xref: /openbmc/linux/fs/namei.c (revision 1c2f87c2)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38 
39 #include "internal.h"
40 #include "mount.h"
41 
42 /* [Feb-1997 T. Schoebel-Theuer]
43  * Fundamental changes in the pathname lookup mechanisms (namei)
44  * were necessary because of omirr.  The reason is that omirr needs
45  * to know the _real_ pathname, not the user-supplied one, in case
46  * of symlinks (and also when transname replacements occur).
47  *
48  * The new code replaces the old recursive symlink resolution with
49  * an iterative one (in case of non-nested symlink chains).  It does
50  * this with calls to <fs>_follow_link().
51  * As a side effect, dir_namei(), _namei() and follow_link() are now
52  * replaced with a single function lookup_dentry() that can handle all
53  * the special cases of the former code.
54  *
55  * With the new dcache, the pathname is stored at each inode, at least as
56  * long as the refcount of the inode is positive.  As a side effect, the
57  * size of the dcache depends on the inode cache and thus is dynamic.
58  *
59  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60  * resolution to correspond with current state of the code.
61  *
62  * Note that the symlink resolution is not *completely* iterative.
63  * There is still a significant amount of tail- and mid- recursion in
64  * the algorithm.  Also, note that <fs>_readlink() is not used in
65  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66  * may return different results than <fs>_follow_link().  Many virtual
67  * filesystems (including /proc) exhibit this behavior.
68  */
69 
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72  * and the name already exists in form of a symlink, try to create the new
73  * name indicated by the symlink. The old code always complained that the
74  * name already exists, due to not following the symlink even if its target
75  * is nonexistent.  The new semantics affects also mknod() and link() when
76  * the name is a symlink pointing to a non-existent name.
77  *
78  * I don't know which semantics is the right one, since I have no access
79  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81  * "old" one. Personally, I think the new semantics is much more logical.
82  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83  * file does succeed in both HP-UX and SunOs, but not in Solaris
84  * and in the old Linux semantics.
85  */
86 
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88  * semantics.  See the comments in "open_namei" and "do_link" below.
89  *
90  * [10-Sep-98 Alan Modra] Another symlink change.
91  */
92 
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94  *	inside the path - always follow.
95  *	in the last component in creation/removal/renaming - never follow.
96  *	if LOOKUP_FOLLOW passed - follow.
97  *	if the pathname has trailing slashes - follow.
98  *	otherwise - don't follow.
99  * (applied in that order).
100  *
101  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103  * During the 2.4 we need to fix the userland stuff depending on it -
104  * hopefully we will be able to get rid of that wart in 2.5. So far only
105  * XEmacs seems to be relying on it...
106  */
107 /*
108  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
110  * any extra contention...
111  */
112 
113 /* In order to reduce some races, while at the same time doing additional
114  * checking and hopefully speeding things up, we copy filenames to the
115  * kernel data space before using them..
116  *
117  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118  * PATH_MAX includes the nul terminator --RR.
119  */
120 void final_putname(struct filename *name)
121 {
122 	if (name->separate) {
123 		__putname(name->name);
124 		kfree(name);
125 	} else {
126 		__putname(name);
127 	}
128 }
129 
130 #define EMBEDDED_NAME_MAX	(PATH_MAX - sizeof(struct filename))
131 
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 	struct filename *result, *err;
136 	int len;
137 	long max;
138 	char *kname;
139 
140 	result = audit_reusename(filename);
141 	if (result)
142 		return result;
143 
144 	result = __getname();
145 	if (unlikely(!result))
146 		return ERR_PTR(-ENOMEM);
147 
148 	/*
149 	 * First, try to embed the struct filename inside the names_cache
150 	 * allocation
151 	 */
152 	kname = (char *)result + sizeof(*result);
153 	result->name = kname;
154 	result->separate = false;
155 	max = EMBEDDED_NAME_MAX;
156 
157 recopy:
158 	len = strncpy_from_user(kname, filename, max);
159 	if (unlikely(len < 0)) {
160 		err = ERR_PTR(len);
161 		goto error;
162 	}
163 
164 	/*
165 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 	 * separate struct filename so we can dedicate the entire
167 	 * names_cache allocation for the pathname, and re-do the copy from
168 	 * userland.
169 	 */
170 	if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 		kname = (char *)result;
172 
173 		result = kzalloc(sizeof(*result), GFP_KERNEL);
174 		if (!result) {
175 			err = ERR_PTR(-ENOMEM);
176 			result = (struct filename *)kname;
177 			goto error;
178 		}
179 		result->name = kname;
180 		result->separate = true;
181 		max = PATH_MAX;
182 		goto recopy;
183 	}
184 
185 	/* The empty path is special. */
186 	if (unlikely(!len)) {
187 		if (empty)
188 			*empty = 1;
189 		err = ERR_PTR(-ENOENT);
190 		if (!(flags & LOOKUP_EMPTY))
191 			goto error;
192 	}
193 
194 	err = ERR_PTR(-ENAMETOOLONG);
195 	if (unlikely(len >= PATH_MAX))
196 		goto error;
197 
198 	result->uptr = filename;
199 	result->aname = NULL;
200 	audit_getname(result);
201 	return result;
202 
203 error:
204 	final_putname(result);
205 	return err;
206 }
207 
208 struct filename *
209 getname(const char __user * filename)
210 {
211 	return getname_flags(filename, 0, NULL);
212 }
213 
214 /*
215  * The "getname_kernel()" interface doesn't do pathnames longer
216  * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
217  */
218 struct filename *
219 getname_kernel(const char * filename)
220 {
221 	struct filename *result;
222 	char *kname;
223 	int len;
224 
225 	len = strlen(filename);
226 	if (len >= EMBEDDED_NAME_MAX)
227 		return ERR_PTR(-ENAMETOOLONG);
228 
229 	result = __getname();
230 	if (unlikely(!result))
231 		return ERR_PTR(-ENOMEM);
232 
233 	kname = (char *)result + sizeof(*result);
234 	result->name = kname;
235 	result->uptr = NULL;
236 	result->aname = NULL;
237 	result->separate = false;
238 
239 	strlcpy(kname, filename, EMBEDDED_NAME_MAX);
240 	return result;
241 }
242 
243 #ifdef CONFIG_AUDITSYSCALL
244 void putname(struct filename *name)
245 {
246 	if (unlikely(!audit_dummy_context()))
247 		return audit_putname(name);
248 	final_putname(name);
249 }
250 #endif
251 
252 static int check_acl(struct inode *inode, int mask)
253 {
254 #ifdef CONFIG_FS_POSIX_ACL
255 	struct posix_acl *acl;
256 
257 	if (mask & MAY_NOT_BLOCK) {
258 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
259 	        if (!acl)
260 	                return -EAGAIN;
261 		/* no ->get_acl() calls in RCU mode... */
262 		if (acl == ACL_NOT_CACHED)
263 			return -ECHILD;
264 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
265 	}
266 
267 	acl = get_acl(inode, ACL_TYPE_ACCESS);
268 	if (IS_ERR(acl))
269 		return PTR_ERR(acl);
270 	if (acl) {
271 	        int error = posix_acl_permission(inode, acl, mask);
272 	        posix_acl_release(acl);
273 	        return error;
274 	}
275 #endif
276 
277 	return -EAGAIN;
278 }
279 
280 /*
281  * This does the basic permission checking
282  */
283 static int acl_permission_check(struct inode *inode, int mask)
284 {
285 	unsigned int mode = inode->i_mode;
286 
287 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
288 		mode >>= 6;
289 	else {
290 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
291 			int error = check_acl(inode, mask);
292 			if (error != -EAGAIN)
293 				return error;
294 		}
295 
296 		if (in_group_p(inode->i_gid))
297 			mode >>= 3;
298 	}
299 
300 	/*
301 	 * If the DACs are ok we don't need any capability check.
302 	 */
303 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
304 		return 0;
305 	return -EACCES;
306 }
307 
308 /**
309  * generic_permission -  check for access rights on a Posix-like filesystem
310  * @inode:	inode to check access rights for
311  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
312  *
313  * Used to check for read/write/execute permissions on a file.
314  * We use "fsuid" for this, letting us set arbitrary permissions
315  * for filesystem access without changing the "normal" uids which
316  * are used for other things.
317  *
318  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
319  * request cannot be satisfied (eg. requires blocking or too much complexity).
320  * It would then be called again in ref-walk mode.
321  */
322 int generic_permission(struct inode *inode, int mask)
323 {
324 	int ret;
325 
326 	/*
327 	 * Do the basic permission checks.
328 	 */
329 	ret = acl_permission_check(inode, mask);
330 	if (ret != -EACCES)
331 		return ret;
332 
333 	if (S_ISDIR(inode->i_mode)) {
334 		/* DACs are overridable for directories */
335 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
336 			return 0;
337 		if (!(mask & MAY_WRITE))
338 			if (inode_capable(inode, CAP_DAC_READ_SEARCH))
339 				return 0;
340 		return -EACCES;
341 	}
342 	/*
343 	 * Read/write DACs are always overridable.
344 	 * Executable DACs are overridable when there is
345 	 * at least one exec bit set.
346 	 */
347 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
348 		if (inode_capable(inode, CAP_DAC_OVERRIDE))
349 			return 0;
350 
351 	/*
352 	 * Searching includes executable on directories, else just read.
353 	 */
354 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
355 	if (mask == MAY_READ)
356 		if (inode_capable(inode, CAP_DAC_READ_SEARCH))
357 			return 0;
358 
359 	return -EACCES;
360 }
361 EXPORT_SYMBOL(generic_permission);
362 
363 /*
364  * We _really_ want to just do "generic_permission()" without
365  * even looking at the inode->i_op values. So we keep a cache
366  * flag in inode->i_opflags, that says "this has not special
367  * permission function, use the fast case".
368  */
369 static inline int do_inode_permission(struct inode *inode, int mask)
370 {
371 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
372 		if (likely(inode->i_op->permission))
373 			return inode->i_op->permission(inode, mask);
374 
375 		/* This gets set once for the inode lifetime */
376 		spin_lock(&inode->i_lock);
377 		inode->i_opflags |= IOP_FASTPERM;
378 		spin_unlock(&inode->i_lock);
379 	}
380 	return generic_permission(inode, mask);
381 }
382 
383 /**
384  * __inode_permission - Check for access rights to a given inode
385  * @inode: Inode to check permission on
386  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
387  *
388  * Check for read/write/execute permissions on an inode.
389  *
390  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
391  *
392  * This does not check for a read-only file system.  You probably want
393  * inode_permission().
394  */
395 int __inode_permission(struct inode *inode, int mask)
396 {
397 	int retval;
398 
399 	if (unlikely(mask & MAY_WRITE)) {
400 		/*
401 		 * Nobody gets write access to an immutable file.
402 		 */
403 		if (IS_IMMUTABLE(inode))
404 			return -EACCES;
405 	}
406 
407 	retval = do_inode_permission(inode, mask);
408 	if (retval)
409 		return retval;
410 
411 	retval = devcgroup_inode_permission(inode, mask);
412 	if (retval)
413 		return retval;
414 
415 	return security_inode_permission(inode, mask);
416 }
417 
418 /**
419  * sb_permission - Check superblock-level permissions
420  * @sb: Superblock of inode to check permission on
421  * @inode: Inode to check permission on
422  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
423  *
424  * Separate out file-system wide checks from inode-specific permission checks.
425  */
426 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
427 {
428 	if (unlikely(mask & MAY_WRITE)) {
429 		umode_t mode = inode->i_mode;
430 
431 		/* Nobody gets write access to a read-only fs. */
432 		if ((sb->s_flags & MS_RDONLY) &&
433 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
434 			return -EROFS;
435 	}
436 	return 0;
437 }
438 
439 /**
440  * inode_permission - Check for access rights to a given inode
441  * @inode: Inode to check permission on
442  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
443  *
444  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
445  * this, letting us set arbitrary permissions for filesystem access without
446  * changing the "normal" UIDs which are used for other things.
447  *
448  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
449  */
450 int inode_permission(struct inode *inode, int mask)
451 {
452 	int retval;
453 
454 	retval = sb_permission(inode->i_sb, inode, mask);
455 	if (retval)
456 		return retval;
457 	return __inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460 
461 /**
462  * path_get - get a reference to a path
463  * @path: path to get the reference to
464  *
465  * Given a path increment the reference count to the dentry and the vfsmount.
466  */
467 void path_get(const struct path *path)
468 {
469 	mntget(path->mnt);
470 	dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473 
474 /**
475  * path_put - put a reference to a path
476  * @path: path to put the reference to
477  *
478  * Given a path decrement the reference count to the dentry and the vfsmount.
479  */
480 void path_put(const struct path *path)
481 {
482 	dput(path->dentry);
483 	mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486 
487 /*
488  * Path walking has 2 modes, rcu-walk and ref-walk (see
489  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
490  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
491  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
492  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
493  * got stuck, so ref-walk may continue from there. If this is not successful
494  * (eg. a seqcount has changed), then failure is returned and it's up to caller
495  * to restart the path walk from the beginning in ref-walk mode.
496  */
497 
498 /**
499  * unlazy_walk - try to switch to ref-walk mode.
500  * @nd: nameidata pathwalk data
501  * @dentry: child of nd->path.dentry or NULL
502  * Returns: 0 on success, -ECHILD on failure
503  *
504  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
505  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
506  * @nd or NULL.  Must be called from rcu-walk context.
507  */
508 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
509 {
510 	struct fs_struct *fs = current->fs;
511 	struct dentry *parent = nd->path.dentry;
512 
513 	BUG_ON(!(nd->flags & LOOKUP_RCU));
514 
515 	/*
516 	 * After legitimizing the bastards, terminate_walk()
517 	 * will do the right thing for non-RCU mode, and all our
518 	 * subsequent exit cases should rcu_read_unlock()
519 	 * before returning.  Do vfsmount first; if dentry
520 	 * can't be legitimized, just set nd->path.dentry to NULL
521 	 * and rely on dput(NULL) being a no-op.
522 	 */
523 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
524 		return -ECHILD;
525 	nd->flags &= ~LOOKUP_RCU;
526 
527 	if (!lockref_get_not_dead(&parent->d_lockref)) {
528 		nd->path.dentry = NULL;
529 		goto out;
530 	}
531 
532 	/*
533 	 * For a negative lookup, the lookup sequence point is the parents
534 	 * sequence point, and it only needs to revalidate the parent dentry.
535 	 *
536 	 * For a positive lookup, we need to move both the parent and the
537 	 * dentry from the RCU domain to be properly refcounted. And the
538 	 * sequence number in the dentry validates *both* dentry counters,
539 	 * since we checked the sequence number of the parent after we got
540 	 * the child sequence number. So we know the parent must still
541 	 * be valid if the child sequence number is still valid.
542 	 */
543 	if (!dentry) {
544 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
545 			goto out;
546 		BUG_ON(nd->inode != parent->d_inode);
547 	} else {
548 		if (!lockref_get_not_dead(&dentry->d_lockref))
549 			goto out;
550 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
551 			goto drop_dentry;
552 	}
553 
554 	/*
555 	 * Sequence counts matched. Now make sure that the root is
556 	 * still valid and get it if required.
557 	 */
558 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
559 		spin_lock(&fs->lock);
560 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
561 			goto unlock_and_drop_dentry;
562 		path_get(&nd->root);
563 		spin_unlock(&fs->lock);
564 	}
565 
566 	rcu_read_unlock();
567 	return 0;
568 
569 unlock_and_drop_dentry:
570 	spin_unlock(&fs->lock);
571 drop_dentry:
572 	rcu_read_unlock();
573 	dput(dentry);
574 	goto drop_root_mnt;
575 out:
576 	rcu_read_unlock();
577 drop_root_mnt:
578 	if (!(nd->flags & LOOKUP_ROOT))
579 		nd->root.mnt = NULL;
580 	return -ECHILD;
581 }
582 
583 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
584 {
585 	return dentry->d_op->d_revalidate(dentry, flags);
586 }
587 
588 /**
589  * complete_walk - successful completion of path walk
590  * @nd:  pointer nameidata
591  *
592  * If we had been in RCU mode, drop out of it and legitimize nd->path.
593  * Revalidate the final result, unless we'd already done that during
594  * the path walk or the filesystem doesn't ask for it.  Return 0 on
595  * success, -error on failure.  In case of failure caller does not
596  * need to drop nd->path.
597  */
598 static int complete_walk(struct nameidata *nd)
599 {
600 	struct dentry *dentry = nd->path.dentry;
601 	int status;
602 
603 	if (nd->flags & LOOKUP_RCU) {
604 		nd->flags &= ~LOOKUP_RCU;
605 		if (!(nd->flags & LOOKUP_ROOT))
606 			nd->root.mnt = NULL;
607 
608 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
609 			rcu_read_unlock();
610 			return -ECHILD;
611 		}
612 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
613 			rcu_read_unlock();
614 			mntput(nd->path.mnt);
615 			return -ECHILD;
616 		}
617 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
618 			rcu_read_unlock();
619 			dput(dentry);
620 			mntput(nd->path.mnt);
621 			return -ECHILD;
622 		}
623 		rcu_read_unlock();
624 	}
625 
626 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
627 		return 0;
628 
629 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
630 		return 0;
631 
632 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
633 	if (status > 0)
634 		return 0;
635 
636 	if (!status)
637 		status = -ESTALE;
638 
639 	path_put(&nd->path);
640 	return status;
641 }
642 
643 static __always_inline void set_root(struct nameidata *nd)
644 {
645 	if (!nd->root.mnt)
646 		get_fs_root(current->fs, &nd->root);
647 }
648 
649 static int link_path_walk(const char *, struct nameidata *);
650 
651 static __always_inline void set_root_rcu(struct nameidata *nd)
652 {
653 	if (!nd->root.mnt) {
654 		struct fs_struct *fs = current->fs;
655 		unsigned seq;
656 
657 		do {
658 			seq = read_seqcount_begin(&fs->seq);
659 			nd->root = fs->root;
660 			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
661 		} while (read_seqcount_retry(&fs->seq, seq));
662 	}
663 }
664 
665 static void path_put_conditional(struct path *path, struct nameidata *nd)
666 {
667 	dput(path->dentry);
668 	if (path->mnt != nd->path.mnt)
669 		mntput(path->mnt);
670 }
671 
672 static inline void path_to_nameidata(const struct path *path,
673 					struct nameidata *nd)
674 {
675 	if (!(nd->flags & LOOKUP_RCU)) {
676 		dput(nd->path.dentry);
677 		if (nd->path.mnt != path->mnt)
678 			mntput(nd->path.mnt);
679 	}
680 	nd->path.mnt = path->mnt;
681 	nd->path.dentry = path->dentry;
682 }
683 
684 /*
685  * Helper to directly jump to a known parsed path from ->follow_link,
686  * caller must have taken a reference to path beforehand.
687  */
688 void nd_jump_link(struct nameidata *nd, struct path *path)
689 {
690 	path_put(&nd->path);
691 
692 	nd->path = *path;
693 	nd->inode = nd->path.dentry->d_inode;
694 	nd->flags |= LOOKUP_JUMPED;
695 }
696 
697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
698 {
699 	struct inode *inode = link->dentry->d_inode;
700 	if (inode->i_op->put_link)
701 		inode->i_op->put_link(link->dentry, nd, cookie);
702 	path_put(link);
703 }
704 
705 int sysctl_protected_symlinks __read_mostly = 0;
706 int sysctl_protected_hardlinks __read_mostly = 0;
707 
708 /**
709  * may_follow_link - Check symlink following for unsafe situations
710  * @link: The path of the symlink
711  * @nd: nameidata pathwalk data
712  *
713  * In the case of the sysctl_protected_symlinks sysctl being enabled,
714  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
715  * in a sticky world-writable directory. This is to protect privileged
716  * processes from failing races against path names that may change out
717  * from under them by way of other users creating malicious symlinks.
718  * It will permit symlinks to be followed only when outside a sticky
719  * world-writable directory, or when the uid of the symlink and follower
720  * match, or when the directory owner matches the symlink's owner.
721  *
722  * Returns 0 if following the symlink is allowed, -ve on error.
723  */
724 static inline int may_follow_link(struct path *link, struct nameidata *nd)
725 {
726 	const struct inode *inode;
727 	const struct inode *parent;
728 
729 	if (!sysctl_protected_symlinks)
730 		return 0;
731 
732 	/* Allowed if owner and follower match. */
733 	inode = link->dentry->d_inode;
734 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
735 		return 0;
736 
737 	/* Allowed if parent directory not sticky and world-writable. */
738 	parent = nd->path.dentry->d_inode;
739 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
740 		return 0;
741 
742 	/* Allowed if parent directory and link owner match. */
743 	if (uid_eq(parent->i_uid, inode->i_uid))
744 		return 0;
745 
746 	audit_log_link_denied("follow_link", link);
747 	path_put_conditional(link, nd);
748 	path_put(&nd->path);
749 	return -EACCES;
750 }
751 
752 /**
753  * safe_hardlink_source - Check for safe hardlink conditions
754  * @inode: the source inode to hardlink from
755  *
756  * Return false if at least one of the following conditions:
757  *    - inode is not a regular file
758  *    - inode is setuid
759  *    - inode is setgid and group-exec
760  *    - access failure for read and write
761  *
762  * Otherwise returns true.
763  */
764 static bool safe_hardlink_source(struct inode *inode)
765 {
766 	umode_t mode = inode->i_mode;
767 
768 	/* Special files should not get pinned to the filesystem. */
769 	if (!S_ISREG(mode))
770 		return false;
771 
772 	/* Setuid files should not get pinned to the filesystem. */
773 	if (mode & S_ISUID)
774 		return false;
775 
776 	/* Executable setgid files should not get pinned to the filesystem. */
777 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
778 		return false;
779 
780 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
781 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
782 		return false;
783 
784 	return true;
785 }
786 
787 /**
788  * may_linkat - Check permissions for creating a hardlink
789  * @link: the source to hardlink from
790  *
791  * Block hardlink when all of:
792  *  - sysctl_protected_hardlinks enabled
793  *  - fsuid does not match inode
794  *  - hardlink source is unsafe (see safe_hardlink_source() above)
795  *  - not CAP_FOWNER
796  *
797  * Returns 0 if successful, -ve on error.
798  */
799 static int may_linkat(struct path *link)
800 {
801 	const struct cred *cred;
802 	struct inode *inode;
803 
804 	if (!sysctl_protected_hardlinks)
805 		return 0;
806 
807 	cred = current_cred();
808 	inode = link->dentry->d_inode;
809 
810 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
811 	 * otherwise, it must be a safe source.
812 	 */
813 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
814 	    capable(CAP_FOWNER))
815 		return 0;
816 
817 	audit_log_link_denied("linkat", link);
818 	return -EPERM;
819 }
820 
821 static __always_inline int
822 follow_link(struct path *link, struct nameidata *nd, void **p)
823 {
824 	struct dentry *dentry = link->dentry;
825 	int error;
826 	char *s;
827 
828 	BUG_ON(nd->flags & LOOKUP_RCU);
829 
830 	if (link->mnt == nd->path.mnt)
831 		mntget(link->mnt);
832 
833 	error = -ELOOP;
834 	if (unlikely(current->total_link_count >= 40))
835 		goto out_put_nd_path;
836 
837 	cond_resched();
838 	current->total_link_count++;
839 
840 	touch_atime(link);
841 	nd_set_link(nd, NULL);
842 
843 	error = security_inode_follow_link(link->dentry, nd);
844 	if (error)
845 		goto out_put_nd_path;
846 
847 	nd->last_type = LAST_BIND;
848 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
849 	error = PTR_ERR(*p);
850 	if (IS_ERR(*p))
851 		goto out_put_nd_path;
852 
853 	error = 0;
854 	s = nd_get_link(nd);
855 	if (s) {
856 		if (unlikely(IS_ERR(s))) {
857 			path_put(&nd->path);
858 			put_link(nd, link, *p);
859 			return PTR_ERR(s);
860 		}
861 		if (*s == '/') {
862 			set_root(nd);
863 			path_put(&nd->path);
864 			nd->path = nd->root;
865 			path_get(&nd->root);
866 			nd->flags |= LOOKUP_JUMPED;
867 		}
868 		nd->inode = nd->path.dentry->d_inode;
869 		error = link_path_walk(s, nd);
870 		if (unlikely(error))
871 			put_link(nd, link, *p);
872 	}
873 
874 	return error;
875 
876 out_put_nd_path:
877 	*p = NULL;
878 	path_put(&nd->path);
879 	path_put(link);
880 	return error;
881 }
882 
883 static int follow_up_rcu(struct path *path)
884 {
885 	struct mount *mnt = real_mount(path->mnt);
886 	struct mount *parent;
887 	struct dentry *mountpoint;
888 
889 	parent = mnt->mnt_parent;
890 	if (&parent->mnt == path->mnt)
891 		return 0;
892 	mountpoint = mnt->mnt_mountpoint;
893 	path->dentry = mountpoint;
894 	path->mnt = &parent->mnt;
895 	return 1;
896 }
897 
898 /*
899  * follow_up - Find the mountpoint of path's vfsmount
900  *
901  * Given a path, find the mountpoint of its source file system.
902  * Replace @path with the path of the mountpoint in the parent mount.
903  * Up is towards /.
904  *
905  * Return 1 if we went up a level and 0 if we were already at the
906  * root.
907  */
908 int follow_up(struct path *path)
909 {
910 	struct mount *mnt = real_mount(path->mnt);
911 	struct mount *parent;
912 	struct dentry *mountpoint;
913 
914 	read_seqlock_excl(&mount_lock);
915 	parent = mnt->mnt_parent;
916 	if (parent == mnt) {
917 		read_sequnlock_excl(&mount_lock);
918 		return 0;
919 	}
920 	mntget(&parent->mnt);
921 	mountpoint = dget(mnt->mnt_mountpoint);
922 	read_sequnlock_excl(&mount_lock);
923 	dput(path->dentry);
924 	path->dentry = mountpoint;
925 	mntput(path->mnt);
926 	path->mnt = &parent->mnt;
927 	return 1;
928 }
929 EXPORT_SYMBOL(follow_up);
930 
931 /*
932  * Perform an automount
933  * - return -EISDIR to tell follow_managed() to stop and return the path we
934  *   were called with.
935  */
936 static int follow_automount(struct path *path, unsigned flags,
937 			    bool *need_mntput)
938 {
939 	struct vfsmount *mnt;
940 	int err;
941 
942 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
943 		return -EREMOTE;
944 
945 	/* We don't want to mount if someone's just doing a stat -
946 	 * unless they're stat'ing a directory and appended a '/' to
947 	 * the name.
948 	 *
949 	 * We do, however, want to mount if someone wants to open or
950 	 * create a file of any type under the mountpoint, wants to
951 	 * traverse through the mountpoint or wants to open the
952 	 * mounted directory.  Also, autofs may mark negative dentries
953 	 * as being automount points.  These will need the attentions
954 	 * of the daemon to instantiate them before they can be used.
955 	 */
956 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
957 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
958 	    path->dentry->d_inode)
959 		return -EISDIR;
960 
961 	current->total_link_count++;
962 	if (current->total_link_count >= 40)
963 		return -ELOOP;
964 
965 	mnt = path->dentry->d_op->d_automount(path);
966 	if (IS_ERR(mnt)) {
967 		/*
968 		 * The filesystem is allowed to return -EISDIR here to indicate
969 		 * it doesn't want to automount.  For instance, autofs would do
970 		 * this so that its userspace daemon can mount on this dentry.
971 		 *
972 		 * However, we can only permit this if it's a terminal point in
973 		 * the path being looked up; if it wasn't then the remainder of
974 		 * the path is inaccessible and we should say so.
975 		 */
976 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
977 			return -EREMOTE;
978 		return PTR_ERR(mnt);
979 	}
980 
981 	if (!mnt) /* mount collision */
982 		return 0;
983 
984 	if (!*need_mntput) {
985 		/* lock_mount() may release path->mnt on error */
986 		mntget(path->mnt);
987 		*need_mntput = true;
988 	}
989 	err = finish_automount(mnt, path);
990 
991 	switch (err) {
992 	case -EBUSY:
993 		/* Someone else made a mount here whilst we were busy */
994 		return 0;
995 	case 0:
996 		path_put(path);
997 		path->mnt = mnt;
998 		path->dentry = dget(mnt->mnt_root);
999 		return 0;
1000 	default:
1001 		return err;
1002 	}
1003 
1004 }
1005 
1006 /*
1007  * Handle a dentry that is managed in some way.
1008  * - Flagged for transit management (autofs)
1009  * - Flagged as mountpoint
1010  * - Flagged as automount point
1011  *
1012  * This may only be called in refwalk mode.
1013  *
1014  * Serialization is taken care of in namespace.c
1015  */
1016 static int follow_managed(struct path *path, unsigned flags)
1017 {
1018 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1019 	unsigned managed;
1020 	bool need_mntput = false;
1021 	int ret = 0;
1022 
1023 	/* Given that we're not holding a lock here, we retain the value in a
1024 	 * local variable for each dentry as we look at it so that we don't see
1025 	 * the components of that value change under us */
1026 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1027 	       managed &= DCACHE_MANAGED_DENTRY,
1028 	       unlikely(managed != 0)) {
1029 		/* Allow the filesystem to manage the transit without i_mutex
1030 		 * being held. */
1031 		if (managed & DCACHE_MANAGE_TRANSIT) {
1032 			BUG_ON(!path->dentry->d_op);
1033 			BUG_ON(!path->dentry->d_op->d_manage);
1034 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1035 			if (ret < 0)
1036 				break;
1037 		}
1038 
1039 		/* Transit to a mounted filesystem. */
1040 		if (managed & DCACHE_MOUNTED) {
1041 			struct vfsmount *mounted = lookup_mnt(path);
1042 			if (mounted) {
1043 				dput(path->dentry);
1044 				if (need_mntput)
1045 					mntput(path->mnt);
1046 				path->mnt = mounted;
1047 				path->dentry = dget(mounted->mnt_root);
1048 				need_mntput = true;
1049 				continue;
1050 			}
1051 
1052 			/* Something is mounted on this dentry in another
1053 			 * namespace and/or whatever was mounted there in this
1054 			 * namespace got unmounted before lookup_mnt() could
1055 			 * get it */
1056 		}
1057 
1058 		/* Handle an automount point */
1059 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1060 			ret = follow_automount(path, flags, &need_mntput);
1061 			if (ret < 0)
1062 				break;
1063 			continue;
1064 		}
1065 
1066 		/* We didn't change the current path point */
1067 		break;
1068 	}
1069 
1070 	if (need_mntput && path->mnt == mnt)
1071 		mntput(path->mnt);
1072 	if (ret == -EISDIR)
1073 		ret = 0;
1074 	return ret < 0 ? ret : need_mntput;
1075 }
1076 
1077 int follow_down_one(struct path *path)
1078 {
1079 	struct vfsmount *mounted;
1080 
1081 	mounted = lookup_mnt(path);
1082 	if (mounted) {
1083 		dput(path->dentry);
1084 		mntput(path->mnt);
1085 		path->mnt = mounted;
1086 		path->dentry = dget(mounted->mnt_root);
1087 		return 1;
1088 	}
1089 	return 0;
1090 }
1091 EXPORT_SYMBOL(follow_down_one);
1092 
1093 static inline bool managed_dentry_might_block(struct dentry *dentry)
1094 {
1095 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1096 		dentry->d_op->d_manage(dentry, true) < 0);
1097 }
1098 
1099 /*
1100  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1101  * we meet a managed dentry that would need blocking.
1102  */
1103 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1104 			       struct inode **inode)
1105 {
1106 	for (;;) {
1107 		struct mount *mounted;
1108 		/*
1109 		 * Don't forget we might have a non-mountpoint managed dentry
1110 		 * that wants to block transit.
1111 		 */
1112 		if (unlikely(managed_dentry_might_block(path->dentry)))
1113 			return false;
1114 
1115 		if (!d_mountpoint(path->dentry))
1116 			return true;
1117 
1118 		mounted = __lookup_mnt(path->mnt, path->dentry);
1119 		if (!mounted)
1120 			break;
1121 		path->mnt = &mounted->mnt;
1122 		path->dentry = mounted->mnt.mnt_root;
1123 		nd->flags |= LOOKUP_JUMPED;
1124 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1125 		/*
1126 		 * Update the inode too. We don't need to re-check the
1127 		 * dentry sequence number here after this d_inode read,
1128 		 * because a mount-point is always pinned.
1129 		 */
1130 		*inode = path->dentry->d_inode;
1131 	}
1132 	return read_seqretry(&mount_lock, nd->m_seq);
1133 }
1134 
1135 static int follow_dotdot_rcu(struct nameidata *nd)
1136 {
1137 	set_root_rcu(nd);
1138 
1139 	while (1) {
1140 		if (nd->path.dentry == nd->root.dentry &&
1141 		    nd->path.mnt == nd->root.mnt) {
1142 			break;
1143 		}
1144 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1145 			struct dentry *old = nd->path.dentry;
1146 			struct dentry *parent = old->d_parent;
1147 			unsigned seq;
1148 
1149 			seq = read_seqcount_begin(&parent->d_seq);
1150 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1151 				goto failed;
1152 			nd->path.dentry = parent;
1153 			nd->seq = seq;
1154 			break;
1155 		}
1156 		if (!follow_up_rcu(&nd->path))
1157 			break;
1158 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1159 	}
1160 	while (d_mountpoint(nd->path.dentry)) {
1161 		struct mount *mounted;
1162 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1163 		if (!mounted)
1164 			break;
1165 		nd->path.mnt = &mounted->mnt;
1166 		nd->path.dentry = mounted->mnt.mnt_root;
1167 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1168 		if (!read_seqretry(&mount_lock, nd->m_seq))
1169 			goto failed;
1170 	}
1171 	nd->inode = nd->path.dentry->d_inode;
1172 	return 0;
1173 
1174 failed:
1175 	nd->flags &= ~LOOKUP_RCU;
1176 	if (!(nd->flags & LOOKUP_ROOT))
1177 		nd->root.mnt = NULL;
1178 	rcu_read_unlock();
1179 	return -ECHILD;
1180 }
1181 
1182 /*
1183  * Follow down to the covering mount currently visible to userspace.  At each
1184  * point, the filesystem owning that dentry may be queried as to whether the
1185  * caller is permitted to proceed or not.
1186  */
1187 int follow_down(struct path *path)
1188 {
1189 	unsigned managed;
1190 	int ret;
1191 
1192 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1193 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1194 		/* Allow the filesystem to manage the transit without i_mutex
1195 		 * being held.
1196 		 *
1197 		 * We indicate to the filesystem if someone is trying to mount
1198 		 * something here.  This gives autofs the chance to deny anyone
1199 		 * other than its daemon the right to mount on its
1200 		 * superstructure.
1201 		 *
1202 		 * The filesystem may sleep at this point.
1203 		 */
1204 		if (managed & DCACHE_MANAGE_TRANSIT) {
1205 			BUG_ON(!path->dentry->d_op);
1206 			BUG_ON(!path->dentry->d_op->d_manage);
1207 			ret = path->dentry->d_op->d_manage(
1208 				path->dentry, false);
1209 			if (ret < 0)
1210 				return ret == -EISDIR ? 0 : ret;
1211 		}
1212 
1213 		/* Transit to a mounted filesystem. */
1214 		if (managed & DCACHE_MOUNTED) {
1215 			struct vfsmount *mounted = lookup_mnt(path);
1216 			if (!mounted)
1217 				break;
1218 			dput(path->dentry);
1219 			mntput(path->mnt);
1220 			path->mnt = mounted;
1221 			path->dentry = dget(mounted->mnt_root);
1222 			continue;
1223 		}
1224 
1225 		/* Don't handle automount points here */
1226 		break;
1227 	}
1228 	return 0;
1229 }
1230 EXPORT_SYMBOL(follow_down);
1231 
1232 /*
1233  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1234  */
1235 static void follow_mount(struct path *path)
1236 {
1237 	while (d_mountpoint(path->dentry)) {
1238 		struct vfsmount *mounted = lookup_mnt(path);
1239 		if (!mounted)
1240 			break;
1241 		dput(path->dentry);
1242 		mntput(path->mnt);
1243 		path->mnt = mounted;
1244 		path->dentry = dget(mounted->mnt_root);
1245 	}
1246 }
1247 
1248 static void follow_dotdot(struct nameidata *nd)
1249 {
1250 	set_root(nd);
1251 
1252 	while(1) {
1253 		struct dentry *old = nd->path.dentry;
1254 
1255 		if (nd->path.dentry == nd->root.dentry &&
1256 		    nd->path.mnt == nd->root.mnt) {
1257 			break;
1258 		}
1259 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1260 			/* rare case of legitimate dget_parent()... */
1261 			nd->path.dentry = dget_parent(nd->path.dentry);
1262 			dput(old);
1263 			break;
1264 		}
1265 		if (!follow_up(&nd->path))
1266 			break;
1267 	}
1268 	follow_mount(&nd->path);
1269 	nd->inode = nd->path.dentry->d_inode;
1270 }
1271 
1272 /*
1273  * This looks up the name in dcache, possibly revalidates the old dentry and
1274  * allocates a new one if not found or not valid.  In the need_lookup argument
1275  * returns whether i_op->lookup is necessary.
1276  *
1277  * dir->d_inode->i_mutex must be held
1278  */
1279 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1280 				    unsigned int flags, bool *need_lookup)
1281 {
1282 	struct dentry *dentry;
1283 	int error;
1284 
1285 	*need_lookup = false;
1286 	dentry = d_lookup(dir, name);
1287 	if (dentry) {
1288 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1289 			error = d_revalidate(dentry, flags);
1290 			if (unlikely(error <= 0)) {
1291 				if (error < 0) {
1292 					dput(dentry);
1293 					return ERR_PTR(error);
1294 				} else if (!d_invalidate(dentry)) {
1295 					dput(dentry);
1296 					dentry = NULL;
1297 				}
1298 			}
1299 		}
1300 	}
1301 
1302 	if (!dentry) {
1303 		dentry = d_alloc(dir, name);
1304 		if (unlikely(!dentry))
1305 			return ERR_PTR(-ENOMEM);
1306 
1307 		*need_lookup = true;
1308 	}
1309 	return dentry;
1310 }
1311 
1312 /*
1313  * Call i_op->lookup on the dentry.  The dentry must be negative and
1314  * unhashed.
1315  *
1316  * dir->d_inode->i_mutex must be held
1317  */
1318 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1319 				  unsigned int flags)
1320 {
1321 	struct dentry *old;
1322 
1323 	/* Don't create child dentry for a dead directory. */
1324 	if (unlikely(IS_DEADDIR(dir))) {
1325 		dput(dentry);
1326 		return ERR_PTR(-ENOENT);
1327 	}
1328 
1329 	old = dir->i_op->lookup(dir, dentry, flags);
1330 	if (unlikely(old)) {
1331 		dput(dentry);
1332 		dentry = old;
1333 	}
1334 	return dentry;
1335 }
1336 
1337 static struct dentry *__lookup_hash(struct qstr *name,
1338 		struct dentry *base, unsigned int flags)
1339 {
1340 	bool need_lookup;
1341 	struct dentry *dentry;
1342 
1343 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1344 	if (!need_lookup)
1345 		return dentry;
1346 
1347 	return lookup_real(base->d_inode, dentry, flags);
1348 }
1349 
1350 /*
1351  *  It's more convoluted than I'd like it to be, but... it's still fairly
1352  *  small and for now I'd prefer to have fast path as straight as possible.
1353  *  It _is_ time-critical.
1354  */
1355 static int lookup_fast(struct nameidata *nd,
1356 		       struct path *path, struct inode **inode)
1357 {
1358 	struct vfsmount *mnt = nd->path.mnt;
1359 	struct dentry *dentry, *parent = nd->path.dentry;
1360 	int need_reval = 1;
1361 	int status = 1;
1362 	int err;
1363 
1364 	/*
1365 	 * Rename seqlock is not required here because in the off chance
1366 	 * of a false negative due to a concurrent rename, we're going to
1367 	 * do the non-racy lookup, below.
1368 	 */
1369 	if (nd->flags & LOOKUP_RCU) {
1370 		unsigned seq;
1371 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1372 		if (!dentry)
1373 			goto unlazy;
1374 
1375 		/*
1376 		 * This sequence count validates that the inode matches
1377 		 * the dentry name information from lookup.
1378 		 */
1379 		*inode = dentry->d_inode;
1380 		if (read_seqcount_retry(&dentry->d_seq, seq))
1381 			return -ECHILD;
1382 
1383 		/*
1384 		 * This sequence count validates that the parent had no
1385 		 * changes while we did the lookup of the dentry above.
1386 		 *
1387 		 * The memory barrier in read_seqcount_begin of child is
1388 		 *  enough, we can use __read_seqcount_retry here.
1389 		 */
1390 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1391 			return -ECHILD;
1392 		nd->seq = seq;
1393 
1394 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1395 			status = d_revalidate(dentry, nd->flags);
1396 			if (unlikely(status <= 0)) {
1397 				if (status != -ECHILD)
1398 					need_reval = 0;
1399 				goto unlazy;
1400 			}
1401 		}
1402 		path->mnt = mnt;
1403 		path->dentry = dentry;
1404 		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1405 			goto unlazy;
1406 		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1407 			goto unlazy;
1408 		return 0;
1409 unlazy:
1410 		if (unlazy_walk(nd, dentry))
1411 			return -ECHILD;
1412 	} else {
1413 		dentry = __d_lookup(parent, &nd->last);
1414 	}
1415 
1416 	if (unlikely(!dentry))
1417 		goto need_lookup;
1418 
1419 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1420 		status = d_revalidate(dentry, nd->flags);
1421 	if (unlikely(status <= 0)) {
1422 		if (status < 0) {
1423 			dput(dentry);
1424 			return status;
1425 		}
1426 		if (!d_invalidate(dentry)) {
1427 			dput(dentry);
1428 			goto need_lookup;
1429 		}
1430 	}
1431 
1432 	path->mnt = mnt;
1433 	path->dentry = dentry;
1434 	err = follow_managed(path, nd->flags);
1435 	if (unlikely(err < 0)) {
1436 		path_put_conditional(path, nd);
1437 		return err;
1438 	}
1439 	if (err)
1440 		nd->flags |= LOOKUP_JUMPED;
1441 	*inode = path->dentry->d_inode;
1442 	return 0;
1443 
1444 need_lookup:
1445 	return 1;
1446 }
1447 
1448 /* Fast lookup failed, do it the slow way */
1449 static int lookup_slow(struct nameidata *nd, struct path *path)
1450 {
1451 	struct dentry *dentry, *parent;
1452 	int err;
1453 
1454 	parent = nd->path.dentry;
1455 	BUG_ON(nd->inode != parent->d_inode);
1456 
1457 	mutex_lock(&parent->d_inode->i_mutex);
1458 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1459 	mutex_unlock(&parent->d_inode->i_mutex);
1460 	if (IS_ERR(dentry))
1461 		return PTR_ERR(dentry);
1462 	path->mnt = nd->path.mnt;
1463 	path->dentry = dentry;
1464 	err = follow_managed(path, nd->flags);
1465 	if (unlikely(err < 0)) {
1466 		path_put_conditional(path, nd);
1467 		return err;
1468 	}
1469 	if (err)
1470 		nd->flags |= LOOKUP_JUMPED;
1471 	return 0;
1472 }
1473 
1474 static inline int may_lookup(struct nameidata *nd)
1475 {
1476 	if (nd->flags & LOOKUP_RCU) {
1477 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1478 		if (err != -ECHILD)
1479 			return err;
1480 		if (unlazy_walk(nd, NULL))
1481 			return -ECHILD;
1482 	}
1483 	return inode_permission(nd->inode, MAY_EXEC);
1484 }
1485 
1486 static inline int handle_dots(struct nameidata *nd, int type)
1487 {
1488 	if (type == LAST_DOTDOT) {
1489 		if (nd->flags & LOOKUP_RCU) {
1490 			if (follow_dotdot_rcu(nd))
1491 				return -ECHILD;
1492 		} else
1493 			follow_dotdot(nd);
1494 	}
1495 	return 0;
1496 }
1497 
1498 static void terminate_walk(struct nameidata *nd)
1499 {
1500 	if (!(nd->flags & LOOKUP_RCU)) {
1501 		path_put(&nd->path);
1502 	} else {
1503 		nd->flags &= ~LOOKUP_RCU;
1504 		if (!(nd->flags & LOOKUP_ROOT))
1505 			nd->root.mnt = NULL;
1506 		rcu_read_unlock();
1507 	}
1508 }
1509 
1510 /*
1511  * Do we need to follow links? We _really_ want to be able
1512  * to do this check without having to look at inode->i_op,
1513  * so we keep a cache of "no, this doesn't need follow_link"
1514  * for the common case.
1515  */
1516 static inline int should_follow_link(struct dentry *dentry, int follow)
1517 {
1518 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1519 }
1520 
1521 static inline int walk_component(struct nameidata *nd, struct path *path,
1522 		int follow)
1523 {
1524 	struct inode *inode;
1525 	int err;
1526 	/*
1527 	 * "." and ".." are special - ".." especially so because it has
1528 	 * to be able to know about the current root directory and
1529 	 * parent relationships.
1530 	 */
1531 	if (unlikely(nd->last_type != LAST_NORM))
1532 		return handle_dots(nd, nd->last_type);
1533 	err = lookup_fast(nd, path, &inode);
1534 	if (unlikely(err)) {
1535 		if (err < 0)
1536 			goto out_err;
1537 
1538 		err = lookup_slow(nd, path);
1539 		if (err < 0)
1540 			goto out_err;
1541 
1542 		inode = path->dentry->d_inode;
1543 	}
1544 	err = -ENOENT;
1545 	if (!inode)
1546 		goto out_path_put;
1547 
1548 	if (should_follow_link(path->dentry, follow)) {
1549 		if (nd->flags & LOOKUP_RCU) {
1550 			if (unlikely(unlazy_walk(nd, path->dentry))) {
1551 				err = -ECHILD;
1552 				goto out_err;
1553 			}
1554 		}
1555 		BUG_ON(inode != path->dentry->d_inode);
1556 		return 1;
1557 	}
1558 	path_to_nameidata(path, nd);
1559 	nd->inode = inode;
1560 	return 0;
1561 
1562 out_path_put:
1563 	path_to_nameidata(path, nd);
1564 out_err:
1565 	terminate_walk(nd);
1566 	return err;
1567 }
1568 
1569 /*
1570  * This limits recursive symlink follows to 8, while
1571  * limiting consecutive symlinks to 40.
1572  *
1573  * Without that kind of total limit, nasty chains of consecutive
1574  * symlinks can cause almost arbitrarily long lookups.
1575  */
1576 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1577 {
1578 	int res;
1579 
1580 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1581 		path_put_conditional(path, nd);
1582 		path_put(&nd->path);
1583 		return -ELOOP;
1584 	}
1585 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1586 
1587 	nd->depth++;
1588 	current->link_count++;
1589 
1590 	do {
1591 		struct path link = *path;
1592 		void *cookie;
1593 
1594 		res = follow_link(&link, nd, &cookie);
1595 		if (res)
1596 			break;
1597 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1598 		put_link(nd, &link, cookie);
1599 	} while (res > 0);
1600 
1601 	current->link_count--;
1602 	nd->depth--;
1603 	return res;
1604 }
1605 
1606 /*
1607  * We can do the critical dentry name comparison and hashing
1608  * operations one word at a time, but we are limited to:
1609  *
1610  * - Architectures with fast unaligned word accesses. We could
1611  *   do a "get_unaligned()" if this helps and is sufficiently
1612  *   fast.
1613  *
1614  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1615  *   do not trap on the (extremely unlikely) case of a page
1616  *   crossing operation.
1617  *
1618  * - Furthermore, we need an efficient 64-bit compile for the
1619  *   64-bit case in order to generate the "number of bytes in
1620  *   the final mask". Again, that could be replaced with a
1621  *   efficient population count instruction or similar.
1622  */
1623 #ifdef CONFIG_DCACHE_WORD_ACCESS
1624 
1625 #include <asm/word-at-a-time.h>
1626 
1627 #ifdef CONFIG_64BIT
1628 
1629 static inline unsigned int fold_hash(unsigned long hash)
1630 {
1631 	hash += hash >> (8*sizeof(int));
1632 	return hash;
1633 }
1634 
1635 #else	/* 32-bit case */
1636 
1637 #define fold_hash(x) (x)
1638 
1639 #endif
1640 
1641 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1642 {
1643 	unsigned long a, mask;
1644 	unsigned long hash = 0;
1645 
1646 	for (;;) {
1647 		a = load_unaligned_zeropad(name);
1648 		if (len < sizeof(unsigned long))
1649 			break;
1650 		hash += a;
1651 		hash *= 9;
1652 		name += sizeof(unsigned long);
1653 		len -= sizeof(unsigned long);
1654 		if (!len)
1655 			goto done;
1656 	}
1657 	mask = bytemask_from_count(len);
1658 	hash += mask & a;
1659 done:
1660 	return fold_hash(hash);
1661 }
1662 EXPORT_SYMBOL(full_name_hash);
1663 
1664 /*
1665  * Calculate the length and hash of the path component, and
1666  * return the length of the component;
1667  */
1668 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1669 {
1670 	unsigned long a, b, adata, bdata, mask, hash, len;
1671 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1672 
1673 	hash = a = 0;
1674 	len = -sizeof(unsigned long);
1675 	do {
1676 		hash = (hash + a) * 9;
1677 		len += sizeof(unsigned long);
1678 		a = load_unaligned_zeropad(name+len);
1679 		b = a ^ REPEAT_BYTE('/');
1680 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1681 
1682 	adata = prep_zero_mask(a, adata, &constants);
1683 	bdata = prep_zero_mask(b, bdata, &constants);
1684 
1685 	mask = create_zero_mask(adata | bdata);
1686 
1687 	hash += a & zero_bytemask(mask);
1688 	*hashp = fold_hash(hash);
1689 
1690 	return len + find_zero(mask);
1691 }
1692 
1693 #else
1694 
1695 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1696 {
1697 	unsigned long hash = init_name_hash();
1698 	while (len--)
1699 		hash = partial_name_hash(*name++, hash);
1700 	return end_name_hash(hash);
1701 }
1702 EXPORT_SYMBOL(full_name_hash);
1703 
1704 /*
1705  * We know there's a real path component here of at least
1706  * one character.
1707  */
1708 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1709 {
1710 	unsigned long hash = init_name_hash();
1711 	unsigned long len = 0, c;
1712 
1713 	c = (unsigned char)*name;
1714 	do {
1715 		len++;
1716 		hash = partial_name_hash(c, hash);
1717 		c = (unsigned char)name[len];
1718 	} while (c && c != '/');
1719 	*hashp = end_name_hash(hash);
1720 	return len;
1721 }
1722 
1723 #endif
1724 
1725 /*
1726  * Name resolution.
1727  * This is the basic name resolution function, turning a pathname into
1728  * the final dentry. We expect 'base' to be positive and a directory.
1729  *
1730  * Returns 0 and nd will have valid dentry and mnt on success.
1731  * Returns error and drops reference to input namei data on failure.
1732  */
1733 static int link_path_walk(const char *name, struct nameidata *nd)
1734 {
1735 	struct path next;
1736 	int err;
1737 
1738 	while (*name=='/')
1739 		name++;
1740 	if (!*name)
1741 		return 0;
1742 
1743 	/* At this point we know we have a real path component. */
1744 	for(;;) {
1745 		struct qstr this;
1746 		long len;
1747 		int type;
1748 
1749 		err = may_lookup(nd);
1750  		if (err)
1751 			break;
1752 
1753 		len = hash_name(name, &this.hash);
1754 		this.name = name;
1755 		this.len = len;
1756 
1757 		type = LAST_NORM;
1758 		if (name[0] == '.') switch (len) {
1759 			case 2:
1760 				if (name[1] == '.') {
1761 					type = LAST_DOTDOT;
1762 					nd->flags |= LOOKUP_JUMPED;
1763 				}
1764 				break;
1765 			case 1:
1766 				type = LAST_DOT;
1767 		}
1768 		if (likely(type == LAST_NORM)) {
1769 			struct dentry *parent = nd->path.dentry;
1770 			nd->flags &= ~LOOKUP_JUMPED;
1771 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1772 				err = parent->d_op->d_hash(parent, &this);
1773 				if (err < 0)
1774 					break;
1775 			}
1776 		}
1777 
1778 		nd->last = this;
1779 		nd->last_type = type;
1780 
1781 		if (!name[len])
1782 			return 0;
1783 		/*
1784 		 * If it wasn't NUL, we know it was '/'. Skip that
1785 		 * slash, and continue until no more slashes.
1786 		 */
1787 		do {
1788 			len++;
1789 		} while (unlikely(name[len] == '/'));
1790 		if (!name[len])
1791 			return 0;
1792 
1793 		name += len;
1794 
1795 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1796 		if (err < 0)
1797 			return err;
1798 
1799 		if (err) {
1800 			err = nested_symlink(&next, nd);
1801 			if (err)
1802 				return err;
1803 		}
1804 		if (!d_can_lookup(nd->path.dentry)) {
1805 			err = -ENOTDIR;
1806 			break;
1807 		}
1808 	}
1809 	terminate_walk(nd);
1810 	return err;
1811 }
1812 
1813 static int path_init(int dfd, const char *name, unsigned int flags,
1814 		     struct nameidata *nd, struct file **fp)
1815 {
1816 	int retval = 0;
1817 
1818 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1819 	nd->flags = flags | LOOKUP_JUMPED;
1820 	nd->depth = 0;
1821 	if (flags & LOOKUP_ROOT) {
1822 		struct dentry *root = nd->root.dentry;
1823 		struct inode *inode = root->d_inode;
1824 		if (*name) {
1825 			if (!d_can_lookup(root))
1826 				return -ENOTDIR;
1827 			retval = inode_permission(inode, MAY_EXEC);
1828 			if (retval)
1829 				return retval;
1830 		}
1831 		nd->path = nd->root;
1832 		nd->inode = inode;
1833 		if (flags & LOOKUP_RCU) {
1834 			rcu_read_lock();
1835 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1836 			nd->m_seq = read_seqbegin(&mount_lock);
1837 		} else {
1838 			path_get(&nd->path);
1839 		}
1840 		return 0;
1841 	}
1842 
1843 	nd->root.mnt = NULL;
1844 
1845 	nd->m_seq = read_seqbegin(&mount_lock);
1846 	if (*name=='/') {
1847 		if (flags & LOOKUP_RCU) {
1848 			rcu_read_lock();
1849 			set_root_rcu(nd);
1850 		} else {
1851 			set_root(nd);
1852 			path_get(&nd->root);
1853 		}
1854 		nd->path = nd->root;
1855 	} else if (dfd == AT_FDCWD) {
1856 		if (flags & LOOKUP_RCU) {
1857 			struct fs_struct *fs = current->fs;
1858 			unsigned seq;
1859 
1860 			rcu_read_lock();
1861 
1862 			do {
1863 				seq = read_seqcount_begin(&fs->seq);
1864 				nd->path = fs->pwd;
1865 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1866 			} while (read_seqcount_retry(&fs->seq, seq));
1867 		} else {
1868 			get_fs_pwd(current->fs, &nd->path);
1869 		}
1870 	} else {
1871 		/* Caller must check execute permissions on the starting path component */
1872 		struct fd f = fdget_raw(dfd);
1873 		struct dentry *dentry;
1874 
1875 		if (!f.file)
1876 			return -EBADF;
1877 
1878 		dentry = f.file->f_path.dentry;
1879 
1880 		if (*name) {
1881 			if (!d_can_lookup(dentry)) {
1882 				fdput(f);
1883 				return -ENOTDIR;
1884 			}
1885 		}
1886 
1887 		nd->path = f.file->f_path;
1888 		if (flags & LOOKUP_RCU) {
1889 			if (f.flags & FDPUT_FPUT)
1890 				*fp = f.file;
1891 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1892 			rcu_read_lock();
1893 		} else {
1894 			path_get(&nd->path);
1895 			fdput(f);
1896 		}
1897 	}
1898 
1899 	nd->inode = nd->path.dentry->d_inode;
1900 	return 0;
1901 }
1902 
1903 static inline int lookup_last(struct nameidata *nd, struct path *path)
1904 {
1905 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1906 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1907 
1908 	nd->flags &= ~LOOKUP_PARENT;
1909 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1910 }
1911 
1912 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1913 static int path_lookupat(int dfd, const char *name,
1914 				unsigned int flags, struct nameidata *nd)
1915 {
1916 	struct file *base = NULL;
1917 	struct path path;
1918 	int err;
1919 
1920 	/*
1921 	 * Path walking is largely split up into 2 different synchronisation
1922 	 * schemes, rcu-walk and ref-walk (explained in
1923 	 * Documentation/filesystems/path-lookup.txt). These share much of the
1924 	 * path walk code, but some things particularly setup, cleanup, and
1925 	 * following mounts are sufficiently divergent that functions are
1926 	 * duplicated. Typically there is a function foo(), and its RCU
1927 	 * analogue, foo_rcu().
1928 	 *
1929 	 * -ECHILD is the error number of choice (just to avoid clashes) that
1930 	 * is returned if some aspect of an rcu-walk fails. Such an error must
1931 	 * be handled by restarting a traditional ref-walk (which will always
1932 	 * be able to complete).
1933 	 */
1934 	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1935 
1936 	if (unlikely(err))
1937 		return err;
1938 
1939 	current->total_link_count = 0;
1940 	err = link_path_walk(name, nd);
1941 
1942 	if (!err && !(flags & LOOKUP_PARENT)) {
1943 		err = lookup_last(nd, &path);
1944 		while (err > 0) {
1945 			void *cookie;
1946 			struct path link = path;
1947 			err = may_follow_link(&link, nd);
1948 			if (unlikely(err))
1949 				break;
1950 			nd->flags |= LOOKUP_PARENT;
1951 			err = follow_link(&link, nd, &cookie);
1952 			if (err)
1953 				break;
1954 			err = lookup_last(nd, &path);
1955 			put_link(nd, &link, cookie);
1956 		}
1957 	}
1958 
1959 	if (!err)
1960 		err = complete_walk(nd);
1961 
1962 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1963 		if (!d_can_lookup(nd->path.dentry)) {
1964 			path_put(&nd->path);
1965 			err = -ENOTDIR;
1966 		}
1967 	}
1968 
1969 	if (base)
1970 		fput(base);
1971 
1972 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1973 		path_put(&nd->root);
1974 		nd->root.mnt = NULL;
1975 	}
1976 	return err;
1977 }
1978 
1979 static int filename_lookup(int dfd, struct filename *name,
1980 				unsigned int flags, struct nameidata *nd)
1981 {
1982 	int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1983 	if (unlikely(retval == -ECHILD))
1984 		retval = path_lookupat(dfd, name->name, flags, nd);
1985 	if (unlikely(retval == -ESTALE))
1986 		retval = path_lookupat(dfd, name->name,
1987 						flags | LOOKUP_REVAL, nd);
1988 
1989 	if (likely(!retval))
1990 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1991 	return retval;
1992 }
1993 
1994 static int do_path_lookup(int dfd, const char *name,
1995 				unsigned int flags, struct nameidata *nd)
1996 {
1997 	struct filename filename = { .name = name };
1998 
1999 	return filename_lookup(dfd, &filename, flags, nd);
2000 }
2001 
2002 /* does lookup, returns the object with parent locked */
2003 struct dentry *kern_path_locked(const char *name, struct path *path)
2004 {
2005 	struct nameidata nd;
2006 	struct dentry *d;
2007 	int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2008 	if (err)
2009 		return ERR_PTR(err);
2010 	if (nd.last_type != LAST_NORM) {
2011 		path_put(&nd.path);
2012 		return ERR_PTR(-EINVAL);
2013 	}
2014 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2015 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2016 	if (IS_ERR(d)) {
2017 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2018 		path_put(&nd.path);
2019 		return d;
2020 	}
2021 	*path = nd.path;
2022 	return d;
2023 }
2024 
2025 int kern_path(const char *name, unsigned int flags, struct path *path)
2026 {
2027 	struct nameidata nd;
2028 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2029 	if (!res)
2030 		*path = nd.path;
2031 	return res;
2032 }
2033 EXPORT_SYMBOL(kern_path);
2034 
2035 /**
2036  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2037  * @dentry:  pointer to dentry of the base directory
2038  * @mnt: pointer to vfs mount of the base directory
2039  * @name: pointer to file name
2040  * @flags: lookup flags
2041  * @path: pointer to struct path to fill
2042  */
2043 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2044 		    const char *name, unsigned int flags,
2045 		    struct path *path)
2046 {
2047 	struct nameidata nd;
2048 	int err;
2049 	nd.root.dentry = dentry;
2050 	nd.root.mnt = mnt;
2051 	BUG_ON(flags & LOOKUP_PARENT);
2052 	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2053 	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2054 	if (!err)
2055 		*path = nd.path;
2056 	return err;
2057 }
2058 EXPORT_SYMBOL(vfs_path_lookup);
2059 
2060 /*
2061  * Restricted form of lookup. Doesn't follow links, single-component only,
2062  * needs parent already locked. Doesn't follow mounts.
2063  * SMP-safe.
2064  */
2065 static struct dentry *lookup_hash(struct nameidata *nd)
2066 {
2067 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2068 }
2069 
2070 /**
2071  * lookup_one_len - filesystem helper to lookup single pathname component
2072  * @name:	pathname component to lookup
2073  * @base:	base directory to lookup from
2074  * @len:	maximum length @len should be interpreted to
2075  *
2076  * Note that this routine is purely a helper for filesystem usage and should
2077  * not be called by generic code.  Also note that by using this function the
2078  * nameidata argument is passed to the filesystem methods and a filesystem
2079  * using this helper needs to be prepared for that.
2080  */
2081 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2082 {
2083 	struct qstr this;
2084 	unsigned int c;
2085 	int err;
2086 
2087 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2088 
2089 	this.name = name;
2090 	this.len = len;
2091 	this.hash = full_name_hash(name, len);
2092 	if (!len)
2093 		return ERR_PTR(-EACCES);
2094 
2095 	if (unlikely(name[0] == '.')) {
2096 		if (len < 2 || (len == 2 && name[1] == '.'))
2097 			return ERR_PTR(-EACCES);
2098 	}
2099 
2100 	while (len--) {
2101 		c = *(const unsigned char *)name++;
2102 		if (c == '/' || c == '\0')
2103 			return ERR_PTR(-EACCES);
2104 	}
2105 	/*
2106 	 * See if the low-level filesystem might want
2107 	 * to use its own hash..
2108 	 */
2109 	if (base->d_flags & DCACHE_OP_HASH) {
2110 		int err = base->d_op->d_hash(base, &this);
2111 		if (err < 0)
2112 			return ERR_PTR(err);
2113 	}
2114 
2115 	err = inode_permission(base->d_inode, MAY_EXEC);
2116 	if (err)
2117 		return ERR_PTR(err);
2118 
2119 	return __lookup_hash(&this, base, 0);
2120 }
2121 EXPORT_SYMBOL(lookup_one_len);
2122 
2123 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2124 		 struct path *path, int *empty)
2125 {
2126 	struct nameidata nd;
2127 	struct filename *tmp = getname_flags(name, flags, empty);
2128 	int err = PTR_ERR(tmp);
2129 	if (!IS_ERR(tmp)) {
2130 
2131 		BUG_ON(flags & LOOKUP_PARENT);
2132 
2133 		err = filename_lookup(dfd, tmp, flags, &nd);
2134 		putname(tmp);
2135 		if (!err)
2136 			*path = nd.path;
2137 	}
2138 	return err;
2139 }
2140 
2141 int user_path_at(int dfd, const char __user *name, unsigned flags,
2142 		 struct path *path)
2143 {
2144 	return user_path_at_empty(dfd, name, flags, path, NULL);
2145 }
2146 EXPORT_SYMBOL(user_path_at);
2147 
2148 /*
2149  * NB: most callers don't do anything directly with the reference to the
2150  *     to struct filename, but the nd->last pointer points into the name string
2151  *     allocated by getname. So we must hold the reference to it until all
2152  *     path-walking is complete.
2153  */
2154 static struct filename *
2155 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2156 		 unsigned int flags)
2157 {
2158 	struct filename *s = getname(path);
2159 	int error;
2160 
2161 	/* only LOOKUP_REVAL is allowed in extra flags */
2162 	flags &= LOOKUP_REVAL;
2163 
2164 	if (IS_ERR(s))
2165 		return s;
2166 
2167 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2168 	if (error) {
2169 		putname(s);
2170 		return ERR_PTR(error);
2171 	}
2172 
2173 	return s;
2174 }
2175 
2176 /**
2177  * mountpoint_last - look up last component for umount
2178  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2179  * @path: pointer to container for result
2180  *
2181  * This is a special lookup_last function just for umount. In this case, we
2182  * need to resolve the path without doing any revalidation.
2183  *
2184  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2185  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2186  * in almost all cases, this lookup will be served out of the dcache. The only
2187  * cases where it won't are if nd->last refers to a symlink or the path is
2188  * bogus and it doesn't exist.
2189  *
2190  * Returns:
2191  * -error: if there was an error during lookup. This includes -ENOENT if the
2192  *         lookup found a negative dentry. The nd->path reference will also be
2193  *         put in this case.
2194  *
2195  * 0:      if we successfully resolved nd->path and found it to not to be a
2196  *         symlink that needs to be followed. "path" will also be populated.
2197  *         The nd->path reference will also be put.
2198  *
2199  * 1:      if we successfully resolved nd->last and found it to be a symlink
2200  *         that needs to be followed. "path" will be populated with the path
2201  *         to the link, and nd->path will *not* be put.
2202  */
2203 static int
2204 mountpoint_last(struct nameidata *nd, struct path *path)
2205 {
2206 	int error = 0;
2207 	struct dentry *dentry;
2208 	struct dentry *dir = nd->path.dentry;
2209 
2210 	/* If we're in rcuwalk, drop out of it to handle last component */
2211 	if (nd->flags & LOOKUP_RCU) {
2212 		if (unlazy_walk(nd, NULL)) {
2213 			error = -ECHILD;
2214 			goto out;
2215 		}
2216 	}
2217 
2218 	nd->flags &= ~LOOKUP_PARENT;
2219 
2220 	if (unlikely(nd->last_type != LAST_NORM)) {
2221 		error = handle_dots(nd, nd->last_type);
2222 		if (error)
2223 			goto out;
2224 		dentry = dget(nd->path.dentry);
2225 		goto done;
2226 	}
2227 
2228 	mutex_lock(&dir->d_inode->i_mutex);
2229 	dentry = d_lookup(dir, &nd->last);
2230 	if (!dentry) {
2231 		/*
2232 		 * No cached dentry. Mounted dentries are pinned in the cache,
2233 		 * so that means that this dentry is probably a symlink or the
2234 		 * path doesn't actually point to a mounted dentry.
2235 		 */
2236 		dentry = d_alloc(dir, &nd->last);
2237 		if (!dentry) {
2238 			error = -ENOMEM;
2239 			mutex_unlock(&dir->d_inode->i_mutex);
2240 			goto out;
2241 		}
2242 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2243 		error = PTR_ERR(dentry);
2244 		if (IS_ERR(dentry)) {
2245 			mutex_unlock(&dir->d_inode->i_mutex);
2246 			goto out;
2247 		}
2248 	}
2249 	mutex_unlock(&dir->d_inode->i_mutex);
2250 
2251 done:
2252 	if (!dentry->d_inode) {
2253 		error = -ENOENT;
2254 		dput(dentry);
2255 		goto out;
2256 	}
2257 	path->dentry = dentry;
2258 	path->mnt = mntget(nd->path.mnt);
2259 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2260 		return 1;
2261 	follow_mount(path);
2262 	error = 0;
2263 out:
2264 	terminate_walk(nd);
2265 	return error;
2266 }
2267 
2268 /**
2269  * path_mountpoint - look up a path to be umounted
2270  * @dfd:	directory file descriptor to start walk from
2271  * @name:	full pathname to walk
2272  * @path:	pointer to container for result
2273  * @flags:	lookup flags
2274  *
2275  * Look up the given name, but don't attempt to revalidate the last component.
2276  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2277  */
2278 static int
2279 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2280 {
2281 	struct file *base = NULL;
2282 	struct nameidata nd;
2283 	int err;
2284 
2285 	err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2286 	if (unlikely(err))
2287 		return err;
2288 
2289 	current->total_link_count = 0;
2290 	err = link_path_walk(name, &nd);
2291 	if (err)
2292 		goto out;
2293 
2294 	err = mountpoint_last(&nd, path);
2295 	while (err > 0) {
2296 		void *cookie;
2297 		struct path link = *path;
2298 		err = may_follow_link(&link, &nd);
2299 		if (unlikely(err))
2300 			break;
2301 		nd.flags |= LOOKUP_PARENT;
2302 		err = follow_link(&link, &nd, &cookie);
2303 		if (err)
2304 			break;
2305 		err = mountpoint_last(&nd, path);
2306 		put_link(&nd, &link, cookie);
2307 	}
2308 out:
2309 	if (base)
2310 		fput(base);
2311 
2312 	if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2313 		path_put(&nd.root);
2314 
2315 	return err;
2316 }
2317 
2318 static int
2319 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2320 			unsigned int flags)
2321 {
2322 	int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2323 	if (unlikely(error == -ECHILD))
2324 		error = path_mountpoint(dfd, s->name, path, flags);
2325 	if (unlikely(error == -ESTALE))
2326 		error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2327 	if (likely(!error))
2328 		audit_inode(s, path->dentry, 0);
2329 	return error;
2330 }
2331 
2332 /**
2333  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2334  * @dfd:	directory file descriptor
2335  * @name:	pathname from userland
2336  * @flags:	lookup flags
2337  * @path:	pointer to container to hold result
2338  *
2339  * A umount is a special case for path walking. We're not actually interested
2340  * in the inode in this situation, and ESTALE errors can be a problem. We
2341  * simply want track down the dentry and vfsmount attached at the mountpoint
2342  * and avoid revalidating the last component.
2343  *
2344  * Returns 0 and populates "path" on success.
2345  */
2346 int
2347 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2348 			struct path *path)
2349 {
2350 	struct filename *s = getname(name);
2351 	int error;
2352 	if (IS_ERR(s))
2353 		return PTR_ERR(s);
2354 	error = filename_mountpoint(dfd, s, path, flags);
2355 	putname(s);
2356 	return error;
2357 }
2358 
2359 int
2360 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2361 			unsigned int flags)
2362 {
2363 	struct filename s = {.name = name};
2364 	return filename_mountpoint(dfd, &s, path, flags);
2365 }
2366 EXPORT_SYMBOL(kern_path_mountpoint);
2367 
2368 /*
2369  * It's inline, so penalty for filesystems that don't use sticky bit is
2370  * minimal.
2371  */
2372 static inline int check_sticky(struct inode *dir, struct inode *inode)
2373 {
2374 	kuid_t fsuid = current_fsuid();
2375 
2376 	if (!(dir->i_mode & S_ISVTX))
2377 		return 0;
2378 	if (uid_eq(inode->i_uid, fsuid))
2379 		return 0;
2380 	if (uid_eq(dir->i_uid, fsuid))
2381 		return 0;
2382 	return !inode_capable(inode, CAP_FOWNER);
2383 }
2384 
2385 /*
2386  *	Check whether we can remove a link victim from directory dir, check
2387  *  whether the type of victim is right.
2388  *  1. We can't do it if dir is read-only (done in permission())
2389  *  2. We should have write and exec permissions on dir
2390  *  3. We can't remove anything from append-only dir
2391  *  4. We can't do anything with immutable dir (done in permission())
2392  *  5. If the sticky bit on dir is set we should either
2393  *	a. be owner of dir, or
2394  *	b. be owner of victim, or
2395  *	c. have CAP_FOWNER capability
2396  *  6. If the victim is append-only or immutable we can't do antyhing with
2397  *     links pointing to it.
2398  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2399  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2400  *  9. We can't remove a root or mountpoint.
2401  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2402  *     nfs_async_unlink().
2403  */
2404 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2405 {
2406 	struct inode *inode = victim->d_inode;
2407 	int error;
2408 
2409 	if (d_is_negative(victim))
2410 		return -ENOENT;
2411 	BUG_ON(!inode);
2412 
2413 	BUG_ON(victim->d_parent->d_inode != dir);
2414 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2415 
2416 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2417 	if (error)
2418 		return error;
2419 	if (IS_APPEND(dir))
2420 		return -EPERM;
2421 
2422 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2423 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2424 		return -EPERM;
2425 	if (isdir) {
2426 		if (!d_is_dir(victim))
2427 			return -ENOTDIR;
2428 		if (IS_ROOT(victim))
2429 			return -EBUSY;
2430 	} else if (d_is_dir(victim))
2431 		return -EISDIR;
2432 	if (IS_DEADDIR(dir))
2433 		return -ENOENT;
2434 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2435 		return -EBUSY;
2436 	return 0;
2437 }
2438 
2439 /*	Check whether we can create an object with dentry child in directory
2440  *  dir.
2441  *  1. We can't do it if child already exists (open has special treatment for
2442  *     this case, but since we are inlined it's OK)
2443  *  2. We can't do it if dir is read-only (done in permission())
2444  *  3. We should have write and exec permissions on dir
2445  *  4. We can't do it if dir is immutable (done in permission())
2446  */
2447 static inline int may_create(struct inode *dir, struct dentry *child)
2448 {
2449 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2450 	if (child->d_inode)
2451 		return -EEXIST;
2452 	if (IS_DEADDIR(dir))
2453 		return -ENOENT;
2454 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2455 }
2456 
2457 /*
2458  * p1 and p2 should be directories on the same fs.
2459  */
2460 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2461 {
2462 	struct dentry *p;
2463 
2464 	if (p1 == p2) {
2465 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2466 		return NULL;
2467 	}
2468 
2469 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2470 
2471 	p = d_ancestor(p2, p1);
2472 	if (p) {
2473 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2474 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2475 		return p;
2476 	}
2477 
2478 	p = d_ancestor(p1, p2);
2479 	if (p) {
2480 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2481 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2482 		return p;
2483 	}
2484 
2485 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2486 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2487 	return NULL;
2488 }
2489 EXPORT_SYMBOL(lock_rename);
2490 
2491 void unlock_rename(struct dentry *p1, struct dentry *p2)
2492 {
2493 	mutex_unlock(&p1->d_inode->i_mutex);
2494 	if (p1 != p2) {
2495 		mutex_unlock(&p2->d_inode->i_mutex);
2496 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2497 	}
2498 }
2499 EXPORT_SYMBOL(unlock_rename);
2500 
2501 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2502 		bool want_excl)
2503 {
2504 	int error = may_create(dir, dentry);
2505 	if (error)
2506 		return error;
2507 
2508 	if (!dir->i_op->create)
2509 		return -EACCES;	/* shouldn't it be ENOSYS? */
2510 	mode &= S_IALLUGO;
2511 	mode |= S_IFREG;
2512 	error = security_inode_create(dir, dentry, mode);
2513 	if (error)
2514 		return error;
2515 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2516 	if (!error)
2517 		fsnotify_create(dir, dentry);
2518 	return error;
2519 }
2520 EXPORT_SYMBOL(vfs_create);
2521 
2522 static int may_open(struct path *path, int acc_mode, int flag)
2523 {
2524 	struct dentry *dentry = path->dentry;
2525 	struct inode *inode = dentry->d_inode;
2526 	int error;
2527 
2528 	/* O_PATH? */
2529 	if (!acc_mode)
2530 		return 0;
2531 
2532 	if (!inode)
2533 		return -ENOENT;
2534 
2535 	switch (inode->i_mode & S_IFMT) {
2536 	case S_IFLNK:
2537 		return -ELOOP;
2538 	case S_IFDIR:
2539 		if (acc_mode & MAY_WRITE)
2540 			return -EISDIR;
2541 		break;
2542 	case S_IFBLK:
2543 	case S_IFCHR:
2544 		if (path->mnt->mnt_flags & MNT_NODEV)
2545 			return -EACCES;
2546 		/*FALLTHRU*/
2547 	case S_IFIFO:
2548 	case S_IFSOCK:
2549 		flag &= ~O_TRUNC;
2550 		break;
2551 	}
2552 
2553 	error = inode_permission(inode, acc_mode);
2554 	if (error)
2555 		return error;
2556 
2557 	/*
2558 	 * An append-only file must be opened in append mode for writing.
2559 	 */
2560 	if (IS_APPEND(inode)) {
2561 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2562 			return -EPERM;
2563 		if (flag & O_TRUNC)
2564 			return -EPERM;
2565 	}
2566 
2567 	/* O_NOATIME can only be set by the owner or superuser */
2568 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2569 		return -EPERM;
2570 
2571 	return 0;
2572 }
2573 
2574 static int handle_truncate(struct file *filp)
2575 {
2576 	struct path *path = &filp->f_path;
2577 	struct inode *inode = path->dentry->d_inode;
2578 	int error = get_write_access(inode);
2579 	if (error)
2580 		return error;
2581 	/*
2582 	 * Refuse to truncate files with mandatory locks held on them.
2583 	 */
2584 	error = locks_verify_locked(filp);
2585 	if (!error)
2586 		error = security_path_truncate(path);
2587 	if (!error) {
2588 		error = do_truncate(path->dentry, 0,
2589 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2590 				    filp);
2591 	}
2592 	put_write_access(inode);
2593 	return error;
2594 }
2595 
2596 static inline int open_to_namei_flags(int flag)
2597 {
2598 	if ((flag & O_ACCMODE) == 3)
2599 		flag--;
2600 	return flag;
2601 }
2602 
2603 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2604 {
2605 	int error = security_path_mknod(dir, dentry, mode, 0);
2606 	if (error)
2607 		return error;
2608 
2609 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2610 	if (error)
2611 		return error;
2612 
2613 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2614 }
2615 
2616 /*
2617  * Attempt to atomically look up, create and open a file from a negative
2618  * dentry.
2619  *
2620  * Returns 0 if successful.  The file will have been created and attached to
2621  * @file by the filesystem calling finish_open().
2622  *
2623  * Returns 1 if the file was looked up only or didn't need creating.  The
2624  * caller will need to perform the open themselves.  @path will have been
2625  * updated to point to the new dentry.  This may be negative.
2626  *
2627  * Returns an error code otherwise.
2628  */
2629 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2630 			struct path *path, struct file *file,
2631 			const struct open_flags *op,
2632 			bool got_write, bool need_lookup,
2633 			int *opened)
2634 {
2635 	struct inode *dir =  nd->path.dentry->d_inode;
2636 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2637 	umode_t mode;
2638 	int error;
2639 	int acc_mode;
2640 	int create_error = 0;
2641 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2642 	bool excl;
2643 
2644 	BUG_ON(dentry->d_inode);
2645 
2646 	/* Don't create child dentry for a dead directory. */
2647 	if (unlikely(IS_DEADDIR(dir))) {
2648 		error = -ENOENT;
2649 		goto out;
2650 	}
2651 
2652 	mode = op->mode;
2653 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2654 		mode &= ~current_umask();
2655 
2656 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2657 	if (excl)
2658 		open_flag &= ~O_TRUNC;
2659 
2660 	/*
2661 	 * Checking write permission is tricky, bacuse we don't know if we are
2662 	 * going to actually need it: O_CREAT opens should work as long as the
2663 	 * file exists.  But checking existence breaks atomicity.  The trick is
2664 	 * to check access and if not granted clear O_CREAT from the flags.
2665 	 *
2666 	 * Another problem is returing the "right" error value (e.g. for an
2667 	 * O_EXCL open we want to return EEXIST not EROFS).
2668 	 */
2669 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2670 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2671 		if (!(open_flag & O_CREAT)) {
2672 			/*
2673 			 * No O_CREATE -> atomicity not a requirement -> fall
2674 			 * back to lookup + open
2675 			 */
2676 			goto no_open;
2677 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2678 			/* Fall back and fail with the right error */
2679 			create_error = -EROFS;
2680 			goto no_open;
2681 		} else {
2682 			/* No side effects, safe to clear O_CREAT */
2683 			create_error = -EROFS;
2684 			open_flag &= ~O_CREAT;
2685 		}
2686 	}
2687 
2688 	if (open_flag & O_CREAT) {
2689 		error = may_o_create(&nd->path, dentry, mode);
2690 		if (error) {
2691 			create_error = error;
2692 			if (open_flag & O_EXCL)
2693 				goto no_open;
2694 			open_flag &= ~O_CREAT;
2695 		}
2696 	}
2697 
2698 	if (nd->flags & LOOKUP_DIRECTORY)
2699 		open_flag |= O_DIRECTORY;
2700 
2701 	file->f_path.dentry = DENTRY_NOT_SET;
2702 	file->f_path.mnt = nd->path.mnt;
2703 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2704 				      opened);
2705 	if (error < 0) {
2706 		if (create_error && error == -ENOENT)
2707 			error = create_error;
2708 		goto out;
2709 	}
2710 
2711 	if (error) {	/* returned 1, that is */
2712 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2713 			error = -EIO;
2714 			goto out;
2715 		}
2716 		if (file->f_path.dentry) {
2717 			dput(dentry);
2718 			dentry = file->f_path.dentry;
2719 		}
2720 		if (*opened & FILE_CREATED)
2721 			fsnotify_create(dir, dentry);
2722 		if (!dentry->d_inode) {
2723 			WARN_ON(*opened & FILE_CREATED);
2724 			if (create_error) {
2725 				error = create_error;
2726 				goto out;
2727 			}
2728 		} else {
2729 			if (excl && !(*opened & FILE_CREATED)) {
2730 				error = -EEXIST;
2731 				goto out;
2732 			}
2733 		}
2734 		goto looked_up;
2735 	}
2736 
2737 	/*
2738 	 * We didn't have the inode before the open, so check open permission
2739 	 * here.
2740 	 */
2741 	acc_mode = op->acc_mode;
2742 	if (*opened & FILE_CREATED) {
2743 		WARN_ON(!(open_flag & O_CREAT));
2744 		fsnotify_create(dir, dentry);
2745 		acc_mode = MAY_OPEN;
2746 	}
2747 	error = may_open(&file->f_path, acc_mode, open_flag);
2748 	if (error)
2749 		fput(file);
2750 
2751 out:
2752 	dput(dentry);
2753 	return error;
2754 
2755 no_open:
2756 	if (need_lookup) {
2757 		dentry = lookup_real(dir, dentry, nd->flags);
2758 		if (IS_ERR(dentry))
2759 			return PTR_ERR(dentry);
2760 
2761 		if (create_error) {
2762 			int open_flag = op->open_flag;
2763 
2764 			error = create_error;
2765 			if ((open_flag & O_EXCL)) {
2766 				if (!dentry->d_inode)
2767 					goto out;
2768 			} else if (!dentry->d_inode) {
2769 				goto out;
2770 			} else if ((open_flag & O_TRUNC) &&
2771 				   S_ISREG(dentry->d_inode->i_mode)) {
2772 				goto out;
2773 			}
2774 			/* will fail later, go on to get the right error */
2775 		}
2776 	}
2777 looked_up:
2778 	path->dentry = dentry;
2779 	path->mnt = nd->path.mnt;
2780 	return 1;
2781 }
2782 
2783 /*
2784  * Look up and maybe create and open the last component.
2785  *
2786  * Must be called with i_mutex held on parent.
2787  *
2788  * Returns 0 if the file was successfully atomically created (if necessary) and
2789  * opened.  In this case the file will be returned attached to @file.
2790  *
2791  * Returns 1 if the file was not completely opened at this time, though lookups
2792  * and creations will have been performed and the dentry returned in @path will
2793  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2794  * specified then a negative dentry may be returned.
2795  *
2796  * An error code is returned otherwise.
2797  *
2798  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2799  * cleared otherwise prior to returning.
2800  */
2801 static int lookup_open(struct nameidata *nd, struct path *path,
2802 			struct file *file,
2803 			const struct open_flags *op,
2804 			bool got_write, int *opened)
2805 {
2806 	struct dentry *dir = nd->path.dentry;
2807 	struct inode *dir_inode = dir->d_inode;
2808 	struct dentry *dentry;
2809 	int error;
2810 	bool need_lookup;
2811 
2812 	*opened &= ~FILE_CREATED;
2813 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2814 	if (IS_ERR(dentry))
2815 		return PTR_ERR(dentry);
2816 
2817 	/* Cached positive dentry: will open in f_op->open */
2818 	if (!need_lookup && dentry->d_inode)
2819 		goto out_no_open;
2820 
2821 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2822 		return atomic_open(nd, dentry, path, file, op, got_write,
2823 				   need_lookup, opened);
2824 	}
2825 
2826 	if (need_lookup) {
2827 		BUG_ON(dentry->d_inode);
2828 
2829 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2830 		if (IS_ERR(dentry))
2831 			return PTR_ERR(dentry);
2832 	}
2833 
2834 	/* Negative dentry, just create the file */
2835 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2836 		umode_t mode = op->mode;
2837 		if (!IS_POSIXACL(dir->d_inode))
2838 			mode &= ~current_umask();
2839 		/*
2840 		 * This write is needed to ensure that a
2841 		 * rw->ro transition does not occur between
2842 		 * the time when the file is created and when
2843 		 * a permanent write count is taken through
2844 		 * the 'struct file' in finish_open().
2845 		 */
2846 		if (!got_write) {
2847 			error = -EROFS;
2848 			goto out_dput;
2849 		}
2850 		*opened |= FILE_CREATED;
2851 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2852 		if (error)
2853 			goto out_dput;
2854 		error = vfs_create(dir->d_inode, dentry, mode,
2855 				   nd->flags & LOOKUP_EXCL);
2856 		if (error)
2857 			goto out_dput;
2858 	}
2859 out_no_open:
2860 	path->dentry = dentry;
2861 	path->mnt = nd->path.mnt;
2862 	return 1;
2863 
2864 out_dput:
2865 	dput(dentry);
2866 	return error;
2867 }
2868 
2869 /*
2870  * Handle the last step of open()
2871  */
2872 static int do_last(struct nameidata *nd, struct path *path,
2873 		   struct file *file, const struct open_flags *op,
2874 		   int *opened, struct filename *name)
2875 {
2876 	struct dentry *dir = nd->path.dentry;
2877 	int open_flag = op->open_flag;
2878 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2879 	bool got_write = false;
2880 	int acc_mode = op->acc_mode;
2881 	struct inode *inode;
2882 	bool symlink_ok = false;
2883 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2884 	bool retried = false;
2885 	int error;
2886 
2887 	nd->flags &= ~LOOKUP_PARENT;
2888 	nd->flags |= op->intent;
2889 
2890 	if (nd->last_type != LAST_NORM) {
2891 		error = handle_dots(nd, nd->last_type);
2892 		if (error)
2893 			return error;
2894 		goto finish_open;
2895 	}
2896 
2897 	if (!(open_flag & O_CREAT)) {
2898 		if (nd->last.name[nd->last.len])
2899 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2900 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2901 			symlink_ok = true;
2902 		/* we _can_ be in RCU mode here */
2903 		error = lookup_fast(nd, path, &inode);
2904 		if (likely(!error))
2905 			goto finish_lookup;
2906 
2907 		if (error < 0)
2908 			goto out;
2909 
2910 		BUG_ON(nd->inode != dir->d_inode);
2911 	} else {
2912 		/* create side of things */
2913 		/*
2914 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2915 		 * has been cleared when we got to the last component we are
2916 		 * about to look up
2917 		 */
2918 		error = complete_walk(nd);
2919 		if (error)
2920 			return error;
2921 
2922 		audit_inode(name, dir, LOOKUP_PARENT);
2923 		error = -EISDIR;
2924 		/* trailing slashes? */
2925 		if (nd->last.name[nd->last.len])
2926 			goto out;
2927 	}
2928 
2929 retry_lookup:
2930 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2931 		error = mnt_want_write(nd->path.mnt);
2932 		if (!error)
2933 			got_write = true;
2934 		/*
2935 		 * do _not_ fail yet - we might not need that or fail with
2936 		 * a different error; let lookup_open() decide; we'll be
2937 		 * dropping this one anyway.
2938 		 */
2939 	}
2940 	mutex_lock(&dir->d_inode->i_mutex);
2941 	error = lookup_open(nd, path, file, op, got_write, opened);
2942 	mutex_unlock(&dir->d_inode->i_mutex);
2943 
2944 	if (error <= 0) {
2945 		if (error)
2946 			goto out;
2947 
2948 		if ((*opened & FILE_CREATED) ||
2949 		    !S_ISREG(file_inode(file)->i_mode))
2950 			will_truncate = false;
2951 
2952 		audit_inode(name, file->f_path.dentry, 0);
2953 		goto opened;
2954 	}
2955 
2956 	if (*opened & FILE_CREATED) {
2957 		/* Don't check for write permission, don't truncate */
2958 		open_flag &= ~O_TRUNC;
2959 		will_truncate = false;
2960 		acc_mode = MAY_OPEN;
2961 		path_to_nameidata(path, nd);
2962 		goto finish_open_created;
2963 	}
2964 
2965 	/*
2966 	 * create/update audit record if it already exists.
2967 	 */
2968 	if (d_is_positive(path->dentry))
2969 		audit_inode(name, path->dentry, 0);
2970 
2971 	/*
2972 	 * If atomic_open() acquired write access it is dropped now due to
2973 	 * possible mount and symlink following (this might be optimized away if
2974 	 * necessary...)
2975 	 */
2976 	if (got_write) {
2977 		mnt_drop_write(nd->path.mnt);
2978 		got_write = false;
2979 	}
2980 
2981 	error = -EEXIST;
2982 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2983 		goto exit_dput;
2984 
2985 	error = follow_managed(path, nd->flags);
2986 	if (error < 0)
2987 		goto exit_dput;
2988 
2989 	if (error)
2990 		nd->flags |= LOOKUP_JUMPED;
2991 
2992 	BUG_ON(nd->flags & LOOKUP_RCU);
2993 	inode = path->dentry->d_inode;
2994 finish_lookup:
2995 	/* we _can_ be in RCU mode here */
2996 	error = -ENOENT;
2997 	if (d_is_negative(path->dentry)) {
2998 		path_to_nameidata(path, nd);
2999 		goto out;
3000 	}
3001 
3002 	if (should_follow_link(path->dentry, !symlink_ok)) {
3003 		if (nd->flags & LOOKUP_RCU) {
3004 			if (unlikely(unlazy_walk(nd, path->dentry))) {
3005 				error = -ECHILD;
3006 				goto out;
3007 			}
3008 		}
3009 		BUG_ON(inode != path->dentry->d_inode);
3010 		return 1;
3011 	}
3012 
3013 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3014 		path_to_nameidata(path, nd);
3015 	} else {
3016 		save_parent.dentry = nd->path.dentry;
3017 		save_parent.mnt = mntget(path->mnt);
3018 		nd->path.dentry = path->dentry;
3019 
3020 	}
3021 	nd->inode = inode;
3022 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3023 finish_open:
3024 	error = complete_walk(nd);
3025 	if (error) {
3026 		path_put(&save_parent);
3027 		return error;
3028 	}
3029 	audit_inode(name, nd->path.dentry, 0);
3030 	error = -EISDIR;
3031 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3032 		goto out;
3033 	error = -ENOTDIR;
3034 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3035 		goto out;
3036 	if (!S_ISREG(nd->inode->i_mode))
3037 		will_truncate = false;
3038 
3039 	if (will_truncate) {
3040 		error = mnt_want_write(nd->path.mnt);
3041 		if (error)
3042 			goto out;
3043 		got_write = true;
3044 	}
3045 finish_open_created:
3046 	error = may_open(&nd->path, acc_mode, open_flag);
3047 	if (error)
3048 		goto out;
3049 	file->f_path.mnt = nd->path.mnt;
3050 	error = finish_open(file, nd->path.dentry, NULL, opened);
3051 	if (error) {
3052 		if (error == -EOPENSTALE)
3053 			goto stale_open;
3054 		goto out;
3055 	}
3056 opened:
3057 	error = open_check_o_direct(file);
3058 	if (error)
3059 		goto exit_fput;
3060 	error = ima_file_check(file, op->acc_mode);
3061 	if (error)
3062 		goto exit_fput;
3063 
3064 	if (will_truncate) {
3065 		error = handle_truncate(file);
3066 		if (error)
3067 			goto exit_fput;
3068 	}
3069 out:
3070 	if (got_write)
3071 		mnt_drop_write(nd->path.mnt);
3072 	path_put(&save_parent);
3073 	terminate_walk(nd);
3074 	return error;
3075 
3076 exit_dput:
3077 	path_put_conditional(path, nd);
3078 	goto out;
3079 exit_fput:
3080 	fput(file);
3081 	goto out;
3082 
3083 stale_open:
3084 	/* If no saved parent or already retried then can't retry */
3085 	if (!save_parent.dentry || retried)
3086 		goto out;
3087 
3088 	BUG_ON(save_parent.dentry != dir);
3089 	path_put(&nd->path);
3090 	nd->path = save_parent;
3091 	nd->inode = dir->d_inode;
3092 	save_parent.mnt = NULL;
3093 	save_parent.dentry = NULL;
3094 	if (got_write) {
3095 		mnt_drop_write(nd->path.mnt);
3096 		got_write = false;
3097 	}
3098 	retried = true;
3099 	goto retry_lookup;
3100 }
3101 
3102 static int do_tmpfile(int dfd, struct filename *pathname,
3103 		struct nameidata *nd, int flags,
3104 		const struct open_flags *op,
3105 		struct file *file, int *opened)
3106 {
3107 	static const struct qstr name = QSTR_INIT("/", 1);
3108 	struct dentry *dentry, *child;
3109 	struct inode *dir;
3110 	int error = path_lookupat(dfd, pathname->name,
3111 				  flags | LOOKUP_DIRECTORY, nd);
3112 	if (unlikely(error))
3113 		return error;
3114 	error = mnt_want_write(nd->path.mnt);
3115 	if (unlikely(error))
3116 		goto out;
3117 	/* we want directory to be writable */
3118 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3119 	if (error)
3120 		goto out2;
3121 	dentry = nd->path.dentry;
3122 	dir = dentry->d_inode;
3123 	if (!dir->i_op->tmpfile) {
3124 		error = -EOPNOTSUPP;
3125 		goto out2;
3126 	}
3127 	child = d_alloc(dentry, &name);
3128 	if (unlikely(!child)) {
3129 		error = -ENOMEM;
3130 		goto out2;
3131 	}
3132 	nd->flags &= ~LOOKUP_DIRECTORY;
3133 	nd->flags |= op->intent;
3134 	dput(nd->path.dentry);
3135 	nd->path.dentry = child;
3136 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3137 	if (error)
3138 		goto out2;
3139 	audit_inode(pathname, nd->path.dentry, 0);
3140 	error = may_open(&nd->path, op->acc_mode, op->open_flag);
3141 	if (error)
3142 		goto out2;
3143 	file->f_path.mnt = nd->path.mnt;
3144 	error = finish_open(file, nd->path.dentry, NULL, opened);
3145 	if (error)
3146 		goto out2;
3147 	error = open_check_o_direct(file);
3148 	if (error) {
3149 		fput(file);
3150 	} else if (!(op->open_flag & O_EXCL)) {
3151 		struct inode *inode = file_inode(file);
3152 		spin_lock(&inode->i_lock);
3153 		inode->i_state |= I_LINKABLE;
3154 		spin_unlock(&inode->i_lock);
3155 	}
3156 out2:
3157 	mnt_drop_write(nd->path.mnt);
3158 out:
3159 	path_put(&nd->path);
3160 	return error;
3161 }
3162 
3163 static struct file *path_openat(int dfd, struct filename *pathname,
3164 		struct nameidata *nd, const struct open_flags *op, int flags)
3165 {
3166 	struct file *base = NULL;
3167 	struct file *file;
3168 	struct path path;
3169 	int opened = 0;
3170 	int error;
3171 
3172 	file = get_empty_filp();
3173 	if (IS_ERR(file))
3174 		return file;
3175 
3176 	file->f_flags = op->open_flag;
3177 
3178 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3179 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3180 		goto out;
3181 	}
3182 
3183 	error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3184 	if (unlikely(error))
3185 		goto out;
3186 
3187 	current->total_link_count = 0;
3188 	error = link_path_walk(pathname->name, nd);
3189 	if (unlikely(error))
3190 		goto out;
3191 
3192 	error = do_last(nd, &path, file, op, &opened, pathname);
3193 	while (unlikely(error > 0)) { /* trailing symlink */
3194 		struct path link = path;
3195 		void *cookie;
3196 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3197 			path_put_conditional(&path, nd);
3198 			path_put(&nd->path);
3199 			error = -ELOOP;
3200 			break;
3201 		}
3202 		error = may_follow_link(&link, nd);
3203 		if (unlikely(error))
3204 			break;
3205 		nd->flags |= LOOKUP_PARENT;
3206 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3207 		error = follow_link(&link, nd, &cookie);
3208 		if (unlikely(error))
3209 			break;
3210 		error = do_last(nd, &path, file, op, &opened, pathname);
3211 		put_link(nd, &link, cookie);
3212 	}
3213 out:
3214 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3215 		path_put(&nd->root);
3216 	if (base)
3217 		fput(base);
3218 	if (!(opened & FILE_OPENED)) {
3219 		BUG_ON(!error);
3220 		put_filp(file);
3221 	}
3222 	if (unlikely(error)) {
3223 		if (error == -EOPENSTALE) {
3224 			if (flags & LOOKUP_RCU)
3225 				error = -ECHILD;
3226 			else
3227 				error = -ESTALE;
3228 		}
3229 		file = ERR_PTR(error);
3230 	}
3231 	return file;
3232 }
3233 
3234 struct file *do_filp_open(int dfd, struct filename *pathname,
3235 		const struct open_flags *op)
3236 {
3237 	struct nameidata nd;
3238 	int flags = op->lookup_flags;
3239 	struct file *filp;
3240 
3241 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3242 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3243 		filp = path_openat(dfd, pathname, &nd, op, flags);
3244 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3245 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3246 	return filp;
3247 }
3248 
3249 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3250 		const char *name, const struct open_flags *op)
3251 {
3252 	struct nameidata nd;
3253 	struct file *file;
3254 	struct filename filename = { .name = name };
3255 	int flags = op->lookup_flags | LOOKUP_ROOT;
3256 
3257 	nd.root.mnt = mnt;
3258 	nd.root.dentry = dentry;
3259 
3260 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3261 		return ERR_PTR(-ELOOP);
3262 
3263 	file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3264 	if (unlikely(file == ERR_PTR(-ECHILD)))
3265 		file = path_openat(-1, &filename, &nd, op, flags);
3266 	if (unlikely(file == ERR_PTR(-ESTALE)))
3267 		file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3268 	return file;
3269 }
3270 
3271 struct dentry *kern_path_create(int dfd, const char *pathname,
3272 				struct path *path, unsigned int lookup_flags)
3273 {
3274 	struct dentry *dentry = ERR_PTR(-EEXIST);
3275 	struct nameidata nd;
3276 	int err2;
3277 	int error;
3278 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3279 
3280 	/*
3281 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3282 	 * other flags passed in are ignored!
3283 	 */
3284 	lookup_flags &= LOOKUP_REVAL;
3285 
3286 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3287 	if (error)
3288 		return ERR_PTR(error);
3289 
3290 	/*
3291 	 * Yucky last component or no last component at all?
3292 	 * (foo/., foo/.., /////)
3293 	 */
3294 	if (nd.last_type != LAST_NORM)
3295 		goto out;
3296 	nd.flags &= ~LOOKUP_PARENT;
3297 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3298 
3299 	/* don't fail immediately if it's r/o, at least try to report other errors */
3300 	err2 = mnt_want_write(nd.path.mnt);
3301 	/*
3302 	 * Do the final lookup.
3303 	 */
3304 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3305 	dentry = lookup_hash(&nd);
3306 	if (IS_ERR(dentry))
3307 		goto unlock;
3308 
3309 	error = -EEXIST;
3310 	if (d_is_positive(dentry))
3311 		goto fail;
3312 
3313 	/*
3314 	 * Special case - lookup gave negative, but... we had foo/bar/
3315 	 * From the vfs_mknod() POV we just have a negative dentry -
3316 	 * all is fine. Let's be bastards - you had / on the end, you've
3317 	 * been asking for (non-existent) directory. -ENOENT for you.
3318 	 */
3319 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3320 		error = -ENOENT;
3321 		goto fail;
3322 	}
3323 	if (unlikely(err2)) {
3324 		error = err2;
3325 		goto fail;
3326 	}
3327 	*path = nd.path;
3328 	return dentry;
3329 fail:
3330 	dput(dentry);
3331 	dentry = ERR_PTR(error);
3332 unlock:
3333 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3334 	if (!err2)
3335 		mnt_drop_write(nd.path.mnt);
3336 out:
3337 	path_put(&nd.path);
3338 	return dentry;
3339 }
3340 EXPORT_SYMBOL(kern_path_create);
3341 
3342 void done_path_create(struct path *path, struct dentry *dentry)
3343 {
3344 	dput(dentry);
3345 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3346 	mnt_drop_write(path->mnt);
3347 	path_put(path);
3348 }
3349 EXPORT_SYMBOL(done_path_create);
3350 
3351 struct dentry *user_path_create(int dfd, const char __user *pathname,
3352 				struct path *path, unsigned int lookup_flags)
3353 {
3354 	struct filename *tmp = getname(pathname);
3355 	struct dentry *res;
3356 	if (IS_ERR(tmp))
3357 		return ERR_CAST(tmp);
3358 	res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3359 	putname(tmp);
3360 	return res;
3361 }
3362 EXPORT_SYMBOL(user_path_create);
3363 
3364 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3365 {
3366 	int error = may_create(dir, dentry);
3367 
3368 	if (error)
3369 		return error;
3370 
3371 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3372 		return -EPERM;
3373 
3374 	if (!dir->i_op->mknod)
3375 		return -EPERM;
3376 
3377 	error = devcgroup_inode_mknod(mode, dev);
3378 	if (error)
3379 		return error;
3380 
3381 	error = security_inode_mknod(dir, dentry, mode, dev);
3382 	if (error)
3383 		return error;
3384 
3385 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3386 	if (!error)
3387 		fsnotify_create(dir, dentry);
3388 	return error;
3389 }
3390 EXPORT_SYMBOL(vfs_mknod);
3391 
3392 static int may_mknod(umode_t mode)
3393 {
3394 	switch (mode & S_IFMT) {
3395 	case S_IFREG:
3396 	case S_IFCHR:
3397 	case S_IFBLK:
3398 	case S_IFIFO:
3399 	case S_IFSOCK:
3400 	case 0: /* zero mode translates to S_IFREG */
3401 		return 0;
3402 	case S_IFDIR:
3403 		return -EPERM;
3404 	default:
3405 		return -EINVAL;
3406 	}
3407 }
3408 
3409 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3410 		unsigned, dev)
3411 {
3412 	struct dentry *dentry;
3413 	struct path path;
3414 	int error;
3415 	unsigned int lookup_flags = 0;
3416 
3417 	error = may_mknod(mode);
3418 	if (error)
3419 		return error;
3420 retry:
3421 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3422 	if (IS_ERR(dentry))
3423 		return PTR_ERR(dentry);
3424 
3425 	if (!IS_POSIXACL(path.dentry->d_inode))
3426 		mode &= ~current_umask();
3427 	error = security_path_mknod(&path, dentry, mode, dev);
3428 	if (error)
3429 		goto out;
3430 	switch (mode & S_IFMT) {
3431 		case 0: case S_IFREG:
3432 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3433 			break;
3434 		case S_IFCHR: case S_IFBLK:
3435 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3436 					new_decode_dev(dev));
3437 			break;
3438 		case S_IFIFO: case S_IFSOCK:
3439 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3440 			break;
3441 	}
3442 out:
3443 	done_path_create(&path, dentry);
3444 	if (retry_estale(error, lookup_flags)) {
3445 		lookup_flags |= LOOKUP_REVAL;
3446 		goto retry;
3447 	}
3448 	return error;
3449 }
3450 
3451 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3452 {
3453 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3454 }
3455 
3456 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3457 {
3458 	int error = may_create(dir, dentry);
3459 	unsigned max_links = dir->i_sb->s_max_links;
3460 
3461 	if (error)
3462 		return error;
3463 
3464 	if (!dir->i_op->mkdir)
3465 		return -EPERM;
3466 
3467 	mode &= (S_IRWXUGO|S_ISVTX);
3468 	error = security_inode_mkdir(dir, dentry, mode);
3469 	if (error)
3470 		return error;
3471 
3472 	if (max_links && dir->i_nlink >= max_links)
3473 		return -EMLINK;
3474 
3475 	error = dir->i_op->mkdir(dir, dentry, mode);
3476 	if (!error)
3477 		fsnotify_mkdir(dir, dentry);
3478 	return error;
3479 }
3480 EXPORT_SYMBOL(vfs_mkdir);
3481 
3482 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3483 {
3484 	struct dentry *dentry;
3485 	struct path path;
3486 	int error;
3487 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3488 
3489 retry:
3490 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3491 	if (IS_ERR(dentry))
3492 		return PTR_ERR(dentry);
3493 
3494 	if (!IS_POSIXACL(path.dentry->d_inode))
3495 		mode &= ~current_umask();
3496 	error = security_path_mkdir(&path, dentry, mode);
3497 	if (!error)
3498 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3499 	done_path_create(&path, dentry);
3500 	if (retry_estale(error, lookup_flags)) {
3501 		lookup_flags |= LOOKUP_REVAL;
3502 		goto retry;
3503 	}
3504 	return error;
3505 }
3506 
3507 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3508 {
3509 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3510 }
3511 
3512 /*
3513  * The dentry_unhash() helper will try to drop the dentry early: we
3514  * should have a usage count of 1 if we're the only user of this
3515  * dentry, and if that is true (possibly after pruning the dcache),
3516  * then we drop the dentry now.
3517  *
3518  * A low-level filesystem can, if it choses, legally
3519  * do a
3520  *
3521  *	if (!d_unhashed(dentry))
3522  *		return -EBUSY;
3523  *
3524  * if it cannot handle the case of removing a directory
3525  * that is still in use by something else..
3526  */
3527 void dentry_unhash(struct dentry *dentry)
3528 {
3529 	shrink_dcache_parent(dentry);
3530 	spin_lock(&dentry->d_lock);
3531 	if (dentry->d_lockref.count == 1)
3532 		__d_drop(dentry);
3533 	spin_unlock(&dentry->d_lock);
3534 }
3535 EXPORT_SYMBOL(dentry_unhash);
3536 
3537 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3538 {
3539 	int error = may_delete(dir, dentry, 1);
3540 
3541 	if (error)
3542 		return error;
3543 
3544 	if (!dir->i_op->rmdir)
3545 		return -EPERM;
3546 
3547 	dget(dentry);
3548 	mutex_lock(&dentry->d_inode->i_mutex);
3549 
3550 	error = -EBUSY;
3551 	if (d_mountpoint(dentry))
3552 		goto out;
3553 
3554 	error = security_inode_rmdir(dir, dentry);
3555 	if (error)
3556 		goto out;
3557 
3558 	shrink_dcache_parent(dentry);
3559 	error = dir->i_op->rmdir(dir, dentry);
3560 	if (error)
3561 		goto out;
3562 
3563 	dentry->d_inode->i_flags |= S_DEAD;
3564 	dont_mount(dentry);
3565 
3566 out:
3567 	mutex_unlock(&dentry->d_inode->i_mutex);
3568 	dput(dentry);
3569 	if (!error)
3570 		d_delete(dentry);
3571 	return error;
3572 }
3573 EXPORT_SYMBOL(vfs_rmdir);
3574 
3575 static long do_rmdir(int dfd, const char __user *pathname)
3576 {
3577 	int error = 0;
3578 	struct filename *name;
3579 	struct dentry *dentry;
3580 	struct nameidata nd;
3581 	unsigned int lookup_flags = 0;
3582 retry:
3583 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3584 	if (IS_ERR(name))
3585 		return PTR_ERR(name);
3586 
3587 	switch(nd.last_type) {
3588 	case LAST_DOTDOT:
3589 		error = -ENOTEMPTY;
3590 		goto exit1;
3591 	case LAST_DOT:
3592 		error = -EINVAL;
3593 		goto exit1;
3594 	case LAST_ROOT:
3595 		error = -EBUSY;
3596 		goto exit1;
3597 	}
3598 
3599 	nd.flags &= ~LOOKUP_PARENT;
3600 	error = mnt_want_write(nd.path.mnt);
3601 	if (error)
3602 		goto exit1;
3603 
3604 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3605 	dentry = lookup_hash(&nd);
3606 	error = PTR_ERR(dentry);
3607 	if (IS_ERR(dentry))
3608 		goto exit2;
3609 	if (!dentry->d_inode) {
3610 		error = -ENOENT;
3611 		goto exit3;
3612 	}
3613 	error = security_path_rmdir(&nd.path, dentry);
3614 	if (error)
3615 		goto exit3;
3616 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3617 exit3:
3618 	dput(dentry);
3619 exit2:
3620 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3621 	mnt_drop_write(nd.path.mnt);
3622 exit1:
3623 	path_put(&nd.path);
3624 	putname(name);
3625 	if (retry_estale(error, lookup_flags)) {
3626 		lookup_flags |= LOOKUP_REVAL;
3627 		goto retry;
3628 	}
3629 	return error;
3630 }
3631 
3632 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3633 {
3634 	return do_rmdir(AT_FDCWD, pathname);
3635 }
3636 
3637 /**
3638  * vfs_unlink - unlink a filesystem object
3639  * @dir:	parent directory
3640  * @dentry:	victim
3641  * @delegated_inode: returns victim inode, if the inode is delegated.
3642  *
3643  * The caller must hold dir->i_mutex.
3644  *
3645  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3646  * return a reference to the inode in delegated_inode.  The caller
3647  * should then break the delegation on that inode and retry.  Because
3648  * breaking a delegation may take a long time, the caller should drop
3649  * dir->i_mutex before doing so.
3650  *
3651  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3652  * be appropriate for callers that expect the underlying filesystem not
3653  * to be NFS exported.
3654  */
3655 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3656 {
3657 	struct inode *target = dentry->d_inode;
3658 	int error = may_delete(dir, dentry, 0);
3659 
3660 	if (error)
3661 		return error;
3662 
3663 	if (!dir->i_op->unlink)
3664 		return -EPERM;
3665 
3666 	mutex_lock(&target->i_mutex);
3667 	if (d_mountpoint(dentry))
3668 		error = -EBUSY;
3669 	else {
3670 		error = security_inode_unlink(dir, dentry);
3671 		if (!error) {
3672 			error = try_break_deleg(target, delegated_inode);
3673 			if (error)
3674 				goto out;
3675 			error = dir->i_op->unlink(dir, dentry);
3676 			if (!error)
3677 				dont_mount(dentry);
3678 		}
3679 	}
3680 out:
3681 	mutex_unlock(&target->i_mutex);
3682 
3683 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3684 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3685 		fsnotify_link_count(target);
3686 		d_delete(dentry);
3687 	}
3688 
3689 	return error;
3690 }
3691 EXPORT_SYMBOL(vfs_unlink);
3692 
3693 /*
3694  * Make sure that the actual truncation of the file will occur outside its
3695  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3696  * writeout happening, and we don't want to prevent access to the directory
3697  * while waiting on the I/O.
3698  */
3699 static long do_unlinkat(int dfd, const char __user *pathname)
3700 {
3701 	int error;
3702 	struct filename *name;
3703 	struct dentry *dentry;
3704 	struct nameidata nd;
3705 	struct inode *inode = NULL;
3706 	struct inode *delegated_inode = NULL;
3707 	unsigned int lookup_flags = 0;
3708 retry:
3709 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3710 	if (IS_ERR(name))
3711 		return PTR_ERR(name);
3712 
3713 	error = -EISDIR;
3714 	if (nd.last_type != LAST_NORM)
3715 		goto exit1;
3716 
3717 	nd.flags &= ~LOOKUP_PARENT;
3718 	error = mnt_want_write(nd.path.mnt);
3719 	if (error)
3720 		goto exit1;
3721 retry_deleg:
3722 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3723 	dentry = lookup_hash(&nd);
3724 	error = PTR_ERR(dentry);
3725 	if (!IS_ERR(dentry)) {
3726 		/* Why not before? Because we want correct error value */
3727 		if (nd.last.name[nd.last.len])
3728 			goto slashes;
3729 		inode = dentry->d_inode;
3730 		if (d_is_negative(dentry))
3731 			goto slashes;
3732 		ihold(inode);
3733 		error = security_path_unlink(&nd.path, dentry);
3734 		if (error)
3735 			goto exit2;
3736 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3737 exit2:
3738 		dput(dentry);
3739 	}
3740 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3741 	if (inode)
3742 		iput(inode);	/* truncate the inode here */
3743 	inode = NULL;
3744 	if (delegated_inode) {
3745 		error = break_deleg_wait(&delegated_inode);
3746 		if (!error)
3747 			goto retry_deleg;
3748 	}
3749 	mnt_drop_write(nd.path.mnt);
3750 exit1:
3751 	path_put(&nd.path);
3752 	putname(name);
3753 	if (retry_estale(error, lookup_flags)) {
3754 		lookup_flags |= LOOKUP_REVAL;
3755 		inode = NULL;
3756 		goto retry;
3757 	}
3758 	return error;
3759 
3760 slashes:
3761 	if (d_is_negative(dentry))
3762 		error = -ENOENT;
3763 	else if (d_is_dir(dentry))
3764 		error = -EISDIR;
3765 	else
3766 		error = -ENOTDIR;
3767 	goto exit2;
3768 }
3769 
3770 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3771 {
3772 	if ((flag & ~AT_REMOVEDIR) != 0)
3773 		return -EINVAL;
3774 
3775 	if (flag & AT_REMOVEDIR)
3776 		return do_rmdir(dfd, pathname);
3777 
3778 	return do_unlinkat(dfd, pathname);
3779 }
3780 
3781 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3782 {
3783 	return do_unlinkat(AT_FDCWD, pathname);
3784 }
3785 
3786 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3787 {
3788 	int error = may_create(dir, dentry);
3789 
3790 	if (error)
3791 		return error;
3792 
3793 	if (!dir->i_op->symlink)
3794 		return -EPERM;
3795 
3796 	error = security_inode_symlink(dir, dentry, oldname);
3797 	if (error)
3798 		return error;
3799 
3800 	error = dir->i_op->symlink(dir, dentry, oldname);
3801 	if (!error)
3802 		fsnotify_create(dir, dentry);
3803 	return error;
3804 }
3805 EXPORT_SYMBOL(vfs_symlink);
3806 
3807 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3808 		int, newdfd, const char __user *, newname)
3809 {
3810 	int error;
3811 	struct filename *from;
3812 	struct dentry *dentry;
3813 	struct path path;
3814 	unsigned int lookup_flags = 0;
3815 
3816 	from = getname(oldname);
3817 	if (IS_ERR(from))
3818 		return PTR_ERR(from);
3819 retry:
3820 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3821 	error = PTR_ERR(dentry);
3822 	if (IS_ERR(dentry))
3823 		goto out_putname;
3824 
3825 	error = security_path_symlink(&path, dentry, from->name);
3826 	if (!error)
3827 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3828 	done_path_create(&path, dentry);
3829 	if (retry_estale(error, lookup_flags)) {
3830 		lookup_flags |= LOOKUP_REVAL;
3831 		goto retry;
3832 	}
3833 out_putname:
3834 	putname(from);
3835 	return error;
3836 }
3837 
3838 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3839 {
3840 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3841 }
3842 
3843 /**
3844  * vfs_link - create a new link
3845  * @old_dentry:	object to be linked
3846  * @dir:	new parent
3847  * @new_dentry:	where to create the new link
3848  * @delegated_inode: returns inode needing a delegation break
3849  *
3850  * The caller must hold dir->i_mutex
3851  *
3852  * If vfs_link discovers a delegation on the to-be-linked file in need
3853  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3854  * inode in delegated_inode.  The caller should then break the delegation
3855  * and retry.  Because breaking a delegation may take a long time, the
3856  * caller should drop the i_mutex before doing so.
3857  *
3858  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3859  * be appropriate for callers that expect the underlying filesystem not
3860  * to be NFS exported.
3861  */
3862 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3863 {
3864 	struct inode *inode = old_dentry->d_inode;
3865 	unsigned max_links = dir->i_sb->s_max_links;
3866 	int error;
3867 
3868 	if (!inode)
3869 		return -ENOENT;
3870 
3871 	error = may_create(dir, new_dentry);
3872 	if (error)
3873 		return error;
3874 
3875 	if (dir->i_sb != inode->i_sb)
3876 		return -EXDEV;
3877 
3878 	/*
3879 	 * A link to an append-only or immutable file cannot be created.
3880 	 */
3881 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3882 		return -EPERM;
3883 	if (!dir->i_op->link)
3884 		return -EPERM;
3885 	if (S_ISDIR(inode->i_mode))
3886 		return -EPERM;
3887 
3888 	error = security_inode_link(old_dentry, dir, new_dentry);
3889 	if (error)
3890 		return error;
3891 
3892 	mutex_lock(&inode->i_mutex);
3893 	/* Make sure we don't allow creating hardlink to an unlinked file */
3894 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3895 		error =  -ENOENT;
3896 	else if (max_links && inode->i_nlink >= max_links)
3897 		error = -EMLINK;
3898 	else {
3899 		error = try_break_deleg(inode, delegated_inode);
3900 		if (!error)
3901 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3902 	}
3903 
3904 	if (!error && (inode->i_state & I_LINKABLE)) {
3905 		spin_lock(&inode->i_lock);
3906 		inode->i_state &= ~I_LINKABLE;
3907 		spin_unlock(&inode->i_lock);
3908 	}
3909 	mutex_unlock(&inode->i_mutex);
3910 	if (!error)
3911 		fsnotify_link(dir, inode, new_dentry);
3912 	return error;
3913 }
3914 EXPORT_SYMBOL(vfs_link);
3915 
3916 /*
3917  * Hardlinks are often used in delicate situations.  We avoid
3918  * security-related surprises by not following symlinks on the
3919  * newname.  --KAB
3920  *
3921  * We don't follow them on the oldname either to be compatible
3922  * with linux 2.0, and to avoid hard-linking to directories
3923  * and other special files.  --ADM
3924  */
3925 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3926 		int, newdfd, const char __user *, newname, int, flags)
3927 {
3928 	struct dentry *new_dentry;
3929 	struct path old_path, new_path;
3930 	struct inode *delegated_inode = NULL;
3931 	int how = 0;
3932 	int error;
3933 
3934 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3935 		return -EINVAL;
3936 	/*
3937 	 * To use null names we require CAP_DAC_READ_SEARCH
3938 	 * This ensures that not everyone will be able to create
3939 	 * handlink using the passed filedescriptor.
3940 	 */
3941 	if (flags & AT_EMPTY_PATH) {
3942 		if (!capable(CAP_DAC_READ_SEARCH))
3943 			return -ENOENT;
3944 		how = LOOKUP_EMPTY;
3945 	}
3946 
3947 	if (flags & AT_SYMLINK_FOLLOW)
3948 		how |= LOOKUP_FOLLOW;
3949 retry:
3950 	error = user_path_at(olddfd, oldname, how, &old_path);
3951 	if (error)
3952 		return error;
3953 
3954 	new_dentry = user_path_create(newdfd, newname, &new_path,
3955 					(how & LOOKUP_REVAL));
3956 	error = PTR_ERR(new_dentry);
3957 	if (IS_ERR(new_dentry))
3958 		goto out;
3959 
3960 	error = -EXDEV;
3961 	if (old_path.mnt != new_path.mnt)
3962 		goto out_dput;
3963 	error = may_linkat(&old_path);
3964 	if (unlikely(error))
3965 		goto out_dput;
3966 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
3967 	if (error)
3968 		goto out_dput;
3969 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3970 out_dput:
3971 	done_path_create(&new_path, new_dentry);
3972 	if (delegated_inode) {
3973 		error = break_deleg_wait(&delegated_inode);
3974 		if (!error) {
3975 			path_put(&old_path);
3976 			goto retry;
3977 		}
3978 	}
3979 	if (retry_estale(error, how)) {
3980 		path_put(&old_path);
3981 		how |= LOOKUP_REVAL;
3982 		goto retry;
3983 	}
3984 out:
3985 	path_put(&old_path);
3986 
3987 	return error;
3988 }
3989 
3990 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3991 {
3992 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3993 }
3994 
3995 /**
3996  * vfs_rename - rename a filesystem object
3997  * @old_dir:	parent of source
3998  * @old_dentry:	source
3999  * @new_dir:	parent of destination
4000  * @new_dentry:	destination
4001  * @delegated_inode: returns an inode needing a delegation break
4002  * @flags:	rename flags
4003  *
4004  * The caller must hold multiple mutexes--see lock_rename()).
4005  *
4006  * If vfs_rename discovers a delegation in need of breaking at either
4007  * the source or destination, it will return -EWOULDBLOCK and return a
4008  * reference to the inode in delegated_inode.  The caller should then
4009  * break the delegation and retry.  Because breaking a delegation may
4010  * take a long time, the caller should drop all locks before doing
4011  * so.
4012  *
4013  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4014  * be appropriate for callers that expect the underlying filesystem not
4015  * to be NFS exported.
4016  *
4017  * The worst of all namespace operations - renaming directory. "Perverted"
4018  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4019  * Problems:
4020  *	a) we can get into loop creation. Check is done in is_subdir().
4021  *	b) race potential - two innocent renames can create a loop together.
4022  *	   That's where 4.4 screws up. Current fix: serialization on
4023  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4024  *	   story.
4025  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4026  *	   and source (if it is not a directory).
4027  *	   And that - after we got ->i_mutex on parents (until then we don't know
4028  *	   whether the target exists).  Solution: try to be smart with locking
4029  *	   order for inodes.  We rely on the fact that tree topology may change
4030  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4031  *	   move will be locked.  Thus we can rank directories by the tree
4032  *	   (ancestors first) and rank all non-directories after them.
4033  *	   That works since everybody except rename does "lock parent, lookup,
4034  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4035  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4036  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4037  *	   we'd better make sure that there's no link(2) for them.
4038  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4039  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4040  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4041  *	   ->i_mutex on parents, which works but leads to some truly excessive
4042  *	   locking].
4043  */
4044 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4045 	       struct inode *new_dir, struct dentry *new_dentry,
4046 	       struct inode **delegated_inode, unsigned int flags)
4047 {
4048 	int error;
4049 	bool is_dir = d_is_dir(old_dentry);
4050 	const unsigned char *old_name;
4051 	struct inode *source = old_dentry->d_inode;
4052 	struct inode *target = new_dentry->d_inode;
4053 	bool new_is_dir = false;
4054 	unsigned max_links = new_dir->i_sb->s_max_links;
4055 
4056 	if (source == target)
4057 		return 0;
4058 
4059 	error = may_delete(old_dir, old_dentry, is_dir);
4060 	if (error)
4061 		return error;
4062 
4063 	if (!target) {
4064 		error = may_create(new_dir, new_dentry);
4065 	} else {
4066 		new_is_dir = d_is_dir(new_dentry);
4067 
4068 		if (!(flags & RENAME_EXCHANGE))
4069 			error = may_delete(new_dir, new_dentry, is_dir);
4070 		else
4071 			error = may_delete(new_dir, new_dentry, new_is_dir);
4072 	}
4073 	if (error)
4074 		return error;
4075 
4076 	if (!old_dir->i_op->rename)
4077 		return -EPERM;
4078 
4079 	if (flags && !old_dir->i_op->rename2)
4080 		return -EINVAL;
4081 
4082 	/*
4083 	 * If we are going to change the parent - check write permissions,
4084 	 * we'll need to flip '..'.
4085 	 */
4086 	if (new_dir != old_dir) {
4087 		if (is_dir) {
4088 			error = inode_permission(source, MAY_WRITE);
4089 			if (error)
4090 				return error;
4091 		}
4092 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4093 			error = inode_permission(target, MAY_WRITE);
4094 			if (error)
4095 				return error;
4096 		}
4097 	}
4098 
4099 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4100 				      flags);
4101 	if (error)
4102 		return error;
4103 
4104 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4105 	dget(new_dentry);
4106 	if (!is_dir || (flags & RENAME_EXCHANGE))
4107 		lock_two_nondirectories(source, target);
4108 	else if (target)
4109 		mutex_lock(&target->i_mutex);
4110 
4111 	error = -EBUSY;
4112 	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4113 		goto out;
4114 
4115 	if (max_links && new_dir != old_dir) {
4116 		error = -EMLINK;
4117 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4118 			goto out;
4119 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4120 		    old_dir->i_nlink >= max_links)
4121 			goto out;
4122 	}
4123 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4124 		shrink_dcache_parent(new_dentry);
4125 	if (!is_dir) {
4126 		error = try_break_deleg(source, delegated_inode);
4127 		if (error)
4128 			goto out;
4129 	}
4130 	if (target && !new_is_dir) {
4131 		error = try_break_deleg(target, delegated_inode);
4132 		if (error)
4133 			goto out;
4134 	}
4135 	if (!flags) {
4136 		error = old_dir->i_op->rename(old_dir, old_dentry,
4137 					      new_dir, new_dentry);
4138 	} else {
4139 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4140 					       new_dir, new_dentry, flags);
4141 	}
4142 	if (error)
4143 		goto out;
4144 
4145 	if (!(flags & RENAME_EXCHANGE) && target) {
4146 		if (is_dir)
4147 			target->i_flags |= S_DEAD;
4148 		dont_mount(new_dentry);
4149 	}
4150 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4151 		if (!(flags & RENAME_EXCHANGE))
4152 			d_move(old_dentry, new_dentry);
4153 		else
4154 			d_exchange(old_dentry, new_dentry);
4155 	}
4156 out:
4157 	if (!is_dir || (flags & RENAME_EXCHANGE))
4158 		unlock_two_nondirectories(source, target);
4159 	else if (target)
4160 		mutex_unlock(&target->i_mutex);
4161 	dput(new_dentry);
4162 	if (!error) {
4163 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4164 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4165 		if (flags & RENAME_EXCHANGE) {
4166 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4167 				      new_is_dir, NULL, new_dentry);
4168 		}
4169 	}
4170 	fsnotify_oldname_free(old_name);
4171 
4172 	return error;
4173 }
4174 EXPORT_SYMBOL(vfs_rename);
4175 
4176 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4177 		int, newdfd, const char __user *, newname, unsigned int, flags)
4178 {
4179 	struct dentry *old_dir, *new_dir;
4180 	struct dentry *old_dentry, *new_dentry;
4181 	struct dentry *trap;
4182 	struct nameidata oldnd, newnd;
4183 	struct inode *delegated_inode = NULL;
4184 	struct filename *from;
4185 	struct filename *to;
4186 	unsigned int lookup_flags = 0;
4187 	bool should_retry = false;
4188 	int error;
4189 
4190 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4191 		return -EINVAL;
4192 
4193 	if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4194 		return -EINVAL;
4195 
4196 retry:
4197 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4198 	if (IS_ERR(from)) {
4199 		error = PTR_ERR(from);
4200 		goto exit;
4201 	}
4202 
4203 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4204 	if (IS_ERR(to)) {
4205 		error = PTR_ERR(to);
4206 		goto exit1;
4207 	}
4208 
4209 	error = -EXDEV;
4210 	if (oldnd.path.mnt != newnd.path.mnt)
4211 		goto exit2;
4212 
4213 	old_dir = oldnd.path.dentry;
4214 	error = -EBUSY;
4215 	if (oldnd.last_type != LAST_NORM)
4216 		goto exit2;
4217 
4218 	new_dir = newnd.path.dentry;
4219 	if (flags & RENAME_NOREPLACE)
4220 		error = -EEXIST;
4221 	if (newnd.last_type != LAST_NORM)
4222 		goto exit2;
4223 
4224 	error = mnt_want_write(oldnd.path.mnt);
4225 	if (error)
4226 		goto exit2;
4227 
4228 	oldnd.flags &= ~LOOKUP_PARENT;
4229 	newnd.flags &= ~LOOKUP_PARENT;
4230 	if (!(flags & RENAME_EXCHANGE))
4231 		newnd.flags |= LOOKUP_RENAME_TARGET;
4232 
4233 retry_deleg:
4234 	trap = lock_rename(new_dir, old_dir);
4235 
4236 	old_dentry = lookup_hash(&oldnd);
4237 	error = PTR_ERR(old_dentry);
4238 	if (IS_ERR(old_dentry))
4239 		goto exit3;
4240 	/* source must exist */
4241 	error = -ENOENT;
4242 	if (d_is_negative(old_dentry))
4243 		goto exit4;
4244 	new_dentry = lookup_hash(&newnd);
4245 	error = PTR_ERR(new_dentry);
4246 	if (IS_ERR(new_dentry))
4247 		goto exit4;
4248 	error = -EEXIST;
4249 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4250 		goto exit5;
4251 	if (flags & RENAME_EXCHANGE) {
4252 		error = -ENOENT;
4253 		if (d_is_negative(new_dentry))
4254 			goto exit5;
4255 
4256 		if (!d_is_dir(new_dentry)) {
4257 			error = -ENOTDIR;
4258 			if (newnd.last.name[newnd.last.len])
4259 				goto exit5;
4260 		}
4261 	}
4262 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4263 	if (!d_is_dir(old_dentry)) {
4264 		error = -ENOTDIR;
4265 		if (oldnd.last.name[oldnd.last.len])
4266 			goto exit5;
4267 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4268 			goto exit5;
4269 	}
4270 	/* source should not be ancestor of target */
4271 	error = -EINVAL;
4272 	if (old_dentry == trap)
4273 		goto exit5;
4274 	/* target should not be an ancestor of source */
4275 	if (!(flags & RENAME_EXCHANGE))
4276 		error = -ENOTEMPTY;
4277 	if (new_dentry == trap)
4278 		goto exit5;
4279 
4280 	error = security_path_rename(&oldnd.path, old_dentry,
4281 				     &newnd.path, new_dentry, flags);
4282 	if (error)
4283 		goto exit5;
4284 	error = vfs_rename(old_dir->d_inode, old_dentry,
4285 			   new_dir->d_inode, new_dentry,
4286 			   &delegated_inode, flags);
4287 exit5:
4288 	dput(new_dentry);
4289 exit4:
4290 	dput(old_dentry);
4291 exit3:
4292 	unlock_rename(new_dir, old_dir);
4293 	if (delegated_inode) {
4294 		error = break_deleg_wait(&delegated_inode);
4295 		if (!error)
4296 			goto retry_deleg;
4297 	}
4298 	mnt_drop_write(oldnd.path.mnt);
4299 exit2:
4300 	if (retry_estale(error, lookup_flags))
4301 		should_retry = true;
4302 	path_put(&newnd.path);
4303 	putname(to);
4304 exit1:
4305 	path_put(&oldnd.path);
4306 	putname(from);
4307 	if (should_retry) {
4308 		should_retry = false;
4309 		lookup_flags |= LOOKUP_REVAL;
4310 		goto retry;
4311 	}
4312 exit:
4313 	return error;
4314 }
4315 
4316 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4317 		int, newdfd, const char __user *, newname)
4318 {
4319 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4320 }
4321 
4322 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4323 {
4324 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4325 }
4326 
4327 int readlink_copy(char __user *buffer, int buflen, const char *link)
4328 {
4329 	int len = PTR_ERR(link);
4330 	if (IS_ERR(link))
4331 		goto out;
4332 
4333 	len = strlen(link);
4334 	if (len > (unsigned) buflen)
4335 		len = buflen;
4336 	if (copy_to_user(buffer, link, len))
4337 		len = -EFAULT;
4338 out:
4339 	return len;
4340 }
4341 EXPORT_SYMBOL(readlink_copy);
4342 
4343 /*
4344  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4345  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4346  * using) it for any given inode is up to filesystem.
4347  */
4348 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4349 {
4350 	struct nameidata nd;
4351 	void *cookie;
4352 	int res;
4353 
4354 	nd.depth = 0;
4355 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4356 	if (IS_ERR(cookie))
4357 		return PTR_ERR(cookie);
4358 
4359 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4360 	if (dentry->d_inode->i_op->put_link)
4361 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4362 	return res;
4363 }
4364 EXPORT_SYMBOL(generic_readlink);
4365 
4366 /* get the link contents into pagecache */
4367 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4368 {
4369 	char *kaddr;
4370 	struct page *page;
4371 	struct address_space *mapping = dentry->d_inode->i_mapping;
4372 	page = read_mapping_page(mapping, 0, NULL);
4373 	if (IS_ERR(page))
4374 		return (char*)page;
4375 	*ppage = page;
4376 	kaddr = kmap(page);
4377 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4378 	return kaddr;
4379 }
4380 
4381 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4382 {
4383 	struct page *page = NULL;
4384 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4385 	if (page) {
4386 		kunmap(page);
4387 		page_cache_release(page);
4388 	}
4389 	return res;
4390 }
4391 EXPORT_SYMBOL(page_readlink);
4392 
4393 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4394 {
4395 	struct page *page = NULL;
4396 	nd_set_link(nd, page_getlink(dentry, &page));
4397 	return page;
4398 }
4399 EXPORT_SYMBOL(page_follow_link_light);
4400 
4401 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4402 {
4403 	struct page *page = cookie;
4404 
4405 	if (page) {
4406 		kunmap(page);
4407 		page_cache_release(page);
4408 	}
4409 }
4410 EXPORT_SYMBOL(page_put_link);
4411 
4412 /*
4413  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4414  */
4415 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4416 {
4417 	struct address_space *mapping = inode->i_mapping;
4418 	struct page *page;
4419 	void *fsdata;
4420 	int err;
4421 	char *kaddr;
4422 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4423 	if (nofs)
4424 		flags |= AOP_FLAG_NOFS;
4425 
4426 retry:
4427 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4428 				flags, &page, &fsdata);
4429 	if (err)
4430 		goto fail;
4431 
4432 	kaddr = kmap_atomic(page);
4433 	memcpy(kaddr, symname, len-1);
4434 	kunmap_atomic(kaddr);
4435 
4436 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4437 							page, fsdata);
4438 	if (err < 0)
4439 		goto fail;
4440 	if (err < len-1)
4441 		goto retry;
4442 
4443 	mark_inode_dirty(inode);
4444 	return 0;
4445 fail:
4446 	return err;
4447 }
4448 EXPORT_SYMBOL(__page_symlink);
4449 
4450 int page_symlink(struct inode *inode, const char *symname, int len)
4451 {
4452 	return __page_symlink(inode, symname, len,
4453 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4454 }
4455 EXPORT_SYMBOL(page_symlink);
4456 
4457 const struct inode_operations page_symlink_inode_operations = {
4458 	.readlink	= generic_readlink,
4459 	.follow_link	= page_follow_link_light,
4460 	.put_link	= page_put_link,
4461 };
4462 EXPORT_SYMBOL(page_symlink_inode_operations);
4463