1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201 } 202 203 struct filename * 204 getname(const char __user * filename) 205 { 206 return getname_flags(filename, 0, NULL); 207 } 208 209 struct filename * 210 getname_kernel(const char * filename) 211 { 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242 } 243 244 void putname(struct filename *name) 245 { 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256 } 257 258 static int check_acl(struct inode *inode, int mask) 259 { 260 #ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281 #endif 282 283 return -EAGAIN; 284 } 285 286 /* 287 * This does the basic permission checking 288 */ 289 static int acl_permission_check(struct inode *inode, int mask) 290 { 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312 } 313 314 /** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328 int generic_permission(struct inode *inode, int mask) 329 { 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367 } 368 EXPORT_SYMBOL(generic_permission); 369 370 /* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376 static inline int do_inode_permission(struct inode *inode, int mask) 377 { 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388 } 389 390 /** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402 int __inode_permission(struct inode *inode, int mask) 403 { 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423 } 424 EXPORT_SYMBOL(__inode_permission); 425 426 /** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435 { 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445 } 446 447 /** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458 int inode_permission(struct inode *inode, int mask) 459 { 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466 } 467 EXPORT_SYMBOL(inode_permission); 468 469 /** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475 void path_get(const struct path *path) 476 { 477 mntget(path->mnt); 478 dget(path->dentry); 479 } 480 EXPORT_SYMBOL(path_get); 481 482 /** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488 void path_put(const struct path *path) 489 { 490 dput(path->dentry); 491 mntput(path->mnt); 492 } 493 EXPORT_SYMBOL(path_put); 494 495 #define EMBEDDED_LEVELS 2 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 int total_link_count; 506 struct saved { 507 struct path link; 508 void *cookie; 509 const char *name; 510 struct inode *inode; 511 unsigned seq; 512 } *stack, internal[EMBEDDED_LEVELS]; 513 struct filename *name; 514 struct nameidata *saved; 515 unsigned root_seq; 516 int dfd; 517 }; 518 519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 520 { 521 struct nameidata *old = current->nameidata; 522 p->stack = p->internal; 523 p->dfd = dfd; 524 p->name = name; 525 p->total_link_count = old ? old->total_link_count : 0; 526 p->saved = old; 527 current->nameidata = p; 528 } 529 530 static void restore_nameidata(void) 531 { 532 struct nameidata *now = current->nameidata, *old = now->saved; 533 534 current->nameidata = old; 535 if (old) 536 old->total_link_count = now->total_link_count; 537 if (now->stack != now->internal) { 538 kfree(now->stack); 539 now->stack = now->internal; 540 } 541 } 542 543 static int __nd_alloc_stack(struct nameidata *nd) 544 { 545 struct saved *p; 546 547 if (nd->flags & LOOKUP_RCU) { 548 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 549 GFP_ATOMIC); 550 if (unlikely(!p)) 551 return -ECHILD; 552 } else { 553 p= kmalloc(MAXSYMLINKS * sizeof(struct saved), 554 GFP_KERNEL); 555 if (unlikely(!p)) 556 return -ENOMEM; 557 } 558 memcpy(p, nd->internal, sizeof(nd->internal)); 559 nd->stack = p; 560 return 0; 561 } 562 563 /** 564 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 565 * @path: nameidate to verify 566 * 567 * Rename can sometimes move a file or directory outside of a bind 568 * mount, path_connected allows those cases to be detected. 569 */ 570 static bool path_connected(const struct path *path) 571 { 572 struct vfsmount *mnt = path->mnt; 573 574 /* Only bind mounts can have disconnected paths */ 575 if (mnt->mnt_root == mnt->mnt_sb->s_root) 576 return true; 577 578 return is_subdir(path->dentry, mnt->mnt_root); 579 } 580 581 static inline int nd_alloc_stack(struct nameidata *nd) 582 { 583 if (likely(nd->depth != EMBEDDED_LEVELS)) 584 return 0; 585 if (likely(nd->stack != nd->internal)) 586 return 0; 587 return __nd_alloc_stack(nd); 588 } 589 590 static void drop_links(struct nameidata *nd) 591 { 592 int i = nd->depth; 593 while (i--) { 594 struct saved *last = nd->stack + i; 595 struct inode *inode = last->inode; 596 if (last->cookie && inode->i_op->put_link) { 597 inode->i_op->put_link(inode, last->cookie); 598 last->cookie = NULL; 599 } 600 } 601 } 602 603 static void terminate_walk(struct nameidata *nd) 604 { 605 drop_links(nd); 606 if (!(nd->flags & LOOKUP_RCU)) { 607 int i; 608 path_put(&nd->path); 609 for (i = 0; i < nd->depth; i++) 610 path_put(&nd->stack[i].link); 611 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 612 path_put(&nd->root); 613 nd->root.mnt = NULL; 614 } 615 } else { 616 nd->flags &= ~LOOKUP_RCU; 617 if (!(nd->flags & LOOKUP_ROOT)) 618 nd->root.mnt = NULL; 619 rcu_read_unlock(); 620 } 621 nd->depth = 0; 622 } 623 624 /* path_put is needed afterwards regardless of success or failure */ 625 static bool legitimize_path(struct nameidata *nd, 626 struct path *path, unsigned seq) 627 { 628 int res = __legitimize_mnt(path->mnt, nd->m_seq); 629 if (unlikely(res)) { 630 if (res > 0) 631 path->mnt = NULL; 632 path->dentry = NULL; 633 return false; 634 } 635 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 636 path->dentry = NULL; 637 return false; 638 } 639 return !read_seqcount_retry(&path->dentry->d_seq, seq); 640 } 641 642 static bool legitimize_links(struct nameidata *nd) 643 { 644 int i; 645 for (i = 0; i < nd->depth; i++) { 646 struct saved *last = nd->stack + i; 647 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 648 drop_links(nd); 649 nd->depth = i + 1; 650 return false; 651 } 652 } 653 return true; 654 } 655 656 /* 657 * Path walking has 2 modes, rcu-walk and ref-walk (see 658 * Documentation/filesystems/path-lookup.txt). In situations when we can't 659 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 660 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 661 * mode. Refcounts are grabbed at the last known good point before rcu-walk 662 * got stuck, so ref-walk may continue from there. If this is not successful 663 * (eg. a seqcount has changed), then failure is returned and it's up to caller 664 * to restart the path walk from the beginning in ref-walk mode. 665 */ 666 667 /** 668 * unlazy_walk - try to switch to ref-walk mode. 669 * @nd: nameidata pathwalk data 670 * @dentry: child of nd->path.dentry or NULL 671 * @seq: seq number to check dentry against 672 * Returns: 0 on success, -ECHILD on failure 673 * 674 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 675 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 676 * @nd or NULL. Must be called from rcu-walk context. 677 * Nothing should touch nameidata between unlazy_walk() failure and 678 * terminate_walk(). 679 */ 680 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq) 681 { 682 struct dentry *parent = nd->path.dentry; 683 684 BUG_ON(!(nd->flags & LOOKUP_RCU)); 685 686 nd->flags &= ~LOOKUP_RCU; 687 if (unlikely(!legitimize_links(nd))) 688 goto out2; 689 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 690 goto out2; 691 if (unlikely(!lockref_get_not_dead(&parent->d_lockref))) 692 goto out1; 693 694 /* 695 * For a negative lookup, the lookup sequence point is the parents 696 * sequence point, and it only needs to revalidate the parent dentry. 697 * 698 * For a positive lookup, we need to move both the parent and the 699 * dentry from the RCU domain to be properly refcounted. And the 700 * sequence number in the dentry validates *both* dentry counters, 701 * since we checked the sequence number of the parent after we got 702 * the child sequence number. So we know the parent must still 703 * be valid if the child sequence number is still valid. 704 */ 705 if (!dentry) { 706 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 707 goto out; 708 BUG_ON(nd->inode != parent->d_inode); 709 } else { 710 if (!lockref_get_not_dead(&dentry->d_lockref)) 711 goto out; 712 if (read_seqcount_retry(&dentry->d_seq, seq)) 713 goto drop_dentry; 714 } 715 716 /* 717 * Sequence counts matched. Now make sure that the root is 718 * still valid and get it if required. 719 */ 720 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 721 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) { 722 rcu_read_unlock(); 723 dput(dentry); 724 return -ECHILD; 725 } 726 } 727 728 rcu_read_unlock(); 729 return 0; 730 731 drop_dentry: 732 rcu_read_unlock(); 733 dput(dentry); 734 goto drop_root_mnt; 735 out2: 736 nd->path.mnt = NULL; 737 out1: 738 nd->path.dentry = NULL; 739 out: 740 rcu_read_unlock(); 741 drop_root_mnt: 742 if (!(nd->flags & LOOKUP_ROOT)) 743 nd->root.mnt = NULL; 744 return -ECHILD; 745 } 746 747 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq) 748 { 749 if (unlikely(!legitimize_path(nd, link, seq))) { 750 drop_links(nd); 751 nd->depth = 0; 752 nd->flags &= ~LOOKUP_RCU; 753 nd->path.mnt = NULL; 754 nd->path.dentry = NULL; 755 if (!(nd->flags & LOOKUP_ROOT)) 756 nd->root.mnt = NULL; 757 rcu_read_unlock(); 758 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) { 759 return 0; 760 } 761 path_put(link); 762 return -ECHILD; 763 } 764 765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 766 { 767 return dentry->d_op->d_revalidate(dentry, flags); 768 } 769 770 /** 771 * complete_walk - successful completion of path walk 772 * @nd: pointer nameidata 773 * 774 * If we had been in RCU mode, drop out of it and legitimize nd->path. 775 * Revalidate the final result, unless we'd already done that during 776 * the path walk or the filesystem doesn't ask for it. Return 0 on 777 * success, -error on failure. In case of failure caller does not 778 * need to drop nd->path. 779 */ 780 static int complete_walk(struct nameidata *nd) 781 { 782 struct dentry *dentry = nd->path.dentry; 783 int status; 784 785 if (nd->flags & LOOKUP_RCU) { 786 if (!(nd->flags & LOOKUP_ROOT)) 787 nd->root.mnt = NULL; 788 if (unlikely(unlazy_walk(nd, NULL, 0))) 789 return -ECHILD; 790 } 791 792 if (likely(!(nd->flags & LOOKUP_JUMPED))) 793 return 0; 794 795 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 796 return 0; 797 798 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 799 if (status > 0) 800 return 0; 801 802 if (!status) 803 status = -ESTALE; 804 805 return status; 806 } 807 808 static void set_root(struct nameidata *nd) 809 { 810 get_fs_root(current->fs, &nd->root); 811 } 812 813 static void set_root_rcu(struct nameidata *nd) 814 { 815 struct fs_struct *fs = current->fs; 816 unsigned seq; 817 818 do { 819 seq = read_seqcount_begin(&fs->seq); 820 nd->root = fs->root; 821 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 822 } while (read_seqcount_retry(&fs->seq, seq)); 823 } 824 825 static void path_put_conditional(struct path *path, struct nameidata *nd) 826 { 827 dput(path->dentry); 828 if (path->mnt != nd->path.mnt) 829 mntput(path->mnt); 830 } 831 832 static inline void path_to_nameidata(const struct path *path, 833 struct nameidata *nd) 834 { 835 if (!(nd->flags & LOOKUP_RCU)) { 836 dput(nd->path.dentry); 837 if (nd->path.mnt != path->mnt) 838 mntput(nd->path.mnt); 839 } 840 nd->path.mnt = path->mnt; 841 nd->path.dentry = path->dentry; 842 } 843 844 /* 845 * Helper to directly jump to a known parsed path from ->follow_link, 846 * caller must have taken a reference to path beforehand. 847 */ 848 void nd_jump_link(struct path *path) 849 { 850 struct nameidata *nd = current->nameidata; 851 path_put(&nd->path); 852 853 nd->path = *path; 854 nd->inode = nd->path.dentry->d_inode; 855 nd->flags |= LOOKUP_JUMPED; 856 } 857 858 static inline void put_link(struct nameidata *nd) 859 { 860 struct saved *last = nd->stack + --nd->depth; 861 struct inode *inode = last->inode; 862 if (last->cookie && inode->i_op->put_link) 863 inode->i_op->put_link(inode, last->cookie); 864 if (!(nd->flags & LOOKUP_RCU)) 865 path_put(&last->link); 866 } 867 868 int sysctl_protected_symlinks __read_mostly = 0; 869 int sysctl_protected_hardlinks __read_mostly = 0; 870 871 /** 872 * may_follow_link - Check symlink following for unsafe situations 873 * @nd: nameidata pathwalk data 874 * 875 * In the case of the sysctl_protected_symlinks sysctl being enabled, 876 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 877 * in a sticky world-writable directory. This is to protect privileged 878 * processes from failing races against path names that may change out 879 * from under them by way of other users creating malicious symlinks. 880 * It will permit symlinks to be followed only when outside a sticky 881 * world-writable directory, or when the uid of the symlink and follower 882 * match, or when the directory owner matches the symlink's owner. 883 * 884 * Returns 0 if following the symlink is allowed, -ve on error. 885 */ 886 static inline int may_follow_link(struct nameidata *nd) 887 { 888 const struct inode *inode; 889 const struct inode *parent; 890 891 if (!sysctl_protected_symlinks) 892 return 0; 893 894 /* Allowed if owner and follower match. */ 895 inode = nd->stack[0].inode; 896 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 897 return 0; 898 899 /* Allowed if parent directory not sticky and world-writable. */ 900 parent = nd->inode; 901 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 902 return 0; 903 904 /* Allowed if parent directory and link owner match. */ 905 if (uid_eq(parent->i_uid, inode->i_uid)) 906 return 0; 907 908 if (nd->flags & LOOKUP_RCU) 909 return -ECHILD; 910 911 audit_log_link_denied("follow_link", &nd->stack[0].link); 912 return -EACCES; 913 } 914 915 /** 916 * safe_hardlink_source - Check for safe hardlink conditions 917 * @inode: the source inode to hardlink from 918 * 919 * Return false if at least one of the following conditions: 920 * - inode is not a regular file 921 * - inode is setuid 922 * - inode is setgid and group-exec 923 * - access failure for read and write 924 * 925 * Otherwise returns true. 926 */ 927 static bool safe_hardlink_source(struct inode *inode) 928 { 929 umode_t mode = inode->i_mode; 930 931 /* Special files should not get pinned to the filesystem. */ 932 if (!S_ISREG(mode)) 933 return false; 934 935 /* Setuid files should not get pinned to the filesystem. */ 936 if (mode & S_ISUID) 937 return false; 938 939 /* Executable setgid files should not get pinned to the filesystem. */ 940 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 941 return false; 942 943 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 944 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 945 return false; 946 947 return true; 948 } 949 950 /** 951 * may_linkat - Check permissions for creating a hardlink 952 * @link: the source to hardlink from 953 * 954 * Block hardlink when all of: 955 * - sysctl_protected_hardlinks enabled 956 * - fsuid does not match inode 957 * - hardlink source is unsafe (see safe_hardlink_source() above) 958 * - not CAP_FOWNER 959 * 960 * Returns 0 if successful, -ve on error. 961 */ 962 static int may_linkat(struct path *link) 963 { 964 const struct cred *cred; 965 struct inode *inode; 966 967 if (!sysctl_protected_hardlinks) 968 return 0; 969 970 cred = current_cred(); 971 inode = link->dentry->d_inode; 972 973 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 974 * otherwise, it must be a safe source. 975 */ 976 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 977 capable(CAP_FOWNER)) 978 return 0; 979 980 audit_log_link_denied("linkat", link); 981 return -EPERM; 982 } 983 984 static __always_inline 985 const char *get_link(struct nameidata *nd) 986 { 987 struct saved *last = nd->stack + nd->depth - 1; 988 struct dentry *dentry = last->link.dentry; 989 struct inode *inode = last->inode; 990 int error; 991 const char *res; 992 993 if (!(nd->flags & LOOKUP_RCU)) { 994 touch_atime(&last->link); 995 cond_resched(); 996 } else if (atime_needs_update(&last->link, inode)) { 997 if (unlikely(unlazy_walk(nd, NULL, 0))) 998 return ERR_PTR(-ECHILD); 999 touch_atime(&last->link); 1000 } 1001 1002 error = security_inode_follow_link(dentry, inode, 1003 nd->flags & LOOKUP_RCU); 1004 if (unlikely(error)) 1005 return ERR_PTR(error); 1006 1007 nd->last_type = LAST_BIND; 1008 res = inode->i_link; 1009 if (!res) { 1010 if (nd->flags & LOOKUP_RCU) { 1011 if (unlikely(unlazy_walk(nd, NULL, 0))) 1012 return ERR_PTR(-ECHILD); 1013 } 1014 res = inode->i_op->follow_link(dentry, &last->cookie); 1015 if (IS_ERR_OR_NULL(res)) { 1016 last->cookie = NULL; 1017 return res; 1018 } 1019 } 1020 if (*res == '/') { 1021 if (nd->flags & LOOKUP_RCU) { 1022 struct dentry *d; 1023 if (!nd->root.mnt) 1024 set_root_rcu(nd); 1025 nd->path = nd->root; 1026 d = nd->path.dentry; 1027 nd->inode = d->d_inode; 1028 nd->seq = nd->root_seq; 1029 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 1030 return ERR_PTR(-ECHILD); 1031 } else { 1032 if (!nd->root.mnt) 1033 set_root(nd); 1034 path_put(&nd->path); 1035 nd->path = nd->root; 1036 path_get(&nd->root); 1037 nd->inode = nd->path.dentry->d_inode; 1038 } 1039 nd->flags |= LOOKUP_JUMPED; 1040 while (unlikely(*++res == '/')) 1041 ; 1042 } 1043 if (!*res) 1044 res = NULL; 1045 return res; 1046 } 1047 1048 /* 1049 * follow_up - Find the mountpoint of path's vfsmount 1050 * 1051 * Given a path, find the mountpoint of its source file system. 1052 * Replace @path with the path of the mountpoint in the parent mount. 1053 * Up is towards /. 1054 * 1055 * Return 1 if we went up a level and 0 if we were already at the 1056 * root. 1057 */ 1058 int follow_up(struct path *path) 1059 { 1060 struct mount *mnt = real_mount(path->mnt); 1061 struct mount *parent; 1062 struct dentry *mountpoint; 1063 1064 read_seqlock_excl(&mount_lock); 1065 parent = mnt->mnt_parent; 1066 if (parent == mnt) { 1067 read_sequnlock_excl(&mount_lock); 1068 return 0; 1069 } 1070 mntget(&parent->mnt); 1071 mountpoint = dget(mnt->mnt_mountpoint); 1072 read_sequnlock_excl(&mount_lock); 1073 dput(path->dentry); 1074 path->dentry = mountpoint; 1075 mntput(path->mnt); 1076 path->mnt = &parent->mnt; 1077 return 1; 1078 } 1079 EXPORT_SYMBOL(follow_up); 1080 1081 /* 1082 * Perform an automount 1083 * - return -EISDIR to tell follow_managed() to stop and return the path we 1084 * were called with. 1085 */ 1086 static int follow_automount(struct path *path, struct nameidata *nd, 1087 bool *need_mntput) 1088 { 1089 struct vfsmount *mnt; 1090 int err; 1091 1092 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 1093 return -EREMOTE; 1094 1095 /* We don't want to mount if someone's just doing a stat - 1096 * unless they're stat'ing a directory and appended a '/' to 1097 * the name. 1098 * 1099 * We do, however, want to mount if someone wants to open or 1100 * create a file of any type under the mountpoint, wants to 1101 * traverse through the mountpoint or wants to open the 1102 * mounted directory. Also, autofs may mark negative dentries 1103 * as being automount points. These will need the attentions 1104 * of the daemon to instantiate them before they can be used. 1105 */ 1106 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1107 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1108 path->dentry->d_inode) 1109 return -EISDIR; 1110 1111 nd->total_link_count++; 1112 if (nd->total_link_count >= 40) 1113 return -ELOOP; 1114 1115 mnt = path->dentry->d_op->d_automount(path); 1116 if (IS_ERR(mnt)) { 1117 /* 1118 * The filesystem is allowed to return -EISDIR here to indicate 1119 * it doesn't want to automount. For instance, autofs would do 1120 * this so that its userspace daemon can mount on this dentry. 1121 * 1122 * However, we can only permit this if it's a terminal point in 1123 * the path being looked up; if it wasn't then the remainder of 1124 * the path is inaccessible and we should say so. 1125 */ 1126 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT)) 1127 return -EREMOTE; 1128 return PTR_ERR(mnt); 1129 } 1130 1131 if (!mnt) /* mount collision */ 1132 return 0; 1133 1134 if (!*need_mntput) { 1135 /* lock_mount() may release path->mnt on error */ 1136 mntget(path->mnt); 1137 *need_mntput = true; 1138 } 1139 err = finish_automount(mnt, path); 1140 1141 switch (err) { 1142 case -EBUSY: 1143 /* Someone else made a mount here whilst we were busy */ 1144 return 0; 1145 case 0: 1146 path_put(path); 1147 path->mnt = mnt; 1148 path->dentry = dget(mnt->mnt_root); 1149 return 0; 1150 default: 1151 return err; 1152 } 1153 1154 } 1155 1156 /* 1157 * Handle a dentry that is managed in some way. 1158 * - Flagged for transit management (autofs) 1159 * - Flagged as mountpoint 1160 * - Flagged as automount point 1161 * 1162 * This may only be called in refwalk mode. 1163 * 1164 * Serialization is taken care of in namespace.c 1165 */ 1166 static int follow_managed(struct path *path, struct nameidata *nd) 1167 { 1168 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1169 unsigned managed; 1170 bool need_mntput = false; 1171 int ret = 0; 1172 1173 /* Given that we're not holding a lock here, we retain the value in a 1174 * local variable for each dentry as we look at it so that we don't see 1175 * the components of that value change under us */ 1176 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1177 managed &= DCACHE_MANAGED_DENTRY, 1178 unlikely(managed != 0)) { 1179 /* Allow the filesystem to manage the transit without i_mutex 1180 * being held. */ 1181 if (managed & DCACHE_MANAGE_TRANSIT) { 1182 BUG_ON(!path->dentry->d_op); 1183 BUG_ON(!path->dentry->d_op->d_manage); 1184 ret = path->dentry->d_op->d_manage(path->dentry, false); 1185 if (ret < 0) 1186 break; 1187 } 1188 1189 /* Transit to a mounted filesystem. */ 1190 if (managed & DCACHE_MOUNTED) { 1191 struct vfsmount *mounted = lookup_mnt(path); 1192 if (mounted) { 1193 dput(path->dentry); 1194 if (need_mntput) 1195 mntput(path->mnt); 1196 path->mnt = mounted; 1197 path->dentry = dget(mounted->mnt_root); 1198 need_mntput = true; 1199 continue; 1200 } 1201 1202 /* Something is mounted on this dentry in another 1203 * namespace and/or whatever was mounted there in this 1204 * namespace got unmounted before lookup_mnt() could 1205 * get it */ 1206 } 1207 1208 /* Handle an automount point */ 1209 if (managed & DCACHE_NEED_AUTOMOUNT) { 1210 ret = follow_automount(path, nd, &need_mntput); 1211 if (ret < 0) 1212 break; 1213 continue; 1214 } 1215 1216 /* We didn't change the current path point */ 1217 break; 1218 } 1219 1220 if (need_mntput && path->mnt == mnt) 1221 mntput(path->mnt); 1222 if (ret == -EISDIR) 1223 ret = 0; 1224 if (need_mntput) 1225 nd->flags |= LOOKUP_JUMPED; 1226 if (unlikely(ret < 0)) 1227 path_put_conditional(path, nd); 1228 return ret; 1229 } 1230 1231 int follow_down_one(struct path *path) 1232 { 1233 struct vfsmount *mounted; 1234 1235 mounted = lookup_mnt(path); 1236 if (mounted) { 1237 dput(path->dentry); 1238 mntput(path->mnt); 1239 path->mnt = mounted; 1240 path->dentry = dget(mounted->mnt_root); 1241 return 1; 1242 } 1243 return 0; 1244 } 1245 EXPORT_SYMBOL(follow_down_one); 1246 1247 static inline int managed_dentry_rcu(struct dentry *dentry) 1248 { 1249 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1250 dentry->d_op->d_manage(dentry, true) : 0; 1251 } 1252 1253 /* 1254 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1255 * we meet a managed dentry that would need blocking. 1256 */ 1257 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1258 struct inode **inode, unsigned *seqp) 1259 { 1260 for (;;) { 1261 struct mount *mounted; 1262 /* 1263 * Don't forget we might have a non-mountpoint managed dentry 1264 * that wants to block transit. 1265 */ 1266 switch (managed_dentry_rcu(path->dentry)) { 1267 case -ECHILD: 1268 default: 1269 return false; 1270 case -EISDIR: 1271 return true; 1272 case 0: 1273 break; 1274 } 1275 1276 if (!d_mountpoint(path->dentry)) 1277 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1278 1279 mounted = __lookup_mnt(path->mnt, path->dentry); 1280 if (!mounted) 1281 break; 1282 path->mnt = &mounted->mnt; 1283 path->dentry = mounted->mnt.mnt_root; 1284 nd->flags |= LOOKUP_JUMPED; 1285 *seqp = read_seqcount_begin(&path->dentry->d_seq); 1286 /* 1287 * Update the inode too. We don't need to re-check the 1288 * dentry sequence number here after this d_inode read, 1289 * because a mount-point is always pinned. 1290 */ 1291 *inode = path->dentry->d_inode; 1292 } 1293 return !read_seqretry(&mount_lock, nd->m_seq) && 1294 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1295 } 1296 1297 static int follow_dotdot_rcu(struct nameidata *nd) 1298 { 1299 struct inode *inode = nd->inode; 1300 if (!nd->root.mnt) 1301 set_root_rcu(nd); 1302 1303 while (1) { 1304 if (path_equal(&nd->path, &nd->root)) 1305 break; 1306 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1307 struct dentry *old = nd->path.dentry; 1308 struct dentry *parent = old->d_parent; 1309 unsigned seq; 1310 1311 inode = parent->d_inode; 1312 seq = read_seqcount_begin(&parent->d_seq); 1313 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1314 return -ECHILD; 1315 nd->path.dentry = parent; 1316 nd->seq = seq; 1317 if (unlikely(!path_connected(&nd->path))) 1318 return -ENOENT; 1319 break; 1320 } else { 1321 struct mount *mnt = real_mount(nd->path.mnt); 1322 struct mount *mparent = mnt->mnt_parent; 1323 struct dentry *mountpoint = mnt->mnt_mountpoint; 1324 struct inode *inode2 = mountpoint->d_inode; 1325 unsigned seq = read_seqcount_begin(&mountpoint->d_seq); 1326 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1327 return -ECHILD; 1328 if (&mparent->mnt == nd->path.mnt) 1329 break; 1330 /* we know that mountpoint was pinned */ 1331 nd->path.dentry = mountpoint; 1332 nd->path.mnt = &mparent->mnt; 1333 inode = inode2; 1334 nd->seq = seq; 1335 } 1336 } 1337 while (unlikely(d_mountpoint(nd->path.dentry))) { 1338 struct mount *mounted; 1339 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1341 return -ECHILD; 1342 if (!mounted) 1343 break; 1344 nd->path.mnt = &mounted->mnt; 1345 nd->path.dentry = mounted->mnt.mnt_root; 1346 inode = nd->path.dentry->d_inode; 1347 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1348 } 1349 nd->inode = inode; 1350 return 0; 1351 } 1352 1353 /* 1354 * Follow down to the covering mount currently visible to userspace. At each 1355 * point, the filesystem owning that dentry may be queried as to whether the 1356 * caller is permitted to proceed or not. 1357 */ 1358 int follow_down(struct path *path) 1359 { 1360 unsigned managed; 1361 int ret; 1362 1363 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1364 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1365 /* Allow the filesystem to manage the transit without i_mutex 1366 * being held. 1367 * 1368 * We indicate to the filesystem if someone is trying to mount 1369 * something here. This gives autofs the chance to deny anyone 1370 * other than its daemon the right to mount on its 1371 * superstructure. 1372 * 1373 * The filesystem may sleep at this point. 1374 */ 1375 if (managed & DCACHE_MANAGE_TRANSIT) { 1376 BUG_ON(!path->dentry->d_op); 1377 BUG_ON(!path->dentry->d_op->d_manage); 1378 ret = path->dentry->d_op->d_manage( 1379 path->dentry, false); 1380 if (ret < 0) 1381 return ret == -EISDIR ? 0 : ret; 1382 } 1383 1384 /* Transit to a mounted filesystem. */ 1385 if (managed & DCACHE_MOUNTED) { 1386 struct vfsmount *mounted = lookup_mnt(path); 1387 if (!mounted) 1388 break; 1389 dput(path->dentry); 1390 mntput(path->mnt); 1391 path->mnt = mounted; 1392 path->dentry = dget(mounted->mnt_root); 1393 continue; 1394 } 1395 1396 /* Don't handle automount points here */ 1397 break; 1398 } 1399 return 0; 1400 } 1401 EXPORT_SYMBOL(follow_down); 1402 1403 /* 1404 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1405 */ 1406 static void follow_mount(struct path *path) 1407 { 1408 while (d_mountpoint(path->dentry)) { 1409 struct vfsmount *mounted = lookup_mnt(path); 1410 if (!mounted) 1411 break; 1412 dput(path->dentry); 1413 mntput(path->mnt); 1414 path->mnt = mounted; 1415 path->dentry = dget(mounted->mnt_root); 1416 } 1417 } 1418 1419 static int follow_dotdot(struct nameidata *nd) 1420 { 1421 if (!nd->root.mnt) 1422 set_root(nd); 1423 1424 while(1) { 1425 struct dentry *old = nd->path.dentry; 1426 1427 if (nd->path.dentry == nd->root.dentry && 1428 nd->path.mnt == nd->root.mnt) { 1429 break; 1430 } 1431 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1432 /* rare case of legitimate dget_parent()... */ 1433 nd->path.dentry = dget_parent(nd->path.dentry); 1434 dput(old); 1435 if (unlikely(!path_connected(&nd->path))) 1436 return -ENOENT; 1437 break; 1438 } 1439 if (!follow_up(&nd->path)) 1440 break; 1441 } 1442 follow_mount(&nd->path); 1443 nd->inode = nd->path.dentry->d_inode; 1444 return 0; 1445 } 1446 1447 /* 1448 * This looks up the name in dcache, possibly revalidates the old dentry and 1449 * allocates a new one if not found or not valid. In the need_lookup argument 1450 * returns whether i_op->lookup is necessary. 1451 * 1452 * dir->d_inode->i_mutex must be held 1453 */ 1454 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1455 unsigned int flags, bool *need_lookup) 1456 { 1457 struct dentry *dentry; 1458 int error; 1459 1460 *need_lookup = false; 1461 dentry = d_lookup(dir, name); 1462 if (dentry) { 1463 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1464 error = d_revalidate(dentry, flags); 1465 if (unlikely(error <= 0)) { 1466 if (error < 0) { 1467 dput(dentry); 1468 return ERR_PTR(error); 1469 } else { 1470 d_invalidate(dentry); 1471 dput(dentry); 1472 dentry = NULL; 1473 } 1474 } 1475 } 1476 } 1477 1478 if (!dentry) { 1479 dentry = d_alloc(dir, name); 1480 if (unlikely(!dentry)) 1481 return ERR_PTR(-ENOMEM); 1482 1483 *need_lookup = true; 1484 } 1485 return dentry; 1486 } 1487 1488 /* 1489 * Call i_op->lookup on the dentry. The dentry must be negative and 1490 * unhashed. 1491 * 1492 * dir->d_inode->i_mutex must be held 1493 */ 1494 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1495 unsigned int flags) 1496 { 1497 struct dentry *old; 1498 1499 /* Don't create child dentry for a dead directory. */ 1500 if (unlikely(IS_DEADDIR(dir))) { 1501 dput(dentry); 1502 return ERR_PTR(-ENOENT); 1503 } 1504 1505 old = dir->i_op->lookup(dir, dentry, flags); 1506 if (unlikely(old)) { 1507 dput(dentry); 1508 dentry = old; 1509 } 1510 return dentry; 1511 } 1512 1513 static struct dentry *__lookup_hash(struct qstr *name, 1514 struct dentry *base, unsigned int flags) 1515 { 1516 bool need_lookup; 1517 struct dentry *dentry; 1518 1519 dentry = lookup_dcache(name, base, flags, &need_lookup); 1520 if (!need_lookup) 1521 return dentry; 1522 1523 return lookup_real(base->d_inode, dentry, flags); 1524 } 1525 1526 /* 1527 * It's more convoluted than I'd like it to be, but... it's still fairly 1528 * small and for now I'd prefer to have fast path as straight as possible. 1529 * It _is_ time-critical. 1530 */ 1531 static int lookup_fast(struct nameidata *nd, 1532 struct path *path, struct inode **inode, 1533 unsigned *seqp) 1534 { 1535 struct vfsmount *mnt = nd->path.mnt; 1536 struct dentry *dentry, *parent = nd->path.dentry; 1537 int need_reval = 1; 1538 int status = 1; 1539 int err; 1540 1541 /* 1542 * Rename seqlock is not required here because in the off chance 1543 * of a false negative due to a concurrent rename, we're going to 1544 * do the non-racy lookup, below. 1545 */ 1546 if (nd->flags & LOOKUP_RCU) { 1547 unsigned seq; 1548 bool negative; 1549 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1550 if (!dentry) 1551 goto unlazy; 1552 1553 /* 1554 * This sequence count validates that the inode matches 1555 * the dentry name information from lookup. 1556 */ 1557 *inode = d_backing_inode(dentry); 1558 negative = d_is_negative(dentry); 1559 if (read_seqcount_retry(&dentry->d_seq, seq)) 1560 return -ECHILD; 1561 1562 /* 1563 * This sequence count validates that the parent had no 1564 * changes while we did the lookup of the dentry above. 1565 * 1566 * The memory barrier in read_seqcount_begin of child is 1567 * enough, we can use __read_seqcount_retry here. 1568 */ 1569 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1570 return -ECHILD; 1571 1572 *seqp = seq; 1573 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1574 status = d_revalidate(dentry, nd->flags); 1575 if (unlikely(status <= 0)) { 1576 if (status != -ECHILD) 1577 need_reval = 0; 1578 goto unlazy; 1579 } 1580 } 1581 /* 1582 * Note: do negative dentry check after revalidation in 1583 * case that drops it. 1584 */ 1585 if (negative) 1586 return -ENOENT; 1587 path->mnt = mnt; 1588 path->dentry = dentry; 1589 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1590 return 0; 1591 unlazy: 1592 if (unlazy_walk(nd, dentry, seq)) 1593 return -ECHILD; 1594 } else { 1595 dentry = __d_lookup(parent, &nd->last); 1596 } 1597 1598 if (unlikely(!dentry)) 1599 goto need_lookup; 1600 1601 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1602 status = d_revalidate(dentry, nd->flags); 1603 if (unlikely(status <= 0)) { 1604 if (status < 0) { 1605 dput(dentry); 1606 return status; 1607 } 1608 d_invalidate(dentry); 1609 dput(dentry); 1610 goto need_lookup; 1611 } 1612 1613 if (unlikely(d_is_negative(dentry))) { 1614 dput(dentry); 1615 return -ENOENT; 1616 } 1617 path->mnt = mnt; 1618 path->dentry = dentry; 1619 err = follow_managed(path, nd); 1620 if (likely(!err)) 1621 *inode = d_backing_inode(path->dentry); 1622 return err; 1623 1624 need_lookup: 1625 return 1; 1626 } 1627 1628 /* Fast lookup failed, do it the slow way */ 1629 static int lookup_slow(struct nameidata *nd, struct path *path) 1630 { 1631 struct dentry *dentry, *parent; 1632 1633 parent = nd->path.dentry; 1634 BUG_ON(nd->inode != parent->d_inode); 1635 1636 mutex_lock(&parent->d_inode->i_mutex); 1637 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1638 mutex_unlock(&parent->d_inode->i_mutex); 1639 if (IS_ERR(dentry)) 1640 return PTR_ERR(dentry); 1641 path->mnt = nd->path.mnt; 1642 path->dentry = dentry; 1643 return follow_managed(path, nd); 1644 } 1645 1646 static inline int may_lookup(struct nameidata *nd) 1647 { 1648 if (nd->flags & LOOKUP_RCU) { 1649 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1650 if (err != -ECHILD) 1651 return err; 1652 if (unlazy_walk(nd, NULL, 0)) 1653 return -ECHILD; 1654 } 1655 return inode_permission(nd->inode, MAY_EXEC); 1656 } 1657 1658 static inline int handle_dots(struct nameidata *nd, int type) 1659 { 1660 if (type == LAST_DOTDOT) { 1661 if (nd->flags & LOOKUP_RCU) { 1662 return follow_dotdot_rcu(nd); 1663 } else 1664 return follow_dotdot(nd); 1665 } 1666 return 0; 1667 } 1668 1669 static int pick_link(struct nameidata *nd, struct path *link, 1670 struct inode *inode, unsigned seq) 1671 { 1672 int error; 1673 struct saved *last; 1674 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) { 1675 path_to_nameidata(link, nd); 1676 return -ELOOP; 1677 } 1678 if (!(nd->flags & LOOKUP_RCU)) { 1679 if (link->mnt == nd->path.mnt) 1680 mntget(link->mnt); 1681 } 1682 error = nd_alloc_stack(nd); 1683 if (unlikely(error)) { 1684 if (error == -ECHILD) { 1685 if (unlikely(unlazy_link(nd, link, seq))) 1686 return -ECHILD; 1687 error = nd_alloc_stack(nd); 1688 } 1689 if (error) { 1690 path_put(link); 1691 return error; 1692 } 1693 } 1694 1695 last = nd->stack + nd->depth++; 1696 last->link = *link; 1697 last->cookie = NULL; 1698 last->inode = inode; 1699 last->seq = seq; 1700 return 1; 1701 } 1702 1703 /* 1704 * Do we need to follow links? We _really_ want to be able 1705 * to do this check without having to look at inode->i_op, 1706 * so we keep a cache of "no, this doesn't need follow_link" 1707 * for the common case. 1708 */ 1709 static inline int should_follow_link(struct nameidata *nd, struct path *link, 1710 int follow, 1711 struct inode *inode, unsigned seq) 1712 { 1713 if (likely(!d_is_symlink(link->dentry))) 1714 return 0; 1715 if (!follow) 1716 return 0; 1717 return pick_link(nd, link, inode, seq); 1718 } 1719 1720 enum {WALK_GET = 1, WALK_PUT = 2}; 1721 1722 static int walk_component(struct nameidata *nd, int flags) 1723 { 1724 struct path path; 1725 struct inode *inode; 1726 unsigned seq; 1727 int err; 1728 /* 1729 * "." and ".." are special - ".." especially so because it has 1730 * to be able to know about the current root directory and 1731 * parent relationships. 1732 */ 1733 if (unlikely(nd->last_type != LAST_NORM)) { 1734 err = handle_dots(nd, nd->last_type); 1735 if (flags & WALK_PUT) 1736 put_link(nd); 1737 return err; 1738 } 1739 err = lookup_fast(nd, &path, &inode, &seq); 1740 if (unlikely(err)) { 1741 if (err < 0) 1742 return err; 1743 1744 err = lookup_slow(nd, &path); 1745 if (err < 0) 1746 return err; 1747 1748 inode = d_backing_inode(path.dentry); 1749 seq = 0; /* we are already out of RCU mode */ 1750 err = -ENOENT; 1751 if (d_is_negative(path.dentry)) 1752 goto out_path_put; 1753 } 1754 1755 if (flags & WALK_PUT) 1756 put_link(nd); 1757 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq); 1758 if (unlikely(err)) 1759 return err; 1760 path_to_nameidata(&path, nd); 1761 nd->inode = inode; 1762 nd->seq = seq; 1763 return 0; 1764 1765 out_path_put: 1766 path_to_nameidata(&path, nd); 1767 return err; 1768 } 1769 1770 /* 1771 * We can do the critical dentry name comparison and hashing 1772 * operations one word at a time, but we are limited to: 1773 * 1774 * - Architectures with fast unaligned word accesses. We could 1775 * do a "get_unaligned()" if this helps and is sufficiently 1776 * fast. 1777 * 1778 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1779 * do not trap on the (extremely unlikely) case of a page 1780 * crossing operation. 1781 * 1782 * - Furthermore, we need an efficient 64-bit compile for the 1783 * 64-bit case in order to generate the "number of bytes in 1784 * the final mask". Again, that could be replaced with a 1785 * efficient population count instruction or similar. 1786 */ 1787 #ifdef CONFIG_DCACHE_WORD_ACCESS 1788 1789 #include <asm/word-at-a-time.h> 1790 1791 #ifdef CONFIG_64BIT 1792 1793 static inline unsigned int fold_hash(unsigned long hash) 1794 { 1795 return hash_64(hash, 32); 1796 } 1797 1798 #else /* 32-bit case */ 1799 1800 #define fold_hash(x) (x) 1801 1802 #endif 1803 1804 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1805 { 1806 unsigned long a, mask; 1807 unsigned long hash = 0; 1808 1809 for (;;) { 1810 a = load_unaligned_zeropad(name); 1811 if (len < sizeof(unsigned long)) 1812 break; 1813 hash += a; 1814 hash *= 9; 1815 name += sizeof(unsigned long); 1816 len -= sizeof(unsigned long); 1817 if (!len) 1818 goto done; 1819 } 1820 mask = bytemask_from_count(len); 1821 hash += mask & a; 1822 done: 1823 return fold_hash(hash); 1824 } 1825 EXPORT_SYMBOL(full_name_hash); 1826 1827 /* 1828 * Calculate the length and hash of the path component, and 1829 * return the "hash_len" as the result. 1830 */ 1831 static inline u64 hash_name(const char *name) 1832 { 1833 unsigned long a, b, adata, bdata, mask, hash, len; 1834 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1835 1836 hash = a = 0; 1837 len = -sizeof(unsigned long); 1838 do { 1839 hash = (hash + a) * 9; 1840 len += sizeof(unsigned long); 1841 a = load_unaligned_zeropad(name+len); 1842 b = a ^ REPEAT_BYTE('/'); 1843 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1844 1845 adata = prep_zero_mask(a, adata, &constants); 1846 bdata = prep_zero_mask(b, bdata, &constants); 1847 1848 mask = create_zero_mask(adata | bdata); 1849 1850 hash += a & zero_bytemask(mask); 1851 len += find_zero(mask); 1852 return hashlen_create(fold_hash(hash), len); 1853 } 1854 1855 #else 1856 1857 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1858 { 1859 unsigned long hash = init_name_hash(); 1860 while (len--) 1861 hash = partial_name_hash(*name++, hash); 1862 return end_name_hash(hash); 1863 } 1864 EXPORT_SYMBOL(full_name_hash); 1865 1866 /* 1867 * We know there's a real path component here of at least 1868 * one character. 1869 */ 1870 static inline u64 hash_name(const char *name) 1871 { 1872 unsigned long hash = init_name_hash(); 1873 unsigned long len = 0, c; 1874 1875 c = (unsigned char)*name; 1876 do { 1877 len++; 1878 hash = partial_name_hash(c, hash); 1879 c = (unsigned char)name[len]; 1880 } while (c && c != '/'); 1881 return hashlen_create(end_name_hash(hash), len); 1882 } 1883 1884 #endif 1885 1886 /* 1887 * Name resolution. 1888 * This is the basic name resolution function, turning a pathname into 1889 * the final dentry. We expect 'base' to be positive and a directory. 1890 * 1891 * Returns 0 and nd will have valid dentry and mnt on success. 1892 * Returns error and drops reference to input namei data on failure. 1893 */ 1894 static int link_path_walk(const char *name, struct nameidata *nd) 1895 { 1896 int err; 1897 1898 while (*name=='/') 1899 name++; 1900 if (!*name) 1901 return 0; 1902 1903 /* At this point we know we have a real path component. */ 1904 for(;;) { 1905 u64 hash_len; 1906 int type; 1907 1908 err = may_lookup(nd); 1909 if (err) 1910 return err; 1911 1912 hash_len = hash_name(name); 1913 1914 type = LAST_NORM; 1915 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1916 case 2: 1917 if (name[1] == '.') { 1918 type = LAST_DOTDOT; 1919 nd->flags |= LOOKUP_JUMPED; 1920 } 1921 break; 1922 case 1: 1923 type = LAST_DOT; 1924 } 1925 if (likely(type == LAST_NORM)) { 1926 struct dentry *parent = nd->path.dentry; 1927 nd->flags &= ~LOOKUP_JUMPED; 1928 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1929 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1930 err = parent->d_op->d_hash(parent, &this); 1931 if (err < 0) 1932 return err; 1933 hash_len = this.hash_len; 1934 name = this.name; 1935 } 1936 } 1937 1938 nd->last.hash_len = hash_len; 1939 nd->last.name = name; 1940 nd->last_type = type; 1941 1942 name += hashlen_len(hash_len); 1943 if (!*name) 1944 goto OK; 1945 /* 1946 * If it wasn't NUL, we know it was '/'. Skip that 1947 * slash, and continue until no more slashes. 1948 */ 1949 do { 1950 name++; 1951 } while (unlikely(*name == '/')); 1952 if (unlikely(!*name)) { 1953 OK: 1954 /* pathname body, done */ 1955 if (!nd->depth) 1956 return 0; 1957 name = nd->stack[nd->depth - 1].name; 1958 /* trailing symlink, done */ 1959 if (!name) 1960 return 0; 1961 /* last component of nested symlink */ 1962 err = walk_component(nd, WALK_GET | WALK_PUT); 1963 } else { 1964 err = walk_component(nd, WALK_GET); 1965 } 1966 if (err < 0) 1967 return err; 1968 1969 if (err) { 1970 const char *s = get_link(nd); 1971 1972 if (unlikely(IS_ERR(s))) 1973 return PTR_ERR(s); 1974 err = 0; 1975 if (unlikely(!s)) { 1976 /* jumped */ 1977 put_link(nd); 1978 } else { 1979 nd->stack[nd->depth - 1].name = name; 1980 name = s; 1981 continue; 1982 } 1983 } 1984 if (unlikely(!d_can_lookup(nd->path.dentry))) { 1985 if (nd->flags & LOOKUP_RCU) { 1986 if (unlazy_walk(nd, NULL, 0)) 1987 return -ECHILD; 1988 } 1989 return -ENOTDIR; 1990 } 1991 } 1992 } 1993 1994 static const char *path_init(struct nameidata *nd, unsigned flags) 1995 { 1996 int retval = 0; 1997 const char *s = nd->name->name; 1998 1999 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 2000 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 2001 nd->depth = 0; 2002 nd->total_link_count = 0; 2003 if (flags & LOOKUP_ROOT) { 2004 struct dentry *root = nd->root.dentry; 2005 struct inode *inode = root->d_inode; 2006 if (*s) { 2007 if (!d_can_lookup(root)) 2008 return ERR_PTR(-ENOTDIR); 2009 retval = inode_permission(inode, MAY_EXEC); 2010 if (retval) 2011 return ERR_PTR(retval); 2012 } 2013 nd->path = nd->root; 2014 nd->inode = inode; 2015 if (flags & LOOKUP_RCU) { 2016 rcu_read_lock(); 2017 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2018 nd->root_seq = nd->seq; 2019 nd->m_seq = read_seqbegin(&mount_lock); 2020 } else { 2021 path_get(&nd->path); 2022 } 2023 return s; 2024 } 2025 2026 nd->root.mnt = NULL; 2027 2028 nd->m_seq = read_seqbegin(&mount_lock); 2029 if (*s == '/') { 2030 if (flags & LOOKUP_RCU) { 2031 rcu_read_lock(); 2032 set_root_rcu(nd); 2033 nd->seq = nd->root_seq; 2034 } else { 2035 set_root(nd); 2036 path_get(&nd->root); 2037 } 2038 nd->path = nd->root; 2039 } else if (nd->dfd == AT_FDCWD) { 2040 if (flags & LOOKUP_RCU) { 2041 struct fs_struct *fs = current->fs; 2042 unsigned seq; 2043 2044 rcu_read_lock(); 2045 2046 do { 2047 seq = read_seqcount_begin(&fs->seq); 2048 nd->path = fs->pwd; 2049 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2050 } while (read_seqcount_retry(&fs->seq, seq)); 2051 } else { 2052 get_fs_pwd(current->fs, &nd->path); 2053 } 2054 } else { 2055 /* Caller must check execute permissions on the starting path component */ 2056 struct fd f = fdget_raw(nd->dfd); 2057 struct dentry *dentry; 2058 2059 if (!f.file) 2060 return ERR_PTR(-EBADF); 2061 2062 dentry = f.file->f_path.dentry; 2063 2064 if (*s) { 2065 if (!d_can_lookup(dentry)) { 2066 fdput(f); 2067 return ERR_PTR(-ENOTDIR); 2068 } 2069 } 2070 2071 nd->path = f.file->f_path; 2072 if (flags & LOOKUP_RCU) { 2073 rcu_read_lock(); 2074 nd->inode = nd->path.dentry->d_inode; 2075 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2076 } else { 2077 path_get(&nd->path); 2078 nd->inode = nd->path.dentry->d_inode; 2079 } 2080 fdput(f); 2081 return s; 2082 } 2083 2084 nd->inode = nd->path.dentry->d_inode; 2085 if (!(flags & LOOKUP_RCU)) 2086 return s; 2087 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 2088 return s; 2089 if (!(nd->flags & LOOKUP_ROOT)) 2090 nd->root.mnt = NULL; 2091 rcu_read_unlock(); 2092 return ERR_PTR(-ECHILD); 2093 } 2094 2095 static const char *trailing_symlink(struct nameidata *nd) 2096 { 2097 const char *s; 2098 int error = may_follow_link(nd); 2099 if (unlikely(error)) 2100 return ERR_PTR(error); 2101 nd->flags |= LOOKUP_PARENT; 2102 nd->stack[0].name = NULL; 2103 s = get_link(nd); 2104 return s ? s : ""; 2105 } 2106 2107 static inline int lookup_last(struct nameidata *nd) 2108 { 2109 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2110 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2111 2112 nd->flags &= ~LOOKUP_PARENT; 2113 return walk_component(nd, 2114 nd->flags & LOOKUP_FOLLOW 2115 ? nd->depth 2116 ? WALK_PUT | WALK_GET 2117 : WALK_GET 2118 : 0); 2119 } 2120 2121 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2122 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2123 { 2124 const char *s = path_init(nd, flags); 2125 int err; 2126 2127 if (IS_ERR(s)) 2128 return PTR_ERR(s); 2129 while (!(err = link_path_walk(s, nd)) 2130 && ((err = lookup_last(nd)) > 0)) { 2131 s = trailing_symlink(nd); 2132 if (IS_ERR(s)) { 2133 err = PTR_ERR(s); 2134 break; 2135 } 2136 } 2137 if (!err) 2138 err = complete_walk(nd); 2139 2140 if (!err && nd->flags & LOOKUP_DIRECTORY) 2141 if (!d_can_lookup(nd->path.dentry)) 2142 err = -ENOTDIR; 2143 if (!err) { 2144 *path = nd->path; 2145 nd->path.mnt = NULL; 2146 nd->path.dentry = NULL; 2147 } 2148 terminate_walk(nd); 2149 return err; 2150 } 2151 2152 static int filename_lookup(int dfd, struct filename *name, unsigned flags, 2153 struct path *path, struct path *root) 2154 { 2155 int retval; 2156 struct nameidata nd; 2157 if (IS_ERR(name)) 2158 return PTR_ERR(name); 2159 if (unlikely(root)) { 2160 nd.root = *root; 2161 flags |= LOOKUP_ROOT; 2162 } 2163 set_nameidata(&nd, dfd, name); 2164 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2165 if (unlikely(retval == -ECHILD)) 2166 retval = path_lookupat(&nd, flags, path); 2167 if (unlikely(retval == -ESTALE)) 2168 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2169 2170 if (likely(!retval)) 2171 audit_inode(name, path->dentry, flags & LOOKUP_PARENT); 2172 restore_nameidata(); 2173 putname(name); 2174 return retval; 2175 } 2176 2177 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2178 static int path_parentat(struct nameidata *nd, unsigned flags, 2179 struct path *parent) 2180 { 2181 const char *s = path_init(nd, flags); 2182 int err; 2183 if (IS_ERR(s)) 2184 return PTR_ERR(s); 2185 err = link_path_walk(s, nd); 2186 if (!err) 2187 err = complete_walk(nd); 2188 if (!err) { 2189 *parent = nd->path; 2190 nd->path.mnt = NULL; 2191 nd->path.dentry = NULL; 2192 } 2193 terminate_walk(nd); 2194 return err; 2195 } 2196 2197 static struct filename *filename_parentat(int dfd, struct filename *name, 2198 unsigned int flags, struct path *parent, 2199 struct qstr *last, int *type) 2200 { 2201 int retval; 2202 struct nameidata nd; 2203 2204 if (IS_ERR(name)) 2205 return name; 2206 set_nameidata(&nd, dfd, name); 2207 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2208 if (unlikely(retval == -ECHILD)) 2209 retval = path_parentat(&nd, flags, parent); 2210 if (unlikely(retval == -ESTALE)) 2211 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2212 if (likely(!retval)) { 2213 *last = nd.last; 2214 *type = nd.last_type; 2215 audit_inode(name, parent->dentry, LOOKUP_PARENT); 2216 } else { 2217 putname(name); 2218 name = ERR_PTR(retval); 2219 } 2220 restore_nameidata(); 2221 return name; 2222 } 2223 2224 /* does lookup, returns the object with parent locked */ 2225 struct dentry *kern_path_locked(const char *name, struct path *path) 2226 { 2227 struct filename *filename; 2228 struct dentry *d; 2229 struct qstr last; 2230 int type; 2231 2232 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2233 &last, &type); 2234 if (IS_ERR(filename)) 2235 return ERR_CAST(filename); 2236 if (unlikely(type != LAST_NORM)) { 2237 path_put(path); 2238 putname(filename); 2239 return ERR_PTR(-EINVAL); 2240 } 2241 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2242 d = __lookup_hash(&last, path->dentry, 0); 2243 if (IS_ERR(d)) { 2244 mutex_unlock(&path->dentry->d_inode->i_mutex); 2245 path_put(path); 2246 } 2247 putname(filename); 2248 return d; 2249 } 2250 2251 int kern_path(const char *name, unsigned int flags, struct path *path) 2252 { 2253 return filename_lookup(AT_FDCWD, getname_kernel(name), 2254 flags, path, NULL); 2255 } 2256 EXPORT_SYMBOL(kern_path); 2257 2258 /** 2259 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2260 * @dentry: pointer to dentry of the base directory 2261 * @mnt: pointer to vfs mount of the base directory 2262 * @name: pointer to file name 2263 * @flags: lookup flags 2264 * @path: pointer to struct path to fill 2265 */ 2266 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2267 const char *name, unsigned int flags, 2268 struct path *path) 2269 { 2270 struct path root = {.mnt = mnt, .dentry = dentry}; 2271 /* the first argument of filename_lookup() is ignored with root */ 2272 return filename_lookup(AT_FDCWD, getname_kernel(name), 2273 flags , path, &root); 2274 } 2275 EXPORT_SYMBOL(vfs_path_lookup); 2276 2277 /** 2278 * lookup_one_len - filesystem helper to lookup single pathname component 2279 * @name: pathname component to lookup 2280 * @base: base directory to lookup from 2281 * @len: maximum length @len should be interpreted to 2282 * 2283 * Note that this routine is purely a helper for filesystem usage and should 2284 * not be called by generic code. 2285 */ 2286 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2287 { 2288 struct qstr this; 2289 unsigned int c; 2290 int err; 2291 2292 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2293 2294 this.name = name; 2295 this.len = len; 2296 this.hash = full_name_hash(name, len); 2297 if (!len) 2298 return ERR_PTR(-EACCES); 2299 2300 if (unlikely(name[0] == '.')) { 2301 if (len < 2 || (len == 2 && name[1] == '.')) 2302 return ERR_PTR(-EACCES); 2303 } 2304 2305 while (len--) { 2306 c = *(const unsigned char *)name++; 2307 if (c == '/' || c == '\0') 2308 return ERR_PTR(-EACCES); 2309 } 2310 /* 2311 * See if the low-level filesystem might want 2312 * to use its own hash.. 2313 */ 2314 if (base->d_flags & DCACHE_OP_HASH) { 2315 int err = base->d_op->d_hash(base, &this); 2316 if (err < 0) 2317 return ERR_PTR(err); 2318 } 2319 2320 err = inode_permission(base->d_inode, MAY_EXEC); 2321 if (err) 2322 return ERR_PTR(err); 2323 2324 return __lookup_hash(&this, base, 0); 2325 } 2326 EXPORT_SYMBOL(lookup_one_len); 2327 2328 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2329 struct path *path, int *empty) 2330 { 2331 return filename_lookup(dfd, getname_flags(name, flags, empty), 2332 flags, path, NULL); 2333 } 2334 EXPORT_SYMBOL(user_path_at_empty); 2335 2336 /* 2337 * NB: most callers don't do anything directly with the reference to the 2338 * to struct filename, but the nd->last pointer points into the name string 2339 * allocated by getname. So we must hold the reference to it until all 2340 * path-walking is complete. 2341 */ 2342 static inline struct filename * 2343 user_path_parent(int dfd, const char __user *path, 2344 struct path *parent, 2345 struct qstr *last, 2346 int *type, 2347 unsigned int flags) 2348 { 2349 /* only LOOKUP_REVAL is allowed in extra flags */ 2350 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL, 2351 parent, last, type); 2352 } 2353 2354 /** 2355 * mountpoint_last - look up last component for umount 2356 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2357 * @path: pointer to container for result 2358 * 2359 * This is a special lookup_last function just for umount. In this case, we 2360 * need to resolve the path without doing any revalidation. 2361 * 2362 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2363 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2364 * in almost all cases, this lookup will be served out of the dcache. The only 2365 * cases where it won't are if nd->last refers to a symlink or the path is 2366 * bogus and it doesn't exist. 2367 * 2368 * Returns: 2369 * -error: if there was an error during lookup. This includes -ENOENT if the 2370 * lookup found a negative dentry. The nd->path reference will also be 2371 * put in this case. 2372 * 2373 * 0: if we successfully resolved nd->path and found it to not to be a 2374 * symlink that needs to be followed. "path" will also be populated. 2375 * The nd->path reference will also be put. 2376 * 2377 * 1: if we successfully resolved nd->last and found it to be a symlink 2378 * that needs to be followed. "path" will be populated with the path 2379 * to the link, and nd->path will *not* be put. 2380 */ 2381 static int 2382 mountpoint_last(struct nameidata *nd, struct path *path) 2383 { 2384 int error = 0; 2385 struct dentry *dentry; 2386 struct dentry *dir = nd->path.dentry; 2387 2388 /* If we're in rcuwalk, drop out of it to handle last component */ 2389 if (nd->flags & LOOKUP_RCU) { 2390 if (unlazy_walk(nd, NULL, 0)) 2391 return -ECHILD; 2392 } 2393 2394 nd->flags &= ~LOOKUP_PARENT; 2395 2396 if (unlikely(nd->last_type != LAST_NORM)) { 2397 error = handle_dots(nd, nd->last_type); 2398 if (error) 2399 return error; 2400 dentry = dget(nd->path.dentry); 2401 goto done; 2402 } 2403 2404 mutex_lock(&dir->d_inode->i_mutex); 2405 dentry = d_lookup(dir, &nd->last); 2406 if (!dentry) { 2407 /* 2408 * No cached dentry. Mounted dentries are pinned in the cache, 2409 * so that means that this dentry is probably a symlink or the 2410 * path doesn't actually point to a mounted dentry. 2411 */ 2412 dentry = d_alloc(dir, &nd->last); 2413 if (!dentry) { 2414 mutex_unlock(&dir->d_inode->i_mutex); 2415 return -ENOMEM; 2416 } 2417 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2418 if (IS_ERR(dentry)) { 2419 mutex_unlock(&dir->d_inode->i_mutex); 2420 return PTR_ERR(dentry); 2421 } 2422 } 2423 mutex_unlock(&dir->d_inode->i_mutex); 2424 2425 done: 2426 if (d_is_negative(dentry)) { 2427 dput(dentry); 2428 return -ENOENT; 2429 } 2430 if (nd->depth) 2431 put_link(nd); 2432 path->dentry = dentry; 2433 path->mnt = nd->path.mnt; 2434 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW, 2435 d_backing_inode(dentry), 0); 2436 if (unlikely(error)) 2437 return error; 2438 mntget(path->mnt); 2439 follow_mount(path); 2440 return 0; 2441 } 2442 2443 /** 2444 * path_mountpoint - look up a path to be umounted 2445 * @nd: lookup context 2446 * @flags: lookup flags 2447 * @path: pointer to container for result 2448 * 2449 * Look up the given name, but don't attempt to revalidate the last component. 2450 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2451 */ 2452 static int 2453 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path) 2454 { 2455 const char *s = path_init(nd, flags); 2456 int err; 2457 if (IS_ERR(s)) 2458 return PTR_ERR(s); 2459 while (!(err = link_path_walk(s, nd)) && 2460 (err = mountpoint_last(nd, path)) > 0) { 2461 s = trailing_symlink(nd); 2462 if (IS_ERR(s)) { 2463 err = PTR_ERR(s); 2464 break; 2465 } 2466 } 2467 terminate_walk(nd); 2468 return err; 2469 } 2470 2471 static int 2472 filename_mountpoint(int dfd, struct filename *name, struct path *path, 2473 unsigned int flags) 2474 { 2475 struct nameidata nd; 2476 int error; 2477 if (IS_ERR(name)) 2478 return PTR_ERR(name); 2479 set_nameidata(&nd, dfd, name); 2480 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path); 2481 if (unlikely(error == -ECHILD)) 2482 error = path_mountpoint(&nd, flags, path); 2483 if (unlikely(error == -ESTALE)) 2484 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path); 2485 if (likely(!error)) 2486 audit_inode(name, path->dentry, 0); 2487 restore_nameidata(); 2488 putname(name); 2489 return error; 2490 } 2491 2492 /** 2493 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2494 * @dfd: directory file descriptor 2495 * @name: pathname from userland 2496 * @flags: lookup flags 2497 * @path: pointer to container to hold result 2498 * 2499 * A umount is a special case for path walking. We're not actually interested 2500 * in the inode in this situation, and ESTALE errors can be a problem. We 2501 * simply want track down the dentry and vfsmount attached at the mountpoint 2502 * and avoid revalidating the last component. 2503 * 2504 * Returns 0 and populates "path" on success. 2505 */ 2506 int 2507 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2508 struct path *path) 2509 { 2510 return filename_mountpoint(dfd, getname(name), path, flags); 2511 } 2512 2513 int 2514 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2515 unsigned int flags) 2516 { 2517 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2518 } 2519 EXPORT_SYMBOL(kern_path_mountpoint); 2520 2521 int __check_sticky(struct inode *dir, struct inode *inode) 2522 { 2523 kuid_t fsuid = current_fsuid(); 2524 2525 if (uid_eq(inode->i_uid, fsuid)) 2526 return 0; 2527 if (uid_eq(dir->i_uid, fsuid)) 2528 return 0; 2529 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2530 } 2531 EXPORT_SYMBOL(__check_sticky); 2532 2533 /* 2534 * Check whether we can remove a link victim from directory dir, check 2535 * whether the type of victim is right. 2536 * 1. We can't do it if dir is read-only (done in permission()) 2537 * 2. We should have write and exec permissions on dir 2538 * 3. We can't remove anything from append-only dir 2539 * 4. We can't do anything with immutable dir (done in permission()) 2540 * 5. If the sticky bit on dir is set we should either 2541 * a. be owner of dir, or 2542 * b. be owner of victim, or 2543 * c. have CAP_FOWNER capability 2544 * 6. If the victim is append-only or immutable we can't do antyhing with 2545 * links pointing to it. 2546 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2547 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2548 * 9. We can't remove a root or mountpoint. 2549 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2550 * nfs_async_unlink(). 2551 */ 2552 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2553 { 2554 struct inode *inode = d_backing_inode(victim); 2555 int error; 2556 2557 if (d_is_negative(victim)) 2558 return -ENOENT; 2559 BUG_ON(!inode); 2560 2561 BUG_ON(victim->d_parent->d_inode != dir); 2562 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2563 2564 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2565 if (error) 2566 return error; 2567 if (IS_APPEND(dir)) 2568 return -EPERM; 2569 2570 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2571 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2572 return -EPERM; 2573 if (isdir) { 2574 if (!d_is_dir(victim)) 2575 return -ENOTDIR; 2576 if (IS_ROOT(victim)) 2577 return -EBUSY; 2578 } else if (d_is_dir(victim)) 2579 return -EISDIR; 2580 if (IS_DEADDIR(dir)) 2581 return -ENOENT; 2582 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2583 return -EBUSY; 2584 return 0; 2585 } 2586 2587 /* Check whether we can create an object with dentry child in directory 2588 * dir. 2589 * 1. We can't do it if child already exists (open has special treatment for 2590 * this case, but since we are inlined it's OK) 2591 * 2. We can't do it if dir is read-only (done in permission()) 2592 * 3. We should have write and exec permissions on dir 2593 * 4. We can't do it if dir is immutable (done in permission()) 2594 */ 2595 static inline int may_create(struct inode *dir, struct dentry *child) 2596 { 2597 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2598 if (child->d_inode) 2599 return -EEXIST; 2600 if (IS_DEADDIR(dir)) 2601 return -ENOENT; 2602 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2603 } 2604 2605 /* 2606 * p1 and p2 should be directories on the same fs. 2607 */ 2608 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2609 { 2610 struct dentry *p; 2611 2612 if (p1 == p2) { 2613 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2614 return NULL; 2615 } 2616 2617 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2618 2619 p = d_ancestor(p2, p1); 2620 if (p) { 2621 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2622 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2623 return p; 2624 } 2625 2626 p = d_ancestor(p1, p2); 2627 if (p) { 2628 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2629 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2630 return p; 2631 } 2632 2633 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2634 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2); 2635 return NULL; 2636 } 2637 EXPORT_SYMBOL(lock_rename); 2638 2639 void unlock_rename(struct dentry *p1, struct dentry *p2) 2640 { 2641 mutex_unlock(&p1->d_inode->i_mutex); 2642 if (p1 != p2) { 2643 mutex_unlock(&p2->d_inode->i_mutex); 2644 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2645 } 2646 } 2647 EXPORT_SYMBOL(unlock_rename); 2648 2649 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2650 bool want_excl) 2651 { 2652 int error = may_create(dir, dentry); 2653 if (error) 2654 return error; 2655 2656 if (!dir->i_op->create) 2657 return -EACCES; /* shouldn't it be ENOSYS? */ 2658 mode &= S_IALLUGO; 2659 mode |= S_IFREG; 2660 error = security_inode_create(dir, dentry, mode); 2661 if (error) 2662 return error; 2663 error = dir->i_op->create(dir, dentry, mode, want_excl); 2664 if (!error) 2665 fsnotify_create(dir, dentry); 2666 return error; 2667 } 2668 EXPORT_SYMBOL(vfs_create); 2669 2670 static int may_open(struct path *path, int acc_mode, int flag) 2671 { 2672 struct dentry *dentry = path->dentry; 2673 struct inode *inode = dentry->d_inode; 2674 int error; 2675 2676 /* O_PATH? */ 2677 if (!acc_mode) 2678 return 0; 2679 2680 if (!inode) 2681 return -ENOENT; 2682 2683 switch (inode->i_mode & S_IFMT) { 2684 case S_IFLNK: 2685 return -ELOOP; 2686 case S_IFDIR: 2687 if (acc_mode & MAY_WRITE) 2688 return -EISDIR; 2689 break; 2690 case S_IFBLK: 2691 case S_IFCHR: 2692 if (path->mnt->mnt_flags & MNT_NODEV) 2693 return -EACCES; 2694 /*FALLTHRU*/ 2695 case S_IFIFO: 2696 case S_IFSOCK: 2697 flag &= ~O_TRUNC; 2698 break; 2699 } 2700 2701 error = inode_permission(inode, acc_mode); 2702 if (error) 2703 return error; 2704 2705 /* 2706 * An append-only file must be opened in append mode for writing. 2707 */ 2708 if (IS_APPEND(inode)) { 2709 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2710 return -EPERM; 2711 if (flag & O_TRUNC) 2712 return -EPERM; 2713 } 2714 2715 /* O_NOATIME can only be set by the owner or superuser */ 2716 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2717 return -EPERM; 2718 2719 return 0; 2720 } 2721 2722 static int handle_truncate(struct file *filp) 2723 { 2724 struct path *path = &filp->f_path; 2725 struct inode *inode = path->dentry->d_inode; 2726 int error = get_write_access(inode); 2727 if (error) 2728 return error; 2729 /* 2730 * Refuse to truncate files with mandatory locks held on them. 2731 */ 2732 error = locks_verify_locked(filp); 2733 if (!error) 2734 error = security_path_truncate(path); 2735 if (!error) { 2736 error = do_truncate(path->dentry, 0, 2737 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2738 filp); 2739 } 2740 put_write_access(inode); 2741 return error; 2742 } 2743 2744 static inline int open_to_namei_flags(int flag) 2745 { 2746 if ((flag & O_ACCMODE) == 3) 2747 flag--; 2748 return flag; 2749 } 2750 2751 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2752 { 2753 int error = security_path_mknod(dir, dentry, mode, 0); 2754 if (error) 2755 return error; 2756 2757 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2758 if (error) 2759 return error; 2760 2761 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2762 } 2763 2764 /* 2765 * Attempt to atomically look up, create and open a file from a negative 2766 * dentry. 2767 * 2768 * Returns 0 if successful. The file will have been created and attached to 2769 * @file by the filesystem calling finish_open(). 2770 * 2771 * Returns 1 if the file was looked up only or didn't need creating. The 2772 * caller will need to perform the open themselves. @path will have been 2773 * updated to point to the new dentry. This may be negative. 2774 * 2775 * Returns an error code otherwise. 2776 */ 2777 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2778 struct path *path, struct file *file, 2779 const struct open_flags *op, 2780 bool got_write, bool need_lookup, 2781 int *opened) 2782 { 2783 struct inode *dir = nd->path.dentry->d_inode; 2784 unsigned open_flag = open_to_namei_flags(op->open_flag); 2785 umode_t mode; 2786 int error; 2787 int acc_mode; 2788 int create_error = 0; 2789 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2790 bool excl; 2791 2792 BUG_ON(dentry->d_inode); 2793 2794 /* Don't create child dentry for a dead directory. */ 2795 if (unlikely(IS_DEADDIR(dir))) { 2796 error = -ENOENT; 2797 goto out; 2798 } 2799 2800 mode = op->mode; 2801 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2802 mode &= ~current_umask(); 2803 2804 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2805 if (excl) 2806 open_flag &= ~O_TRUNC; 2807 2808 /* 2809 * Checking write permission is tricky, bacuse we don't know if we are 2810 * going to actually need it: O_CREAT opens should work as long as the 2811 * file exists. But checking existence breaks atomicity. The trick is 2812 * to check access and if not granted clear O_CREAT from the flags. 2813 * 2814 * Another problem is returing the "right" error value (e.g. for an 2815 * O_EXCL open we want to return EEXIST not EROFS). 2816 */ 2817 if (((open_flag & (O_CREAT | O_TRUNC)) || 2818 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2819 if (!(open_flag & O_CREAT)) { 2820 /* 2821 * No O_CREATE -> atomicity not a requirement -> fall 2822 * back to lookup + open 2823 */ 2824 goto no_open; 2825 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2826 /* Fall back and fail with the right error */ 2827 create_error = -EROFS; 2828 goto no_open; 2829 } else { 2830 /* No side effects, safe to clear O_CREAT */ 2831 create_error = -EROFS; 2832 open_flag &= ~O_CREAT; 2833 } 2834 } 2835 2836 if (open_flag & O_CREAT) { 2837 error = may_o_create(&nd->path, dentry, mode); 2838 if (error) { 2839 create_error = error; 2840 if (open_flag & O_EXCL) 2841 goto no_open; 2842 open_flag &= ~O_CREAT; 2843 } 2844 } 2845 2846 if (nd->flags & LOOKUP_DIRECTORY) 2847 open_flag |= O_DIRECTORY; 2848 2849 file->f_path.dentry = DENTRY_NOT_SET; 2850 file->f_path.mnt = nd->path.mnt; 2851 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2852 opened); 2853 if (error < 0) { 2854 if (create_error && error == -ENOENT) 2855 error = create_error; 2856 goto out; 2857 } 2858 2859 if (error) { /* returned 1, that is */ 2860 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2861 error = -EIO; 2862 goto out; 2863 } 2864 if (file->f_path.dentry) { 2865 dput(dentry); 2866 dentry = file->f_path.dentry; 2867 } 2868 if (*opened & FILE_CREATED) 2869 fsnotify_create(dir, dentry); 2870 if (!dentry->d_inode) { 2871 WARN_ON(*opened & FILE_CREATED); 2872 if (create_error) { 2873 error = create_error; 2874 goto out; 2875 } 2876 } else { 2877 if (excl && !(*opened & FILE_CREATED)) { 2878 error = -EEXIST; 2879 goto out; 2880 } 2881 } 2882 goto looked_up; 2883 } 2884 2885 /* 2886 * We didn't have the inode before the open, so check open permission 2887 * here. 2888 */ 2889 acc_mode = op->acc_mode; 2890 if (*opened & FILE_CREATED) { 2891 WARN_ON(!(open_flag & O_CREAT)); 2892 fsnotify_create(dir, dentry); 2893 acc_mode = MAY_OPEN; 2894 } 2895 error = may_open(&file->f_path, acc_mode, open_flag); 2896 if (error) 2897 fput(file); 2898 2899 out: 2900 dput(dentry); 2901 return error; 2902 2903 no_open: 2904 if (need_lookup) { 2905 dentry = lookup_real(dir, dentry, nd->flags); 2906 if (IS_ERR(dentry)) 2907 return PTR_ERR(dentry); 2908 2909 if (create_error) { 2910 int open_flag = op->open_flag; 2911 2912 error = create_error; 2913 if ((open_flag & O_EXCL)) { 2914 if (!dentry->d_inode) 2915 goto out; 2916 } else if (!dentry->d_inode) { 2917 goto out; 2918 } else if ((open_flag & O_TRUNC) && 2919 d_is_reg(dentry)) { 2920 goto out; 2921 } 2922 /* will fail later, go on to get the right error */ 2923 } 2924 } 2925 looked_up: 2926 path->dentry = dentry; 2927 path->mnt = nd->path.mnt; 2928 return 1; 2929 } 2930 2931 /* 2932 * Look up and maybe create and open the last component. 2933 * 2934 * Must be called with i_mutex held on parent. 2935 * 2936 * Returns 0 if the file was successfully atomically created (if necessary) and 2937 * opened. In this case the file will be returned attached to @file. 2938 * 2939 * Returns 1 if the file was not completely opened at this time, though lookups 2940 * and creations will have been performed and the dentry returned in @path will 2941 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2942 * specified then a negative dentry may be returned. 2943 * 2944 * An error code is returned otherwise. 2945 * 2946 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2947 * cleared otherwise prior to returning. 2948 */ 2949 static int lookup_open(struct nameidata *nd, struct path *path, 2950 struct file *file, 2951 const struct open_flags *op, 2952 bool got_write, int *opened) 2953 { 2954 struct dentry *dir = nd->path.dentry; 2955 struct inode *dir_inode = dir->d_inode; 2956 struct dentry *dentry; 2957 int error; 2958 bool need_lookup; 2959 2960 *opened &= ~FILE_CREATED; 2961 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2962 if (IS_ERR(dentry)) 2963 return PTR_ERR(dentry); 2964 2965 /* Cached positive dentry: will open in f_op->open */ 2966 if (!need_lookup && dentry->d_inode) 2967 goto out_no_open; 2968 2969 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2970 return atomic_open(nd, dentry, path, file, op, got_write, 2971 need_lookup, opened); 2972 } 2973 2974 if (need_lookup) { 2975 BUG_ON(dentry->d_inode); 2976 2977 dentry = lookup_real(dir_inode, dentry, nd->flags); 2978 if (IS_ERR(dentry)) 2979 return PTR_ERR(dentry); 2980 } 2981 2982 /* Negative dentry, just create the file */ 2983 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2984 umode_t mode = op->mode; 2985 if (!IS_POSIXACL(dir->d_inode)) 2986 mode &= ~current_umask(); 2987 /* 2988 * This write is needed to ensure that a 2989 * rw->ro transition does not occur between 2990 * the time when the file is created and when 2991 * a permanent write count is taken through 2992 * the 'struct file' in finish_open(). 2993 */ 2994 if (!got_write) { 2995 error = -EROFS; 2996 goto out_dput; 2997 } 2998 *opened |= FILE_CREATED; 2999 error = security_path_mknod(&nd->path, dentry, mode, 0); 3000 if (error) 3001 goto out_dput; 3002 error = vfs_create(dir->d_inode, dentry, mode, 3003 nd->flags & LOOKUP_EXCL); 3004 if (error) 3005 goto out_dput; 3006 } 3007 out_no_open: 3008 path->dentry = dentry; 3009 path->mnt = nd->path.mnt; 3010 return 1; 3011 3012 out_dput: 3013 dput(dentry); 3014 return error; 3015 } 3016 3017 /* 3018 * Handle the last step of open() 3019 */ 3020 static int do_last(struct nameidata *nd, 3021 struct file *file, const struct open_flags *op, 3022 int *opened) 3023 { 3024 struct dentry *dir = nd->path.dentry; 3025 int open_flag = op->open_flag; 3026 bool will_truncate = (open_flag & O_TRUNC) != 0; 3027 bool got_write = false; 3028 int acc_mode = op->acc_mode; 3029 unsigned seq; 3030 struct inode *inode; 3031 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 3032 struct path path; 3033 bool retried = false; 3034 int error; 3035 3036 nd->flags &= ~LOOKUP_PARENT; 3037 nd->flags |= op->intent; 3038 3039 if (nd->last_type != LAST_NORM) { 3040 error = handle_dots(nd, nd->last_type); 3041 if (unlikely(error)) 3042 return error; 3043 goto finish_open; 3044 } 3045 3046 if (!(open_flag & O_CREAT)) { 3047 if (nd->last.name[nd->last.len]) 3048 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3049 /* we _can_ be in RCU mode here */ 3050 error = lookup_fast(nd, &path, &inode, &seq); 3051 if (likely(!error)) 3052 goto finish_lookup; 3053 3054 if (error < 0) 3055 return error; 3056 3057 BUG_ON(nd->inode != dir->d_inode); 3058 } else { 3059 /* create side of things */ 3060 /* 3061 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 3062 * has been cleared when we got to the last component we are 3063 * about to look up 3064 */ 3065 error = complete_walk(nd); 3066 if (error) 3067 return error; 3068 3069 audit_inode(nd->name, dir, LOOKUP_PARENT); 3070 /* trailing slashes? */ 3071 if (unlikely(nd->last.name[nd->last.len])) 3072 return -EISDIR; 3073 } 3074 3075 retry_lookup: 3076 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3077 error = mnt_want_write(nd->path.mnt); 3078 if (!error) 3079 got_write = true; 3080 /* 3081 * do _not_ fail yet - we might not need that or fail with 3082 * a different error; let lookup_open() decide; we'll be 3083 * dropping this one anyway. 3084 */ 3085 } 3086 mutex_lock(&dir->d_inode->i_mutex); 3087 error = lookup_open(nd, &path, file, op, got_write, opened); 3088 mutex_unlock(&dir->d_inode->i_mutex); 3089 3090 if (error <= 0) { 3091 if (error) 3092 goto out; 3093 3094 if ((*opened & FILE_CREATED) || 3095 !S_ISREG(file_inode(file)->i_mode)) 3096 will_truncate = false; 3097 3098 audit_inode(nd->name, file->f_path.dentry, 0); 3099 goto opened; 3100 } 3101 3102 if (*opened & FILE_CREATED) { 3103 /* Don't check for write permission, don't truncate */ 3104 open_flag &= ~O_TRUNC; 3105 will_truncate = false; 3106 acc_mode = MAY_OPEN; 3107 path_to_nameidata(&path, nd); 3108 goto finish_open_created; 3109 } 3110 3111 /* 3112 * create/update audit record if it already exists. 3113 */ 3114 if (d_is_positive(path.dentry)) 3115 audit_inode(nd->name, path.dentry, 0); 3116 3117 /* 3118 * If atomic_open() acquired write access it is dropped now due to 3119 * possible mount and symlink following (this might be optimized away if 3120 * necessary...) 3121 */ 3122 if (got_write) { 3123 mnt_drop_write(nd->path.mnt); 3124 got_write = false; 3125 } 3126 3127 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) { 3128 path_to_nameidata(&path, nd); 3129 return -EEXIST; 3130 } 3131 3132 error = follow_managed(&path, nd); 3133 if (unlikely(error < 0)) 3134 return error; 3135 3136 BUG_ON(nd->flags & LOOKUP_RCU); 3137 inode = d_backing_inode(path.dentry); 3138 seq = 0; /* out of RCU mode, so the value doesn't matter */ 3139 if (unlikely(d_is_negative(path.dentry))) { 3140 path_to_nameidata(&path, nd); 3141 return -ENOENT; 3142 } 3143 finish_lookup: 3144 if (nd->depth) 3145 put_link(nd); 3146 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW, 3147 inode, seq); 3148 if (unlikely(error)) 3149 return error; 3150 3151 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) { 3152 path_to_nameidata(&path, nd); 3153 return -ELOOP; 3154 } 3155 3156 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) { 3157 path_to_nameidata(&path, nd); 3158 } else { 3159 save_parent.dentry = nd->path.dentry; 3160 save_parent.mnt = mntget(path.mnt); 3161 nd->path.dentry = path.dentry; 3162 3163 } 3164 nd->inode = inode; 3165 nd->seq = seq; 3166 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3167 finish_open: 3168 error = complete_walk(nd); 3169 if (error) { 3170 path_put(&save_parent); 3171 return error; 3172 } 3173 audit_inode(nd->name, nd->path.dentry, 0); 3174 error = -EISDIR; 3175 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3176 goto out; 3177 error = -ENOTDIR; 3178 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3179 goto out; 3180 if (!d_is_reg(nd->path.dentry)) 3181 will_truncate = false; 3182 3183 if (will_truncate) { 3184 error = mnt_want_write(nd->path.mnt); 3185 if (error) 3186 goto out; 3187 got_write = true; 3188 } 3189 finish_open_created: 3190 error = may_open(&nd->path, acc_mode, open_flag); 3191 if (error) 3192 goto out; 3193 3194 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3195 error = vfs_open(&nd->path, file, current_cred()); 3196 if (!error) { 3197 *opened |= FILE_OPENED; 3198 } else { 3199 if (error == -EOPENSTALE) 3200 goto stale_open; 3201 goto out; 3202 } 3203 opened: 3204 error = open_check_o_direct(file); 3205 if (error) 3206 goto exit_fput; 3207 error = ima_file_check(file, op->acc_mode, *opened); 3208 if (error) 3209 goto exit_fput; 3210 3211 if (will_truncate) { 3212 error = handle_truncate(file); 3213 if (error) 3214 goto exit_fput; 3215 } 3216 out: 3217 if (got_write) 3218 mnt_drop_write(nd->path.mnt); 3219 path_put(&save_parent); 3220 return error; 3221 3222 exit_fput: 3223 fput(file); 3224 goto out; 3225 3226 stale_open: 3227 /* If no saved parent or already retried then can't retry */ 3228 if (!save_parent.dentry || retried) 3229 goto out; 3230 3231 BUG_ON(save_parent.dentry != dir); 3232 path_put(&nd->path); 3233 nd->path = save_parent; 3234 nd->inode = dir->d_inode; 3235 save_parent.mnt = NULL; 3236 save_parent.dentry = NULL; 3237 if (got_write) { 3238 mnt_drop_write(nd->path.mnt); 3239 got_write = false; 3240 } 3241 retried = true; 3242 goto retry_lookup; 3243 } 3244 3245 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3246 const struct open_flags *op, 3247 struct file *file, int *opened) 3248 { 3249 static const struct qstr name = QSTR_INIT("/", 1); 3250 struct dentry *child; 3251 struct inode *dir; 3252 struct path path; 3253 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3254 if (unlikely(error)) 3255 return error; 3256 error = mnt_want_write(path.mnt); 3257 if (unlikely(error)) 3258 goto out; 3259 dir = path.dentry->d_inode; 3260 /* we want directory to be writable */ 3261 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 3262 if (error) 3263 goto out2; 3264 if (!dir->i_op->tmpfile) { 3265 error = -EOPNOTSUPP; 3266 goto out2; 3267 } 3268 child = d_alloc(path.dentry, &name); 3269 if (unlikely(!child)) { 3270 error = -ENOMEM; 3271 goto out2; 3272 } 3273 dput(path.dentry); 3274 path.dentry = child; 3275 error = dir->i_op->tmpfile(dir, child, op->mode); 3276 if (error) 3277 goto out2; 3278 audit_inode(nd->name, child, 0); 3279 /* Don't check for other permissions, the inode was just created */ 3280 error = may_open(&path, MAY_OPEN, op->open_flag); 3281 if (error) 3282 goto out2; 3283 file->f_path.mnt = path.mnt; 3284 error = finish_open(file, child, NULL, opened); 3285 if (error) 3286 goto out2; 3287 error = open_check_o_direct(file); 3288 if (error) { 3289 fput(file); 3290 } else if (!(op->open_flag & O_EXCL)) { 3291 struct inode *inode = file_inode(file); 3292 spin_lock(&inode->i_lock); 3293 inode->i_state |= I_LINKABLE; 3294 spin_unlock(&inode->i_lock); 3295 } 3296 out2: 3297 mnt_drop_write(path.mnt); 3298 out: 3299 path_put(&path); 3300 return error; 3301 } 3302 3303 static struct file *path_openat(struct nameidata *nd, 3304 const struct open_flags *op, unsigned flags) 3305 { 3306 const char *s; 3307 struct file *file; 3308 int opened = 0; 3309 int error; 3310 3311 file = get_empty_filp(); 3312 if (IS_ERR(file)) 3313 return file; 3314 3315 file->f_flags = op->open_flag; 3316 3317 if (unlikely(file->f_flags & __O_TMPFILE)) { 3318 error = do_tmpfile(nd, flags, op, file, &opened); 3319 goto out2; 3320 } 3321 3322 s = path_init(nd, flags); 3323 if (IS_ERR(s)) { 3324 put_filp(file); 3325 return ERR_CAST(s); 3326 } 3327 while (!(error = link_path_walk(s, nd)) && 3328 (error = do_last(nd, file, op, &opened)) > 0) { 3329 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3330 s = trailing_symlink(nd); 3331 if (IS_ERR(s)) { 3332 error = PTR_ERR(s); 3333 break; 3334 } 3335 } 3336 terminate_walk(nd); 3337 out2: 3338 if (!(opened & FILE_OPENED)) { 3339 BUG_ON(!error); 3340 put_filp(file); 3341 } 3342 if (unlikely(error)) { 3343 if (error == -EOPENSTALE) { 3344 if (flags & LOOKUP_RCU) 3345 error = -ECHILD; 3346 else 3347 error = -ESTALE; 3348 } 3349 file = ERR_PTR(error); 3350 } 3351 return file; 3352 } 3353 3354 struct file *do_filp_open(int dfd, struct filename *pathname, 3355 const struct open_flags *op) 3356 { 3357 struct nameidata nd; 3358 int flags = op->lookup_flags; 3359 struct file *filp; 3360 3361 set_nameidata(&nd, dfd, pathname); 3362 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3363 if (unlikely(filp == ERR_PTR(-ECHILD))) 3364 filp = path_openat(&nd, op, flags); 3365 if (unlikely(filp == ERR_PTR(-ESTALE))) 3366 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3367 restore_nameidata(); 3368 return filp; 3369 } 3370 3371 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3372 const char *name, const struct open_flags *op) 3373 { 3374 struct nameidata nd; 3375 struct file *file; 3376 struct filename *filename; 3377 int flags = op->lookup_flags | LOOKUP_ROOT; 3378 3379 nd.root.mnt = mnt; 3380 nd.root.dentry = dentry; 3381 3382 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3383 return ERR_PTR(-ELOOP); 3384 3385 filename = getname_kernel(name); 3386 if (unlikely(IS_ERR(filename))) 3387 return ERR_CAST(filename); 3388 3389 set_nameidata(&nd, -1, filename); 3390 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3391 if (unlikely(file == ERR_PTR(-ECHILD))) 3392 file = path_openat(&nd, op, flags); 3393 if (unlikely(file == ERR_PTR(-ESTALE))) 3394 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3395 restore_nameidata(); 3396 putname(filename); 3397 return file; 3398 } 3399 3400 static struct dentry *filename_create(int dfd, struct filename *name, 3401 struct path *path, unsigned int lookup_flags) 3402 { 3403 struct dentry *dentry = ERR_PTR(-EEXIST); 3404 struct qstr last; 3405 int type; 3406 int err2; 3407 int error; 3408 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3409 3410 /* 3411 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3412 * other flags passed in are ignored! 3413 */ 3414 lookup_flags &= LOOKUP_REVAL; 3415 3416 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3417 if (IS_ERR(name)) 3418 return ERR_CAST(name); 3419 3420 /* 3421 * Yucky last component or no last component at all? 3422 * (foo/., foo/.., /////) 3423 */ 3424 if (unlikely(type != LAST_NORM)) 3425 goto out; 3426 3427 /* don't fail immediately if it's r/o, at least try to report other errors */ 3428 err2 = mnt_want_write(path->mnt); 3429 /* 3430 * Do the final lookup. 3431 */ 3432 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3433 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3434 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3435 if (IS_ERR(dentry)) 3436 goto unlock; 3437 3438 error = -EEXIST; 3439 if (d_is_positive(dentry)) 3440 goto fail; 3441 3442 /* 3443 * Special case - lookup gave negative, but... we had foo/bar/ 3444 * From the vfs_mknod() POV we just have a negative dentry - 3445 * all is fine. Let's be bastards - you had / on the end, you've 3446 * been asking for (non-existent) directory. -ENOENT for you. 3447 */ 3448 if (unlikely(!is_dir && last.name[last.len])) { 3449 error = -ENOENT; 3450 goto fail; 3451 } 3452 if (unlikely(err2)) { 3453 error = err2; 3454 goto fail; 3455 } 3456 putname(name); 3457 return dentry; 3458 fail: 3459 dput(dentry); 3460 dentry = ERR_PTR(error); 3461 unlock: 3462 mutex_unlock(&path->dentry->d_inode->i_mutex); 3463 if (!err2) 3464 mnt_drop_write(path->mnt); 3465 out: 3466 path_put(path); 3467 putname(name); 3468 return dentry; 3469 } 3470 3471 struct dentry *kern_path_create(int dfd, const char *pathname, 3472 struct path *path, unsigned int lookup_flags) 3473 { 3474 return filename_create(dfd, getname_kernel(pathname), 3475 path, lookup_flags); 3476 } 3477 EXPORT_SYMBOL(kern_path_create); 3478 3479 void done_path_create(struct path *path, struct dentry *dentry) 3480 { 3481 dput(dentry); 3482 mutex_unlock(&path->dentry->d_inode->i_mutex); 3483 mnt_drop_write(path->mnt); 3484 path_put(path); 3485 } 3486 EXPORT_SYMBOL(done_path_create); 3487 3488 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3489 struct path *path, unsigned int lookup_flags) 3490 { 3491 return filename_create(dfd, getname(pathname), path, lookup_flags); 3492 } 3493 EXPORT_SYMBOL(user_path_create); 3494 3495 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3496 { 3497 int error = may_create(dir, dentry); 3498 3499 if (error) 3500 return error; 3501 3502 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3503 return -EPERM; 3504 3505 if (!dir->i_op->mknod) 3506 return -EPERM; 3507 3508 error = devcgroup_inode_mknod(mode, dev); 3509 if (error) 3510 return error; 3511 3512 error = security_inode_mknod(dir, dentry, mode, dev); 3513 if (error) 3514 return error; 3515 3516 error = dir->i_op->mknod(dir, dentry, mode, dev); 3517 if (!error) 3518 fsnotify_create(dir, dentry); 3519 return error; 3520 } 3521 EXPORT_SYMBOL(vfs_mknod); 3522 3523 static int may_mknod(umode_t mode) 3524 { 3525 switch (mode & S_IFMT) { 3526 case S_IFREG: 3527 case S_IFCHR: 3528 case S_IFBLK: 3529 case S_IFIFO: 3530 case S_IFSOCK: 3531 case 0: /* zero mode translates to S_IFREG */ 3532 return 0; 3533 case S_IFDIR: 3534 return -EPERM; 3535 default: 3536 return -EINVAL; 3537 } 3538 } 3539 3540 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3541 unsigned, dev) 3542 { 3543 struct dentry *dentry; 3544 struct path path; 3545 int error; 3546 unsigned int lookup_flags = 0; 3547 3548 error = may_mknod(mode); 3549 if (error) 3550 return error; 3551 retry: 3552 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3553 if (IS_ERR(dentry)) 3554 return PTR_ERR(dentry); 3555 3556 if (!IS_POSIXACL(path.dentry->d_inode)) 3557 mode &= ~current_umask(); 3558 error = security_path_mknod(&path, dentry, mode, dev); 3559 if (error) 3560 goto out; 3561 switch (mode & S_IFMT) { 3562 case 0: case S_IFREG: 3563 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3564 break; 3565 case S_IFCHR: case S_IFBLK: 3566 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3567 new_decode_dev(dev)); 3568 break; 3569 case S_IFIFO: case S_IFSOCK: 3570 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3571 break; 3572 } 3573 out: 3574 done_path_create(&path, dentry); 3575 if (retry_estale(error, lookup_flags)) { 3576 lookup_flags |= LOOKUP_REVAL; 3577 goto retry; 3578 } 3579 return error; 3580 } 3581 3582 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3583 { 3584 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3585 } 3586 3587 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3588 { 3589 int error = may_create(dir, dentry); 3590 unsigned max_links = dir->i_sb->s_max_links; 3591 3592 if (error) 3593 return error; 3594 3595 if (!dir->i_op->mkdir) 3596 return -EPERM; 3597 3598 mode &= (S_IRWXUGO|S_ISVTX); 3599 error = security_inode_mkdir(dir, dentry, mode); 3600 if (error) 3601 return error; 3602 3603 if (max_links && dir->i_nlink >= max_links) 3604 return -EMLINK; 3605 3606 error = dir->i_op->mkdir(dir, dentry, mode); 3607 if (!error) 3608 fsnotify_mkdir(dir, dentry); 3609 return error; 3610 } 3611 EXPORT_SYMBOL(vfs_mkdir); 3612 3613 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3614 { 3615 struct dentry *dentry; 3616 struct path path; 3617 int error; 3618 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3619 3620 retry: 3621 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3622 if (IS_ERR(dentry)) 3623 return PTR_ERR(dentry); 3624 3625 if (!IS_POSIXACL(path.dentry->d_inode)) 3626 mode &= ~current_umask(); 3627 error = security_path_mkdir(&path, dentry, mode); 3628 if (!error) 3629 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3630 done_path_create(&path, dentry); 3631 if (retry_estale(error, lookup_flags)) { 3632 lookup_flags |= LOOKUP_REVAL; 3633 goto retry; 3634 } 3635 return error; 3636 } 3637 3638 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3639 { 3640 return sys_mkdirat(AT_FDCWD, pathname, mode); 3641 } 3642 3643 /* 3644 * The dentry_unhash() helper will try to drop the dentry early: we 3645 * should have a usage count of 1 if we're the only user of this 3646 * dentry, and if that is true (possibly after pruning the dcache), 3647 * then we drop the dentry now. 3648 * 3649 * A low-level filesystem can, if it choses, legally 3650 * do a 3651 * 3652 * if (!d_unhashed(dentry)) 3653 * return -EBUSY; 3654 * 3655 * if it cannot handle the case of removing a directory 3656 * that is still in use by something else.. 3657 */ 3658 void dentry_unhash(struct dentry *dentry) 3659 { 3660 shrink_dcache_parent(dentry); 3661 spin_lock(&dentry->d_lock); 3662 if (dentry->d_lockref.count == 1) 3663 __d_drop(dentry); 3664 spin_unlock(&dentry->d_lock); 3665 } 3666 EXPORT_SYMBOL(dentry_unhash); 3667 3668 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3669 { 3670 int error = may_delete(dir, dentry, 1); 3671 3672 if (error) 3673 return error; 3674 3675 if (!dir->i_op->rmdir) 3676 return -EPERM; 3677 3678 dget(dentry); 3679 mutex_lock(&dentry->d_inode->i_mutex); 3680 3681 error = -EBUSY; 3682 if (is_local_mountpoint(dentry)) 3683 goto out; 3684 3685 error = security_inode_rmdir(dir, dentry); 3686 if (error) 3687 goto out; 3688 3689 shrink_dcache_parent(dentry); 3690 error = dir->i_op->rmdir(dir, dentry); 3691 if (error) 3692 goto out; 3693 3694 dentry->d_inode->i_flags |= S_DEAD; 3695 dont_mount(dentry); 3696 detach_mounts(dentry); 3697 3698 out: 3699 mutex_unlock(&dentry->d_inode->i_mutex); 3700 dput(dentry); 3701 if (!error) 3702 d_delete(dentry); 3703 return error; 3704 } 3705 EXPORT_SYMBOL(vfs_rmdir); 3706 3707 static long do_rmdir(int dfd, const char __user *pathname) 3708 { 3709 int error = 0; 3710 struct filename *name; 3711 struct dentry *dentry; 3712 struct path path; 3713 struct qstr last; 3714 int type; 3715 unsigned int lookup_flags = 0; 3716 retry: 3717 name = user_path_parent(dfd, pathname, 3718 &path, &last, &type, lookup_flags); 3719 if (IS_ERR(name)) 3720 return PTR_ERR(name); 3721 3722 switch (type) { 3723 case LAST_DOTDOT: 3724 error = -ENOTEMPTY; 3725 goto exit1; 3726 case LAST_DOT: 3727 error = -EINVAL; 3728 goto exit1; 3729 case LAST_ROOT: 3730 error = -EBUSY; 3731 goto exit1; 3732 } 3733 3734 error = mnt_want_write(path.mnt); 3735 if (error) 3736 goto exit1; 3737 3738 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3739 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3740 error = PTR_ERR(dentry); 3741 if (IS_ERR(dentry)) 3742 goto exit2; 3743 if (!dentry->d_inode) { 3744 error = -ENOENT; 3745 goto exit3; 3746 } 3747 error = security_path_rmdir(&path, dentry); 3748 if (error) 3749 goto exit3; 3750 error = vfs_rmdir(path.dentry->d_inode, dentry); 3751 exit3: 3752 dput(dentry); 3753 exit2: 3754 mutex_unlock(&path.dentry->d_inode->i_mutex); 3755 mnt_drop_write(path.mnt); 3756 exit1: 3757 path_put(&path); 3758 putname(name); 3759 if (retry_estale(error, lookup_flags)) { 3760 lookup_flags |= LOOKUP_REVAL; 3761 goto retry; 3762 } 3763 return error; 3764 } 3765 3766 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3767 { 3768 return do_rmdir(AT_FDCWD, pathname); 3769 } 3770 3771 /** 3772 * vfs_unlink - unlink a filesystem object 3773 * @dir: parent directory 3774 * @dentry: victim 3775 * @delegated_inode: returns victim inode, if the inode is delegated. 3776 * 3777 * The caller must hold dir->i_mutex. 3778 * 3779 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3780 * return a reference to the inode in delegated_inode. The caller 3781 * should then break the delegation on that inode and retry. Because 3782 * breaking a delegation may take a long time, the caller should drop 3783 * dir->i_mutex before doing so. 3784 * 3785 * Alternatively, a caller may pass NULL for delegated_inode. This may 3786 * be appropriate for callers that expect the underlying filesystem not 3787 * to be NFS exported. 3788 */ 3789 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3790 { 3791 struct inode *target = dentry->d_inode; 3792 int error = may_delete(dir, dentry, 0); 3793 3794 if (error) 3795 return error; 3796 3797 if (!dir->i_op->unlink) 3798 return -EPERM; 3799 3800 mutex_lock(&target->i_mutex); 3801 if (is_local_mountpoint(dentry)) 3802 error = -EBUSY; 3803 else { 3804 error = security_inode_unlink(dir, dentry); 3805 if (!error) { 3806 error = try_break_deleg(target, delegated_inode); 3807 if (error) 3808 goto out; 3809 error = dir->i_op->unlink(dir, dentry); 3810 if (!error) { 3811 dont_mount(dentry); 3812 detach_mounts(dentry); 3813 } 3814 } 3815 } 3816 out: 3817 mutex_unlock(&target->i_mutex); 3818 3819 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3820 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3821 fsnotify_link_count(target); 3822 d_delete(dentry); 3823 } 3824 3825 return error; 3826 } 3827 EXPORT_SYMBOL(vfs_unlink); 3828 3829 /* 3830 * Make sure that the actual truncation of the file will occur outside its 3831 * directory's i_mutex. Truncate can take a long time if there is a lot of 3832 * writeout happening, and we don't want to prevent access to the directory 3833 * while waiting on the I/O. 3834 */ 3835 static long do_unlinkat(int dfd, const char __user *pathname) 3836 { 3837 int error; 3838 struct filename *name; 3839 struct dentry *dentry; 3840 struct path path; 3841 struct qstr last; 3842 int type; 3843 struct inode *inode = NULL; 3844 struct inode *delegated_inode = NULL; 3845 unsigned int lookup_flags = 0; 3846 retry: 3847 name = user_path_parent(dfd, pathname, 3848 &path, &last, &type, lookup_flags); 3849 if (IS_ERR(name)) 3850 return PTR_ERR(name); 3851 3852 error = -EISDIR; 3853 if (type != LAST_NORM) 3854 goto exit1; 3855 3856 error = mnt_want_write(path.mnt); 3857 if (error) 3858 goto exit1; 3859 retry_deleg: 3860 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3861 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3862 error = PTR_ERR(dentry); 3863 if (!IS_ERR(dentry)) { 3864 /* Why not before? Because we want correct error value */ 3865 if (last.name[last.len]) 3866 goto slashes; 3867 inode = dentry->d_inode; 3868 if (d_is_negative(dentry)) 3869 goto slashes; 3870 ihold(inode); 3871 error = security_path_unlink(&path, dentry); 3872 if (error) 3873 goto exit2; 3874 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode); 3875 exit2: 3876 dput(dentry); 3877 } 3878 mutex_unlock(&path.dentry->d_inode->i_mutex); 3879 if (inode) 3880 iput(inode); /* truncate the inode here */ 3881 inode = NULL; 3882 if (delegated_inode) { 3883 error = break_deleg_wait(&delegated_inode); 3884 if (!error) 3885 goto retry_deleg; 3886 } 3887 mnt_drop_write(path.mnt); 3888 exit1: 3889 path_put(&path); 3890 putname(name); 3891 if (retry_estale(error, lookup_flags)) { 3892 lookup_flags |= LOOKUP_REVAL; 3893 inode = NULL; 3894 goto retry; 3895 } 3896 return error; 3897 3898 slashes: 3899 if (d_is_negative(dentry)) 3900 error = -ENOENT; 3901 else if (d_is_dir(dentry)) 3902 error = -EISDIR; 3903 else 3904 error = -ENOTDIR; 3905 goto exit2; 3906 } 3907 3908 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3909 { 3910 if ((flag & ~AT_REMOVEDIR) != 0) 3911 return -EINVAL; 3912 3913 if (flag & AT_REMOVEDIR) 3914 return do_rmdir(dfd, pathname); 3915 3916 return do_unlinkat(dfd, pathname); 3917 } 3918 3919 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3920 { 3921 return do_unlinkat(AT_FDCWD, pathname); 3922 } 3923 3924 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3925 { 3926 int error = may_create(dir, dentry); 3927 3928 if (error) 3929 return error; 3930 3931 if (!dir->i_op->symlink) 3932 return -EPERM; 3933 3934 error = security_inode_symlink(dir, dentry, oldname); 3935 if (error) 3936 return error; 3937 3938 error = dir->i_op->symlink(dir, dentry, oldname); 3939 if (!error) 3940 fsnotify_create(dir, dentry); 3941 return error; 3942 } 3943 EXPORT_SYMBOL(vfs_symlink); 3944 3945 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3946 int, newdfd, const char __user *, newname) 3947 { 3948 int error; 3949 struct filename *from; 3950 struct dentry *dentry; 3951 struct path path; 3952 unsigned int lookup_flags = 0; 3953 3954 from = getname(oldname); 3955 if (IS_ERR(from)) 3956 return PTR_ERR(from); 3957 retry: 3958 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3959 error = PTR_ERR(dentry); 3960 if (IS_ERR(dentry)) 3961 goto out_putname; 3962 3963 error = security_path_symlink(&path, dentry, from->name); 3964 if (!error) 3965 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3966 done_path_create(&path, dentry); 3967 if (retry_estale(error, lookup_flags)) { 3968 lookup_flags |= LOOKUP_REVAL; 3969 goto retry; 3970 } 3971 out_putname: 3972 putname(from); 3973 return error; 3974 } 3975 3976 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3977 { 3978 return sys_symlinkat(oldname, AT_FDCWD, newname); 3979 } 3980 3981 /** 3982 * vfs_link - create a new link 3983 * @old_dentry: object to be linked 3984 * @dir: new parent 3985 * @new_dentry: where to create the new link 3986 * @delegated_inode: returns inode needing a delegation break 3987 * 3988 * The caller must hold dir->i_mutex 3989 * 3990 * If vfs_link discovers a delegation on the to-be-linked file in need 3991 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3992 * inode in delegated_inode. The caller should then break the delegation 3993 * and retry. Because breaking a delegation may take a long time, the 3994 * caller should drop the i_mutex before doing so. 3995 * 3996 * Alternatively, a caller may pass NULL for delegated_inode. This may 3997 * be appropriate for callers that expect the underlying filesystem not 3998 * to be NFS exported. 3999 */ 4000 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 4001 { 4002 struct inode *inode = old_dentry->d_inode; 4003 unsigned max_links = dir->i_sb->s_max_links; 4004 int error; 4005 4006 if (!inode) 4007 return -ENOENT; 4008 4009 error = may_create(dir, new_dentry); 4010 if (error) 4011 return error; 4012 4013 if (dir->i_sb != inode->i_sb) 4014 return -EXDEV; 4015 4016 /* 4017 * A link to an append-only or immutable file cannot be created. 4018 */ 4019 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4020 return -EPERM; 4021 if (!dir->i_op->link) 4022 return -EPERM; 4023 if (S_ISDIR(inode->i_mode)) 4024 return -EPERM; 4025 4026 error = security_inode_link(old_dentry, dir, new_dentry); 4027 if (error) 4028 return error; 4029 4030 mutex_lock(&inode->i_mutex); 4031 /* Make sure we don't allow creating hardlink to an unlinked file */ 4032 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4033 error = -ENOENT; 4034 else if (max_links && inode->i_nlink >= max_links) 4035 error = -EMLINK; 4036 else { 4037 error = try_break_deleg(inode, delegated_inode); 4038 if (!error) 4039 error = dir->i_op->link(old_dentry, dir, new_dentry); 4040 } 4041 4042 if (!error && (inode->i_state & I_LINKABLE)) { 4043 spin_lock(&inode->i_lock); 4044 inode->i_state &= ~I_LINKABLE; 4045 spin_unlock(&inode->i_lock); 4046 } 4047 mutex_unlock(&inode->i_mutex); 4048 if (!error) 4049 fsnotify_link(dir, inode, new_dentry); 4050 return error; 4051 } 4052 EXPORT_SYMBOL(vfs_link); 4053 4054 /* 4055 * Hardlinks are often used in delicate situations. We avoid 4056 * security-related surprises by not following symlinks on the 4057 * newname. --KAB 4058 * 4059 * We don't follow them on the oldname either to be compatible 4060 * with linux 2.0, and to avoid hard-linking to directories 4061 * and other special files. --ADM 4062 */ 4063 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4064 int, newdfd, const char __user *, newname, int, flags) 4065 { 4066 struct dentry *new_dentry; 4067 struct path old_path, new_path; 4068 struct inode *delegated_inode = NULL; 4069 int how = 0; 4070 int error; 4071 4072 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4073 return -EINVAL; 4074 /* 4075 * To use null names we require CAP_DAC_READ_SEARCH 4076 * This ensures that not everyone will be able to create 4077 * handlink using the passed filedescriptor. 4078 */ 4079 if (flags & AT_EMPTY_PATH) { 4080 if (!capable(CAP_DAC_READ_SEARCH)) 4081 return -ENOENT; 4082 how = LOOKUP_EMPTY; 4083 } 4084 4085 if (flags & AT_SYMLINK_FOLLOW) 4086 how |= LOOKUP_FOLLOW; 4087 retry: 4088 error = user_path_at(olddfd, oldname, how, &old_path); 4089 if (error) 4090 return error; 4091 4092 new_dentry = user_path_create(newdfd, newname, &new_path, 4093 (how & LOOKUP_REVAL)); 4094 error = PTR_ERR(new_dentry); 4095 if (IS_ERR(new_dentry)) 4096 goto out; 4097 4098 error = -EXDEV; 4099 if (old_path.mnt != new_path.mnt) 4100 goto out_dput; 4101 error = may_linkat(&old_path); 4102 if (unlikely(error)) 4103 goto out_dput; 4104 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4105 if (error) 4106 goto out_dput; 4107 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4108 out_dput: 4109 done_path_create(&new_path, new_dentry); 4110 if (delegated_inode) { 4111 error = break_deleg_wait(&delegated_inode); 4112 if (!error) { 4113 path_put(&old_path); 4114 goto retry; 4115 } 4116 } 4117 if (retry_estale(error, how)) { 4118 path_put(&old_path); 4119 how |= LOOKUP_REVAL; 4120 goto retry; 4121 } 4122 out: 4123 path_put(&old_path); 4124 4125 return error; 4126 } 4127 4128 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4129 { 4130 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4131 } 4132 4133 /** 4134 * vfs_rename - rename a filesystem object 4135 * @old_dir: parent of source 4136 * @old_dentry: source 4137 * @new_dir: parent of destination 4138 * @new_dentry: destination 4139 * @delegated_inode: returns an inode needing a delegation break 4140 * @flags: rename flags 4141 * 4142 * The caller must hold multiple mutexes--see lock_rename()). 4143 * 4144 * If vfs_rename discovers a delegation in need of breaking at either 4145 * the source or destination, it will return -EWOULDBLOCK and return a 4146 * reference to the inode in delegated_inode. The caller should then 4147 * break the delegation and retry. Because breaking a delegation may 4148 * take a long time, the caller should drop all locks before doing 4149 * so. 4150 * 4151 * Alternatively, a caller may pass NULL for delegated_inode. This may 4152 * be appropriate for callers that expect the underlying filesystem not 4153 * to be NFS exported. 4154 * 4155 * The worst of all namespace operations - renaming directory. "Perverted" 4156 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4157 * Problems: 4158 * a) we can get into loop creation. 4159 * b) race potential - two innocent renames can create a loop together. 4160 * That's where 4.4 screws up. Current fix: serialization on 4161 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4162 * story. 4163 * c) we have to lock _four_ objects - parents and victim (if it exists), 4164 * and source (if it is not a directory). 4165 * And that - after we got ->i_mutex on parents (until then we don't know 4166 * whether the target exists). Solution: try to be smart with locking 4167 * order for inodes. We rely on the fact that tree topology may change 4168 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4169 * move will be locked. Thus we can rank directories by the tree 4170 * (ancestors first) and rank all non-directories after them. 4171 * That works since everybody except rename does "lock parent, lookup, 4172 * lock child" and rename is under ->s_vfs_rename_mutex. 4173 * HOWEVER, it relies on the assumption that any object with ->lookup() 4174 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4175 * we'd better make sure that there's no link(2) for them. 4176 * d) conversion from fhandle to dentry may come in the wrong moment - when 4177 * we are removing the target. Solution: we will have to grab ->i_mutex 4178 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4179 * ->i_mutex on parents, which works but leads to some truly excessive 4180 * locking]. 4181 */ 4182 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4183 struct inode *new_dir, struct dentry *new_dentry, 4184 struct inode **delegated_inode, unsigned int flags) 4185 { 4186 int error; 4187 bool is_dir = d_is_dir(old_dentry); 4188 const unsigned char *old_name; 4189 struct inode *source = old_dentry->d_inode; 4190 struct inode *target = new_dentry->d_inode; 4191 bool new_is_dir = false; 4192 unsigned max_links = new_dir->i_sb->s_max_links; 4193 4194 if (source == target) 4195 return 0; 4196 4197 error = may_delete(old_dir, old_dentry, is_dir); 4198 if (error) 4199 return error; 4200 4201 if (!target) { 4202 error = may_create(new_dir, new_dentry); 4203 } else { 4204 new_is_dir = d_is_dir(new_dentry); 4205 4206 if (!(flags & RENAME_EXCHANGE)) 4207 error = may_delete(new_dir, new_dentry, is_dir); 4208 else 4209 error = may_delete(new_dir, new_dentry, new_is_dir); 4210 } 4211 if (error) 4212 return error; 4213 4214 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4215 return -EPERM; 4216 4217 if (flags && !old_dir->i_op->rename2) 4218 return -EINVAL; 4219 4220 /* 4221 * If we are going to change the parent - check write permissions, 4222 * we'll need to flip '..'. 4223 */ 4224 if (new_dir != old_dir) { 4225 if (is_dir) { 4226 error = inode_permission(source, MAY_WRITE); 4227 if (error) 4228 return error; 4229 } 4230 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4231 error = inode_permission(target, MAY_WRITE); 4232 if (error) 4233 return error; 4234 } 4235 } 4236 4237 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4238 flags); 4239 if (error) 4240 return error; 4241 4242 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4243 dget(new_dentry); 4244 if (!is_dir || (flags & RENAME_EXCHANGE)) 4245 lock_two_nondirectories(source, target); 4246 else if (target) 4247 mutex_lock(&target->i_mutex); 4248 4249 error = -EBUSY; 4250 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4251 goto out; 4252 4253 if (max_links && new_dir != old_dir) { 4254 error = -EMLINK; 4255 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4256 goto out; 4257 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4258 old_dir->i_nlink >= max_links) 4259 goto out; 4260 } 4261 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4262 shrink_dcache_parent(new_dentry); 4263 if (!is_dir) { 4264 error = try_break_deleg(source, delegated_inode); 4265 if (error) 4266 goto out; 4267 } 4268 if (target && !new_is_dir) { 4269 error = try_break_deleg(target, delegated_inode); 4270 if (error) 4271 goto out; 4272 } 4273 if (!old_dir->i_op->rename2) { 4274 error = old_dir->i_op->rename(old_dir, old_dentry, 4275 new_dir, new_dentry); 4276 } else { 4277 WARN_ON(old_dir->i_op->rename != NULL); 4278 error = old_dir->i_op->rename2(old_dir, old_dentry, 4279 new_dir, new_dentry, flags); 4280 } 4281 if (error) 4282 goto out; 4283 4284 if (!(flags & RENAME_EXCHANGE) && target) { 4285 if (is_dir) 4286 target->i_flags |= S_DEAD; 4287 dont_mount(new_dentry); 4288 detach_mounts(new_dentry); 4289 } 4290 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4291 if (!(flags & RENAME_EXCHANGE)) 4292 d_move(old_dentry, new_dentry); 4293 else 4294 d_exchange(old_dentry, new_dentry); 4295 } 4296 out: 4297 if (!is_dir || (flags & RENAME_EXCHANGE)) 4298 unlock_two_nondirectories(source, target); 4299 else if (target) 4300 mutex_unlock(&target->i_mutex); 4301 dput(new_dentry); 4302 if (!error) { 4303 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4304 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4305 if (flags & RENAME_EXCHANGE) { 4306 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4307 new_is_dir, NULL, new_dentry); 4308 } 4309 } 4310 fsnotify_oldname_free(old_name); 4311 4312 return error; 4313 } 4314 EXPORT_SYMBOL(vfs_rename); 4315 4316 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4317 int, newdfd, const char __user *, newname, unsigned int, flags) 4318 { 4319 struct dentry *old_dentry, *new_dentry; 4320 struct dentry *trap; 4321 struct path old_path, new_path; 4322 struct qstr old_last, new_last; 4323 int old_type, new_type; 4324 struct inode *delegated_inode = NULL; 4325 struct filename *from; 4326 struct filename *to; 4327 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4328 bool should_retry = false; 4329 int error; 4330 4331 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4332 return -EINVAL; 4333 4334 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4335 (flags & RENAME_EXCHANGE)) 4336 return -EINVAL; 4337 4338 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4339 return -EPERM; 4340 4341 if (flags & RENAME_EXCHANGE) 4342 target_flags = 0; 4343 4344 retry: 4345 from = user_path_parent(olddfd, oldname, 4346 &old_path, &old_last, &old_type, lookup_flags); 4347 if (IS_ERR(from)) { 4348 error = PTR_ERR(from); 4349 goto exit; 4350 } 4351 4352 to = user_path_parent(newdfd, newname, 4353 &new_path, &new_last, &new_type, lookup_flags); 4354 if (IS_ERR(to)) { 4355 error = PTR_ERR(to); 4356 goto exit1; 4357 } 4358 4359 error = -EXDEV; 4360 if (old_path.mnt != new_path.mnt) 4361 goto exit2; 4362 4363 error = -EBUSY; 4364 if (old_type != LAST_NORM) 4365 goto exit2; 4366 4367 if (flags & RENAME_NOREPLACE) 4368 error = -EEXIST; 4369 if (new_type != LAST_NORM) 4370 goto exit2; 4371 4372 error = mnt_want_write(old_path.mnt); 4373 if (error) 4374 goto exit2; 4375 4376 retry_deleg: 4377 trap = lock_rename(new_path.dentry, old_path.dentry); 4378 4379 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4380 error = PTR_ERR(old_dentry); 4381 if (IS_ERR(old_dentry)) 4382 goto exit3; 4383 /* source must exist */ 4384 error = -ENOENT; 4385 if (d_is_negative(old_dentry)) 4386 goto exit4; 4387 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4388 error = PTR_ERR(new_dentry); 4389 if (IS_ERR(new_dentry)) 4390 goto exit4; 4391 error = -EEXIST; 4392 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4393 goto exit5; 4394 if (flags & RENAME_EXCHANGE) { 4395 error = -ENOENT; 4396 if (d_is_negative(new_dentry)) 4397 goto exit5; 4398 4399 if (!d_is_dir(new_dentry)) { 4400 error = -ENOTDIR; 4401 if (new_last.name[new_last.len]) 4402 goto exit5; 4403 } 4404 } 4405 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4406 if (!d_is_dir(old_dentry)) { 4407 error = -ENOTDIR; 4408 if (old_last.name[old_last.len]) 4409 goto exit5; 4410 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4411 goto exit5; 4412 } 4413 /* source should not be ancestor of target */ 4414 error = -EINVAL; 4415 if (old_dentry == trap) 4416 goto exit5; 4417 /* target should not be an ancestor of source */ 4418 if (!(flags & RENAME_EXCHANGE)) 4419 error = -ENOTEMPTY; 4420 if (new_dentry == trap) 4421 goto exit5; 4422 4423 error = security_path_rename(&old_path, old_dentry, 4424 &new_path, new_dentry, flags); 4425 if (error) 4426 goto exit5; 4427 error = vfs_rename(old_path.dentry->d_inode, old_dentry, 4428 new_path.dentry->d_inode, new_dentry, 4429 &delegated_inode, flags); 4430 exit5: 4431 dput(new_dentry); 4432 exit4: 4433 dput(old_dentry); 4434 exit3: 4435 unlock_rename(new_path.dentry, old_path.dentry); 4436 if (delegated_inode) { 4437 error = break_deleg_wait(&delegated_inode); 4438 if (!error) 4439 goto retry_deleg; 4440 } 4441 mnt_drop_write(old_path.mnt); 4442 exit2: 4443 if (retry_estale(error, lookup_flags)) 4444 should_retry = true; 4445 path_put(&new_path); 4446 putname(to); 4447 exit1: 4448 path_put(&old_path); 4449 putname(from); 4450 if (should_retry) { 4451 should_retry = false; 4452 lookup_flags |= LOOKUP_REVAL; 4453 goto retry; 4454 } 4455 exit: 4456 return error; 4457 } 4458 4459 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4460 int, newdfd, const char __user *, newname) 4461 { 4462 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4463 } 4464 4465 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4466 { 4467 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4468 } 4469 4470 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4471 { 4472 int error = may_create(dir, dentry); 4473 if (error) 4474 return error; 4475 4476 if (!dir->i_op->mknod) 4477 return -EPERM; 4478 4479 return dir->i_op->mknod(dir, dentry, 4480 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4481 } 4482 EXPORT_SYMBOL(vfs_whiteout); 4483 4484 int readlink_copy(char __user *buffer, int buflen, const char *link) 4485 { 4486 int len = PTR_ERR(link); 4487 if (IS_ERR(link)) 4488 goto out; 4489 4490 len = strlen(link); 4491 if (len > (unsigned) buflen) 4492 len = buflen; 4493 if (copy_to_user(buffer, link, len)) 4494 len = -EFAULT; 4495 out: 4496 return len; 4497 } 4498 EXPORT_SYMBOL(readlink_copy); 4499 4500 /* 4501 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4502 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4503 * using) it for any given inode is up to filesystem. 4504 */ 4505 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4506 { 4507 void *cookie; 4508 struct inode *inode = d_inode(dentry); 4509 const char *link = inode->i_link; 4510 int res; 4511 4512 if (!link) { 4513 link = inode->i_op->follow_link(dentry, &cookie); 4514 if (IS_ERR(link)) 4515 return PTR_ERR(link); 4516 } 4517 res = readlink_copy(buffer, buflen, link); 4518 if (inode->i_op->put_link) 4519 inode->i_op->put_link(inode, cookie); 4520 return res; 4521 } 4522 EXPORT_SYMBOL(generic_readlink); 4523 4524 /* get the link contents into pagecache */ 4525 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4526 { 4527 char *kaddr; 4528 struct page *page; 4529 struct address_space *mapping = dentry->d_inode->i_mapping; 4530 page = read_mapping_page(mapping, 0, NULL); 4531 if (IS_ERR(page)) 4532 return (char*)page; 4533 *ppage = page; 4534 kaddr = kmap(page); 4535 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4536 return kaddr; 4537 } 4538 4539 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4540 { 4541 struct page *page = NULL; 4542 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4543 if (page) { 4544 kunmap(page); 4545 page_cache_release(page); 4546 } 4547 return res; 4548 } 4549 EXPORT_SYMBOL(page_readlink); 4550 4551 const char *page_follow_link_light(struct dentry *dentry, void **cookie) 4552 { 4553 struct page *page = NULL; 4554 char *res = page_getlink(dentry, &page); 4555 if (!IS_ERR(res)) 4556 *cookie = page; 4557 return res; 4558 } 4559 EXPORT_SYMBOL(page_follow_link_light); 4560 4561 void page_put_link(struct inode *unused, void *cookie) 4562 { 4563 struct page *page = cookie; 4564 kunmap(page); 4565 page_cache_release(page); 4566 } 4567 EXPORT_SYMBOL(page_put_link); 4568 4569 /* 4570 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4571 */ 4572 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4573 { 4574 struct address_space *mapping = inode->i_mapping; 4575 struct page *page; 4576 void *fsdata; 4577 int err; 4578 char *kaddr; 4579 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4580 if (nofs) 4581 flags |= AOP_FLAG_NOFS; 4582 4583 retry: 4584 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4585 flags, &page, &fsdata); 4586 if (err) 4587 goto fail; 4588 4589 kaddr = kmap_atomic(page); 4590 memcpy(kaddr, symname, len-1); 4591 kunmap_atomic(kaddr); 4592 4593 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4594 page, fsdata); 4595 if (err < 0) 4596 goto fail; 4597 if (err < len-1) 4598 goto retry; 4599 4600 mark_inode_dirty(inode); 4601 return 0; 4602 fail: 4603 return err; 4604 } 4605 EXPORT_SYMBOL(__page_symlink); 4606 4607 int page_symlink(struct inode *inode, const char *symname, int len) 4608 { 4609 return __page_symlink(inode, symname, len, 4610 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4611 } 4612 EXPORT_SYMBOL(page_symlink); 4613 4614 const struct inode_operations page_symlink_inode_operations = { 4615 .readlink = generic_readlink, 4616 .follow_link = page_follow_link_light, 4617 .put_link = page_put_link, 4618 }; 4619 EXPORT_SYMBOL(page_symlink_inode_operations); 4620