1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 static int check_acl(struct inode *inode, int mask) 263 { 264 #ifdef CONFIG_FS_POSIX_ACL 265 struct posix_acl *acl; 266 267 if (mask & MAY_NOT_BLOCK) { 268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 269 if (!acl) 270 return -EAGAIN; 271 /* no ->get_acl() calls in RCU mode... */ 272 if (is_uncached_acl(acl)) 273 return -ECHILD; 274 return posix_acl_permission(inode, acl, mask); 275 } 276 277 acl = get_acl(inode, ACL_TYPE_ACCESS); 278 if (IS_ERR(acl)) 279 return PTR_ERR(acl); 280 if (acl) { 281 int error = posix_acl_permission(inode, acl, mask); 282 posix_acl_release(acl); 283 return error; 284 } 285 #endif 286 287 return -EAGAIN; 288 } 289 290 /* 291 * This does the basic UNIX permission checking. 292 * 293 * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit, 294 * for RCU walking. 295 */ 296 static int acl_permission_check(struct inode *inode, int mask) 297 { 298 unsigned int mode = inode->i_mode; 299 300 /* Are we the owner? If so, ACL's don't matter */ 301 if (likely(uid_eq(current_fsuid(), inode->i_uid))) { 302 mask &= 7; 303 mode >>= 6; 304 return (mask & ~mode) ? -EACCES : 0; 305 } 306 307 /* Do we have ACL's? */ 308 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 309 int error = check_acl(inode, mask); 310 if (error != -EAGAIN) 311 return error; 312 } 313 314 /* Only RWX matters for group/other mode bits */ 315 mask &= 7; 316 317 /* 318 * Are the group permissions different from 319 * the other permissions in the bits we care 320 * about? Need to check group ownership if so. 321 */ 322 if (mask & (mode ^ (mode >> 3))) { 323 if (in_group_p(inode->i_gid)) 324 mode >>= 3; 325 } 326 327 /* Bits in 'mode' clear that we require? */ 328 return (mask & ~mode) ? -EACCES : 0; 329 } 330 331 /** 332 * generic_permission - check for access rights on a Posix-like filesystem 333 * @inode: inode to check access rights for 334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 335 * %MAY_NOT_BLOCK ...) 336 * 337 * Used to check for read/write/execute permissions on a file. 338 * We use "fsuid" for this, letting us set arbitrary permissions 339 * for filesystem access without changing the "normal" uids which 340 * are used for other things. 341 * 342 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 343 * request cannot be satisfied (eg. requires blocking or too much complexity). 344 * It would then be called again in ref-walk mode. 345 */ 346 int generic_permission(struct inode *inode, int mask) 347 { 348 int ret; 349 350 /* 351 * Do the basic permission checks. 352 */ 353 ret = acl_permission_check(inode, mask); 354 if (ret != -EACCES) 355 return ret; 356 357 if (S_ISDIR(inode->i_mode)) { 358 /* DACs are overridable for directories */ 359 if (!(mask & MAY_WRITE)) 360 if (capable_wrt_inode_uidgid(inode, 361 CAP_DAC_READ_SEARCH)) 362 return 0; 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 364 return 0; 365 return -EACCES; 366 } 367 368 /* 369 * Searching includes executable on directories, else just read. 370 */ 371 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 372 if (mask == MAY_READ) 373 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 374 return 0; 375 /* 376 * Read/write DACs are always overridable. 377 * Executable DACs are overridable when there is 378 * at least one exec bit set. 379 */ 380 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 381 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 382 return 0; 383 384 return -EACCES; 385 } 386 EXPORT_SYMBOL(generic_permission); 387 388 /* 389 * We _really_ want to just do "generic_permission()" without 390 * even looking at the inode->i_op values. So we keep a cache 391 * flag in inode->i_opflags, that says "this has not special 392 * permission function, use the fast case". 393 */ 394 static inline int do_inode_permission(struct inode *inode, int mask) 395 { 396 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 397 if (likely(inode->i_op->permission)) 398 return inode->i_op->permission(inode, mask); 399 400 /* This gets set once for the inode lifetime */ 401 spin_lock(&inode->i_lock); 402 inode->i_opflags |= IOP_FASTPERM; 403 spin_unlock(&inode->i_lock); 404 } 405 return generic_permission(inode, mask); 406 } 407 408 /** 409 * sb_permission - Check superblock-level permissions 410 * @sb: Superblock of inode to check permission on 411 * @inode: Inode to check permission on 412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 413 * 414 * Separate out file-system wide checks from inode-specific permission checks. 415 */ 416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 417 { 418 if (unlikely(mask & MAY_WRITE)) { 419 umode_t mode = inode->i_mode; 420 421 /* Nobody gets write access to a read-only fs. */ 422 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 423 return -EROFS; 424 } 425 return 0; 426 } 427 428 /** 429 * inode_permission - Check for access rights to a given inode 430 * @inode: Inode to check permission on 431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 432 * 433 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 434 * this, letting us set arbitrary permissions for filesystem access without 435 * changing the "normal" UIDs which are used for other things. 436 * 437 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 438 */ 439 int inode_permission(struct inode *inode, int mask) 440 { 441 int retval; 442 443 retval = sb_permission(inode->i_sb, inode, mask); 444 if (retval) 445 return retval; 446 447 if (unlikely(mask & MAY_WRITE)) { 448 /* 449 * Nobody gets write access to an immutable file. 450 */ 451 if (IS_IMMUTABLE(inode)) 452 return -EPERM; 453 454 /* 455 * Updating mtime will likely cause i_uid and i_gid to be 456 * written back improperly if their true value is unknown 457 * to the vfs. 458 */ 459 if (HAS_UNMAPPED_ID(inode)) 460 return -EACCES; 461 } 462 463 retval = do_inode_permission(inode, mask); 464 if (retval) 465 return retval; 466 467 retval = devcgroup_inode_permission(inode, mask); 468 if (retval) 469 return retval; 470 471 return security_inode_permission(inode, mask); 472 } 473 EXPORT_SYMBOL(inode_permission); 474 475 /** 476 * path_get - get a reference to a path 477 * @path: path to get the reference to 478 * 479 * Given a path increment the reference count to the dentry and the vfsmount. 480 */ 481 void path_get(const struct path *path) 482 { 483 mntget(path->mnt); 484 dget(path->dentry); 485 } 486 EXPORT_SYMBOL(path_get); 487 488 /** 489 * path_put - put a reference to a path 490 * @path: path to put the reference to 491 * 492 * Given a path decrement the reference count to the dentry and the vfsmount. 493 */ 494 void path_put(const struct path *path) 495 { 496 dput(path->dentry); 497 mntput(path->mnt); 498 } 499 EXPORT_SYMBOL(path_put); 500 501 #define EMBEDDED_LEVELS 2 502 struct nameidata { 503 struct path path; 504 struct qstr last; 505 struct path root; 506 struct inode *inode; /* path.dentry.d_inode */ 507 unsigned int flags; 508 unsigned seq, m_seq, r_seq; 509 int last_type; 510 unsigned depth; 511 int total_link_count; 512 struct saved { 513 struct path link; 514 struct delayed_call done; 515 const char *name; 516 unsigned seq; 517 } *stack, internal[EMBEDDED_LEVELS]; 518 struct filename *name; 519 struct nameidata *saved; 520 unsigned root_seq; 521 int dfd; 522 kuid_t dir_uid; 523 umode_t dir_mode; 524 } __randomize_layout; 525 526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 527 { 528 struct nameidata *old = current->nameidata; 529 p->stack = p->internal; 530 p->dfd = dfd; 531 p->name = name; 532 p->total_link_count = old ? old->total_link_count : 0; 533 p->saved = old; 534 current->nameidata = p; 535 } 536 537 static void restore_nameidata(void) 538 { 539 struct nameidata *now = current->nameidata, *old = now->saved; 540 541 current->nameidata = old; 542 if (old) 543 old->total_link_count = now->total_link_count; 544 if (now->stack != now->internal) 545 kfree(now->stack); 546 } 547 548 static bool nd_alloc_stack(struct nameidata *nd) 549 { 550 struct saved *p; 551 552 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 553 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 554 if (unlikely(!p)) 555 return false; 556 memcpy(p, nd->internal, sizeof(nd->internal)); 557 nd->stack = p; 558 return true; 559 } 560 561 /** 562 * path_connected - Verify that a dentry is below mnt.mnt_root 563 * 564 * Rename can sometimes move a file or directory outside of a bind 565 * mount, path_connected allows those cases to be detected. 566 */ 567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 568 { 569 struct super_block *sb = mnt->mnt_sb; 570 571 /* Bind mounts can have disconnected paths */ 572 if (mnt->mnt_root == sb->s_root) 573 return true; 574 575 return is_subdir(dentry, mnt->mnt_root); 576 } 577 578 static void drop_links(struct nameidata *nd) 579 { 580 int i = nd->depth; 581 while (i--) { 582 struct saved *last = nd->stack + i; 583 do_delayed_call(&last->done); 584 clear_delayed_call(&last->done); 585 } 586 } 587 588 static void terminate_walk(struct nameidata *nd) 589 { 590 drop_links(nd); 591 if (!(nd->flags & LOOKUP_RCU)) { 592 int i; 593 path_put(&nd->path); 594 for (i = 0; i < nd->depth; i++) 595 path_put(&nd->stack[i].link); 596 if (nd->flags & LOOKUP_ROOT_GRABBED) { 597 path_put(&nd->root); 598 nd->flags &= ~LOOKUP_ROOT_GRABBED; 599 } 600 } else { 601 nd->flags &= ~LOOKUP_RCU; 602 rcu_read_unlock(); 603 } 604 nd->depth = 0; 605 } 606 607 /* path_put is needed afterwards regardless of success or failure */ 608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 609 { 610 int res = __legitimize_mnt(path->mnt, mseq); 611 if (unlikely(res)) { 612 if (res > 0) 613 path->mnt = NULL; 614 path->dentry = NULL; 615 return false; 616 } 617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 618 path->dentry = NULL; 619 return false; 620 } 621 return !read_seqcount_retry(&path->dentry->d_seq, seq); 622 } 623 624 static inline bool legitimize_path(struct nameidata *nd, 625 struct path *path, unsigned seq) 626 { 627 return __legitimize_path(path, seq, nd->m_seq); 628 } 629 630 static bool legitimize_links(struct nameidata *nd) 631 { 632 int i; 633 for (i = 0; i < nd->depth; i++) { 634 struct saved *last = nd->stack + i; 635 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 636 drop_links(nd); 637 nd->depth = i + 1; 638 return false; 639 } 640 } 641 return true; 642 } 643 644 static bool legitimize_root(struct nameidata *nd) 645 { 646 /* 647 * For scoped-lookups (where nd->root has been zeroed), we need to 648 * restart the whole lookup from scratch -- because set_root() is wrong 649 * for these lookups (nd->dfd is the root, not the filesystem root). 650 */ 651 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 652 return false; 653 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 654 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 655 return true; 656 nd->flags |= LOOKUP_ROOT_GRABBED; 657 return legitimize_path(nd, &nd->root, nd->root_seq); 658 } 659 660 /* 661 * Path walking has 2 modes, rcu-walk and ref-walk (see 662 * Documentation/filesystems/path-lookup.txt). In situations when we can't 663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 664 * normal reference counts on dentries and vfsmounts to transition to ref-walk 665 * mode. Refcounts are grabbed at the last known good point before rcu-walk 666 * got stuck, so ref-walk may continue from there. If this is not successful 667 * (eg. a seqcount has changed), then failure is returned and it's up to caller 668 * to restart the path walk from the beginning in ref-walk mode. 669 */ 670 671 /** 672 * unlazy_walk - try to switch to ref-walk mode. 673 * @nd: nameidata pathwalk data 674 * Returns: 0 on success, -ECHILD on failure 675 * 676 * unlazy_walk attempts to legitimize the current nd->path and nd->root 677 * for ref-walk mode. 678 * Must be called from rcu-walk context. 679 * Nothing should touch nameidata between unlazy_walk() failure and 680 * terminate_walk(). 681 */ 682 static int unlazy_walk(struct nameidata *nd) 683 { 684 struct dentry *parent = nd->path.dentry; 685 686 BUG_ON(!(nd->flags & LOOKUP_RCU)); 687 688 nd->flags &= ~LOOKUP_RCU; 689 if (unlikely(!legitimize_links(nd))) 690 goto out1; 691 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 692 goto out; 693 if (unlikely(!legitimize_root(nd))) 694 goto out; 695 rcu_read_unlock(); 696 BUG_ON(nd->inode != parent->d_inode); 697 return 0; 698 699 out1: 700 nd->path.mnt = NULL; 701 nd->path.dentry = NULL; 702 out: 703 rcu_read_unlock(); 704 return -ECHILD; 705 } 706 707 /** 708 * unlazy_child - try to switch to ref-walk mode. 709 * @nd: nameidata pathwalk data 710 * @dentry: child of nd->path.dentry 711 * @seq: seq number to check dentry against 712 * Returns: 0 on success, -ECHILD on failure 713 * 714 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry 715 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 716 * @nd. Must be called from rcu-walk context. 717 * Nothing should touch nameidata between unlazy_child() failure and 718 * terminate_walk(). 719 */ 720 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq) 721 { 722 BUG_ON(!(nd->flags & LOOKUP_RCU)); 723 724 nd->flags &= ~LOOKUP_RCU; 725 if (unlikely(!legitimize_links(nd))) 726 goto out2; 727 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 728 goto out2; 729 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 730 goto out1; 731 732 /* 733 * We need to move both the parent and the dentry from the RCU domain 734 * to be properly refcounted. And the sequence number in the dentry 735 * validates *both* dentry counters, since we checked the sequence 736 * number of the parent after we got the child sequence number. So we 737 * know the parent must still be valid if the child sequence number is 738 */ 739 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 740 goto out; 741 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 742 goto out_dput; 743 /* 744 * Sequence counts matched. Now make sure that the root is 745 * still valid and get it if required. 746 */ 747 if (unlikely(!legitimize_root(nd))) 748 goto out_dput; 749 rcu_read_unlock(); 750 return 0; 751 752 out2: 753 nd->path.mnt = NULL; 754 out1: 755 nd->path.dentry = NULL; 756 out: 757 rcu_read_unlock(); 758 return -ECHILD; 759 out_dput: 760 rcu_read_unlock(); 761 dput(dentry); 762 return -ECHILD; 763 } 764 765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 766 { 767 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 768 return dentry->d_op->d_revalidate(dentry, flags); 769 else 770 return 1; 771 } 772 773 /** 774 * complete_walk - successful completion of path walk 775 * @nd: pointer nameidata 776 * 777 * If we had been in RCU mode, drop out of it and legitimize nd->path. 778 * Revalidate the final result, unless we'd already done that during 779 * the path walk or the filesystem doesn't ask for it. Return 0 on 780 * success, -error on failure. In case of failure caller does not 781 * need to drop nd->path. 782 */ 783 static int complete_walk(struct nameidata *nd) 784 { 785 struct dentry *dentry = nd->path.dentry; 786 int status; 787 788 if (nd->flags & LOOKUP_RCU) { 789 /* 790 * We don't want to zero nd->root for scoped-lookups or 791 * externally-managed nd->root. 792 */ 793 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED))) 794 nd->root.mnt = NULL; 795 if (unlikely(unlazy_walk(nd))) 796 return -ECHILD; 797 } 798 799 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 800 /* 801 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 802 * ever step outside the root during lookup" and should already 803 * be guaranteed by the rest of namei, we want to avoid a namei 804 * BUG resulting in userspace being given a path that was not 805 * scoped within the root at some point during the lookup. 806 * 807 * So, do a final sanity-check to make sure that in the 808 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 809 * we won't silently return an fd completely outside of the 810 * requested root to userspace. 811 * 812 * Userspace could move the path outside the root after this 813 * check, but as discussed elsewhere this is not a concern (the 814 * resolved file was inside the root at some point). 815 */ 816 if (!path_is_under(&nd->path, &nd->root)) 817 return -EXDEV; 818 } 819 820 if (likely(!(nd->flags & LOOKUP_JUMPED))) 821 return 0; 822 823 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 824 return 0; 825 826 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 827 if (status > 0) 828 return 0; 829 830 if (!status) 831 status = -ESTALE; 832 833 return status; 834 } 835 836 static int set_root(struct nameidata *nd) 837 { 838 struct fs_struct *fs = current->fs; 839 840 /* 841 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 842 * still have to ensure it doesn't happen because it will cause a breakout 843 * from the dirfd. 844 */ 845 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 846 return -ENOTRECOVERABLE; 847 848 if (nd->flags & LOOKUP_RCU) { 849 unsigned seq; 850 851 do { 852 seq = read_seqcount_begin(&fs->seq); 853 nd->root = fs->root; 854 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 855 } while (read_seqcount_retry(&fs->seq, seq)); 856 } else { 857 get_fs_root(fs, &nd->root); 858 nd->flags |= LOOKUP_ROOT_GRABBED; 859 } 860 return 0; 861 } 862 863 static int nd_jump_root(struct nameidata *nd) 864 { 865 if (unlikely(nd->flags & LOOKUP_BENEATH)) 866 return -EXDEV; 867 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 868 /* Absolute path arguments to path_init() are allowed. */ 869 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 870 return -EXDEV; 871 } 872 if (!nd->root.mnt) { 873 int error = set_root(nd); 874 if (error) 875 return error; 876 } 877 if (nd->flags & LOOKUP_RCU) { 878 struct dentry *d; 879 nd->path = nd->root; 880 d = nd->path.dentry; 881 nd->inode = d->d_inode; 882 nd->seq = nd->root_seq; 883 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 884 return -ECHILD; 885 } else { 886 path_put(&nd->path); 887 nd->path = nd->root; 888 path_get(&nd->path); 889 nd->inode = nd->path.dentry->d_inode; 890 } 891 nd->flags |= LOOKUP_JUMPED; 892 return 0; 893 } 894 895 /* 896 * Helper to directly jump to a known parsed path from ->get_link, 897 * caller must have taken a reference to path beforehand. 898 */ 899 int nd_jump_link(struct path *path) 900 { 901 int error = -ELOOP; 902 struct nameidata *nd = current->nameidata; 903 904 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 905 goto err; 906 907 error = -EXDEV; 908 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 909 if (nd->path.mnt != path->mnt) 910 goto err; 911 } 912 /* Not currently safe for scoped-lookups. */ 913 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 914 goto err; 915 916 path_put(&nd->path); 917 nd->path = *path; 918 nd->inode = nd->path.dentry->d_inode; 919 nd->flags |= LOOKUP_JUMPED; 920 return 0; 921 922 err: 923 path_put(path); 924 return error; 925 } 926 927 static inline void put_link(struct nameidata *nd) 928 { 929 struct saved *last = nd->stack + --nd->depth; 930 do_delayed_call(&last->done); 931 if (!(nd->flags & LOOKUP_RCU)) 932 path_put(&last->link); 933 } 934 935 int sysctl_protected_symlinks __read_mostly = 0; 936 int sysctl_protected_hardlinks __read_mostly = 0; 937 int sysctl_protected_fifos __read_mostly; 938 int sysctl_protected_regular __read_mostly; 939 940 /** 941 * may_follow_link - Check symlink following for unsafe situations 942 * @nd: nameidata pathwalk data 943 * 944 * In the case of the sysctl_protected_symlinks sysctl being enabled, 945 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 946 * in a sticky world-writable directory. This is to protect privileged 947 * processes from failing races against path names that may change out 948 * from under them by way of other users creating malicious symlinks. 949 * It will permit symlinks to be followed only when outside a sticky 950 * world-writable directory, or when the uid of the symlink and follower 951 * match, or when the directory owner matches the symlink's owner. 952 * 953 * Returns 0 if following the symlink is allowed, -ve on error. 954 */ 955 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 956 { 957 if (!sysctl_protected_symlinks) 958 return 0; 959 960 /* Allowed if owner and follower match. */ 961 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 962 return 0; 963 964 /* Allowed if parent directory not sticky and world-writable. */ 965 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 966 return 0; 967 968 /* Allowed if parent directory and link owner match. */ 969 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid)) 970 return 0; 971 972 if (nd->flags & LOOKUP_RCU) 973 return -ECHILD; 974 975 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 976 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 977 return -EACCES; 978 } 979 980 /** 981 * safe_hardlink_source - Check for safe hardlink conditions 982 * @inode: the source inode to hardlink from 983 * 984 * Return false if at least one of the following conditions: 985 * - inode is not a regular file 986 * - inode is setuid 987 * - inode is setgid and group-exec 988 * - access failure for read and write 989 * 990 * Otherwise returns true. 991 */ 992 static bool safe_hardlink_source(struct inode *inode) 993 { 994 umode_t mode = inode->i_mode; 995 996 /* Special files should not get pinned to the filesystem. */ 997 if (!S_ISREG(mode)) 998 return false; 999 1000 /* Setuid files should not get pinned to the filesystem. */ 1001 if (mode & S_ISUID) 1002 return false; 1003 1004 /* Executable setgid files should not get pinned to the filesystem. */ 1005 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1006 return false; 1007 1008 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1009 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 1010 return false; 1011 1012 return true; 1013 } 1014 1015 /** 1016 * may_linkat - Check permissions for creating a hardlink 1017 * @link: the source to hardlink from 1018 * 1019 * Block hardlink when all of: 1020 * - sysctl_protected_hardlinks enabled 1021 * - fsuid does not match inode 1022 * - hardlink source is unsafe (see safe_hardlink_source() above) 1023 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1024 * 1025 * Returns 0 if successful, -ve on error. 1026 */ 1027 int may_linkat(struct path *link) 1028 { 1029 struct inode *inode = link->dentry->d_inode; 1030 1031 /* Inode writeback is not safe when the uid or gid are invalid. */ 1032 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 1033 return -EOVERFLOW; 1034 1035 if (!sysctl_protected_hardlinks) 1036 return 0; 1037 1038 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1039 * otherwise, it must be a safe source. 1040 */ 1041 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode)) 1042 return 0; 1043 1044 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1045 return -EPERM; 1046 } 1047 1048 /** 1049 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1050 * should be allowed, or not, on files that already 1051 * exist. 1052 * @dir_mode: mode bits of directory 1053 * @dir_uid: owner of directory 1054 * @inode: the inode of the file to open 1055 * 1056 * Block an O_CREAT open of a FIFO (or a regular file) when: 1057 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1058 * - the file already exists 1059 * - we are in a sticky directory 1060 * - we don't own the file 1061 * - the owner of the directory doesn't own the file 1062 * - the directory is world writable 1063 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1064 * the directory doesn't have to be world writable: being group writable will 1065 * be enough. 1066 * 1067 * Returns 0 if the open is allowed, -ve on error. 1068 */ 1069 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid, 1070 struct inode * const inode) 1071 { 1072 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1073 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1074 likely(!(dir_mode & S_ISVTX)) || 1075 uid_eq(inode->i_uid, dir_uid) || 1076 uid_eq(current_fsuid(), inode->i_uid)) 1077 return 0; 1078 1079 if (likely(dir_mode & 0002) || 1080 (dir_mode & 0020 && 1081 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1082 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1083 const char *operation = S_ISFIFO(inode->i_mode) ? 1084 "sticky_create_fifo" : 1085 "sticky_create_regular"; 1086 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1087 return -EACCES; 1088 } 1089 return 0; 1090 } 1091 1092 /* 1093 * follow_up - Find the mountpoint of path's vfsmount 1094 * 1095 * Given a path, find the mountpoint of its source file system. 1096 * Replace @path with the path of the mountpoint in the parent mount. 1097 * Up is towards /. 1098 * 1099 * Return 1 if we went up a level and 0 if we were already at the 1100 * root. 1101 */ 1102 int follow_up(struct path *path) 1103 { 1104 struct mount *mnt = real_mount(path->mnt); 1105 struct mount *parent; 1106 struct dentry *mountpoint; 1107 1108 read_seqlock_excl(&mount_lock); 1109 parent = mnt->mnt_parent; 1110 if (parent == mnt) { 1111 read_sequnlock_excl(&mount_lock); 1112 return 0; 1113 } 1114 mntget(&parent->mnt); 1115 mountpoint = dget(mnt->mnt_mountpoint); 1116 read_sequnlock_excl(&mount_lock); 1117 dput(path->dentry); 1118 path->dentry = mountpoint; 1119 mntput(path->mnt); 1120 path->mnt = &parent->mnt; 1121 return 1; 1122 } 1123 EXPORT_SYMBOL(follow_up); 1124 1125 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1126 struct path *path, unsigned *seqp) 1127 { 1128 while (mnt_has_parent(m)) { 1129 struct dentry *mountpoint = m->mnt_mountpoint; 1130 1131 m = m->mnt_parent; 1132 if (unlikely(root->dentry == mountpoint && 1133 root->mnt == &m->mnt)) 1134 break; 1135 if (mountpoint != m->mnt.mnt_root) { 1136 path->mnt = &m->mnt; 1137 path->dentry = mountpoint; 1138 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1139 return true; 1140 } 1141 } 1142 return false; 1143 } 1144 1145 static bool choose_mountpoint(struct mount *m, const struct path *root, 1146 struct path *path) 1147 { 1148 bool found; 1149 1150 rcu_read_lock(); 1151 while (1) { 1152 unsigned seq, mseq = read_seqbegin(&mount_lock); 1153 1154 found = choose_mountpoint_rcu(m, root, path, &seq); 1155 if (unlikely(!found)) { 1156 if (!read_seqretry(&mount_lock, mseq)) 1157 break; 1158 } else { 1159 if (likely(__legitimize_path(path, seq, mseq))) 1160 break; 1161 rcu_read_unlock(); 1162 path_put(path); 1163 rcu_read_lock(); 1164 } 1165 } 1166 rcu_read_unlock(); 1167 return found; 1168 } 1169 1170 /* 1171 * Perform an automount 1172 * - return -EISDIR to tell follow_managed() to stop and return the path we 1173 * were called with. 1174 */ 1175 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1176 { 1177 struct dentry *dentry = path->dentry; 1178 1179 /* We don't want to mount if someone's just doing a stat - 1180 * unless they're stat'ing a directory and appended a '/' to 1181 * the name. 1182 * 1183 * We do, however, want to mount if someone wants to open or 1184 * create a file of any type under the mountpoint, wants to 1185 * traverse through the mountpoint or wants to open the 1186 * mounted directory. Also, autofs may mark negative dentries 1187 * as being automount points. These will need the attentions 1188 * of the daemon to instantiate them before they can be used. 1189 */ 1190 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1191 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1192 dentry->d_inode) 1193 return -EISDIR; 1194 1195 if (count && (*count)++ >= MAXSYMLINKS) 1196 return -ELOOP; 1197 1198 return finish_automount(dentry->d_op->d_automount(path), path); 1199 } 1200 1201 /* 1202 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1203 * dentries are pinned but not locked here, so negative dentry can go 1204 * positive right under us. Use of smp_load_acquire() provides a barrier 1205 * sufficient for ->d_inode and ->d_flags consistency. 1206 */ 1207 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1208 int *count, unsigned lookup_flags) 1209 { 1210 struct vfsmount *mnt = path->mnt; 1211 bool need_mntput = false; 1212 int ret = 0; 1213 1214 while (flags & DCACHE_MANAGED_DENTRY) { 1215 /* Allow the filesystem to manage the transit without i_mutex 1216 * being held. */ 1217 if (flags & DCACHE_MANAGE_TRANSIT) { 1218 ret = path->dentry->d_op->d_manage(path, false); 1219 flags = smp_load_acquire(&path->dentry->d_flags); 1220 if (ret < 0) 1221 break; 1222 } 1223 1224 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1225 struct vfsmount *mounted = lookup_mnt(path); 1226 if (mounted) { // ... in our namespace 1227 dput(path->dentry); 1228 if (need_mntput) 1229 mntput(path->mnt); 1230 path->mnt = mounted; 1231 path->dentry = dget(mounted->mnt_root); 1232 // here we know it's positive 1233 flags = path->dentry->d_flags; 1234 need_mntput = true; 1235 continue; 1236 } 1237 } 1238 1239 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1240 break; 1241 1242 // uncovered automount point 1243 ret = follow_automount(path, count, lookup_flags); 1244 flags = smp_load_acquire(&path->dentry->d_flags); 1245 if (ret < 0) 1246 break; 1247 } 1248 1249 if (ret == -EISDIR) 1250 ret = 0; 1251 // possible if you race with several mount --move 1252 if (need_mntput && path->mnt == mnt) 1253 mntput(path->mnt); 1254 if (!ret && unlikely(d_flags_negative(flags))) 1255 ret = -ENOENT; 1256 *jumped = need_mntput; 1257 return ret; 1258 } 1259 1260 static inline int traverse_mounts(struct path *path, bool *jumped, 1261 int *count, unsigned lookup_flags) 1262 { 1263 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1264 1265 /* fastpath */ 1266 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1267 *jumped = false; 1268 if (unlikely(d_flags_negative(flags))) 1269 return -ENOENT; 1270 return 0; 1271 } 1272 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1273 } 1274 1275 int follow_down_one(struct path *path) 1276 { 1277 struct vfsmount *mounted; 1278 1279 mounted = lookup_mnt(path); 1280 if (mounted) { 1281 dput(path->dentry); 1282 mntput(path->mnt); 1283 path->mnt = mounted; 1284 path->dentry = dget(mounted->mnt_root); 1285 return 1; 1286 } 1287 return 0; 1288 } 1289 EXPORT_SYMBOL(follow_down_one); 1290 1291 /* 1292 * Follow down to the covering mount currently visible to userspace. At each 1293 * point, the filesystem owning that dentry may be queried as to whether the 1294 * caller is permitted to proceed or not. 1295 */ 1296 int follow_down(struct path *path) 1297 { 1298 struct vfsmount *mnt = path->mnt; 1299 bool jumped; 1300 int ret = traverse_mounts(path, &jumped, NULL, 0); 1301 1302 if (path->mnt != mnt) 1303 mntput(mnt); 1304 return ret; 1305 } 1306 EXPORT_SYMBOL(follow_down); 1307 1308 /* 1309 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1310 * we meet a managed dentry that would need blocking. 1311 */ 1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1313 struct inode **inode, unsigned *seqp) 1314 { 1315 struct dentry *dentry = path->dentry; 1316 unsigned int flags = dentry->d_flags; 1317 1318 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1319 return true; 1320 1321 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1322 return false; 1323 1324 for (;;) { 1325 /* 1326 * Don't forget we might have a non-mountpoint managed dentry 1327 * that wants to block transit. 1328 */ 1329 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1330 int res = dentry->d_op->d_manage(path, true); 1331 if (res) 1332 return res == -EISDIR; 1333 flags = dentry->d_flags; 1334 } 1335 1336 if (flags & DCACHE_MOUNTED) { 1337 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1338 if (mounted) { 1339 path->mnt = &mounted->mnt; 1340 dentry = path->dentry = mounted->mnt.mnt_root; 1341 nd->flags |= LOOKUP_JUMPED; 1342 *seqp = read_seqcount_begin(&dentry->d_seq); 1343 *inode = dentry->d_inode; 1344 /* 1345 * We don't need to re-check ->d_seq after this 1346 * ->d_inode read - there will be an RCU delay 1347 * between mount hash removal and ->mnt_root 1348 * becoming unpinned. 1349 */ 1350 flags = dentry->d_flags; 1351 continue; 1352 } 1353 if (read_seqretry(&mount_lock, nd->m_seq)) 1354 return false; 1355 } 1356 return !(flags & DCACHE_NEED_AUTOMOUNT); 1357 } 1358 } 1359 1360 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1361 struct path *path, struct inode **inode, 1362 unsigned int *seqp) 1363 { 1364 bool jumped; 1365 int ret; 1366 1367 path->mnt = nd->path.mnt; 1368 path->dentry = dentry; 1369 if (nd->flags & LOOKUP_RCU) { 1370 unsigned int seq = *seqp; 1371 if (unlikely(!*inode)) 1372 return -ENOENT; 1373 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1374 return 0; 1375 if (unlazy_child(nd, dentry, seq)) 1376 return -ECHILD; 1377 // *path might've been clobbered by __follow_mount_rcu() 1378 path->mnt = nd->path.mnt; 1379 path->dentry = dentry; 1380 } 1381 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1382 if (jumped) { 1383 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1384 ret = -EXDEV; 1385 else 1386 nd->flags |= LOOKUP_JUMPED; 1387 } 1388 if (unlikely(ret)) { 1389 dput(path->dentry); 1390 if (path->mnt != nd->path.mnt) 1391 mntput(path->mnt); 1392 } else { 1393 *inode = d_backing_inode(path->dentry); 1394 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1395 } 1396 return ret; 1397 } 1398 1399 /* 1400 * This looks up the name in dcache and possibly revalidates the found dentry. 1401 * NULL is returned if the dentry does not exist in the cache. 1402 */ 1403 static struct dentry *lookup_dcache(const struct qstr *name, 1404 struct dentry *dir, 1405 unsigned int flags) 1406 { 1407 struct dentry *dentry = d_lookup(dir, name); 1408 if (dentry) { 1409 int error = d_revalidate(dentry, flags); 1410 if (unlikely(error <= 0)) { 1411 if (!error) 1412 d_invalidate(dentry); 1413 dput(dentry); 1414 return ERR_PTR(error); 1415 } 1416 } 1417 return dentry; 1418 } 1419 1420 /* 1421 * Parent directory has inode locked exclusive. This is one 1422 * and only case when ->lookup() gets called on non in-lookup 1423 * dentries - as the matter of fact, this only gets called 1424 * when directory is guaranteed to have no in-lookup children 1425 * at all. 1426 */ 1427 static struct dentry *__lookup_hash(const struct qstr *name, 1428 struct dentry *base, unsigned int flags) 1429 { 1430 struct dentry *dentry = lookup_dcache(name, base, flags); 1431 struct dentry *old; 1432 struct inode *dir = base->d_inode; 1433 1434 if (dentry) 1435 return dentry; 1436 1437 /* Don't create child dentry for a dead directory. */ 1438 if (unlikely(IS_DEADDIR(dir))) 1439 return ERR_PTR(-ENOENT); 1440 1441 dentry = d_alloc(base, name); 1442 if (unlikely(!dentry)) 1443 return ERR_PTR(-ENOMEM); 1444 1445 old = dir->i_op->lookup(dir, dentry, flags); 1446 if (unlikely(old)) { 1447 dput(dentry); 1448 dentry = old; 1449 } 1450 return dentry; 1451 } 1452 1453 static struct dentry *lookup_fast(struct nameidata *nd, 1454 struct inode **inode, 1455 unsigned *seqp) 1456 { 1457 struct dentry *dentry, *parent = nd->path.dentry; 1458 int status = 1; 1459 1460 /* 1461 * Rename seqlock is not required here because in the off chance 1462 * of a false negative due to a concurrent rename, the caller is 1463 * going to fall back to non-racy lookup. 1464 */ 1465 if (nd->flags & LOOKUP_RCU) { 1466 unsigned seq; 1467 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1468 if (unlikely(!dentry)) { 1469 if (unlazy_walk(nd)) 1470 return ERR_PTR(-ECHILD); 1471 return NULL; 1472 } 1473 1474 /* 1475 * This sequence count validates that the inode matches 1476 * the dentry name information from lookup. 1477 */ 1478 *inode = d_backing_inode(dentry); 1479 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1480 return ERR_PTR(-ECHILD); 1481 1482 /* 1483 * This sequence count validates that the parent had no 1484 * changes while we did the lookup of the dentry above. 1485 * 1486 * The memory barrier in read_seqcount_begin of child is 1487 * enough, we can use __read_seqcount_retry here. 1488 */ 1489 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1490 return ERR_PTR(-ECHILD); 1491 1492 *seqp = seq; 1493 status = d_revalidate(dentry, nd->flags); 1494 if (likely(status > 0)) 1495 return dentry; 1496 if (unlazy_child(nd, dentry, seq)) 1497 return ERR_PTR(-ECHILD); 1498 if (unlikely(status == -ECHILD)) 1499 /* we'd been told to redo it in non-rcu mode */ 1500 status = d_revalidate(dentry, nd->flags); 1501 } else { 1502 dentry = __d_lookup(parent, &nd->last); 1503 if (unlikely(!dentry)) 1504 return NULL; 1505 status = d_revalidate(dentry, nd->flags); 1506 } 1507 if (unlikely(status <= 0)) { 1508 if (!status) 1509 d_invalidate(dentry); 1510 dput(dentry); 1511 return ERR_PTR(status); 1512 } 1513 return dentry; 1514 } 1515 1516 /* Fast lookup failed, do it the slow way */ 1517 static struct dentry *__lookup_slow(const struct qstr *name, 1518 struct dentry *dir, 1519 unsigned int flags) 1520 { 1521 struct dentry *dentry, *old; 1522 struct inode *inode = dir->d_inode; 1523 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1524 1525 /* Don't go there if it's already dead */ 1526 if (unlikely(IS_DEADDIR(inode))) 1527 return ERR_PTR(-ENOENT); 1528 again: 1529 dentry = d_alloc_parallel(dir, name, &wq); 1530 if (IS_ERR(dentry)) 1531 return dentry; 1532 if (unlikely(!d_in_lookup(dentry))) { 1533 int error = d_revalidate(dentry, flags); 1534 if (unlikely(error <= 0)) { 1535 if (!error) { 1536 d_invalidate(dentry); 1537 dput(dentry); 1538 goto again; 1539 } 1540 dput(dentry); 1541 dentry = ERR_PTR(error); 1542 } 1543 } else { 1544 old = inode->i_op->lookup(inode, dentry, flags); 1545 d_lookup_done(dentry); 1546 if (unlikely(old)) { 1547 dput(dentry); 1548 dentry = old; 1549 } 1550 } 1551 return dentry; 1552 } 1553 1554 static struct dentry *lookup_slow(const struct qstr *name, 1555 struct dentry *dir, 1556 unsigned int flags) 1557 { 1558 struct inode *inode = dir->d_inode; 1559 struct dentry *res; 1560 inode_lock_shared(inode); 1561 res = __lookup_slow(name, dir, flags); 1562 inode_unlock_shared(inode); 1563 return res; 1564 } 1565 1566 static inline int may_lookup(struct nameidata *nd) 1567 { 1568 if (nd->flags & LOOKUP_RCU) { 1569 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1570 if (err != -ECHILD) 1571 return err; 1572 if (unlazy_walk(nd)) 1573 return -ECHILD; 1574 } 1575 return inode_permission(nd->inode, MAY_EXEC); 1576 } 1577 1578 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1579 { 1580 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1581 return -ELOOP; 1582 1583 if (likely(nd->depth != EMBEDDED_LEVELS)) 1584 return 0; 1585 if (likely(nd->stack != nd->internal)) 1586 return 0; 1587 if (likely(nd_alloc_stack(nd))) 1588 return 0; 1589 1590 if (nd->flags & LOOKUP_RCU) { 1591 // we need to grab link before we do unlazy. And we can't skip 1592 // unlazy even if we fail to grab the link - cleanup needs it 1593 bool grabbed_link = legitimize_path(nd, link, seq); 1594 1595 if (unlazy_walk(nd) != 0 || !grabbed_link) 1596 return -ECHILD; 1597 1598 if (nd_alloc_stack(nd)) 1599 return 0; 1600 } 1601 return -ENOMEM; 1602 } 1603 1604 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1605 1606 static const char *pick_link(struct nameidata *nd, struct path *link, 1607 struct inode *inode, unsigned seq, int flags) 1608 { 1609 struct saved *last; 1610 const char *res; 1611 int error = reserve_stack(nd, link, seq); 1612 1613 if (unlikely(error)) { 1614 if (!(nd->flags & LOOKUP_RCU)) 1615 path_put(link); 1616 return ERR_PTR(error); 1617 } 1618 last = nd->stack + nd->depth++; 1619 last->link = *link; 1620 clear_delayed_call(&last->done); 1621 last->seq = seq; 1622 1623 if (flags & WALK_TRAILING) { 1624 error = may_follow_link(nd, inode); 1625 if (unlikely(error)) 1626 return ERR_PTR(error); 1627 } 1628 1629 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1630 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1631 return ERR_PTR(-ELOOP); 1632 1633 if (!(nd->flags & LOOKUP_RCU)) { 1634 touch_atime(&last->link); 1635 cond_resched(); 1636 } else if (atime_needs_update(&last->link, inode)) { 1637 if (unlikely(unlazy_walk(nd))) 1638 return ERR_PTR(-ECHILD); 1639 touch_atime(&last->link); 1640 } 1641 1642 error = security_inode_follow_link(link->dentry, inode, 1643 nd->flags & LOOKUP_RCU); 1644 if (unlikely(error)) 1645 return ERR_PTR(error); 1646 1647 res = READ_ONCE(inode->i_link); 1648 if (!res) { 1649 const char * (*get)(struct dentry *, struct inode *, 1650 struct delayed_call *); 1651 get = inode->i_op->get_link; 1652 if (nd->flags & LOOKUP_RCU) { 1653 res = get(NULL, inode, &last->done); 1654 if (res == ERR_PTR(-ECHILD)) { 1655 if (unlikely(unlazy_walk(nd))) 1656 return ERR_PTR(-ECHILD); 1657 res = get(link->dentry, inode, &last->done); 1658 } 1659 } else { 1660 res = get(link->dentry, inode, &last->done); 1661 } 1662 if (!res) 1663 goto all_done; 1664 if (IS_ERR(res)) 1665 return res; 1666 } 1667 if (*res == '/') { 1668 error = nd_jump_root(nd); 1669 if (unlikely(error)) 1670 return ERR_PTR(error); 1671 while (unlikely(*++res == '/')) 1672 ; 1673 } 1674 if (*res) 1675 return res; 1676 all_done: // pure jump 1677 put_link(nd); 1678 return NULL; 1679 } 1680 1681 /* 1682 * Do we need to follow links? We _really_ want to be able 1683 * to do this check without having to look at inode->i_op, 1684 * so we keep a cache of "no, this doesn't need follow_link" 1685 * for the common case. 1686 */ 1687 static const char *step_into(struct nameidata *nd, int flags, 1688 struct dentry *dentry, struct inode *inode, unsigned seq) 1689 { 1690 struct path path; 1691 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1692 1693 if (err < 0) 1694 return ERR_PTR(err); 1695 if (likely(!d_is_symlink(path.dentry)) || 1696 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1697 (flags & WALK_NOFOLLOW)) { 1698 /* not a symlink or should not follow */ 1699 if (!(nd->flags & LOOKUP_RCU)) { 1700 dput(nd->path.dentry); 1701 if (nd->path.mnt != path.mnt) 1702 mntput(nd->path.mnt); 1703 } 1704 nd->path = path; 1705 nd->inode = inode; 1706 nd->seq = seq; 1707 return NULL; 1708 } 1709 if (nd->flags & LOOKUP_RCU) { 1710 /* make sure that d_is_symlink above matches inode */ 1711 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1712 return ERR_PTR(-ECHILD); 1713 } else { 1714 if (path.mnt == nd->path.mnt) 1715 mntget(path.mnt); 1716 } 1717 return pick_link(nd, &path, inode, seq, flags); 1718 } 1719 1720 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1721 struct inode **inodep, 1722 unsigned *seqp) 1723 { 1724 struct dentry *parent, *old; 1725 1726 if (path_equal(&nd->path, &nd->root)) 1727 goto in_root; 1728 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1729 struct path path; 1730 unsigned seq; 1731 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1732 &nd->root, &path, &seq)) 1733 goto in_root; 1734 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1735 return ERR_PTR(-ECHILD); 1736 nd->path = path; 1737 nd->inode = path.dentry->d_inode; 1738 nd->seq = seq; 1739 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1740 return ERR_PTR(-ECHILD); 1741 /* we know that mountpoint was pinned */ 1742 } 1743 old = nd->path.dentry; 1744 parent = old->d_parent; 1745 *inodep = parent->d_inode; 1746 *seqp = read_seqcount_begin(&parent->d_seq); 1747 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1748 return ERR_PTR(-ECHILD); 1749 if (unlikely(!path_connected(nd->path.mnt, parent))) 1750 return ERR_PTR(-ECHILD); 1751 return parent; 1752 in_root: 1753 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1754 return ERR_PTR(-ECHILD); 1755 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1756 return ERR_PTR(-ECHILD); 1757 return NULL; 1758 } 1759 1760 static struct dentry *follow_dotdot(struct nameidata *nd, 1761 struct inode **inodep, 1762 unsigned *seqp) 1763 { 1764 struct dentry *parent; 1765 1766 if (path_equal(&nd->path, &nd->root)) 1767 goto in_root; 1768 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1769 struct path path; 1770 1771 if (!choose_mountpoint(real_mount(nd->path.mnt), 1772 &nd->root, &path)) 1773 goto in_root; 1774 path_put(&nd->path); 1775 nd->path = path; 1776 nd->inode = path.dentry->d_inode; 1777 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1778 return ERR_PTR(-EXDEV); 1779 } 1780 /* rare case of legitimate dget_parent()... */ 1781 parent = dget_parent(nd->path.dentry); 1782 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1783 dput(parent); 1784 return ERR_PTR(-ENOENT); 1785 } 1786 *seqp = 0; 1787 *inodep = parent->d_inode; 1788 return parent; 1789 1790 in_root: 1791 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1792 return ERR_PTR(-EXDEV); 1793 dget(nd->path.dentry); 1794 return NULL; 1795 } 1796 1797 static const char *handle_dots(struct nameidata *nd, int type) 1798 { 1799 if (type == LAST_DOTDOT) { 1800 const char *error = NULL; 1801 struct dentry *parent; 1802 struct inode *inode; 1803 unsigned seq; 1804 1805 if (!nd->root.mnt) { 1806 error = ERR_PTR(set_root(nd)); 1807 if (error) 1808 return error; 1809 } 1810 if (nd->flags & LOOKUP_RCU) 1811 parent = follow_dotdot_rcu(nd, &inode, &seq); 1812 else 1813 parent = follow_dotdot(nd, &inode, &seq); 1814 if (IS_ERR(parent)) 1815 return ERR_CAST(parent); 1816 if (unlikely(!parent)) 1817 error = step_into(nd, WALK_NOFOLLOW, 1818 nd->path.dentry, nd->inode, nd->seq); 1819 else 1820 error = step_into(nd, WALK_NOFOLLOW, 1821 parent, inode, seq); 1822 if (unlikely(error)) 1823 return error; 1824 1825 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1826 /* 1827 * If there was a racing rename or mount along our 1828 * path, then we can't be sure that ".." hasn't jumped 1829 * above nd->root (and so userspace should retry or use 1830 * some fallback). 1831 */ 1832 smp_rmb(); 1833 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1834 return ERR_PTR(-EAGAIN); 1835 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1836 return ERR_PTR(-EAGAIN); 1837 } 1838 } 1839 return NULL; 1840 } 1841 1842 static const char *walk_component(struct nameidata *nd, int flags) 1843 { 1844 struct dentry *dentry; 1845 struct inode *inode; 1846 unsigned seq; 1847 /* 1848 * "." and ".." are special - ".." especially so because it has 1849 * to be able to know about the current root directory and 1850 * parent relationships. 1851 */ 1852 if (unlikely(nd->last_type != LAST_NORM)) { 1853 if (!(flags & WALK_MORE) && nd->depth) 1854 put_link(nd); 1855 return handle_dots(nd, nd->last_type); 1856 } 1857 dentry = lookup_fast(nd, &inode, &seq); 1858 if (IS_ERR(dentry)) 1859 return ERR_CAST(dentry); 1860 if (unlikely(!dentry)) { 1861 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1862 if (IS_ERR(dentry)) 1863 return ERR_CAST(dentry); 1864 } 1865 if (!(flags & WALK_MORE) && nd->depth) 1866 put_link(nd); 1867 return step_into(nd, flags, dentry, inode, seq); 1868 } 1869 1870 /* 1871 * We can do the critical dentry name comparison and hashing 1872 * operations one word at a time, but we are limited to: 1873 * 1874 * - Architectures with fast unaligned word accesses. We could 1875 * do a "get_unaligned()" if this helps and is sufficiently 1876 * fast. 1877 * 1878 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1879 * do not trap on the (extremely unlikely) case of a page 1880 * crossing operation. 1881 * 1882 * - Furthermore, we need an efficient 64-bit compile for the 1883 * 64-bit case in order to generate the "number of bytes in 1884 * the final mask". Again, that could be replaced with a 1885 * efficient population count instruction or similar. 1886 */ 1887 #ifdef CONFIG_DCACHE_WORD_ACCESS 1888 1889 #include <asm/word-at-a-time.h> 1890 1891 #ifdef HASH_MIX 1892 1893 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1894 1895 #elif defined(CONFIG_64BIT) 1896 /* 1897 * Register pressure in the mixing function is an issue, particularly 1898 * on 32-bit x86, but almost any function requires one state value and 1899 * one temporary. Instead, use a function designed for two state values 1900 * and no temporaries. 1901 * 1902 * This function cannot create a collision in only two iterations, so 1903 * we have two iterations to achieve avalanche. In those two iterations, 1904 * we have six layers of mixing, which is enough to spread one bit's 1905 * influence out to 2^6 = 64 state bits. 1906 * 1907 * Rotate constants are scored by considering either 64 one-bit input 1908 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1909 * probability of that delta causing a change to each of the 128 output 1910 * bits, using a sample of random initial states. 1911 * 1912 * The Shannon entropy of the computed probabilities is then summed 1913 * to produce a score. Ideally, any input change has a 50% chance of 1914 * toggling any given output bit. 1915 * 1916 * Mixing scores (in bits) for (12,45): 1917 * Input delta: 1-bit 2-bit 1918 * 1 round: 713.3 42542.6 1919 * 2 rounds: 2753.7 140389.8 1920 * 3 rounds: 5954.1 233458.2 1921 * 4 rounds: 7862.6 256672.2 1922 * Perfect: 8192 258048 1923 * (64*128) (64*63/2 * 128) 1924 */ 1925 #define HASH_MIX(x, y, a) \ 1926 ( x ^= (a), \ 1927 y ^= x, x = rol64(x,12),\ 1928 x += y, y = rol64(y,45),\ 1929 y *= 9 ) 1930 1931 /* 1932 * Fold two longs into one 32-bit hash value. This must be fast, but 1933 * latency isn't quite as critical, as there is a fair bit of additional 1934 * work done before the hash value is used. 1935 */ 1936 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1937 { 1938 y ^= x * GOLDEN_RATIO_64; 1939 y *= GOLDEN_RATIO_64; 1940 return y >> 32; 1941 } 1942 1943 #else /* 32-bit case */ 1944 1945 /* 1946 * Mixing scores (in bits) for (7,20): 1947 * Input delta: 1-bit 2-bit 1948 * 1 round: 330.3 9201.6 1949 * 2 rounds: 1246.4 25475.4 1950 * 3 rounds: 1907.1 31295.1 1951 * 4 rounds: 2042.3 31718.6 1952 * Perfect: 2048 31744 1953 * (32*64) (32*31/2 * 64) 1954 */ 1955 #define HASH_MIX(x, y, a) \ 1956 ( x ^= (a), \ 1957 y ^= x, x = rol32(x, 7),\ 1958 x += y, y = rol32(y,20),\ 1959 y *= 9 ) 1960 1961 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 1962 { 1963 /* Use arch-optimized multiply if one exists */ 1964 return __hash_32(y ^ __hash_32(x)); 1965 } 1966 1967 #endif 1968 1969 /* 1970 * Return the hash of a string of known length. This is carfully 1971 * designed to match hash_name(), which is the more critical function. 1972 * In particular, we must end by hashing a final word containing 0..7 1973 * payload bytes, to match the way that hash_name() iterates until it 1974 * finds the delimiter after the name. 1975 */ 1976 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 1977 { 1978 unsigned long a, x = 0, y = (unsigned long)salt; 1979 1980 for (;;) { 1981 if (!len) 1982 goto done; 1983 a = load_unaligned_zeropad(name); 1984 if (len < sizeof(unsigned long)) 1985 break; 1986 HASH_MIX(x, y, a); 1987 name += sizeof(unsigned long); 1988 len -= sizeof(unsigned long); 1989 } 1990 x ^= a & bytemask_from_count(len); 1991 done: 1992 return fold_hash(x, y); 1993 } 1994 EXPORT_SYMBOL(full_name_hash); 1995 1996 /* Return the "hash_len" (hash and length) of a null-terminated string */ 1997 u64 hashlen_string(const void *salt, const char *name) 1998 { 1999 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2000 unsigned long adata, mask, len; 2001 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2002 2003 len = 0; 2004 goto inside; 2005 2006 do { 2007 HASH_MIX(x, y, a); 2008 len += sizeof(unsigned long); 2009 inside: 2010 a = load_unaligned_zeropad(name+len); 2011 } while (!has_zero(a, &adata, &constants)); 2012 2013 adata = prep_zero_mask(a, adata, &constants); 2014 mask = create_zero_mask(adata); 2015 x ^= a & zero_bytemask(mask); 2016 2017 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2018 } 2019 EXPORT_SYMBOL(hashlen_string); 2020 2021 /* 2022 * Calculate the length and hash of the path component, and 2023 * return the "hash_len" as the result. 2024 */ 2025 static inline u64 hash_name(const void *salt, const char *name) 2026 { 2027 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2028 unsigned long adata, bdata, mask, len; 2029 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2030 2031 len = 0; 2032 goto inside; 2033 2034 do { 2035 HASH_MIX(x, y, a); 2036 len += sizeof(unsigned long); 2037 inside: 2038 a = load_unaligned_zeropad(name+len); 2039 b = a ^ REPEAT_BYTE('/'); 2040 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2041 2042 adata = prep_zero_mask(a, adata, &constants); 2043 bdata = prep_zero_mask(b, bdata, &constants); 2044 mask = create_zero_mask(adata | bdata); 2045 x ^= a & zero_bytemask(mask); 2046 2047 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2048 } 2049 2050 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2051 2052 /* Return the hash of a string of known length */ 2053 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2054 { 2055 unsigned long hash = init_name_hash(salt); 2056 while (len--) 2057 hash = partial_name_hash((unsigned char)*name++, hash); 2058 return end_name_hash(hash); 2059 } 2060 EXPORT_SYMBOL(full_name_hash); 2061 2062 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2063 u64 hashlen_string(const void *salt, const char *name) 2064 { 2065 unsigned long hash = init_name_hash(salt); 2066 unsigned long len = 0, c; 2067 2068 c = (unsigned char)*name; 2069 while (c) { 2070 len++; 2071 hash = partial_name_hash(c, hash); 2072 c = (unsigned char)name[len]; 2073 } 2074 return hashlen_create(end_name_hash(hash), len); 2075 } 2076 EXPORT_SYMBOL(hashlen_string); 2077 2078 /* 2079 * We know there's a real path component here of at least 2080 * one character. 2081 */ 2082 static inline u64 hash_name(const void *salt, const char *name) 2083 { 2084 unsigned long hash = init_name_hash(salt); 2085 unsigned long len = 0, c; 2086 2087 c = (unsigned char)*name; 2088 do { 2089 len++; 2090 hash = partial_name_hash(c, hash); 2091 c = (unsigned char)name[len]; 2092 } while (c && c != '/'); 2093 return hashlen_create(end_name_hash(hash), len); 2094 } 2095 2096 #endif 2097 2098 /* 2099 * Name resolution. 2100 * This is the basic name resolution function, turning a pathname into 2101 * the final dentry. We expect 'base' to be positive and a directory. 2102 * 2103 * Returns 0 and nd will have valid dentry and mnt on success. 2104 * Returns error and drops reference to input namei data on failure. 2105 */ 2106 static int link_path_walk(const char *name, struct nameidata *nd) 2107 { 2108 int depth = 0; // depth <= nd->depth 2109 int err; 2110 2111 nd->last_type = LAST_ROOT; 2112 nd->flags |= LOOKUP_PARENT; 2113 if (IS_ERR(name)) 2114 return PTR_ERR(name); 2115 while (*name=='/') 2116 name++; 2117 if (!*name) { 2118 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2119 return 0; 2120 } 2121 2122 /* At this point we know we have a real path component. */ 2123 for(;;) { 2124 const char *link; 2125 u64 hash_len; 2126 int type; 2127 2128 err = may_lookup(nd); 2129 if (err) 2130 return err; 2131 2132 hash_len = hash_name(nd->path.dentry, name); 2133 2134 type = LAST_NORM; 2135 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2136 case 2: 2137 if (name[1] == '.') { 2138 type = LAST_DOTDOT; 2139 nd->flags |= LOOKUP_JUMPED; 2140 } 2141 break; 2142 case 1: 2143 type = LAST_DOT; 2144 } 2145 if (likely(type == LAST_NORM)) { 2146 struct dentry *parent = nd->path.dentry; 2147 nd->flags &= ~LOOKUP_JUMPED; 2148 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2149 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2150 err = parent->d_op->d_hash(parent, &this); 2151 if (err < 0) 2152 return err; 2153 hash_len = this.hash_len; 2154 name = this.name; 2155 } 2156 } 2157 2158 nd->last.hash_len = hash_len; 2159 nd->last.name = name; 2160 nd->last_type = type; 2161 2162 name += hashlen_len(hash_len); 2163 if (!*name) 2164 goto OK; 2165 /* 2166 * If it wasn't NUL, we know it was '/'. Skip that 2167 * slash, and continue until no more slashes. 2168 */ 2169 do { 2170 name++; 2171 } while (unlikely(*name == '/')); 2172 if (unlikely(!*name)) { 2173 OK: 2174 /* pathname or trailing symlink, done */ 2175 if (!depth) { 2176 nd->dir_uid = nd->inode->i_uid; 2177 nd->dir_mode = nd->inode->i_mode; 2178 nd->flags &= ~LOOKUP_PARENT; 2179 return 0; 2180 } 2181 /* last component of nested symlink */ 2182 name = nd->stack[--depth].name; 2183 link = walk_component(nd, 0); 2184 } else { 2185 /* not the last component */ 2186 link = walk_component(nd, WALK_MORE); 2187 } 2188 if (unlikely(link)) { 2189 if (IS_ERR(link)) 2190 return PTR_ERR(link); 2191 /* a symlink to follow */ 2192 nd->stack[depth++].name = name; 2193 name = link; 2194 continue; 2195 } 2196 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2197 if (nd->flags & LOOKUP_RCU) { 2198 if (unlazy_walk(nd)) 2199 return -ECHILD; 2200 } 2201 return -ENOTDIR; 2202 } 2203 } 2204 } 2205 2206 /* must be paired with terminate_walk() */ 2207 static const char *path_init(struct nameidata *nd, unsigned flags) 2208 { 2209 int error; 2210 const char *s = nd->name->name; 2211 2212 if (!*s) 2213 flags &= ~LOOKUP_RCU; 2214 if (flags & LOOKUP_RCU) 2215 rcu_read_lock(); 2216 2217 nd->flags = flags | LOOKUP_JUMPED; 2218 nd->depth = 0; 2219 2220 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2221 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2222 smp_rmb(); 2223 2224 if (flags & LOOKUP_ROOT) { 2225 struct dentry *root = nd->root.dentry; 2226 struct inode *inode = root->d_inode; 2227 if (*s && unlikely(!d_can_lookup(root))) 2228 return ERR_PTR(-ENOTDIR); 2229 nd->path = nd->root; 2230 nd->inode = inode; 2231 if (flags & LOOKUP_RCU) { 2232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2233 nd->root_seq = nd->seq; 2234 } else { 2235 path_get(&nd->path); 2236 } 2237 return s; 2238 } 2239 2240 nd->root.mnt = NULL; 2241 nd->path.mnt = NULL; 2242 nd->path.dentry = NULL; 2243 2244 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2245 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2246 error = nd_jump_root(nd); 2247 if (unlikely(error)) 2248 return ERR_PTR(error); 2249 return s; 2250 } 2251 2252 /* Relative pathname -- get the starting-point it is relative to. */ 2253 if (nd->dfd == AT_FDCWD) { 2254 if (flags & LOOKUP_RCU) { 2255 struct fs_struct *fs = current->fs; 2256 unsigned seq; 2257 2258 do { 2259 seq = read_seqcount_begin(&fs->seq); 2260 nd->path = fs->pwd; 2261 nd->inode = nd->path.dentry->d_inode; 2262 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2263 } while (read_seqcount_retry(&fs->seq, seq)); 2264 } else { 2265 get_fs_pwd(current->fs, &nd->path); 2266 nd->inode = nd->path.dentry->d_inode; 2267 } 2268 } else { 2269 /* Caller must check execute permissions on the starting path component */ 2270 struct fd f = fdget_raw(nd->dfd); 2271 struct dentry *dentry; 2272 2273 if (!f.file) 2274 return ERR_PTR(-EBADF); 2275 2276 dentry = f.file->f_path.dentry; 2277 2278 if (*s && unlikely(!d_can_lookup(dentry))) { 2279 fdput(f); 2280 return ERR_PTR(-ENOTDIR); 2281 } 2282 2283 nd->path = f.file->f_path; 2284 if (flags & LOOKUP_RCU) { 2285 nd->inode = nd->path.dentry->d_inode; 2286 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2287 } else { 2288 path_get(&nd->path); 2289 nd->inode = nd->path.dentry->d_inode; 2290 } 2291 fdput(f); 2292 } 2293 2294 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2295 if (flags & LOOKUP_IS_SCOPED) { 2296 nd->root = nd->path; 2297 if (flags & LOOKUP_RCU) { 2298 nd->root_seq = nd->seq; 2299 } else { 2300 path_get(&nd->root); 2301 nd->flags |= LOOKUP_ROOT_GRABBED; 2302 } 2303 } 2304 return s; 2305 } 2306 2307 static inline const char *lookup_last(struct nameidata *nd) 2308 { 2309 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2310 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2311 2312 return walk_component(nd, WALK_TRAILING); 2313 } 2314 2315 static int handle_lookup_down(struct nameidata *nd) 2316 { 2317 if (!(nd->flags & LOOKUP_RCU)) 2318 dget(nd->path.dentry); 2319 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2320 nd->path.dentry, nd->inode, nd->seq)); 2321 } 2322 2323 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2324 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2325 { 2326 const char *s = path_init(nd, flags); 2327 int err; 2328 2329 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2330 err = handle_lookup_down(nd); 2331 if (unlikely(err < 0)) 2332 s = ERR_PTR(err); 2333 } 2334 2335 while (!(err = link_path_walk(s, nd)) && 2336 (s = lookup_last(nd)) != NULL) 2337 ; 2338 if (!err) 2339 err = complete_walk(nd); 2340 2341 if (!err && nd->flags & LOOKUP_DIRECTORY) 2342 if (!d_can_lookup(nd->path.dentry)) 2343 err = -ENOTDIR; 2344 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2345 err = handle_lookup_down(nd); 2346 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please... 2347 } 2348 if (!err) { 2349 *path = nd->path; 2350 nd->path.mnt = NULL; 2351 nd->path.dentry = NULL; 2352 } 2353 terminate_walk(nd); 2354 return err; 2355 } 2356 2357 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2358 struct path *path, struct path *root) 2359 { 2360 int retval; 2361 struct nameidata nd; 2362 if (IS_ERR(name)) 2363 return PTR_ERR(name); 2364 if (unlikely(root)) { 2365 nd.root = *root; 2366 flags |= LOOKUP_ROOT; 2367 } 2368 set_nameidata(&nd, dfd, name); 2369 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2370 if (unlikely(retval == -ECHILD)) 2371 retval = path_lookupat(&nd, flags, path); 2372 if (unlikely(retval == -ESTALE)) 2373 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2374 2375 if (likely(!retval)) 2376 audit_inode(name, path->dentry, 2377 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2378 restore_nameidata(); 2379 putname(name); 2380 return retval; 2381 } 2382 2383 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2384 static int path_parentat(struct nameidata *nd, unsigned flags, 2385 struct path *parent) 2386 { 2387 const char *s = path_init(nd, flags); 2388 int err = link_path_walk(s, nd); 2389 if (!err) 2390 err = complete_walk(nd); 2391 if (!err) { 2392 *parent = nd->path; 2393 nd->path.mnt = NULL; 2394 nd->path.dentry = NULL; 2395 } 2396 terminate_walk(nd); 2397 return err; 2398 } 2399 2400 static struct filename *filename_parentat(int dfd, struct filename *name, 2401 unsigned int flags, struct path *parent, 2402 struct qstr *last, int *type) 2403 { 2404 int retval; 2405 struct nameidata nd; 2406 2407 if (IS_ERR(name)) 2408 return name; 2409 set_nameidata(&nd, dfd, name); 2410 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2411 if (unlikely(retval == -ECHILD)) 2412 retval = path_parentat(&nd, flags, parent); 2413 if (unlikely(retval == -ESTALE)) 2414 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2415 if (likely(!retval)) { 2416 *last = nd.last; 2417 *type = nd.last_type; 2418 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2419 } else { 2420 putname(name); 2421 name = ERR_PTR(retval); 2422 } 2423 restore_nameidata(); 2424 return name; 2425 } 2426 2427 /* does lookup, returns the object with parent locked */ 2428 struct dentry *kern_path_locked(const char *name, struct path *path) 2429 { 2430 struct filename *filename; 2431 struct dentry *d; 2432 struct qstr last; 2433 int type; 2434 2435 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2436 &last, &type); 2437 if (IS_ERR(filename)) 2438 return ERR_CAST(filename); 2439 if (unlikely(type != LAST_NORM)) { 2440 path_put(path); 2441 putname(filename); 2442 return ERR_PTR(-EINVAL); 2443 } 2444 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2445 d = __lookup_hash(&last, path->dentry, 0); 2446 if (IS_ERR(d)) { 2447 inode_unlock(path->dentry->d_inode); 2448 path_put(path); 2449 } 2450 putname(filename); 2451 return d; 2452 } 2453 2454 int kern_path(const char *name, unsigned int flags, struct path *path) 2455 { 2456 return filename_lookup(AT_FDCWD, getname_kernel(name), 2457 flags, path, NULL); 2458 } 2459 EXPORT_SYMBOL(kern_path); 2460 2461 /** 2462 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2463 * @dentry: pointer to dentry of the base directory 2464 * @mnt: pointer to vfs mount of the base directory 2465 * @name: pointer to file name 2466 * @flags: lookup flags 2467 * @path: pointer to struct path to fill 2468 */ 2469 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2470 const char *name, unsigned int flags, 2471 struct path *path) 2472 { 2473 struct path root = {.mnt = mnt, .dentry = dentry}; 2474 /* the first argument of filename_lookup() is ignored with root */ 2475 return filename_lookup(AT_FDCWD, getname_kernel(name), 2476 flags , path, &root); 2477 } 2478 EXPORT_SYMBOL(vfs_path_lookup); 2479 2480 static int lookup_one_len_common(const char *name, struct dentry *base, 2481 int len, struct qstr *this) 2482 { 2483 this->name = name; 2484 this->len = len; 2485 this->hash = full_name_hash(base, name, len); 2486 if (!len) 2487 return -EACCES; 2488 2489 if (unlikely(name[0] == '.')) { 2490 if (len < 2 || (len == 2 && name[1] == '.')) 2491 return -EACCES; 2492 } 2493 2494 while (len--) { 2495 unsigned int c = *(const unsigned char *)name++; 2496 if (c == '/' || c == '\0') 2497 return -EACCES; 2498 } 2499 /* 2500 * See if the low-level filesystem might want 2501 * to use its own hash.. 2502 */ 2503 if (base->d_flags & DCACHE_OP_HASH) { 2504 int err = base->d_op->d_hash(base, this); 2505 if (err < 0) 2506 return err; 2507 } 2508 2509 return inode_permission(base->d_inode, MAY_EXEC); 2510 } 2511 2512 /** 2513 * try_lookup_one_len - filesystem helper to lookup single pathname component 2514 * @name: pathname component to lookup 2515 * @base: base directory to lookup from 2516 * @len: maximum length @len should be interpreted to 2517 * 2518 * Look up a dentry by name in the dcache, returning NULL if it does not 2519 * currently exist. The function does not try to create a dentry. 2520 * 2521 * Note that this routine is purely a helper for filesystem usage and should 2522 * not be called by generic code. 2523 * 2524 * The caller must hold base->i_mutex. 2525 */ 2526 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2527 { 2528 struct qstr this; 2529 int err; 2530 2531 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2532 2533 err = lookup_one_len_common(name, base, len, &this); 2534 if (err) 2535 return ERR_PTR(err); 2536 2537 return lookup_dcache(&this, base, 0); 2538 } 2539 EXPORT_SYMBOL(try_lookup_one_len); 2540 2541 /** 2542 * lookup_one_len - filesystem helper to lookup single pathname component 2543 * @name: pathname component to lookup 2544 * @base: base directory to lookup from 2545 * @len: maximum length @len should be interpreted to 2546 * 2547 * Note that this routine is purely a helper for filesystem usage and should 2548 * not be called by generic code. 2549 * 2550 * The caller must hold base->i_mutex. 2551 */ 2552 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2553 { 2554 struct dentry *dentry; 2555 struct qstr this; 2556 int err; 2557 2558 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2559 2560 err = lookup_one_len_common(name, base, len, &this); 2561 if (err) 2562 return ERR_PTR(err); 2563 2564 dentry = lookup_dcache(&this, base, 0); 2565 return dentry ? dentry : __lookup_slow(&this, base, 0); 2566 } 2567 EXPORT_SYMBOL(lookup_one_len); 2568 2569 /** 2570 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2571 * @name: pathname component to lookup 2572 * @base: base directory to lookup from 2573 * @len: maximum length @len should be interpreted to 2574 * 2575 * Note that this routine is purely a helper for filesystem usage and should 2576 * not be called by generic code. 2577 * 2578 * Unlike lookup_one_len, it should be called without the parent 2579 * i_mutex held, and will take the i_mutex itself if necessary. 2580 */ 2581 struct dentry *lookup_one_len_unlocked(const char *name, 2582 struct dentry *base, int len) 2583 { 2584 struct qstr this; 2585 int err; 2586 struct dentry *ret; 2587 2588 err = lookup_one_len_common(name, base, len, &this); 2589 if (err) 2590 return ERR_PTR(err); 2591 2592 ret = lookup_dcache(&this, base, 0); 2593 if (!ret) 2594 ret = lookup_slow(&this, base, 0); 2595 return ret; 2596 } 2597 EXPORT_SYMBOL(lookup_one_len_unlocked); 2598 2599 /* 2600 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2601 * on negatives. Returns known positive or ERR_PTR(); that's what 2602 * most of the users want. Note that pinned negative with unlocked parent 2603 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2604 * need to be very careful; pinned positives have ->d_inode stable, so 2605 * this one avoids such problems. 2606 */ 2607 struct dentry *lookup_positive_unlocked(const char *name, 2608 struct dentry *base, int len) 2609 { 2610 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2611 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2612 dput(ret); 2613 ret = ERR_PTR(-ENOENT); 2614 } 2615 return ret; 2616 } 2617 EXPORT_SYMBOL(lookup_positive_unlocked); 2618 2619 #ifdef CONFIG_UNIX98_PTYS 2620 int path_pts(struct path *path) 2621 { 2622 /* Find something mounted on "pts" in the same directory as 2623 * the input path. 2624 */ 2625 struct dentry *parent = dget_parent(path->dentry); 2626 struct dentry *child; 2627 struct qstr this = QSTR_INIT("pts", 3); 2628 2629 if (unlikely(!path_connected(path->mnt, parent))) { 2630 dput(parent); 2631 return -ENOENT; 2632 } 2633 dput(path->dentry); 2634 path->dentry = parent; 2635 child = d_hash_and_lookup(parent, &this); 2636 if (!child) 2637 return -ENOENT; 2638 2639 path->dentry = child; 2640 dput(parent); 2641 follow_down(path); 2642 return 0; 2643 } 2644 #endif 2645 2646 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2647 struct path *path, int *empty) 2648 { 2649 return filename_lookup(dfd, getname_flags(name, flags, empty), 2650 flags, path, NULL); 2651 } 2652 EXPORT_SYMBOL(user_path_at_empty); 2653 2654 int __check_sticky(struct inode *dir, struct inode *inode) 2655 { 2656 kuid_t fsuid = current_fsuid(); 2657 2658 if (uid_eq(inode->i_uid, fsuid)) 2659 return 0; 2660 if (uid_eq(dir->i_uid, fsuid)) 2661 return 0; 2662 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2663 } 2664 EXPORT_SYMBOL(__check_sticky); 2665 2666 /* 2667 * Check whether we can remove a link victim from directory dir, check 2668 * whether the type of victim is right. 2669 * 1. We can't do it if dir is read-only (done in permission()) 2670 * 2. We should have write and exec permissions on dir 2671 * 3. We can't remove anything from append-only dir 2672 * 4. We can't do anything with immutable dir (done in permission()) 2673 * 5. If the sticky bit on dir is set we should either 2674 * a. be owner of dir, or 2675 * b. be owner of victim, or 2676 * c. have CAP_FOWNER capability 2677 * 6. If the victim is append-only or immutable we can't do antyhing with 2678 * links pointing to it. 2679 * 7. If the victim has an unknown uid or gid we can't change the inode. 2680 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2681 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2682 * 10. We can't remove a root or mountpoint. 2683 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2684 * nfs_async_unlink(). 2685 */ 2686 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2687 { 2688 struct inode *inode = d_backing_inode(victim); 2689 int error; 2690 2691 if (d_is_negative(victim)) 2692 return -ENOENT; 2693 BUG_ON(!inode); 2694 2695 BUG_ON(victim->d_parent->d_inode != dir); 2696 2697 /* Inode writeback is not safe when the uid or gid are invalid. */ 2698 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid)) 2699 return -EOVERFLOW; 2700 2701 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2702 2703 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2704 if (error) 2705 return error; 2706 if (IS_APPEND(dir)) 2707 return -EPERM; 2708 2709 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2710 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode)) 2711 return -EPERM; 2712 if (isdir) { 2713 if (!d_is_dir(victim)) 2714 return -ENOTDIR; 2715 if (IS_ROOT(victim)) 2716 return -EBUSY; 2717 } else if (d_is_dir(victim)) 2718 return -EISDIR; 2719 if (IS_DEADDIR(dir)) 2720 return -ENOENT; 2721 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2722 return -EBUSY; 2723 return 0; 2724 } 2725 2726 /* Check whether we can create an object with dentry child in directory 2727 * dir. 2728 * 1. We can't do it if child already exists (open has special treatment for 2729 * this case, but since we are inlined it's OK) 2730 * 2. We can't do it if dir is read-only (done in permission()) 2731 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2732 * 4. We should have write and exec permissions on dir 2733 * 5. We can't do it if dir is immutable (done in permission()) 2734 */ 2735 static inline int may_create(struct inode *dir, struct dentry *child) 2736 { 2737 struct user_namespace *s_user_ns; 2738 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2739 if (child->d_inode) 2740 return -EEXIST; 2741 if (IS_DEADDIR(dir)) 2742 return -ENOENT; 2743 s_user_ns = dir->i_sb->s_user_ns; 2744 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2745 !kgid_has_mapping(s_user_ns, current_fsgid())) 2746 return -EOVERFLOW; 2747 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2748 } 2749 2750 /* 2751 * p1 and p2 should be directories on the same fs. 2752 */ 2753 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2754 { 2755 struct dentry *p; 2756 2757 if (p1 == p2) { 2758 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2759 return NULL; 2760 } 2761 2762 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2763 2764 p = d_ancestor(p2, p1); 2765 if (p) { 2766 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2767 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2768 return p; 2769 } 2770 2771 p = d_ancestor(p1, p2); 2772 if (p) { 2773 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2774 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2775 return p; 2776 } 2777 2778 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2779 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2780 return NULL; 2781 } 2782 EXPORT_SYMBOL(lock_rename); 2783 2784 void unlock_rename(struct dentry *p1, struct dentry *p2) 2785 { 2786 inode_unlock(p1->d_inode); 2787 if (p1 != p2) { 2788 inode_unlock(p2->d_inode); 2789 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2790 } 2791 } 2792 EXPORT_SYMBOL(unlock_rename); 2793 2794 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2795 bool want_excl) 2796 { 2797 int error = may_create(dir, dentry); 2798 if (error) 2799 return error; 2800 2801 if (!dir->i_op->create) 2802 return -EACCES; /* shouldn't it be ENOSYS? */ 2803 mode &= S_IALLUGO; 2804 mode |= S_IFREG; 2805 error = security_inode_create(dir, dentry, mode); 2806 if (error) 2807 return error; 2808 error = dir->i_op->create(dir, dentry, mode, want_excl); 2809 if (!error) 2810 fsnotify_create(dir, dentry); 2811 return error; 2812 } 2813 EXPORT_SYMBOL(vfs_create); 2814 2815 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2816 int (*f)(struct dentry *, umode_t, void *), 2817 void *arg) 2818 { 2819 struct inode *dir = dentry->d_parent->d_inode; 2820 int error = may_create(dir, dentry); 2821 if (error) 2822 return error; 2823 2824 mode &= S_IALLUGO; 2825 mode |= S_IFREG; 2826 error = security_inode_create(dir, dentry, mode); 2827 if (error) 2828 return error; 2829 error = f(dentry, mode, arg); 2830 if (!error) 2831 fsnotify_create(dir, dentry); 2832 return error; 2833 } 2834 EXPORT_SYMBOL(vfs_mkobj); 2835 2836 bool may_open_dev(const struct path *path) 2837 { 2838 return !(path->mnt->mnt_flags & MNT_NODEV) && 2839 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2840 } 2841 2842 static int may_open(const struct path *path, int acc_mode, int flag) 2843 { 2844 struct dentry *dentry = path->dentry; 2845 struct inode *inode = dentry->d_inode; 2846 int error; 2847 2848 if (!inode) 2849 return -ENOENT; 2850 2851 switch (inode->i_mode & S_IFMT) { 2852 case S_IFLNK: 2853 return -ELOOP; 2854 case S_IFDIR: 2855 if (acc_mode & MAY_WRITE) 2856 return -EISDIR; 2857 if (acc_mode & MAY_EXEC) 2858 return -EACCES; 2859 break; 2860 case S_IFBLK: 2861 case S_IFCHR: 2862 if (!may_open_dev(path)) 2863 return -EACCES; 2864 fallthrough; 2865 case S_IFIFO: 2866 case S_IFSOCK: 2867 if (acc_mode & MAY_EXEC) 2868 return -EACCES; 2869 flag &= ~O_TRUNC; 2870 break; 2871 case S_IFREG: 2872 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 2873 return -EACCES; 2874 break; 2875 } 2876 2877 error = inode_permission(inode, MAY_OPEN | acc_mode); 2878 if (error) 2879 return error; 2880 2881 /* 2882 * An append-only file must be opened in append mode for writing. 2883 */ 2884 if (IS_APPEND(inode)) { 2885 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2886 return -EPERM; 2887 if (flag & O_TRUNC) 2888 return -EPERM; 2889 } 2890 2891 /* O_NOATIME can only be set by the owner or superuser */ 2892 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2893 return -EPERM; 2894 2895 return 0; 2896 } 2897 2898 static int handle_truncate(struct file *filp) 2899 { 2900 const struct path *path = &filp->f_path; 2901 struct inode *inode = path->dentry->d_inode; 2902 int error = get_write_access(inode); 2903 if (error) 2904 return error; 2905 /* 2906 * Refuse to truncate files with mandatory locks held on them. 2907 */ 2908 error = locks_verify_locked(filp); 2909 if (!error) 2910 error = security_path_truncate(path); 2911 if (!error) { 2912 error = do_truncate(path->dentry, 0, 2913 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2914 filp); 2915 } 2916 put_write_access(inode); 2917 return error; 2918 } 2919 2920 static inline int open_to_namei_flags(int flag) 2921 { 2922 if ((flag & O_ACCMODE) == 3) 2923 flag--; 2924 return flag; 2925 } 2926 2927 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode) 2928 { 2929 struct user_namespace *s_user_ns; 2930 int error = security_path_mknod(dir, dentry, mode, 0); 2931 if (error) 2932 return error; 2933 2934 s_user_ns = dir->dentry->d_sb->s_user_ns; 2935 if (!kuid_has_mapping(s_user_ns, current_fsuid()) || 2936 !kgid_has_mapping(s_user_ns, current_fsgid())) 2937 return -EOVERFLOW; 2938 2939 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2940 if (error) 2941 return error; 2942 2943 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2944 } 2945 2946 /* 2947 * Attempt to atomically look up, create and open a file from a negative 2948 * dentry. 2949 * 2950 * Returns 0 if successful. The file will have been created and attached to 2951 * @file by the filesystem calling finish_open(). 2952 * 2953 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 2954 * be set. The caller will need to perform the open themselves. @path will 2955 * have been updated to point to the new dentry. This may be negative. 2956 * 2957 * Returns an error code otherwise. 2958 */ 2959 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 2960 struct file *file, 2961 int open_flag, umode_t mode) 2962 { 2963 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2964 struct inode *dir = nd->path.dentry->d_inode; 2965 int error; 2966 2967 if (nd->flags & LOOKUP_DIRECTORY) 2968 open_flag |= O_DIRECTORY; 2969 2970 file->f_path.dentry = DENTRY_NOT_SET; 2971 file->f_path.mnt = nd->path.mnt; 2972 error = dir->i_op->atomic_open(dir, dentry, file, 2973 open_to_namei_flags(open_flag), mode); 2974 d_lookup_done(dentry); 2975 if (!error) { 2976 if (file->f_mode & FMODE_OPENED) { 2977 if (unlikely(dentry != file->f_path.dentry)) { 2978 dput(dentry); 2979 dentry = dget(file->f_path.dentry); 2980 } 2981 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2982 error = -EIO; 2983 } else { 2984 if (file->f_path.dentry) { 2985 dput(dentry); 2986 dentry = file->f_path.dentry; 2987 } 2988 if (unlikely(d_is_negative(dentry))) 2989 error = -ENOENT; 2990 } 2991 } 2992 if (error) { 2993 dput(dentry); 2994 dentry = ERR_PTR(error); 2995 } 2996 return dentry; 2997 } 2998 2999 /* 3000 * Look up and maybe create and open the last component. 3001 * 3002 * Must be called with parent locked (exclusive in O_CREAT case). 3003 * 3004 * Returns 0 on success, that is, if 3005 * the file was successfully atomically created (if necessary) and opened, or 3006 * the file was not completely opened at this time, though lookups and 3007 * creations were performed. 3008 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3009 * In the latter case dentry returned in @path might be negative if O_CREAT 3010 * hadn't been specified. 3011 * 3012 * An error code is returned on failure. 3013 */ 3014 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3015 const struct open_flags *op, 3016 bool got_write) 3017 { 3018 struct dentry *dir = nd->path.dentry; 3019 struct inode *dir_inode = dir->d_inode; 3020 int open_flag = op->open_flag; 3021 struct dentry *dentry; 3022 int error, create_error = 0; 3023 umode_t mode = op->mode; 3024 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3025 3026 if (unlikely(IS_DEADDIR(dir_inode))) 3027 return ERR_PTR(-ENOENT); 3028 3029 file->f_mode &= ~FMODE_CREATED; 3030 dentry = d_lookup(dir, &nd->last); 3031 for (;;) { 3032 if (!dentry) { 3033 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3034 if (IS_ERR(dentry)) 3035 return dentry; 3036 } 3037 if (d_in_lookup(dentry)) 3038 break; 3039 3040 error = d_revalidate(dentry, nd->flags); 3041 if (likely(error > 0)) 3042 break; 3043 if (error) 3044 goto out_dput; 3045 d_invalidate(dentry); 3046 dput(dentry); 3047 dentry = NULL; 3048 } 3049 if (dentry->d_inode) { 3050 /* Cached positive dentry: will open in f_op->open */ 3051 return dentry; 3052 } 3053 3054 /* 3055 * Checking write permission is tricky, bacuse we don't know if we are 3056 * going to actually need it: O_CREAT opens should work as long as the 3057 * file exists. But checking existence breaks atomicity. The trick is 3058 * to check access and if not granted clear O_CREAT from the flags. 3059 * 3060 * Another problem is returing the "right" error value (e.g. for an 3061 * O_EXCL open we want to return EEXIST not EROFS). 3062 */ 3063 if (unlikely(!got_write)) 3064 open_flag &= ~O_TRUNC; 3065 if (open_flag & O_CREAT) { 3066 if (open_flag & O_EXCL) 3067 open_flag &= ~O_TRUNC; 3068 if (!IS_POSIXACL(dir->d_inode)) 3069 mode &= ~current_umask(); 3070 if (likely(got_write)) 3071 create_error = may_o_create(&nd->path, dentry, mode); 3072 else 3073 create_error = -EROFS; 3074 } 3075 if (create_error) 3076 open_flag &= ~O_CREAT; 3077 if (dir_inode->i_op->atomic_open) { 3078 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3079 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3080 dentry = ERR_PTR(create_error); 3081 return dentry; 3082 } 3083 3084 if (d_in_lookup(dentry)) { 3085 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3086 nd->flags); 3087 d_lookup_done(dentry); 3088 if (unlikely(res)) { 3089 if (IS_ERR(res)) { 3090 error = PTR_ERR(res); 3091 goto out_dput; 3092 } 3093 dput(dentry); 3094 dentry = res; 3095 } 3096 } 3097 3098 /* Negative dentry, just create the file */ 3099 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3100 file->f_mode |= FMODE_CREATED; 3101 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3102 if (!dir_inode->i_op->create) { 3103 error = -EACCES; 3104 goto out_dput; 3105 } 3106 error = dir_inode->i_op->create(dir_inode, dentry, mode, 3107 open_flag & O_EXCL); 3108 if (error) 3109 goto out_dput; 3110 } 3111 if (unlikely(create_error) && !dentry->d_inode) { 3112 error = create_error; 3113 goto out_dput; 3114 } 3115 return dentry; 3116 3117 out_dput: 3118 dput(dentry); 3119 return ERR_PTR(error); 3120 } 3121 3122 static const char *open_last_lookups(struct nameidata *nd, 3123 struct file *file, const struct open_flags *op) 3124 { 3125 struct dentry *dir = nd->path.dentry; 3126 int open_flag = op->open_flag; 3127 bool got_write = false; 3128 unsigned seq; 3129 struct inode *inode; 3130 struct dentry *dentry; 3131 const char *res; 3132 int error; 3133 3134 nd->flags |= op->intent; 3135 3136 if (nd->last_type != LAST_NORM) { 3137 if (nd->depth) 3138 put_link(nd); 3139 return handle_dots(nd, nd->last_type); 3140 } 3141 3142 if (!(open_flag & O_CREAT)) { 3143 if (nd->last.name[nd->last.len]) 3144 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3145 /* we _can_ be in RCU mode here */ 3146 dentry = lookup_fast(nd, &inode, &seq); 3147 if (IS_ERR(dentry)) 3148 return ERR_CAST(dentry); 3149 if (likely(dentry)) 3150 goto finish_lookup; 3151 3152 BUG_ON(nd->flags & LOOKUP_RCU); 3153 } else { 3154 /* create side of things */ 3155 if (nd->flags & LOOKUP_RCU) { 3156 error = unlazy_walk(nd); 3157 if (unlikely(error)) 3158 return ERR_PTR(error); 3159 } 3160 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3161 /* trailing slashes? */ 3162 if (unlikely(nd->last.name[nd->last.len])) 3163 return ERR_PTR(-EISDIR); 3164 } 3165 3166 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3167 error = mnt_want_write(nd->path.mnt); 3168 if (!error) 3169 got_write = true; 3170 /* 3171 * do _not_ fail yet - we might not need that or fail with 3172 * a different error; let lookup_open() decide; we'll be 3173 * dropping this one anyway. 3174 */ 3175 } 3176 if (open_flag & O_CREAT) 3177 inode_lock(dir->d_inode); 3178 else 3179 inode_lock_shared(dir->d_inode); 3180 dentry = lookup_open(nd, file, op, got_write); 3181 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3182 fsnotify_create(dir->d_inode, dentry); 3183 if (open_flag & O_CREAT) 3184 inode_unlock(dir->d_inode); 3185 else 3186 inode_unlock_shared(dir->d_inode); 3187 3188 if (got_write) 3189 mnt_drop_write(nd->path.mnt); 3190 3191 if (IS_ERR(dentry)) 3192 return ERR_CAST(dentry); 3193 3194 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3195 dput(nd->path.dentry); 3196 nd->path.dentry = dentry; 3197 return NULL; 3198 } 3199 3200 finish_lookup: 3201 if (nd->depth) 3202 put_link(nd); 3203 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3204 if (unlikely(res)) 3205 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3206 return res; 3207 } 3208 3209 /* 3210 * Handle the last step of open() 3211 */ 3212 static int do_open(struct nameidata *nd, 3213 struct file *file, const struct open_flags *op) 3214 { 3215 int open_flag = op->open_flag; 3216 bool do_truncate; 3217 int acc_mode; 3218 int error; 3219 3220 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3221 error = complete_walk(nd); 3222 if (error) 3223 return error; 3224 } 3225 if (!(file->f_mode & FMODE_CREATED)) 3226 audit_inode(nd->name, nd->path.dentry, 0); 3227 if (open_flag & O_CREAT) { 3228 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3229 return -EEXIST; 3230 if (d_is_dir(nd->path.dentry)) 3231 return -EISDIR; 3232 error = may_create_in_sticky(nd->dir_mode, nd->dir_uid, 3233 d_backing_inode(nd->path.dentry)); 3234 if (unlikely(error)) 3235 return error; 3236 } 3237 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3238 return -ENOTDIR; 3239 3240 do_truncate = false; 3241 acc_mode = op->acc_mode; 3242 if (file->f_mode & FMODE_CREATED) { 3243 /* Don't check for write permission, don't truncate */ 3244 open_flag &= ~O_TRUNC; 3245 acc_mode = 0; 3246 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3247 error = mnt_want_write(nd->path.mnt); 3248 if (error) 3249 return error; 3250 do_truncate = true; 3251 } 3252 error = may_open(&nd->path, acc_mode, open_flag); 3253 if (!error && !(file->f_mode & FMODE_OPENED)) 3254 error = vfs_open(&nd->path, file); 3255 if (!error) 3256 error = ima_file_check(file, op->acc_mode); 3257 if (!error && do_truncate) 3258 error = handle_truncate(file); 3259 if (unlikely(error > 0)) { 3260 WARN_ON(1); 3261 error = -EINVAL; 3262 } 3263 if (do_truncate) 3264 mnt_drop_write(nd->path.mnt); 3265 return error; 3266 } 3267 3268 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag) 3269 { 3270 struct dentry *child = NULL; 3271 struct inode *dir = dentry->d_inode; 3272 struct inode *inode; 3273 int error; 3274 3275 /* we want directory to be writable */ 3276 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3277 if (error) 3278 goto out_err; 3279 error = -EOPNOTSUPP; 3280 if (!dir->i_op->tmpfile) 3281 goto out_err; 3282 error = -ENOMEM; 3283 child = d_alloc(dentry, &slash_name); 3284 if (unlikely(!child)) 3285 goto out_err; 3286 error = dir->i_op->tmpfile(dir, child, mode); 3287 if (error) 3288 goto out_err; 3289 error = -ENOENT; 3290 inode = child->d_inode; 3291 if (unlikely(!inode)) 3292 goto out_err; 3293 if (!(open_flag & O_EXCL)) { 3294 spin_lock(&inode->i_lock); 3295 inode->i_state |= I_LINKABLE; 3296 spin_unlock(&inode->i_lock); 3297 } 3298 ima_post_create_tmpfile(inode); 3299 return child; 3300 3301 out_err: 3302 dput(child); 3303 return ERR_PTR(error); 3304 } 3305 EXPORT_SYMBOL(vfs_tmpfile); 3306 3307 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3308 const struct open_flags *op, 3309 struct file *file) 3310 { 3311 struct dentry *child; 3312 struct path path; 3313 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3314 if (unlikely(error)) 3315 return error; 3316 error = mnt_want_write(path.mnt); 3317 if (unlikely(error)) 3318 goto out; 3319 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag); 3320 error = PTR_ERR(child); 3321 if (IS_ERR(child)) 3322 goto out2; 3323 dput(path.dentry); 3324 path.dentry = child; 3325 audit_inode(nd->name, child, 0); 3326 /* Don't check for other permissions, the inode was just created */ 3327 error = may_open(&path, 0, op->open_flag); 3328 if (error) 3329 goto out2; 3330 file->f_path.mnt = path.mnt; 3331 error = finish_open(file, child, NULL); 3332 out2: 3333 mnt_drop_write(path.mnt); 3334 out: 3335 path_put(&path); 3336 return error; 3337 } 3338 3339 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3340 { 3341 struct path path; 3342 int error = path_lookupat(nd, flags, &path); 3343 if (!error) { 3344 audit_inode(nd->name, path.dentry, 0); 3345 error = vfs_open(&path, file); 3346 path_put(&path); 3347 } 3348 return error; 3349 } 3350 3351 static struct file *path_openat(struct nameidata *nd, 3352 const struct open_flags *op, unsigned flags) 3353 { 3354 struct file *file; 3355 int error; 3356 3357 file = alloc_empty_file(op->open_flag, current_cred()); 3358 if (IS_ERR(file)) 3359 return file; 3360 3361 if (unlikely(file->f_flags & __O_TMPFILE)) { 3362 error = do_tmpfile(nd, flags, op, file); 3363 } else if (unlikely(file->f_flags & O_PATH)) { 3364 error = do_o_path(nd, flags, file); 3365 } else { 3366 const char *s = path_init(nd, flags); 3367 while (!(error = link_path_walk(s, nd)) && 3368 (s = open_last_lookups(nd, file, op)) != NULL) 3369 ; 3370 if (!error) 3371 error = do_open(nd, file, op); 3372 terminate_walk(nd); 3373 } 3374 if (likely(!error)) { 3375 if (likely(file->f_mode & FMODE_OPENED)) 3376 return file; 3377 WARN_ON(1); 3378 error = -EINVAL; 3379 } 3380 fput(file); 3381 if (error == -EOPENSTALE) { 3382 if (flags & LOOKUP_RCU) 3383 error = -ECHILD; 3384 else 3385 error = -ESTALE; 3386 } 3387 return ERR_PTR(error); 3388 } 3389 3390 struct file *do_filp_open(int dfd, struct filename *pathname, 3391 const struct open_flags *op) 3392 { 3393 struct nameidata nd; 3394 int flags = op->lookup_flags; 3395 struct file *filp; 3396 3397 set_nameidata(&nd, dfd, pathname); 3398 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3399 if (unlikely(filp == ERR_PTR(-ECHILD))) 3400 filp = path_openat(&nd, op, flags); 3401 if (unlikely(filp == ERR_PTR(-ESTALE))) 3402 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3403 restore_nameidata(); 3404 return filp; 3405 } 3406 3407 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3408 const char *name, const struct open_flags *op) 3409 { 3410 struct nameidata nd; 3411 struct file *file; 3412 struct filename *filename; 3413 int flags = op->lookup_flags | LOOKUP_ROOT; 3414 3415 nd.root.mnt = mnt; 3416 nd.root.dentry = dentry; 3417 3418 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3419 return ERR_PTR(-ELOOP); 3420 3421 filename = getname_kernel(name); 3422 if (IS_ERR(filename)) 3423 return ERR_CAST(filename); 3424 3425 set_nameidata(&nd, -1, filename); 3426 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3427 if (unlikely(file == ERR_PTR(-ECHILD))) 3428 file = path_openat(&nd, op, flags); 3429 if (unlikely(file == ERR_PTR(-ESTALE))) 3430 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3431 restore_nameidata(); 3432 putname(filename); 3433 return file; 3434 } 3435 3436 static struct dentry *filename_create(int dfd, struct filename *name, 3437 struct path *path, unsigned int lookup_flags) 3438 { 3439 struct dentry *dentry = ERR_PTR(-EEXIST); 3440 struct qstr last; 3441 int type; 3442 int err2; 3443 int error; 3444 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3445 3446 /* 3447 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3448 * other flags passed in are ignored! 3449 */ 3450 lookup_flags &= LOOKUP_REVAL; 3451 3452 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3453 if (IS_ERR(name)) 3454 return ERR_CAST(name); 3455 3456 /* 3457 * Yucky last component or no last component at all? 3458 * (foo/., foo/.., /////) 3459 */ 3460 if (unlikely(type != LAST_NORM)) 3461 goto out; 3462 3463 /* don't fail immediately if it's r/o, at least try to report other errors */ 3464 err2 = mnt_want_write(path->mnt); 3465 /* 3466 * Do the final lookup. 3467 */ 3468 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3469 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3470 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3471 if (IS_ERR(dentry)) 3472 goto unlock; 3473 3474 error = -EEXIST; 3475 if (d_is_positive(dentry)) 3476 goto fail; 3477 3478 /* 3479 * Special case - lookup gave negative, but... we had foo/bar/ 3480 * From the vfs_mknod() POV we just have a negative dentry - 3481 * all is fine. Let's be bastards - you had / on the end, you've 3482 * been asking for (non-existent) directory. -ENOENT for you. 3483 */ 3484 if (unlikely(!is_dir && last.name[last.len])) { 3485 error = -ENOENT; 3486 goto fail; 3487 } 3488 if (unlikely(err2)) { 3489 error = err2; 3490 goto fail; 3491 } 3492 putname(name); 3493 return dentry; 3494 fail: 3495 dput(dentry); 3496 dentry = ERR_PTR(error); 3497 unlock: 3498 inode_unlock(path->dentry->d_inode); 3499 if (!err2) 3500 mnt_drop_write(path->mnt); 3501 out: 3502 path_put(path); 3503 putname(name); 3504 return dentry; 3505 } 3506 3507 struct dentry *kern_path_create(int dfd, const char *pathname, 3508 struct path *path, unsigned int lookup_flags) 3509 { 3510 return filename_create(dfd, getname_kernel(pathname), 3511 path, lookup_flags); 3512 } 3513 EXPORT_SYMBOL(kern_path_create); 3514 3515 void done_path_create(struct path *path, struct dentry *dentry) 3516 { 3517 dput(dentry); 3518 inode_unlock(path->dentry->d_inode); 3519 mnt_drop_write(path->mnt); 3520 path_put(path); 3521 } 3522 EXPORT_SYMBOL(done_path_create); 3523 3524 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3525 struct path *path, unsigned int lookup_flags) 3526 { 3527 return filename_create(dfd, getname(pathname), path, lookup_flags); 3528 } 3529 EXPORT_SYMBOL(user_path_create); 3530 3531 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3532 { 3533 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3534 int error = may_create(dir, dentry); 3535 3536 if (error) 3537 return error; 3538 3539 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3540 !capable(CAP_MKNOD)) 3541 return -EPERM; 3542 3543 if (!dir->i_op->mknod) 3544 return -EPERM; 3545 3546 error = devcgroup_inode_mknod(mode, dev); 3547 if (error) 3548 return error; 3549 3550 error = security_inode_mknod(dir, dentry, mode, dev); 3551 if (error) 3552 return error; 3553 3554 error = dir->i_op->mknod(dir, dentry, mode, dev); 3555 if (!error) 3556 fsnotify_create(dir, dentry); 3557 return error; 3558 } 3559 EXPORT_SYMBOL(vfs_mknod); 3560 3561 static int may_mknod(umode_t mode) 3562 { 3563 switch (mode & S_IFMT) { 3564 case S_IFREG: 3565 case S_IFCHR: 3566 case S_IFBLK: 3567 case S_IFIFO: 3568 case S_IFSOCK: 3569 case 0: /* zero mode translates to S_IFREG */ 3570 return 0; 3571 case S_IFDIR: 3572 return -EPERM; 3573 default: 3574 return -EINVAL; 3575 } 3576 } 3577 3578 static long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3579 unsigned int dev) 3580 { 3581 struct dentry *dentry; 3582 struct path path; 3583 int error; 3584 unsigned int lookup_flags = 0; 3585 3586 error = may_mknod(mode); 3587 if (error) 3588 return error; 3589 retry: 3590 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3591 if (IS_ERR(dentry)) 3592 return PTR_ERR(dentry); 3593 3594 if (!IS_POSIXACL(path.dentry->d_inode)) 3595 mode &= ~current_umask(); 3596 error = security_path_mknod(&path, dentry, mode, dev); 3597 if (error) 3598 goto out; 3599 switch (mode & S_IFMT) { 3600 case 0: case S_IFREG: 3601 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3602 if (!error) 3603 ima_post_path_mknod(dentry); 3604 break; 3605 case S_IFCHR: case S_IFBLK: 3606 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3607 new_decode_dev(dev)); 3608 break; 3609 case S_IFIFO: case S_IFSOCK: 3610 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3611 break; 3612 } 3613 out: 3614 done_path_create(&path, dentry); 3615 if (retry_estale(error, lookup_flags)) { 3616 lookup_flags |= LOOKUP_REVAL; 3617 goto retry; 3618 } 3619 return error; 3620 } 3621 3622 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3623 unsigned int, dev) 3624 { 3625 return do_mknodat(dfd, filename, mode, dev); 3626 } 3627 3628 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3629 { 3630 return do_mknodat(AT_FDCWD, filename, mode, dev); 3631 } 3632 3633 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3634 { 3635 int error = may_create(dir, dentry); 3636 unsigned max_links = dir->i_sb->s_max_links; 3637 3638 if (error) 3639 return error; 3640 3641 if (!dir->i_op->mkdir) 3642 return -EPERM; 3643 3644 mode &= (S_IRWXUGO|S_ISVTX); 3645 error = security_inode_mkdir(dir, dentry, mode); 3646 if (error) 3647 return error; 3648 3649 if (max_links && dir->i_nlink >= max_links) 3650 return -EMLINK; 3651 3652 error = dir->i_op->mkdir(dir, dentry, mode); 3653 if (!error) 3654 fsnotify_mkdir(dir, dentry); 3655 return error; 3656 } 3657 EXPORT_SYMBOL(vfs_mkdir); 3658 3659 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3660 { 3661 struct dentry *dentry; 3662 struct path path; 3663 int error; 3664 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3665 3666 retry: 3667 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3668 if (IS_ERR(dentry)) 3669 return PTR_ERR(dentry); 3670 3671 if (!IS_POSIXACL(path.dentry->d_inode)) 3672 mode &= ~current_umask(); 3673 error = security_path_mkdir(&path, dentry, mode); 3674 if (!error) 3675 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3676 done_path_create(&path, dentry); 3677 if (retry_estale(error, lookup_flags)) { 3678 lookup_flags |= LOOKUP_REVAL; 3679 goto retry; 3680 } 3681 return error; 3682 } 3683 3684 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3685 { 3686 return do_mkdirat(dfd, pathname, mode); 3687 } 3688 3689 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3690 { 3691 return do_mkdirat(AT_FDCWD, pathname, mode); 3692 } 3693 3694 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3695 { 3696 int error = may_delete(dir, dentry, 1); 3697 3698 if (error) 3699 return error; 3700 3701 if (!dir->i_op->rmdir) 3702 return -EPERM; 3703 3704 dget(dentry); 3705 inode_lock(dentry->d_inode); 3706 3707 error = -EBUSY; 3708 if (is_local_mountpoint(dentry)) 3709 goto out; 3710 3711 error = security_inode_rmdir(dir, dentry); 3712 if (error) 3713 goto out; 3714 3715 error = dir->i_op->rmdir(dir, dentry); 3716 if (error) 3717 goto out; 3718 3719 shrink_dcache_parent(dentry); 3720 dentry->d_inode->i_flags |= S_DEAD; 3721 dont_mount(dentry); 3722 detach_mounts(dentry); 3723 fsnotify_rmdir(dir, dentry); 3724 3725 out: 3726 inode_unlock(dentry->d_inode); 3727 dput(dentry); 3728 if (!error) 3729 d_delete(dentry); 3730 return error; 3731 } 3732 EXPORT_SYMBOL(vfs_rmdir); 3733 3734 long do_rmdir(int dfd, struct filename *name) 3735 { 3736 int error = 0; 3737 struct dentry *dentry; 3738 struct path path; 3739 struct qstr last; 3740 int type; 3741 unsigned int lookup_flags = 0; 3742 retry: 3743 name = filename_parentat(dfd, name, lookup_flags, 3744 &path, &last, &type); 3745 if (IS_ERR(name)) 3746 return PTR_ERR(name); 3747 3748 switch (type) { 3749 case LAST_DOTDOT: 3750 error = -ENOTEMPTY; 3751 goto exit1; 3752 case LAST_DOT: 3753 error = -EINVAL; 3754 goto exit1; 3755 case LAST_ROOT: 3756 error = -EBUSY; 3757 goto exit1; 3758 } 3759 3760 error = mnt_want_write(path.mnt); 3761 if (error) 3762 goto exit1; 3763 3764 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3765 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3766 error = PTR_ERR(dentry); 3767 if (IS_ERR(dentry)) 3768 goto exit2; 3769 if (!dentry->d_inode) { 3770 error = -ENOENT; 3771 goto exit3; 3772 } 3773 error = security_path_rmdir(&path, dentry); 3774 if (error) 3775 goto exit3; 3776 error = vfs_rmdir(path.dentry->d_inode, dentry); 3777 exit3: 3778 dput(dentry); 3779 exit2: 3780 inode_unlock(path.dentry->d_inode); 3781 mnt_drop_write(path.mnt); 3782 exit1: 3783 path_put(&path); 3784 if (retry_estale(error, lookup_flags)) { 3785 lookup_flags |= LOOKUP_REVAL; 3786 goto retry; 3787 } 3788 putname(name); 3789 return error; 3790 } 3791 3792 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3793 { 3794 return do_rmdir(AT_FDCWD, getname(pathname)); 3795 } 3796 3797 /** 3798 * vfs_unlink - unlink a filesystem object 3799 * @dir: parent directory 3800 * @dentry: victim 3801 * @delegated_inode: returns victim inode, if the inode is delegated. 3802 * 3803 * The caller must hold dir->i_mutex. 3804 * 3805 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3806 * return a reference to the inode in delegated_inode. The caller 3807 * should then break the delegation on that inode and retry. Because 3808 * breaking a delegation may take a long time, the caller should drop 3809 * dir->i_mutex before doing so. 3810 * 3811 * Alternatively, a caller may pass NULL for delegated_inode. This may 3812 * be appropriate for callers that expect the underlying filesystem not 3813 * to be NFS exported. 3814 */ 3815 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3816 { 3817 struct inode *target = dentry->d_inode; 3818 int error = may_delete(dir, dentry, 0); 3819 3820 if (error) 3821 return error; 3822 3823 if (!dir->i_op->unlink) 3824 return -EPERM; 3825 3826 inode_lock(target); 3827 if (is_local_mountpoint(dentry)) 3828 error = -EBUSY; 3829 else { 3830 error = security_inode_unlink(dir, dentry); 3831 if (!error) { 3832 error = try_break_deleg(target, delegated_inode); 3833 if (error) 3834 goto out; 3835 error = dir->i_op->unlink(dir, dentry); 3836 if (!error) { 3837 dont_mount(dentry); 3838 detach_mounts(dentry); 3839 fsnotify_unlink(dir, dentry); 3840 } 3841 } 3842 } 3843 out: 3844 inode_unlock(target); 3845 3846 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3847 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3848 fsnotify_link_count(target); 3849 d_delete(dentry); 3850 } 3851 3852 return error; 3853 } 3854 EXPORT_SYMBOL(vfs_unlink); 3855 3856 /* 3857 * Make sure that the actual truncation of the file will occur outside its 3858 * directory's i_mutex. Truncate can take a long time if there is a lot of 3859 * writeout happening, and we don't want to prevent access to the directory 3860 * while waiting on the I/O. 3861 */ 3862 long do_unlinkat(int dfd, struct filename *name) 3863 { 3864 int error; 3865 struct dentry *dentry; 3866 struct path path; 3867 struct qstr last; 3868 int type; 3869 struct inode *inode = NULL; 3870 struct inode *delegated_inode = NULL; 3871 unsigned int lookup_flags = 0; 3872 retry: 3873 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 3874 if (IS_ERR(name)) 3875 return PTR_ERR(name); 3876 3877 error = -EISDIR; 3878 if (type != LAST_NORM) 3879 goto exit1; 3880 3881 error = mnt_want_write(path.mnt); 3882 if (error) 3883 goto exit1; 3884 retry_deleg: 3885 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3886 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3887 error = PTR_ERR(dentry); 3888 if (!IS_ERR(dentry)) { 3889 /* Why not before? Because we want correct error value */ 3890 if (last.name[last.len]) 3891 goto slashes; 3892 inode = dentry->d_inode; 3893 if (d_is_negative(dentry)) 3894 goto slashes; 3895 ihold(inode); 3896 error = security_path_unlink(&path, dentry); 3897 if (error) 3898 goto exit2; 3899 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3900 exit2: 3901 dput(dentry); 3902 } 3903 inode_unlock(path.dentry->d_inode); 3904 if (inode) 3905 iput(inode); /* truncate the inode here */ 3906 inode = NULL; 3907 if (delegated_inode) { 3908 error = break_deleg_wait(&delegated_inode); 3909 if (!error) 3910 goto retry_deleg; 3911 } 3912 mnt_drop_write(path.mnt); 3913 exit1: 3914 path_put(&path); 3915 if (retry_estale(error, lookup_flags)) { 3916 lookup_flags |= LOOKUP_REVAL; 3917 inode = NULL; 3918 goto retry; 3919 } 3920 putname(name); 3921 return error; 3922 3923 slashes: 3924 if (d_is_negative(dentry)) 3925 error = -ENOENT; 3926 else if (d_is_dir(dentry)) 3927 error = -EISDIR; 3928 else 3929 error = -ENOTDIR; 3930 goto exit2; 3931 } 3932 3933 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3934 { 3935 if ((flag & ~AT_REMOVEDIR) != 0) 3936 return -EINVAL; 3937 3938 if (flag & AT_REMOVEDIR) 3939 return do_rmdir(dfd, getname(pathname)); 3940 return do_unlinkat(dfd, getname(pathname)); 3941 } 3942 3943 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3944 { 3945 return do_unlinkat(AT_FDCWD, getname(pathname)); 3946 } 3947 3948 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3949 { 3950 int error = may_create(dir, dentry); 3951 3952 if (error) 3953 return error; 3954 3955 if (!dir->i_op->symlink) 3956 return -EPERM; 3957 3958 error = security_inode_symlink(dir, dentry, oldname); 3959 if (error) 3960 return error; 3961 3962 error = dir->i_op->symlink(dir, dentry, oldname); 3963 if (!error) 3964 fsnotify_create(dir, dentry); 3965 return error; 3966 } 3967 EXPORT_SYMBOL(vfs_symlink); 3968 3969 static long do_symlinkat(const char __user *oldname, int newdfd, 3970 const char __user *newname) 3971 { 3972 int error; 3973 struct filename *from; 3974 struct dentry *dentry; 3975 struct path path; 3976 unsigned int lookup_flags = 0; 3977 3978 from = getname(oldname); 3979 if (IS_ERR(from)) 3980 return PTR_ERR(from); 3981 retry: 3982 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3983 error = PTR_ERR(dentry); 3984 if (IS_ERR(dentry)) 3985 goto out_putname; 3986 3987 error = security_path_symlink(&path, dentry, from->name); 3988 if (!error) 3989 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3990 done_path_create(&path, dentry); 3991 if (retry_estale(error, lookup_flags)) { 3992 lookup_flags |= LOOKUP_REVAL; 3993 goto retry; 3994 } 3995 out_putname: 3996 putname(from); 3997 return error; 3998 } 3999 4000 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4001 int, newdfd, const char __user *, newname) 4002 { 4003 return do_symlinkat(oldname, newdfd, newname); 4004 } 4005 4006 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4007 { 4008 return do_symlinkat(oldname, AT_FDCWD, newname); 4009 } 4010 4011 /** 4012 * vfs_link - create a new link 4013 * @old_dentry: object to be linked 4014 * @dir: new parent 4015 * @new_dentry: where to create the new link 4016 * @delegated_inode: returns inode needing a delegation break 4017 * 4018 * The caller must hold dir->i_mutex 4019 * 4020 * If vfs_link discovers a delegation on the to-be-linked file in need 4021 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4022 * inode in delegated_inode. The caller should then break the delegation 4023 * and retry. Because breaking a delegation may take a long time, the 4024 * caller should drop the i_mutex before doing so. 4025 * 4026 * Alternatively, a caller may pass NULL for delegated_inode. This may 4027 * be appropriate for callers that expect the underlying filesystem not 4028 * to be NFS exported. 4029 */ 4030 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4031 { 4032 struct inode *inode = old_dentry->d_inode; 4033 unsigned max_links = dir->i_sb->s_max_links; 4034 int error; 4035 4036 if (!inode) 4037 return -ENOENT; 4038 4039 error = may_create(dir, new_dentry); 4040 if (error) 4041 return error; 4042 4043 if (dir->i_sb != inode->i_sb) 4044 return -EXDEV; 4045 4046 /* 4047 * A link to an append-only or immutable file cannot be created. 4048 */ 4049 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4050 return -EPERM; 4051 /* 4052 * Updating the link count will likely cause i_uid and i_gid to 4053 * be writen back improperly if their true value is unknown to 4054 * the vfs. 4055 */ 4056 if (HAS_UNMAPPED_ID(inode)) 4057 return -EPERM; 4058 if (!dir->i_op->link) 4059 return -EPERM; 4060 if (S_ISDIR(inode->i_mode)) 4061 return -EPERM; 4062 4063 error = security_inode_link(old_dentry, dir, new_dentry); 4064 if (error) 4065 return error; 4066 4067 inode_lock(inode); 4068 /* Make sure we don't allow creating hardlink to an unlinked file */ 4069 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4070 error = -ENOENT; 4071 else if (max_links && inode->i_nlink >= max_links) 4072 error = -EMLINK; 4073 else { 4074 error = try_break_deleg(inode, delegated_inode); 4075 if (!error) 4076 error = dir->i_op->link(old_dentry, dir, new_dentry); 4077 } 4078 4079 if (!error && (inode->i_state & I_LINKABLE)) { 4080 spin_lock(&inode->i_lock); 4081 inode->i_state &= ~I_LINKABLE; 4082 spin_unlock(&inode->i_lock); 4083 } 4084 inode_unlock(inode); 4085 if (!error) 4086 fsnotify_link(dir, inode, new_dentry); 4087 return error; 4088 } 4089 EXPORT_SYMBOL(vfs_link); 4090 4091 /* 4092 * Hardlinks are often used in delicate situations. We avoid 4093 * security-related surprises by not following symlinks on the 4094 * newname. --KAB 4095 * 4096 * We don't follow them on the oldname either to be compatible 4097 * with linux 2.0, and to avoid hard-linking to directories 4098 * and other special files. --ADM 4099 */ 4100 static int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4101 const char __user *newname, int flags) 4102 { 4103 struct dentry *new_dentry; 4104 struct path old_path, new_path; 4105 struct inode *delegated_inode = NULL; 4106 int how = 0; 4107 int error; 4108 4109 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4110 return -EINVAL; 4111 /* 4112 * To use null names we require CAP_DAC_READ_SEARCH 4113 * This ensures that not everyone will be able to create 4114 * handlink using the passed filedescriptor. 4115 */ 4116 if (flags & AT_EMPTY_PATH) { 4117 if (!capable(CAP_DAC_READ_SEARCH)) 4118 return -ENOENT; 4119 how = LOOKUP_EMPTY; 4120 } 4121 4122 if (flags & AT_SYMLINK_FOLLOW) 4123 how |= LOOKUP_FOLLOW; 4124 retry: 4125 error = user_path_at(olddfd, oldname, how, &old_path); 4126 if (error) 4127 return error; 4128 4129 new_dentry = user_path_create(newdfd, newname, &new_path, 4130 (how & LOOKUP_REVAL)); 4131 error = PTR_ERR(new_dentry); 4132 if (IS_ERR(new_dentry)) 4133 goto out; 4134 4135 error = -EXDEV; 4136 if (old_path.mnt != new_path.mnt) 4137 goto out_dput; 4138 error = may_linkat(&old_path); 4139 if (unlikely(error)) 4140 goto out_dput; 4141 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4142 if (error) 4143 goto out_dput; 4144 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4145 out_dput: 4146 done_path_create(&new_path, new_dentry); 4147 if (delegated_inode) { 4148 error = break_deleg_wait(&delegated_inode); 4149 if (!error) { 4150 path_put(&old_path); 4151 goto retry; 4152 } 4153 } 4154 if (retry_estale(error, how)) { 4155 path_put(&old_path); 4156 how |= LOOKUP_REVAL; 4157 goto retry; 4158 } 4159 out: 4160 path_put(&old_path); 4161 4162 return error; 4163 } 4164 4165 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4166 int, newdfd, const char __user *, newname, int, flags) 4167 { 4168 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4169 } 4170 4171 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4172 { 4173 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4174 } 4175 4176 /** 4177 * vfs_rename - rename a filesystem object 4178 * @old_dir: parent of source 4179 * @old_dentry: source 4180 * @new_dir: parent of destination 4181 * @new_dentry: destination 4182 * @delegated_inode: returns an inode needing a delegation break 4183 * @flags: rename flags 4184 * 4185 * The caller must hold multiple mutexes--see lock_rename()). 4186 * 4187 * If vfs_rename discovers a delegation in need of breaking at either 4188 * the source or destination, it will return -EWOULDBLOCK and return a 4189 * reference to the inode in delegated_inode. The caller should then 4190 * break the delegation and retry. Because breaking a delegation may 4191 * take a long time, the caller should drop all locks before doing 4192 * so. 4193 * 4194 * Alternatively, a caller may pass NULL for delegated_inode. This may 4195 * be appropriate for callers that expect the underlying filesystem not 4196 * to be NFS exported. 4197 * 4198 * The worst of all namespace operations - renaming directory. "Perverted" 4199 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4200 * Problems: 4201 * 4202 * a) we can get into loop creation. 4203 * b) race potential - two innocent renames can create a loop together. 4204 * That's where 4.4 screws up. Current fix: serialization on 4205 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4206 * story. 4207 * c) we have to lock _four_ objects - parents and victim (if it exists), 4208 * and source (if it is not a directory). 4209 * And that - after we got ->i_mutex on parents (until then we don't know 4210 * whether the target exists). Solution: try to be smart with locking 4211 * order for inodes. We rely on the fact that tree topology may change 4212 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4213 * move will be locked. Thus we can rank directories by the tree 4214 * (ancestors first) and rank all non-directories after them. 4215 * That works since everybody except rename does "lock parent, lookup, 4216 * lock child" and rename is under ->s_vfs_rename_mutex. 4217 * HOWEVER, it relies on the assumption that any object with ->lookup() 4218 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4219 * we'd better make sure that there's no link(2) for them. 4220 * d) conversion from fhandle to dentry may come in the wrong moment - when 4221 * we are removing the target. Solution: we will have to grab ->i_mutex 4222 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4223 * ->i_mutex on parents, which works but leads to some truly excessive 4224 * locking]. 4225 */ 4226 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4227 struct inode *new_dir, struct dentry *new_dentry, 4228 struct inode **delegated_inode, unsigned int flags) 4229 { 4230 int error; 4231 bool is_dir = d_is_dir(old_dentry); 4232 struct inode *source = old_dentry->d_inode; 4233 struct inode *target = new_dentry->d_inode; 4234 bool new_is_dir = false; 4235 unsigned max_links = new_dir->i_sb->s_max_links; 4236 struct name_snapshot old_name; 4237 4238 if (source == target) 4239 return 0; 4240 4241 error = may_delete(old_dir, old_dentry, is_dir); 4242 if (error) 4243 return error; 4244 4245 if (!target) { 4246 error = may_create(new_dir, new_dentry); 4247 } else { 4248 new_is_dir = d_is_dir(new_dentry); 4249 4250 if (!(flags & RENAME_EXCHANGE)) 4251 error = may_delete(new_dir, new_dentry, is_dir); 4252 else 4253 error = may_delete(new_dir, new_dentry, new_is_dir); 4254 } 4255 if (error) 4256 return error; 4257 4258 if (!old_dir->i_op->rename) 4259 return -EPERM; 4260 4261 /* 4262 * If we are going to change the parent - check write permissions, 4263 * we'll need to flip '..'. 4264 */ 4265 if (new_dir != old_dir) { 4266 if (is_dir) { 4267 error = inode_permission(source, MAY_WRITE); 4268 if (error) 4269 return error; 4270 } 4271 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4272 error = inode_permission(target, MAY_WRITE); 4273 if (error) 4274 return error; 4275 } 4276 } 4277 4278 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4279 flags); 4280 if (error) 4281 return error; 4282 4283 take_dentry_name_snapshot(&old_name, old_dentry); 4284 dget(new_dentry); 4285 if (!is_dir || (flags & RENAME_EXCHANGE)) 4286 lock_two_nondirectories(source, target); 4287 else if (target) 4288 inode_lock(target); 4289 4290 error = -EBUSY; 4291 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4292 goto out; 4293 4294 if (max_links && new_dir != old_dir) { 4295 error = -EMLINK; 4296 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4297 goto out; 4298 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4299 old_dir->i_nlink >= max_links) 4300 goto out; 4301 } 4302 if (!is_dir) { 4303 error = try_break_deleg(source, delegated_inode); 4304 if (error) 4305 goto out; 4306 } 4307 if (target && !new_is_dir) { 4308 error = try_break_deleg(target, delegated_inode); 4309 if (error) 4310 goto out; 4311 } 4312 error = old_dir->i_op->rename(old_dir, old_dentry, 4313 new_dir, new_dentry, flags); 4314 if (error) 4315 goto out; 4316 4317 if (!(flags & RENAME_EXCHANGE) && target) { 4318 if (is_dir) { 4319 shrink_dcache_parent(new_dentry); 4320 target->i_flags |= S_DEAD; 4321 } 4322 dont_mount(new_dentry); 4323 detach_mounts(new_dentry); 4324 } 4325 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4326 if (!(flags & RENAME_EXCHANGE)) 4327 d_move(old_dentry, new_dentry); 4328 else 4329 d_exchange(old_dentry, new_dentry); 4330 } 4331 out: 4332 if (!is_dir || (flags & RENAME_EXCHANGE)) 4333 unlock_two_nondirectories(source, target); 4334 else if (target) 4335 inode_unlock(target); 4336 dput(new_dentry); 4337 if (!error) { 4338 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4339 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4340 if (flags & RENAME_EXCHANGE) { 4341 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4342 new_is_dir, NULL, new_dentry); 4343 } 4344 } 4345 release_dentry_name_snapshot(&old_name); 4346 4347 return error; 4348 } 4349 EXPORT_SYMBOL(vfs_rename); 4350 4351 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4352 struct filename *to, unsigned int flags) 4353 { 4354 struct dentry *old_dentry, *new_dentry; 4355 struct dentry *trap; 4356 struct path old_path, new_path; 4357 struct qstr old_last, new_last; 4358 int old_type, new_type; 4359 struct inode *delegated_inode = NULL; 4360 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4361 bool should_retry = false; 4362 int error = -EINVAL; 4363 4364 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4365 goto put_both; 4366 4367 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4368 (flags & RENAME_EXCHANGE)) 4369 goto put_both; 4370 4371 if (flags & RENAME_EXCHANGE) 4372 target_flags = 0; 4373 4374 retry: 4375 from = filename_parentat(olddfd, from, lookup_flags, &old_path, 4376 &old_last, &old_type); 4377 if (IS_ERR(from)) { 4378 error = PTR_ERR(from); 4379 goto put_new; 4380 } 4381 4382 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4383 &new_type); 4384 if (IS_ERR(to)) { 4385 error = PTR_ERR(to); 4386 goto exit1; 4387 } 4388 4389 error = -EXDEV; 4390 if (old_path.mnt != new_path.mnt) 4391 goto exit2; 4392 4393 error = -EBUSY; 4394 if (old_type != LAST_NORM) 4395 goto exit2; 4396 4397 if (flags & RENAME_NOREPLACE) 4398 error = -EEXIST; 4399 if (new_type != LAST_NORM) 4400 goto exit2; 4401 4402 error = mnt_want_write(old_path.mnt); 4403 if (error) 4404 goto exit2; 4405 4406 retry_deleg: 4407 trap = lock_rename(new_path.dentry, old_path.dentry); 4408 4409 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4410 error = PTR_ERR(old_dentry); 4411 if (IS_ERR(old_dentry)) 4412 goto exit3; 4413 /* source must exist */ 4414 error = -ENOENT; 4415 if (d_is_negative(old_dentry)) 4416 goto exit4; 4417 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4418 error = PTR_ERR(new_dentry); 4419 if (IS_ERR(new_dentry)) 4420 goto exit4; 4421 error = -EEXIST; 4422 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4423 goto exit5; 4424 if (flags & RENAME_EXCHANGE) { 4425 error = -ENOENT; 4426 if (d_is_negative(new_dentry)) 4427 goto exit5; 4428 4429 if (!d_is_dir(new_dentry)) { 4430 error = -ENOTDIR; 4431 if (new_last.name[new_last.len]) 4432 goto exit5; 4433 } 4434 } 4435 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4436 if (!d_is_dir(old_dentry)) { 4437 error = -ENOTDIR; 4438 if (old_last.name[old_last.len]) 4439 goto exit5; 4440 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4441 goto exit5; 4442 } 4443 /* source should not be ancestor of target */ 4444 error = -EINVAL; 4445 if (old_dentry == trap) 4446 goto exit5; 4447 /* target should not be an ancestor of source */ 4448 if (!(flags & RENAME_EXCHANGE)) 4449 error = -ENOTEMPTY; 4450 if (new_dentry == trap) 4451 goto exit5; 4452 4453 error = security_path_rename(&old_path, old_dentry, 4454 &new_path, new_dentry, flags); 4455 if (error) 4456 goto exit5; 4457 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4458 new_path.dentry->d_inode, new_dentry, 4459 &delegated_inode, flags); 4460 exit5: 4461 dput(new_dentry); 4462 exit4: 4463 dput(old_dentry); 4464 exit3: 4465 unlock_rename(new_path.dentry, old_path.dentry); 4466 if (delegated_inode) { 4467 error = break_deleg_wait(&delegated_inode); 4468 if (!error) 4469 goto retry_deleg; 4470 } 4471 mnt_drop_write(old_path.mnt); 4472 exit2: 4473 if (retry_estale(error, lookup_flags)) 4474 should_retry = true; 4475 path_put(&new_path); 4476 exit1: 4477 path_put(&old_path); 4478 if (should_retry) { 4479 should_retry = false; 4480 lookup_flags |= LOOKUP_REVAL; 4481 goto retry; 4482 } 4483 put_both: 4484 if (!IS_ERR(from)) 4485 putname(from); 4486 put_new: 4487 if (!IS_ERR(to)) 4488 putname(to); 4489 return error; 4490 } 4491 4492 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4493 int, newdfd, const char __user *, newname, unsigned int, flags) 4494 { 4495 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4496 flags); 4497 } 4498 4499 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4500 int, newdfd, const char __user *, newname) 4501 { 4502 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4503 0); 4504 } 4505 4506 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4507 { 4508 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4509 getname(newname), 0); 4510 } 4511 4512 int readlink_copy(char __user *buffer, int buflen, const char *link) 4513 { 4514 int len = PTR_ERR(link); 4515 if (IS_ERR(link)) 4516 goto out; 4517 4518 len = strlen(link); 4519 if (len > (unsigned) buflen) 4520 len = buflen; 4521 if (copy_to_user(buffer, link, len)) 4522 len = -EFAULT; 4523 out: 4524 return len; 4525 } 4526 4527 /** 4528 * vfs_readlink - copy symlink body into userspace buffer 4529 * @dentry: dentry on which to get symbolic link 4530 * @buffer: user memory pointer 4531 * @buflen: size of buffer 4532 * 4533 * Does not touch atime. That's up to the caller if necessary 4534 * 4535 * Does not call security hook. 4536 */ 4537 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4538 { 4539 struct inode *inode = d_inode(dentry); 4540 DEFINE_DELAYED_CALL(done); 4541 const char *link; 4542 int res; 4543 4544 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4545 if (unlikely(inode->i_op->readlink)) 4546 return inode->i_op->readlink(dentry, buffer, buflen); 4547 4548 if (!d_is_symlink(dentry)) 4549 return -EINVAL; 4550 4551 spin_lock(&inode->i_lock); 4552 inode->i_opflags |= IOP_DEFAULT_READLINK; 4553 spin_unlock(&inode->i_lock); 4554 } 4555 4556 link = READ_ONCE(inode->i_link); 4557 if (!link) { 4558 link = inode->i_op->get_link(dentry, inode, &done); 4559 if (IS_ERR(link)) 4560 return PTR_ERR(link); 4561 } 4562 res = readlink_copy(buffer, buflen, link); 4563 do_delayed_call(&done); 4564 return res; 4565 } 4566 EXPORT_SYMBOL(vfs_readlink); 4567 4568 /** 4569 * vfs_get_link - get symlink body 4570 * @dentry: dentry on which to get symbolic link 4571 * @done: caller needs to free returned data with this 4572 * 4573 * Calls security hook and i_op->get_link() on the supplied inode. 4574 * 4575 * It does not touch atime. That's up to the caller if necessary. 4576 * 4577 * Does not work on "special" symlinks like /proc/$$/fd/N 4578 */ 4579 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4580 { 4581 const char *res = ERR_PTR(-EINVAL); 4582 struct inode *inode = d_inode(dentry); 4583 4584 if (d_is_symlink(dentry)) { 4585 res = ERR_PTR(security_inode_readlink(dentry)); 4586 if (!res) 4587 res = inode->i_op->get_link(dentry, inode, done); 4588 } 4589 return res; 4590 } 4591 EXPORT_SYMBOL(vfs_get_link); 4592 4593 /* get the link contents into pagecache */ 4594 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4595 struct delayed_call *callback) 4596 { 4597 char *kaddr; 4598 struct page *page; 4599 struct address_space *mapping = inode->i_mapping; 4600 4601 if (!dentry) { 4602 page = find_get_page(mapping, 0); 4603 if (!page) 4604 return ERR_PTR(-ECHILD); 4605 if (!PageUptodate(page)) { 4606 put_page(page); 4607 return ERR_PTR(-ECHILD); 4608 } 4609 } else { 4610 page = read_mapping_page(mapping, 0, NULL); 4611 if (IS_ERR(page)) 4612 return (char*)page; 4613 } 4614 set_delayed_call(callback, page_put_link, page); 4615 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4616 kaddr = page_address(page); 4617 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4618 return kaddr; 4619 } 4620 4621 EXPORT_SYMBOL(page_get_link); 4622 4623 void page_put_link(void *arg) 4624 { 4625 put_page(arg); 4626 } 4627 EXPORT_SYMBOL(page_put_link); 4628 4629 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4630 { 4631 DEFINE_DELAYED_CALL(done); 4632 int res = readlink_copy(buffer, buflen, 4633 page_get_link(dentry, d_inode(dentry), 4634 &done)); 4635 do_delayed_call(&done); 4636 return res; 4637 } 4638 EXPORT_SYMBOL(page_readlink); 4639 4640 /* 4641 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4642 */ 4643 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4644 { 4645 struct address_space *mapping = inode->i_mapping; 4646 struct page *page; 4647 void *fsdata; 4648 int err; 4649 unsigned int flags = 0; 4650 if (nofs) 4651 flags |= AOP_FLAG_NOFS; 4652 4653 retry: 4654 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4655 flags, &page, &fsdata); 4656 if (err) 4657 goto fail; 4658 4659 memcpy(page_address(page), symname, len-1); 4660 4661 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4662 page, fsdata); 4663 if (err < 0) 4664 goto fail; 4665 if (err < len-1) 4666 goto retry; 4667 4668 mark_inode_dirty(inode); 4669 return 0; 4670 fail: 4671 return err; 4672 } 4673 EXPORT_SYMBOL(__page_symlink); 4674 4675 int page_symlink(struct inode *inode, const char *symname, int len) 4676 { 4677 return __page_symlink(inode, symname, len, 4678 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4679 } 4680 EXPORT_SYMBOL(page_symlink); 4681 4682 const struct inode_operations page_symlink_inode_operations = { 4683 .get_link = page_get_link, 4684 }; 4685 EXPORT_SYMBOL(page_symlink_inode_operations); 4686