBADF;
1886 
1887 		dentry = f.file->f_path.dentry;
1888 
1889 		if (*name) {
1890 			if (!d_can_lookup(dentry)) {
1891 				fdput(f);
1892 				return -ENOTDIR;
1893 			}
1894 		}
1895 
1896 		nd->path = f.file->f_path;
1897 		if (flags & LOOKUP_RCU) {
1898 			if (f.flags & FDPUT_FPUT)
1899 				*fp = f.file;
1900 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1901 			rcu_read_lock();
1902 		} else {
1903 			path_get(&nd->path);
1904 			fdput(f);
1905 		}
1906 	}
1907 
1908 	nd->inode = nd->path.dentry->d_inode;
1909 	if (!(flags & LOOKUP_RCU))
1910 		return 0;
1911 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1912 		return 0;
1913 	if (!(nd->flags & LOOKUP_ROOT))
1914 		nd->root.mnt = NULL;
1915 	rcu_read_unlock();
1916 	return -ECHILD;
1917 }
1918 
1919 static inline int lookup_last(struct nameidata *nd, struct path *path)
1920 {
1921 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1922 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1923 
1924 	nd->flags &= ~LOOKUP_PARENT;
1925 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1926 }
1927 
1928 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1929 static int path_lookupat(int dfd, const char *name,
1930 				unsigned int flags, struct nameidata *nd)
1931 {
1932 	struct file *base = NULL;
1933 	struct path path;
1934 	int err;
1935 
1936 	/*
1937 	 * Path walking is largely split up into 2 different synchronisation
1938 	 * schemes, rcu-walk and ref-walk (explained in
1939 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1940 	 * path walk code, but some things particularly setup, cleanup, and
1941 	 * following mounts are sufficiently divergent that functions are
1942 	 * duplicated. Typically there is a function foo(), and its RCU
1943 	 * analogue, foo_rcu().
1944 	 *
1945 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1946 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1947 	 * be handled by restarting a traditional ref-walk (which will always
1948 	 * be able to complete).
1949 	 */
1950 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1951 
1952 	if (unlikely(err))
1953 		return err;
1954 
1955 	current->total_link_count = 0;
1956 	err = link_path_walk(name, nd);
1957 
1958 	if (!err && !(flags & LOOKUP_PARENT)) {
1959 		err = lookup_last(nd, &path);
1960 		while (err > 0) {
1961 			void *cookie;
1962 			struct path link = path;
1963 			err = may_follow_link(&link, nd);
1964 			if (unlikely(err))
1965 				break;
1966 			nd->flags |= LOOKUP_PARENT;
1967 			err = follow_link(&link, nd, &cookie);
1968 			if (err)
1969 				break;
1970 			err = lookup_last(nd, &path);
1971 			put_link(nd, &link, cookie);
1972 		}
1973 	}
1974 
1975 	if (!err)
1976 		err = complete_walk(nd);
1977 
1978 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1979 		if (!d_can_lookup(nd->path.dentry)) {
1980 			path_put(&nd->path);
1981 			err = -ENOTDIR;
1982 		}
1983 	}
1984 
1985 	if (base)
1986 		fput(base);
1987 
1988 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1989 		path_put(&nd->root);
1990 		nd->root.mnt = NULL;
1991 	}
1992 	return err;
1993 }
1994 
1995 static int filename_lookup(int dfd, struct filename *name,
1996 				unsigned int flags, struct nameidata *nd)
1997 {
1998 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1999 	if (unlikely(retval == -ECHILD))
2000 		retval = path_lookupat(dfd, name->name, flags, nd);
2001 	if (unlikely(retval == -ESTALE))
2002 		retval = path_lookupat(dfd, name->name,
2003 						flags | LOOKUP_REVAL, nd);
2004 
2005 	if (likely(!retval))
2006 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2007 	return retval;
2008 }
2009 
2010 static int do_path_lookup(int dfd, const char *name,
2011 				unsigned int flags, struct nameidata *nd)
2012 {
2013 	struct filename filename = { .name = name };
2014 
2015 	return filename_lookup(dfd, &filename, flags, nd);
2016 }
2017 
2018 /* does lookup, returns the object with parent locked */
2019 struct dentry *kern_path_locked(const char *name, struct path *path)
2020 {
2021 	struct nameidata nd;
2022 	struct dentry *d;
2023 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2024 	if (err)
2025 		return ERR_PTR(err);
2026 	if (nd.last_type != LAST_NORM) {
2027 		path_put(&nd.path);
2028 		return ERR_PTR(-EINVAL);
2029 	}
2030 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2031 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2032 	if (IS_ERR(d)) {
2033 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2034 		path_put(&nd.path);
2035 		return d;
2036 	}
2037 	*path = nd.path;
2038 	return d;
2039 }
2040 
2041 int kern_path(const char *name, unsigned int flags, struct path *path)
2042 {
2043 	struct nameidata nd;
2044 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2045 	if (!res)
2046 		*path = nd.path;
2047 	return res;
2048 }
2049 EXPORT_SYMBOL(kern_path);
2050 
2051 /**
2052  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2053  * @dentry:  pointer to dentry of the base directory
2054  * @mnt: pointer to vfs mount of the base directory
2055  * @name: pointer to file name
2056  * @flags: lookup flags
2057  * @path: pointer to struct path to fill
2058  */
2059 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2060 		    const char *name, unsigned int flags,
2061 		    struct path *path)
2062 {
2063 	struct nameidata nd;
2064 	int err;
2065 	nd.root.dentry = dentry;
2066 	nd.root.mnt = mnt;
2067 	BUG_ON(flags & LOOKUP_PARENT);
2068 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2069 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2070 	if (!err)
2071 		*path = nd.path;
2072 	return err;
2073 }
2074 EXPORT_SYMBOL(vfs_path_lookup);
2075 
2076 /*
2077  * Restricted form of lookup. Doesn't follow links, single-component only,
2078  * needs parent already locked. Doesn't follow mounts.
2079  * SMP-safe.
2080  */
2081 static struct dentry *lookup_hash(struct nameidata *nd)
2082 {
2083 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2084 }
2085 
2086 /**
2087  * lookup_one_len - filesystem helper to lookup single pathname component
2088  * @name:	pathname component to lookup
2089  * @base:	base directory to lookup from
2090  * @len:	maximum length @len should be interpreted to
2091  *
2092  * Note that this routine is purely a helper for filesystem usage and should
2093  * not be called by generic code.  Also note that by using this function the
2094  * nameidata argument is passed to the filesystem methods and a filesystem
2095  * using this helper needs to be prepared for that.
2096  */
2097 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2098 {
2099 	struct qstr this;
2100 	unsigned int c;
2101 	int err;
2102 
2103 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2104 
2105 	this.name = name;
2106 	this.len = len;
2107 	this.hash = full_name_hash(name, len);
2108 	if (!len)
2109 		return ERR_PTR(-EACCES);
2110 
2111 	if (unlikely(name[0] == '.')) {
2112 		if (len < 2 || (len == 2 && name[1] == '.'))
2113 			return ERR_PTR(-EACCES);
2114 	}
2115 
2116 	while (len--) {
2117 		c = *(const unsigned char *)name++;
2118 		if (c == '/' || c == '\0')
2119 			return ERR_PTR(-EACCES);
2120 	}
2121 	/*
2122 	 * See if the low-level filesystem might want
2123 	 * to use its own hash..
2124 	 */
2125 	if (base->d_flags & DCACHE_OP_HASH) {
2126 		int err = base->d_op->d_hash(base, &this);
2127 		if (err < 0)
2128 			return ERR_PTR(err);
2129 	}
2130 
2131 	err = inode_permission(base->d_inode, MAY_EXEC);
2132 	if (err)
2133 		return ERR_PTR(err);
2134 
2135 	return __lookup_hash(&this, base, 0);
2136 }
2137 EXPORT_SYMBOL(lookup_one_len);
2138 
2139 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2140 		 struct path *path, int *empty)
2141 {
2142 	struct nameidata nd;
2143 	struct filename *tmp = getname_flags(name, flags, empty);
2144 	int err = PTR_ERR(tmp);
2145 	if (!IS_ERR(tmp)) {
2146 
2147 		BUG_ON(flags & LOOKUP_PARENT);
2148 
2149 		err = filename_lookup(dfd, tmp, flags, &nd);
2150 		putname(tmp);
2151 		if (!err)
2152 			*path = nd.path;
2153 	}
2154 	return err;
2155 }
2156 
2157 int user_path_at(int dfd, const char __user *name, unsigned flags,
2158 		 struct path *path)
2159 {
2160 	return user_path_at_empty(dfd, name, flags, path, NULL);
2161 }
2162 EXPORT_SYMBOL(user_path_at);
2163 
2164 /*
2165  * NB: most callers don't do anything directly with the reference to the
2166  *     to struct filename, but the nd->last pointer points into the name string
2167  *     allocated by getname. So we must hold the reference to it until all
2168  *     path-walking is complete.
2169  */
2170 static struct filename *
2171 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2172 		 unsigned int flags)
2173 {
2174 	struct filename *s = getname(path);
2175 	int error;
2176 
2177 	/* only LOOKUP_REVAL is allowed in extra flags */
2178 	flags &= LOOKUP_REVAL;
2179 
2180 	if (IS_ERR(s))
2181 		return s;
2182 
2183 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2184 	if (error) {
2185 		putname(s);
2186 		return ERR_PTR(error);
2187 	}
2188 
2189 	return s;
2190 }
2191 
2192 /**
2193  * mountpoint_last - look up last component for umount
2194  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2195  * @path: pointer to container for result
2196  *
2197  * This is a special lookup_last function just for umount. In this case, we
2198  * need to resolve the path without doing any revalidation.
2199  *
2200  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2201  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2202  * in almost all cases, this lookup will be served out of the dcache. The only
2203  * cases where it won't are if nd->last refers to a symlink or the path is
2204  * bogus and it doesn't exist.
2205  *
2206  * Returns:
2207  * -error: if there was an error during lookup. This includes -ENOENT if the
2208  *         lookup found a negative dentry. The nd->path reference will also be
2209  *         put in this case.
2210  *
2211  * 0:      if we successfully resolved nd->path and found it to not to be a
2212  *         symlink that needs to be followed. "path" will also be populated.
2213  *         The nd->path reference will also be put.
2214  *
2215  * 1:      if we successfully resolved nd->last and found it to be a symlink
2216  *         that needs to be followed. "path" will be populated with the path
2217  *         to the link, and nd->path will *not* be put.
2218  */
2219 static int
2220 mountpoint_last(struct nameidata *nd, struct path *path)
2221 {
2222 	int error = 0;
2223 	struct dentry *dentry;
2224 	struct dentry *dir = nd->path.dentry;
2225 
2226 	/* If we're in rcuwalk, drop out of it to handle last component */
2227 	if (nd->flags & LOOKUP_RCU) {
2228 		if (unlazy_walk(nd, NULL)) {
2229 			error = -ECHILD;
2230 			goto out;
2231 		}
2232 	}
2233 
2234 	nd->flags &= ~LOOKUP_PARENT;
2235 
2236 	if (unlikely(nd->last_type != LAST_NORM)) {
2237 		error = handle_dots(nd, nd->last_type);
2238 		if (error)
2239 			goto out;
2240 		dentry = dget(nd->path.dentry);
2241 		goto done;
2242 	}
2243 
2244 	mutex_lock(&dir->d_inode->i_mutex);
2245 	dentry = d_lookup(dir, &nd->last);
2246 	if (!dentry) {
2247 		/*
2248 		 * No cached dentry. Mounted dentries are pinned in the cache,
2249 		 * so that means that this dentry is probably a symlink or the
2250 		 * path doesn't actually point to a mounted dentry.
2251 		 */
2252 		dentry = d_alloc(dir, &nd->last);
2253 		if (!dentry) {
2254 			error = -ENOMEM;
2255 			mutex_unlock(&dir->d_inode->i_mutex);
2256 			goto out;
2257 		}
2258 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2259 		error = PTR_ERR(dentry);
2260 		if (IS_ERR(dentry)) {
2261 			mutex_unlock(&dir->d_inode->i_mutex);
2262 			goto out;
2263 		}
2264 	}
2265 	mutex_unlock(&dir->d_inode->i_mutex);
2266 
2267 done:
2268 	if (!dentry->d_inode || d_is_negative(dentry)) {
2269 		error = -ENOENT;
2270 		dput(dentry);
2271 		goto out;
2272 	}
2273 	path->dentry = dentry;
2274 	path->mnt = nd->path.mnt;
2275 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2276 		return 1;
2277 	mntget(path->mnt);
2278 	follow_mount(path);
2279 	error = 0;
2280 out:
2281 	terminate_walk(nd);
2282 	return error;
2283 }
2284 
2285 /**
2286  * path_mountpoint - look up a path to be umounted
2287  * @dfd:	directory file descriptor to start walk from
2288  * @name:	full pathname to walk
2289  * @path:	pointer to container for result
2290  * @flags:	lookup flags
2291  *
2292  * Look up the given name, but don't attempt to revalidate the last component.
2293  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2294  */
2295 static int
2296 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2297 {
2298 	struct file *base = NULL;
2299 	struct nameidata nd;
2300 	int err;
2301 
2302 	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2303 	if (unlikely(err))
2304 		return err;
2305 
2306 	current->total_link_count = 0;
2307 	err = link_path_walk(name, &nd);
2308 	if (err)
2309 		goto out;
2310 
2311 	err = mountpoint_last(&nd, path);
2312 	while (err > 0) {
2313 		void *cookie;
2314 		struct path link = *path;
2315 		err = may_follow_link(&link, &nd);
2316 		if (unlikely(err))
2317 			break;
2318 		nd.flags |= LOOKUP_PARENT;
2319 		err = follow_link(&link, &nd, &cookie);
2320 		if (err)
2321 			break;
2322 		err = mountpoint_last(&nd, path);
2323 		put_link(&nd, &link, cookie);
2324 	}
2325 out:
2326 	if (base)
2327 		fput(base);
2328 
2329 	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2330 		path_put(&nd.root);
2331 
2332 	return err;
2333 }
2334 
2335 static int
2336 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2337 			unsigned int flags)
2338 {
2339 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2340 	if (unlikely(error == -ECHILD))
2341 		error = path_mountpoint(dfd, s->name, path, flags);
2342 	if (unlikely(error == -ESTALE))
2343 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2344 	if (likely(!error))
2345 		audit_inode(s, path->dentry, 0);
2346 	return error;
2347 }
2348 
2349 /**
2350  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2351  * @dfd:	directory file descriptor
2352  * @name:	pathname from userland
2353  * @flags:	lookup flags
2354  * @path:	pointer to container to hold result
2355  *
2356  * A umount is a special case for path walking. We're not actually interested
2357  * in the inode in this situation, and ESTALE errors can be a problem. We
2358  * simply want track down the dentry and vfsmount attached at the mountpoint
2359  * and avoid revalidating the last component.
2360  *
2361  * Returns 0 and populates "path" on success.
2362  */
2363 int
2364 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2365 			struct path *path)
2366 {
2367 	struct filename *s = getname(name);
2368 	int error;
2369 	if (IS_ERR(s))
2370 		return PTR_ERR(s);
2371 	error = filename_mountpoint(dfd, s, path, flags);
2372 	putname(s);
2373 	return error;
2374 }
2375 
2376 int
2377 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2378 			unsigned int flags)
2379 {
2380 	struct filename s = {.name = name};
2381 	return filename_mountpoint(dfd, &s, path, flags);
2382 }
2383 EXPORT_SYMBOL(kern_path_mountpoint);
2384 
2385 /*
2386  * It's inline, so penalty for filesystems that don't use sticky bit is
2387  * minimal.
2388  */
2389 static inline int check_sticky(struct inode *dir, struct inode *inode)
2390 {
2391 	kuid_t fsuid = current_fsuid();
2392 
2393 	if (!(dir->i_mode & S_ISVTX))
2394 		return 0;
2395 	if (uid_eq(inode->i_uid, fsuid))
2396 		return 0;
2397 	if (uid_eq(dir->i_uid, fsuid))
2398 		return 0;
2399 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2400 }
2401 
2402 /*
2403  *	Check whether we can remove a link victim from directory dir, check
2404  *  whether the type of victim is right.
2405  *  1. We can't do it if dir is read-only (done in permission())
2406  *  2. We should have write and exec permissions on dir
2407  *  3. We can't remove anything from append-only dir
2408  *  4. We can't do anything with immutable dir (done in permission())
2409  *  5. If the sticky bit on dir is set we should either
2410  *	a. be owner of dir, or
2411  *	b. be owner of victim, or
2412  *	c. have CAP_FOWNER capability
2413  *  6. If the victim is append-only or immutable we can't do antyhing with
2414  *     links pointing to it.
2415  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2416  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2417  *  9. We can't remove a root or mountpoint.
2418  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2419  *     nfs_async_unlink().
2420  */
2421 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2422 {
2423 	struct inode *inode = victim->d_inode;
2424 	int error;
2425 
2426 	if (d_is_negative(victim))
2427 		return -ENOENT;
2428 	BUG_ON(!inode);
2429 
2430 	BUG_ON(victim->d_parent->d_inode != dir);
2431 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2432 
2433 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2434 	if (error)
2435 		return error;
2436 	if (IS_APPEND(dir))
2437 		return -EPERM;
2438 
2439 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2440 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2441 		return -EPERM;
2442 	if (isdir) {
2443 		if (!d_is_dir(victim))
2444 			return -ENOTDIR;
2445 		if (IS_ROOT(victim))
2446 			return -EBUSY;
2447 	} else if (d_is_dir(victim))
2448 		return -EISDIR;
2449 	if (IS_DEADDIR(dir))
2450 		return -ENOENT;
2451 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2452 		return -EBUSY;
2453 	return 0;
2454 }
2455 
2456 /*	Check whether we can create an object with dentry child in directory
2457  *  dir.
2458  *  1. We can't do it if child already exists (open has special treatment for
2459  *     this case, but since we are inlined it's OK)
2460  *  2. We can't do it if dir is read-only (done in permission())
2461  *  3. We should have write and exec permissions on dir
2462  *  4. We can't do it if dir is immutable (done in permission())
2463  */
2464 static inline int may_create(struct inode *dir, struct dentry *child)
2465 {
2466 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2467 	if (child->d_inode)
2468 		return -EEXIST;
2469 	if (IS_DEADDIR(dir))
2470 		return -ENOENT;
2471 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2472 }
2473 
2474 /*
2475  * p1 and p2 should be directories on the same fs.
2476  */
2477 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2478 {
2479 	struct dentry *p;
2480 
2481 	if (p1 == p2) {
2482 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2483 		return NULL;
2484 	}
2485 
2486 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2487 
2488 	p = d_ancestor(p2, p1);
2489 	if (p) {
2490 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2491 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2492 		return p;
2493 	}
2494 
2495 	p = d_ancestor(p1, p2);
2496 	if (p) {
2497 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2498 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2499 		return p;
2500 	}
2501 
2502 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2503 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2504 	return NULL;
2505 }
2506 EXPORT_SYMBOL(lock_rename);
2507 
2508 void unlock_rename(struct dentry *p1, struct dentry *p2)
2509 {
2510 	mutex_unlock(&p1->d_inode->i_mutex);
2511 	if (p1 != p2) {
2512 		mutex_unlock(&p2->d_inode->i_mutex);
2513 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2514 	}
2515 }
2516 EXPORT_SYMBOL(unlock_rename);
2517 
2518 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2519 		bool want_excl)
2520 {
2521 	int error = may_create(dir, dentry);
2522 	if (error)
2523 		return error;
2524 
2525 	if (!dir->i_op->create)
2526 		return -EACCES;	/* shouldn't it be ENOSYS? */
2527 	mode &= S_IALLUGO;
2528 	mode |= S_IFREG;
2529 	error = security_inode_create(dir, dentry, mode);
2530 	if (error)
2531 		return error;
2532 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2533 	if (!error)
2534 		fsnotify_create(dir, dentry);
2535 	return error;
2536 }
2537 EXPORT_SYMBOL(vfs_create);
2538 
2539 static int may_open(struct path *path, int acc_mode, int flag)
2540 {
2541 	struct dentry *dentry = path->dentry;
2542 	struct inode *inode = dentry->d_inode;
2543 	int error;
2544 
2545 	/* O_PATH? */
2546 	if (!acc_mode)
2547 		return 0;
2548 
2549 	if (!inode)
2550 		return -ENOENT;
2551 
2552 	switch (inode->i_mode & S_IFMT) {
2553 	case S_IFLNK:
2554 		return -ELOOP;
2555 	case S_IFDIR:
2556 		if (acc_mode & MAY_WRITE)
2557 			return -EISDIR;
2558 		break;
2559 	case S_IFBLK:
2560 	case S_IFCHR:
2561 		if (path->mnt->mnt_flags & MNT_NODEV)
2562 			return -EACCES;
2563 		/*FALLTHRU*/
2564 	case S_IFIFO:
2565 	case S_IFSOCK:
2566 		flag &= ~O_TRUNC;
2567 		break;
2568 	}
2569 
2570 	error = inode_permission(inode, acc_mode);
2571 	if (error)
2572 		return error;
2573 
2574 	/*
2575 	 * An append-only file must be opened in append mode for writing.
2576 	 */
2577 	if (IS_APPEND(inode)) {
2578 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2579 			return -EPERM;
2580 		if (flag & O_TRUNC)
2581 			return -EPERM;
2582 	}
2583 
2584 	/* O_NOATIME can only be set by the owner or superuser */
2585 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2586 		return -EPERM;
2587 
2588 	return 0;
2589 }
2590 
2591 static int handle_truncate(struct file *filp)
2592 {
2593 	struct path *path = &filp->f_path;
2594 	struct inode *inode = path->dentry->d_inode;
2595 	int error = get_write_access(inode);
2596 	if (error)
2597 		return error;
2598 	/*
2599 	 * Refuse to truncate files with mandatory locks held on them.
2600 	 */
2601 	error = locks_verify_locked(filp);
2602 	if (!error)
2603 		error = security_path_truncate(path);
2604 	if (!error) {
2605 		error = do_truncate(path->dentry, 0,
2606 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2607 				    filp);
2608 	}
2609 	put_write_access(inode);
2610 	return error;
2611 }
2612 
2613 static inline int open_to_namei_flags(int flag)
2614 {
2615 	if ((flag & O_ACCMODE) == 3)
2616 		flag--;
2617 	return flag;
2618 }
2619 
2620 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2621 {
2622 	int error = security_path_mknod(dir, dentry, mode, 0);
2623 	if (error)
2624 		return error;
2625 
2626 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2627 	if (error)
2628 		return error;
2629 
2630 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2631 }
2632 
2633 /*
2634  * Attempt to atomically look up, create and open a file from a negative
2635  * dentry.
2636  *
2637  * Returns 0 if successful.  The file will have been created and attached to
2638  * @file by the filesystem calling finish_open().
2639  *
2640  * Returns 1 if the file was looked up only or didn't need creating.  The
2641  * caller will need to perform the open themselves.  @path will have been
2642  * updated to point to the new dentry.  This may be negative.
2643  *
2644  * Returns an error code otherwise.
2645  */
2646 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2647 			struct path *path, struct file *file,
2648 			const struct open_flags *op,
2649 			bool got_write, bool need_lookup,
2650 			int *opened)
2651 {
2652 	struct inode *dir =  nd->path.dentry->d_inode;
2653 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2654 	umode_t mode;
2655 	int error;
2656 	int acc_mode;
2657 	int create_error = 0;
2658 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2659 	bool excl;
2660 
2661 	BUG_ON(dentry->d_inode);
2662 
2663 	/* Don't create child dentry for a dead directory. */
2664 	if (unlikely(IS_DEADDIR(dir))) {
2665 		error = -ENOENT;
2666 		goto out;
2667 	}
2668 
2669 	mode = op->mode;
2670 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2671 		mode &= ~current_umask();
2672 
2673 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2674 	if (excl)
2675 		open_flag &= ~O_TRUNC;
2676 
2677 	/*
2678 	 * Checking write permission is tricky, bacuse we don't know if we are
2679 	 * going to actually need it: O_CREAT opens should work as long as the
2680 	 * file exists.  But checking existence breaks atomicity.  The trick is
2681 	 * to check access and if not granted clear O_CREAT from the flags.
2682 	 *
2683 	 * Another problem is returing the "right" error value (e.g. for an
2684 	 * O_EXCL open we want to return EEXIST not EROFS).
2685 	 */
2686 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2687 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2688 		if (!(open_flag & O_CREAT)) {
2689 			/*
2690 			 * No O_CREATE -> atomicity not a requirement -> fall
2691 			 * back to lookup + open
2692 			 */
2693 			goto no_open;
2694 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2695 			/* Fall back and fail with the right error */
2696 			create_error = -EROFS;
2697 			goto no_open;
2698 		} else {
2699 			/* No side effects, safe to clear O_CREAT */
2700 			create_error = -EROFS;
2701 			open_flag &= ~O_CREAT;
2702 		}
2703 	}
2704 
2705 	if (open_flag & O_CREAT) {
2706 		error = may_o_create(&nd->path, dentry, mode);
2707 		if (error) {
2708 			create_error = error;
2709 			if (open_flag & O_EXCL)
2710 				goto no_open;
2711 			open_flag &= ~O_CREAT;
2712 		}
2713 	}
2714 
2715 	if (nd->flags & LOOKUP_DIRECTORY)
2716 		open_flag |= O_DIRECTORY;
2717 
2718 	file->f_path.dentry = DENTRY_NOT_SET;
2719 	file->f_path.mnt = nd->path.mnt;
2720 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2721 				      opened);
2722 	if (error < 0) {
2723 		if (create_error && error == -ENOENT)
2724 			error = create_error;
2725 		goto out;
2726 	}
2727 
2728 	if (error) {	/* returned 1, that is */
2729 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2730 			error = -EIO;
2731 			goto out;
2732 		}
2733 		if (file->f_path.dentry) {
2734 			dput(dentry);
2735 			dentry = file->f_path.dentry;
2736 		}
2737 		if (*opened & FILE_CREATED)
2738 			fsnotify_create(dir, dentry);
2739 		if (!dentry->d_inode) {
2740 			WARN_ON(*opened & FILE_CREATED);
2741 			if (create_error) {
2742 				error = create_error;
2743 				goto out;
2744 			}
2745 		} else {
2746 			if (excl && !(*opened & FILE_CREATED)) {
2747 				error = -EEXIST;
2748 				goto out;
2749 			}
2750 		}
2751 		goto looked_up;
2752 	}
2753 
2754 	/*
2755 	 * We didn't have the inode before the open, so check open permission
2756 	 * here.
2757 	 */
2758 	acc_mode = op->acc_mode;
2759 	if (*opened & FILE_CREATED) {
2760 		WARN_ON(!(open_flag & O_CREAT));
2761 		fsnotify_create(dir, dentry);
2762 		acc_mode = MAY_OPEN;
2763 	}
2764 	error = may_open(&file->f_path, acc_mode, open_flag);
2765 	if (error)
2766 		fput(file);
2767 
2768 out:
2769 	dput(dentry);
2770 	return error;
2771 
2772 no_open:
2773 	if (need_lookup) {
2774 		dentry = lookup_real(dir, dentry, nd->flags);
2775 		if (IS_ERR(dentry))
2776 			return PTR_ERR(dentry);
2777 
2778 		if (create_error) {
2779 			int open_flag = op->open_flag;
2780 
2781 			error = create_error;
2782 			if ((open_flag & O_EXCL)) {
2783 				if (!dentry->d_inode)
2784 					goto out;
2785 			} else if (!dentry->d_inode) {
2786 				goto out;
2787 			} else if ((open_flag & O_TRUNC) &&
2788 				   S_ISREG(dentry->d_inode->i_mode)) {
2789 				goto out;
2790 			}
2791 			/* will fail later, go on to get the right error */
2792 		}
2793 	}
2794 looked_up:
2795 	path->dentry = dentry;
2796 	path->mnt = nd->path.mnt;
2797 	return 1;
2798 }
2799 
2800 /*
2801  * Look up and maybe create and open the last component.
2802  *
2803  * Must be called with i_mutex held on parent.
2804  *
2805  * Returns 0 if the file was successfully atomically created (if necessary) and
2806  * opened.  In this case the file will be returned attached to @file.
2807  *
2808  * Returns 1 if the file was not completely opened at this time, though lookups
2809  * and creations will have been performed and the dentry returned in @path will
2810  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2811  * specified then a negative dentry may be returned.
2812  *
2813  * An error code is returned otherwise.
2814  *
2815  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2816  * cleared otherwise prior to returning.
2817  */
2818 static int lookup_open(struct nameidata *nd, struct path *path,
2819 			struct file *file,
2820 			const struct open_flags *op,
2821 			bool got_write, int *opened)
2822 {
2823 	struct dentry *dir = nd->path.dentry;
2824 	struct inode *dir_inode = dir->d_inode;
2825 	struct dentry *dentry;
2826 	int error;
2827 	bool need_lookup;
2828 
2829 	*opened &= ~FILE_CREATED;
2830 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2831 	if (IS_ERR(dentry))
2832 		return PTR_ERR(dentry);
2833 
2834 	/* Cached positive dentry: will open in f_op->open */
2835 	if (!need_lookup && dentry->d_inode)
2836 		goto out_no_open;
2837 
2838 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2839 		return atomic_open(nd, dentry, path, file, op, got_write,
2840 				   need_lookup, opened);
2841 	}
2842 
2843 	if (need_lookup) {
2844 		BUG_ON(dentry->d_inode);
2845 
2846 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2847 		if (IS_ERR(dentry))
2848 			return PTR_ERR(dentry);
2849 	}
2850 
2851 	/* Negative dentry, just create the file */
2852 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2853 		umode_t mode = op->mode;
2854 		if (!IS_POSIXACL(dir->d_inode))
2855 			mode &= ~current_umask();
2856 		/*
2857 		 * This write is needed to ensure that a
2858 		 * rw->ro transition does not occur between
2859 		 * the time when the file is created and when
2860 		 * a permanent write count is taken through
2861 		 * the 'struct file' in finish_open().
2862 		 */
2863 		if (!got_write) {
2864 			error = -EROFS;
2865 			goto out_dput;
2866 		}
2867 		*opened |= FILE_CREATED;
2868 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2869 		if (error)
2870 			goto out_dput;
2871 		error = vfs_create(dir->d_inode, dentry, mode,
2872 				   nd->flags & LOOKUP_EXCL);
2873 		if (error)
2874 			goto out_dput;
2875 	}
2876 out_no_open:
2877 	path->dentry = dentry;
2878 	path->mnt = nd->path.mnt;
2879 	return 1;
2880 
2881 out_dput:
2882 	dput(dentry);
2883 	return error;
2884 }
2885 
2886 /*
2887  * Handle the last step of open()
2888  */
2889 static int do_last(struct nameidata *nd, struct path *path,
2890 		   struct file *file, const struct open_flags *op,
2891 		   int *opened, struct filename *name)
2892 {
2893 	struct dentry *dir = nd->path.dentry;
2894 	int open_flag = op->open_flag;
2895 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2896 	bool got_write = false;
2897 	int acc_mode = op->acc_mode;
2898 	struct inode *inode;
2899 	bool symlink_ok = false;
2900 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2901 	bool retried = false;
2902 	int error;
2903 
2904 	nd->flags &= ~LOOKUP_PARENT;
2905 	nd->flags |= op->intent;
2906 
2907 	if (nd->last_type != LAST_NORM) {
2908 		error = handle_dots(nd, nd->last_type);
2909 		if (error)
2910 			return error;
2911 		goto finish_open;
2912 	}
2913 
2914 	if (!(open_flag & O_CREAT)) {
2915 		if (nd->last.name[nd->last.len])
2916 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2917 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2918 			symlink_ok = true;
2919 		/* we _can_ be in RCU mode here */
2920 		error = lookup_fast(nd, path, &inode);
2921 		if (likely(!error))
2922 			goto finish_lookup;
2923 
2924 		if (error < 0)
2925 			goto out;
2926 
2927 		BUG_ON(nd->inode != dir->d_inode);
2928 	} else {
2929 		/* create side of things */
2930 		/*
2931 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2932 		 * has been cleared when we got to the last component we are
2933 		 * about to look up
2934 		 */
2935 		error = complete_walk(nd);
2936 		if (error)
2937 			return error;
2938 
2939 		audit_inode(name, dir, LOOKUP_PARENT);
2940 		error = -EISDIR;
2941 		/* trailing slashes? */
2942 		if (nd->last.name[nd->last.len])
2943 			goto out;
2944 	}
2945 
2946 retry_lookup:
2947 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2948 		error = mnt_want_write(nd->path.mnt);
2949 		if (!error)
2950 			got_write = true;
2951 		/*
2952 		 * do _not_ fail yet - we might not need that or fail with
2953 		 * a different error; let lookup_open() decide; we'll be
2954 		 * dropping this one anyway.
2955 		 */
2956 	}
2957 	mutex_lock(&dir->d_inode->i_mutex);
2958 	error = lookup_open(nd, path, file, op, got_write, opened);
2959 	mutex_unlock(&dir->d_inode->i_mutex);
2960 
2961 	if (error <= 0) {
2962 		if (error)
2963 			goto out;
2964 
2965 		if ((*opened & FILE_CREATED) ||
2966 		    !S_ISREG(file_inode(file)->i_mode))
2967 			will_truncate = false;
2968 
2969 		audit_inode(name, file->f_path.dentry, 0);
2970 		goto opened;
2971 	}
2972 
2973 	if (*opened & FILE_CREATED) {
2974 		/* Don't check for write permission, don't truncate */
2975 		open_flag &= ~O_TRUNC;
2976 		will_truncate = false;
2977 		acc_mode = MAY_OPEN;
2978 		path_to_nameidata(path, nd);
2979 		goto finish_open_created;
2980 	}
2981 
2982 	/*
2983 	 * create/update audit record if it already exists.
2984 	 */
2985 	if (d_is_positive(path->dentry))
2986 		audit_inode(name, path->dentry, 0);
2987 
2988 	/*
2989 	 * If atomic_open() acquired write access it is dropped now due to
2990 	 * possible mount and symlink following (this might be optimized away if
2991 	 * necessary...)
2992 	 */
2993 	if (got_write) {
2994 		mnt_drop_write(nd->path.mnt);
2995 		got_write = false;
2996 	}
2997 
2998 	error = -EEXIST;
2999 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3000 		goto exit_dput;
3001 
3002 	error = follow_managed(path, nd->flags);
3003 	if (error < 0)
3004 		goto exit_dput;
3005 
3006 	if (error)
3007 		nd->flags |= LOOKUP_JUMPED;
3008 
3009 	BUG_ON(nd->flags & LOOKUP_RCU);
3010 	inode = path->dentry->d_inode;
3011 finish_lookup:
3012 	/* we _can_ be in RCU mode here */
3013 	error = -ENOENT;
3014 	if (!inode || d_is_negative(path->dentry)) {
3015 		path_to_nameidata(path, nd);
3016 		goto out;
3017 	}
3018 
3019 	if (should_follow_link(path->dentry, !symlink_ok)) {
3020 		if (nd->flags & LOOKUP_RCU) {
3021 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3022 				error = -ECHILD;
3023 				goto out;
3024 			}
3025 		}
3026 		BUG_ON(inode != path->dentry->d_inode);
3027 		return 1;
3028 	}
3029 
3030 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3031 		path_to_nameidata(path, nd);
3032 	} else {
3033 		save_parent.dentry = nd->path.dentry;
3034 		save_parent.mnt = mntget(path->mnt);
3035 		nd->path.dentry = path->dentry;
3036 
3037 	}
3038 	nd->inode = inode;
3039 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3040 finish_open:
3041 	error = complete_walk(nd);
3042 	if (error) {
3043 		path_put(&save_parent);
3044 		return error;
3045 	}
3046 	audit_inode(name, nd->path.dentry, 0);
3047 	error = -EISDIR;
3048 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3049 		goto out;
3050 	error = -ENOTDIR;
3051 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3052 		goto out;
3053 	if (!S_ISREG(nd->inode->i_mode))
3054 		will_truncate = false;
3055 
3056 	if (will_truncate) {
3057 		error = mnt_want_write(nd->path.mnt);
3058 		if (error)
3059 			goto out;
3060 		got_write = true;
3061 	}
3062 finish_open_created:
3063 	error = may_open(&nd->path, acc_mode, open_flag);
3064 	if (error)
3065 		goto out;
3066 	file->f_path.mnt = nd->path.mnt;
3067 	error = finish_open(file, nd->path.dentry, NULL, opened);
3068 	if (error) {
3069 		if (error == -EOPENSTALE)
3070 			goto stale_open;
3071 		goto out;
3072 	}
3073 opened:
3074 	error = open_check_o_direct(file);
3075 	if (error)
3076 		goto exit_fput;
3077 	error = ima_file_check(file, op->acc_mode);
3078 	if (error)
3079 		goto exit_fput;
3080 
3081 	if (will_truncate) {
3082 		error = handle_truncate(file);
3083 		if (error)
3084 			goto exit_fput;
3085 	}
3086 out:
3087 	if (got_write)
3088 		mnt_drop_write(nd->path.mnt);
3089 	path_put(&save_parent);
3090 	terminate_walk(nd);
3091 	return error;
3092 
3093 exit_dput:
3094 	path_put_conditional(path, nd);
3095 	goto out;
3096 exit_fput:
3097 	fput(file);
3098 	goto out;
3099 
3100 stale_open:
3101 	/* If no saved parent or already retried then can't retry */
3102 	if (!save_parent.dentry || retried)
3103 		goto out;
3104 
3105 	BUG_ON(save_parent.dentry != dir);
3106 	path_put(&nd->path);
3107 	nd->path = save_parent;
3108 	nd->inode = dir->d_inode;
3109 	save_parent.mnt = NULL;
3110 	save_parent.dentry = NULL;
3111 	if (got_write) {
3112 		mnt_drop_write(nd->path.mnt);
3113 		got_write = false;
3114 	}
3115 	retried = true;
3116 	goto retry_lookup;
3117 }
3118 
3119 static int do_tmpfile(int dfd, struct filename *pathname,
3120 		struct nameidata *nd, int flags,
3121 		const struct open_flags *op,
3122 		struct file *file, int *opened)
3123 {
3124 	static const struct qstr name = QSTR_INIT("/", 1);
3125 	struct dentry *dentry, *child;
3126 	struct inode *dir;
3127 	int error = path_lookupat(dfd, pathname->name,
3128 				  flags | LOOKUP_DIRECTORY, nd);
3129 	if (unlikely(error))
3130 		return error;
3131 	error = mnt_want_write(nd->path.mnt);
3132 	if (unlikely(error))
3133 		goto out;
3134 	/* we want directory to be writable */
3135 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3136 	if (error)
3137 		goto out2;
3138 	dentry = nd->path.dentry;
3139 	dir = dentry->d_inode;
3140 	if (!dir->i_op->tmpfile) {
3141 		error = -EOPNOTSUPP;
3142 		goto out2;
3143 	}
3144 	child = d_alloc(dentry, &name);
3145 	if (unlikely(!child)) {
3146 		error = -ENOMEM;
3147 		goto out2;
3148 	}
3149 	nd->flags &= ~LOOKUP_DIRECTORY;
3150 	nd->flags |= op->intent;
3151 	dput(nd->path.dentry);
3152 	nd->path.dentry = child;
3153 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3154 	if (error)
3155 		goto out2;
3156 	audit_inode(pathname, nd->path.dentry, 0);
3157 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
3158 	if (error)
3159 		goto out2;
3160 	file->f_path.mnt = nd->path.mnt;
3161 	error = finish_open(file, nd->path.dentry, NULL, opened);
3162 	if (error)
3163 		goto out2;
3164 	error = open_check_o_direct(file);
3165 	if (error) {
3166 		fput(file);
3167 	} else if (!(op->open_flag & O_EXCL)) {
3168 		struct inode *inode = file_inode(file);
3169 		spin_lock(&inode->i_lock);
3170 		inode->i_state |= I_LINKABLE;
3171 		spin_unlock(&inode->i_lock);
3172 	}
3173 out2:
3174 	mnt_drop_write(nd->path.mnt);
3175 out:
3176 	path_put(&nd->path);
3177 	return error;
3178 }
3179 
3180 static struct file *path_openat(int dfd, struct filename *pathname,
3181 		struct nameidata *nd, const struct open_flags *op, int flags)
3182 {
3183 	struct file *base = NULL;
3184 	struct file *file;
3185 	struct path path;
3186 	int opened = 0;
3187 	int error;
3188 
3189 	file = get_empty_filp();
3190 	if (IS_ERR(file))
3191 		return file;
3192 
3193 	file->f_flags = op->open_flag;
3194 
3195 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3196 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3197 		goto out;
3198 	}
3199 
3200 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3201 	if (unlikely(error))
3202 		goto out;
3203 
3204 	current->total_link_count = 0;
3205 	error = link_path_walk(pathname->name, nd);
3206 	if (unlikely(error))
3207 		goto out;
3208 
3209 	error = do_last(nd, &path, file, op, &opened, pathname);
3210 	while (unlikely(error > 0)) { /* trailing symlink */
3211 		struct path link = path;
3212 		void *cookie;
3213 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3214 			path_put_conditional(&path, nd);
3215 			path_put(&nd->path);
3216 			error = -ELOOP;
3217 			break;
3218 		}
3219 		error = may_follow_link(&link, nd);
3220 		if (unlikely(error))
3221 			break;
3222 		nd->flags |= LOOKUP_PARENT;
3223 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3224 		error = follow_link(&link, nd, &cookie);
3225 		if (unlikely(error))
3226 			break;
3227 		error = do_last(nd, &path, file, op, &opened, pathname);
3228 		put_link(nd, &link, cookie);
3229 	}
3230 out:
3231 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3232 		path_put(&nd->root);
3233 	if (base)
3234 		fput(base);
3235 	if (!(opened & FILE_OPENED)) {
3236 		BUG_ON(!error);
3237 		put_filp(file);
3238 	}
3239 	if (unlikely(error)) {
3240 		if (error == -EOPENSTALE) {
3241 			if (flags & LOOKUP_RCU)
3242 				error = -ECHILD;
3243 			else
3244 				error = -ESTALE;
3245 		}
3246 		file = ERR_PTR(error);
3247 	}
3248 	return file;
3249 }
3250 
3251 struct file *do_filp_open(int dfd, struct filename *pathname,
3252 		const struct open_flags *op)
3253 {
3254 	struct nameidata nd;
3255 	int flags = op->lookup_flags;
3256 	struct file *filp;
3257 
3258 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3259 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3260 		filp = path_openat(dfd, pathname, &nd, op, flags);
3261 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3262 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3263 	return filp;
3264 }
3265 
3266 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3267 		const char *name, const struct open_flags *op)
3268 {
3269 	struct nameidata nd;
3270 	struct file *file;
3271 	struct filename filename = { .name = name };
3272 	int flags = op->lookup_flags | LOOKUP_ROOT;
3273 
3274 	nd.root.mnt = mnt;
3275 	nd.root.dentry = dentry;
3276 
3277 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3278 		return ERR_PTR(-ELOOP);
3279 
3280 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3281 	if (unlikely(file == ERR_PTR(-ECHILD)))
3282 		file = path_openat(-1, &filename, &nd, op, flags);
3283 	if (unlikely(file == ERR_PTR(-ESTALE)))
3284 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3285 	return file;
3286 }
3287 
3288 struct dentry *kern_path_create(int dfd, const char *pathname,
3289 				struct path *path, unsigned int lookup_flags)
3290 {
3291 	struct dentry *dentry = ERR_PTR(-EEXIST);
3292 	struct nameidata nd;
3293 	int err2;
3294 	int error;
3295 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3296 
3297 	/*
3298 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3299 	 * other flags passed in are ignored!
3300 	 */
3301 	lookup_flags &= LOOKUP_REVAL;
3302 
3303 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3304 	if (error)
3305 		return ERR_PTR(error);
3306 
3307 	/*
3308 	 * Yucky last component or no last component at all?
3309 	 * (foo/., foo/.., /////)
3310 	 */
3311 	if (nd.last_type != LAST_NORM)
3312 		goto out;
3313 	nd.flags &= ~LOOKUP_PARENT;
3314 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3315 
3316 	/* don't fail immediately if it's r/o, at least try to report other errors */
3317 	err2 = mnt_want_write(nd.path.mnt);
3318 	/*
3319 	 * Do the final lookup.
3320 	 */
3321 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3322 	dentry = lookup_hash(&nd);
3323 	if (IS_ERR(dentry))
3324 		goto unlock;
3325 
3326 	error = -EEXIST;
3327 	if (d_is_positive(dentry))
3328 		goto fail;
3329 
3330 	/*
3331 	 * Special case - lookup gave negative, but... we had foo/bar/
3332 	 * From the vfs_mknod() POV we just have a negative dentry -
3333 	 * all is fine. Let's be bastards - you had / on the end, you've
3334 	 * been asking for (non-existent) directory. -ENOENT for you.
3335 	 */
3336 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3337 		error = -ENOENT;
3338 		goto fail;
3339 	}
3340 	if (unlikely(err2)) {
3341 		error = err2;
3342 		goto fail;
3343 	}
3344 	*path = nd.path;
3345 	return dentry;
3346 fail:
3347 	dput(dentry);
3348 	dentry = ERR_PTR(error);
3349 unlock:
3350 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3351 	if (!err2)
3352 		mnt_drop_write(nd.path.mnt);
3353 out:
3354 	path_put(&nd.path);
3355 	return dentry;
3356 }
3357 EXPORT_SYMBOL(kern_path_create);
3358 
3359 void done_path_create(struct path *path, struct dentry *dentry)
3360 {
3361 	dput(dentry);
3362 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3363 	mnt_drop_write(path->mnt);
3364 	path_put(path);
3365 }
3366 EXPORT_SYMBOL(done_path_create);
3367 
3368 struct dentry *user_path_create(int dfd, const char __user *pathname,
3369 				struct path *path, unsigned int lookup_flags)
3370 {
3371 	struct filename *tmp = getname(pathname);
3372 	struct dentry *res;
3373 	if (IS_ERR(tmp))
3374 		return ERR_CAST(tmp);
3375 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3376 	putname(tmp);
3377 	return res;
3378 }
3379 EXPORT_SYMBOL(user_path_create);
3380 
3381 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3382 {
3383 	int error = may_create(dir, dentry);
3384 
3385 	if (error)
3386 		return error;
3387 
3388 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3389 		return -EPERM;
3390 
3391 	if (!dir->i_op->mknod)
3392 		return -EPERM;
3393 
3394 	error = devcgroup_inode_mknod(mode, dev);
3395 	if (error)
3396 		return error;
3397 
3398 	error = security_inode_mknod(dir, dentry, mode, dev);
3399 	if (error)
3400 		return error;
3401 
3402 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3403 	if (!error)
3404 		fsnotify_create(dir, dentry);
3405 	return error;
3406 }
3407 EXPORT_SYMBOL(vfs_mknod);
3408 
3409 static int may_mknod(umode_t mode)
3410 {
3411 	switch (mode & S_IFMT) {
3412 	case S_IFREG:
3413 	case S_IFCHR:
3414 	case S_IFBLK:
3415 	case S_IFIFO:
3416 	case S_IFSOCK:
3417 	case 0: /* zero mode translates to S_IFREG */
3418 		return 0;
3419 	case S_IFDIR:
3420 		return -EPERM;
3421 	default:
3422 		return -EINVAL;
3423 	}
3424 }
3425 
3426 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3427 		unsigned, dev)
3428 {
3429 	struct dentry *dentry;
3430 	struct path path;
3431 	int error;
3432 	unsigned int lookup_flags = 0;
3433 
3434 	error = may_mknod(mode);
3435 	if (error)
3436 		return error;
3437 retry:
3438 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3439 	if (IS_ERR(dentry))
3440 		return PTR_ERR(dentry);
3441 
3442 	if (!IS_POSIXACL(path.dentry->d_inode))
3443 		mode &= ~current_umask();
3444 	error = security_path_mknod(&path, dentry, mode, dev);
3445 	if (error)
3446 		goto out;
3447 	switch (mode & S_IFMT) {
3448 		case 0: case S_IFREG:
3449 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3450 			break;
3451 		case S_IFCHR: case S_IFBLK:
3452 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3453 					new_decode_dev(dev));
3454 			break;
3455 		case S_IFIFO: case S_IFSOCK:
3456 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3457 			break;
3458 	}
3459 out:
3460 	done_path_create(&path, dentry);
3461 	if (retry_estale(error, lookup_flags)) {
3462 		lookup_flags |= LOOKUP_REVAL;
3463 		goto retry;
3464 	}
3465 	return error;
3466 }
3467 
3468 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3469 {
3470 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3471 }
3472 
3473 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3474 {
3475 	int error = may_create(dir, dentry);
3476 	unsigned max_links = dir->i_sb->s_max_links;
3477 
3478 	if (error)
3479 		return error;
3480 
3481 	if (!dir->i_op->mkdir)
3482 		return -EPERM;
3483 
3484 	mode &= (S_IRWXUGO|S_ISVTX);
3485 	error = security_inode_mkdir(dir, dentry, mode);
3486 	if (error)
3487 		return error;
3488 
3489 	if (max_links && dir->i_nlink >= max_links)
3490 		return -EMLINK;
3491 
3492 	error = dir->i_op->mkdir(dir, dentry, mode);
3493 	if (!error)
3494 		fsnotify_mkdir(dir, dentry);
3495 	return error;
3496 }
3497 EXPORT_SYMBOL(vfs_mkdir);
3498 
3499 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3500 {
3501 	struct dentry *dentry;
3502 	struct path path;
3503 	int error;
3504 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3505 
3506 retry:
3507 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3508 	if (IS_ERR(dentry))
3509 		return PTR_ERR(dentry);
3510 
3511 	if (!IS_POSIXACL(path.dentry->d_inode))
3512 		mode &= ~current_umask();
3513 	error = security_path_mkdir(&path, dentry, mode);
3514 	if (!error)
3515 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3516 	done_path_create(&path, dentry);
3517 	if (retry_estale(error, lookup_flags)) {
3518 		lookup_flags |= LOOKUP_REVAL;
3519 		goto retry;
3520 	}
3521 	return error;
3522 }
3523 
3524 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3525 {
3526 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3527 }
3528 
3529 /*
3530  * The dentry_unhash() helper will try to drop the dentry early: we
3531  * should have a usage count of 1 if we're the only user of this
3532  * dentry, and if that is true (possibly after pruning the dcache),
3533  * then we drop the dentry now.
3534  *
3535  * A low-level filesystem can, if it choses, legally
3536  * do a
3537  *
3538  *	if (!d_unhashed(dentry))
3539  *		return -EBUSY;
3540  *
3541  * if it cannot handle the case of removing a directory
3542  * that is still in use by something else..
3543  */
3544 void dentry_unhash(struct dentry *dentry)
3545 {
3546 	shrink_dcache_parent(dentry);
3547 	spin_lock(&dentry->d_lock);
3548 	if (dentry->d_lockref.count == 1)
3549 		__d_drop(dentry);
3550 	spin_unlock(&dentry->d_lock);
3551 }
3552 EXPORT_SYMBOL(dentry_unhash);
3553 
3554 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3555 {
3556 	int error = may_delete(dir, dentry, 1);
3557 
3558 	if (error)
3559 		return error;
3560 
3561 	if (!dir->i_op->rmdir)
3562 		return -EPERM;
3563 
3564 	dget(dentry);
3565 	mutex_lock(&dentry->d_inode->i_mutex);
3566 
3567 	error = -EBUSY;
3568 	if (d_mountpoint(dentry))
3569 		goto out;
3570 
3571 	error = security_inode_rmdir(dir, dentry);
3572 	if (error)
3573 		goto out;
3574 
3575 	shrink_dcache_parent(dentry);
3576 	error = dir->i_op->rmdir(dir, dentry);
3577 	if (error)
3578 		goto out;
3579 
3580 	dentry->d_inode->i_flags |= S_DEAD;
3581 	dont_mount(dentry);
3582 
3583 out:
3584 	mutex_unlock(&dentry->d_inode->i_mutex);
3585 	dput(dentry);
3586 	if (!error)
3587 		d_delete(dentry);
3588 	return error;
3589 }
3590 EXPORT_SYMBOL(vfs_rmdir);
3591 
3592 static long do_rmdir(int dfd, const char __user *pathname)
3593 {
3594 	int error = 0;
3595 	struct filename *name;
3596 	struct dentry *dentry;
3597 	struct nameidata nd;
3598 	unsigned int lookup_flags = 0;
3599 retry:
3600 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3601 	if (IS_ERR(name))
3602 		return PTR_ERR(name);
3603 
3604 	switch(nd.last_type) {
3605 	case LAST_DOTDOT:
3606 		error = -ENOTEMPTY;
3607 		goto exit1;
3608 	case LAST_DOT:
3609 		error = -EINVAL;
3610 		goto exit1;
3611 	case LAST_ROOT:
3612 		error = -EBUSY;
3613 		goto exit1;
3614 	}
3615 
3616 	nd.flags &= ~LOOKUP_PARENT;
3617 	error = mnt_want_write(nd.path.mnt);
3618 	if (error)
3619 		goto exit1;
3620 
3621 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3622 	dentry = lookup_hash(&nd);
3623 	error = PTR_ERR(dentry);
3624 	if (IS_ERR(dentry))
3625 		goto exit2;
3626 	if (!dentry->d_inode) {
3627 		error = -ENOENT;
3628 		goto exit3;
3629 	}
3630 	error = security_path_rmdir(&nd.path, dentry);
3631 	if (error)
3632 		goto exit3;
3633 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3634 exit3:
3635 	dput(dentry);
3636 exit2:
3637 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3638 	mnt_drop_write(nd.path.mnt);
3639 exit1:
3640 	path_put(&nd.path);
3641 	putname(name);
3642 	if (retry_estale(error, lookup_flags)) {
3643 		lookup_flags |= LOOKUP_REVAL;
3644 		goto retry;
3645 	}
3646 	return error;
3647 }
3648 
3649 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3650 {
3651 	return do_rmdir(AT_FDCWD, pathname);
3652 }
3653 
3654 /**
3655  * vfs_unlink - unlink a filesystem object
3656  * @dir:	parent directory
3657  * @dentry:	victim
3658  * @delegated_inode: returns victim inode, if the inode is delegated.
3659  *
3660  * The caller must hold dir->i_mutex.
3661  *
3662  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3663  * return a reference to the inode in delegated_inode.  The caller
3664  * should then break the delegation on that inode and retry.  Because
3665  * breaking a delegation may take a long time, the caller should drop
3666  * dir->i_mutex before doing so.
3667  *
3668  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3669  * be appropriate for callers that expect the underlying filesystem not
3670  * to be NFS exported.
3671  */
3672 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3673 {
3674 	struct inode *target = dentry->d_inode;
3675 	int error = may_delete(dir, dentry, 0);
3676 
3677 	if (error)
3678 		return error;
3679 
3680 	if (!dir->i_op->unlink)
3681 		return -EPERM;
3682 
3683 	mutex_lock(&target->i_mutex);
3684 	if (d_mountpoint(dentry))
3685 		error = -EBUSY;
3686 	else {
3687 		error = security_inode_unlink(dir, dentry);
3688 		if (!error) {
3689 			error = try_break_deleg(target, delegated_inode);
3690 			if (error)
3691 				goto out;
3692 			error = dir->i_op->unlink(dir, dentry);
3693 			if (!error)
3694 				dont_mount(dentry);
3695 		}
3696 	}
3697 out:
3698 	mutex_unlock(&target->i_mutex);
3699 
3700 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3701 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3702 		fsnotify_link_count(target);
3703 		d_delete(dentry);
3704 	}
3705 
3706 	return error;
3707 }
3708 EXPORT_SYMBOL(vfs_unlink);
3709 
3710 /*
3711  * Make sure that the actual truncation of the file will occur outside its
3712  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3713  * writeout happening, and we don't want to prevent access to the directory
3714  * while waiting on the I/O.
3715  */
3716 static long do_unlinkat(int dfd, const char __user *pathname)
3717 {
3718 	int error;
3719 	struct filename *name;
3720 	struct dentry *dentry;
3721 	struct nameidata nd;
3722 	struct inode *inode = NULL;
3723 	struct inode *delegated_inode = NULL;
3724 	unsigned int lookup_flags = 0;
3725 retry:
3726 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3727 	if (IS_ERR(name))
3728 		return PTR_ERR(name);
3729 
3730 	error = -EISDIR;
3731 	if (nd.last_type != LAST_NORM)
3732 		goto exit1;
3733 
3734 	nd.flags &= ~LOOKUP_PARENT;
3735 	error = mnt_want_write(nd.path.mnt);
3736 	if (error)
3737 		goto exit1;
3738 retry_deleg:
3739 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3740 	dentry = lookup_hash(&nd);
3741 	error = PTR_ERR(dentry);
3742 	if (!IS_ERR(dentry)) {
3743 		/* Why not before? Because we want correct error value */
3744 		if (nd.last.name[nd.last.len])
3745 			goto slashes;
3746 		inode = dentry->d_inode;
3747 		if (d_is_negative(dentry))
3748 			goto slashes;
3749 		ihold(inode);
3750 		error = security_path_unlink(&nd.path, dentry);
3751 		if (error)
3752 			goto exit2;
3753 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3754 exit2:
3755 		dput(dentry);
3756 	}
3757 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3758 	if (inode)
3759 		iput(inode);	/* truncate the inode here */
3760 	inode = NULL;
3761 	if (delegated_inode) {
3762 		error = break_deleg_wait(&delegated_inode);
3763 		if (!error)
3764 			goto retry_deleg;
3765 	}
3766 	mnt_drop_write(nd.path.mnt);
3767 exit1:
3768 	path_put(&nd.path);
3769 	putname(name);
3770 	if (retry_estale(error, lookup_flags)) {
3771 		lookup_flags |= LOOKUP_REVAL;
3772 		inode = NULL;
3773 		goto retry;
3774 	}
3775 	return error;
3776 
3777 slashes:
3778 	if (d_is_negative(dentry))
3779 		error = -ENOENT;
3780 	else if (d_is_dir(dentry))
3781 		error = -EISDIR;
3782 	else
3783 		error = -ENOTDIR;
3784 	goto exit2;
3785 }
3786 
3787 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3788 {
3789 	if ((flag & ~AT_REMOVEDIR) != 0)
3790 		return -EINVAL;
3791 
3792 	if (flag & AT_REMOVEDIR)
3793 		return do_rmdir(dfd, pathname);
3794 
3795 	return do_unlinkat(dfd, pathname);
3796 }
3797 
3798 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3799 {
3800 	return do_unlinkat(AT_FDCWD, pathname);
3801 }
3802 
3803 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3804 {
3805 	int error = may_create(dir, dentry);
3806 
3807 	if (error)
3808 		return error;
3809 
3810 	if (!dir->i_op->symlink)
3811 		return -EPERM;
3812 
3813 	error = security_inode_symlink(dir, dentry, oldname);
3814 	if (error)
3815 		return error;
3816 
3817 	error = dir->i_op->symlink(dir, dentry, oldname);
3818 	if (!error)
3819 		fsnotify_create(dir, dentry);
3820 	return error;
3821 }
3822 EXPORT_SYMBOL(vfs_symlink);
3823 
3824 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3825 		int, newdfd, const char __user *, newname)
3826 {
3827 	int error;
3828 	struct filename *from;
3829 	struct dentry *dentry;
3830 	struct path path;
3831 	unsigned int lookup_flags = 0;
3832 
3833 	from = getname(oldname);
3834 	if (IS_ERR(from))
3835 		return PTR_ERR(from);
3836 retry:
3837 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3838 	error = PTR_ERR(dentry);
3839 	if (IS_ERR(dentry))
3840 		goto out_putname;
3841 
3842 	error = security_path_symlink(&path, dentry, from->name);
3843 	if (!error)
3844 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3845 	done_path_create(&path, dentry);
3846 	if (retry_estale(error, lookup_flags)) {
3847 		lookup_flags |= LOOKUP_REVAL;
3848 		goto retry;
3849 	}
3850 out_putname:
3851 	putname(from);
3852 	return error;
3853 }
3854 
3855 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3856 {
3857 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3858 }
3859 
3860 /**
3861  * vfs_link - create a new link
3862  * @old_dentry:	object to be linked
3863  * @dir:	new parent
3864  * @new_dentry:	where to create the new link
3865  * @delegated_inode: returns inode needing a delegation break
3866  *
3867  * The caller must hold dir->i_mutex
3868  *
3869  * If vfs_link discovers a delegation on the to-be-linked file in need
3870  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3871  * inode in delegated_inode.  The caller should then break the delegation
3872  * and retry.  Because breaking a delegation may take a long time, the
3873  * caller should drop the i_mutex before doing so.
3874  *
3875  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3876  * be appropriate for callers that expect the underlying filesystem not
3877  * to be NFS exported.
3878  */
3879 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3880 {
3881 	struct inode *inode = old_dentry->d_inode;
3882 	unsigned max_links = dir->i_sb->s_max_links;
3883 	int error;
3884 
3885 	if (!inode)
3886 		return -ENOENT;
3887 
3888 	error = may_create(dir, new_dentry);
3889 	if (error)
3890 		return error;
3891 
3892 	if (dir->i_sb != inode->i_sb)
3893 		return -EXDEV;
3894 
3895 	/*
3896 	 * A link to an append-only or immutable file cannot be created.
3897 	 */
3898 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3899 		return -EPERM;
3900 	if (!dir->i_op->link)
3901 		return -EPERM;
3902 	if (S_ISDIR(inode->i_mode))
3903 		return -EPERM;
3904 
3905 	error = security_inode_link(old_dentry, dir, new_dentry);
3906 	if (error)
3907 		return error;
3908 
3909 	mutex_lock(&inode->i_mutex);
3910 	/* Make sure we don't allow creating hardlink to an unlinked file */
3911 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3912 		error =  -ENOENT;
3913 	else if (max_links && inode->i_nlink >= max_links)
3914 		error = -EMLINK;
3915 	else {
3916 		error = try_break_deleg(inode, delegated_inode);
3917 		if (!error)
3918 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3919 	}
3920 
3921 	if (!error && (inode->i_state & I_LINKABLE)) {
3922 		spin_lock(&inode->i_lock);
3923 		inode->i_state &= ~I_LINKABLE;
3924 		spin_unlock(&inode->i_lock);
3925 	}
3926 	mutex_unlock(&inode->i_mutex);
3927 	if (!error)
3928 		fsnotify_link(dir, inode, new_dentry);
3929 	return error;
3930 }
3931 EXPORT_SYMBOL(vfs_link);
3932 
3933 /*
3934  * Hardlinks are often used in delicate situations.  We avoid
3935  * security-related surprises by not following symlinks on the
3936  * newname.  --KAB
3937  *
3938  * We don't follow them on the oldname either to be compatible
3939  * with linux 2.0, and to avoid hard-linking to directories
3940  * and other special files.  --ADM
3941  */
3942 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3943 		int, newdfd, const char __user *, newname, int, flags)
3944 {
3945 	struct dentry *new_dentry;
3946 	struct path old_path, new_path;
3947 	struct inode *delegated_inode = NULL;
3948 	int how = 0;
3949 	int error;
3950 
3951 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3952 		return -EINVAL;
3953 	/*
3954 	 * To use null names we require CAP_DAC_READ_SEARCH
3955 	 * This ensures that not everyone will be able to create
3956 	 * handlink using the passed filedescriptor.
3957 	 */
3958 	if (flags & AT_EMPTY_PATH) {
3959 		if (!capable(CAP_DAC_READ_SEARCH))
3960 			return -ENOENT;
3961 		how = LOOKUP_EMPTY;
3962 	}
3963 
3964 	if (flags & AT_SYMLINK_FOLLOW)
3965 		how |= LOOKUP_FOLLOW;
3966 retry:
3967 	error = user_path_at(olddfd, oldname, how, &old_path);
3968 	if (error)
3969 		return error;
3970 
3971 	new_dentry = user_path_create(newdfd, newname, &new_path,
3972 					(how & LOOKUP_REVAL));
3973 	error = PTR_ERR(new_dentry);
3974 	if (IS_ERR(new_dentry))
3975 		goto out;
3976 
3977 	error = -EXDEV;
3978 	if (old_path.mnt != new_path.mnt)
3979 		goto out_dput;
3980 	error = may_linkat(&old_path);
3981 	if (unlikely(error))
3982 		goto out_dput;
3983 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3984 	if (error)
3985 		goto out_dput;
3986 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3987 out_dput:
3988 	done_path_create(&new_path, new_dentry);
3989 	if (delegated_inode) {
3990 		error = break_deleg_wait(&delegated_inode);
3991 		if (!error) {
3992 			path_put(&old_path);
3993 			goto retry;
3994 		}
3995 	}
3996 	if (retry_estale(error, how)) {
3997 		path_put(&old_path);
3998 		how |= LOOKUP_REVAL;
3999 		goto retry;
4000 	}
4001 out:
4002 	path_put(&old_path);
4003 
4004 	return error;
4005 }
4006 
4007 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4008 {
4009 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4010 }
4011 
4012 /**
4013  * vfs_rename - rename a filesystem object
4014  * @old_dir:	parent of source
4015  * @old_dentry:	source
4016  * @new_dir:	parent of destination
4017  * @new_dentry:	destination
4018  * @delegated_inode: returns an inode needing a delegation break
4019  * @flags:	rename flags
4020  *
4021  * The caller must hold multiple mutexes--see lock_rename()).
4022  *
4023  * If vfs_rename discovers a delegation in need of breaking at either
4024  * the source or destination, it will return -EWOULDBLOCK and return a
4025  * reference to the inode in delegated_inode.  The caller should then
4026  * break the delegation and retry.  Because breaking a delegation may
4027  * take a long time, the caller should drop all locks before doing
4028  * so.
4029  *
4030  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4031  * be appropriate for callers that expect the underlying filesystem not
4032  * to be NFS exported.
4033  *
4034  * The worst of all namespace operations - renaming directory. "Perverted"
4035  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4036  * Problems:
4037  *	a) we can get into loop creation.
4038  *	b) race potential - two innocent renames can create a loop together.
4039  *	   That's where 4.4 screws up. Current fix: serialization on
4040  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4041  *	   story.
4042  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4043  *	   and source (if it is not a directory).
4044  *	   And that - after we got ->i_mutex on parents (until then we don't know
4045  *	   whether the target exists).  Solution: try to be smart with locking
4046  *	   order for inodes.  We rely on the fact that tree topology may change
4047  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4048  *	   move will be locked.  Thus we can rank directories by the tree
4049  *	   (ancestors first) and rank all non-directories after them.
4050  *	   That works since everybody except rename does "lock parent, lookup,
4051  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4052  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4053  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4054  *	   we'd better make sure that there's no link(2) for them.
4055  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4056  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4057  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4058  *	   ->i_mutex on parents, which works but leads to some truly excessive
4059  *	   locking].
4060  */
4061 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4062 	       struct inode *new_dir, struct dentry *new_dentry,
4063 	       struct inode **delegated_inode, unsigned int flags)
4064 {
4065 	int error;
4066 	bool is_dir = d_is_dir(old_dentry);
4067 	const unsigned char *old_name;
4068 	struct inode *source = old_dentry->d_inode;
4069 	struct inode *target = new_dentry->d_inode;
4070 	bool new_is_dir = false;
4071 	unsigned max_links = new_dir->i_sb->s_max_links;
4072 
4073 	if (source == target)
4074 		return 0;
4075 
4076 	error = may_delete(old_dir, old_dentry, is_dir);
4077 	if (error)
4078 		return error;
4079 
4080 	if (!target) {
4081 		error = may_create(new_dir, new_dentry);
4082 	} else {
4083 		new_is_dir = d_is_dir(new_dentry);
4084 
4085 		if (!(flags & RENAME_EXCHANGE))
4086 			error = may_delete(new_dir, new_dentry, is_dir);
4087 		else
4088 			error = may_delete(new_dir, new_dentry, new_is_dir);
4089 	}
4090 	if (error)
4091 		return error;
4092 
4093 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4094 		return -EPERM;
4095 
4096 	if (flags && !old_dir->i_op->rename2)
4097 		return -EINVAL;
4098 
4099 	/*
4100 	 * If we are going to change the parent - check write permissions,
4101 	 * we'll need to flip '..'.
4102 	 */
4103 	if (new_dir != old_dir) {
4104 		if (is_dir) {
4105 			error = inode_permission(source, MAY_WRITE);
4106 			if (error)
4107 				return error;
4108 		}
4109 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4110 			error = inode_permission(target, MAY_WRITE);
4111 			if (error)
4112 				return error;
4113 		}
4114 	}
4115 
4116 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4117 				      flags);
4118 	if (error)
4119 		return error;
4120 
4121 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4122 	dget(new_dentry);
4123 	if (!is_dir || (flags & RENAME_EXCHANGE))
4124 		lock_two_nondirectories(source, target);
4125 	else if (target)
4126 		mutex_lock(&target->i_mutex);
4127 
4128 	error = -EBUSY;
4129 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4130 		goto out;
4131 
4132 	if (max_links && new_dir != old_dir) {
4133 		error = -EMLINK;
4134 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4135 			goto out;
4136 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4137 		    old_dir->i_nlink >= max_links)
4138 			goto out;
4139 	}
4140 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4141 		shrink_dcache_parent(new_dentry);
4142 	if (!is_dir) {
4143 		error = try_break_deleg(source, delegated_inode);
4144 		if (error)
4145 			goto out;
4146 	}
4147 	if (target && !new_is_dir) {
4148 		error = try_break_deleg(target, delegated_inode);
4149 		if (error)
4150 			goto out;
4151 	}
4152 	if (!old_dir->i_op->rename2) {
4153 		error = old_dir->i_op->rename(old_dir, old_dentry,
4154 					      new_dir, new_dentry);
4155 	} else {
4156 		WARN_ON(old_dir->i_op->rename != NULL);
4157 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4158 					       new_dir, new_dentry, flags);
4159 	}
4160 	if (error)
4161 		goto out;
4162 
4163 	if (!(flags & RENAME_EXCHANGE) && target) {
4164 		if (is_dir)
4165 			target->i_flags |= S_DEAD;
4166 		dont_mount(new_dentry);
4167 	}
4168 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4169 		if (!(flags & RENAME_EXCHANGE))
4170 			d_move(old_dentry, new_dentry);
4171 		else
4172 			d_exchange(old_dentry, new_dentry);
4173 	}
4174 out:
4175 	if (!is_dir || (flags & RENAME_EXCHANGE))
4176 		unlock_two_nondirectories(source, target);
4177 	else if (target)
4178 		mutex_unlock(&target->i_mutex);
4179 	dput(new_dentry);
4180 	if (!error) {
4181 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4182 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4183 		if (flags & RENAME_EXCHANGE) {
4184 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4185 				      new_is_dir, NULL, new_dentry);
4186 		}
4187 	}
4188 	fsnotify_oldname_free(old_name);
4189 
4190 	return error;
4191 }
4192 EXPORT_SYMBOL(vfs_rename);
4193 
4194 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4195 		int, newdfd, const char __user *, newname, unsigned int, flags)
4196 {
4197 	struct dentry *old_dir, *new_dir;
4198 	struct dentry *old_dentry, *new_dentry;
4199 	struct dentry *trap;
4200 	struct nameidata oldnd, newnd;
4201 	struct inode *delegated_inode = NULL;
4202 	struct filename *from;
4203 	struct filename *to;
4204 	unsigned int lookup_flags = 0;
4205 	bool should_retry = false;
4206 	int error;
4207 
4208 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4209 		return -EINVAL;
4210 
4211 	if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4212 		return -EINVAL;
4213 
4214 retry:
4215 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4216 	if (IS_ERR(from)) {
4217 		error = PTR_ERR(from);
4218 		goto exit;
4219 	}
4220 
4221 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4222 	if (IS_ERR(to)) {
4223 		error = PTR_ERR(to);
4224 		goto exit1;
4225 	}
4226 
4227 	error = -EXDEV;
4228 	if (oldnd.path.mnt != newnd.path.mnt)
4229 		goto exit2;
4230 
4231 	old_dir = oldnd.path.dentry;
4232 	error = -EBUSY;
4233 	if (oldnd.last_type != LAST_NORM)
4234 		goto exit2;
4235 
4236 	new_dir = newnd.path.dentry;
4237 	if (flags & RENAME_NOREPLACE)
4238 		error = -EEXIST;
4239 	if (newnd.last_type != LAST_NORM)
4240 		goto exit2;
4241 
4242 	error = mnt_want_write(oldnd.path.mnt);
4243 	if (error)
4244 		goto exit2;
4245 
4246 	oldnd.flags &= ~LOOKUP_PARENT;
4247 	newnd.flags &= ~LOOKUP_PARENT;
4248 	if (!(flags & RENAME_EXCHANGE))
4249 		newnd.flags |= LOOKUP_RENAME_TARGET;
4250 
4251 retry_deleg:
4252 	trap = lock_rename(new_dir, old_dir);
4253 
4254 	old_dentry = lookup_hash(&oldnd);
4255 	error = PTR_ERR(old_dentry);
4256 	if (IS_ERR(old_dentry))
4257 		goto exit3;
4258 	/* source must exist */
4259 	error = -ENOENT;
4260 	if (d_is_negative(old_dentry))
4261 		goto exit4;
4262 	new_dentry = lookup_hash(&newnd);
4263 	error = PTR_ERR(new_dentry);
4264 	if (IS_ERR(new_dentry))
4265 		goto exit4;
4266 	error = -EEXIST;
4267 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4268 		goto exit5;
4269 	if (flags & RENAME_EXCHANGE) {
4270 		error = -ENOENT;
4271 		if (d_is_negative(new_dentry))
4272 			goto exit5;
4273 
4274 		if (!d_is_dir(new_dentry)) {
4275 			error = -ENOTDIR;
4276 			if (newnd.last.name[newnd.last.len])
4277 				goto exit5;
4278 		}
4279 	}
4280 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4281 	if (!d_is_dir(old_dentry)) {
4282 		error = -ENOTDIR;
4283 		if (oldnd.last.name[oldnd.last.len])
4284 			goto exit5;
4285 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4286 			goto exit5;
4287 	}
4288 	/* source should not be ancestor of target */
4289 	error = -EINVAL;
4290 	if (old_dentry == trap)
4291 		goto exit5;
4292 	/* target should not be an ancestor of source */
4293 	if (!(flags & RENAME_EXCHANGE))
4294 		error = -ENOTEMPTY;
4295 	if (new_dentry == trap)
4296 		goto exit5;
4297 
4298 	error = security_path_rename(&oldnd.path, old_dentry,
4299 				     &newnd.path, new_dentry, flags);
4300 	if (error)
4301 		goto exit5;
4302 	error = vfs_rename(old_dir->d_inode, old_dentry,
4303 			   new_dir->d_inode, new_dentry,
4304 			   &delegated_inode, flags);
4305 exit5:
4306 	dput(new_dentry);
4307 exit4:
4308 	dput(old_dentry);
4309 exit3:
4310 	unlock_rename(new_dir, old_dir);
4311 	if (delegated_inode) {
4312 		error = break_deleg_wait(&delegated_inode);
4313 		if (!error)
4314 			goto retry_deleg;
4315 	}
4316 	mnt_drop_write(oldnd.path.mnt);
4317 exit2:
4318 	if (retry_estale(error, lookup_flags))
4319 		should_retry = true;
4320 	path_put(&newnd.path);
4321 	putname(to);
4322 exit1:
4323 	path_put(&oldnd.path);
4324 	putname(from);
4325 	if (should_retry) {
4326 		should_retry = false;
4327 		lookup_flags |= LOOKUP_REVAL;
4328 		goto retry;
4329 	}
4330 exit:
4331 	return error;
4332 }
4333 
4334 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4335 		int, newdfd, const char __user *, newname)
4336 {
4337 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4338 }
4339 
4340 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4341 {
4342 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4343 }
4344 
4345 int readlink_copy(char __user *buffer, int buflen, const char *link)
4346 {
4347 	int len = PTR_ERR(link);
4348 	if (IS_ERR(link))
4349 		goto out;
4350 
4351 	len = strlen(link);
4352 	if (len > (unsigned) buflen)
4353 		len = buflen;
4354 	if (copy_to_user(buffer, link, len))
4355 		len = -EFAULT;
4356 out:
4357 	return len;
4358 }
4359 EXPORT_SYMBOL(readlink_copy);
4360 
4361 /*
4362  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4363  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4364  * using) it for any given inode is up to filesystem.
4365  */
4366 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4367 {
4368 	struct nameidata nd;
4369 	void *cookie;
4370 	int res;
4371 
4372 	nd.depth = 0;
4373 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4374 	if (IS_ERR(cookie))
4375 		return PTR_ERR(cookie);
4376 
4377 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4378 	if (dentry->d_inode->i_op->put_link)
4379 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4380 	return res;
4381 }
4382 EXPORT_SYMBOL(generic_readlink);
4383 
4384 /* get the link contents into pagecache */
4385 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4386 {
4387 	char *kaddr;
4388 	struct page *page;
4389 	struct address_space *mapping = dentry->d_inode->i_mapping;
4390 	page = read_mapping_page(mapping, 0, NULL);
4391 	if (IS_ERR(page))
4392 		return (char*)page;
4393 	*ppage = page;
4394 	kaddr = kmap(page);
4395 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4396 	return kaddr;
4397 }
4398 
4399 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4400 {
4401 	struct page *page = NULL;
4402 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4403 	if (page) {
4404 		kunmap(page);
4405 		page_cache_release(page);
4406 	}
4407 	return res;
4408 }
4409 EXPORT_SYMBOL(page_readlink);
4410 
4411 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4412 {
4413 	struct page *page = NULL;
4414 	nd_set_link(nd, page_getlink(dentry, &page));
4415 	return page;
4416 }
4417 EXPORT_SYMBOL(page_follow_link_light);
4418 
4419 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4420 {
4421 	struct page *page = cookie;
4422 
4423 	if (page) {
4424 		kunmap(page);
4425 		page_cache_release(page);
4426 	}
4427 }
4428 EXPORT_SYMBOL(page_put_link);
4429 
4430 /*
4431  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4432  */
4433 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4434 {
4435 	struct address_space *mapping = inode->i_mapping;
4436 	struct page *page;
4437 	void *fsdata;
4438 	int err;
4439 	char *kaddr;
4440 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4441 	if (nofs)
4442 		flags |= AOP_FLAG_NOFS;
4443 
4444 retry:
4445 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4446 				flags, &page, &fsdata);
4447 	if (err)
4448 		goto fail;
4449 
4450 	kaddr = kmap_atomic(page);
4451 	memcpy(kaddr, symname, len-1);
4452 	kunmap_atomic(kaddr);
4453 
4454 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4455 							page, fsdata);
4456 	if (err < 0)
4457 		goto fail;
4458 	if (err < len-1)
4459 		goto retry;
4460 
4461 	mark_inode_dirty(inode);
4462 	return 0;
4463 fail:
4464 	return err;
4465 }
4466 EXPORT_SYMBOL(__page_symlink);
4467 
4468 int page_symlink(struct inode *inode, const char *symname, int len)
4469 {
4470 	return __page_symlink(inode, symname, len,
4471 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4472 }
4473 EXPORT_SYMBOL(page_symlink);
4474 
4475 const struct inode_operations page_symlink_inode_operations = {
4476 	.readlink	= generic_readlink,
4477 	.follow_link	= page_follow_link_light,
4478 	.put_link	= page_put_link,
4479 };
4480 EXPORT_SYMBOL(page_symlink_inode_operations);
4481