xref: /openbmc/linux/fs/namei.c (revision 2243acd5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/ima.h>
31 #include <linux/syscalls.h>
32 #include <linux/mount.h>
33 #include <linux/audit.h>
34 #include <linux/capability.h>
35 #include <linux/file.h>
36 #include <linux/fcntl.h>
37 #include <linux/device_cgroup.h>
38 #include <linux/fs_struct.h>
39 #include <linux/posix_acl.h>
40 #include <linux/hash.h>
41 #include <linux/bitops.h>
42 #include <linux/init_task.h>
43 #include <linux/uaccess.h>
44 
45 #include "internal.h"
46 #include "mount.h"
47 
48 /* [Feb-1997 T. Schoebel-Theuer]
49  * Fundamental changes in the pathname lookup mechanisms (namei)
50  * were necessary because of omirr.  The reason is that omirr needs
51  * to know the _real_ pathname, not the user-supplied one, in case
52  * of symlinks (and also when transname replacements occur).
53  *
54  * The new code replaces the old recursive symlink resolution with
55  * an iterative one (in case of non-nested symlink chains).  It does
56  * this with calls to <fs>_follow_link().
57  * As a side effect, dir_namei(), _namei() and follow_link() are now
58  * replaced with a single function lookup_dentry() that can handle all
59  * the special cases of the former code.
60  *
61  * With the new dcache, the pathname is stored at each inode, at least as
62  * long as the refcount of the inode is positive.  As a side effect, the
63  * size of the dcache depends on the inode cache and thus is dynamic.
64  *
65  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
66  * resolution to correspond with current state of the code.
67  *
68  * Note that the symlink resolution is not *completely* iterative.
69  * There is still a significant amount of tail- and mid- recursion in
70  * the algorithm.  Also, note that <fs>_readlink() is not used in
71  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
72  * may return different results than <fs>_follow_link().  Many virtual
73  * filesystems (including /proc) exhibit this behavior.
74  */
75 
76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
77  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
78  * and the name already exists in form of a symlink, try to create the new
79  * name indicated by the symlink. The old code always complained that the
80  * name already exists, due to not following the symlink even if its target
81  * is nonexistent.  The new semantics affects also mknod() and link() when
82  * the name is a symlink pointing to a non-existent name.
83  *
84  * I don't know which semantics is the right one, since I have no access
85  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
86  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
87  * "old" one. Personally, I think the new semantics is much more logical.
88  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
89  * file does succeed in both HP-UX and SunOs, but not in Solaris
90  * and in the old Linux semantics.
91  */
92 
93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
94  * semantics.  See the comments in "open_namei" and "do_link" below.
95  *
96  * [10-Sep-98 Alan Modra] Another symlink change.
97  */
98 
99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
100  *	inside the path - always follow.
101  *	in the last component in creation/removal/renaming - never follow.
102  *	if LOOKUP_FOLLOW passed - follow.
103  *	if the pathname has trailing slashes - follow.
104  *	otherwise - don't follow.
105  * (applied in that order).
106  *
107  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
108  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
109  * During the 2.4 we need to fix the userland stuff depending on it -
110  * hopefully we will be able to get rid of that wart in 2.5. So far only
111  * XEmacs seems to be relying on it...
112  */
113 /*
114  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
115  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
116  * any extra contention...
117  */
118 
119 /* In order to reduce some races, while at the same time doing additional
120  * checking and hopefully speeding things up, we copy filenames to the
121  * kernel data space before using them..
122  *
123  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
124  * PATH_MAX includes the nul terminator --RR.
125  */
126 
127 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
128 
129 struct filename *
130 getname_flags(const char __user *filename, int flags, int *empty)
131 {
132 	struct filename *result;
133 	char *kname;
134 	int len;
135 
136 	result = audit_reusename(filename);
137 	if (result)
138 		return result;
139 
140 	result = __getname();
141 	if (unlikely(!result))
142 		return ERR_PTR(-ENOMEM);
143 
144 	/*
145 	 * First, try to embed the struct filename inside the names_cache
146 	 * allocation
147 	 */
148 	kname = (char *)result->iname;
149 	result->name = kname;
150 
151 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 	if (unlikely(len < 0)) {
153 		__putname(result);
154 		return ERR_PTR(len);
155 	}
156 
157 	/*
158 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 	 * separate struct filename so we can dedicate the entire
160 	 * names_cache allocation for the pathname, and re-do the copy from
161 	 * userland.
162 	 */
163 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 		const size_t size = offsetof(struct filename, iname[1]);
165 		kname = (char *)result;
166 
167 		/*
168 		 * size is chosen that way we to guarantee that
169 		 * result->iname[0] is within the same object and that
170 		 * kname can't be equal to result->iname, no matter what.
171 		 */
172 		result = kzalloc(size, GFP_KERNEL);
173 		if (unlikely(!result)) {
174 			__putname(kname);
175 			return ERR_PTR(-ENOMEM);
176 		}
177 		result->name = kname;
178 		len = strncpy_from_user(kname, filename, PATH_MAX);
179 		if (unlikely(len < 0)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(len);
183 		}
184 		if (unlikely(len == PATH_MAX)) {
185 			__putname(kname);
186 			kfree(result);
187 			return ERR_PTR(-ENAMETOOLONG);
188 		}
189 	}
190 
191 	result->refcnt = 1;
192 	/* The empty path is special. */
193 	if (unlikely(!len)) {
194 		if (empty)
195 			*empty = 1;
196 		if (!(flags & LOOKUP_EMPTY)) {
197 			putname(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 	}
201 
202 	result->uptr = filename;
203 	result->aname = NULL;
204 	audit_getname(result);
205 	return result;
206 }
207 
208 struct filename *
209 getname_uflags(const char __user *filename, int uflags)
210 {
211 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
212 
213 	return getname_flags(filename, flags, NULL);
214 }
215 
216 struct filename *
217 getname(const char __user * filename)
218 {
219 	return getname_flags(filename, 0, NULL);
220 }
221 
222 struct filename *
223 getname_kernel(const char * filename)
224 {
225 	struct filename *result;
226 	int len = strlen(filename) + 1;
227 
228 	result = __getname();
229 	if (unlikely(!result))
230 		return ERR_PTR(-ENOMEM);
231 
232 	if (len <= EMBEDDED_NAME_MAX) {
233 		result->name = (char *)result->iname;
234 	} else if (len <= PATH_MAX) {
235 		const size_t size = offsetof(struct filename, iname[1]);
236 		struct filename *tmp;
237 
238 		tmp = kmalloc(size, GFP_KERNEL);
239 		if (unlikely(!tmp)) {
240 			__putname(result);
241 			return ERR_PTR(-ENOMEM);
242 		}
243 		tmp->name = (char *)result;
244 		result = tmp;
245 	} else {
246 		__putname(result);
247 		return ERR_PTR(-ENAMETOOLONG);
248 	}
249 	memcpy((char *)result->name, filename, len);
250 	result->uptr = NULL;
251 	result->aname = NULL;
252 	result->refcnt = 1;
253 	audit_getname(result);
254 
255 	return result;
256 }
257 
258 void putname(struct filename *name)
259 {
260 	if (IS_ERR(name))
261 		return;
262 
263 	BUG_ON(name->refcnt <= 0);
264 
265 	if (--name->refcnt > 0)
266 		return;
267 
268 	if (name->name != name->iname) {
269 		__putname(name->name);
270 		kfree(name);
271 	} else
272 		__putname(name);
273 }
274 
275 /**
276  * check_acl - perform ACL permission checking
277  * @idmap:	idmap of the mount the inode was found from
278  * @inode:	inode to check permissions on
279  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
280  *
281  * This function performs the ACL permission checking. Since this function
282  * retrieve POSIX acls it needs to know whether it is called from a blocking or
283  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
284  *
285  * If the inode has been found through an idmapped mount the idmap of
286  * the vfsmount must be passed through @idmap. This function will then take
287  * care to map the inode according to @idmap before checking permissions.
288  * On non-idmapped mounts or if permission checking is to be performed on the
289  * raw inode simply passs @nop_mnt_idmap.
290  */
291 static int check_acl(struct mnt_idmap *idmap,
292 		     struct inode *inode, int mask)
293 {
294 #ifdef CONFIG_FS_POSIX_ACL
295 	struct posix_acl *acl;
296 
297 	if (mask & MAY_NOT_BLOCK) {
298 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
299 	        if (!acl)
300 	                return -EAGAIN;
301 		/* no ->get_inode_acl() calls in RCU mode... */
302 		if (is_uncached_acl(acl))
303 			return -ECHILD;
304 	        return posix_acl_permission(idmap, inode, acl, mask);
305 	}
306 
307 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
308 	if (IS_ERR(acl))
309 		return PTR_ERR(acl);
310 	if (acl) {
311 	        int error = posix_acl_permission(idmap, inode, acl, mask);
312 	        posix_acl_release(acl);
313 	        return error;
314 	}
315 #endif
316 
317 	return -EAGAIN;
318 }
319 
320 /**
321  * acl_permission_check - perform basic UNIX permission checking
322  * @idmap:	idmap of the mount the inode was found from
323  * @inode:	inode to check permissions on
324  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
325  *
326  * This function performs the basic UNIX permission checking. Since this
327  * function may retrieve POSIX acls it needs to know whether it is called from a
328  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
329  *
330  * If the inode has been found through an idmapped mount the idmap of
331  * the vfsmount must be passed through @idmap. This function will then take
332  * care to map the inode according to @idmap before checking permissions.
333  * On non-idmapped mounts or if permission checking is to be performed on the
334  * raw inode simply passs @nop_mnt_idmap.
335  */
336 static int acl_permission_check(struct mnt_idmap *idmap,
337 				struct inode *inode, int mask)
338 {
339 	unsigned int mode = inode->i_mode;
340 	vfsuid_t vfsuid;
341 
342 	/* Are we the owner? If so, ACL's don't matter */
343 	vfsuid = i_uid_into_vfsuid(idmap, inode);
344 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
345 		mask &= 7;
346 		mode >>= 6;
347 		return (mask & ~mode) ? -EACCES : 0;
348 	}
349 
350 	/* Do we have ACL's? */
351 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
352 		int error = check_acl(idmap, inode, mask);
353 		if (error != -EAGAIN)
354 			return error;
355 	}
356 
357 	/* Only RWX matters for group/other mode bits */
358 	mask &= 7;
359 
360 	/*
361 	 * Are the group permissions different from
362 	 * the other permissions in the bits we care
363 	 * about? Need to check group ownership if so.
364 	 */
365 	if (mask & (mode ^ (mode >> 3))) {
366 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
367 		if (vfsgid_in_group_p(vfsgid))
368 			mode >>= 3;
369 	}
370 
371 	/* Bits in 'mode' clear that we require? */
372 	return (mask & ~mode) ? -EACCES : 0;
373 }
374 
375 /**
376  * generic_permission -  check for access rights on a Posix-like filesystem
377  * @idmap:	idmap of the mount the inode was found from
378  * @inode:	inode to check access rights for
379  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
380  *		%MAY_NOT_BLOCK ...)
381  *
382  * Used to check for read/write/execute permissions on a file.
383  * We use "fsuid" for this, letting us set arbitrary permissions
384  * for filesystem access without changing the "normal" uids which
385  * are used for other things.
386  *
387  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
388  * request cannot be satisfied (eg. requires blocking or too much complexity).
389  * It would then be called again in ref-walk mode.
390  *
391  * If the inode has been found through an idmapped mount the idmap of
392  * the vfsmount must be passed through @idmap. This function will then take
393  * care to map the inode according to @idmap before checking permissions.
394  * On non-idmapped mounts or if permission checking is to be performed on the
395  * raw inode simply passs @nop_mnt_idmap.
396  */
397 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
398 		       int mask)
399 {
400 	int ret;
401 
402 	/*
403 	 * Do the basic permission checks.
404 	 */
405 	ret = acl_permission_check(idmap, inode, mask);
406 	if (ret != -EACCES)
407 		return ret;
408 
409 	if (S_ISDIR(inode->i_mode)) {
410 		/* DACs are overridable for directories */
411 		if (!(mask & MAY_WRITE))
412 			if (capable_wrt_inode_uidgid(idmap, inode,
413 						     CAP_DAC_READ_SEARCH))
414 				return 0;
415 		if (capable_wrt_inode_uidgid(idmap, inode,
416 					     CAP_DAC_OVERRIDE))
417 			return 0;
418 		return -EACCES;
419 	}
420 
421 	/*
422 	 * Searching includes executable on directories, else just read.
423 	 */
424 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
425 	if (mask == MAY_READ)
426 		if (capable_wrt_inode_uidgid(idmap, inode,
427 					     CAP_DAC_READ_SEARCH))
428 			return 0;
429 	/*
430 	 * Read/write DACs are always overridable.
431 	 * Executable DACs are overridable when there is
432 	 * at least one exec bit set.
433 	 */
434 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
435 		if (capable_wrt_inode_uidgid(idmap, inode,
436 					     CAP_DAC_OVERRIDE))
437 			return 0;
438 
439 	return -EACCES;
440 }
441 EXPORT_SYMBOL(generic_permission);
442 
443 /**
444  * do_inode_permission - UNIX permission checking
445  * @idmap:	idmap of the mount the inode was found from
446  * @inode:	inode to check permissions on
447  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
448  *
449  * We _really_ want to just do "generic_permission()" without
450  * even looking at the inode->i_op values. So we keep a cache
451  * flag in inode->i_opflags, that says "this has not special
452  * permission function, use the fast case".
453  */
454 static inline int do_inode_permission(struct mnt_idmap *idmap,
455 				      struct inode *inode, int mask)
456 {
457 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
458 		if (likely(inode->i_op->permission))
459 			return inode->i_op->permission(idmap, inode, mask);
460 
461 		/* This gets set once for the inode lifetime */
462 		spin_lock(&inode->i_lock);
463 		inode->i_opflags |= IOP_FASTPERM;
464 		spin_unlock(&inode->i_lock);
465 	}
466 	return generic_permission(idmap, inode, mask);
467 }
468 
469 /**
470  * sb_permission - Check superblock-level permissions
471  * @sb: Superblock of inode to check permission on
472  * @inode: Inode to check permission on
473  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
474  *
475  * Separate out file-system wide checks from inode-specific permission checks.
476  */
477 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
478 {
479 	if (unlikely(mask & MAY_WRITE)) {
480 		umode_t mode = inode->i_mode;
481 
482 		/* Nobody gets write access to a read-only fs. */
483 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
484 			return -EROFS;
485 	}
486 	return 0;
487 }
488 
489 /**
490  * inode_permission - Check for access rights to a given inode
491  * @idmap:	idmap of the mount the inode was found from
492  * @inode:	Inode to check permission on
493  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
494  *
495  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
496  * this, letting us set arbitrary permissions for filesystem access without
497  * changing the "normal" UIDs which are used for other things.
498  *
499  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
500  */
501 int inode_permission(struct mnt_idmap *idmap,
502 		     struct inode *inode, int mask)
503 {
504 	int retval;
505 
506 	retval = sb_permission(inode->i_sb, inode, mask);
507 	if (retval)
508 		return retval;
509 
510 	if (unlikely(mask & MAY_WRITE)) {
511 		/*
512 		 * Nobody gets write access to an immutable file.
513 		 */
514 		if (IS_IMMUTABLE(inode))
515 			return -EPERM;
516 
517 		/*
518 		 * Updating mtime will likely cause i_uid and i_gid to be
519 		 * written back improperly if their true value is unknown
520 		 * to the vfs.
521 		 */
522 		if (HAS_UNMAPPED_ID(idmap, inode))
523 			return -EACCES;
524 	}
525 
526 	retval = do_inode_permission(idmap, inode, mask);
527 	if (retval)
528 		return retval;
529 
530 	retval = devcgroup_inode_permission(inode, mask);
531 	if (retval)
532 		return retval;
533 
534 	return security_inode_permission(inode, mask);
535 }
536 EXPORT_SYMBOL(inode_permission);
537 
538 /**
539  * path_get - get a reference to a path
540  * @path: path to get the reference to
541  *
542  * Given a path increment the reference count to the dentry and the vfsmount.
543  */
544 void path_get(const struct path *path)
545 {
546 	mntget(path->mnt);
547 	dget(path->dentry);
548 }
549 EXPORT_SYMBOL(path_get);
550 
551 /**
552  * path_put - put a reference to a path
553  * @path: path to put the reference to
554  *
555  * Given a path decrement the reference count to the dentry and the vfsmount.
556  */
557 void path_put(const struct path *path)
558 {
559 	dput(path->dentry);
560 	mntput(path->mnt);
561 }
562 EXPORT_SYMBOL(path_put);
563 
564 #define EMBEDDED_LEVELS 2
565 struct nameidata {
566 	struct path	path;
567 	struct qstr	last;
568 	struct path	root;
569 	struct inode	*inode; /* path.dentry.d_inode */
570 	unsigned int	flags, state;
571 	unsigned	seq, next_seq, m_seq, r_seq;
572 	int		last_type;
573 	unsigned	depth;
574 	int		total_link_count;
575 	struct saved {
576 		struct path link;
577 		struct delayed_call done;
578 		const char *name;
579 		unsigned seq;
580 	} *stack, internal[EMBEDDED_LEVELS];
581 	struct filename	*name;
582 	struct nameidata *saved;
583 	unsigned	root_seq;
584 	int		dfd;
585 	vfsuid_t	dir_vfsuid;
586 	umode_t		dir_mode;
587 } __randomize_layout;
588 
589 #define ND_ROOT_PRESET 1
590 #define ND_ROOT_GRABBED 2
591 #define ND_JUMPED 4
592 
593 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
594 {
595 	struct nameidata *old = current->nameidata;
596 	p->stack = p->internal;
597 	p->depth = 0;
598 	p->dfd = dfd;
599 	p->name = name;
600 	p->path.mnt = NULL;
601 	p->path.dentry = NULL;
602 	p->total_link_count = old ? old->total_link_count : 0;
603 	p->saved = old;
604 	current->nameidata = p;
605 }
606 
607 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
608 			  const struct path *root)
609 {
610 	__set_nameidata(p, dfd, name);
611 	p->state = 0;
612 	if (unlikely(root)) {
613 		p->state = ND_ROOT_PRESET;
614 		p->root = *root;
615 	}
616 }
617 
618 static void restore_nameidata(void)
619 {
620 	struct nameidata *now = current->nameidata, *old = now->saved;
621 
622 	current->nameidata = old;
623 	if (old)
624 		old->total_link_count = now->total_link_count;
625 	if (now->stack != now->internal)
626 		kfree(now->stack);
627 }
628 
629 static bool nd_alloc_stack(struct nameidata *nd)
630 {
631 	struct saved *p;
632 
633 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
634 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
635 	if (unlikely(!p))
636 		return false;
637 	memcpy(p, nd->internal, sizeof(nd->internal));
638 	nd->stack = p;
639 	return true;
640 }
641 
642 /**
643  * path_connected - Verify that a dentry is below mnt.mnt_root
644  *
645  * Rename can sometimes move a file or directory outside of a bind
646  * mount, path_connected allows those cases to be detected.
647  */
648 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
649 {
650 	struct super_block *sb = mnt->mnt_sb;
651 
652 	/* Bind mounts can have disconnected paths */
653 	if (mnt->mnt_root == sb->s_root)
654 		return true;
655 
656 	return is_subdir(dentry, mnt->mnt_root);
657 }
658 
659 static void drop_links(struct nameidata *nd)
660 {
661 	int i = nd->depth;
662 	while (i--) {
663 		struct saved *last = nd->stack + i;
664 		do_delayed_call(&last->done);
665 		clear_delayed_call(&last->done);
666 	}
667 }
668 
669 static void leave_rcu(struct nameidata *nd)
670 {
671 	nd->flags &= ~LOOKUP_RCU;
672 	nd->seq = nd->next_seq = 0;
673 	rcu_read_unlock();
674 }
675 
676 static void terminate_walk(struct nameidata *nd)
677 {
678 	drop_links(nd);
679 	if (!(nd->flags & LOOKUP_RCU)) {
680 		int i;
681 		path_put(&nd->path);
682 		for (i = 0; i < nd->depth; i++)
683 			path_put(&nd->stack[i].link);
684 		if (nd->state & ND_ROOT_GRABBED) {
685 			path_put(&nd->root);
686 			nd->state &= ~ND_ROOT_GRABBED;
687 		}
688 	} else {
689 		leave_rcu(nd);
690 	}
691 	nd->depth = 0;
692 	nd->path.mnt = NULL;
693 	nd->path.dentry = NULL;
694 }
695 
696 /* path_put is needed afterwards regardless of success or failure */
697 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
698 {
699 	int res = __legitimize_mnt(path->mnt, mseq);
700 	if (unlikely(res)) {
701 		if (res > 0)
702 			path->mnt = NULL;
703 		path->dentry = NULL;
704 		return false;
705 	}
706 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
707 		path->dentry = NULL;
708 		return false;
709 	}
710 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
711 }
712 
713 static inline bool legitimize_path(struct nameidata *nd,
714 			    struct path *path, unsigned seq)
715 {
716 	return __legitimize_path(path, seq, nd->m_seq);
717 }
718 
719 static bool legitimize_links(struct nameidata *nd)
720 {
721 	int i;
722 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
723 		drop_links(nd);
724 		nd->depth = 0;
725 		return false;
726 	}
727 	for (i = 0; i < nd->depth; i++) {
728 		struct saved *last = nd->stack + i;
729 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
730 			drop_links(nd);
731 			nd->depth = i + 1;
732 			return false;
733 		}
734 	}
735 	return true;
736 }
737 
738 static bool legitimize_root(struct nameidata *nd)
739 {
740 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
741 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
742 		return true;
743 	nd->state |= ND_ROOT_GRABBED;
744 	return legitimize_path(nd, &nd->root, nd->root_seq);
745 }
746 
747 /*
748  * Path walking has 2 modes, rcu-walk and ref-walk (see
749  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
750  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
751  * normal reference counts on dentries and vfsmounts to transition to ref-walk
752  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
753  * got stuck, so ref-walk may continue from there. If this is not successful
754  * (eg. a seqcount has changed), then failure is returned and it's up to caller
755  * to restart the path walk from the beginning in ref-walk mode.
756  */
757 
758 /**
759  * try_to_unlazy - try to switch to ref-walk mode.
760  * @nd: nameidata pathwalk data
761  * Returns: true on success, false on failure
762  *
763  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
764  * for ref-walk mode.
765  * Must be called from rcu-walk context.
766  * Nothing should touch nameidata between try_to_unlazy() failure and
767  * terminate_walk().
768  */
769 static bool try_to_unlazy(struct nameidata *nd)
770 {
771 	struct dentry *parent = nd->path.dentry;
772 
773 	BUG_ON(!(nd->flags & LOOKUP_RCU));
774 
775 	if (unlikely(!legitimize_links(nd)))
776 		goto out1;
777 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
778 		goto out;
779 	if (unlikely(!legitimize_root(nd)))
780 		goto out;
781 	leave_rcu(nd);
782 	BUG_ON(nd->inode != parent->d_inode);
783 	return true;
784 
785 out1:
786 	nd->path.mnt = NULL;
787 	nd->path.dentry = NULL;
788 out:
789 	leave_rcu(nd);
790 	return false;
791 }
792 
793 /**
794  * try_to_unlazy_next - try to switch to ref-walk mode.
795  * @nd: nameidata pathwalk data
796  * @dentry: next dentry to step into
797  * Returns: true on success, false on failure
798  *
799  * Similar to try_to_unlazy(), but here we have the next dentry already
800  * picked by rcu-walk and want to legitimize that in addition to the current
801  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
802  * Nothing should touch nameidata between try_to_unlazy_next() failure and
803  * terminate_walk().
804  */
805 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
806 {
807 	int res;
808 	BUG_ON(!(nd->flags & LOOKUP_RCU));
809 
810 	if (unlikely(!legitimize_links(nd)))
811 		goto out2;
812 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
813 	if (unlikely(res)) {
814 		if (res > 0)
815 			goto out2;
816 		goto out1;
817 	}
818 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
819 		goto out1;
820 
821 	/*
822 	 * We need to move both the parent and the dentry from the RCU domain
823 	 * to be properly refcounted. And the sequence number in the dentry
824 	 * validates *both* dentry counters, since we checked the sequence
825 	 * number of the parent after we got the child sequence number. So we
826 	 * know the parent must still be valid if the child sequence number is
827 	 */
828 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
829 		goto out;
830 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
831 		goto out_dput;
832 	/*
833 	 * Sequence counts matched. Now make sure that the root is
834 	 * still valid and get it if required.
835 	 */
836 	if (unlikely(!legitimize_root(nd)))
837 		goto out_dput;
838 	leave_rcu(nd);
839 	return true;
840 
841 out2:
842 	nd->path.mnt = NULL;
843 out1:
844 	nd->path.dentry = NULL;
845 out:
846 	leave_rcu(nd);
847 	return false;
848 out_dput:
849 	leave_rcu(nd);
850 	dput(dentry);
851 	return false;
852 }
853 
854 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
855 {
856 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
857 		return dentry->d_op->d_revalidate(dentry, flags);
858 	else
859 		return 1;
860 }
861 
862 /**
863  * complete_walk - successful completion of path walk
864  * @nd:  pointer nameidata
865  *
866  * If we had been in RCU mode, drop out of it and legitimize nd->path.
867  * Revalidate the final result, unless we'd already done that during
868  * the path walk or the filesystem doesn't ask for it.  Return 0 on
869  * success, -error on failure.  In case of failure caller does not
870  * need to drop nd->path.
871  */
872 static int complete_walk(struct nameidata *nd)
873 {
874 	struct dentry *dentry = nd->path.dentry;
875 	int status;
876 
877 	if (nd->flags & LOOKUP_RCU) {
878 		/*
879 		 * We don't want to zero nd->root for scoped-lookups or
880 		 * externally-managed nd->root.
881 		 */
882 		if (!(nd->state & ND_ROOT_PRESET))
883 			if (!(nd->flags & LOOKUP_IS_SCOPED))
884 				nd->root.mnt = NULL;
885 		nd->flags &= ~LOOKUP_CACHED;
886 		if (!try_to_unlazy(nd))
887 			return -ECHILD;
888 	}
889 
890 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
891 		/*
892 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
893 		 * ever step outside the root during lookup" and should already
894 		 * be guaranteed by the rest of namei, we want to avoid a namei
895 		 * BUG resulting in userspace being given a path that was not
896 		 * scoped within the root at some point during the lookup.
897 		 *
898 		 * So, do a final sanity-check to make sure that in the
899 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
900 		 * we won't silently return an fd completely outside of the
901 		 * requested root to userspace.
902 		 *
903 		 * Userspace could move the path outside the root after this
904 		 * check, but as discussed elsewhere this is not a concern (the
905 		 * resolved file was inside the root at some point).
906 		 */
907 		if (!path_is_under(&nd->path, &nd->root))
908 			return -EXDEV;
909 	}
910 
911 	if (likely(!(nd->state & ND_JUMPED)))
912 		return 0;
913 
914 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
915 		return 0;
916 
917 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
918 	if (status > 0)
919 		return 0;
920 
921 	if (!status)
922 		status = -ESTALE;
923 
924 	return status;
925 }
926 
927 static int set_root(struct nameidata *nd)
928 {
929 	struct fs_struct *fs = current->fs;
930 
931 	/*
932 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
933 	 * still have to ensure it doesn't happen because it will cause a breakout
934 	 * from the dirfd.
935 	 */
936 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
937 		return -ENOTRECOVERABLE;
938 
939 	if (nd->flags & LOOKUP_RCU) {
940 		unsigned seq;
941 
942 		do {
943 			seq = read_seqcount_begin(&fs->seq);
944 			nd->root = fs->root;
945 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
946 		} while (read_seqcount_retry(&fs->seq, seq));
947 	} else {
948 		get_fs_root(fs, &nd->root);
949 		nd->state |= ND_ROOT_GRABBED;
950 	}
951 	return 0;
952 }
953 
954 static int nd_jump_root(struct nameidata *nd)
955 {
956 	if (unlikely(nd->flags & LOOKUP_BENEATH))
957 		return -EXDEV;
958 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
959 		/* Absolute path arguments to path_init() are allowed. */
960 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
961 			return -EXDEV;
962 	}
963 	if (!nd->root.mnt) {
964 		int error = set_root(nd);
965 		if (error)
966 			return error;
967 	}
968 	if (nd->flags & LOOKUP_RCU) {
969 		struct dentry *d;
970 		nd->path = nd->root;
971 		d = nd->path.dentry;
972 		nd->inode = d->d_inode;
973 		nd->seq = nd->root_seq;
974 		if (read_seqcount_retry(&d->d_seq, nd->seq))
975 			return -ECHILD;
976 	} else {
977 		path_put(&nd->path);
978 		nd->path = nd->root;
979 		path_get(&nd->path);
980 		nd->inode = nd->path.dentry->d_inode;
981 	}
982 	nd->state |= ND_JUMPED;
983 	return 0;
984 }
985 
986 /*
987  * Helper to directly jump to a known parsed path from ->get_link,
988  * caller must have taken a reference to path beforehand.
989  */
990 int nd_jump_link(const struct path *path)
991 {
992 	int error = -ELOOP;
993 	struct nameidata *nd = current->nameidata;
994 
995 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
996 		goto err;
997 
998 	error = -EXDEV;
999 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1000 		if (nd->path.mnt != path->mnt)
1001 			goto err;
1002 	}
1003 	/* Not currently safe for scoped-lookups. */
1004 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1005 		goto err;
1006 
1007 	path_put(&nd->path);
1008 	nd->path = *path;
1009 	nd->inode = nd->path.dentry->d_inode;
1010 	nd->state |= ND_JUMPED;
1011 	return 0;
1012 
1013 err:
1014 	path_put(path);
1015 	return error;
1016 }
1017 
1018 static inline void put_link(struct nameidata *nd)
1019 {
1020 	struct saved *last = nd->stack + --nd->depth;
1021 	do_delayed_call(&last->done);
1022 	if (!(nd->flags & LOOKUP_RCU))
1023 		path_put(&last->link);
1024 }
1025 
1026 static int sysctl_protected_symlinks __read_mostly;
1027 static int sysctl_protected_hardlinks __read_mostly;
1028 static int sysctl_protected_fifos __read_mostly;
1029 static int sysctl_protected_regular __read_mostly;
1030 
1031 #ifdef CONFIG_SYSCTL
1032 static struct ctl_table namei_sysctls[] = {
1033 	{
1034 		.procname	= "protected_symlinks",
1035 		.data		= &sysctl_protected_symlinks,
1036 		.maxlen		= sizeof(int),
1037 		.mode		= 0644,
1038 		.proc_handler	= proc_dointvec_minmax,
1039 		.extra1		= SYSCTL_ZERO,
1040 		.extra2		= SYSCTL_ONE,
1041 	},
1042 	{
1043 		.procname	= "protected_hardlinks",
1044 		.data		= &sysctl_protected_hardlinks,
1045 		.maxlen		= sizeof(int),
1046 		.mode		= 0644,
1047 		.proc_handler	= proc_dointvec_minmax,
1048 		.extra1		= SYSCTL_ZERO,
1049 		.extra2		= SYSCTL_ONE,
1050 	},
1051 	{
1052 		.procname	= "protected_fifos",
1053 		.data		= &sysctl_protected_fifos,
1054 		.maxlen		= sizeof(int),
1055 		.mode		= 0644,
1056 		.proc_handler	= proc_dointvec_minmax,
1057 		.extra1		= SYSCTL_ZERO,
1058 		.extra2		= SYSCTL_TWO,
1059 	},
1060 	{
1061 		.procname	= "protected_regular",
1062 		.data		= &sysctl_protected_regular,
1063 		.maxlen		= sizeof(int),
1064 		.mode		= 0644,
1065 		.proc_handler	= proc_dointvec_minmax,
1066 		.extra1		= SYSCTL_ZERO,
1067 		.extra2		= SYSCTL_TWO,
1068 	},
1069 	{ }
1070 };
1071 
1072 static int __init init_fs_namei_sysctls(void)
1073 {
1074 	register_sysctl_init("fs", namei_sysctls);
1075 	return 0;
1076 }
1077 fs_initcall(init_fs_namei_sysctls);
1078 
1079 #endif /* CONFIG_SYSCTL */
1080 
1081 /**
1082  * may_follow_link - Check symlink following for unsafe situations
1083  * @nd: nameidata pathwalk data
1084  *
1085  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1086  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1087  * in a sticky world-writable directory. This is to protect privileged
1088  * processes from failing races against path names that may change out
1089  * from under them by way of other users creating malicious symlinks.
1090  * It will permit symlinks to be followed only when outside a sticky
1091  * world-writable directory, or when the uid of the symlink and follower
1092  * match, or when the directory owner matches the symlink's owner.
1093  *
1094  * Returns 0 if following the symlink is allowed, -ve on error.
1095  */
1096 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1097 {
1098 	struct mnt_idmap *idmap;
1099 	vfsuid_t vfsuid;
1100 
1101 	if (!sysctl_protected_symlinks)
1102 		return 0;
1103 
1104 	idmap = mnt_idmap(nd->path.mnt);
1105 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1106 	/* Allowed if owner and follower match. */
1107 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1108 		return 0;
1109 
1110 	/* Allowed if parent directory not sticky and world-writable. */
1111 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1112 		return 0;
1113 
1114 	/* Allowed if parent directory and link owner match. */
1115 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1116 		return 0;
1117 
1118 	if (nd->flags & LOOKUP_RCU)
1119 		return -ECHILD;
1120 
1121 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1122 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1123 	return -EACCES;
1124 }
1125 
1126 /**
1127  * safe_hardlink_source - Check for safe hardlink conditions
1128  * @idmap: idmap of the mount the inode was found from
1129  * @inode: the source inode to hardlink from
1130  *
1131  * Return false if at least one of the following conditions:
1132  *    - inode is not a regular file
1133  *    - inode is setuid
1134  *    - inode is setgid and group-exec
1135  *    - access failure for read and write
1136  *
1137  * Otherwise returns true.
1138  */
1139 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1140 				 struct inode *inode)
1141 {
1142 	umode_t mode = inode->i_mode;
1143 
1144 	/* Special files should not get pinned to the filesystem. */
1145 	if (!S_ISREG(mode))
1146 		return false;
1147 
1148 	/* Setuid files should not get pinned to the filesystem. */
1149 	if (mode & S_ISUID)
1150 		return false;
1151 
1152 	/* Executable setgid files should not get pinned to the filesystem. */
1153 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1154 		return false;
1155 
1156 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1157 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1158 		return false;
1159 
1160 	return true;
1161 }
1162 
1163 /**
1164  * may_linkat - Check permissions for creating a hardlink
1165  * @idmap: idmap of the mount the inode was found from
1166  * @link:  the source to hardlink from
1167  *
1168  * Block hardlink when all of:
1169  *  - sysctl_protected_hardlinks enabled
1170  *  - fsuid does not match inode
1171  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1172  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1173  *
1174  * If the inode has been found through an idmapped mount the idmap of
1175  * the vfsmount must be passed through @idmap. This function will then take
1176  * care to map the inode according to @idmap before checking permissions.
1177  * On non-idmapped mounts or if permission checking is to be performed on the
1178  * raw inode simply pass @nop_mnt_idmap.
1179  *
1180  * Returns 0 if successful, -ve on error.
1181  */
1182 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1183 {
1184 	struct inode *inode = link->dentry->d_inode;
1185 
1186 	/* Inode writeback is not safe when the uid or gid are invalid. */
1187 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1188 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1189 		return -EOVERFLOW;
1190 
1191 	if (!sysctl_protected_hardlinks)
1192 		return 0;
1193 
1194 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1195 	 * otherwise, it must be a safe source.
1196 	 */
1197 	if (safe_hardlink_source(idmap, inode) ||
1198 	    inode_owner_or_capable(idmap, inode))
1199 		return 0;
1200 
1201 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1202 	return -EPERM;
1203 }
1204 
1205 /**
1206  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1207  *			  should be allowed, or not, on files that already
1208  *			  exist.
1209  * @idmap: idmap of the mount the inode was found from
1210  * @nd: nameidata pathwalk data
1211  * @inode: the inode of the file to open
1212  *
1213  * Block an O_CREAT open of a FIFO (or a regular file) when:
1214  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1215  *   - the file already exists
1216  *   - we are in a sticky directory
1217  *   - we don't own the file
1218  *   - the owner of the directory doesn't own the file
1219  *   - the directory is world writable
1220  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1221  * the directory doesn't have to be world writable: being group writable will
1222  * be enough.
1223  *
1224  * If the inode has been found through an idmapped mount the idmap of
1225  * the vfsmount must be passed through @idmap. This function will then take
1226  * care to map the inode according to @idmap before checking permissions.
1227  * On non-idmapped mounts or if permission checking is to be performed on the
1228  * raw inode simply pass @nop_mnt_idmap.
1229  *
1230  * Returns 0 if the open is allowed, -ve on error.
1231  */
1232 static int may_create_in_sticky(struct mnt_idmap *idmap,
1233 				struct nameidata *nd, struct inode *const inode)
1234 {
1235 	umode_t dir_mode = nd->dir_mode;
1236 	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1237 
1238 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1239 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1240 	    likely(!(dir_mode & S_ISVTX)) ||
1241 	    vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1242 	    vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1243 		return 0;
1244 
1245 	if (likely(dir_mode & 0002) ||
1246 	    (dir_mode & 0020 &&
1247 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1248 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1249 		const char *operation = S_ISFIFO(inode->i_mode) ?
1250 					"sticky_create_fifo" :
1251 					"sticky_create_regular";
1252 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1253 		return -EACCES;
1254 	}
1255 	return 0;
1256 }
1257 
1258 /*
1259  * follow_up - Find the mountpoint of path's vfsmount
1260  *
1261  * Given a path, find the mountpoint of its source file system.
1262  * Replace @path with the path of the mountpoint in the parent mount.
1263  * Up is towards /.
1264  *
1265  * Return 1 if we went up a level and 0 if we were already at the
1266  * root.
1267  */
1268 int follow_up(struct path *path)
1269 {
1270 	struct mount *mnt = real_mount(path->mnt);
1271 	struct mount *parent;
1272 	struct dentry *mountpoint;
1273 
1274 	read_seqlock_excl(&mount_lock);
1275 	parent = mnt->mnt_parent;
1276 	if (parent == mnt) {
1277 		read_sequnlock_excl(&mount_lock);
1278 		return 0;
1279 	}
1280 	mntget(&parent->mnt);
1281 	mountpoint = dget(mnt->mnt_mountpoint);
1282 	read_sequnlock_excl(&mount_lock);
1283 	dput(path->dentry);
1284 	path->dentry = mountpoint;
1285 	mntput(path->mnt);
1286 	path->mnt = &parent->mnt;
1287 	return 1;
1288 }
1289 EXPORT_SYMBOL(follow_up);
1290 
1291 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1292 				  struct path *path, unsigned *seqp)
1293 {
1294 	while (mnt_has_parent(m)) {
1295 		struct dentry *mountpoint = m->mnt_mountpoint;
1296 
1297 		m = m->mnt_parent;
1298 		if (unlikely(root->dentry == mountpoint &&
1299 			     root->mnt == &m->mnt))
1300 			break;
1301 		if (mountpoint != m->mnt.mnt_root) {
1302 			path->mnt = &m->mnt;
1303 			path->dentry = mountpoint;
1304 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1305 			return true;
1306 		}
1307 	}
1308 	return false;
1309 }
1310 
1311 static bool choose_mountpoint(struct mount *m, const struct path *root,
1312 			      struct path *path)
1313 {
1314 	bool found;
1315 
1316 	rcu_read_lock();
1317 	while (1) {
1318 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1319 
1320 		found = choose_mountpoint_rcu(m, root, path, &seq);
1321 		if (unlikely(!found)) {
1322 			if (!read_seqretry(&mount_lock, mseq))
1323 				break;
1324 		} else {
1325 			if (likely(__legitimize_path(path, seq, mseq)))
1326 				break;
1327 			rcu_read_unlock();
1328 			path_put(path);
1329 			rcu_read_lock();
1330 		}
1331 	}
1332 	rcu_read_unlock();
1333 	return found;
1334 }
1335 
1336 /*
1337  * Perform an automount
1338  * - return -EISDIR to tell follow_managed() to stop and return the path we
1339  *   were called with.
1340  */
1341 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1342 {
1343 	struct dentry *dentry = path->dentry;
1344 
1345 	/* We don't want to mount if someone's just doing a stat -
1346 	 * unless they're stat'ing a directory and appended a '/' to
1347 	 * the name.
1348 	 *
1349 	 * We do, however, want to mount if someone wants to open or
1350 	 * create a file of any type under the mountpoint, wants to
1351 	 * traverse through the mountpoint or wants to open the
1352 	 * mounted directory.  Also, autofs may mark negative dentries
1353 	 * as being automount points.  These will need the attentions
1354 	 * of the daemon to instantiate them before they can be used.
1355 	 */
1356 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1357 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1358 	    dentry->d_inode)
1359 		return -EISDIR;
1360 
1361 	if (count && (*count)++ >= MAXSYMLINKS)
1362 		return -ELOOP;
1363 
1364 	return finish_automount(dentry->d_op->d_automount(path), path);
1365 }
1366 
1367 /*
1368  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1369  * dentries are pinned but not locked here, so negative dentry can go
1370  * positive right under us.  Use of smp_load_acquire() provides a barrier
1371  * sufficient for ->d_inode and ->d_flags consistency.
1372  */
1373 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1374 			     int *count, unsigned lookup_flags)
1375 {
1376 	struct vfsmount *mnt = path->mnt;
1377 	bool need_mntput = false;
1378 	int ret = 0;
1379 
1380 	while (flags & DCACHE_MANAGED_DENTRY) {
1381 		/* Allow the filesystem to manage the transit without i_mutex
1382 		 * being held. */
1383 		if (flags & DCACHE_MANAGE_TRANSIT) {
1384 			ret = path->dentry->d_op->d_manage(path, false);
1385 			flags = smp_load_acquire(&path->dentry->d_flags);
1386 			if (ret < 0)
1387 				break;
1388 		}
1389 
1390 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1391 			struct vfsmount *mounted = lookup_mnt(path);
1392 			if (mounted) {		// ... in our namespace
1393 				dput(path->dentry);
1394 				if (need_mntput)
1395 					mntput(path->mnt);
1396 				path->mnt = mounted;
1397 				path->dentry = dget(mounted->mnt_root);
1398 				// here we know it's positive
1399 				flags = path->dentry->d_flags;
1400 				need_mntput = true;
1401 				continue;
1402 			}
1403 		}
1404 
1405 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1406 			break;
1407 
1408 		// uncovered automount point
1409 		ret = follow_automount(path, count, lookup_flags);
1410 		flags = smp_load_acquire(&path->dentry->d_flags);
1411 		if (ret < 0)
1412 			break;
1413 	}
1414 
1415 	if (ret == -EISDIR)
1416 		ret = 0;
1417 	// possible if you race with several mount --move
1418 	if (need_mntput && path->mnt == mnt)
1419 		mntput(path->mnt);
1420 	if (!ret && unlikely(d_flags_negative(flags)))
1421 		ret = -ENOENT;
1422 	*jumped = need_mntput;
1423 	return ret;
1424 }
1425 
1426 static inline int traverse_mounts(struct path *path, bool *jumped,
1427 				  int *count, unsigned lookup_flags)
1428 {
1429 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1430 
1431 	/* fastpath */
1432 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1433 		*jumped = false;
1434 		if (unlikely(d_flags_negative(flags)))
1435 			return -ENOENT;
1436 		return 0;
1437 	}
1438 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1439 }
1440 
1441 int follow_down_one(struct path *path)
1442 {
1443 	struct vfsmount *mounted;
1444 
1445 	mounted = lookup_mnt(path);
1446 	if (mounted) {
1447 		dput(path->dentry);
1448 		mntput(path->mnt);
1449 		path->mnt = mounted;
1450 		path->dentry = dget(mounted->mnt_root);
1451 		return 1;
1452 	}
1453 	return 0;
1454 }
1455 EXPORT_SYMBOL(follow_down_one);
1456 
1457 /*
1458  * Follow down to the covering mount currently visible to userspace.  At each
1459  * point, the filesystem owning that dentry may be queried as to whether the
1460  * caller is permitted to proceed or not.
1461  */
1462 int follow_down(struct path *path, unsigned int flags)
1463 {
1464 	struct vfsmount *mnt = path->mnt;
1465 	bool jumped;
1466 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1467 
1468 	if (path->mnt != mnt)
1469 		mntput(mnt);
1470 	return ret;
1471 }
1472 EXPORT_SYMBOL(follow_down);
1473 
1474 /*
1475  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1476  * we meet a managed dentry that would need blocking.
1477  */
1478 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1479 {
1480 	struct dentry *dentry = path->dentry;
1481 	unsigned int flags = dentry->d_flags;
1482 
1483 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1484 		return true;
1485 
1486 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1487 		return false;
1488 
1489 	for (;;) {
1490 		/*
1491 		 * Don't forget we might have a non-mountpoint managed dentry
1492 		 * that wants to block transit.
1493 		 */
1494 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1495 			int res = dentry->d_op->d_manage(path, true);
1496 			if (res)
1497 				return res == -EISDIR;
1498 			flags = dentry->d_flags;
1499 		}
1500 
1501 		if (flags & DCACHE_MOUNTED) {
1502 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1503 			if (mounted) {
1504 				path->mnt = &mounted->mnt;
1505 				dentry = path->dentry = mounted->mnt.mnt_root;
1506 				nd->state |= ND_JUMPED;
1507 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1508 				flags = dentry->d_flags;
1509 				// makes sure that non-RCU pathwalk could reach
1510 				// this state.
1511 				if (read_seqretry(&mount_lock, nd->m_seq))
1512 					return false;
1513 				continue;
1514 			}
1515 			if (read_seqretry(&mount_lock, nd->m_seq))
1516 				return false;
1517 		}
1518 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1519 	}
1520 }
1521 
1522 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1523 			  struct path *path)
1524 {
1525 	bool jumped;
1526 	int ret;
1527 
1528 	path->mnt = nd->path.mnt;
1529 	path->dentry = dentry;
1530 	if (nd->flags & LOOKUP_RCU) {
1531 		unsigned int seq = nd->next_seq;
1532 		if (likely(__follow_mount_rcu(nd, path)))
1533 			return 0;
1534 		// *path and nd->next_seq might've been clobbered
1535 		path->mnt = nd->path.mnt;
1536 		path->dentry = dentry;
1537 		nd->next_seq = seq;
1538 		if (!try_to_unlazy_next(nd, dentry))
1539 			return -ECHILD;
1540 	}
1541 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1542 	if (jumped) {
1543 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1544 			ret = -EXDEV;
1545 		else
1546 			nd->state |= ND_JUMPED;
1547 	}
1548 	if (unlikely(ret)) {
1549 		dput(path->dentry);
1550 		if (path->mnt != nd->path.mnt)
1551 			mntput(path->mnt);
1552 	}
1553 	return ret;
1554 }
1555 
1556 /*
1557  * This looks up the name in dcache and possibly revalidates the found dentry.
1558  * NULL is returned if the dentry does not exist in the cache.
1559  */
1560 static struct dentry *lookup_dcache(const struct qstr *name,
1561 				    struct dentry *dir,
1562 				    unsigned int flags)
1563 {
1564 	struct dentry *dentry = d_lookup(dir, name);
1565 	if (dentry) {
1566 		int error = d_revalidate(dentry, flags);
1567 		if (unlikely(error <= 0)) {
1568 			if (!error)
1569 				d_invalidate(dentry);
1570 			dput(dentry);
1571 			return ERR_PTR(error);
1572 		}
1573 	}
1574 	return dentry;
1575 }
1576 
1577 /*
1578  * Parent directory has inode locked exclusive.  This is one
1579  * and only case when ->lookup() gets called on non in-lookup
1580  * dentries - as the matter of fact, this only gets called
1581  * when directory is guaranteed to have no in-lookup children
1582  * at all.
1583  */
1584 static struct dentry *__lookup_hash(const struct qstr *name,
1585 		struct dentry *base, unsigned int flags)
1586 {
1587 	struct dentry *dentry = lookup_dcache(name, base, flags);
1588 	struct dentry *old;
1589 	struct inode *dir = base->d_inode;
1590 
1591 	if (dentry)
1592 		return dentry;
1593 
1594 	/* Don't create child dentry for a dead directory. */
1595 	if (unlikely(IS_DEADDIR(dir)))
1596 		return ERR_PTR(-ENOENT);
1597 
1598 	dentry = d_alloc(base, name);
1599 	if (unlikely(!dentry))
1600 		return ERR_PTR(-ENOMEM);
1601 
1602 	old = dir->i_op->lookup(dir, dentry, flags);
1603 	if (unlikely(old)) {
1604 		dput(dentry);
1605 		dentry = old;
1606 	}
1607 	return dentry;
1608 }
1609 
1610 static struct dentry *lookup_fast(struct nameidata *nd)
1611 {
1612 	struct dentry *dentry, *parent = nd->path.dentry;
1613 	int status = 1;
1614 
1615 	/*
1616 	 * Rename seqlock is not required here because in the off chance
1617 	 * of a false negative due to a concurrent rename, the caller is
1618 	 * going to fall back to non-racy lookup.
1619 	 */
1620 	if (nd->flags & LOOKUP_RCU) {
1621 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1622 		if (unlikely(!dentry)) {
1623 			if (!try_to_unlazy(nd))
1624 				return ERR_PTR(-ECHILD);
1625 			return NULL;
1626 		}
1627 
1628 		/*
1629 		 * This sequence count validates that the parent had no
1630 		 * changes while we did the lookup of the dentry above.
1631 		 */
1632 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1633 			return ERR_PTR(-ECHILD);
1634 
1635 		status = d_revalidate(dentry, nd->flags);
1636 		if (likely(status > 0))
1637 			return dentry;
1638 		if (!try_to_unlazy_next(nd, dentry))
1639 			return ERR_PTR(-ECHILD);
1640 		if (status == -ECHILD)
1641 			/* we'd been told to redo it in non-rcu mode */
1642 			status = d_revalidate(dentry, nd->flags);
1643 	} else {
1644 		dentry = __d_lookup(parent, &nd->last);
1645 		if (unlikely(!dentry))
1646 			return NULL;
1647 		status = d_revalidate(dentry, nd->flags);
1648 	}
1649 	if (unlikely(status <= 0)) {
1650 		if (!status)
1651 			d_invalidate(dentry);
1652 		dput(dentry);
1653 		return ERR_PTR(status);
1654 	}
1655 	return dentry;
1656 }
1657 
1658 /* Fast lookup failed, do it the slow way */
1659 static struct dentry *__lookup_slow(const struct qstr *name,
1660 				    struct dentry *dir,
1661 				    unsigned int flags)
1662 {
1663 	struct dentry *dentry, *old;
1664 	struct inode *inode = dir->d_inode;
1665 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1666 
1667 	/* Don't go there if it's already dead */
1668 	if (unlikely(IS_DEADDIR(inode)))
1669 		return ERR_PTR(-ENOENT);
1670 again:
1671 	dentry = d_alloc_parallel(dir, name, &wq);
1672 	if (IS_ERR(dentry))
1673 		return dentry;
1674 	if (unlikely(!d_in_lookup(dentry))) {
1675 		int error = d_revalidate(dentry, flags);
1676 		if (unlikely(error <= 0)) {
1677 			if (!error) {
1678 				d_invalidate(dentry);
1679 				dput(dentry);
1680 				goto again;
1681 			}
1682 			dput(dentry);
1683 			dentry = ERR_PTR(error);
1684 		}
1685 	} else {
1686 		old = inode->i_op->lookup(inode, dentry, flags);
1687 		d_lookup_done(dentry);
1688 		if (unlikely(old)) {
1689 			dput(dentry);
1690 			dentry = old;
1691 		}
1692 	}
1693 	return dentry;
1694 }
1695 
1696 static struct dentry *lookup_slow(const struct qstr *name,
1697 				  struct dentry *dir,
1698 				  unsigned int flags)
1699 {
1700 	struct inode *inode = dir->d_inode;
1701 	struct dentry *res;
1702 	inode_lock_shared(inode);
1703 	res = __lookup_slow(name, dir, flags);
1704 	inode_unlock_shared(inode);
1705 	return res;
1706 }
1707 
1708 static inline int may_lookup(struct mnt_idmap *idmap,
1709 			     struct nameidata *nd)
1710 {
1711 	if (nd->flags & LOOKUP_RCU) {
1712 		int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1713 		if (err != -ECHILD || !try_to_unlazy(nd))
1714 			return err;
1715 	}
1716 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1717 }
1718 
1719 static int reserve_stack(struct nameidata *nd, struct path *link)
1720 {
1721 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1722 		return -ELOOP;
1723 
1724 	if (likely(nd->depth != EMBEDDED_LEVELS))
1725 		return 0;
1726 	if (likely(nd->stack != nd->internal))
1727 		return 0;
1728 	if (likely(nd_alloc_stack(nd)))
1729 		return 0;
1730 
1731 	if (nd->flags & LOOKUP_RCU) {
1732 		// we need to grab link before we do unlazy.  And we can't skip
1733 		// unlazy even if we fail to grab the link - cleanup needs it
1734 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1735 
1736 		if (!try_to_unlazy(nd) || !grabbed_link)
1737 			return -ECHILD;
1738 
1739 		if (nd_alloc_stack(nd))
1740 			return 0;
1741 	}
1742 	return -ENOMEM;
1743 }
1744 
1745 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1746 
1747 static const char *pick_link(struct nameidata *nd, struct path *link,
1748 		     struct inode *inode, int flags)
1749 {
1750 	struct saved *last;
1751 	const char *res;
1752 	int error = reserve_stack(nd, link);
1753 
1754 	if (unlikely(error)) {
1755 		if (!(nd->flags & LOOKUP_RCU))
1756 			path_put(link);
1757 		return ERR_PTR(error);
1758 	}
1759 	last = nd->stack + nd->depth++;
1760 	last->link = *link;
1761 	clear_delayed_call(&last->done);
1762 	last->seq = nd->next_seq;
1763 
1764 	if (flags & WALK_TRAILING) {
1765 		error = may_follow_link(nd, inode);
1766 		if (unlikely(error))
1767 			return ERR_PTR(error);
1768 	}
1769 
1770 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1771 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1772 		return ERR_PTR(-ELOOP);
1773 
1774 	if (!(nd->flags & LOOKUP_RCU)) {
1775 		touch_atime(&last->link);
1776 		cond_resched();
1777 	} else if (atime_needs_update(&last->link, inode)) {
1778 		if (!try_to_unlazy(nd))
1779 			return ERR_PTR(-ECHILD);
1780 		touch_atime(&last->link);
1781 	}
1782 
1783 	error = security_inode_follow_link(link->dentry, inode,
1784 					   nd->flags & LOOKUP_RCU);
1785 	if (unlikely(error))
1786 		return ERR_PTR(error);
1787 
1788 	res = READ_ONCE(inode->i_link);
1789 	if (!res) {
1790 		const char * (*get)(struct dentry *, struct inode *,
1791 				struct delayed_call *);
1792 		get = inode->i_op->get_link;
1793 		if (nd->flags & LOOKUP_RCU) {
1794 			res = get(NULL, inode, &last->done);
1795 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1796 				res = get(link->dentry, inode, &last->done);
1797 		} else {
1798 			res = get(link->dentry, inode, &last->done);
1799 		}
1800 		if (!res)
1801 			goto all_done;
1802 		if (IS_ERR(res))
1803 			return res;
1804 	}
1805 	if (*res == '/') {
1806 		error = nd_jump_root(nd);
1807 		if (unlikely(error))
1808 			return ERR_PTR(error);
1809 		while (unlikely(*++res == '/'))
1810 			;
1811 	}
1812 	if (*res)
1813 		return res;
1814 all_done: // pure jump
1815 	put_link(nd);
1816 	return NULL;
1817 }
1818 
1819 /*
1820  * Do we need to follow links? We _really_ want to be able
1821  * to do this check without having to look at inode->i_op,
1822  * so we keep a cache of "no, this doesn't need follow_link"
1823  * for the common case.
1824  *
1825  * NOTE: dentry must be what nd->next_seq had been sampled from.
1826  */
1827 static const char *step_into(struct nameidata *nd, int flags,
1828 		     struct dentry *dentry)
1829 {
1830 	struct path path;
1831 	struct inode *inode;
1832 	int err = handle_mounts(nd, dentry, &path);
1833 
1834 	if (err < 0)
1835 		return ERR_PTR(err);
1836 	inode = path.dentry->d_inode;
1837 	if (likely(!d_is_symlink(path.dentry)) ||
1838 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1839 	   (flags & WALK_NOFOLLOW)) {
1840 		/* not a symlink or should not follow */
1841 		if (nd->flags & LOOKUP_RCU) {
1842 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1843 				return ERR_PTR(-ECHILD);
1844 			if (unlikely(!inode))
1845 				return ERR_PTR(-ENOENT);
1846 		} else {
1847 			dput(nd->path.dentry);
1848 			if (nd->path.mnt != path.mnt)
1849 				mntput(nd->path.mnt);
1850 		}
1851 		nd->path = path;
1852 		nd->inode = inode;
1853 		nd->seq = nd->next_seq;
1854 		return NULL;
1855 	}
1856 	if (nd->flags & LOOKUP_RCU) {
1857 		/* make sure that d_is_symlink above matches inode */
1858 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1859 			return ERR_PTR(-ECHILD);
1860 	} else {
1861 		if (path.mnt == nd->path.mnt)
1862 			mntget(path.mnt);
1863 	}
1864 	return pick_link(nd, &path, inode, flags);
1865 }
1866 
1867 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1868 {
1869 	struct dentry *parent, *old;
1870 
1871 	if (path_equal(&nd->path, &nd->root))
1872 		goto in_root;
1873 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1874 		struct path path;
1875 		unsigned seq;
1876 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1877 					   &nd->root, &path, &seq))
1878 			goto in_root;
1879 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1880 			return ERR_PTR(-ECHILD);
1881 		nd->path = path;
1882 		nd->inode = path.dentry->d_inode;
1883 		nd->seq = seq;
1884 		// makes sure that non-RCU pathwalk could reach this state
1885 		if (read_seqretry(&mount_lock, nd->m_seq))
1886 			return ERR_PTR(-ECHILD);
1887 		/* we know that mountpoint was pinned */
1888 	}
1889 	old = nd->path.dentry;
1890 	parent = old->d_parent;
1891 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1892 	// makes sure that non-RCU pathwalk could reach this state
1893 	if (read_seqcount_retry(&old->d_seq, nd->seq))
1894 		return ERR_PTR(-ECHILD);
1895 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1896 		return ERR_PTR(-ECHILD);
1897 	return parent;
1898 in_root:
1899 	if (read_seqretry(&mount_lock, nd->m_seq))
1900 		return ERR_PTR(-ECHILD);
1901 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1902 		return ERR_PTR(-ECHILD);
1903 	nd->next_seq = nd->seq;
1904 	return nd->path.dentry;
1905 }
1906 
1907 static struct dentry *follow_dotdot(struct nameidata *nd)
1908 {
1909 	struct dentry *parent;
1910 
1911 	if (path_equal(&nd->path, &nd->root))
1912 		goto in_root;
1913 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1914 		struct path path;
1915 
1916 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1917 				       &nd->root, &path))
1918 			goto in_root;
1919 		path_put(&nd->path);
1920 		nd->path = path;
1921 		nd->inode = path.dentry->d_inode;
1922 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1923 			return ERR_PTR(-EXDEV);
1924 	}
1925 	/* rare case of legitimate dget_parent()... */
1926 	parent = dget_parent(nd->path.dentry);
1927 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1928 		dput(parent);
1929 		return ERR_PTR(-ENOENT);
1930 	}
1931 	return parent;
1932 
1933 in_root:
1934 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1935 		return ERR_PTR(-EXDEV);
1936 	return dget(nd->path.dentry);
1937 }
1938 
1939 static const char *handle_dots(struct nameidata *nd, int type)
1940 {
1941 	if (type == LAST_DOTDOT) {
1942 		const char *error = NULL;
1943 		struct dentry *parent;
1944 
1945 		if (!nd->root.mnt) {
1946 			error = ERR_PTR(set_root(nd));
1947 			if (error)
1948 				return error;
1949 		}
1950 		if (nd->flags & LOOKUP_RCU)
1951 			parent = follow_dotdot_rcu(nd);
1952 		else
1953 			parent = follow_dotdot(nd);
1954 		if (IS_ERR(parent))
1955 			return ERR_CAST(parent);
1956 		error = step_into(nd, WALK_NOFOLLOW, parent);
1957 		if (unlikely(error))
1958 			return error;
1959 
1960 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1961 			/*
1962 			 * If there was a racing rename or mount along our
1963 			 * path, then we can't be sure that ".." hasn't jumped
1964 			 * above nd->root (and so userspace should retry or use
1965 			 * some fallback).
1966 			 */
1967 			smp_rmb();
1968 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1969 				return ERR_PTR(-EAGAIN);
1970 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1971 				return ERR_PTR(-EAGAIN);
1972 		}
1973 	}
1974 	return NULL;
1975 }
1976 
1977 static const char *walk_component(struct nameidata *nd, int flags)
1978 {
1979 	struct dentry *dentry;
1980 	/*
1981 	 * "." and ".." are special - ".." especially so because it has
1982 	 * to be able to know about the current root directory and
1983 	 * parent relationships.
1984 	 */
1985 	if (unlikely(nd->last_type != LAST_NORM)) {
1986 		if (!(flags & WALK_MORE) && nd->depth)
1987 			put_link(nd);
1988 		return handle_dots(nd, nd->last_type);
1989 	}
1990 	dentry = lookup_fast(nd);
1991 	if (IS_ERR(dentry))
1992 		return ERR_CAST(dentry);
1993 	if (unlikely(!dentry)) {
1994 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1995 		if (IS_ERR(dentry))
1996 			return ERR_CAST(dentry);
1997 	}
1998 	if (!(flags & WALK_MORE) && nd->depth)
1999 		put_link(nd);
2000 	return step_into(nd, flags, dentry);
2001 }
2002 
2003 /*
2004  * We can do the critical dentry name comparison and hashing
2005  * operations one word at a time, but we are limited to:
2006  *
2007  * - Architectures with fast unaligned word accesses. We could
2008  *   do a "get_unaligned()" if this helps and is sufficiently
2009  *   fast.
2010  *
2011  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2012  *   do not trap on the (extremely unlikely) case of a page
2013  *   crossing operation.
2014  *
2015  * - Furthermore, we need an efficient 64-bit compile for the
2016  *   64-bit case in order to generate the "number of bytes in
2017  *   the final mask". Again, that could be replaced with a
2018  *   efficient population count instruction or similar.
2019  */
2020 #ifdef CONFIG_DCACHE_WORD_ACCESS
2021 
2022 #include <asm/word-at-a-time.h>
2023 
2024 #ifdef HASH_MIX
2025 
2026 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2027 
2028 #elif defined(CONFIG_64BIT)
2029 /*
2030  * Register pressure in the mixing function is an issue, particularly
2031  * on 32-bit x86, but almost any function requires one state value and
2032  * one temporary.  Instead, use a function designed for two state values
2033  * and no temporaries.
2034  *
2035  * This function cannot create a collision in only two iterations, so
2036  * we have two iterations to achieve avalanche.  In those two iterations,
2037  * we have six layers of mixing, which is enough to spread one bit's
2038  * influence out to 2^6 = 64 state bits.
2039  *
2040  * Rotate constants are scored by considering either 64 one-bit input
2041  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2042  * probability of that delta causing a change to each of the 128 output
2043  * bits, using a sample of random initial states.
2044  *
2045  * The Shannon entropy of the computed probabilities is then summed
2046  * to produce a score.  Ideally, any input change has a 50% chance of
2047  * toggling any given output bit.
2048  *
2049  * Mixing scores (in bits) for (12,45):
2050  * Input delta: 1-bit      2-bit
2051  * 1 round:     713.3    42542.6
2052  * 2 rounds:   2753.7   140389.8
2053  * 3 rounds:   5954.1   233458.2
2054  * 4 rounds:   7862.6   256672.2
2055  * Perfect:    8192     258048
2056  *            (64*128) (64*63/2 * 128)
2057  */
2058 #define HASH_MIX(x, y, a)	\
2059 	(	x ^= (a),	\
2060 	y ^= x,	x = rol64(x,12),\
2061 	x += y,	y = rol64(y,45),\
2062 	y *= 9			)
2063 
2064 /*
2065  * Fold two longs into one 32-bit hash value.  This must be fast, but
2066  * latency isn't quite as critical, as there is a fair bit of additional
2067  * work done before the hash value is used.
2068  */
2069 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2070 {
2071 	y ^= x * GOLDEN_RATIO_64;
2072 	y *= GOLDEN_RATIO_64;
2073 	return y >> 32;
2074 }
2075 
2076 #else	/* 32-bit case */
2077 
2078 /*
2079  * Mixing scores (in bits) for (7,20):
2080  * Input delta: 1-bit      2-bit
2081  * 1 round:     330.3     9201.6
2082  * 2 rounds:   1246.4    25475.4
2083  * 3 rounds:   1907.1    31295.1
2084  * 4 rounds:   2042.3    31718.6
2085  * Perfect:    2048      31744
2086  *            (32*64)   (32*31/2 * 64)
2087  */
2088 #define HASH_MIX(x, y, a)	\
2089 	(	x ^= (a),	\
2090 	y ^= x,	x = rol32(x, 7),\
2091 	x += y,	y = rol32(y,20),\
2092 	y *= 9			)
2093 
2094 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2095 {
2096 	/* Use arch-optimized multiply if one exists */
2097 	return __hash_32(y ^ __hash_32(x));
2098 }
2099 
2100 #endif
2101 
2102 /*
2103  * Return the hash of a string of known length.  This is carfully
2104  * designed to match hash_name(), which is the more critical function.
2105  * In particular, we must end by hashing a final word containing 0..7
2106  * payload bytes, to match the way that hash_name() iterates until it
2107  * finds the delimiter after the name.
2108  */
2109 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2110 {
2111 	unsigned long a, x = 0, y = (unsigned long)salt;
2112 
2113 	for (;;) {
2114 		if (!len)
2115 			goto done;
2116 		a = load_unaligned_zeropad(name);
2117 		if (len < sizeof(unsigned long))
2118 			break;
2119 		HASH_MIX(x, y, a);
2120 		name += sizeof(unsigned long);
2121 		len -= sizeof(unsigned long);
2122 	}
2123 	x ^= a & bytemask_from_count(len);
2124 done:
2125 	return fold_hash(x, y);
2126 }
2127 EXPORT_SYMBOL(full_name_hash);
2128 
2129 /* Return the "hash_len" (hash and length) of a null-terminated string */
2130 u64 hashlen_string(const void *salt, const char *name)
2131 {
2132 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2133 	unsigned long adata, mask, len;
2134 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2135 
2136 	len = 0;
2137 	goto inside;
2138 
2139 	do {
2140 		HASH_MIX(x, y, a);
2141 		len += sizeof(unsigned long);
2142 inside:
2143 		a = load_unaligned_zeropad(name+len);
2144 	} while (!has_zero(a, &adata, &constants));
2145 
2146 	adata = prep_zero_mask(a, adata, &constants);
2147 	mask = create_zero_mask(adata);
2148 	x ^= a & zero_bytemask(mask);
2149 
2150 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2151 }
2152 EXPORT_SYMBOL(hashlen_string);
2153 
2154 /*
2155  * Calculate the length and hash of the path component, and
2156  * return the "hash_len" as the result.
2157  */
2158 static inline u64 hash_name(const void *salt, const char *name)
2159 {
2160 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2161 	unsigned long adata, bdata, mask, len;
2162 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2163 
2164 	len = 0;
2165 	goto inside;
2166 
2167 	do {
2168 		HASH_MIX(x, y, a);
2169 		len += sizeof(unsigned long);
2170 inside:
2171 		a = load_unaligned_zeropad(name+len);
2172 		b = a ^ REPEAT_BYTE('/');
2173 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2174 
2175 	adata = prep_zero_mask(a, adata, &constants);
2176 	bdata = prep_zero_mask(b, bdata, &constants);
2177 	mask = create_zero_mask(adata | bdata);
2178 	x ^= a & zero_bytemask(mask);
2179 
2180 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2181 }
2182 
2183 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2184 
2185 /* Return the hash of a string of known length */
2186 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2187 {
2188 	unsigned long hash = init_name_hash(salt);
2189 	while (len--)
2190 		hash = partial_name_hash((unsigned char)*name++, hash);
2191 	return end_name_hash(hash);
2192 }
2193 EXPORT_SYMBOL(full_name_hash);
2194 
2195 /* Return the "hash_len" (hash and length) of a null-terminated string */
2196 u64 hashlen_string(const void *salt, const char *name)
2197 {
2198 	unsigned long hash = init_name_hash(salt);
2199 	unsigned long len = 0, c;
2200 
2201 	c = (unsigned char)*name;
2202 	while (c) {
2203 		len++;
2204 		hash = partial_name_hash(c, hash);
2205 		c = (unsigned char)name[len];
2206 	}
2207 	return hashlen_create(end_name_hash(hash), len);
2208 }
2209 EXPORT_SYMBOL(hashlen_string);
2210 
2211 /*
2212  * We know there's a real path component here of at least
2213  * one character.
2214  */
2215 static inline u64 hash_name(const void *salt, const char *name)
2216 {
2217 	unsigned long hash = init_name_hash(salt);
2218 	unsigned long len = 0, c;
2219 
2220 	c = (unsigned char)*name;
2221 	do {
2222 		len++;
2223 		hash = partial_name_hash(c, hash);
2224 		c = (unsigned char)name[len];
2225 	} while (c && c != '/');
2226 	return hashlen_create(end_name_hash(hash), len);
2227 }
2228 
2229 #endif
2230 
2231 /*
2232  * Name resolution.
2233  * This is the basic name resolution function, turning a pathname into
2234  * the final dentry. We expect 'base' to be positive and a directory.
2235  *
2236  * Returns 0 and nd will have valid dentry and mnt on success.
2237  * Returns error and drops reference to input namei data on failure.
2238  */
2239 static int link_path_walk(const char *name, struct nameidata *nd)
2240 {
2241 	int depth = 0; // depth <= nd->depth
2242 	int err;
2243 
2244 	nd->last_type = LAST_ROOT;
2245 	nd->flags |= LOOKUP_PARENT;
2246 	if (IS_ERR(name))
2247 		return PTR_ERR(name);
2248 	while (*name=='/')
2249 		name++;
2250 	if (!*name) {
2251 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2252 		return 0;
2253 	}
2254 
2255 	/* At this point we know we have a real path component. */
2256 	for(;;) {
2257 		struct mnt_idmap *idmap;
2258 		const char *link;
2259 		u64 hash_len;
2260 		int type;
2261 
2262 		idmap = mnt_idmap(nd->path.mnt);
2263 		err = may_lookup(idmap, nd);
2264 		if (err)
2265 			return err;
2266 
2267 		hash_len = hash_name(nd->path.dentry, name);
2268 
2269 		type = LAST_NORM;
2270 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2271 			case 2:
2272 				if (name[1] == '.') {
2273 					type = LAST_DOTDOT;
2274 					nd->state |= ND_JUMPED;
2275 				}
2276 				break;
2277 			case 1:
2278 				type = LAST_DOT;
2279 		}
2280 		if (likely(type == LAST_NORM)) {
2281 			struct dentry *parent = nd->path.dentry;
2282 			nd->state &= ~ND_JUMPED;
2283 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2284 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2285 				err = parent->d_op->d_hash(parent, &this);
2286 				if (err < 0)
2287 					return err;
2288 				hash_len = this.hash_len;
2289 				name = this.name;
2290 			}
2291 		}
2292 
2293 		nd->last.hash_len = hash_len;
2294 		nd->last.name = name;
2295 		nd->last_type = type;
2296 
2297 		name += hashlen_len(hash_len);
2298 		if (!*name)
2299 			goto OK;
2300 		/*
2301 		 * If it wasn't NUL, we know it was '/'. Skip that
2302 		 * slash, and continue until no more slashes.
2303 		 */
2304 		do {
2305 			name++;
2306 		} while (unlikely(*name == '/'));
2307 		if (unlikely(!*name)) {
2308 OK:
2309 			/* pathname or trailing symlink, done */
2310 			if (!depth) {
2311 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2312 				nd->dir_mode = nd->inode->i_mode;
2313 				nd->flags &= ~LOOKUP_PARENT;
2314 				return 0;
2315 			}
2316 			/* last component of nested symlink */
2317 			name = nd->stack[--depth].name;
2318 			link = walk_component(nd, 0);
2319 		} else {
2320 			/* not the last component */
2321 			link = walk_component(nd, WALK_MORE);
2322 		}
2323 		if (unlikely(link)) {
2324 			if (IS_ERR(link))
2325 				return PTR_ERR(link);
2326 			/* a symlink to follow */
2327 			nd->stack[depth++].name = name;
2328 			name = link;
2329 			continue;
2330 		}
2331 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2332 			if (nd->flags & LOOKUP_RCU) {
2333 				if (!try_to_unlazy(nd))
2334 					return -ECHILD;
2335 			}
2336 			return -ENOTDIR;
2337 		}
2338 	}
2339 }
2340 
2341 /* must be paired with terminate_walk() */
2342 static const char *path_init(struct nameidata *nd, unsigned flags)
2343 {
2344 	int error;
2345 	const char *s = nd->name->name;
2346 
2347 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2348 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2349 		return ERR_PTR(-EAGAIN);
2350 
2351 	if (!*s)
2352 		flags &= ~LOOKUP_RCU;
2353 	if (flags & LOOKUP_RCU)
2354 		rcu_read_lock();
2355 	else
2356 		nd->seq = nd->next_seq = 0;
2357 
2358 	nd->flags = flags;
2359 	nd->state |= ND_JUMPED;
2360 
2361 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2362 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2363 	smp_rmb();
2364 
2365 	if (nd->state & ND_ROOT_PRESET) {
2366 		struct dentry *root = nd->root.dentry;
2367 		struct inode *inode = root->d_inode;
2368 		if (*s && unlikely(!d_can_lookup(root)))
2369 			return ERR_PTR(-ENOTDIR);
2370 		nd->path = nd->root;
2371 		nd->inode = inode;
2372 		if (flags & LOOKUP_RCU) {
2373 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2374 			nd->root_seq = nd->seq;
2375 		} else {
2376 			path_get(&nd->path);
2377 		}
2378 		return s;
2379 	}
2380 
2381 	nd->root.mnt = NULL;
2382 
2383 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2384 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2385 		error = nd_jump_root(nd);
2386 		if (unlikely(error))
2387 			return ERR_PTR(error);
2388 		return s;
2389 	}
2390 
2391 	/* Relative pathname -- get the starting-point it is relative to. */
2392 	if (nd->dfd == AT_FDCWD) {
2393 		if (flags & LOOKUP_RCU) {
2394 			struct fs_struct *fs = current->fs;
2395 			unsigned seq;
2396 
2397 			do {
2398 				seq = read_seqcount_begin(&fs->seq);
2399 				nd->path = fs->pwd;
2400 				nd->inode = nd->path.dentry->d_inode;
2401 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2402 			} while (read_seqcount_retry(&fs->seq, seq));
2403 		} else {
2404 			get_fs_pwd(current->fs, &nd->path);
2405 			nd->inode = nd->path.dentry->d_inode;
2406 		}
2407 	} else {
2408 		/* Caller must check execute permissions on the starting path component */
2409 		struct fd f = fdget_raw(nd->dfd);
2410 		struct dentry *dentry;
2411 
2412 		if (!f.file)
2413 			return ERR_PTR(-EBADF);
2414 
2415 		dentry = f.file->f_path.dentry;
2416 
2417 		if (*s && unlikely(!d_can_lookup(dentry))) {
2418 			fdput(f);
2419 			return ERR_PTR(-ENOTDIR);
2420 		}
2421 
2422 		nd->path = f.file->f_path;
2423 		if (flags & LOOKUP_RCU) {
2424 			nd->inode = nd->path.dentry->d_inode;
2425 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2426 		} else {
2427 			path_get(&nd->path);
2428 			nd->inode = nd->path.dentry->d_inode;
2429 		}
2430 		fdput(f);
2431 	}
2432 
2433 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2434 	if (flags & LOOKUP_IS_SCOPED) {
2435 		nd->root = nd->path;
2436 		if (flags & LOOKUP_RCU) {
2437 			nd->root_seq = nd->seq;
2438 		} else {
2439 			path_get(&nd->root);
2440 			nd->state |= ND_ROOT_GRABBED;
2441 		}
2442 	}
2443 	return s;
2444 }
2445 
2446 static inline const char *lookup_last(struct nameidata *nd)
2447 {
2448 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2449 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2450 
2451 	return walk_component(nd, WALK_TRAILING);
2452 }
2453 
2454 static int handle_lookup_down(struct nameidata *nd)
2455 {
2456 	if (!(nd->flags & LOOKUP_RCU))
2457 		dget(nd->path.dentry);
2458 	nd->next_seq = nd->seq;
2459 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2460 }
2461 
2462 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2463 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2464 {
2465 	const char *s = path_init(nd, flags);
2466 	int err;
2467 
2468 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2469 		err = handle_lookup_down(nd);
2470 		if (unlikely(err < 0))
2471 			s = ERR_PTR(err);
2472 	}
2473 
2474 	while (!(err = link_path_walk(s, nd)) &&
2475 	       (s = lookup_last(nd)) != NULL)
2476 		;
2477 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2478 		err = handle_lookup_down(nd);
2479 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2480 	}
2481 	if (!err)
2482 		err = complete_walk(nd);
2483 
2484 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2485 		if (!d_can_lookup(nd->path.dentry))
2486 			err = -ENOTDIR;
2487 	if (!err) {
2488 		*path = nd->path;
2489 		nd->path.mnt = NULL;
2490 		nd->path.dentry = NULL;
2491 	}
2492 	terminate_walk(nd);
2493 	return err;
2494 }
2495 
2496 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2497 		    struct path *path, struct path *root)
2498 {
2499 	int retval;
2500 	struct nameidata nd;
2501 	if (IS_ERR(name))
2502 		return PTR_ERR(name);
2503 	set_nameidata(&nd, dfd, name, root);
2504 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2505 	if (unlikely(retval == -ECHILD))
2506 		retval = path_lookupat(&nd, flags, path);
2507 	if (unlikely(retval == -ESTALE))
2508 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2509 
2510 	if (likely(!retval))
2511 		audit_inode(name, path->dentry,
2512 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2513 	restore_nameidata();
2514 	return retval;
2515 }
2516 
2517 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2518 static int path_parentat(struct nameidata *nd, unsigned flags,
2519 				struct path *parent)
2520 {
2521 	const char *s = path_init(nd, flags);
2522 	int err = link_path_walk(s, nd);
2523 	if (!err)
2524 		err = complete_walk(nd);
2525 	if (!err) {
2526 		*parent = nd->path;
2527 		nd->path.mnt = NULL;
2528 		nd->path.dentry = NULL;
2529 	}
2530 	terminate_walk(nd);
2531 	return err;
2532 }
2533 
2534 /* Note: this does not consume "name" */
2535 static int filename_parentat(int dfd, struct filename *name,
2536 			     unsigned int flags, struct path *parent,
2537 			     struct qstr *last, int *type)
2538 {
2539 	int retval;
2540 	struct nameidata nd;
2541 
2542 	if (IS_ERR(name))
2543 		return PTR_ERR(name);
2544 	set_nameidata(&nd, dfd, name, NULL);
2545 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2546 	if (unlikely(retval == -ECHILD))
2547 		retval = path_parentat(&nd, flags, parent);
2548 	if (unlikely(retval == -ESTALE))
2549 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2550 	if (likely(!retval)) {
2551 		*last = nd.last;
2552 		*type = nd.last_type;
2553 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2554 	}
2555 	restore_nameidata();
2556 	return retval;
2557 }
2558 
2559 /* does lookup, returns the object with parent locked */
2560 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2561 {
2562 	struct dentry *d;
2563 	struct qstr last;
2564 	int type, error;
2565 
2566 	error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2567 	if (error)
2568 		return ERR_PTR(error);
2569 	if (unlikely(type != LAST_NORM)) {
2570 		path_put(path);
2571 		return ERR_PTR(-EINVAL);
2572 	}
2573 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2574 	d = __lookup_hash(&last, path->dentry, 0);
2575 	if (IS_ERR(d)) {
2576 		inode_unlock(path->dentry->d_inode);
2577 		path_put(path);
2578 	}
2579 	return d;
2580 }
2581 
2582 struct dentry *kern_path_locked(const char *name, struct path *path)
2583 {
2584 	struct filename *filename = getname_kernel(name);
2585 	struct dentry *res = __kern_path_locked(filename, path);
2586 
2587 	putname(filename);
2588 	return res;
2589 }
2590 
2591 int kern_path(const char *name, unsigned int flags, struct path *path)
2592 {
2593 	struct filename *filename = getname_kernel(name);
2594 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2595 
2596 	putname(filename);
2597 	return ret;
2598 
2599 }
2600 EXPORT_SYMBOL(kern_path);
2601 
2602 /**
2603  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2604  * @dentry:  pointer to dentry of the base directory
2605  * @mnt: pointer to vfs mount of the base directory
2606  * @name: pointer to file name
2607  * @flags: lookup flags
2608  * @path: pointer to struct path to fill
2609  */
2610 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2611 		    const char *name, unsigned int flags,
2612 		    struct path *path)
2613 {
2614 	struct filename *filename;
2615 	struct path root = {.mnt = mnt, .dentry = dentry};
2616 	int ret;
2617 
2618 	filename = getname_kernel(name);
2619 	/* the first argument of filename_lookup() is ignored with root */
2620 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2621 	putname(filename);
2622 	return ret;
2623 }
2624 EXPORT_SYMBOL(vfs_path_lookup);
2625 
2626 static int lookup_one_common(struct mnt_idmap *idmap,
2627 			     const char *name, struct dentry *base, int len,
2628 			     struct qstr *this)
2629 {
2630 	this->name = name;
2631 	this->len = len;
2632 	this->hash = full_name_hash(base, name, len);
2633 	if (!len)
2634 		return -EACCES;
2635 
2636 	if (unlikely(name[0] == '.')) {
2637 		if (len < 2 || (len == 2 && name[1] == '.'))
2638 			return -EACCES;
2639 	}
2640 
2641 	while (len--) {
2642 		unsigned int c = *(const unsigned char *)name++;
2643 		if (c == '/' || c == '\0')
2644 			return -EACCES;
2645 	}
2646 	/*
2647 	 * See if the low-level filesystem might want
2648 	 * to use its own hash..
2649 	 */
2650 	if (base->d_flags & DCACHE_OP_HASH) {
2651 		int err = base->d_op->d_hash(base, this);
2652 		if (err < 0)
2653 			return err;
2654 	}
2655 
2656 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2657 }
2658 
2659 /**
2660  * try_lookup_one_len - filesystem helper to lookup single pathname component
2661  * @name:	pathname component to lookup
2662  * @base:	base directory to lookup from
2663  * @len:	maximum length @len should be interpreted to
2664  *
2665  * Look up a dentry by name in the dcache, returning NULL if it does not
2666  * currently exist.  The function does not try to create a dentry.
2667  *
2668  * Note that this routine is purely a helper for filesystem usage and should
2669  * not be called by generic code.
2670  *
2671  * The caller must hold base->i_mutex.
2672  */
2673 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2674 {
2675 	struct qstr this;
2676 	int err;
2677 
2678 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2679 
2680 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2681 	if (err)
2682 		return ERR_PTR(err);
2683 
2684 	return lookup_dcache(&this, base, 0);
2685 }
2686 EXPORT_SYMBOL(try_lookup_one_len);
2687 
2688 /**
2689  * lookup_one_len - filesystem helper to lookup single pathname component
2690  * @name:	pathname component to lookup
2691  * @base:	base directory to lookup from
2692  * @len:	maximum length @len should be interpreted to
2693  *
2694  * Note that this routine is purely a helper for filesystem usage and should
2695  * not be called by generic code.
2696  *
2697  * The caller must hold base->i_mutex.
2698  */
2699 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2700 {
2701 	struct dentry *dentry;
2702 	struct qstr this;
2703 	int err;
2704 
2705 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2706 
2707 	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2708 	if (err)
2709 		return ERR_PTR(err);
2710 
2711 	dentry = lookup_dcache(&this, base, 0);
2712 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2713 }
2714 EXPORT_SYMBOL(lookup_one_len);
2715 
2716 /**
2717  * lookup_one - filesystem helper to lookup single pathname component
2718  * @idmap:	idmap of the mount the lookup is performed from
2719  * @name:	pathname component to lookup
2720  * @base:	base directory to lookup from
2721  * @len:	maximum length @len should be interpreted to
2722  *
2723  * Note that this routine is purely a helper for filesystem usage and should
2724  * not be called by generic code.
2725  *
2726  * The caller must hold base->i_mutex.
2727  */
2728 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2729 			  struct dentry *base, int len)
2730 {
2731 	struct dentry *dentry;
2732 	struct qstr this;
2733 	int err;
2734 
2735 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2736 
2737 	err = lookup_one_common(idmap, name, base, len, &this);
2738 	if (err)
2739 		return ERR_PTR(err);
2740 
2741 	dentry = lookup_dcache(&this, base, 0);
2742 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2743 }
2744 EXPORT_SYMBOL(lookup_one);
2745 
2746 /**
2747  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2748  * @idmap:	idmap of the mount the lookup is performed from
2749  * @name:	pathname component to lookup
2750  * @base:	base directory to lookup from
2751  * @len:	maximum length @len should be interpreted to
2752  *
2753  * Note that this routine is purely a helper for filesystem usage and should
2754  * not be called by generic code.
2755  *
2756  * Unlike lookup_one_len, it should be called without the parent
2757  * i_mutex held, and will take the i_mutex itself if necessary.
2758  */
2759 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2760 				   const char *name, struct dentry *base,
2761 				   int len)
2762 {
2763 	struct qstr this;
2764 	int err;
2765 	struct dentry *ret;
2766 
2767 	err = lookup_one_common(idmap, name, base, len, &this);
2768 	if (err)
2769 		return ERR_PTR(err);
2770 
2771 	ret = lookup_dcache(&this, base, 0);
2772 	if (!ret)
2773 		ret = lookup_slow(&this, base, 0);
2774 	return ret;
2775 }
2776 EXPORT_SYMBOL(lookup_one_unlocked);
2777 
2778 /**
2779  * lookup_one_positive_unlocked - filesystem helper to lookup single
2780  *				  pathname component
2781  * @idmap:	idmap of the mount the lookup is performed from
2782  * @name:	pathname component to lookup
2783  * @base:	base directory to lookup from
2784  * @len:	maximum length @len should be interpreted to
2785  *
2786  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2787  * known positive or ERR_PTR(). This is what most of the users want.
2788  *
2789  * Note that pinned negative with unlocked parent _can_ become positive at any
2790  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2791  * positives have >d_inode stable, so this one avoids such problems.
2792  *
2793  * Note that this routine is purely a helper for filesystem usage and should
2794  * not be called by generic code.
2795  *
2796  * The helper should be called without i_mutex held.
2797  */
2798 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2799 					    const char *name,
2800 					    struct dentry *base, int len)
2801 {
2802 	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2803 
2804 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2805 		dput(ret);
2806 		ret = ERR_PTR(-ENOENT);
2807 	}
2808 	return ret;
2809 }
2810 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2811 
2812 /**
2813  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2814  * @name:	pathname component to lookup
2815  * @base:	base directory to lookup from
2816  * @len:	maximum length @len should be interpreted to
2817  *
2818  * Note that this routine is purely a helper for filesystem usage and should
2819  * not be called by generic code.
2820  *
2821  * Unlike lookup_one_len, it should be called without the parent
2822  * i_mutex held, and will take the i_mutex itself if necessary.
2823  */
2824 struct dentry *lookup_one_len_unlocked(const char *name,
2825 				       struct dentry *base, int len)
2826 {
2827 	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2828 }
2829 EXPORT_SYMBOL(lookup_one_len_unlocked);
2830 
2831 /*
2832  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2833  * on negatives.  Returns known positive or ERR_PTR(); that's what
2834  * most of the users want.  Note that pinned negative with unlocked parent
2835  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2836  * need to be very careful; pinned positives have ->d_inode stable, so
2837  * this one avoids such problems.
2838  */
2839 struct dentry *lookup_positive_unlocked(const char *name,
2840 				       struct dentry *base, int len)
2841 {
2842 	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2843 }
2844 EXPORT_SYMBOL(lookup_positive_unlocked);
2845 
2846 #ifdef CONFIG_UNIX98_PTYS
2847 int path_pts(struct path *path)
2848 {
2849 	/* Find something mounted on "pts" in the same directory as
2850 	 * the input path.
2851 	 */
2852 	struct dentry *parent = dget_parent(path->dentry);
2853 	struct dentry *child;
2854 	struct qstr this = QSTR_INIT("pts", 3);
2855 
2856 	if (unlikely(!path_connected(path->mnt, parent))) {
2857 		dput(parent);
2858 		return -ENOENT;
2859 	}
2860 	dput(path->dentry);
2861 	path->dentry = parent;
2862 	child = d_hash_and_lookup(parent, &this);
2863 	if (!child)
2864 		return -ENOENT;
2865 
2866 	path->dentry = child;
2867 	dput(parent);
2868 	follow_down(path, 0);
2869 	return 0;
2870 }
2871 #endif
2872 
2873 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2874 		 struct path *path, int *empty)
2875 {
2876 	struct filename *filename = getname_flags(name, flags, empty);
2877 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2878 
2879 	putname(filename);
2880 	return ret;
2881 }
2882 EXPORT_SYMBOL(user_path_at_empty);
2883 
2884 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2885 		   struct inode *inode)
2886 {
2887 	kuid_t fsuid = current_fsuid();
2888 
2889 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2890 		return 0;
2891 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2892 		return 0;
2893 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2894 }
2895 EXPORT_SYMBOL(__check_sticky);
2896 
2897 /*
2898  *	Check whether we can remove a link victim from directory dir, check
2899  *  whether the type of victim is right.
2900  *  1. We can't do it if dir is read-only (done in permission())
2901  *  2. We should have write and exec permissions on dir
2902  *  3. We can't remove anything from append-only dir
2903  *  4. We can't do anything with immutable dir (done in permission())
2904  *  5. If the sticky bit on dir is set we should either
2905  *	a. be owner of dir, or
2906  *	b. be owner of victim, or
2907  *	c. have CAP_FOWNER capability
2908  *  6. If the victim is append-only or immutable we can't do antyhing with
2909  *     links pointing to it.
2910  *  7. If the victim has an unknown uid or gid we can't change the inode.
2911  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2912  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2913  * 10. We can't remove a root or mountpoint.
2914  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2915  *     nfs_async_unlink().
2916  */
2917 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2918 		      struct dentry *victim, bool isdir)
2919 {
2920 	struct inode *inode = d_backing_inode(victim);
2921 	int error;
2922 
2923 	if (d_is_negative(victim))
2924 		return -ENOENT;
2925 	BUG_ON(!inode);
2926 
2927 	BUG_ON(victim->d_parent->d_inode != dir);
2928 
2929 	/* Inode writeback is not safe when the uid or gid are invalid. */
2930 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2931 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2932 		return -EOVERFLOW;
2933 
2934 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2935 
2936 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2937 	if (error)
2938 		return error;
2939 	if (IS_APPEND(dir))
2940 		return -EPERM;
2941 
2942 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2943 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2944 	    HAS_UNMAPPED_ID(idmap, inode))
2945 		return -EPERM;
2946 	if (isdir) {
2947 		if (!d_is_dir(victim))
2948 			return -ENOTDIR;
2949 		if (IS_ROOT(victim))
2950 			return -EBUSY;
2951 	} else if (d_is_dir(victim))
2952 		return -EISDIR;
2953 	if (IS_DEADDIR(dir))
2954 		return -ENOENT;
2955 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2956 		return -EBUSY;
2957 	return 0;
2958 }
2959 
2960 /*	Check whether we can create an object with dentry child in directory
2961  *  dir.
2962  *  1. We can't do it if child already exists (open has special treatment for
2963  *     this case, but since we are inlined it's OK)
2964  *  2. We can't do it if dir is read-only (done in permission())
2965  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2966  *  4. We should have write and exec permissions on dir
2967  *  5. We can't do it if dir is immutable (done in permission())
2968  */
2969 static inline int may_create(struct mnt_idmap *idmap,
2970 			     struct inode *dir, struct dentry *child)
2971 {
2972 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2973 	if (child->d_inode)
2974 		return -EEXIST;
2975 	if (IS_DEADDIR(dir))
2976 		return -ENOENT;
2977 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
2978 		return -EOVERFLOW;
2979 
2980 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2981 }
2982 
2983 /*
2984  * p1 and p2 should be directories on the same fs.
2985  */
2986 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2987 {
2988 	struct dentry *p;
2989 
2990 	if (p1 == p2) {
2991 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2992 		return NULL;
2993 	}
2994 
2995 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2996 
2997 	p = d_ancestor(p2, p1);
2998 	if (p) {
2999 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3000 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3001 		return p;
3002 	}
3003 
3004 	p = d_ancestor(p1, p2);
3005 	if (p) {
3006 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3007 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3008 		return p;
3009 	}
3010 
3011 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3012 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3013 	return NULL;
3014 }
3015 EXPORT_SYMBOL(lock_rename);
3016 
3017 void unlock_rename(struct dentry *p1, struct dentry *p2)
3018 {
3019 	inode_unlock(p1->d_inode);
3020 	if (p1 != p2) {
3021 		inode_unlock(p2->d_inode);
3022 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3023 	}
3024 }
3025 EXPORT_SYMBOL(unlock_rename);
3026 
3027 /**
3028  * mode_strip_umask - handle vfs umask stripping
3029  * @dir:	parent directory of the new inode
3030  * @mode:	mode of the new inode to be created in @dir
3031  *
3032  * Umask stripping depends on whether or not the filesystem supports POSIX
3033  * ACLs. If the filesystem doesn't support it umask stripping is done directly
3034  * in here. If the filesystem does support POSIX ACLs umask stripping is
3035  * deferred until the filesystem calls posix_acl_create().
3036  *
3037  * Returns: mode
3038  */
3039 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3040 {
3041 	if (!IS_POSIXACL(dir))
3042 		mode &= ~current_umask();
3043 	return mode;
3044 }
3045 
3046 /**
3047  * vfs_prepare_mode - prepare the mode to be used for a new inode
3048  * @idmap:	idmap of the mount the inode was found from
3049  * @dir:	parent directory of the new inode
3050  * @mode:	mode of the new inode
3051  * @mask_perms:	allowed permission by the vfs
3052  * @type:	type of file to be created
3053  *
3054  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3055  * object to be created.
3056  *
3057  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3058  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3059  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3060  * POSIX ACL supporting filesystems.
3061  *
3062  * Note that it's currently valid for @type to be 0 if a directory is created.
3063  * Filesystems raise that flag individually and we need to check whether each
3064  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3065  * non-zero type.
3066  *
3067  * Returns: mode to be passed to the filesystem
3068  */
3069 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3070 				       const struct inode *dir, umode_t mode,
3071 				       umode_t mask_perms, umode_t type)
3072 {
3073 	mode = mode_strip_sgid(idmap, dir, mode);
3074 	mode = mode_strip_umask(dir, mode);
3075 
3076 	/*
3077 	 * Apply the vfs mandated allowed permission mask and set the type of
3078 	 * file to be created before we call into the filesystem.
3079 	 */
3080 	mode &= (mask_perms & ~S_IFMT);
3081 	mode |= (type & S_IFMT);
3082 
3083 	return mode;
3084 }
3085 
3086 /**
3087  * vfs_create - create new file
3088  * @idmap:	idmap of the mount the inode was found from
3089  * @dir:	inode of @dentry
3090  * @dentry:	pointer to dentry of the base directory
3091  * @mode:	mode of the new file
3092  * @want_excl:	whether the file must not yet exist
3093  *
3094  * Create a new file.
3095  *
3096  * If the inode has been found through an idmapped mount the idmap of
3097  * the vfsmount must be passed through @idmap. This function will then take
3098  * care to map the inode according to @idmap before checking permissions.
3099  * On non-idmapped mounts or if permission checking is to be performed on the
3100  * raw inode simply passs @nop_mnt_idmap.
3101  */
3102 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3103 	       struct dentry *dentry, umode_t mode, bool want_excl)
3104 {
3105 	int error;
3106 
3107 	error = may_create(idmap, dir, dentry);
3108 	if (error)
3109 		return error;
3110 
3111 	if (!dir->i_op->create)
3112 		return -EACCES;	/* shouldn't it be ENOSYS? */
3113 
3114 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3115 	error = security_inode_create(dir, dentry, mode);
3116 	if (error)
3117 		return error;
3118 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3119 	if (!error)
3120 		fsnotify_create(dir, dentry);
3121 	return error;
3122 }
3123 EXPORT_SYMBOL(vfs_create);
3124 
3125 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3126 		int (*f)(struct dentry *, umode_t, void *),
3127 		void *arg)
3128 {
3129 	struct inode *dir = dentry->d_parent->d_inode;
3130 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3131 	if (error)
3132 		return error;
3133 
3134 	mode &= S_IALLUGO;
3135 	mode |= S_IFREG;
3136 	error = security_inode_create(dir, dentry, mode);
3137 	if (error)
3138 		return error;
3139 	error = f(dentry, mode, arg);
3140 	if (!error)
3141 		fsnotify_create(dir, dentry);
3142 	return error;
3143 }
3144 EXPORT_SYMBOL(vfs_mkobj);
3145 
3146 bool may_open_dev(const struct path *path)
3147 {
3148 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3149 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3150 }
3151 
3152 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3153 		    int acc_mode, int flag)
3154 {
3155 	struct dentry *dentry = path->dentry;
3156 	struct inode *inode = dentry->d_inode;
3157 	int error;
3158 
3159 	if (!inode)
3160 		return -ENOENT;
3161 
3162 	switch (inode->i_mode & S_IFMT) {
3163 	case S_IFLNK:
3164 		return -ELOOP;
3165 	case S_IFDIR:
3166 		if (acc_mode & MAY_WRITE)
3167 			return -EISDIR;
3168 		if (acc_mode & MAY_EXEC)
3169 			return -EACCES;
3170 		break;
3171 	case S_IFBLK:
3172 	case S_IFCHR:
3173 		if (!may_open_dev(path))
3174 			return -EACCES;
3175 		fallthrough;
3176 	case S_IFIFO:
3177 	case S_IFSOCK:
3178 		if (acc_mode & MAY_EXEC)
3179 			return -EACCES;
3180 		flag &= ~O_TRUNC;
3181 		break;
3182 	case S_IFREG:
3183 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3184 			return -EACCES;
3185 		break;
3186 	}
3187 
3188 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3189 	if (error)
3190 		return error;
3191 
3192 	/*
3193 	 * An append-only file must be opened in append mode for writing.
3194 	 */
3195 	if (IS_APPEND(inode)) {
3196 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3197 			return -EPERM;
3198 		if (flag & O_TRUNC)
3199 			return -EPERM;
3200 	}
3201 
3202 	/* O_NOATIME can only be set by the owner or superuser */
3203 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3204 		return -EPERM;
3205 
3206 	return 0;
3207 }
3208 
3209 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3210 {
3211 	const struct path *path = &filp->f_path;
3212 	struct inode *inode = path->dentry->d_inode;
3213 	int error = get_write_access(inode);
3214 	if (error)
3215 		return error;
3216 
3217 	error = security_file_truncate(filp);
3218 	if (!error) {
3219 		error = do_truncate(idmap, path->dentry, 0,
3220 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3221 				    filp);
3222 	}
3223 	put_write_access(inode);
3224 	return error;
3225 }
3226 
3227 static inline int open_to_namei_flags(int flag)
3228 {
3229 	if ((flag & O_ACCMODE) == 3)
3230 		flag--;
3231 	return flag;
3232 }
3233 
3234 static int may_o_create(struct mnt_idmap *idmap,
3235 			const struct path *dir, struct dentry *dentry,
3236 			umode_t mode)
3237 {
3238 	int error = security_path_mknod(dir, dentry, mode, 0);
3239 	if (error)
3240 		return error;
3241 
3242 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3243 		return -EOVERFLOW;
3244 
3245 	error = inode_permission(idmap, dir->dentry->d_inode,
3246 				 MAY_WRITE | MAY_EXEC);
3247 	if (error)
3248 		return error;
3249 
3250 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3251 }
3252 
3253 /*
3254  * Attempt to atomically look up, create and open a file from a negative
3255  * dentry.
3256  *
3257  * Returns 0 if successful.  The file will have been created and attached to
3258  * @file by the filesystem calling finish_open().
3259  *
3260  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3261  * be set.  The caller will need to perform the open themselves.  @path will
3262  * have been updated to point to the new dentry.  This may be negative.
3263  *
3264  * Returns an error code otherwise.
3265  */
3266 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3267 				  struct file *file,
3268 				  int open_flag, umode_t mode)
3269 {
3270 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3271 	struct inode *dir =  nd->path.dentry->d_inode;
3272 	int error;
3273 
3274 	if (nd->flags & LOOKUP_DIRECTORY)
3275 		open_flag |= O_DIRECTORY;
3276 
3277 	file->f_path.dentry = DENTRY_NOT_SET;
3278 	file->f_path.mnt = nd->path.mnt;
3279 	error = dir->i_op->atomic_open(dir, dentry, file,
3280 				       open_to_namei_flags(open_flag), mode);
3281 	d_lookup_done(dentry);
3282 	if (!error) {
3283 		if (file->f_mode & FMODE_OPENED) {
3284 			if (unlikely(dentry != file->f_path.dentry)) {
3285 				dput(dentry);
3286 				dentry = dget(file->f_path.dentry);
3287 			}
3288 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3289 			error = -EIO;
3290 		} else {
3291 			if (file->f_path.dentry) {
3292 				dput(dentry);
3293 				dentry = file->f_path.dentry;
3294 			}
3295 			if (unlikely(d_is_negative(dentry)))
3296 				error = -ENOENT;
3297 		}
3298 	}
3299 	if (error) {
3300 		dput(dentry);
3301 		dentry = ERR_PTR(error);
3302 	}
3303 	return dentry;
3304 }
3305 
3306 /*
3307  * Look up and maybe create and open the last component.
3308  *
3309  * Must be called with parent locked (exclusive in O_CREAT case).
3310  *
3311  * Returns 0 on success, that is, if
3312  *  the file was successfully atomically created (if necessary) and opened, or
3313  *  the file was not completely opened at this time, though lookups and
3314  *  creations were performed.
3315  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3316  * In the latter case dentry returned in @path might be negative if O_CREAT
3317  * hadn't been specified.
3318  *
3319  * An error code is returned on failure.
3320  */
3321 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3322 				  const struct open_flags *op,
3323 				  bool got_write)
3324 {
3325 	struct mnt_idmap *idmap;
3326 	struct dentry *dir = nd->path.dentry;
3327 	struct inode *dir_inode = dir->d_inode;
3328 	int open_flag = op->open_flag;
3329 	struct dentry *dentry;
3330 	int error, create_error = 0;
3331 	umode_t mode = op->mode;
3332 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3333 
3334 	if (unlikely(IS_DEADDIR(dir_inode)))
3335 		return ERR_PTR(-ENOENT);
3336 
3337 	file->f_mode &= ~FMODE_CREATED;
3338 	dentry = d_lookup(dir, &nd->last);
3339 	for (;;) {
3340 		if (!dentry) {
3341 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3342 			if (IS_ERR(dentry))
3343 				return dentry;
3344 		}
3345 		if (d_in_lookup(dentry))
3346 			break;
3347 
3348 		error = d_revalidate(dentry, nd->flags);
3349 		if (likely(error > 0))
3350 			break;
3351 		if (error)
3352 			goto out_dput;
3353 		d_invalidate(dentry);
3354 		dput(dentry);
3355 		dentry = NULL;
3356 	}
3357 	if (dentry->d_inode) {
3358 		/* Cached positive dentry: will open in f_op->open */
3359 		return dentry;
3360 	}
3361 
3362 	/*
3363 	 * Checking write permission is tricky, bacuse we don't know if we are
3364 	 * going to actually need it: O_CREAT opens should work as long as the
3365 	 * file exists.  But checking existence breaks atomicity.  The trick is
3366 	 * to check access and if not granted clear O_CREAT from the flags.
3367 	 *
3368 	 * Another problem is returing the "right" error value (e.g. for an
3369 	 * O_EXCL open we want to return EEXIST not EROFS).
3370 	 */
3371 	if (unlikely(!got_write))
3372 		open_flag &= ~O_TRUNC;
3373 	idmap = mnt_idmap(nd->path.mnt);
3374 	if (open_flag & O_CREAT) {
3375 		if (open_flag & O_EXCL)
3376 			open_flag &= ~O_TRUNC;
3377 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3378 		if (likely(got_write))
3379 			create_error = may_o_create(idmap, &nd->path,
3380 						    dentry, mode);
3381 		else
3382 			create_error = -EROFS;
3383 	}
3384 	if (create_error)
3385 		open_flag &= ~O_CREAT;
3386 	if (dir_inode->i_op->atomic_open) {
3387 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3388 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3389 			dentry = ERR_PTR(create_error);
3390 		return dentry;
3391 	}
3392 
3393 	if (d_in_lookup(dentry)) {
3394 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3395 							     nd->flags);
3396 		d_lookup_done(dentry);
3397 		if (unlikely(res)) {
3398 			if (IS_ERR(res)) {
3399 				error = PTR_ERR(res);
3400 				goto out_dput;
3401 			}
3402 			dput(dentry);
3403 			dentry = res;
3404 		}
3405 	}
3406 
3407 	/* Negative dentry, just create the file */
3408 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3409 		file->f_mode |= FMODE_CREATED;
3410 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3411 		if (!dir_inode->i_op->create) {
3412 			error = -EACCES;
3413 			goto out_dput;
3414 		}
3415 
3416 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3417 						mode, open_flag & O_EXCL);
3418 		if (error)
3419 			goto out_dput;
3420 	}
3421 	if (unlikely(create_error) && !dentry->d_inode) {
3422 		error = create_error;
3423 		goto out_dput;
3424 	}
3425 	return dentry;
3426 
3427 out_dput:
3428 	dput(dentry);
3429 	return ERR_PTR(error);
3430 }
3431 
3432 static const char *open_last_lookups(struct nameidata *nd,
3433 		   struct file *file, const struct open_flags *op)
3434 {
3435 	struct dentry *dir = nd->path.dentry;
3436 	int open_flag = op->open_flag;
3437 	bool got_write = false;
3438 	struct dentry *dentry;
3439 	const char *res;
3440 
3441 	nd->flags |= op->intent;
3442 
3443 	if (nd->last_type != LAST_NORM) {
3444 		if (nd->depth)
3445 			put_link(nd);
3446 		return handle_dots(nd, nd->last_type);
3447 	}
3448 
3449 	if (!(open_flag & O_CREAT)) {
3450 		if (nd->last.name[nd->last.len])
3451 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3452 		/* we _can_ be in RCU mode here */
3453 		dentry = lookup_fast(nd);
3454 		if (IS_ERR(dentry))
3455 			return ERR_CAST(dentry);
3456 		if (likely(dentry))
3457 			goto finish_lookup;
3458 
3459 		BUG_ON(nd->flags & LOOKUP_RCU);
3460 	} else {
3461 		/* create side of things */
3462 		if (nd->flags & LOOKUP_RCU) {
3463 			if (!try_to_unlazy(nd))
3464 				return ERR_PTR(-ECHILD);
3465 		}
3466 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3467 		/* trailing slashes? */
3468 		if (unlikely(nd->last.name[nd->last.len]))
3469 			return ERR_PTR(-EISDIR);
3470 	}
3471 
3472 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3473 		got_write = !mnt_want_write(nd->path.mnt);
3474 		/*
3475 		 * do _not_ fail yet - we might not need that or fail with
3476 		 * a different error; let lookup_open() decide; we'll be
3477 		 * dropping this one anyway.
3478 		 */
3479 	}
3480 	if (open_flag & O_CREAT)
3481 		inode_lock(dir->d_inode);
3482 	else
3483 		inode_lock_shared(dir->d_inode);
3484 	dentry = lookup_open(nd, file, op, got_write);
3485 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3486 		fsnotify_create(dir->d_inode, dentry);
3487 	if (open_flag & O_CREAT)
3488 		inode_unlock(dir->d_inode);
3489 	else
3490 		inode_unlock_shared(dir->d_inode);
3491 
3492 	if (got_write)
3493 		mnt_drop_write(nd->path.mnt);
3494 
3495 	if (IS_ERR(dentry))
3496 		return ERR_CAST(dentry);
3497 
3498 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3499 		dput(nd->path.dentry);
3500 		nd->path.dentry = dentry;
3501 		return NULL;
3502 	}
3503 
3504 finish_lookup:
3505 	if (nd->depth)
3506 		put_link(nd);
3507 	res = step_into(nd, WALK_TRAILING, dentry);
3508 	if (unlikely(res))
3509 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3510 	return res;
3511 }
3512 
3513 /*
3514  * Handle the last step of open()
3515  */
3516 static int do_open(struct nameidata *nd,
3517 		   struct file *file, const struct open_flags *op)
3518 {
3519 	struct mnt_idmap *idmap;
3520 	int open_flag = op->open_flag;
3521 	bool do_truncate;
3522 	int acc_mode;
3523 	int error;
3524 
3525 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3526 		error = complete_walk(nd);
3527 		if (error)
3528 			return error;
3529 	}
3530 	if (!(file->f_mode & FMODE_CREATED))
3531 		audit_inode(nd->name, nd->path.dentry, 0);
3532 	idmap = mnt_idmap(nd->path.mnt);
3533 	if (open_flag & O_CREAT) {
3534 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3535 			return -EEXIST;
3536 		if (d_is_dir(nd->path.dentry))
3537 			return -EISDIR;
3538 		error = may_create_in_sticky(idmap, nd,
3539 					     d_backing_inode(nd->path.dentry));
3540 		if (unlikely(error))
3541 			return error;
3542 	}
3543 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3544 		return -ENOTDIR;
3545 
3546 	do_truncate = false;
3547 	acc_mode = op->acc_mode;
3548 	if (file->f_mode & FMODE_CREATED) {
3549 		/* Don't check for write permission, don't truncate */
3550 		open_flag &= ~O_TRUNC;
3551 		acc_mode = 0;
3552 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3553 		error = mnt_want_write(nd->path.mnt);
3554 		if (error)
3555 			return error;
3556 		do_truncate = true;
3557 	}
3558 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3559 	if (!error && !(file->f_mode & FMODE_OPENED))
3560 		error = vfs_open(&nd->path, file);
3561 	if (!error)
3562 		error = ima_file_check(file, op->acc_mode);
3563 	if (!error && do_truncate)
3564 		error = handle_truncate(idmap, file);
3565 	if (unlikely(error > 0)) {
3566 		WARN_ON(1);
3567 		error = -EINVAL;
3568 	}
3569 	if (do_truncate)
3570 		mnt_drop_write(nd->path.mnt);
3571 	return error;
3572 }
3573 
3574 /**
3575  * vfs_tmpfile - create tmpfile
3576  * @idmap:	idmap of the mount the inode was found from
3577  * @dentry:	pointer to dentry of the base directory
3578  * @mode:	mode of the new tmpfile
3579  * @open_flag:	flags
3580  *
3581  * Create a temporary file.
3582  *
3583  * If the inode has been found through an idmapped mount the idmap of
3584  * the vfsmount must be passed through @idmap. This function will then take
3585  * care to map the inode according to @idmap before checking permissions.
3586  * On non-idmapped mounts or if permission checking is to be performed on the
3587  * raw inode simply passs @nop_mnt_idmap.
3588  */
3589 static int vfs_tmpfile(struct mnt_idmap *idmap,
3590 		       const struct path *parentpath,
3591 		       struct file *file, umode_t mode)
3592 {
3593 	struct dentry *child;
3594 	struct inode *dir = d_inode(parentpath->dentry);
3595 	struct inode *inode;
3596 	int error;
3597 	int open_flag = file->f_flags;
3598 
3599 	/* we want directory to be writable */
3600 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3601 	if (error)
3602 		return error;
3603 	if (!dir->i_op->tmpfile)
3604 		return -EOPNOTSUPP;
3605 	child = d_alloc(parentpath->dentry, &slash_name);
3606 	if (unlikely(!child))
3607 		return -ENOMEM;
3608 	file->f_path.mnt = parentpath->mnt;
3609 	file->f_path.dentry = child;
3610 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3611 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3612 	dput(child);
3613 	if (error)
3614 		return error;
3615 	/* Don't check for other permissions, the inode was just created */
3616 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3617 	if (error)
3618 		return error;
3619 	inode = file_inode(file);
3620 	if (!(open_flag & O_EXCL)) {
3621 		spin_lock(&inode->i_lock);
3622 		inode->i_state |= I_LINKABLE;
3623 		spin_unlock(&inode->i_lock);
3624 	}
3625 	ima_post_create_tmpfile(idmap, inode);
3626 	return 0;
3627 }
3628 
3629 /**
3630  * vfs_tmpfile_open - open a tmpfile for kernel internal use
3631  * @idmap:	idmap of the mount the inode was found from
3632  * @parentpath:	path of the base directory
3633  * @mode:	mode of the new tmpfile
3634  * @open_flag:	flags
3635  * @cred:	credentials for open
3636  *
3637  * Create and open a temporary file.  The file is not accounted in nr_files,
3638  * hence this is only for kernel internal use, and must not be installed into
3639  * file tables or such.
3640  */
3641 struct file *vfs_tmpfile_open(struct mnt_idmap *idmap,
3642 			  const struct path *parentpath,
3643 			  umode_t mode, int open_flag, const struct cred *cred)
3644 {
3645 	struct file *file;
3646 	int error;
3647 
3648 	file = alloc_empty_file_noaccount(open_flag, cred);
3649 	if (!IS_ERR(file)) {
3650 		error = vfs_tmpfile(idmap, parentpath, file, mode);
3651 		if (error) {
3652 			fput(file);
3653 			file = ERR_PTR(error);
3654 		}
3655 	}
3656 	return file;
3657 }
3658 EXPORT_SYMBOL(vfs_tmpfile_open);
3659 
3660 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3661 		const struct open_flags *op,
3662 		struct file *file)
3663 {
3664 	struct path path;
3665 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3666 
3667 	if (unlikely(error))
3668 		return error;
3669 	error = mnt_want_write(path.mnt);
3670 	if (unlikely(error))
3671 		goto out;
3672 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3673 	if (error)
3674 		goto out2;
3675 	audit_inode(nd->name, file->f_path.dentry, 0);
3676 out2:
3677 	mnt_drop_write(path.mnt);
3678 out:
3679 	path_put(&path);
3680 	return error;
3681 }
3682 
3683 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3684 {
3685 	struct path path;
3686 	int error = path_lookupat(nd, flags, &path);
3687 	if (!error) {
3688 		audit_inode(nd->name, path.dentry, 0);
3689 		error = vfs_open(&path, file);
3690 		path_put(&path);
3691 	}
3692 	return error;
3693 }
3694 
3695 static struct file *path_openat(struct nameidata *nd,
3696 			const struct open_flags *op, unsigned flags)
3697 {
3698 	struct file *file;
3699 	int error;
3700 
3701 	file = alloc_empty_file(op->open_flag, current_cred());
3702 	if (IS_ERR(file))
3703 		return file;
3704 
3705 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3706 		error = do_tmpfile(nd, flags, op, file);
3707 	} else if (unlikely(file->f_flags & O_PATH)) {
3708 		error = do_o_path(nd, flags, file);
3709 	} else {
3710 		const char *s = path_init(nd, flags);
3711 		while (!(error = link_path_walk(s, nd)) &&
3712 		       (s = open_last_lookups(nd, file, op)) != NULL)
3713 			;
3714 		if (!error)
3715 			error = do_open(nd, file, op);
3716 		terminate_walk(nd);
3717 	}
3718 	if (likely(!error)) {
3719 		if (likely(file->f_mode & FMODE_OPENED))
3720 			return file;
3721 		WARN_ON(1);
3722 		error = -EINVAL;
3723 	}
3724 	fput(file);
3725 	if (error == -EOPENSTALE) {
3726 		if (flags & LOOKUP_RCU)
3727 			error = -ECHILD;
3728 		else
3729 			error = -ESTALE;
3730 	}
3731 	return ERR_PTR(error);
3732 }
3733 
3734 struct file *do_filp_open(int dfd, struct filename *pathname,
3735 		const struct open_flags *op)
3736 {
3737 	struct nameidata nd;
3738 	int flags = op->lookup_flags;
3739 	struct file *filp;
3740 
3741 	set_nameidata(&nd, dfd, pathname, NULL);
3742 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3743 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3744 		filp = path_openat(&nd, op, flags);
3745 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3746 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3747 	restore_nameidata();
3748 	return filp;
3749 }
3750 
3751 struct file *do_file_open_root(const struct path *root,
3752 		const char *name, const struct open_flags *op)
3753 {
3754 	struct nameidata nd;
3755 	struct file *file;
3756 	struct filename *filename;
3757 	int flags = op->lookup_flags;
3758 
3759 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3760 		return ERR_PTR(-ELOOP);
3761 
3762 	filename = getname_kernel(name);
3763 	if (IS_ERR(filename))
3764 		return ERR_CAST(filename);
3765 
3766 	set_nameidata(&nd, -1, filename, root);
3767 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3768 	if (unlikely(file == ERR_PTR(-ECHILD)))
3769 		file = path_openat(&nd, op, flags);
3770 	if (unlikely(file == ERR_PTR(-ESTALE)))
3771 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3772 	restore_nameidata();
3773 	putname(filename);
3774 	return file;
3775 }
3776 
3777 static struct dentry *filename_create(int dfd, struct filename *name,
3778 				      struct path *path, unsigned int lookup_flags)
3779 {
3780 	struct dentry *dentry = ERR_PTR(-EEXIST);
3781 	struct qstr last;
3782 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3783 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3784 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3785 	int type;
3786 	int err2;
3787 	int error;
3788 
3789 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3790 	if (error)
3791 		return ERR_PTR(error);
3792 
3793 	/*
3794 	 * Yucky last component or no last component at all?
3795 	 * (foo/., foo/.., /////)
3796 	 */
3797 	if (unlikely(type != LAST_NORM))
3798 		goto out;
3799 
3800 	/* don't fail immediately if it's r/o, at least try to report other errors */
3801 	err2 = mnt_want_write(path->mnt);
3802 	/*
3803 	 * Do the final lookup.  Suppress 'create' if there is a trailing
3804 	 * '/', and a directory wasn't requested.
3805 	 */
3806 	if (last.name[last.len] && !want_dir)
3807 		create_flags = 0;
3808 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3809 	dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3810 	if (IS_ERR(dentry))
3811 		goto unlock;
3812 
3813 	error = -EEXIST;
3814 	if (d_is_positive(dentry))
3815 		goto fail;
3816 
3817 	/*
3818 	 * Special case - lookup gave negative, but... we had foo/bar/
3819 	 * From the vfs_mknod() POV we just have a negative dentry -
3820 	 * all is fine. Let's be bastards - you had / on the end, you've
3821 	 * been asking for (non-existent) directory. -ENOENT for you.
3822 	 */
3823 	if (unlikely(!create_flags)) {
3824 		error = -ENOENT;
3825 		goto fail;
3826 	}
3827 	if (unlikely(err2)) {
3828 		error = err2;
3829 		goto fail;
3830 	}
3831 	return dentry;
3832 fail:
3833 	dput(dentry);
3834 	dentry = ERR_PTR(error);
3835 unlock:
3836 	inode_unlock(path->dentry->d_inode);
3837 	if (!err2)
3838 		mnt_drop_write(path->mnt);
3839 out:
3840 	path_put(path);
3841 	return dentry;
3842 }
3843 
3844 struct dentry *kern_path_create(int dfd, const char *pathname,
3845 				struct path *path, unsigned int lookup_flags)
3846 {
3847 	struct filename *filename = getname_kernel(pathname);
3848 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3849 
3850 	putname(filename);
3851 	return res;
3852 }
3853 EXPORT_SYMBOL(kern_path_create);
3854 
3855 void done_path_create(struct path *path, struct dentry *dentry)
3856 {
3857 	dput(dentry);
3858 	inode_unlock(path->dentry->d_inode);
3859 	mnt_drop_write(path->mnt);
3860 	path_put(path);
3861 }
3862 EXPORT_SYMBOL(done_path_create);
3863 
3864 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3865 				struct path *path, unsigned int lookup_flags)
3866 {
3867 	struct filename *filename = getname(pathname);
3868 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3869 
3870 	putname(filename);
3871 	return res;
3872 }
3873 EXPORT_SYMBOL(user_path_create);
3874 
3875 /**
3876  * vfs_mknod - create device node or file
3877  * @idmap:	idmap of the mount the inode was found from
3878  * @dir:	inode of @dentry
3879  * @dentry:	pointer to dentry of the base directory
3880  * @mode:	mode of the new device node or file
3881  * @dev:	device number of device to create
3882  *
3883  * Create a device node or file.
3884  *
3885  * If the inode has been found through an idmapped mount the idmap of
3886  * the vfsmount must be passed through @idmap. This function will then take
3887  * care to map the inode according to @idmap before checking permissions.
3888  * On non-idmapped mounts or if permission checking is to be performed on the
3889  * raw inode simply passs @nop_mnt_idmap.
3890  */
3891 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3892 	      struct dentry *dentry, umode_t mode, dev_t dev)
3893 {
3894 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3895 	int error = may_create(idmap, dir, dentry);
3896 
3897 	if (error)
3898 		return error;
3899 
3900 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3901 	    !capable(CAP_MKNOD))
3902 		return -EPERM;
3903 
3904 	if (!dir->i_op->mknod)
3905 		return -EPERM;
3906 
3907 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3908 	error = devcgroup_inode_mknod(mode, dev);
3909 	if (error)
3910 		return error;
3911 
3912 	error = security_inode_mknod(dir, dentry, mode, dev);
3913 	if (error)
3914 		return error;
3915 
3916 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
3917 	if (!error)
3918 		fsnotify_create(dir, dentry);
3919 	return error;
3920 }
3921 EXPORT_SYMBOL(vfs_mknod);
3922 
3923 static int may_mknod(umode_t mode)
3924 {
3925 	switch (mode & S_IFMT) {
3926 	case S_IFREG:
3927 	case S_IFCHR:
3928 	case S_IFBLK:
3929 	case S_IFIFO:
3930 	case S_IFSOCK:
3931 	case 0: /* zero mode translates to S_IFREG */
3932 		return 0;
3933 	case S_IFDIR:
3934 		return -EPERM;
3935 	default:
3936 		return -EINVAL;
3937 	}
3938 }
3939 
3940 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3941 		unsigned int dev)
3942 {
3943 	struct mnt_idmap *idmap;
3944 	struct dentry *dentry;
3945 	struct path path;
3946 	int error;
3947 	unsigned int lookup_flags = 0;
3948 
3949 	error = may_mknod(mode);
3950 	if (error)
3951 		goto out1;
3952 retry:
3953 	dentry = filename_create(dfd, name, &path, lookup_flags);
3954 	error = PTR_ERR(dentry);
3955 	if (IS_ERR(dentry))
3956 		goto out1;
3957 
3958 	error = security_path_mknod(&path, dentry,
3959 			mode_strip_umask(path.dentry->d_inode, mode), dev);
3960 	if (error)
3961 		goto out2;
3962 
3963 	idmap = mnt_idmap(path.mnt);
3964 	switch (mode & S_IFMT) {
3965 		case 0: case S_IFREG:
3966 			error = vfs_create(idmap, path.dentry->d_inode,
3967 					   dentry, mode, true);
3968 			if (!error)
3969 				ima_post_path_mknod(idmap, dentry);
3970 			break;
3971 		case S_IFCHR: case S_IFBLK:
3972 			error = vfs_mknod(idmap, path.dentry->d_inode,
3973 					  dentry, mode, new_decode_dev(dev));
3974 			break;
3975 		case S_IFIFO: case S_IFSOCK:
3976 			error = vfs_mknod(idmap, path.dentry->d_inode,
3977 					  dentry, mode, 0);
3978 			break;
3979 	}
3980 out2:
3981 	done_path_create(&path, dentry);
3982 	if (retry_estale(error, lookup_flags)) {
3983 		lookup_flags |= LOOKUP_REVAL;
3984 		goto retry;
3985 	}
3986 out1:
3987 	putname(name);
3988 	return error;
3989 }
3990 
3991 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3992 		unsigned int, dev)
3993 {
3994 	return do_mknodat(dfd, getname(filename), mode, dev);
3995 }
3996 
3997 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3998 {
3999 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4000 }
4001 
4002 /**
4003  * vfs_mkdir - create directory
4004  * @idmap:	idmap of the mount the inode was found from
4005  * @dir:	inode of @dentry
4006  * @dentry:	pointer to dentry of the base directory
4007  * @mode:	mode of the new directory
4008  *
4009  * Create a directory.
4010  *
4011  * If the inode has been found through an idmapped mount the idmap of
4012  * the vfsmount must be passed through @idmap. This function will then take
4013  * care to map the inode according to @idmap before checking permissions.
4014  * On non-idmapped mounts or if permission checking is to be performed on the
4015  * raw inode simply passs @nop_mnt_idmap.
4016  */
4017 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4018 	      struct dentry *dentry, umode_t mode)
4019 {
4020 	int error;
4021 	unsigned max_links = dir->i_sb->s_max_links;
4022 
4023 	error = may_create(idmap, dir, dentry);
4024 	if (error)
4025 		return error;
4026 
4027 	if (!dir->i_op->mkdir)
4028 		return -EPERM;
4029 
4030 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4031 	error = security_inode_mkdir(dir, dentry, mode);
4032 	if (error)
4033 		return error;
4034 
4035 	if (max_links && dir->i_nlink >= max_links)
4036 		return -EMLINK;
4037 
4038 	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4039 	if (!error)
4040 		fsnotify_mkdir(dir, dentry);
4041 	return error;
4042 }
4043 EXPORT_SYMBOL(vfs_mkdir);
4044 
4045 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4046 {
4047 	struct dentry *dentry;
4048 	struct path path;
4049 	int error;
4050 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4051 
4052 retry:
4053 	dentry = filename_create(dfd, name, &path, lookup_flags);
4054 	error = PTR_ERR(dentry);
4055 	if (IS_ERR(dentry))
4056 		goto out_putname;
4057 
4058 	error = security_path_mkdir(&path, dentry,
4059 			mode_strip_umask(path.dentry->d_inode, mode));
4060 	if (!error) {
4061 		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4062 				  dentry, mode);
4063 	}
4064 	done_path_create(&path, dentry);
4065 	if (retry_estale(error, lookup_flags)) {
4066 		lookup_flags |= LOOKUP_REVAL;
4067 		goto retry;
4068 	}
4069 out_putname:
4070 	putname(name);
4071 	return error;
4072 }
4073 
4074 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4075 {
4076 	return do_mkdirat(dfd, getname(pathname), mode);
4077 }
4078 
4079 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4080 {
4081 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4082 }
4083 
4084 /**
4085  * vfs_rmdir - remove directory
4086  * @idmap:	idmap of the mount the inode was found from
4087  * @dir:	inode of @dentry
4088  * @dentry:	pointer to dentry of the base directory
4089  *
4090  * Remove a directory.
4091  *
4092  * If the inode has been found through an idmapped mount the idmap of
4093  * the vfsmount must be passed through @idmap. This function will then take
4094  * care to map the inode according to @idmap before checking permissions.
4095  * On non-idmapped mounts or if permission checking is to be performed on the
4096  * raw inode simply passs @nop_mnt_idmap.
4097  */
4098 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4099 		     struct dentry *dentry)
4100 {
4101 	int error = may_delete(idmap, dir, dentry, 1);
4102 
4103 	if (error)
4104 		return error;
4105 
4106 	if (!dir->i_op->rmdir)
4107 		return -EPERM;
4108 
4109 	dget(dentry);
4110 	inode_lock(dentry->d_inode);
4111 
4112 	error = -EBUSY;
4113 	if (is_local_mountpoint(dentry) ||
4114 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4115 		goto out;
4116 
4117 	error = security_inode_rmdir(dir, dentry);
4118 	if (error)
4119 		goto out;
4120 
4121 	error = dir->i_op->rmdir(dir, dentry);
4122 	if (error)
4123 		goto out;
4124 
4125 	shrink_dcache_parent(dentry);
4126 	dentry->d_inode->i_flags |= S_DEAD;
4127 	dont_mount(dentry);
4128 	detach_mounts(dentry);
4129 
4130 out:
4131 	inode_unlock(dentry->d_inode);
4132 	dput(dentry);
4133 	if (!error)
4134 		d_delete_notify(dir, dentry);
4135 	return error;
4136 }
4137 EXPORT_SYMBOL(vfs_rmdir);
4138 
4139 int do_rmdir(int dfd, struct filename *name)
4140 {
4141 	int error;
4142 	struct dentry *dentry;
4143 	struct path path;
4144 	struct qstr last;
4145 	int type;
4146 	unsigned int lookup_flags = 0;
4147 retry:
4148 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4149 	if (error)
4150 		goto exit1;
4151 
4152 	switch (type) {
4153 	case LAST_DOTDOT:
4154 		error = -ENOTEMPTY;
4155 		goto exit2;
4156 	case LAST_DOT:
4157 		error = -EINVAL;
4158 		goto exit2;
4159 	case LAST_ROOT:
4160 		error = -EBUSY;
4161 		goto exit2;
4162 	}
4163 
4164 	error = mnt_want_write(path.mnt);
4165 	if (error)
4166 		goto exit2;
4167 
4168 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4169 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4170 	error = PTR_ERR(dentry);
4171 	if (IS_ERR(dentry))
4172 		goto exit3;
4173 	if (!dentry->d_inode) {
4174 		error = -ENOENT;
4175 		goto exit4;
4176 	}
4177 	error = security_path_rmdir(&path, dentry);
4178 	if (error)
4179 		goto exit4;
4180 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4181 exit4:
4182 	dput(dentry);
4183 exit3:
4184 	inode_unlock(path.dentry->d_inode);
4185 	mnt_drop_write(path.mnt);
4186 exit2:
4187 	path_put(&path);
4188 	if (retry_estale(error, lookup_flags)) {
4189 		lookup_flags |= LOOKUP_REVAL;
4190 		goto retry;
4191 	}
4192 exit1:
4193 	putname(name);
4194 	return error;
4195 }
4196 
4197 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4198 {
4199 	return do_rmdir(AT_FDCWD, getname(pathname));
4200 }
4201 
4202 /**
4203  * vfs_unlink - unlink a filesystem object
4204  * @idmap:	idmap of the mount the inode was found from
4205  * @dir:	parent directory
4206  * @dentry:	victim
4207  * @delegated_inode: returns victim inode, if the inode is delegated.
4208  *
4209  * The caller must hold dir->i_mutex.
4210  *
4211  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4212  * return a reference to the inode in delegated_inode.  The caller
4213  * should then break the delegation on that inode and retry.  Because
4214  * breaking a delegation may take a long time, the caller should drop
4215  * dir->i_mutex before doing so.
4216  *
4217  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4218  * be appropriate for callers that expect the underlying filesystem not
4219  * to be NFS exported.
4220  *
4221  * If the inode has been found through an idmapped mount the idmap of
4222  * the vfsmount must be passed through @idmap. This function will then take
4223  * care to map the inode according to @idmap before checking permissions.
4224  * On non-idmapped mounts or if permission checking is to be performed on the
4225  * raw inode simply passs @nop_mnt_idmap.
4226  */
4227 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4228 	       struct dentry *dentry, struct inode **delegated_inode)
4229 {
4230 	struct inode *target = dentry->d_inode;
4231 	int error = may_delete(idmap, dir, dentry, 0);
4232 
4233 	if (error)
4234 		return error;
4235 
4236 	if (!dir->i_op->unlink)
4237 		return -EPERM;
4238 
4239 	inode_lock(target);
4240 	if (IS_SWAPFILE(target))
4241 		error = -EPERM;
4242 	else if (is_local_mountpoint(dentry))
4243 		error = -EBUSY;
4244 	else {
4245 		error = security_inode_unlink(dir, dentry);
4246 		if (!error) {
4247 			error = try_break_deleg(target, delegated_inode);
4248 			if (error)
4249 				goto out;
4250 			error = dir->i_op->unlink(dir, dentry);
4251 			if (!error) {
4252 				dont_mount(dentry);
4253 				detach_mounts(dentry);
4254 			}
4255 		}
4256 	}
4257 out:
4258 	inode_unlock(target);
4259 
4260 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4261 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4262 		fsnotify_unlink(dir, dentry);
4263 	} else if (!error) {
4264 		fsnotify_link_count(target);
4265 		d_delete_notify(dir, dentry);
4266 	}
4267 
4268 	return error;
4269 }
4270 EXPORT_SYMBOL(vfs_unlink);
4271 
4272 /*
4273  * Make sure that the actual truncation of the file will occur outside its
4274  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4275  * writeout happening, and we don't want to prevent access to the directory
4276  * while waiting on the I/O.
4277  */
4278 int do_unlinkat(int dfd, struct filename *name)
4279 {
4280 	int error;
4281 	struct dentry *dentry;
4282 	struct path path;
4283 	struct qstr last;
4284 	int type;
4285 	struct inode *inode = NULL;
4286 	struct inode *delegated_inode = NULL;
4287 	unsigned int lookup_flags = 0;
4288 retry:
4289 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4290 	if (error)
4291 		goto exit1;
4292 
4293 	error = -EISDIR;
4294 	if (type != LAST_NORM)
4295 		goto exit2;
4296 
4297 	error = mnt_want_write(path.mnt);
4298 	if (error)
4299 		goto exit2;
4300 retry_deleg:
4301 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4302 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4303 	error = PTR_ERR(dentry);
4304 	if (!IS_ERR(dentry)) {
4305 
4306 		/* Why not before? Because we want correct error value */
4307 		if (last.name[last.len])
4308 			goto slashes;
4309 		inode = dentry->d_inode;
4310 		if (d_is_negative(dentry))
4311 			goto slashes;
4312 		ihold(inode);
4313 		error = security_path_unlink(&path, dentry);
4314 		if (error)
4315 			goto exit3;
4316 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4317 				   dentry, &delegated_inode);
4318 exit3:
4319 		dput(dentry);
4320 	}
4321 	inode_unlock(path.dentry->d_inode);
4322 	if (inode)
4323 		iput(inode);	/* truncate the inode here */
4324 	inode = NULL;
4325 	if (delegated_inode) {
4326 		error = break_deleg_wait(&delegated_inode);
4327 		if (!error)
4328 			goto retry_deleg;
4329 	}
4330 	mnt_drop_write(path.mnt);
4331 exit2:
4332 	path_put(&path);
4333 	if (retry_estale(error, lookup_flags)) {
4334 		lookup_flags |= LOOKUP_REVAL;
4335 		inode = NULL;
4336 		goto retry;
4337 	}
4338 exit1:
4339 	putname(name);
4340 	return error;
4341 
4342 slashes:
4343 	if (d_is_negative(dentry))
4344 		error = -ENOENT;
4345 	else if (d_is_dir(dentry))
4346 		error = -EISDIR;
4347 	else
4348 		error = -ENOTDIR;
4349 	goto exit3;
4350 }
4351 
4352 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4353 {
4354 	if ((flag & ~AT_REMOVEDIR) != 0)
4355 		return -EINVAL;
4356 
4357 	if (flag & AT_REMOVEDIR)
4358 		return do_rmdir(dfd, getname(pathname));
4359 	return do_unlinkat(dfd, getname(pathname));
4360 }
4361 
4362 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4363 {
4364 	return do_unlinkat(AT_FDCWD, getname(pathname));
4365 }
4366 
4367 /**
4368  * vfs_symlink - create symlink
4369  * @idmap:	idmap of the mount the inode was found from
4370  * @dir:	inode of @dentry
4371  * @dentry:	pointer to dentry of the base directory
4372  * @oldname:	name of the file to link to
4373  *
4374  * Create a symlink.
4375  *
4376  * If the inode has been found through an idmapped mount the idmap of
4377  * the vfsmount must be passed through @idmap. This function will then take
4378  * care to map the inode according to @idmap before checking permissions.
4379  * On non-idmapped mounts or if permission checking is to be performed on the
4380  * raw inode simply passs @nop_mnt_idmap.
4381  */
4382 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4383 		struct dentry *dentry, const char *oldname)
4384 {
4385 	int error;
4386 
4387 	error = may_create(idmap, dir, dentry);
4388 	if (error)
4389 		return error;
4390 
4391 	if (!dir->i_op->symlink)
4392 		return -EPERM;
4393 
4394 	error = security_inode_symlink(dir, dentry, oldname);
4395 	if (error)
4396 		return error;
4397 
4398 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4399 	if (!error)
4400 		fsnotify_create(dir, dentry);
4401 	return error;
4402 }
4403 EXPORT_SYMBOL(vfs_symlink);
4404 
4405 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4406 {
4407 	int error;
4408 	struct dentry *dentry;
4409 	struct path path;
4410 	unsigned int lookup_flags = 0;
4411 
4412 	if (IS_ERR(from)) {
4413 		error = PTR_ERR(from);
4414 		goto out_putnames;
4415 	}
4416 retry:
4417 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4418 	error = PTR_ERR(dentry);
4419 	if (IS_ERR(dentry))
4420 		goto out_putnames;
4421 
4422 	error = security_path_symlink(&path, dentry, from->name);
4423 	if (!error)
4424 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4425 				    dentry, from->name);
4426 	done_path_create(&path, dentry);
4427 	if (retry_estale(error, lookup_flags)) {
4428 		lookup_flags |= LOOKUP_REVAL;
4429 		goto retry;
4430 	}
4431 out_putnames:
4432 	putname(to);
4433 	putname(from);
4434 	return error;
4435 }
4436 
4437 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4438 		int, newdfd, const char __user *, newname)
4439 {
4440 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4441 }
4442 
4443 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4444 {
4445 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4446 }
4447 
4448 /**
4449  * vfs_link - create a new link
4450  * @old_dentry:	object to be linked
4451  * @idmap:	idmap of the mount
4452  * @dir:	new parent
4453  * @new_dentry:	where to create the new link
4454  * @delegated_inode: returns inode needing a delegation break
4455  *
4456  * The caller must hold dir->i_mutex
4457  *
4458  * If vfs_link discovers a delegation on the to-be-linked file in need
4459  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4460  * inode in delegated_inode.  The caller should then break the delegation
4461  * and retry.  Because breaking a delegation may take a long time, the
4462  * caller should drop the i_mutex before doing so.
4463  *
4464  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4465  * be appropriate for callers that expect the underlying filesystem not
4466  * to be NFS exported.
4467  *
4468  * If the inode has been found through an idmapped mount the idmap of
4469  * the vfsmount must be passed through @idmap. This function will then take
4470  * care to map the inode according to @idmap before checking permissions.
4471  * On non-idmapped mounts or if permission checking is to be performed on the
4472  * raw inode simply passs @nop_mnt_idmap.
4473  */
4474 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4475 	     struct inode *dir, struct dentry *new_dentry,
4476 	     struct inode **delegated_inode)
4477 {
4478 	struct inode *inode = old_dentry->d_inode;
4479 	unsigned max_links = dir->i_sb->s_max_links;
4480 	int error;
4481 
4482 	if (!inode)
4483 		return -ENOENT;
4484 
4485 	error = may_create(idmap, dir, new_dentry);
4486 	if (error)
4487 		return error;
4488 
4489 	if (dir->i_sb != inode->i_sb)
4490 		return -EXDEV;
4491 
4492 	/*
4493 	 * A link to an append-only or immutable file cannot be created.
4494 	 */
4495 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4496 		return -EPERM;
4497 	/*
4498 	 * Updating the link count will likely cause i_uid and i_gid to
4499 	 * be writen back improperly if their true value is unknown to
4500 	 * the vfs.
4501 	 */
4502 	if (HAS_UNMAPPED_ID(idmap, inode))
4503 		return -EPERM;
4504 	if (!dir->i_op->link)
4505 		return -EPERM;
4506 	if (S_ISDIR(inode->i_mode))
4507 		return -EPERM;
4508 
4509 	error = security_inode_link(old_dentry, dir, new_dentry);
4510 	if (error)
4511 		return error;
4512 
4513 	inode_lock(inode);
4514 	/* Make sure we don't allow creating hardlink to an unlinked file */
4515 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4516 		error =  -ENOENT;
4517 	else if (max_links && inode->i_nlink >= max_links)
4518 		error = -EMLINK;
4519 	else {
4520 		error = try_break_deleg(inode, delegated_inode);
4521 		if (!error)
4522 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4523 	}
4524 
4525 	if (!error && (inode->i_state & I_LINKABLE)) {
4526 		spin_lock(&inode->i_lock);
4527 		inode->i_state &= ~I_LINKABLE;
4528 		spin_unlock(&inode->i_lock);
4529 	}
4530 	inode_unlock(inode);
4531 	if (!error)
4532 		fsnotify_link(dir, inode, new_dentry);
4533 	return error;
4534 }
4535 EXPORT_SYMBOL(vfs_link);
4536 
4537 /*
4538  * Hardlinks are often used in delicate situations.  We avoid
4539  * security-related surprises by not following symlinks on the
4540  * newname.  --KAB
4541  *
4542  * We don't follow them on the oldname either to be compatible
4543  * with linux 2.0, and to avoid hard-linking to directories
4544  * and other special files.  --ADM
4545  */
4546 int do_linkat(int olddfd, struct filename *old, int newdfd,
4547 	      struct filename *new, int flags)
4548 {
4549 	struct mnt_idmap *idmap;
4550 	struct dentry *new_dentry;
4551 	struct path old_path, new_path;
4552 	struct inode *delegated_inode = NULL;
4553 	int how = 0;
4554 	int error;
4555 
4556 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4557 		error = -EINVAL;
4558 		goto out_putnames;
4559 	}
4560 	/*
4561 	 * To use null names we require CAP_DAC_READ_SEARCH
4562 	 * This ensures that not everyone will be able to create
4563 	 * handlink using the passed filedescriptor.
4564 	 */
4565 	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4566 		error = -ENOENT;
4567 		goto out_putnames;
4568 	}
4569 
4570 	if (flags & AT_SYMLINK_FOLLOW)
4571 		how |= LOOKUP_FOLLOW;
4572 retry:
4573 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4574 	if (error)
4575 		goto out_putnames;
4576 
4577 	new_dentry = filename_create(newdfd, new, &new_path,
4578 					(how & LOOKUP_REVAL));
4579 	error = PTR_ERR(new_dentry);
4580 	if (IS_ERR(new_dentry))
4581 		goto out_putpath;
4582 
4583 	error = -EXDEV;
4584 	if (old_path.mnt != new_path.mnt)
4585 		goto out_dput;
4586 	idmap = mnt_idmap(new_path.mnt);
4587 	error = may_linkat(idmap, &old_path);
4588 	if (unlikely(error))
4589 		goto out_dput;
4590 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4591 	if (error)
4592 		goto out_dput;
4593 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4594 			 new_dentry, &delegated_inode);
4595 out_dput:
4596 	done_path_create(&new_path, new_dentry);
4597 	if (delegated_inode) {
4598 		error = break_deleg_wait(&delegated_inode);
4599 		if (!error) {
4600 			path_put(&old_path);
4601 			goto retry;
4602 		}
4603 	}
4604 	if (retry_estale(error, how)) {
4605 		path_put(&old_path);
4606 		how |= LOOKUP_REVAL;
4607 		goto retry;
4608 	}
4609 out_putpath:
4610 	path_put(&old_path);
4611 out_putnames:
4612 	putname(old);
4613 	putname(new);
4614 
4615 	return error;
4616 }
4617 
4618 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4619 		int, newdfd, const char __user *, newname, int, flags)
4620 {
4621 	return do_linkat(olddfd, getname_uflags(oldname, flags),
4622 		newdfd, getname(newname), flags);
4623 }
4624 
4625 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4626 {
4627 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4628 }
4629 
4630 /**
4631  * vfs_rename - rename a filesystem object
4632  * @rd:		pointer to &struct renamedata info
4633  *
4634  * The caller must hold multiple mutexes--see lock_rename()).
4635  *
4636  * If vfs_rename discovers a delegation in need of breaking at either
4637  * the source or destination, it will return -EWOULDBLOCK and return a
4638  * reference to the inode in delegated_inode.  The caller should then
4639  * break the delegation and retry.  Because breaking a delegation may
4640  * take a long time, the caller should drop all locks before doing
4641  * so.
4642  *
4643  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4644  * be appropriate for callers that expect the underlying filesystem not
4645  * to be NFS exported.
4646  *
4647  * The worst of all namespace operations - renaming directory. "Perverted"
4648  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4649  * Problems:
4650  *
4651  *	a) we can get into loop creation.
4652  *	b) race potential - two innocent renames can create a loop together.
4653  *	   That's where 4.4 screws up. Current fix: serialization on
4654  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4655  *	   story.
4656  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4657  *	   and source (if it is not a directory).
4658  *	   And that - after we got ->i_mutex on parents (until then we don't know
4659  *	   whether the target exists).  Solution: try to be smart with locking
4660  *	   order for inodes.  We rely on the fact that tree topology may change
4661  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4662  *	   move will be locked.  Thus we can rank directories by the tree
4663  *	   (ancestors first) and rank all non-directories after them.
4664  *	   That works since everybody except rename does "lock parent, lookup,
4665  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4666  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4667  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4668  *	   we'd better make sure that there's no link(2) for them.
4669  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4670  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4671  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4672  *	   ->i_mutex on parents, which works but leads to some truly excessive
4673  *	   locking].
4674  */
4675 int vfs_rename(struct renamedata *rd)
4676 {
4677 	int error;
4678 	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4679 	struct dentry *old_dentry = rd->old_dentry;
4680 	struct dentry *new_dentry = rd->new_dentry;
4681 	struct inode **delegated_inode = rd->delegated_inode;
4682 	unsigned int flags = rd->flags;
4683 	bool is_dir = d_is_dir(old_dentry);
4684 	struct inode *source = old_dentry->d_inode;
4685 	struct inode *target = new_dentry->d_inode;
4686 	bool new_is_dir = false;
4687 	unsigned max_links = new_dir->i_sb->s_max_links;
4688 	struct name_snapshot old_name;
4689 
4690 	if (source == target)
4691 		return 0;
4692 
4693 	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4694 	if (error)
4695 		return error;
4696 
4697 	if (!target) {
4698 		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4699 	} else {
4700 		new_is_dir = d_is_dir(new_dentry);
4701 
4702 		if (!(flags & RENAME_EXCHANGE))
4703 			error = may_delete(rd->new_mnt_idmap, new_dir,
4704 					   new_dentry, is_dir);
4705 		else
4706 			error = may_delete(rd->new_mnt_idmap, new_dir,
4707 					   new_dentry, new_is_dir);
4708 	}
4709 	if (error)
4710 		return error;
4711 
4712 	if (!old_dir->i_op->rename)
4713 		return -EPERM;
4714 
4715 	/*
4716 	 * If we are going to change the parent - check write permissions,
4717 	 * we'll need to flip '..'.
4718 	 */
4719 	if (new_dir != old_dir) {
4720 		if (is_dir) {
4721 			error = inode_permission(rd->old_mnt_idmap, source,
4722 						 MAY_WRITE);
4723 			if (error)
4724 				return error;
4725 		}
4726 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4727 			error = inode_permission(rd->new_mnt_idmap, target,
4728 						 MAY_WRITE);
4729 			if (error)
4730 				return error;
4731 		}
4732 	}
4733 
4734 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4735 				      flags);
4736 	if (error)
4737 		return error;
4738 
4739 	take_dentry_name_snapshot(&old_name, old_dentry);
4740 	dget(new_dentry);
4741 	if (!is_dir || (flags & RENAME_EXCHANGE))
4742 		lock_two_nondirectories(source, target);
4743 	else if (target)
4744 		inode_lock(target);
4745 
4746 	error = -EPERM;
4747 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4748 		goto out;
4749 
4750 	error = -EBUSY;
4751 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4752 		goto out;
4753 
4754 	if (max_links && new_dir != old_dir) {
4755 		error = -EMLINK;
4756 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4757 			goto out;
4758 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4759 		    old_dir->i_nlink >= max_links)
4760 			goto out;
4761 	}
4762 	if (!is_dir) {
4763 		error = try_break_deleg(source, delegated_inode);
4764 		if (error)
4765 			goto out;
4766 	}
4767 	if (target && !new_is_dir) {
4768 		error = try_break_deleg(target, delegated_inode);
4769 		if (error)
4770 			goto out;
4771 	}
4772 	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4773 				      new_dir, new_dentry, flags);
4774 	if (error)
4775 		goto out;
4776 
4777 	if (!(flags & RENAME_EXCHANGE) && target) {
4778 		if (is_dir) {
4779 			shrink_dcache_parent(new_dentry);
4780 			target->i_flags |= S_DEAD;
4781 		}
4782 		dont_mount(new_dentry);
4783 		detach_mounts(new_dentry);
4784 	}
4785 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4786 		if (!(flags & RENAME_EXCHANGE))
4787 			d_move(old_dentry, new_dentry);
4788 		else
4789 			d_exchange(old_dentry, new_dentry);
4790 	}
4791 out:
4792 	if (!is_dir || (flags & RENAME_EXCHANGE))
4793 		unlock_two_nondirectories(source, target);
4794 	else if (target)
4795 		inode_unlock(target);
4796 	dput(new_dentry);
4797 	if (!error) {
4798 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4799 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4800 		if (flags & RENAME_EXCHANGE) {
4801 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4802 				      new_is_dir, NULL, new_dentry);
4803 		}
4804 	}
4805 	release_dentry_name_snapshot(&old_name);
4806 
4807 	return error;
4808 }
4809 EXPORT_SYMBOL(vfs_rename);
4810 
4811 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4812 		 struct filename *to, unsigned int flags)
4813 {
4814 	struct renamedata rd;
4815 	struct dentry *old_dentry, *new_dentry;
4816 	struct dentry *trap;
4817 	struct path old_path, new_path;
4818 	struct qstr old_last, new_last;
4819 	int old_type, new_type;
4820 	struct inode *delegated_inode = NULL;
4821 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4822 	bool should_retry = false;
4823 	int error = -EINVAL;
4824 
4825 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4826 		goto put_names;
4827 
4828 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4829 	    (flags & RENAME_EXCHANGE))
4830 		goto put_names;
4831 
4832 	if (flags & RENAME_EXCHANGE)
4833 		target_flags = 0;
4834 
4835 retry:
4836 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4837 				  &old_last, &old_type);
4838 	if (error)
4839 		goto put_names;
4840 
4841 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4842 				  &new_type);
4843 	if (error)
4844 		goto exit1;
4845 
4846 	error = -EXDEV;
4847 	if (old_path.mnt != new_path.mnt)
4848 		goto exit2;
4849 
4850 	error = -EBUSY;
4851 	if (old_type != LAST_NORM)
4852 		goto exit2;
4853 
4854 	if (flags & RENAME_NOREPLACE)
4855 		error = -EEXIST;
4856 	if (new_type != LAST_NORM)
4857 		goto exit2;
4858 
4859 	error = mnt_want_write(old_path.mnt);
4860 	if (error)
4861 		goto exit2;
4862 
4863 retry_deleg:
4864 	trap = lock_rename(new_path.dentry, old_path.dentry);
4865 
4866 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4867 	error = PTR_ERR(old_dentry);
4868 	if (IS_ERR(old_dentry))
4869 		goto exit3;
4870 	/* source must exist */
4871 	error = -ENOENT;
4872 	if (d_is_negative(old_dentry))
4873 		goto exit4;
4874 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4875 	error = PTR_ERR(new_dentry);
4876 	if (IS_ERR(new_dentry))
4877 		goto exit4;
4878 	error = -EEXIST;
4879 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4880 		goto exit5;
4881 	if (flags & RENAME_EXCHANGE) {
4882 		error = -ENOENT;
4883 		if (d_is_negative(new_dentry))
4884 			goto exit5;
4885 
4886 		if (!d_is_dir(new_dentry)) {
4887 			error = -ENOTDIR;
4888 			if (new_last.name[new_last.len])
4889 				goto exit5;
4890 		}
4891 	}
4892 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4893 	if (!d_is_dir(old_dentry)) {
4894 		error = -ENOTDIR;
4895 		if (old_last.name[old_last.len])
4896 			goto exit5;
4897 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4898 			goto exit5;
4899 	}
4900 	/* source should not be ancestor of target */
4901 	error = -EINVAL;
4902 	if (old_dentry == trap)
4903 		goto exit5;
4904 	/* target should not be an ancestor of source */
4905 	if (!(flags & RENAME_EXCHANGE))
4906 		error = -ENOTEMPTY;
4907 	if (new_dentry == trap)
4908 		goto exit5;
4909 
4910 	error = security_path_rename(&old_path, old_dentry,
4911 				     &new_path, new_dentry, flags);
4912 	if (error)
4913 		goto exit5;
4914 
4915 	rd.old_dir	   = old_path.dentry->d_inode;
4916 	rd.old_dentry	   = old_dentry;
4917 	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
4918 	rd.new_dir	   = new_path.dentry->d_inode;
4919 	rd.new_dentry	   = new_dentry;
4920 	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
4921 	rd.delegated_inode = &delegated_inode;
4922 	rd.flags	   = flags;
4923 	error = vfs_rename(&rd);
4924 exit5:
4925 	dput(new_dentry);
4926 exit4:
4927 	dput(old_dentry);
4928 exit3:
4929 	unlock_rename(new_path.dentry, old_path.dentry);
4930 	if (delegated_inode) {
4931 		error = break_deleg_wait(&delegated_inode);
4932 		if (!error)
4933 			goto retry_deleg;
4934 	}
4935 	mnt_drop_write(old_path.mnt);
4936 exit2:
4937 	if (retry_estale(error, lookup_flags))
4938 		should_retry = true;
4939 	path_put(&new_path);
4940 exit1:
4941 	path_put(&old_path);
4942 	if (should_retry) {
4943 		should_retry = false;
4944 		lookup_flags |= LOOKUP_REVAL;
4945 		goto retry;
4946 	}
4947 put_names:
4948 	putname(from);
4949 	putname(to);
4950 	return error;
4951 }
4952 
4953 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4954 		int, newdfd, const char __user *, newname, unsigned int, flags)
4955 {
4956 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4957 				flags);
4958 }
4959 
4960 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4961 		int, newdfd, const char __user *, newname)
4962 {
4963 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4964 				0);
4965 }
4966 
4967 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4968 {
4969 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4970 				getname(newname), 0);
4971 }
4972 
4973 int readlink_copy(char __user *buffer, int buflen, const char *link)
4974 {
4975 	int len = PTR_ERR(link);
4976 	if (IS_ERR(link))
4977 		goto out;
4978 
4979 	len = strlen(link);
4980 	if (len > (unsigned) buflen)
4981 		len = buflen;
4982 	if (copy_to_user(buffer, link, len))
4983 		len = -EFAULT;
4984 out:
4985 	return len;
4986 }
4987 
4988 /**
4989  * vfs_readlink - copy symlink body into userspace buffer
4990  * @dentry: dentry on which to get symbolic link
4991  * @buffer: user memory pointer
4992  * @buflen: size of buffer
4993  *
4994  * Does not touch atime.  That's up to the caller if necessary
4995  *
4996  * Does not call security hook.
4997  */
4998 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4999 {
5000 	struct inode *inode = d_inode(dentry);
5001 	DEFINE_DELAYED_CALL(done);
5002 	const char *link;
5003 	int res;
5004 
5005 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5006 		if (unlikely(inode->i_op->readlink))
5007 			return inode->i_op->readlink(dentry, buffer, buflen);
5008 
5009 		if (!d_is_symlink(dentry))
5010 			return -EINVAL;
5011 
5012 		spin_lock(&inode->i_lock);
5013 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5014 		spin_unlock(&inode->i_lock);
5015 	}
5016 
5017 	link = READ_ONCE(inode->i_link);
5018 	if (!link) {
5019 		link = inode->i_op->get_link(dentry, inode, &done);
5020 		if (IS_ERR(link))
5021 			return PTR_ERR(link);
5022 	}
5023 	res = readlink_copy(buffer, buflen, link);
5024 	do_delayed_call(&done);
5025 	return res;
5026 }
5027 EXPORT_SYMBOL(vfs_readlink);
5028 
5029 /**
5030  * vfs_get_link - get symlink body
5031  * @dentry: dentry on which to get symbolic link
5032  * @done: caller needs to free returned data with this
5033  *
5034  * Calls security hook and i_op->get_link() on the supplied inode.
5035  *
5036  * It does not touch atime.  That's up to the caller if necessary.
5037  *
5038  * Does not work on "special" symlinks like /proc/$$/fd/N
5039  */
5040 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5041 {
5042 	const char *res = ERR_PTR(-EINVAL);
5043 	struct inode *inode = d_inode(dentry);
5044 
5045 	if (d_is_symlink(dentry)) {
5046 		res = ERR_PTR(security_inode_readlink(dentry));
5047 		if (!res)
5048 			res = inode->i_op->get_link(dentry, inode, done);
5049 	}
5050 	return res;
5051 }
5052 EXPORT_SYMBOL(vfs_get_link);
5053 
5054 /* get the link contents into pagecache */
5055 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5056 			  struct delayed_call *callback)
5057 {
5058 	char *kaddr;
5059 	struct page *page;
5060 	struct address_space *mapping = inode->i_mapping;
5061 
5062 	if (!dentry) {
5063 		page = find_get_page(mapping, 0);
5064 		if (!page)
5065 			return ERR_PTR(-ECHILD);
5066 		if (!PageUptodate(page)) {
5067 			put_page(page);
5068 			return ERR_PTR(-ECHILD);
5069 		}
5070 	} else {
5071 		page = read_mapping_page(mapping, 0, NULL);
5072 		if (IS_ERR(page))
5073 			return (char*)page;
5074 	}
5075 	set_delayed_call(callback, page_put_link, page);
5076 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5077 	kaddr = page_address(page);
5078 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5079 	return kaddr;
5080 }
5081 
5082 EXPORT_SYMBOL(page_get_link);
5083 
5084 void page_put_link(void *arg)
5085 {
5086 	put_page(arg);
5087 }
5088 EXPORT_SYMBOL(page_put_link);
5089 
5090 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5091 {
5092 	DEFINE_DELAYED_CALL(done);
5093 	int res = readlink_copy(buffer, buflen,
5094 				page_get_link(dentry, d_inode(dentry),
5095 					      &done));
5096 	do_delayed_call(&done);
5097 	return res;
5098 }
5099 EXPORT_SYMBOL(page_readlink);
5100 
5101 int page_symlink(struct inode *inode, const char *symname, int len)
5102 {
5103 	struct address_space *mapping = inode->i_mapping;
5104 	const struct address_space_operations *aops = mapping->a_ops;
5105 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5106 	struct page *page;
5107 	void *fsdata = NULL;
5108 	int err;
5109 	unsigned int flags;
5110 
5111 retry:
5112 	if (nofs)
5113 		flags = memalloc_nofs_save();
5114 	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5115 	if (nofs)
5116 		memalloc_nofs_restore(flags);
5117 	if (err)
5118 		goto fail;
5119 
5120 	memcpy(page_address(page), symname, len-1);
5121 
5122 	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5123 							page, fsdata);
5124 	if (err < 0)
5125 		goto fail;
5126 	if (err < len-1)
5127 		goto retry;
5128 
5129 	mark_inode_dirty(inode);
5130 	return 0;
5131 fail:
5132 	return err;
5133 }
5134 EXPORT_SYMBOL(page_symlink);
5135 
5136 const struct inode_operations page_symlink_inode_operations = {
5137 	.get_link	= page_get_link,
5138 };
5139 EXPORT_SYMBOL(page_symlink_inode_operations);
5140