1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/filelock.h> 24 #include <linux/namei.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/personality.h> 29 #include <linux/security.h> 30 #include <linux/ima.h> 31 #include <linux/syscalls.h> 32 #include <linux/mount.h> 33 #include <linux/audit.h> 34 #include <linux/capability.h> 35 #include <linux/file.h> 36 #include <linux/fcntl.h> 37 #include <linux/device_cgroup.h> 38 #include <linux/fs_struct.h> 39 #include <linux/posix_acl.h> 40 #include <linux/hash.h> 41 #include <linux/bitops.h> 42 #include <linux/init_task.h> 43 #include <linux/uaccess.h> 44 45 #include "internal.h" 46 #include "mount.h" 47 48 /* [Feb-1997 T. Schoebel-Theuer] 49 * Fundamental changes in the pathname lookup mechanisms (namei) 50 * were necessary because of omirr. The reason is that omirr needs 51 * to know the _real_ pathname, not the user-supplied one, in case 52 * of symlinks (and also when transname replacements occur). 53 * 54 * The new code replaces the old recursive symlink resolution with 55 * an iterative one (in case of non-nested symlink chains). It does 56 * this with calls to <fs>_follow_link(). 57 * As a side effect, dir_namei(), _namei() and follow_link() are now 58 * replaced with a single function lookup_dentry() that can handle all 59 * the special cases of the former code. 60 * 61 * With the new dcache, the pathname is stored at each inode, at least as 62 * long as the refcount of the inode is positive. As a side effect, the 63 * size of the dcache depends on the inode cache and thus is dynamic. 64 * 65 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 66 * resolution to correspond with current state of the code. 67 * 68 * Note that the symlink resolution is not *completely* iterative. 69 * There is still a significant amount of tail- and mid- recursion in 70 * the algorithm. Also, note that <fs>_readlink() is not used in 71 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 72 * may return different results than <fs>_follow_link(). Many virtual 73 * filesystems (including /proc) exhibit this behavior. 74 */ 75 76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 77 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 78 * and the name already exists in form of a symlink, try to create the new 79 * name indicated by the symlink. The old code always complained that the 80 * name already exists, due to not following the symlink even if its target 81 * is nonexistent. The new semantics affects also mknod() and link() when 82 * the name is a symlink pointing to a non-existent name. 83 * 84 * I don't know which semantics is the right one, since I have no access 85 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 86 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 87 * "old" one. Personally, I think the new semantics is much more logical. 88 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 89 * file does succeed in both HP-UX and SunOs, but not in Solaris 90 * and in the old Linux semantics. 91 */ 92 93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 94 * semantics. See the comments in "open_namei" and "do_link" below. 95 * 96 * [10-Sep-98 Alan Modra] Another symlink change. 97 */ 98 99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 100 * inside the path - always follow. 101 * in the last component in creation/removal/renaming - never follow. 102 * if LOOKUP_FOLLOW passed - follow. 103 * if the pathname has trailing slashes - follow. 104 * otherwise - don't follow. 105 * (applied in that order). 106 * 107 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 108 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 109 * During the 2.4 we need to fix the userland stuff depending on it - 110 * hopefully we will be able to get rid of that wart in 2.5. So far only 111 * XEmacs seems to be relying on it... 112 */ 113 /* 114 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 115 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 116 * any extra contention... 117 */ 118 119 /* In order to reduce some races, while at the same time doing additional 120 * checking and hopefully speeding things up, we copy filenames to the 121 * kernel data space before using them.. 122 * 123 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 124 * PATH_MAX includes the nul terminator --RR. 125 */ 126 127 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 128 129 struct filename * 130 getname_flags(const char __user *filename, int flags, int *empty) 131 { 132 struct filename *result; 133 char *kname; 134 int len; 135 136 result = audit_reusename(filename); 137 if (result) 138 return result; 139 140 result = __getname(); 141 if (unlikely(!result)) 142 return ERR_PTR(-ENOMEM); 143 144 /* 145 * First, try to embed the struct filename inside the names_cache 146 * allocation 147 */ 148 kname = (char *)result->iname; 149 result->name = kname; 150 151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 152 if (unlikely(len < 0)) { 153 __putname(result); 154 return ERR_PTR(len); 155 } 156 157 /* 158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 159 * separate struct filename so we can dedicate the entire 160 * names_cache allocation for the pathname, and re-do the copy from 161 * userland. 162 */ 163 if (unlikely(len == EMBEDDED_NAME_MAX)) { 164 const size_t size = offsetof(struct filename, iname[1]); 165 kname = (char *)result; 166 167 /* 168 * size is chosen that way we to guarantee that 169 * result->iname[0] is within the same object and that 170 * kname can't be equal to result->iname, no matter what. 171 */ 172 result = kzalloc(size, GFP_KERNEL); 173 if (unlikely(!result)) { 174 __putname(kname); 175 return ERR_PTR(-ENOMEM); 176 } 177 result->name = kname; 178 len = strncpy_from_user(kname, filename, PATH_MAX); 179 if (unlikely(len < 0)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(len); 183 } 184 if (unlikely(len == PATH_MAX)) { 185 __putname(kname); 186 kfree(result); 187 return ERR_PTR(-ENAMETOOLONG); 188 } 189 } 190 191 result->refcnt = 1; 192 /* The empty path is special. */ 193 if (unlikely(!len)) { 194 if (empty) 195 *empty = 1; 196 if (!(flags & LOOKUP_EMPTY)) { 197 putname(result); 198 return ERR_PTR(-ENOENT); 199 } 200 } 201 202 result->uptr = filename; 203 result->aname = NULL; 204 audit_getname(result); 205 return result; 206 } 207 208 struct filename * 209 getname_uflags(const char __user *filename, int uflags) 210 { 211 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 212 213 return getname_flags(filename, flags, NULL); 214 } 215 216 struct filename * 217 getname(const char __user * filename) 218 { 219 return getname_flags(filename, 0, NULL); 220 } 221 222 struct filename * 223 getname_kernel(const char * filename) 224 { 225 struct filename *result; 226 int len = strlen(filename) + 1; 227 228 result = __getname(); 229 if (unlikely(!result)) 230 return ERR_PTR(-ENOMEM); 231 232 if (len <= EMBEDDED_NAME_MAX) { 233 result->name = (char *)result->iname; 234 } else if (len <= PATH_MAX) { 235 const size_t size = offsetof(struct filename, iname[1]); 236 struct filename *tmp; 237 238 tmp = kmalloc(size, GFP_KERNEL); 239 if (unlikely(!tmp)) { 240 __putname(result); 241 return ERR_PTR(-ENOMEM); 242 } 243 tmp->name = (char *)result; 244 result = tmp; 245 } else { 246 __putname(result); 247 return ERR_PTR(-ENAMETOOLONG); 248 } 249 memcpy((char *)result->name, filename, len); 250 result->uptr = NULL; 251 result->aname = NULL; 252 result->refcnt = 1; 253 audit_getname(result); 254 255 return result; 256 } 257 258 void putname(struct filename *name) 259 { 260 if (IS_ERR(name)) 261 return; 262 263 BUG_ON(name->refcnt <= 0); 264 265 if (--name->refcnt > 0) 266 return; 267 268 if (name->name != name->iname) { 269 __putname(name->name); 270 kfree(name); 271 } else 272 __putname(name); 273 } 274 275 /** 276 * check_acl - perform ACL permission checking 277 * @idmap: idmap of the mount the inode was found from 278 * @inode: inode to check permissions on 279 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 280 * 281 * This function performs the ACL permission checking. Since this function 282 * retrieve POSIX acls it needs to know whether it is called from a blocking or 283 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 284 * 285 * If the inode has been found through an idmapped mount the idmap of 286 * the vfsmount must be passed through @idmap. This function will then take 287 * care to map the inode according to @idmap before checking permissions. 288 * On non-idmapped mounts or if permission checking is to be performed on the 289 * raw inode simply passs @nop_mnt_idmap. 290 */ 291 static int check_acl(struct mnt_idmap *idmap, 292 struct inode *inode, int mask) 293 { 294 #ifdef CONFIG_FS_POSIX_ACL 295 struct posix_acl *acl; 296 297 if (mask & MAY_NOT_BLOCK) { 298 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 299 if (!acl) 300 return -EAGAIN; 301 /* no ->get_inode_acl() calls in RCU mode... */ 302 if (is_uncached_acl(acl)) 303 return -ECHILD; 304 return posix_acl_permission(idmap, inode, acl, mask); 305 } 306 307 acl = get_inode_acl(inode, ACL_TYPE_ACCESS); 308 if (IS_ERR(acl)) 309 return PTR_ERR(acl); 310 if (acl) { 311 int error = posix_acl_permission(idmap, inode, acl, mask); 312 posix_acl_release(acl); 313 return error; 314 } 315 #endif 316 317 return -EAGAIN; 318 } 319 320 /** 321 * acl_permission_check - perform basic UNIX permission checking 322 * @idmap: idmap of the mount the inode was found from 323 * @inode: inode to check permissions on 324 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 325 * 326 * This function performs the basic UNIX permission checking. Since this 327 * function may retrieve POSIX acls it needs to know whether it is called from a 328 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 329 * 330 * If the inode has been found through an idmapped mount the idmap of 331 * the vfsmount must be passed through @idmap. This function will then take 332 * care to map the inode according to @idmap before checking permissions. 333 * On non-idmapped mounts or if permission checking is to be performed on the 334 * raw inode simply passs @nop_mnt_idmap. 335 */ 336 static int acl_permission_check(struct mnt_idmap *idmap, 337 struct inode *inode, int mask) 338 { 339 unsigned int mode = inode->i_mode; 340 vfsuid_t vfsuid; 341 342 /* Are we the owner? If so, ACL's don't matter */ 343 vfsuid = i_uid_into_vfsuid(idmap, inode); 344 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) { 345 mask &= 7; 346 mode >>= 6; 347 return (mask & ~mode) ? -EACCES : 0; 348 } 349 350 /* Do we have ACL's? */ 351 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 352 int error = check_acl(idmap, inode, mask); 353 if (error != -EAGAIN) 354 return error; 355 } 356 357 /* Only RWX matters for group/other mode bits */ 358 mask &= 7; 359 360 /* 361 * Are the group permissions different from 362 * the other permissions in the bits we care 363 * about? Need to check group ownership if so. 364 */ 365 if (mask & (mode ^ (mode >> 3))) { 366 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode); 367 if (vfsgid_in_group_p(vfsgid)) 368 mode >>= 3; 369 } 370 371 /* Bits in 'mode' clear that we require? */ 372 return (mask & ~mode) ? -EACCES : 0; 373 } 374 375 /** 376 * generic_permission - check for access rights on a Posix-like filesystem 377 * @idmap: idmap of the mount the inode was found from 378 * @inode: inode to check access rights for 379 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 380 * %MAY_NOT_BLOCK ...) 381 * 382 * Used to check for read/write/execute permissions on a file. 383 * We use "fsuid" for this, letting us set arbitrary permissions 384 * for filesystem access without changing the "normal" uids which 385 * are used for other things. 386 * 387 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 388 * request cannot be satisfied (eg. requires blocking or too much complexity). 389 * It would then be called again in ref-walk mode. 390 * 391 * If the inode has been found through an idmapped mount the idmap of 392 * the vfsmount must be passed through @idmap. This function will then take 393 * care to map the inode according to @idmap before checking permissions. 394 * On non-idmapped mounts or if permission checking is to be performed on the 395 * raw inode simply passs @nop_mnt_idmap. 396 */ 397 int generic_permission(struct mnt_idmap *idmap, struct inode *inode, 398 int mask) 399 { 400 int ret; 401 402 /* 403 * Do the basic permission checks. 404 */ 405 ret = acl_permission_check(idmap, inode, mask); 406 if (ret != -EACCES) 407 return ret; 408 409 if (S_ISDIR(inode->i_mode)) { 410 /* DACs are overridable for directories */ 411 if (!(mask & MAY_WRITE)) 412 if (capable_wrt_inode_uidgid(idmap, inode, 413 CAP_DAC_READ_SEARCH)) 414 return 0; 415 if (capable_wrt_inode_uidgid(idmap, inode, 416 CAP_DAC_OVERRIDE)) 417 return 0; 418 return -EACCES; 419 } 420 421 /* 422 * Searching includes executable on directories, else just read. 423 */ 424 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 425 if (mask == MAY_READ) 426 if (capable_wrt_inode_uidgid(idmap, inode, 427 CAP_DAC_READ_SEARCH)) 428 return 0; 429 /* 430 * Read/write DACs are always overridable. 431 * Executable DACs are overridable when there is 432 * at least one exec bit set. 433 */ 434 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 435 if (capable_wrt_inode_uidgid(idmap, inode, 436 CAP_DAC_OVERRIDE)) 437 return 0; 438 439 return -EACCES; 440 } 441 EXPORT_SYMBOL(generic_permission); 442 443 /** 444 * do_inode_permission - UNIX permission checking 445 * @idmap: idmap of the mount the inode was found from 446 * @inode: inode to check permissions on 447 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 448 * 449 * We _really_ want to just do "generic_permission()" without 450 * even looking at the inode->i_op values. So we keep a cache 451 * flag in inode->i_opflags, that says "this has not special 452 * permission function, use the fast case". 453 */ 454 static inline int do_inode_permission(struct mnt_idmap *idmap, 455 struct inode *inode, int mask) 456 { 457 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 458 if (likely(inode->i_op->permission)) 459 return inode->i_op->permission(idmap, inode, mask); 460 461 /* This gets set once for the inode lifetime */ 462 spin_lock(&inode->i_lock); 463 inode->i_opflags |= IOP_FASTPERM; 464 spin_unlock(&inode->i_lock); 465 } 466 return generic_permission(idmap, inode, mask); 467 } 468 469 /** 470 * sb_permission - Check superblock-level permissions 471 * @sb: Superblock of inode to check permission on 472 * @inode: Inode to check permission on 473 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 474 * 475 * Separate out file-system wide checks from inode-specific permission checks. 476 */ 477 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 478 { 479 if (unlikely(mask & MAY_WRITE)) { 480 umode_t mode = inode->i_mode; 481 482 /* Nobody gets write access to a read-only fs. */ 483 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 484 return -EROFS; 485 } 486 return 0; 487 } 488 489 /** 490 * inode_permission - Check for access rights to a given inode 491 * @idmap: idmap of the mount the inode was found from 492 * @inode: Inode to check permission on 493 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 494 * 495 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 496 * this, letting us set arbitrary permissions for filesystem access without 497 * changing the "normal" UIDs which are used for other things. 498 * 499 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 500 */ 501 int inode_permission(struct mnt_idmap *idmap, 502 struct inode *inode, int mask) 503 { 504 int retval; 505 506 retval = sb_permission(inode->i_sb, inode, mask); 507 if (retval) 508 return retval; 509 510 if (unlikely(mask & MAY_WRITE)) { 511 /* 512 * Nobody gets write access to an immutable file. 513 */ 514 if (IS_IMMUTABLE(inode)) 515 return -EPERM; 516 517 /* 518 * Updating mtime will likely cause i_uid and i_gid to be 519 * written back improperly if their true value is unknown 520 * to the vfs. 521 */ 522 if (HAS_UNMAPPED_ID(idmap, inode)) 523 return -EACCES; 524 } 525 526 retval = do_inode_permission(idmap, inode, mask); 527 if (retval) 528 return retval; 529 530 retval = devcgroup_inode_permission(inode, mask); 531 if (retval) 532 return retval; 533 534 return security_inode_permission(inode, mask); 535 } 536 EXPORT_SYMBOL(inode_permission); 537 538 /** 539 * path_get - get a reference to a path 540 * @path: path to get the reference to 541 * 542 * Given a path increment the reference count to the dentry and the vfsmount. 543 */ 544 void path_get(const struct path *path) 545 { 546 mntget(path->mnt); 547 dget(path->dentry); 548 } 549 EXPORT_SYMBOL(path_get); 550 551 /** 552 * path_put - put a reference to a path 553 * @path: path to put the reference to 554 * 555 * Given a path decrement the reference count to the dentry and the vfsmount. 556 */ 557 void path_put(const struct path *path) 558 { 559 dput(path->dentry); 560 mntput(path->mnt); 561 } 562 EXPORT_SYMBOL(path_put); 563 564 #define EMBEDDED_LEVELS 2 565 struct nameidata { 566 struct path path; 567 struct qstr last; 568 struct path root; 569 struct inode *inode; /* path.dentry.d_inode */ 570 unsigned int flags, state; 571 unsigned seq, next_seq, m_seq, r_seq; 572 int last_type; 573 unsigned depth; 574 int total_link_count; 575 struct saved { 576 struct path link; 577 struct delayed_call done; 578 const char *name; 579 unsigned seq; 580 } *stack, internal[EMBEDDED_LEVELS]; 581 struct filename *name; 582 struct nameidata *saved; 583 unsigned root_seq; 584 int dfd; 585 vfsuid_t dir_vfsuid; 586 umode_t dir_mode; 587 } __randomize_layout; 588 589 #define ND_ROOT_PRESET 1 590 #define ND_ROOT_GRABBED 2 591 #define ND_JUMPED 4 592 593 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name) 594 { 595 struct nameidata *old = current->nameidata; 596 p->stack = p->internal; 597 p->depth = 0; 598 p->dfd = dfd; 599 p->name = name; 600 p->path.mnt = NULL; 601 p->path.dentry = NULL; 602 p->total_link_count = old ? old->total_link_count : 0; 603 p->saved = old; 604 current->nameidata = p; 605 } 606 607 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name, 608 const struct path *root) 609 { 610 __set_nameidata(p, dfd, name); 611 p->state = 0; 612 if (unlikely(root)) { 613 p->state = ND_ROOT_PRESET; 614 p->root = *root; 615 } 616 } 617 618 static void restore_nameidata(void) 619 { 620 struct nameidata *now = current->nameidata, *old = now->saved; 621 622 current->nameidata = old; 623 if (old) 624 old->total_link_count = now->total_link_count; 625 if (now->stack != now->internal) 626 kfree(now->stack); 627 } 628 629 static bool nd_alloc_stack(struct nameidata *nd) 630 { 631 struct saved *p; 632 633 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 634 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 635 if (unlikely(!p)) 636 return false; 637 memcpy(p, nd->internal, sizeof(nd->internal)); 638 nd->stack = p; 639 return true; 640 } 641 642 /** 643 * path_connected - Verify that a dentry is below mnt.mnt_root 644 * 645 * Rename can sometimes move a file or directory outside of a bind 646 * mount, path_connected allows those cases to be detected. 647 */ 648 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 649 { 650 struct super_block *sb = mnt->mnt_sb; 651 652 /* Bind mounts can have disconnected paths */ 653 if (mnt->mnt_root == sb->s_root) 654 return true; 655 656 return is_subdir(dentry, mnt->mnt_root); 657 } 658 659 static void drop_links(struct nameidata *nd) 660 { 661 int i = nd->depth; 662 while (i--) { 663 struct saved *last = nd->stack + i; 664 do_delayed_call(&last->done); 665 clear_delayed_call(&last->done); 666 } 667 } 668 669 static void leave_rcu(struct nameidata *nd) 670 { 671 nd->flags &= ~LOOKUP_RCU; 672 nd->seq = nd->next_seq = 0; 673 rcu_read_unlock(); 674 } 675 676 static void terminate_walk(struct nameidata *nd) 677 { 678 drop_links(nd); 679 if (!(nd->flags & LOOKUP_RCU)) { 680 int i; 681 path_put(&nd->path); 682 for (i = 0; i < nd->depth; i++) 683 path_put(&nd->stack[i].link); 684 if (nd->state & ND_ROOT_GRABBED) { 685 path_put(&nd->root); 686 nd->state &= ~ND_ROOT_GRABBED; 687 } 688 } else { 689 leave_rcu(nd); 690 } 691 nd->depth = 0; 692 nd->path.mnt = NULL; 693 nd->path.dentry = NULL; 694 } 695 696 /* path_put is needed afterwards regardless of success or failure */ 697 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 698 { 699 int res = __legitimize_mnt(path->mnt, mseq); 700 if (unlikely(res)) { 701 if (res > 0) 702 path->mnt = NULL; 703 path->dentry = NULL; 704 return false; 705 } 706 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 707 path->dentry = NULL; 708 return false; 709 } 710 return !read_seqcount_retry(&path->dentry->d_seq, seq); 711 } 712 713 static inline bool legitimize_path(struct nameidata *nd, 714 struct path *path, unsigned seq) 715 { 716 return __legitimize_path(path, seq, nd->m_seq); 717 } 718 719 static bool legitimize_links(struct nameidata *nd) 720 { 721 int i; 722 if (unlikely(nd->flags & LOOKUP_CACHED)) { 723 drop_links(nd); 724 nd->depth = 0; 725 return false; 726 } 727 for (i = 0; i < nd->depth; i++) { 728 struct saved *last = nd->stack + i; 729 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 730 drop_links(nd); 731 nd->depth = i + 1; 732 return false; 733 } 734 } 735 return true; 736 } 737 738 static bool legitimize_root(struct nameidata *nd) 739 { 740 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 741 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET)) 742 return true; 743 nd->state |= ND_ROOT_GRABBED; 744 return legitimize_path(nd, &nd->root, nd->root_seq); 745 } 746 747 /* 748 * Path walking has 2 modes, rcu-walk and ref-walk (see 749 * Documentation/filesystems/path-lookup.txt). In situations when we can't 750 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 751 * normal reference counts on dentries and vfsmounts to transition to ref-walk 752 * mode. Refcounts are grabbed at the last known good point before rcu-walk 753 * got stuck, so ref-walk may continue from there. If this is not successful 754 * (eg. a seqcount has changed), then failure is returned and it's up to caller 755 * to restart the path walk from the beginning in ref-walk mode. 756 */ 757 758 /** 759 * try_to_unlazy - try to switch to ref-walk mode. 760 * @nd: nameidata pathwalk data 761 * Returns: true on success, false on failure 762 * 763 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 764 * for ref-walk mode. 765 * Must be called from rcu-walk context. 766 * Nothing should touch nameidata between try_to_unlazy() failure and 767 * terminate_walk(). 768 */ 769 static bool try_to_unlazy(struct nameidata *nd) 770 { 771 struct dentry *parent = nd->path.dentry; 772 773 BUG_ON(!(nd->flags & LOOKUP_RCU)); 774 775 if (unlikely(!legitimize_links(nd))) 776 goto out1; 777 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 778 goto out; 779 if (unlikely(!legitimize_root(nd))) 780 goto out; 781 leave_rcu(nd); 782 BUG_ON(nd->inode != parent->d_inode); 783 return true; 784 785 out1: 786 nd->path.mnt = NULL; 787 nd->path.dentry = NULL; 788 out: 789 leave_rcu(nd); 790 return false; 791 } 792 793 /** 794 * try_to_unlazy_next - try to switch to ref-walk mode. 795 * @nd: nameidata pathwalk data 796 * @dentry: next dentry to step into 797 * Returns: true on success, false on failure 798 * 799 * Similar to try_to_unlazy(), but here we have the next dentry already 800 * picked by rcu-walk and want to legitimize that in addition to the current 801 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 802 * Nothing should touch nameidata between try_to_unlazy_next() failure and 803 * terminate_walk(). 804 */ 805 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry) 806 { 807 int res; 808 BUG_ON(!(nd->flags & LOOKUP_RCU)); 809 810 if (unlikely(!legitimize_links(nd))) 811 goto out2; 812 res = __legitimize_mnt(nd->path.mnt, nd->m_seq); 813 if (unlikely(res)) { 814 if (res > 0) 815 goto out2; 816 goto out1; 817 } 818 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 819 goto out1; 820 821 /* 822 * We need to move both the parent and the dentry from the RCU domain 823 * to be properly refcounted. And the sequence number in the dentry 824 * validates *both* dentry counters, since we checked the sequence 825 * number of the parent after we got the child sequence number. So we 826 * know the parent must still be valid if the child sequence number is 827 */ 828 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 829 goto out; 830 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq)) 831 goto out_dput; 832 /* 833 * Sequence counts matched. Now make sure that the root is 834 * still valid and get it if required. 835 */ 836 if (unlikely(!legitimize_root(nd))) 837 goto out_dput; 838 leave_rcu(nd); 839 return true; 840 841 out2: 842 nd->path.mnt = NULL; 843 out1: 844 nd->path.dentry = NULL; 845 out: 846 leave_rcu(nd); 847 return false; 848 out_dput: 849 leave_rcu(nd); 850 dput(dentry); 851 return false; 852 } 853 854 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 855 { 856 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 857 return dentry->d_op->d_revalidate(dentry, flags); 858 else 859 return 1; 860 } 861 862 /** 863 * complete_walk - successful completion of path walk 864 * @nd: pointer nameidata 865 * 866 * If we had been in RCU mode, drop out of it and legitimize nd->path. 867 * Revalidate the final result, unless we'd already done that during 868 * the path walk or the filesystem doesn't ask for it. Return 0 on 869 * success, -error on failure. In case of failure caller does not 870 * need to drop nd->path. 871 */ 872 static int complete_walk(struct nameidata *nd) 873 { 874 struct dentry *dentry = nd->path.dentry; 875 int status; 876 877 if (nd->flags & LOOKUP_RCU) { 878 /* 879 * We don't want to zero nd->root for scoped-lookups or 880 * externally-managed nd->root. 881 */ 882 if (!(nd->state & ND_ROOT_PRESET)) 883 if (!(nd->flags & LOOKUP_IS_SCOPED)) 884 nd->root.mnt = NULL; 885 nd->flags &= ~LOOKUP_CACHED; 886 if (!try_to_unlazy(nd)) 887 return -ECHILD; 888 } 889 890 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 891 /* 892 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 893 * ever step outside the root during lookup" and should already 894 * be guaranteed by the rest of namei, we want to avoid a namei 895 * BUG resulting in userspace being given a path that was not 896 * scoped within the root at some point during the lookup. 897 * 898 * So, do a final sanity-check to make sure that in the 899 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 900 * we won't silently return an fd completely outside of the 901 * requested root to userspace. 902 * 903 * Userspace could move the path outside the root after this 904 * check, but as discussed elsewhere this is not a concern (the 905 * resolved file was inside the root at some point). 906 */ 907 if (!path_is_under(&nd->path, &nd->root)) 908 return -EXDEV; 909 } 910 911 if (likely(!(nd->state & ND_JUMPED))) 912 return 0; 913 914 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 915 return 0; 916 917 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 918 if (status > 0) 919 return 0; 920 921 if (!status) 922 status = -ESTALE; 923 924 return status; 925 } 926 927 static int set_root(struct nameidata *nd) 928 { 929 struct fs_struct *fs = current->fs; 930 931 /* 932 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 933 * still have to ensure it doesn't happen because it will cause a breakout 934 * from the dirfd. 935 */ 936 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 937 return -ENOTRECOVERABLE; 938 939 if (nd->flags & LOOKUP_RCU) { 940 unsigned seq; 941 942 do { 943 seq = read_seqcount_begin(&fs->seq); 944 nd->root = fs->root; 945 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 946 } while (read_seqcount_retry(&fs->seq, seq)); 947 } else { 948 get_fs_root(fs, &nd->root); 949 nd->state |= ND_ROOT_GRABBED; 950 } 951 return 0; 952 } 953 954 static int nd_jump_root(struct nameidata *nd) 955 { 956 if (unlikely(nd->flags & LOOKUP_BENEATH)) 957 return -EXDEV; 958 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 959 /* Absolute path arguments to path_init() are allowed. */ 960 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 961 return -EXDEV; 962 } 963 if (!nd->root.mnt) { 964 int error = set_root(nd); 965 if (error) 966 return error; 967 } 968 if (nd->flags & LOOKUP_RCU) { 969 struct dentry *d; 970 nd->path = nd->root; 971 d = nd->path.dentry; 972 nd->inode = d->d_inode; 973 nd->seq = nd->root_seq; 974 if (read_seqcount_retry(&d->d_seq, nd->seq)) 975 return -ECHILD; 976 } else { 977 path_put(&nd->path); 978 nd->path = nd->root; 979 path_get(&nd->path); 980 nd->inode = nd->path.dentry->d_inode; 981 } 982 nd->state |= ND_JUMPED; 983 return 0; 984 } 985 986 /* 987 * Helper to directly jump to a known parsed path from ->get_link, 988 * caller must have taken a reference to path beforehand. 989 */ 990 int nd_jump_link(const struct path *path) 991 { 992 int error = -ELOOP; 993 struct nameidata *nd = current->nameidata; 994 995 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 996 goto err; 997 998 error = -EXDEV; 999 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 1000 if (nd->path.mnt != path->mnt) 1001 goto err; 1002 } 1003 /* Not currently safe for scoped-lookups. */ 1004 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 1005 goto err; 1006 1007 path_put(&nd->path); 1008 nd->path = *path; 1009 nd->inode = nd->path.dentry->d_inode; 1010 nd->state |= ND_JUMPED; 1011 return 0; 1012 1013 err: 1014 path_put(path); 1015 return error; 1016 } 1017 1018 static inline void put_link(struct nameidata *nd) 1019 { 1020 struct saved *last = nd->stack + --nd->depth; 1021 do_delayed_call(&last->done); 1022 if (!(nd->flags & LOOKUP_RCU)) 1023 path_put(&last->link); 1024 } 1025 1026 static int sysctl_protected_symlinks __read_mostly; 1027 static int sysctl_protected_hardlinks __read_mostly; 1028 static int sysctl_protected_fifos __read_mostly; 1029 static int sysctl_protected_regular __read_mostly; 1030 1031 #ifdef CONFIG_SYSCTL 1032 static struct ctl_table namei_sysctls[] = { 1033 { 1034 .procname = "protected_symlinks", 1035 .data = &sysctl_protected_symlinks, 1036 .maxlen = sizeof(int), 1037 .mode = 0644, 1038 .proc_handler = proc_dointvec_minmax, 1039 .extra1 = SYSCTL_ZERO, 1040 .extra2 = SYSCTL_ONE, 1041 }, 1042 { 1043 .procname = "protected_hardlinks", 1044 .data = &sysctl_protected_hardlinks, 1045 .maxlen = sizeof(int), 1046 .mode = 0644, 1047 .proc_handler = proc_dointvec_minmax, 1048 .extra1 = SYSCTL_ZERO, 1049 .extra2 = SYSCTL_ONE, 1050 }, 1051 { 1052 .procname = "protected_fifos", 1053 .data = &sysctl_protected_fifos, 1054 .maxlen = sizeof(int), 1055 .mode = 0644, 1056 .proc_handler = proc_dointvec_minmax, 1057 .extra1 = SYSCTL_ZERO, 1058 .extra2 = SYSCTL_TWO, 1059 }, 1060 { 1061 .procname = "protected_regular", 1062 .data = &sysctl_protected_regular, 1063 .maxlen = sizeof(int), 1064 .mode = 0644, 1065 .proc_handler = proc_dointvec_minmax, 1066 .extra1 = SYSCTL_ZERO, 1067 .extra2 = SYSCTL_TWO, 1068 }, 1069 { } 1070 }; 1071 1072 static int __init init_fs_namei_sysctls(void) 1073 { 1074 register_sysctl_init("fs", namei_sysctls); 1075 return 0; 1076 } 1077 fs_initcall(init_fs_namei_sysctls); 1078 1079 #endif /* CONFIG_SYSCTL */ 1080 1081 /** 1082 * may_follow_link - Check symlink following for unsafe situations 1083 * @nd: nameidata pathwalk data 1084 * 1085 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1086 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1087 * in a sticky world-writable directory. This is to protect privileged 1088 * processes from failing races against path names that may change out 1089 * from under them by way of other users creating malicious symlinks. 1090 * It will permit symlinks to be followed only when outside a sticky 1091 * world-writable directory, or when the uid of the symlink and follower 1092 * match, or when the directory owner matches the symlink's owner. 1093 * 1094 * Returns 0 if following the symlink is allowed, -ve on error. 1095 */ 1096 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1097 { 1098 struct mnt_idmap *idmap; 1099 vfsuid_t vfsuid; 1100 1101 if (!sysctl_protected_symlinks) 1102 return 0; 1103 1104 idmap = mnt_idmap(nd->path.mnt); 1105 vfsuid = i_uid_into_vfsuid(idmap, inode); 1106 /* Allowed if owner and follower match. */ 1107 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 1108 return 0; 1109 1110 /* Allowed if parent directory not sticky and world-writable. */ 1111 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1112 return 0; 1113 1114 /* Allowed if parent directory and link owner match. */ 1115 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid)) 1116 return 0; 1117 1118 if (nd->flags & LOOKUP_RCU) 1119 return -ECHILD; 1120 1121 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1122 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1123 return -EACCES; 1124 } 1125 1126 /** 1127 * safe_hardlink_source - Check for safe hardlink conditions 1128 * @idmap: idmap of the mount the inode was found from 1129 * @inode: the source inode to hardlink from 1130 * 1131 * Return false if at least one of the following conditions: 1132 * - inode is not a regular file 1133 * - inode is setuid 1134 * - inode is setgid and group-exec 1135 * - access failure for read and write 1136 * 1137 * Otherwise returns true. 1138 */ 1139 static bool safe_hardlink_source(struct mnt_idmap *idmap, 1140 struct inode *inode) 1141 { 1142 umode_t mode = inode->i_mode; 1143 1144 /* Special files should not get pinned to the filesystem. */ 1145 if (!S_ISREG(mode)) 1146 return false; 1147 1148 /* Setuid files should not get pinned to the filesystem. */ 1149 if (mode & S_ISUID) 1150 return false; 1151 1152 /* Executable setgid files should not get pinned to the filesystem. */ 1153 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1154 return false; 1155 1156 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1157 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE)) 1158 return false; 1159 1160 return true; 1161 } 1162 1163 /** 1164 * may_linkat - Check permissions for creating a hardlink 1165 * @idmap: idmap of the mount the inode was found from 1166 * @link: the source to hardlink from 1167 * 1168 * Block hardlink when all of: 1169 * - sysctl_protected_hardlinks enabled 1170 * - fsuid does not match inode 1171 * - hardlink source is unsafe (see safe_hardlink_source() above) 1172 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1173 * 1174 * If the inode has been found through an idmapped mount the idmap of 1175 * the vfsmount must be passed through @idmap. This function will then take 1176 * care to map the inode according to @idmap before checking permissions. 1177 * On non-idmapped mounts or if permission checking is to be performed on the 1178 * raw inode simply pass @nop_mnt_idmap. 1179 * 1180 * Returns 0 if successful, -ve on error. 1181 */ 1182 int may_linkat(struct mnt_idmap *idmap, const struct path *link) 1183 { 1184 struct inode *inode = link->dentry->d_inode; 1185 1186 /* Inode writeback is not safe when the uid or gid are invalid. */ 1187 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 1188 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 1189 return -EOVERFLOW; 1190 1191 if (!sysctl_protected_hardlinks) 1192 return 0; 1193 1194 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1195 * otherwise, it must be a safe source. 1196 */ 1197 if (safe_hardlink_source(idmap, inode) || 1198 inode_owner_or_capable(idmap, inode)) 1199 return 0; 1200 1201 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1202 return -EPERM; 1203 } 1204 1205 /** 1206 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1207 * should be allowed, or not, on files that already 1208 * exist. 1209 * @idmap: idmap of the mount the inode was found from 1210 * @nd: nameidata pathwalk data 1211 * @inode: the inode of the file to open 1212 * 1213 * Block an O_CREAT open of a FIFO (or a regular file) when: 1214 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1215 * - the file already exists 1216 * - we are in a sticky directory 1217 * - we don't own the file 1218 * - the owner of the directory doesn't own the file 1219 * - the directory is world writable 1220 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1221 * the directory doesn't have to be world writable: being group writable will 1222 * be enough. 1223 * 1224 * If the inode has been found through an idmapped mount the idmap of 1225 * the vfsmount must be passed through @idmap. This function will then take 1226 * care to map the inode according to @idmap before checking permissions. 1227 * On non-idmapped mounts or if permission checking is to be performed on the 1228 * raw inode simply pass @nop_mnt_idmap. 1229 * 1230 * Returns 0 if the open is allowed, -ve on error. 1231 */ 1232 static int may_create_in_sticky(struct mnt_idmap *idmap, 1233 struct nameidata *nd, struct inode *const inode) 1234 { 1235 umode_t dir_mode = nd->dir_mode; 1236 vfsuid_t dir_vfsuid = nd->dir_vfsuid; 1237 1238 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1239 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1240 likely(!(dir_mode & S_ISVTX)) || 1241 vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) || 1242 vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid())) 1243 return 0; 1244 1245 if (likely(dir_mode & 0002) || 1246 (dir_mode & 0020 && 1247 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1248 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1249 const char *operation = S_ISFIFO(inode->i_mode) ? 1250 "sticky_create_fifo" : 1251 "sticky_create_regular"; 1252 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1253 return -EACCES; 1254 } 1255 return 0; 1256 } 1257 1258 /* 1259 * follow_up - Find the mountpoint of path's vfsmount 1260 * 1261 * Given a path, find the mountpoint of its source file system. 1262 * Replace @path with the path of the mountpoint in the parent mount. 1263 * Up is towards /. 1264 * 1265 * Return 1 if we went up a level and 0 if we were already at the 1266 * root. 1267 */ 1268 int follow_up(struct path *path) 1269 { 1270 struct mount *mnt = real_mount(path->mnt); 1271 struct mount *parent; 1272 struct dentry *mountpoint; 1273 1274 read_seqlock_excl(&mount_lock); 1275 parent = mnt->mnt_parent; 1276 if (parent == mnt) { 1277 read_sequnlock_excl(&mount_lock); 1278 return 0; 1279 } 1280 mntget(&parent->mnt); 1281 mountpoint = dget(mnt->mnt_mountpoint); 1282 read_sequnlock_excl(&mount_lock); 1283 dput(path->dentry); 1284 path->dentry = mountpoint; 1285 mntput(path->mnt); 1286 path->mnt = &parent->mnt; 1287 return 1; 1288 } 1289 EXPORT_SYMBOL(follow_up); 1290 1291 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1292 struct path *path, unsigned *seqp) 1293 { 1294 while (mnt_has_parent(m)) { 1295 struct dentry *mountpoint = m->mnt_mountpoint; 1296 1297 m = m->mnt_parent; 1298 if (unlikely(root->dentry == mountpoint && 1299 root->mnt == &m->mnt)) 1300 break; 1301 if (mountpoint != m->mnt.mnt_root) { 1302 path->mnt = &m->mnt; 1303 path->dentry = mountpoint; 1304 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1305 return true; 1306 } 1307 } 1308 return false; 1309 } 1310 1311 static bool choose_mountpoint(struct mount *m, const struct path *root, 1312 struct path *path) 1313 { 1314 bool found; 1315 1316 rcu_read_lock(); 1317 while (1) { 1318 unsigned seq, mseq = read_seqbegin(&mount_lock); 1319 1320 found = choose_mountpoint_rcu(m, root, path, &seq); 1321 if (unlikely(!found)) { 1322 if (!read_seqretry(&mount_lock, mseq)) 1323 break; 1324 } else { 1325 if (likely(__legitimize_path(path, seq, mseq))) 1326 break; 1327 rcu_read_unlock(); 1328 path_put(path); 1329 rcu_read_lock(); 1330 } 1331 } 1332 rcu_read_unlock(); 1333 return found; 1334 } 1335 1336 /* 1337 * Perform an automount 1338 * - return -EISDIR to tell follow_managed() to stop and return the path we 1339 * were called with. 1340 */ 1341 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1342 { 1343 struct dentry *dentry = path->dentry; 1344 1345 /* We don't want to mount if someone's just doing a stat - 1346 * unless they're stat'ing a directory and appended a '/' to 1347 * the name. 1348 * 1349 * We do, however, want to mount if someone wants to open or 1350 * create a file of any type under the mountpoint, wants to 1351 * traverse through the mountpoint or wants to open the 1352 * mounted directory. Also, autofs may mark negative dentries 1353 * as being automount points. These will need the attentions 1354 * of the daemon to instantiate them before they can be used. 1355 */ 1356 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1357 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1358 dentry->d_inode) 1359 return -EISDIR; 1360 1361 if (count && (*count)++ >= MAXSYMLINKS) 1362 return -ELOOP; 1363 1364 return finish_automount(dentry->d_op->d_automount(path), path); 1365 } 1366 1367 /* 1368 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1369 * dentries are pinned but not locked here, so negative dentry can go 1370 * positive right under us. Use of smp_load_acquire() provides a barrier 1371 * sufficient for ->d_inode and ->d_flags consistency. 1372 */ 1373 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1374 int *count, unsigned lookup_flags) 1375 { 1376 struct vfsmount *mnt = path->mnt; 1377 bool need_mntput = false; 1378 int ret = 0; 1379 1380 while (flags & DCACHE_MANAGED_DENTRY) { 1381 /* Allow the filesystem to manage the transit without i_mutex 1382 * being held. */ 1383 if (flags & DCACHE_MANAGE_TRANSIT) { 1384 ret = path->dentry->d_op->d_manage(path, false); 1385 flags = smp_load_acquire(&path->dentry->d_flags); 1386 if (ret < 0) 1387 break; 1388 } 1389 1390 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1391 struct vfsmount *mounted = lookup_mnt(path); 1392 if (mounted) { // ... in our namespace 1393 dput(path->dentry); 1394 if (need_mntput) 1395 mntput(path->mnt); 1396 path->mnt = mounted; 1397 path->dentry = dget(mounted->mnt_root); 1398 // here we know it's positive 1399 flags = path->dentry->d_flags; 1400 need_mntput = true; 1401 continue; 1402 } 1403 } 1404 1405 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1406 break; 1407 1408 // uncovered automount point 1409 ret = follow_automount(path, count, lookup_flags); 1410 flags = smp_load_acquire(&path->dentry->d_flags); 1411 if (ret < 0) 1412 break; 1413 } 1414 1415 if (ret == -EISDIR) 1416 ret = 0; 1417 // possible if you race with several mount --move 1418 if (need_mntput && path->mnt == mnt) 1419 mntput(path->mnt); 1420 if (!ret && unlikely(d_flags_negative(flags))) 1421 ret = -ENOENT; 1422 *jumped = need_mntput; 1423 return ret; 1424 } 1425 1426 static inline int traverse_mounts(struct path *path, bool *jumped, 1427 int *count, unsigned lookup_flags) 1428 { 1429 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1430 1431 /* fastpath */ 1432 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1433 *jumped = false; 1434 if (unlikely(d_flags_negative(flags))) 1435 return -ENOENT; 1436 return 0; 1437 } 1438 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1439 } 1440 1441 int follow_down_one(struct path *path) 1442 { 1443 struct vfsmount *mounted; 1444 1445 mounted = lookup_mnt(path); 1446 if (mounted) { 1447 dput(path->dentry); 1448 mntput(path->mnt); 1449 path->mnt = mounted; 1450 path->dentry = dget(mounted->mnt_root); 1451 return 1; 1452 } 1453 return 0; 1454 } 1455 EXPORT_SYMBOL(follow_down_one); 1456 1457 /* 1458 * Follow down to the covering mount currently visible to userspace. At each 1459 * point, the filesystem owning that dentry may be queried as to whether the 1460 * caller is permitted to proceed or not. 1461 */ 1462 int follow_down(struct path *path, unsigned int flags) 1463 { 1464 struct vfsmount *mnt = path->mnt; 1465 bool jumped; 1466 int ret = traverse_mounts(path, &jumped, NULL, flags); 1467 1468 if (path->mnt != mnt) 1469 mntput(mnt); 1470 return ret; 1471 } 1472 EXPORT_SYMBOL(follow_down); 1473 1474 /* 1475 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1476 * we meet a managed dentry that would need blocking. 1477 */ 1478 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path) 1479 { 1480 struct dentry *dentry = path->dentry; 1481 unsigned int flags = dentry->d_flags; 1482 1483 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1484 return true; 1485 1486 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1487 return false; 1488 1489 for (;;) { 1490 /* 1491 * Don't forget we might have a non-mountpoint managed dentry 1492 * that wants to block transit. 1493 */ 1494 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1495 int res = dentry->d_op->d_manage(path, true); 1496 if (res) 1497 return res == -EISDIR; 1498 flags = dentry->d_flags; 1499 } 1500 1501 if (flags & DCACHE_MOUNTED) { 1502 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1503 if (mounted) { 1504 path->mnt = &mounted->mnt; 1505 dentry = path->dentry = mounted->mnt.mnt_root; 1506 nd->state |= ND_JUMPED; 1507 nd->next_seq = read_seqcount_begin(&dentry->d_seq); 1508 flags = dentry->d_flags; 1509 // makes sure that non-RCU pathwalk could reach 1510 // this state. 1511 if (read_seqretry(&mount_lock, nd->m_seq)) 1512 return false; 1513 continue; 1514 } 1515 if (read_seqretry(&mount_lock, nd->m_seq)) 1516 return false; 1517 } 1518 return !(flags & DCACHE_NEED_AUTOMOUNT); 1519 } 1520 } 1521 1522 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1523 struct path *path) 1524 { 1525 bool jumped; 1526 int ret; 1527 1528 path->mnt = nd->path.mnt; 1529 path->dentry = dentry; 1530 if (nd->flags & LOOKUP_RCU) { 1531 unsigned int seq = nd->next_seq; 1532 if (likely(__follow_mount_rcu(nd, path))) 1533 return 0; 1534 // *path and nd->next_seq might've been clobbered 1535 path->mnt = nd->path.mnt; 1536 path->dentry = dentry; 1537 nd->next_seq = seq; 1538 if (!try_to_unlazy_next(nd, dentry)) 1539 return -ECHILD; 1540 } 1541 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1542 if (jumped) { 1543 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1544 ret = -EXDEV; 1545 else 1546 nd->state |= ND_JUMPED; 1547 } 1548 if (unlikely(ret)) { 1549 dput(path->dentry); 1550 if (path->mnt != nd->path.mnt) 1551 mntput(path->mnt); 1552 } 1553 return ret; 1554 } 1555 1556 /* 1557 * This looks up the name in dcache and possibly revalidates the found dentry. 1558 * NULL is returned if the dentry does not exist in the cache. 1559 */ 1560 static struct dentry *lookup_dcache(const struct qstr *name, 1561 struct dentry *dir, 1562 unsigned int flags) 1563 { 1564 struct dentry *dentry = d_lookup(dir, name); 1565 if (dentry) { 1566 int error = d_revalidate(dentry, flags); 1567 if (unlikely(error <= 0)) { 1568 if (!error) 1569 d_invalidate(dentry); 1570 dput(dentry); 1571 return ERR_PTR(error); 1572 } 1573 } 1574 return dentry; 1575 } 1576 1577 /* 1578 * Parent directory has inode locked exclusive. This is one 1579 * and only case when ->lookup() gets called on non in-lookup 1580 * dentries - as the matter of fact, this only gets called 1581 * when directory is guaranteed to have no in-lookup children 1582 * at all. 1583 */ 1584 static struct dentry *__lookup_hash(const struct qstr *name, 1585 struct dentry *base, unsigned int flags) 1586 { 1587 struct dentry *dentry = lookup_dcache(name, base, flags); 1588 struct dentry *old; 1589 struct inode *dir = base->d_inode; 1590 1591 if (dentry) 1592 return dentry; 1593 1594 /* Don't create child dentry for a dead directory. */ 1595 if (unlikely(IS_DEADDIR(dir))) 1596 return ERR_PTR(-ENOENT); 1597 1598 dentry = d_alloc(base, name); 1599 if (unlikely(!dentry)) 1600 return ERR_PTR(-ENOMEM); 1601 1602 old = dir->i_op->lookup(dir, dentry, flags); 1603 if (unlikely(old)) { 1604 dput(dentry); 1605 dentry = old; 1606 } 1607 return dentry; 1608 } 1609 1610 static struct dentry *lookup_fast(struct nameidata *nd) 1611 { 1612 struct dentry *dentry, *parent = nd->path.dentry; 1613 int status = 1; 1614 1615 /* 1616 * Rename seqlock is not required here because in the off chance 1617 * of a false negative due to a concurrent rename, the caller is 1618 * going to fall back to non-racy lookup. 1619 */ 1620 if (nd->flags & LOOKUP_RCU) { 1621 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq); 1622 if (unlikely(!dentry)) { 1623 if (!try_to_unlazy(nd)) 1624 return ERR_PTR(-ECHILD); 1625 return NULL; 1626 } 1627 1628 /* 1629 * This sequence count validates that the parent had no 1630 * changes while we did the lookup of the dentry above. 1631 */ 1632 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 1633 return ERR_PTR(-ECHILD); 1634 1635 status = d_revalidate(dentry, nd->flags); 1636 if (likely(status > 0)) 1637 return dentry; 1638 if (!try_to_unlazy_next(nd, dentry)) 1639 return ERR_PTR(-ECHILD); 1640 if (status == -ECHILD) 1641 /* we'd been told to redo it in non-rcu mode */ 1642 status = d_revalidate(dentry, nd->flags); 1643 } else { 1644 dentry = __d_lookup(parent, &nd->last); 1645 if (unlikely(!dentry)) 1646 return NULL; 1647 status = d_revalidate(dentry, nd->flags); 1648 } 1649 if (unlikely(status <= 0)) { 1650 if (!status) 1651 d_invalidate(dentry); 1652 dput(dentry); 1653 return ERR_PTR(status); 1654 } 1655 return dentry; 1656 } 1657 1658 /* Fast lookup failed, do it the slow way */ 1659 static struct dentry *__lookup_slow(const struct qstr *name, 1660 struct dentry *dir, 1661 unsigned int flags) 1662 { 1663 struct dentry *dentry, *old; 1664 struct inode *inode = dir->d_inode; 1665 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1666 1667 /* Don't go there if it's already dead */ 1668 if (unlikely(IS_DEADDIR(inode))) 1669 return ERR_PTR(-ENOENT); 1670 again: 1671 dentry = d_alloc_parallel(dir, name, &wq); 1672 if (IS_ERR(dentry)) 1673 return dentry; 1674 if (unlikely(!d_in_lookup(dentry))) { 1675 int error = d_revalidate(dentry, flags); 1676 if (unlikely(error <= 0)) { 1677 if (!error) { 1678 d_invalidate(dentry); 1679 dput(dentry); 1680 goto again; 1681 } 1682 dput(dentry); 1683 dentry = ERR_PTR(error); 1684 } 1685 } else { 1686 old = inode->i_op->lookup(inode, dentry, flags); 1687 d_lookup_done(dentry); 1688 if (unlikely(old)) { 1689 dput(dentry); 1690 dentry = old; 1691 } 1692 } 1693 return dentry; 1694 } 1695 1696 static struct dentry *lookup_slow(const struct qstr *name, 1697 struct dentry *dir, 1698 unsigned int flags) 1699 { 1700 struct inode *inode = dir->d_inode; 1701 struct dentry *res; 1702 inode_lock_shared(inode); 1703 res = __lookup_slow(name, dir, flags); 1704 inode_unlock_shared(inode); 1705 return res; 1706 } 1707 1708 static inline int may_lookup(struct mnt_idmap *idmap, 1709 struct nameidata *nd) 1710 { 1711 if (nd->flags & LOOKUP_RCU) { 1712 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1713 if (err != -ECHILD || !try_to_unlazy(nd)) 1714 return err; 1715 } 1716 return inode_permission(idmap, nd->inode, MAY_EXEC); 1717 } 1718 1719 static int reserve_stack(struct nameidata *nd, struct path *link) 1720 { 1721 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1722 return -ELOOP; 1723 1724 if (likely(nd->depth != EMBEDDED_LEVELS)) 1725 return 0; 1726 if (likely(nd->stack != nd->internal)) 1727 return 0; 1728 if (likely(nd_alloc_stack(nd))) 1729 return 0; 1730 1731 if (nd->flags & LOOKUP_RCU) { 1732 // we need to grab link before we do unlazy. And we can't skip 1733 // unlazy even if we fail to grab the link - cleanup needs it 1734 bool grabbed_link = legitimize_path(nd, link, nd->next_seq); 1735 1736 if (!try_to_unlazy(nd) || !grabbed_link) 1737 return -ECHILD; 1738 1739 if (nd_alloc_stack(nd)) 1740 return 0; 1741 } 1742 return -ENOMEM; 1743 } 1744 1745 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1746 1747 static const char *pick_link(struct nameidata *nd, struct path *link, 1748 struct inode *inode, int flags) 1749 { 1750 struct saved *last; 1751 const char *res; 1752 int error = reserve_stack(nd, link); 1753 1754 if (unlikely(error)) { 1755 if (!(nd->flags & LOOKUP_RCU)) 1756 path_put(link); 1757 return ERR_PTR(error); 1758 } 1759 last = nd->stack + nd->depth++; 1760 last->link = *link; 1761 clear_delayed_call(&last->done); 1762 last->seq = nd->next_seq; 1763 1764 if (flags & WALK_TRAILING) { 1765 error = may_follow_link(nd, inode); 1766 if (unlikely(error)) 1767 return ERR_PTR(error); 1768 } 1769 1770 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1771 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1772 return ERR_PTR(-ELOOP); 1773 1774 if (!(nd->flags & LOOKUP_RCU)) { 1775 touch_atime(&last->link); 1776 cond_resched(); 1777 } else if (atime_needs_update(&last->link, inode)) { 1778 if (!try_to_unlazy(nd)) 1779 return ERR_PTR(-ECHILD); 1780 touch_atime(&last->link); 1781 } 1782 1783 error = security_inode_follow_link(link->dentry, inode, 1784 nd->flags & LOOKUP_RCU); 1785 if (unlikely(error)) 1786 return ERR_PTR(error); 1787 1788 res = READ_ONCE(inode->i_link); 1789 if (!res) { 1790 const char * (*get)(struct dentry *, struct inode *, 1791 struct delayed_call *); 1792 get = inode->i_op->get_link; 1793 if (nd->flags & LOOKUP_RCU) { 1794 res = get(NULL, inode, &last->done); 1795 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1796 res = get(link->dentry, inode, &last->done); 1797 } else { 1798 res = get(link->dentry, inode, &last->done); 1799 } 1800 if (!res) 1801 goto all_done; 1802 if (IS_ERR(res)) 1803 return res; 1804 } 1805 if (*res == '/') { 1806 error = nd_jump_root(nd); 1807 if (unlikely(error)) 1808 return ERR_PTR(error); 1809 while (unlikely(*++res == '/')) 1810 ; 1811 } 1812 if (*res) 1813 return res; 1814 all_done: // pure jump 1815 put_link(nd); 1816 return NULL; 1817 } 1818 1819 /* 1820 * Do we need to follow links? We _really_ want to be able 1821 * to do this check without having to look at inode->i_op, 1822 * so we keep a cache of "no, this doesn't need follow_link" 1823 * for the common case. 1824 * 1825 * NOTE: dentry must be what nd->next_seq had been sampled from. 1826 */ 1827 static const char *step_into(struct nameidata *nd, int flags, 1828 struct dentry *dentry) 1829 { 1830 struct path path; 1831 struct inode *inode; 1832 int err = handle_mounts(nd, dentry, &path); 1833 1834 if (err < 0) 1835 return ERR_PTR(err); 1836 inode = path.dentry->d_inode; 1837 if (likely(!d_is_symlink(path.dentry)) || 1838 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1839 (flags & WALK_NOFOLLOW)) { 1840 /* not a symlink or should not follow */ 1841 if (nd->flags & LOOKUP_RCU) { 1842 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1843 return ERR_PTR(-ECHILD); 1844 if (unlikely(!inode)) 1845 return ERR_PTR(-ENOENT); 1846 } else { 1847 dput(nd->path.dentry); 1848 if (nd->path.mnt != path.mnt) 1849 mntput(nd->path.mnt); 1850 } 1851 nd->path = path; 1852 nd->inode = inode; 1853 nd->seq = nd->next_seq; 1854 return NULL; 1855 } 1856 if (nd->flags & LOOKUP_RCU) { 1857 /* make sure that d_is_symlink above matches inode */ 1858 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq)) 1859 return ERR_PTR(-ECHILD); 1860 } else { 1861 if (path.mnt == nd->path.mnt) 1862 mntget(path.mnt); 1863 } 1864 return pick_link(nd, &path, inode, flags); 1865 } 1866 1867 static struct dentry *follow_dotdot_rcu(struct nameidata *nd) 1868 { 1869 struct dentry *parent, *old; 1870 1871 if (path_equal(&nd->path, &nd->root)) 1872 goto in_root; 1873 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1874 struct path path; 1875 unsigned seq; 1876 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1877 &nd->root, &path, &seq)) 1878 goto in_root; 1879 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1880 return ERR_PTR(-ECHILD); 1881 nd->path = path; 1882 nd->inode = path.dentry->d_inode; 1883 nd->seq = seq; 1884 // makes sure that non-RCU pathwalk could reach this state 1885 if (read_seqretry(&mount_lock, nd->m_seq)) 1886 return ERR_PTR(-ECHILD); 1887 /* we know that mountpoint was pinned */ 1888 } 1889 old = nd->path.dentry; 1890 parent = old->d_parent; 1891 nd->next_seq = read_seqcount_begin(&parent->d_seq); 1892 // makes sure that non-RCU pathwalk could reach this state 1893 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1894 return ERR_PTR(-ECHILD); 1895 if (unlikely(!path_connected(nd->path.mnt, parent))) 1896 return ERR_PTR(-ECHILD); 1897 return parent; 1898 in_root: 1899 if (read_seqretry(&mount_lock, nd->m_seq)) 1900 return ERR_PTR(-ECHILD); 1901 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1902 return ERR_PTR(-ECHILD); 1903 nd->next_seq = nd->seq; 1904 return nd->path.dentry; 1905 } 1906 1907 static struct dentry *follow_dotdot(struct nameidata *nd) 1908 { 1909 struct dentry *parent; 1910 1911 if (path_equal(&nd->path, &nd->root)) 1912 goto in_root; 1913 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1914 struct path path; 1915 1916 if (!choose_mountpoint(real_mount(nd->path.mnt), 1917 &nd->root, &path)) 1918 goto in_root; 1919 path_put(&nd->path); 1920 nd->path = path; 1921 nd->inode = path.dentry->d_inode; 1922 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1923 return ERR_PTR(-EXDEV); 1924 } 1925 /* rare case of legitimate dget_parent()... */ 1926 parent = dget_parent(nd->path.dentry); 1927 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1928 dput(parent); 1929 return ERR_PTR(-ENOENT); 1930 } 1931 return parent; 1932 1933 in_root: 1934 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1935 return ERR_PTR(-EXDEV); 1936 return dget(nd->path.dentry); 1937 } 1938 1939 static const char *handle_dots(struct nameidata *nd, int type) 1940 { 1941 if (type == LAST_DOTDOT) { 1942 const char *error = NULL; 1943 struct dentry *parent; 1944 1945 if (!nd->root.mnt) { 1946 error = ERR_PTR(set_root(nd)); 1947 if (error) 1948 return error; 1949 } 1950 if (nd->flags & LOOKUP_RCU) 1951 parent = follow_dotdot_rcu(nd); 1952 else 1953 parent = follow_dotdot(nd); 1954 if (IS_ERR(parent)) 1955 return ERR_CAST(parent); 1956 error = step_into(nd, WALK_NOFOLLOW, parent); 1957 if (unlikely(error)) 1958 return error; 1959 1960 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1961 /* 1962 * If there was a racing rename or mount along our 1963 * path, then we can't be sure that ".." hasn't jumped 1964 * above nd->root (and so userspace should retry or use 1965 * some fallback). 1966 */ 1967 smp_rmb(); 1968 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)) 1969 return ERR_PTR(-EAGAIN); 1970 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)) 1971 return ERR_PTR(-EAGAIN); 1972 } 1973 } 1974 return NULL; 1975 } 1976 1977 static const char *walk_component(struct nameidata *nd, int flags) 1978 { 1979 struct dentry *dentry; 1980 /* 1981 * "." and ".." are special - ".." especially so because it has 1982 * to be able to know about the current root directory and 1983 * parent relationships. 1984 */ 1985 if (unlikely(nd->last_type != LAST_NORM)) { 1986 if (!(flags & WALK_MORE) && nd->depth) 1987 put_link(nd); 1988 return handle_dots(nd, nd->last_type); 1989 } 1990 dentry = lookup_fast(nd); 1991 if (IS_ERR(dentry)) 1992 return ERR_CAST(dentry); 1993 if (unlikely(!dentry)) { 1994 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1995 if (IS_ERR(dentry)) 1996 return ERR_CAST(dentry); 1997 } 1998 if (!(flags & WALK_MORE) && nd->depth) 1999 put_link(nd); 2000 return step_into(nd, flags, dentry); 2001 } 2002 2003 /* 2004 * We can do the critical dentry name comparison and hashing 2005 * operations one word at a time, but we are limited to: 2006 * 2007 * - Architectures with fast unaligned word accesses. We could 2008 * do a "get_unaligned()" if this helps and is sufficiently 2009 * fast. 2010 * 2011 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 2012 * do not trap on the (extremely unlikely) case of a page 2013 * crossing operation. 2014 * 2015 * - Furthermore, we need an efficient 64-bit compile for the 2016 * 64-bit case in order to generate the "number of bytes in 2017 * the final mask". Again, that could be replaced with a 2018 * efficient population count instruction or similar. 2019 */ 2020 #ifdef CONFIG_DCACHE_WORD_ACCESS 2021 2022 #include <asm/word-at-a-time.h> 2023 2024 #ifdef HASH_MIX 2025 2026 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 2027 2028 #elif defined(CONFIG_64BIT) 2029 /* 2030 * Register pressure in the mixing function is an issue, particularly 2031 * on 32-bit x86, but almost any function requires one state value and 2032 * one temporary. Instead, use a function designed for two state values 2033 * and no temporaries. 2034 * 2035 * This function cannot create a collision in only two iterations, so 2036 * we have two iterations to achieve avalanche. In those two iterations, 2037 * we have six layers of mixing, which is enough to spread one bit's 2038 * influence out to 2^6 = 64 state bits. 2039 * 2040 * Rotate constants are scored by considering either 64 one-bit input 2041 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 2042 * probability of that delta causing a change to each of the 128 output 2043 * bits, using a sample of random initial states. 2044 * 2045 * The Shannon entropy of the computed probabilities is then summed 2046 * to produce a score. Ideally, any input change has a 50% chance of 2047 * toggling any given output bit. 2048 * 2049 * Mixing scores (in bits) for (12,45): 2050 * Input delta: 1-bit 2-bit 2051 * 1 round: 713.3 42542.6 2052 * 2 rounds: 2753.7 140389.8 2053 * 3 rounds: 5954.1 233458.2 2054 * 4 rounds: 7862.6 256672.2 2055 * Perfect: 8192 258048 2056 * (64*128) (64*63/2 * 128) 2057 */ 2058 #define HASH_MIX(x, y, a) \ 2059 ( x ^= (a), \ 2060 y ^= x, x = rol64(x,12),\ 2061 x += y, y = rol64(y,45),\ 2062 y *= 9 ) 2063 2064 /* 2065 * Fold two longs into one 32-bit hash value. This must be fast, but 2066 * latency isn't quite as critical, as there is a fair bit of additional 2067 * work done before the hash value is used. 2068 */ 2069 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2070 { 2071 y ^= x * GOLDEN_RATIO_64; 2072 y *= GOLDEN_RATIO_64; 2073 return y >> 32; 2074 } 2075 2076 #else /* 32-bit case */ 2077 2078 /* 2079 * Mixing scores (in bits) for (7,20): 2080 * Input delta: 1-bit 2-bit 2081 * 1 round: 330.3 9201.6 2082 * 2 rounds: 1246.4 25475.4 2083 * 3 rounds: 1907.1 31295.1 2084 * 4 rounds: 2042.3 31718.6 2085 * Perfect: 2048 31744 2086 * (32*64) (32*31/2 * 64) 2087 */ 2088 #define HASH_MIX(x, y, a) \ 2089 ( x ^= (a), \ 2090 y ^= x, x = rol32(x, 7),\ 2091 x += y, y = rol32(y,20),\ 2092 y *= 9 ) 2093 2094 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2095 { 2096 /* Use arch-optimized multiply if one exists */ 2097 return __hash_32(y ^ __hash_32(x)); 2098 } 2099 2100 #endif 2101 2102 /* 2103 * Return the hash of a string of known length. This is carfully 2104 * designed to match hash_name(), which is the more critical function. 2105 * In particular, we must end by hashing a final word containing 0..7 2106 * payload bytes, to match the way that hash_name() iterates until it 2107 * finds the delimiter after the name. 2108 */ 2109 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2110 { 2111 unsigned long a, x = 0, y = (unsigned long)salt; 2112 2113 for (;;) { 2114 if (!len) 2115 goto done; 2116 a = load_unaligned_zeropad(name); 2117 if (len < sizeof(unsigned long)) 2118 break; 2119 HASH_MIX(x, y, a); 2120 name += sizeof(unsigned long); 2121 len -= sizeof(unsigned long); 2122 } 2123 x ^= a & bytemask_from_count(len); 2124 done: 2125 return fold_hash(x, y); 2126 } 2127 EXPORT_SYMBOL(full_name_hash); 2128 2129 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2130 u64 hashlen_string(const void *salt, const char *name) 2131 { 2132 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2133 unsigned long adata, mask, len; 2134 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2135 2136 len = 0; 2137 goto inside; 2138 2139 do { 2140 HASH_MIX(x, y, a); 2141 len += sizeof(unsigned long); 2142 inside: 2143 a = load_unaligned_zeropad(name+len); 2144 } while (!has_zero(a, &adata, &constants)); 2145 2146 adata = prep_zero_mask(a, adata, &constants); 2147 mask = create_zero_mask(adata); 2148 x ^= a & zero_bytemask(mask); 2149 2150 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2151 } 2152 EXPORT_SYMBOL(hashlen_string); 2153 2154 /* 2155 * Calculate the length and hash of the path component, and 2156 * return the "hash_len" as the result. 2157 */ 2158 static inline u64 hash_name(const void *salt, const char *name) 2159 { 2160 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2161 unsigned long adata, bdata, mask, len; 2162 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2163 2164 len = 0; 2165 goto inside; 2166 2167 do { 2168 HASH_MIX(x, y, a); 2169 len += sizeof(unsigned long); 2170 inside: 2171 a = load_unaligned_zeropad(name+len); 2172 b = a ^ REPEAT_BYTE('/'); 2173 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2174 2175 adata = prep_zero_mask(a, adata, &constants); 2176 bdata = prep_zero_mask(b, bdata, &constants); 2177 mask = create_zero_mask(adata | bdata); 2178 x ^= a & zero_bytemask(mask); 2179 2180 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2181 } 2182 2183 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2184 2185 /* Return the hash of a string of known length */ 2186 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2187 { 2188 unsigned long hash = init_name_hash(salt); 2189 while (len--) 2190 hash = partial_name_hash((unsigned char)*name++, hash); 2191 return end_name_hash(hash); 2192 } 2193 EXPORT_SYMBOL(full_name_hash); 2194 2195 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2196 u64 hashlen_string(const void *salt, const char *name) 2197 { 2198 unsigned long hash = init_name_hash(salt); 2199 unsigned long len = 0, c; 2200 2201 c = (unsigned char)*name; 2202 while (c) { 2203 len++; 2204 hash = partial_name_hash(c, hash); 2205 c = (unsigned char)name[len]; 2206 } 2207 return hashlen_create(end_name_hash(hash), len); 2208 } 2209 EXPORT_SYMBOL(hashlen_string); 2210 2211 /* 2212 * We know there's a real path component here of at least 2213 * one character. 2214 */ 2215 static inline u64 hash_name(const void *salt, const char *name) 2216 { 2217 unsigned long hash = init_name_hash(salt); 2218 unsigned long len = 0, c; 2219 2220 c = (unsigned char)*name; 2221 do { 2222 len++; 2223 hash = partial_name_hash(c, hash); 2224 c = (unsigned char)name[len]; 2225 } while (c && c != '/'); 2226 return hashlen_create(end_name_hash(hash), len); 2227 } 2228 2229 #endif 2230 2231 /* 2232 * Name resolution. 2233 * This is the basic name resolution function, turning a pathname into 2234 * the final dentry. We expect 'base' to be positive and a directory. 2235 * 2236 * Returns 0 and nd will have valid dentry and mnt on success. 2237 * Returns error and drops reference to input namei data on failure. 2238 */ 2239 static int link_path_walk(const char *name, struct nameidata *nd) 2240 { 2241 int depth = 0; // depth <= nd->depth 2242 int err; 2243 2244 nd->last_type = LAST_ROOT; 2245 nd->flags |= LOOKUP_PARENT; 2246 if (IS_ERR(name)) 2247 return PTR_ERR(name); 2248 while (*name=='/') 2249 name++; 2250 if (!*name) { 2251 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2252 return 0; 2253 } 2254 2255 /* At this point we know we have a real path component. */ 2256 for(;;) { 2257 struct mnt_idmap *idmap; 2258 const char *link; 2259 u64 hash_len; 2260 int type; 2261 2262 idmap = mnt_idmap(nd->path.mnt); 2263 err = may_lookup(idmap, nd); 2264 if (err) 2265 return err; 2266 2267 hash_len = hash_name(nd->path.dentry, name); 2268 2269 type = LAST_NORM; 2270 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2271 case 2: 2272 if (name[1] == '.') { 2273 type = LAST_DOTDOT; 2274 nd->state |= ND_JUMPED; 2275 } 2276 break; 2277 case 1: 2278 type = LAST_DOT; 2279 } 2280 if (likely(type == LAST_NORM)) { 2281 struct dentry *parent = nd->path.dentry; 2282 nd->state &= ~ND_JUMPED; 2283 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2284 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2285 err = parent->d_op->d_hash(parent, &this); 2286 if (err < 0) 2287 return err; 2288 hash_len = this.hash_len; 2289 name = this.name; 2290 } 2291 } 2292 2293 nd->last.hash_len = hash_len; 2294 nd->last.name = name; 2295 nd->last_type = type; 2296 2297 name += hashlen_len(hash_len); 2298 if (!*name) 2299 goto OK; 2300 /* 2301 * If it wasn't NUL, we know it was '/'. Skip that 2302 * slash, and continue until no more slashes. 2303 */ 2304 do { 2305 name++; 2306 } while (unlikely(*name == '/')); 2307 if (unlikely(!*name)) { 2308 OK: 2309 /* pathname or trailing symlink, done */ 2310 if (!depth) { 2311 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode); 2312 nd->dir_mode = nd->inode->i_mode; 2313 nd->flags &= ~LOOKUP_PARENT; 2314 return 0; 2315 } 2316 /* last component of nested symlink */ 2317 name = nd->stack[--depth].name; 2318 link = walk_component(nd, 0); 2319 } else { 2320 /* not the last component */ 2321 link = walk_component(nd, WALK_MORE); 2322 } 2323 if (unlikely(link)) { 2324 if (IS_ERR(link)) 2325 return PTR_ERR(link); 2326 /* a symlink to follow */ 2327 nd->stack[depth++].name = name; 2328 name = link; 2329 continue; 2330 } 2331 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2332 if (nd->flags & LOOKUP_RCU) { 2333 if (!try_to_unlazy(nd)) 2334 return -ECHILD; 2335 } 2336 return -ENOTDIR; 2337 } 2338 } 2339 } 2340 2341 /* must be paired with terminate_walk() */ 2342 static const char *path_init(struct nameidata *nd, unsigned flags) 2343 { 2344 int error; 2345 const char *s = nd->name->name; 2346 2347 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2348 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2349 return ERR_PTR(-EAGAIN); 2350 2351 if (!*s) 2352 flags &= ~LOOKUP_RCU; 2353 if (flags & LOOKUP_RCU) 2354 rcu_read_lock(); 2355 else 2356 nd->seq = nd->next_seq = 0; 2357 2358 nd->flags = flags; 2359 nd->state |= ND_JUMPED; 2360 2361 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2362 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2363 smp_rmb(); 2364 2365 if (nd->state & ND_ROOT_PRESET) { 2366 struct dentry *root = nd->root.dentry; 2367 struct inode *inode = root->d_inode; 2368 if (*s && unlikely(!d_can_lookup(root))) 2369 return ERR_PTR(-ENOTDIR); 2370 nd->path = nd->root; 2371 nd->inode = inode; 2372 if (flags & LOOKUP_RCU) { 2373 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2374 nd->root_seq = nd->seq; 2375 } else { 2376 path_get(&nd->path); 2377 } 2378 return s; 2379 } 2380 2381 nd->root.mnt = NULL; 2382 2383 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2384 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2385 error = nd_jump_root(nd); 2386 if (unlikely(error)) 2387 return ERR_PTR(error); 2388 return s; 2389 } 2390 2391 /* Relative pathname -- get the starting-point it is relative to. */ 2392 if (nd->dfd == AT_FDCWD) { 2393 if (flags & LOOKUP_RCU) { 2394 struct fs_struct *fs = current->fs; 2395 unsigned seq; 2396 2397 do { 2398 seq = read_seqcount_begin(&fs->seq); 2399 nd->path = fs->pwd; 2400 nd->inode = nd->path.dentry->d_inode; 2401 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2402 } while (read_seqcount_retry(&fs->seq, seq)); 2403 } else { 2404 get_fs_pwd(current->fs, &nd->path); 2405 nd->inode = nd->path.dentry->d_inode; 2406 } 2407 } else { 2408 /* Caller must check execute permissions on the starting path component */ 2409 struct fd f = fdget_raw(nd->dfd); 2410 struct dentry *dentry; 2411 2412 if (!f.file) 2413 return ERR_PTR(-EBADF); 2414 2415 dentry = f.file->f_path.dentry; 2416 2417 if (*s && unlikely(!d_can_lookup(dentry))) { 2418 fdput(f); 2419 return ERR_PTR(-ENOTDIR); 2420 } 2421 2422 nd->path = f.file->f_path; 2423 if (flags & LOOKUP_RCU) { 2424 nd->inode = nd->path.dentry->d_inode; 2425 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2426 } else { 2427 path_get(&nd->path); 2428 nd->inode = nd->path.dentry->d_inode; 2429 } 2430 fdput(f); 2431 } 2432 2433 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2434 if (flags & LOOKUP_IS_SCOPED) { 2435 nd->root = nd->path; 2436 if (flags & LOOKUP_RCU) { 2437 nd->root_seq = nd->seq; 2438 } else { 2439 path_get(&nd->root); 2440 nd->state |= ND_ROOT_GRABBED; 2441 } 2442 } 2443 return s; 2444 } 2445 2446 static inline const char *lookup_last(struct nameidata *nd) 2447 { 2448 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2449 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2450 2451 return walk_component(nd, WALK_TRAILING); 2452 } 2453 2454 static int handle_lookup_down(struct nameidata *nd) 2455 { 2456 if (!(nd->flags & LOOKUP_RCU)) 2457 dget(nd->path.dentry); 2458 nd->next_seq = nd->seq; 2459 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry)); 2460 } 2461 2462 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2463 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2464 { 2465 const char *s = path_init(nd, flags); 2466 int err; 2467 2468 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2469 err = handle_lookup_down(nd); 2470 if (unlikely(err < 0)) 2471 s = ERR_PTR(err); 2472 } 2473 2474 while (!(err = link_path_walk(s, nd)) && 2475 (s = lookup_last(nd)) != NULL) 2476 ; 2477 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2478 err = handle_lookup_down(nd); 2479 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please... 2480 } 2481 if (!err) 2482 err = complete_walk(nd); 2483 2484 if (!err && nd->flags & LOOKUP_DIRECTORY) 2485 if (!d_can_lookup(nd->path.dentry)) 2486 err = -ENOTDIR; 2487 if (!err) { 2488 *path = nd->path; 2489 nd->path.mnt = NULL; 2490 nd->path.dentry = NULL; 2491 } 2492 terminate_walk(nd); 2493 return err; 2494 } 2495 2496 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2497 struct path *path, struct path *root) 2498 { 2499 int retval; 2500 struct nameidata nd; 2501 if (IS_ERR(name)) 2502 return PTR_ERR(name); 2503 set_nameidata(&nd, dfd, name, root); 2504 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2505 if (unlikely(retval == -ECHILD)) 2506 retval = path_lookupat(&nd, flags, path); 2507 if (unlikely(retval == -ESTALE)) 2508 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2509 2510 if (likely(!retval)) 2511 audit_inode(name, path->dentry, 2512 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2513 restore_nameidata(); 2514 return retval; 2515 } 2516 2517 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2518 static int path_parentat(struct nameidata *nd, unsigned flags, 2519 struct path *parent) 2520 { 2521 const char *s = path_init(nd, flags); 2522 int err = link_path_walk(s, nd); 2523 if (!err) 2524 err = complete_walk(nd); 2525 if (!err) { 2526 *parent = nd->path; 2527 nd->path.mnt = NULL; 2528 nd->path.dentry = NULL; 2529 } 2530 terminate_walk(nd); 2531 return err; 2532 } 2533 2534 /* Note: this does not consume "name" */ 2535 static int filename_parentat(int dfd, struct filename *name, 2536 unsigned int flags, struct path *parent, 2537 struct qstr *last, int *type) 2538 { 2539 int retval; 2540 struct nameidata nd; 2541 2542 if (IS_ERR(name)) 2543 return PTR_ERR(name); 2544 set_nameidata(&nd, dfd, name, NULL); 2545 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2546 if (unlikely(retval == -ECHILD)) 2547 retval = path_parentat(&nd, flags, parent); 2548 if (unlikely(retval == -ESTALE)) 2549 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2550 if (likely(!retval)) { 2551 *last = nd.last; 2552 *type = nd.last_type; 2553 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2554 } 2555 restore_nameidata(); 2556 return retval; 2557 } 2558 2559 /* does lookup, returns the object with parent locked */ 2560 static struct dentry *__kern_path_locked(struct filename *name, struct path *path) 2561 { 2562 struct dentry *d; 2563 struct qstr last; 2564 int type, error; 2565 2566 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type); 2567 if (error) 2568 return ERR_PTR(error); 2569 if (unlikely(type != LAST_NORM)) { 2570 path_put(path); 2571 return ERR_PTR(-EINVAL); 2572 } 2573 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2574 d = __lookup_hash(&last, path->dentry, 0); 2575 if (IS_ERR(d)) { 2576 inode_unlock(path->dentry->d_inode); 2577 path_put(path); 2578 } 2579 return d; 2580 } 2581 2582 struct dentry *kern_path_locked(const char *name, struct path *path) 2583 { 2584 struct filename *filename = getname_kernel(name); 2585 struct dentry *res = __kern_path_locked(filename, path); 2586 2587 putname(filename); 2588 return res; 2589 } 2590 2591 int kern_path(const char *name, unsigned int flags, struct path *path) 2592 { 2593 struct filename *filename = getname_kernel(name); 2594 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL); 2595 2596 putname(filename); 2597 return ret; 2598 2599 } 2600 EXPORT_SYMBOL(kern_path); 2601 2602 /** 2603 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2604 * @dentry: pointer to dentry of the base directory 2605 * @mnt: pointer to vfs mount of the base directory 2606 * @name: pointer to file name 2607 * @flags: lookup flags 2608 * @path: pointer to struct path to fill 2609 */ 2610 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2611 const char *name, unsigned int flags, 2612 struct path *path) 2613 { 2614 struct filename *filename; 2615 struct path root = {.mnt = mnt, .dentry = dentry}; 2616 int ret; 2617 2618 filename = getname_kernel(name); 2619 /* the first argument of filename_lookup() is ignored with root */ 2620 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root); 2621 putname(filename); 2622 return ret; 2623 } 2624 EXPORT_SYMBOL(vfs_path_lookup); 2625 2626 static int lookup_one_common(struct mnt_idmap *idmap, 2627 const char *name, struct dentry *base, int len, 2628 struct qstr *this) 2629 { 2630 this->name = name; 2631 this->len = len; 2632 this->hash = full_name_hash(base, name, len); 2633 if (!len) 2634 return -EACCES; 2635 2636 if (unlikely(name[0] == '.')) { 2637 if (len < 2 || (len == 2 && name[1] == '.')) 2638 return -EACCES; 2639 } 2640 2641 while (len--) { 2642 unsigned int c = *(const unsigned char *)name++; 2643 if (c == '/' || c == '\0') 2644 return -EACCES; 2645 } 2646 /* 2647 * See if the low-level filesystem might want 2648 * to use its own hash.. 2649 */ 2650 if (base->d_flags & DCACHE_OP_HASH) { 2651 int err = base->d_op->d_hash(base, this); 2652 if (err < 0) 2653 return err; 2654 } 2655 2656 return inode_permission(idmap, base->d_inode, MAY_EXEC); 2657 } 2658 2659 /** 2660 * try_lookup_one_len - filesystem helper to lookup single pathname component 2661 * @name: pathname component to lookup 2662 * @base: base directory to lookup from 2663 * @len: maximum length @len should be interpreted to 2664 * 2665 * Look up a dentry by name in the dcache, returning NULL if it does not 2666 * currently exist. The function does not try to create a dentry. 2667 * 2668 * Note that this routine is purely a helper for filesystem usage and should 2669 * not be called by generic code. 2670 * 2671 * The caller must hold base->i_mutex. 2672 */ 2673 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2674 { 2675 struct qstr this; 2676 int err; 2677 2678 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2679 2680 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2681 if (err) 2682 return ERR_PTR(err); 2683 2684 return lookup_dcache(&this, base, 0); 2685 } 2686 EXPORT_SYMBOL(try_lookup_one_len); 2687 2688 /** 2689 * lookup_one_len - filesystem helper to lookup single pathname component 2690 * @name: pathname component to lookup 2691 * @base: base directory to lookup from 2692 * @len: maximum length @len should be interpreted to 2693 * 2694 * Note that this routine is purely a helper for filesystem usage and should 2695 * not be called by generic code. 2696 * 2697 * The caller must hold base->i_mutex. 2698 */ 2699 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2700 { 2701 struct dentry *dentry; 2702 struct qstr this; 2703 int err; 2704 2705 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2706 2707 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this); 2708 if (err) 2709 return ERR_PTR(err); 2710 2711 dentry = lookup_dcache(&this, base, 0); 2712 return dentry ? dentry : __lookup_slow(&this, base, 0); 2713 } 2714 EXPORT_SYMBOL(lookup_one_len); 2715 2716 /** 2717 * lookup_one - filesystem helper to lookup single pathname component 2718 * @idmap: idmap of the mount the lookup is performed from 2719 * @name: pathname component to lookup 2720 * @base: base directory to lookup from 2721 * @len: maximum length @len should be interpreted to 2722 * 2723 * Note that this routine is purely a helper for filesystem usage and should 2724 * not be called by generic code. 2725 * 2726 * The caller must hold base->i_mutex. 2727 */ 2728 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name, 2729 struct dentry *base, int len) 2730 { 2731 struct dentry *dentry; 2732 struct qstr this; 2733 int err; 2734 2735 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2736 2737 err = lookup_one_common(idmap, name, base, len, &this); 2738 if (err) 2739 return ERR_PTR(err); 2740 2741 dentry = lookup_dcache(&this, base, 0); 2742 return dentry ? dentry : __lookup_slow(&this, base, 0); 2743 } 2744 EXPORT_SYMBOL(lookup_one); 2745 2746 /** 2747 * lookup_one_unlocked - filesystem helper to lookup single pathname component 2748 * @idmap: idmap of the mount the lookup is performed from 2749 * @name: pathname component to lookup 2750 * @base: base directory to lookup from 2751 * @len: maximum length @len should be interpreted to 2752 * 2753 * Note that this routine is purely a helper for filesystem usage and should 2754 * not be called by generic code. 2755 * 2756 * Unlike lookup_one_len, it should be called without the parent 2757 * i_mutex held, and will take the i_mutex itself if necessary. 2758 */ 2759 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, 2760 const char *name, struct dentry *base, 2761 int len) 2762 { 2763 struct qstr this; 2764 int err; 2765 struct dentry *ret; 2766 2767 err = lookup_one_common(idmap, name, base, len, &this); 2768 if (err) 2769 return ERR_PTR(err); 2770 2771 ret = lookup_dcache(&this, base, 0); 2772 if (!ret) 2773 ret = lookup_slow(&this, base, 0); 2774 return ret; 2775 } 2776 EXPORT_SYMBOL(lookup_one_unlocked); 2777 2778 /** 2779 * lookup_one_positive_unlocked - filesystem helper to lookup single 2780 * pathname component 2781 * @idmap: idmap of the mount the lookup is performed from 2782 * @name: pathname component to lookup 2783 * @base: base directory to lookup from 2784 * @len: maximum length @len should be interpreted to 2785 * 2786 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns 2787 * known positive or ERR_PTR(). This is what most of the users want. 2788 * 2789 * Note that pinned negative with unlocked parent _can_ become positive at any 2790 * time, so callers of lookup_one_unlocked() need to be very careful; pinned 2791 * positives have >d_inode stable, so this one avoids such problems. 2792 * 2793 * Note that this routine is purely a helper for filesystem usage and should 2794 * not be called by generic code. 2795 * 2796 * The helper should be called without i_mutex held. 2797 */ 2798 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap, 2799 const char *name, 2800 struct dentry *base, int len) 2801 { 2802 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len); 2803 2804 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2805 dput(ret); 2806 ret = ERR_PTR(-ENOENT); 2807 } 2808 return ret; 2809 } 2810 EXPORT_SYMBOL(lookup_one_positive_unlocked); 2811 2812 /** 2813 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2814 * @name: pathname component to lookup 2815 * @base: base directory to lookup from 2816 * @len: maximum length @len should be interpreted to 2817 * 2818 * Note that this routine is purely a helper for filesystem usage and should 2819 * not be called by generic code. 2820 * 2821 * Unlike lookup_one_len, it should be called without the parent 2822 * i_mutex held, and will take the i_mutex itself if necessary. 2823 */ 2824 struct dentry *lookup_one_len_unlocked(const char *name, 2825 struct dentry *base, int len) 2826 { 2827 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len); 2828 } 2829 EXPORT_SYMBOL(lookup_one_len_unlocked); 2830 2831 /* 2832 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2833 * on negatives. Returns known positive or ERR_PTR(); that's what 2834 * most of the users want. Note that pinned negative with unlocked parent 2835 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2836 * need to be very careful; pinned positives have ->d_inode stable, so 2837 * this one avoids such problems. 2838 */ 2839 struct dentry *lookup_positive_unlocked(const char *name, 2840 struct dentry *base, int len) 2841 { 2842 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len); 2843 } 2844 EXPORT_SYMBOL(lookup_positive_unlocked); 2845 2846 #ifdef CONFIG_UNIX98_PTYS 2847 int path_pts(struct path *path) 2848 { 2849 /* Find something mounted on "pts" in the same directory as 2850 * the input path. 2851 */ 2852 struct dentry *parent = dget_parent(path->dentry); 2853 struct dentry *child; 2854 struct qstr this = QSTR_INIT("pts", 3); 2855 2856 if (unlikely(!path_connected(path->mnt, parent))) { 2857 dput(parent); 2858 return -ENOENT; 2859 } 2860 dput(path->dentry); 2861 path->dentry = parent; 2862 child = d_hash_and_lookup(parent, &this); 2863 if (!child) 2864 return -ENOENT; 2865 2866 path->dentry = child; 2867 dput(parent); 2868 follow_down(path, 0); 2869 return 0; 2870 } 2871 #endif 2872 2873 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2874 struct path *path, int *empty) 2875 { 2876 struct filename *filename = getname_flags(name, flags, empty); 2877 int ret = filename_lookup(dfd, filename, flags, path, NULL); 2878 2879 putname(filename); 2880 return ret; 2881 } 2882 EXPORT_SYMBOL(user_path_at_empty); 2883 2884 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir, 2885 struct inode *inode) 2886 { 2887 kuid_t fsuid = current_fsuid(); 2888 2889 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid)) 2890 return 0; 2891 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid)) 2892 return 0; 2893 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER); 2894 } 2895 EXPORT_SYMBOL(__check_sticky); 2896 2897 /* 2898 * Check whether we can remove a link victim from directory dir, check 2899 * whether the type of victim is right. 2900 * 1. We can't do it if dir is read-only (done in permission()) 2901 * 2. We should have write and exec permissions on dir 2902 * 3. We can't remove anything from append-only dir 2903 * 4. We can't do anything with immutable dir (done in permission()) 2904 * 5. If the sticky bit on dir is set we should either 2905 * a. be owner of dir, or 2906 * b. be owner of victim, or 2907 * c. have CAP_FOWNER capability 2908 * 6. If the victim is append-only or immutable we can't do antyhing with 2909 * links pointing to it. 2910 * 7. If the victim has an unknown uid or gid we can't change the inode. 2911 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2912 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2913 * 10. We can't remove a root or mountpoint. 2914 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2915 * nfs_async_unlink(). 2916 */ 2917 static int may_delete(struct mnt_idmap *idmap, struct inode *dir, 2918 struct dentry *victim, bool isdir) 2919 { 2920 struct inode *inode = d_backing_inode(victim); 2921 int error; 2922 2923 if (d_is_negative(victim)) 2924 return -ENOENT; 2925 BUG_ON(!inode); 2926 2927 BUG_ON(victim->d_parent->d_inode != dir); 2928 2929 /* Inode writeback is not safe when the uid or gid are invalid. */ 2930 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) || 2931 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode))) 2932 return -EOVERFLOW; 2933 2934 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2935 2936 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 2937 if (error) 2938 return error; 2939 if (IS_APPEND(dir)) 2940 return -EPERM; 2941 2942 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) || 2943 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2944 HAS_UNMAPPED_ID(idmap, inode)) 2945 return -EPERM; 2946 if (isdir) { 2947 if (!d_is_dir(victim)) 2948 return -ENOTDIR; 2949 if (IS_ROOT(victim)) 2950 return -EBUSY; 2951 } else if (d_is_dir(victim)) 2952 return -EISDIR; 2953 if (IS_DEADDIR(dir)) 2954 return -ENOENT; 2955 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2956 return -EBUSY; 2957 return 0; 2958 } 2959 2960 /* Check whether we can create an object with dentry child in directory 2961 * dir. 2962 * 1. We can't do it if child already exists (open has special treatment for 2963 * this case, but since we are inlined it's OK) 2964 * 2. We can't do it if dir is read-only (done in permission()) 2965 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2966 * 4. We should have write and exec permissions on dir 2967 * 5. We can't do it if dir is immutable (done in permission()) 2968 */ 2969 static inline int may_create(struct mnt_idmap *idmap, 2970 struct inode *dir, struct dentry *child) 2971 { 2972 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2973 if (child->d_inode) 2974 return -EEXIST; 2975 if (IS_DEADDIR(dir)) 2976 return -ENOENT; 2977 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 2978 return -EOVERFLOW; 2979 2980 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 2981 } 2982 2983 /* 2984 * p1 and p2 should be directories on the same fs. 2985 */ 2986 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2987 { 2988 struct dentry *p; 2989 2990 if (p1 == p2) { 2991 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2992 return NULL; 2993 } 2994 2995 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2996 2997 p = d_ancestor(p2, p1); 2998 if (p) { 2999 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 3000 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 3001 return p; 3002 } 3003 3004 p = d_ancestor(p1, p2); 3005 if (p) { 3006 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3007 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 3008 return p; 3009 } 3010 3011 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 3012 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 3013 return NULL; 3014 } 3015 EXPORT_SYMBOL(lock_rename); 3016 3017 void unlock_rename(struct dentry *p1, struct dentry *p2) 3018 { 3019 inode_unlock(p1->d_inode); 3020 if (p1 != p2) { 3021 inode_unlock(p2->d_inode); 3022 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 3023 } 3024 } 3025 EXPORT_SYMBOL(unlock_rename); 3026 3027 /** 3028 * mode_strip_umask - handle vfs umask stripping 3029 * @dir: parent directory of the new inode 3030 * @mode: mode of the new inode to be created in @dir 3031 * 3032 * Umask stripping depends on whether or not the filesystem supports POSIX 3033 * ACLs. If the filesystem doesn't support it umask stripping is done directly 3034 * in here. If the filesystem does support POSIX ACLs umask stripping is 3035 * deferred until the filesystem calls posix_acl_create(). 3036 * 3037 * Returns: mode 3038 */ 3039 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode) 3040 { 3041 if (!IS_POSIXACL(dir)) 3042 mode &= ~current_umask(); 3043 return mode; 3044 } 3045 3046 /** 3047 * vfs_prepare_mode - prepare the mode to be used for a new inode 3048 * @idmap: idmap of the mount the inode was found from 3049 * @dir: parent directory of the new inode 3050 * @mode: mode of the new inode 3051 * @mask_perms: allowed permission by the vfs 3052 * @type: type of file to be created 3053 * 3054 * This helper consolidates and enforces vfs restrictions on the @mode of a new 3055 * object to be created. 3056 * 3057 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see 3058 * the kernel documentation for mode_strip_umask()). Moving umask stripping 3059 * after setgid stripping allows the same ordering for both non-POSIX ACL and 3060 * POSIX ACL supporting filesystems. 3061 * 3062 * Note that it's currently valid for @type to be 0 if a directory is created. 3063 * Filesystems raise that flag individually and we need to check whether each 3064 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a 3065 * non-zero type. 3066 * 3067 * Returns: mode to be passed to the filesystem 3068 */ 3069 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap, 3070 const struct inode *dir, umode_t mode, 3071 umode_t mask_perms, umode_t type) 3072 { 3073 mode = mode_strip_sgid(idmap, dir, mode); 3074 mode = mode_strip_umask(dir, mode); 3075 3076 /* 3077 * Apply the vfs mandated allowed permission mask and set the type of 3078 * file to be created before we call into the filesystem. 3079 */ 3080 mode &= (mask_perms & ~S_IFMT); 3081 mode |= (type & S_IFMT); 3082 3083 return mode; 3084 } 3085 3086 /** 3087 * vfs_create - create new file 3088 * @idmap: idmap of the mount the inode was found from 3089 * @dir: inode of @dentry 3090 * @dentry: pointer to dentry of the base directory 3091 * @mode: mode of the new file 3092 * @want_excl: whether the file must not yet exist 3093 * 3094 * Create a new file. 3095 * 3096 * If the inode has been found through an idmapped mount the idmap of 3097 * the vfsmount must be passed through @idmap. This function will then take 3098 * care to map the inode according to @idmap before checking permissions. 3099 * On non-idmapped mounts or if permission checking is to be performed on the 3100 * raw inode simply passs @nop_mnt_idmap. 3101 */ 3102 int vfs_create(struct mnt_idmap *idmap, struct inode *dir, 3103 struct dentry *dentry, umode_t mode, bool want_excl) 3104 { 3105 int error; 3106 3107 error = may_create(idmap, dir, dentry); 3108 if (error) 3109 return error; 3110 3111 if (!dir->i_op->create) 3112 return -EACCES; /* shouldn't it be ENOSYS? */ 3113 3114 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG); 3115 error = security_inode_create(dir, dentry, mode); 3116 if (error) 3117 return error; 3118 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl); 3119 if (!error) 3120 fsnotify_create(dir, dentry); 3121 return error; 3122 } 3123 EXPORT_SYMBOL(vfs_create); 3124 3125 int vfs_mkobj(struct dentry *dentry, umode_t mode, 3126 int (*f)(struct dentry *, umode_t, void *), 3127 void *arg) 3128 { 3129 struct inode *dir = dentry->d_parent->d_inode; 3130 int error = may_create(&nop_mnt_idmap, dir, dentry); 3131 if (error) 3132 return error; 3133 3134 mode &= S_IALLUGO; 3135 mode |= S_IFREG; 3136 error = security_inode_create(dir, dentry, mode); 3137 if (error) 3138 return error; 3139 error = f(dentry, mode, arg); 3140 if (!error) 3141 fsnotify_create(dir, dentry); 3142 return error; 3143 } 3144 EXPORT_SYMBOL(vfs_mkobj); 3145 3146 bool may_open_dev(const struct path *path) 3147 { 3148 return !(path->mnt->mnt_flags & MNT_NODEV) && 3149 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 3150 } 3151 3152 static int may_open(struct mnt_idmap *idmap, const struct path *path, 3153 int acc_mode, int flag) 3154 { 3155 struct dentry *dentry = path->dentry; 3156 struct inode *inode = dentry->d_inode; 3157 int error; 3158 3159 if (!inode) 3160 return -ENOENT; 3161 3162 switch (inode->i_mode & S_IFMT) { 3163 case S_IFLNK: 3164 return -ELOOP; 3165 case S_IFDIR: 3166 if (acc_mode & MAY_WRITE) 3167 return -EISDIR; 3168 if (acc_mode & MAY_EXEC) 3169 return -EACCES; 3170 break; 3171 case S_IFBLK: 3172 case S_IFCHR: 3173 if (!may_open_dev(path)) 3174 return -EACCES; 3175 fallthrough; 3176 case S_IFIFO: 3177 case S_IFSOCK: 3178 if (acc_mode & MAY_EXEC) 3179 return -EACCES; 3180 flag &= ~O_TRUNC; 3181 break; 3182 case S_IFREG: 3183 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 3184 return -EACCES; 3185 break; 3186 } 3187 3188 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode); 3189 if (error) 3190 return error; 3191 3192 /* 3193 * An append-only file must be opened in append mode for writing. 3194 */ 3195 if (IS_APPEND(inode)) { 3196 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 3197 return -EPERM; 3198 if (flag & O_TRUNC) 3199 return -EPERM; 3200 } 3201 3202 /* O_NOATIME can only be set by the owner or superuser */ 3203 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode)) 3204 return -EPERM; 3205 3206 return 0; 3207 } 3208 3209 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp) 3210 { 3211 const struct path *path = &filp->f_path; 3212 struct inode *inode = path->dentry->d_inode; 3213 int error = get_write_access(inode); 3214 if (error) 3215 return error; 3216 3217 error = security_file_truncate(filp); 3218 if (!error) { 3219 error = do_truncate(idmap, path->dentry, 0, 3220 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3221 filp); 3222 } 3223 put_write_access(inode); 3224 return error; 3225 } 3226 3227 static inline int open_to_namei_flags(int flag) 3228 { 3229 if ((flag & O_ACCMODE) == 3) 3230 flag--; 3231 return flag; 3232 } 3233 3234 static int may_o_create(struct mnt_idmap *idmap, 3235 const struct path *dir, struct dentry *dentry, 3236 umode_t mode) 3237 { 3238 int error = security_path_mknod(dir, dentry, mode, 0); 3239 if (error) 3240 return error; 3241 3242 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap)) 3243 return -EOVERFLOW; 3244 3245 error = inode_permission(idmap, dir->dentry->d_inode, 3246 MAY_WRITE | MAY_EXEC); 3247 if (error) 3248 return error; 3249 3250 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3251 } 3252 3253 /* 3254 * Attempt to atomically look up, create and open a file from a negative 3255 * dentry. 3256 * 3257 * Returns 0 if successful. The file will have been created and attached to 3258 * @file by the filesystem calling finish_open(). 3259 * 3260 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3261 * be set. The caller will need to perform the open themselves. @path will 3262 * have been updated to point to the new dentry. This may be negative. 3263 * 3264 * Returns an error code otherwise. 3265 */ 3266 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3267 struct file *file, 3268 int open_flag, umode_t mode) 3269 { 3270 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3271 struct inode *dir = nd->path.dentry->d_inode; 3272 int error; 3273 3274 if (nd->flags & LOOKUP_DIRECTORY) 3275 open_flag |= O_DIRECTORY; 3276 3277 file->f_path.dentry = DENTRY_NOT_SET; 3278 file->f_path.mnt = nd->path.mnt; 3279 error = dir->i_op->atomic_open(dir, dentry, file, 3280 open_to_namei_flags(open_flag), mode); 3281 d_lookup_done(dentry); 3282 if (!error) { 3283 if (file->f_mode & FMODE_OPENED) { 3284 if (unlikely(dentry != file->f_path.dentry)) { 3285 dput(dentry); 3286 dentry = dget(file->f_path.dentry); 3287 } 3288 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3289 error = -EIO; 3290 } else { 3291 if (file->f_path.dentry) { 3292 dput(dentry); 3293 dentry = file->f_path.dentry; 3294 } 3295 if (unlikely(d_is_negative(dentry))) 3296 error = -ENOENT; 3297 } 3298 } 3299 if (error) { 3300 dput(dentry); 3301 dentry = ERR_PTR(error); 3302 } 3303 return dentry; 3304 } 3305 3306 /* 3307 * Look up and maybe create and open the last component. 3308 * 3309 * Must be called with parent locked (exclusive in O_CREAT case). 3310 * 3311 * Returns 0 on success, that is, if 3312 * the file was successfully atomically created (if necessary) and opened, or 3313 * the file was not completely opened at this time, though lookups and 3314 * creations were performed. 3315 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3316 * In the latter case dentry returned in @path might be negative if O_CREAT 3317 * hadn't been specified. 3318 * 3319 * An error code is returned on failure. 3320 */ 3321 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3322 const struct open_flags *op, 3323 bool got_write) 3324 { 3325 struct mnt_idmap *idmap; 3326 struct dentry *dir = nd->path.dentry; 3327 struct inode *dir_inode = dir->d_inode; 3328 int open_flag = op->open_flag; 3329 struct dentry *dentry; 3330 int error, create_error = 0; 3331 umode_t mode = op->mode; 3332 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3333 3334 if (unlikely(IS_DEADDIR(dir_inode))) 3335 return ERR_PTR(-ENOENT); 3336 3337 file->f_mode &= ~FMODE_CREATED; 3338 dentry = d_lookup(dir, &nd->last); 3339 for (;;) { 3340 if (!dentry) { 3341 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3342 if (IS_ERR(dentry)) 3343 return dentry; 3344 } 3345 if (d_in_lookup(dentry)) 3346 break; 3347 3348 error = d_revalidate(dentry, nd->flags); 3349 if (likely(error > 0)) 3350 break; 3351 if (error) 3352 goto out_dput; 3353 d_invalidate(dentry); 3354 dput(dentry); 3355 dentry = NULL; 3356 } 3357 if (dentry->d_inode) { 3358 /* Cached positive dentry: will open in f_op->open */ 3359 return dentry; 3360 } 3361 3362 /* 3363 * Checking write permission is tricky, bacuse we don't know if we are 3364 * going to actually need it: O_CREAT opens should work as long as the 3365 * file exists. But checking existence breaks atomicity. The trick is 3366 * to check access and if not granted clear O_CREAT from the flags. 3367 * 3368 * Another problem is returing the "right" error value (e.g. for an 3369 * O_EXCL open we want to return EEXIST not EROFS). 3370 */ 3371 if (unlikely(!got_write)) 3372 open_flag &= ~O_TRUNC; 3373 idmap = mnt_idmap(nd->path.mnt); 3374 if (open_flag & O_CREAT) { 3375 if (open_flag & O_EXCL) 3376 open_flag &= ~O_TRUNC; 3377 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode); 3378 if (likely(got_write)) 3379 create_error = may_o_create(idmap, &nd->path, 3380 dentry, mode); 3381 else 3382 create_error = -EROFS; 3383 } 3384 if (create_error) 3385 open_flag &= ~O_CREAT; 3386 if (dir_inode->i_op->atomic_open) { 3387 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3388 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3389 dentry = ERR_PTR(create_error); 3390 return dentry; 3391 } 3392 3393 if (d_in_lookup(dentry)) { 3394 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3395 nd->flags); 3396 d_lookup_done(dentry); 3397 if (unlikely(res)) { 3398 if (IS_ERR(res)) { 3399 error = PTR_ERR(res); 3400 goto out_dput; 3401 } 3402 dput(dentry); 3403 dentry = res; 3404 } 3405 } 3406 3407 /* Negative dentry, just create the file */ 3408 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3409 file->f_mode |= FMODE_CREATED; 3410 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3411 if (!dir_inode->i_op->create) { 3412 error = -EACCES; 3413 goto out_dput; 3414 } 3415 3416 error = dir_inode->i_op->create(idmap, dir_inode, dentry, 3417 mode, open_flag & O_EXCL); 3418 if (error) 3419 goto out_dput; 3420 } 3421 if (unlikely(create_error) && !dentry->d_inode) { 3422 error = create_error; 3423 goto out_dput; 3424 } 3425 return dentry; 3426 3427 out_dput: 3428 dput(dentry); 3429 return ERR_PTR(error); 3430 } 3431 3432 static const char *open_last_lookups(struct nameidata *nd, 3433 struct file *file, const struct open_flags *op) 3434 { 3435 struct dentry *dir = nd->path.dentry; 3436 int open_flag = op->open_flag; 3437 bool got_write = false; 3438 struct dentry *dentry; 3439 const char *res; 3440 3441 nd->flags |= op->intent; 3442 3443 if (nd->last_type != LAST_NORM) { 3444 if (nd->depth) 3445 put_link(nd); 3446 return handle_dots(nd, nd->last_type); 3447 } 3448 3449 if (!(open_flag & O_CREAT)) { 3450 if (nd->last.name[nd->last.len]) 3451 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3452 /* we _can_ be in RCU mode here */ 3453 dentry = lookup_fast(nd); 3454 if (IS_ERR(dentry)) 3455 return ERR_CAST(dentry); 3456 if (likely(dentry)) 3457 goto finish_lookup; 3458 3459 BUG_ON(nd->flags & LOOKUP_RCU); 3460 } else { 3461 /* create side of things */ 3462 if (nd->flags & LOOKUP_RCU) { 3463 if (!try_to_unlazy(nd)) 3464 return ERR_PTR(-ECHILD); 3465 } 3466 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3467 /* trailing slashes? */ 3468 if (unlikely(nd->last.name[nd->last.len])) 3469 return ERR_PTR(-EISDIR); 3470 } 3471 3472 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3473 got_write = !mnt_want_write(nd->path.mnt); 3474 /* 3475 * do _not_ fail yet - we might not need that or fail with 3476 * a different error; let lookup_open() decide; we'll be 3477 * dropping this one anyway. 3478 */ 3479 } 3480 if (open_flag & O_CREAT) 3481 inode_lock(dir->d_inode); 3482 else 3483 inode_lock_shared(dir->d_inode); 3484 dentry = lookup_open(nd, file, op, got_write); 3485 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3486 fsnotify_create(dir->d_inode, dentry); 3487 if (open_flag & O_CREAT) 3488 inode_unlock(dir->d_inode); 3489 else 3490 inode_unlock_shared(dir->d_inode); 3491 3492 if (got_write) 3493 mnt_drop_write(nd->path.mnt); 3494 3495 if (IS_ERR(dentry)) 3496 return ERR_CAST(dentry); 3497 3498 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3499 dput(nd->path.dentry); 3500 nd->path.dentry = dentry; 3501 return NULL; 3502 } 3503 3504 finish_lookup: 3505 if (nd->depth) 3506 put_link(nd); 3507 res = step_into(nd, WALK_TRAILING, dentry); 3508 if (unlikely(res)) 3509 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3510 return res; 3511 } 3512 3513 /* 3514 * Handle the last step of open() 3515 */ 3516 static int do_open(struct nameidata *nd, 3517 struct file *file, const struct open_flags *op) 3518 { 3519 struct mnt_idmap *idmap; 3520 int open_flag = op->open_flag; 3521 bool do_truncate; 3522 int acc_mode; 3523 int error; 3524 3525 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3526 error = complete_walk(nd); 3527 if (error) 3528 return error; 3529 } 3530 if (!(file->f_mode & FMODE_CREATED)) 3531 audit_inode(nd->name, nd->path.dentry, 0); 3532 idmap = mnt_idmap(nd->path.mnt); 3533 if (open_flag & O_CREAT) { 3534 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3535 return -EEXIST; 3536 if (d_is_dir(nd->path.dentry)) 3537 return -EISDIR; 3538 error = may_create_in_sticky(idmap, nd, 3539 d_backing_inode(nd->path.dentry)); 3540 if (unlikely(error)) 3541 return error; 3542 } 3543 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3544 return -ENOTDIR; 3545 3546 do_truncate = false; 3547 acc_mode = op->acc_mode; 3548 if (file->f_mode & FMODE_CREATED) { 3549 /* Don't check for write permission, don't truncate */ 3550 open_flag &= ~O_TRUNC; 3551 acc_mode = 0; 3552 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3553 error = mnt_want_write(nd->path.mnt); 3554 if (error) 3555 return error; 3556 do_truncate = true; 3557 } 3558 error = may_open(idmap, &nd->path, acc_mode, open_flag); 3559 if (!error && !(file->f_mode & FMODE_OPENED)) 3560 error = vfs_open(&nd->path, file); 3561 if (!error) 3562 error = ima_file_check(file, op->acc_mode); 3563 if (!error && do_truncate) 3564 error = handle_truncate(idmap, file); 3565 if (unlikely(error > 0)) { 3566 WARN_ON(1); 3567 error = -EINVAL; 3568 } 3569 if (do_truncate) 3570 mnt_drop_write(nd->path.mnt); 3571 return error; 3572 } 3573 3574 /** 3575 * vfs_tmpfile - create tmpfile 3576 * @idmap: idmap of the mount the inode was found from 3577 * @dentry: pointer to dentry of the base directory 3578 * @mode: mode of the new tmpfile 3579 * @open_flag: flags 3580 * 3581 * Create a temporary file. 3582 * 3583 * If the inode has been found through an idmapped mount the idmap of 3584 * the vfsmount must be passed through @idmap. This function will then take 3585 * care to map the inode according to @idmap before checking permissions. 3586 * On non-idmapped mounts or if permission checking is to be performed on the 3587 * raw inode simply passs @nop_mnt_idmap. 3588 */ 3589 static int vfs_tmpfile(struct mnt_idmap *idmap, 3590 const struct path *parentpath, 3591 struct file *file, umode_t mode) 3592 { 3593 struct dentry *child; 3594 struct inode *dir = d_inode(parentpath->dentry); 3595 struct inode *inode; 3596 int error; 3597 int open_flag = file->f_flags; 3598 3599 /* we want directory to be writable */ 3600 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 3601 if (error) 3602 return error; 3603 if (!dir->i_op->tmpfile) 3604 return -EOPNOTSUPP; 3605 child = d_alloc(parentpath->dentry, &slash_name); 3606 if (unlikely(!child)) 3607 return -ENOMEM; 3608 file->f_path.mnt = parentpath->mnt; 3609 file->f_path.dentry = child; 3610 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3611 error = dir->i_op->tmpfile(idmap, dir, file, mode); 3612 dput(child); 3613 if (error) 3614 return error; 3615 /* Don't check for other permissions, the inode was just created */ 3616 error = may_open(idmap, &file->f_path, 0, file->f_flags); 3617 if (error) 3618 return error; 3619 inode = file_inode(file); 3620 if (!(open_flag & O_EXCL)) { 3621 spin_lock(&inode->i_lock); 3622 inode->i_state |= I_LINKABLE; 3623 spin_unlock(&inode->i_lock); 3624 } 3625 ima_post_create_tmpfile(idmap, inode); 3626 return 0; 3627 } 3628 3629 /** 3630 * vfs_tmpfile_open - open a tmpfile for kernel internal use 3631 * @idmap: idmap of the mount the inode was found from 3632 * @parentpath: path of the base directory 3633 * @mode: mode of the new tmpfile 3634 * @open_flag: flags 3635 * @cred: credentials for open 3636 * 3637 * Create and open a temporary file. The file is not accounted in nr_files, 3638 * hence this is only for kernel internal use, and must not be installed into 3639 * file tables or such. 3640 */ 3641 struct file *vfs_tmpfile_open(struct mnt_idmap *idmap, 3642 const struct path *parentpath, 3643 umode_t mode, int open_flag, const struct cred *cred) 3644 { 3645 struct file *file; 3646 int error; 3647 3648 file = alloc_empty_file_noaccount(open_flag, cred); 3649 if (!IS_ERR(file)) { 3650 error = vfs_tmpfile(idmap, parentpath, file, mode); 3651 if (error) { 3652 fput(file); 3653 file = ERR_PTR(error); 3654 } 3655 } 3656 return file; 3657 } 3658 EXPORT_SYMBOL(vfs_tmpfile_open); 3659 3660 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3661 const struct open_flags *op, 3662 struct file *file) 3663 { 3664 struct path path; 3665 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3666 3667 if (unlikely(error)) 3668 return error; 3669 error = mnt_want_write(path.mnt); 3670 if (unlikely(error)) 3671 goto out; 3672 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode); 3673 if (error) 3674 goto out2; 3675 audit_inode(nd->name, file->f_path.dentry, 0); 3676 out2: 3677 mnt_drop_write(path.mnt); 3678 out: 3679 path_put(&path); 3680 return error; 3681 } 3682 3683 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3684 { 3685 struct path path; 3686 int error = path_lookupat(nd, flags, &path); 3687 if (!error) { 3688 audit_inode(nd->name, path.dentry, 0); 3689 error = vfs_open(&path, file); 3690 path_put(&path); 3691 } 3692 return error; 3693 } 3694 3695 static struct file *path_openat(struct nameidata *nd, 3696 const struct open_flags *op, unsigned flags) 3697 { 3698 struct file *file; 3699 int error; 3700 3701 file = alloc_empty_file(op->open_flag, current_cred()); 3702 if (IS_ERR(file)) 3703 return file; 3704 3705 if (unlikely(file->f_flags & __O_TMPFILE)) { 3706 error = do_tmpfile(nd, flags, op, file); 3707 } else if (unlikely(file->f_flags & O_PATH)) { 3708 error = do_o_path(nd, flags, file); 3709 } else { 3710 const char *s = path_init(nd, flags); 3711 while (!(error = link_path_walk(s, nd)) && 3712 (s = open_last_lookups(nd, file, op)) != NULL) 3713 ; 3714 if (!error) 3715 error = do_open(nd, file, op); 3716 terminate_walk(nd); 3717 } 3718 if (likely(!error)) { 3719 if (likely(file->f_mode & FMODE_OPENED)) 3720 return file; 3721 WARN_ON(1); 3722 error = -EINVAL; 3723 } 3724 fput(file); 3725 if (error == -EOPENSTALE) { 3726 if (flags & LOOKUP_RCU) 3727 error = -ECHILD; 3728 else 3729 error = -ESTALE; 3730 } 3731 return ERR_PTR(error); 3732 } 3733 3734 struct file *do_filp_open(int dfd, struct filename *pathname, 3735 const struct open_flags *op) 3736 { 3737 struct nameidata nd; 3738 int flags = op->lookup_flags; 3739 struct file *filp; 3740 3741 set_nameidata(&nd, dfd, pathname, NULL); 3742 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3743 if (unlikely(filp == ERR_PTR(-ECHILD))) 3744 filp = path_openat(&nd, op, flags); 3745 if (unlikely(filp == ERR_PTR(-ESTALE))) 3746 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3747 restore_nameidata(); 3748 return filp; 3749 } 3750 3751 struct file *do_file_open_root(const struct path *root, 3752 const char *name, const struct open_flags *op) 3753 { 3754 struct nameidata nd; 3755 struct file *file; 3756 struct filename *filename; 3757 int flags = op->lookup_flags; 3758 3759 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN) 3760 return ERR_PTR(-ELOOP); 3761 3762 filename = getname_kernel(name); 3763 if (IS_ERR(filename)) 3764 return ERR_CAST(filename); 3765 3766 set_nameidata(&nd, -1, filename, root); 3767 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3768 if (unlikely(file == ERR_PTR(-ECHILD))) 3769 file = path_openat(&nd, op, flags); 3770 if (unlikely(file == ERR_PTR(-ESTALE))) 3771 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3772 restore_nameidata(); 3773 putname(filename); 3774 return file; 3775 } 3776 3777 static struct dentry *filename_create(int dfd, struct filename *name, 3778 struct path *path, unsigned int lookup_flags) 3779 { 3780 struct dentry *dentry = ERR_PTR(-EEXIST); 3781 struct qstr last; 3782 bool want_dir = lookup_flags & LOOKUP_DIRECTORY; 3783 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL; 3784 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL; 3785 int type; 3786 int err2; 3787 int error; 3788 3789 error = filename_parentat(dfd, name, reval_flag, path, &last, &type); 3790 if (error) 3791 return ERR_PTR(error); 3792 3793 /* 3794 * Yucky last component or no last component at all? 3795 * (foo/., foo/.., /////) 3796 */ 3797 if (unlikely(type != LAST_NORM)) 3798 goto out; 3799 3800 /* don't fail immediately if it's r/o, at least try to report other errors */ 3801 err2 = mnt_want_write(path->mnt); 3802 /* 3803 * Do the final lookup. Suppress 'create' if there is a trailing 3804 * '/', and a directory wasn't requested. 3805 */ 3806 if (last.name[last.len] && !want_dir) 3807 create_flags = 0; 3808 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3809 dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags); 3810 if (IS_ERR(dentry)) 3811 goto unlock; 3812 3813 error = -EEXIST; 3814 if (d_is_positive(dentry)) 3815 goto fail; 3816 3817 /* 3818 * Special case - lookup gave negative, but... we had foo/bar/ 3819 * From the vfs_mknod() POV we just have a negative dentry - 3820 * all is fine. Let's be bastards - you had / on the end, you've 3821 * been asking for (non-existent) directory. -ENOENT for you. 3822 */ 3823 if (unlikely(!create_flags)) { 3824 error = -ENOENT; 3825 goto fail; 3826 } 3827 if (unlikely(err2)) { 3828 error = err2; 3829 goto fail; 3830 } 3831 return dentry; 3832 fail: 3833 dput(dentry); 3834 dentry = ERR_PTR(error); 3835 unlock: 3836 inode_unlock(path->dentry->d_inode); 3837 if (!err2) 3838 mnt_drop_write(path->mnt); 3839 out: 3840 path_put(path); 3841 return dentry; 3842 } 3843 3844 struct dentry *kern_path_create(int dfd, const char *pathname, 3845 struct path *path, unsigned int lookup_flags) 3846 { 3847 struct filename *filename = getname_kernel(pathname); 3848 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3849 3850 putname(filename); 3851 return res; 3852 } 3853 EXPORT_SYMBOL(kern_path_create); 3854 3855 void done_path_create(struct path *path, struct dentry *dentry) 3856 { 3857 dput(dentry); 3858 inode_unlock(path->dentry->d_inode); 3859 mnt_drop_write(path->mnt); 3860 path_put(path); 3861 } 3862 EXPORT_SYMBOL(done_path_create); 3863 3864 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3865 struct path *path, unsigned int lookup_flags) 3866 { 3867 struct filename *filename = getname(pathname); 3868 struct dentry *res = filename_create(dfd, filename, path, lookup_flags); 3869 3870 putname(filename); 3871 return res; 3872 } 3873 EXPORT_SYMBOL(user_path_create); 3874 3875 /** 3876 * vfs_mknod - create device node or file 3877 * @idmap: idmap of the mount the inode was found from 3878 * @dir: inode of @dentry 3879 * @dentry: pointer to dentry of the base directory 3880 * @mode: mode of the new device node or file 3881 * @dev: device number of device to create 3882 * 3883 * Create a device node or file. 3884 * 3885 * If the inode has been found through an idmapped mount the idmap of 3886 * the vfsmount must be passed through @idmap. This function will then take 3887 * care to map the inode according to @idmap before checking permissions. 3888 * On non-idmapped mounts or if permission checking is to be performed on the 3889 * raw inode simply passs @nop_mnt_idmap. 3890 */ 3891 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 3892 struct dentry *dentry, umode_t mode, dev_t dev) 3893 { 3894 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3895 int error = may_create(idmap, dir, dentry); 3896 3897 if (error) 3898 return error; 3899 3900 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3901 !capable(CAP_MKNOD)) 3902 return -EPERM; 3903 3904 if (!dir->i_op->mknod) 3905 return -EPERM; 3906 3907 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode); 3908 error = devcgroup_inode_mknod(mode, dev); 3909 if (error) 3910 return error; 3911 3912 error = security_inode_mknod(dir, dentry, mode, dev); 3913 if (error) 3914 return error; 3915 3916 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev); 3917 if (!error) 3918 fsnotify_create(dir, dentry); 3919 return error; 3920 } 3921 EXPORT_SYMBOL(vfs_mknod); 3922 3923 static int may_mknod(umode_t mode) 3924 { 3925 switch (mode & S_IFMT) { 3926 case S_IFREG: 3927 case S_IFCHR: 3928 case S_IFBLK: 3929 case S_IFIFO: 3930 case S_IFSOCK: 3931 case 0: /* zero mode translates to S_IFREG */ 3932 return 0; 3933 case S_IFDIR: 3934 return -EPERM; 3935 default: 3936 return -EINVAL; 3937 } 3938 } 3939 3940 static int do_mknodat(int dfd, struct filename *name, umode_t mode, 3941 unsigned int dev) 3942 { 3943 struct mnt_idmap *idmap; 3944 struct dentry *dentry; 3945 struct path path; 3946 int error; 3947 unsigned int lookup_flags = 0; 3948 3949 error = may_mknod(mode); 3950 if (error) 3951 goto out1; 3952 retry: 3953 dentry = filename_create(dfd, name, &path, lookup_flags); 3954 error = PTR_ERR(dentry); 3955 if (IS_ERR(dentry)) 3956 goto out1; 3957 3958 error = security_path_mknod(&path, dentry, 3959 mode_strip_umask(path.dentry->d_inode, mode), dev); 3960 if (error) 3961 goto out2; 3962 3963 idmap = mnt_idmap(path.mnt); 3964 switch (mode & S_IFMT) { 3965 case 0: case S_IFREG: 3966 error = vfs_create(idmap, path.dentry->d_inode, 3967 dentry, mode, true); 3968 if (!error) 3969 ima_post_path_mknod(idmap, dentry); 3970 break; 3971 case S_IFCHR: case S_IFBLK: 3972 error = vfs_mknod(idmap, path.dentry->d_inode, 3973 dentry, mode, new_decode_dev(dev)); 3974 break; 3975 case S_IFIFO: case S_IFSOCK: 3976 error = vfs_mknod(idmap, path.dentry->d_inode, 3977 dentry, mode, 0); 3978 break; 3979 } 3980 out2: 3981 done_path_create(&path, dentry); 3982 if (retry_estale(error, lookup_flags)) { 3983 lookup_flags |= LOOKUP_REVAL; 3984 goto retry; 3985 } 3986 out1: 3987 putname(name); 3988 return error; 3989 } 3990 3991 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3992 unsigned int, dev) 3993 { 3994 return do_mknodat(dfd, getname(filename), mode, dev); 3995 } 3996 3997 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3998 { 3999 return do_mknodat(AT_FDCWD, getname(filename), mode, dev); 4000 } 4001 4002 /** 4003 * vfs_mkdir - create directory 4004 * @idmap: idmap of the mount the inode was found from 4005 * @dir: inode of @dentry 4006 * @dentry: pointer to dentry of the base directory 4007 * @mode: mode of the new directory 4008 * 4009 * Create a directory. 4010 * 4011 * If the inode has been found through an idmapped mount the idmap of 4012 * the vfsmount must be passed through @idmap. This function will then take 4013 * care to map the inode according to @idmap before checking permissions. 4014 * On non-idmapped mounts or if permission checking is to be performed on the 4015 * raw inode simply passs @nop_mnt_idmap. 4016 */ 4017 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 4018 struct dentry *dentry, umode_t mode) 4019 { 4020 int error; 4021 unsigned max_links = dir->i_sb->s_max_links; 4022 4023 error = may_create(idmap, dir, dentry); 4024 if (error) 4025 return error; 4026 4027 if (!dir->i_op->mkdir) 4028 return -EPERM; 4029 4030 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0); 4031 error = security_inode_mkdir(dir, dentry, mode); 4032 if (error) 4033 return error; 4034 4035 if (max_links && dir->i_nlink >= max_links) 4036 return -EMLINK; 4037 4038 error = dir->i_op->mkdir(idmap, dir, dentry, mode); 4039 if (!error) 4040 fsnotify_mkdir(dir, dentry); 4041 return error; 4042 } 4043 EXPORT_SYMBOL(vfs_mkdir); 4044 4045 int do_mkdirat(int dfd, struct filename *name, umode_t mode) 4046 { 4047 struct dentry *dentry; 4048 struct path path; 4049 int error; 4050 unsigned int lookup_flags = LOOKUP_DIRECTORY; 4051 4052 retry: 4053 dentry = filename_create(dfd, name, &path, lookup_flags); 4054 error = PTR_ERR(dentry); 4055 if (IS_ERR(dentry)) 4056 goto out_putname; 4057 4058 error = security_path_mkdir(&path, dentry, 4059 mode_strip_umask(path.dentry->d_inode, mode)); 4060 if (!error) { 4061 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode, 4062 dentry, mode); 4063 } 4064 done_path_create(&path, dentry); 4065 if (retry_estale(error, lookup_flags)) { 4066 lookup_flags |= LOOKUP_REVAL; 4067 goto retry; 4068 } 4069 out_putname: 4070 putname(name); 4071 return error; 4072 } 4073 4074 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 4075 { 4076 return do_mkdirat(dfd, getname(pathname), mode); 4077 } 4078 4079 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 4080 { 4081 return do_mkdirat(AT_FDCWD, getname(pathname), mode); 4082 } 4083 4084 /** 4085 * vfs_rmdir - remove directory 4086 * @idmap: idmap of the mount the inode was found from 4087 * @dir: inode of @dentry 4088 * @dentry: pointer to dentry of the base directory 4089 * 4090 * Remove a directory. 4091 * 4092 * If the inode has been found through an idmapped mount the idmap of 4093 * the vfsmount must be passed through @idmap. This function will then take 4094 * care to map the inode according to @idmap before checking permissions. 4095 * On non-idmapped mounts or if permission checking is to be performed on the 4096 * raw inode simply passs @nop_mnt_idmap. 4097 */ 4098 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir, 4099 struct dentry *dentry) 4100 { 4101 int error = may_delete(idmap, dir, dentry, 1); 4102 4103 if (error) 4104 return error; 4105 4106 if (!dir->i_op->rmdir) 4107 return -EPERM; 4108 4109 dget(dentry); 4110 inode_lock(dentry->d_inode); 4111 4112 error = -EBUSY; 4113 if (is_local_mountpoint(dentry) || 4114 (dentry->d_inode->i_flags & S_KERNEL_FILE)) 4115 goto out; 4116 4117 error = security_inode_rmdir(dir, dentry); 4118 if (error) 4119 goto out; 4120 4121 error = dir->i_op->rmdir(dir, dentry); 4122 if (error) 4123 goto out; 4124 4125 shrink_dcache_parent(dentry); 4126 dentry->d_inode->i_flags |= S_DEAD; 4127 dont_mount(dentry); 4128 detach_mounts(dentry); 4129 4130 out: 4131 inode_unlock(dentry->d_inode); 4132 dput(dentry); 4133 if (!error) 4134 d_delete_notify(dir, dentry); 4135 return error; 4136 } 4137 EXPORT_SYMBOL(vfs_rmdir); 4138 4139 int do_rmdir(int dfd, struct filename *name) 4140 { 4141 int error; 4142 struct dentry *dentry; 4143 struct path path; 4144 struct qstr last; 4145 int type; 4146 unsigned int lookup_flags = 0; 4147 retry: 4148 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4149 if (error) 4150 goto exit1; 4151 4152 switch (type) { 4153 case LAST_DOTDOT: 4154 error = -ENOTEMPTY; 4155 goto exit2; 4156 case LAST_DOT: 4157 error = -EINVAL; 4158 goto exit2; 4159 case LAST_ROOT: 4160 error = -EBUSY; 4161 goto exit2; 4162 } 4163 4164 error = mnt_want_write(path.mnt); 4165 if (error) 4166 goto exit2; 4167 4168 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4169 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4170 error = PTR_ERR(dentry); 4171 if (IS_ERR(dentry)) 4172 goto exit3; 4173 if (!dentry->d_inode) { 4174 error = -ENOENT; 4175 goto exit4; 4176 } 4177 error = security_path_rmdir(&path, dentry); 4178 if (error) 4179 goto exit4; 4180 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry); 4181 exit4: 4182 dput(dentry); 4183 exit3: 4184 inode_unlock(path.dentry->d_inode); 4185 mnt_drop_write(path.mnt); 4186 exit2: 4187 path_put(&path); 4188 if (retry_estale(error, lookup_flags)) { 4189 lookup_flags |= LOOKUP_REVAL; 4190 goto retry; 4191 } 4192 exit1: 4193 putname(name); 4194 return error; 4195 } 4196 4197 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 4198 { 4199 return do_rmdir(AT_FDCWD, getname(pathname)); 4200 } 4201 4202 /** 4203 * vfs_unlink - unlink a filesystem object 4204 * @idmap: idmap of the mount the inode was found from 4205 * @dir: parent directory 4206 * @dentry: victim 4207 * @delegated_inode: returns victim inode, if the inode is delegated. 4208 * 4209 * The caller must hold dir->i_mutex. 4210 * 4211 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 4212 * return a reference to the inode in delegated_inode. The caller 4213 * should then break the delegation on that inode and retry. Because 4214 * breaking a delegation may take a long time, the caller should drop 4215 * dir->i_mutex before doing so. 4216 * 4217 * Alternatively, a caller may pass NULL for delegated_inode. This may 4218 * be appropriate for callers that expect the underlying filesystem not 4219 * to be NFS exported. 4220 * 4221 * If the inode has been found through an idmapped mount the idmap of 4222 * the vfsmount must be passed through @idmap. This function will then take 4223 * care to map the inode according to @idmap before checking permissions. 4224 * On non-idmapped mounts or if permission checking is to be performed on the 4225 * raw inode simply passs @nop_mnt_idmap. 4226 */ 4227 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir, 4228 struct dentry *dentry, struct inode **delegated_inode) 4229 { 4230 struct inode *target = dentry->d_inode; 4231 int error = may_delete(idmap, dir, dentry, 0); 4232 4233 if (error) 4234 return error; 4235 4236 if (!dir->i_op->unlink) 4237 return -EPERM; 4238 4239 inode_lock(target); 4240 if (IS_SWAPFILE(target)) 4241 error = -EPERM; 4242 else if (is_local_mountpoint(dentry)) 4243 error = -EBUSY; 4244 else { 4245 error = security_inode_unlink(dir, dentry); 4246 if (!error) { 4247 error = try_break_deleg(target, delegated_inode); 4248 if (error) 4249 goto out; 4250 error = dir->i_op->unlink(dir, dentry); 4251 if (!error) { 4252 dont_mount(dentry); 4253 detach_mounts(dentry); 4254 } 4255 } 4256 } 4257 out: 4258 inode_unlock(target); 4259 4260 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4261 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) { 4262 fsnotify_unlink(dir, dentry); 4263 } else if (!error) { 4264 fsnotify_link_count(target); 4265 d_delete_notify(dir, dentry); 4266 } 4267 4268 return error; 4269 } 4270 EXPORT_SYMBOL(vfs_unlink); 4271 4272 /* 4273 * Make sure that the actual truncation of the file will occur outside its 4274 * directory's i_mutex. Truncate can take a long time if there is a lot of 4275 * writeout happening, and we don't want to prevent access to the directory 4276 * while waiting on the I/O. 4277 */ 4278 int do_unlinkat(int dfd, struct filename *name) 4279 { 4280 int error; 4281 struct dentry *dentry; 4282 struct path path; 4283 struct qstr last; 4284 int type; 4285 struct inode *inode = NULL; 4286 struct inode *delegated_inode = NULL; 4287 unsigned int lookup_flags = 0; 4288 retry: 4289 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4290 if (error) 4291 goto exit1; 4292 4293 error = -EISDIR; 4294 if (type != LAST_NORM) 4295 goto exit2; 4296 4297 error = mnt_want_write(path.mnt); 4298 if (error) 4299 goto exit2; 4300 retry_deleg: 4301 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4302 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4303 error = PTR_ERR(dentry); 4304 if (!IS_ERR(dentry)) { 4305 4306 /* Why not before? Because we want correct error value */ 4307 if (last.name[last.len]) 4308 goto slashes; 4309 inode = dentry->d_inode; 4310 if (d_is_negative(dentry)) 4311 goto slashes; 4312 ihold(inode); 4313 error = security_path_unlink(&path, dentry); 4314 if (error) 4315 goto exit3; 4316 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4317 dentry, &delegated_inode); 4318 exit3: 4319 dput(dentry); 4320 } 4321 inode_unlock(path.dentry->d_inode); 4322 if (inode) 4323 iput(inode); /* truncate the inode here */ 4324 inode = NULL; 4325 if (delegated_inode) { 4326 error = break_deleg_wait(&delegated_inode); 4327 if (!error) 4328 goto retry_deleg; 4329 } 4330 mnt_drop_write(path.mnt); 4331 exit2: 4332 path_put(&path); 4333 if (retry_estale(error, lookup_flags)) { 4334 lookup_flags |= LOOKUP_REVAL; 4335 inode = NULL; 4336 goto retry; 4337 } 4338 exit1: 4339 putname(name); 4340 return error; 4341 4342 slashes: 4343 if (d_is_negative(dentry)) 4344 error = -ENOENT; 4345 else if (d_is_dir(dentry)) 4346 error = -EISDIR; 4347 else 4348 error = -ENOTDIR; 4349 goto exit3; 4350 } 4351 4352 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4353 { 4354 if ((flag & ~AT_REMOVEDIR) != 0) 4355 return -EINVAL; 4356 4357 if (flag & AT_REMOVEDIR) 4358 return do_rmdir(dfd, getname(pathname)); 4359 return do_unlinkat(dfd, getname(pathname)); 4360 } 4361 4362 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4363 { 4364 return do_unlinkat(AT_FDCWD, getname(pathname)); 4365 } 4366 4367 /** 4368 * vfs_symlink - create symlink 4369 * @idmap: idmap of the mount the inode was found from 4370 * @dir: inode of @dentry 4371 * @dentry: pointer to dentry of the base directory 4372 * @oldname: name of the file to link to 4373 * 4374 * Create a symlink. 4375 * 4376 * If the inode has been found through an idmapped mount the idmap of 4377 * the vfsmount must be passed through @idmap. This function will then take 4378 * care to map the inode according to @idmap before checking permissions. 4379 * On non-idmapped mounts or if permission checking is to be performed on the 4380 * raw inode simply passs @nop_mnt_idmap. 4381 */ 4382 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 4383 struct dentry *dentry, const char *oldname) 4384 { 4385 int error; 4386 4387 error = may_create(idmap, dir, dentry); 4388 if (error) 4389 return error; 4390 4391 if (!dir->i_op->symlink) 4392 return -EPERM; 4393 4394 error = security_inode_symlink(dir, dentry, oldname); 4395 if (error) 4396 return error; 4397 4398 error = dir->i_op->symlink(idmap, dir, dentry, oldname); 4399 if (!error) 4400 fsnotify_create(dir, dentry); 4401 return error; 4402 } 4403 EXPORT_SYMBOL(vfs_symlink); 4404 4405 int do_symlinkat(struct filename *from, int newdfd, struct filename *to) 4406 { 4407 int error; 4408 struct dentry *dentry; 4409 struct path path; 4410 unsigned int lookup_flags = 0; 4411 4412 if (IS_ERR(from)) { 4413 error = PTR_ERR(from); 4414 goto out_putnames; 4415 } 4416 retry: 4417 dentry = filename_create(newdfd, to, &path, lookup_flags); 4418 error = PTR_ERR(dentry); 4419 if (IS_ERR(dentry)) 4420 goto out_putnames; 4421 4422 error = security_path_symlink(&path, dentry, from->name); 4423 if (!error) 4424 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode, 4425 dentry, from->name); 4426 done_path_create(&path, dentry); 4427 if (retry_estale(error, lookup_flags)) { 4428 lookup_flags |= LOOKUP_REVAL; 4429 goto retry; 4430 } 4431 out_putnames: 4432 putname(to); 4433 putname(from); 4434 return error; 4435 } 4436 4437 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4438 int, newdfd, const char __user *, newname) 4439 { 4440 return do_symlinkat(getname(oldname), newdfd, getname(newname)); 4441 } 4442 4443 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4444 { 4445 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname)); 4446 } 4447 4448 /** 4449 * vfs_link - create a new link 4450 * @old_dentry: object to be linked 4451 * @idmap: idmap of the mount 4452 * @dir: new parent 4453 * @new_dentry: where to create the new link 4454 * @delegated_inode: returns inode needing a delegation break 4455 * 4456 * The caller must hold dir->i_mutex 4457 * 4458 * If vfs_link discovers a delegation on the to-be-linked file in need 4459 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4460 * inode in delegated_inode. The caller should then break the delegation 4461 * and retry. Because breaking a delegation may take a long time, the 4462 * caller should drop the i_mutex before doing so. 4463 * 4464 * Alternatively, a caller may pass NULL for delegated_inode. This may 4465 * be appropriate for callers that expect the underlying filesystem not 4466 * to be NFS exported. 4467 * 4468 * If the inode has been found through an idmapped mount the idmap of 4469 * the vfsmount must be passed through @idmap. This function will then take 4470 * care to map the inode according to @idmap before checking permissions. 4471 * On non-idmapped mounts or if permission checking is to be performed on the 4472 * raw inode simply passs @nop_mnt_idmap. 4473 */ 4474 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap, 4475 struct inode *dir, struct dentry *new_dentry, 4476 struct inode **delegated_inode) 4477 { 4478 struct inode *inode = old_dentry->d_inode; 4479 unsigned max_links = dir->i_sb->s_max_links; 4480 int error; 4481 4482 if (!inode) 4483 return -ENOENT; 4484 4485 error = may_create(idmap, dir, new_dentry); 4486 if (error) 4487 return error; 4488 4489 if (dir->i_sb != inode->i_sb) 4490 return -EXDEV; 4491 4492 /* 4493 * A link to an append-only or immutable file cannot be created. 4494 */ 4495 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4496 return -EPERM; 4497 /* 4498 * Updating the link count will likely cause i_uid and i_gid to 4499 * be writen back improperly if their true value is unknown to 4500 * the vfs. 4501 */ 4502 if (HAS_UNMAPPED_ID(idmap, inode)) 4503 return -EPERM; 4504 if (!dir->i_op->link) 4505 return -EPERM; 4506 if (S_ISDIR(inode->i_mode)) 4507 return -EPERM; 4508 4509 error = security_inode_link(old_dentry, dir, new_dentry); 4510 if (error) 4511 return error; 4512 4513 inode_lock(inode); 4514 /* Make sure we don't allow creating hardlink to an unlinked file */ 4515 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4516 error = -ENOENT; 4517 else if (max_links && inode->i_nlink >= max_links) 4518 error = -EMLINK; 4519 else { 4520 error = try_break_deleg(inode, delegated_inode); 4521 if (!error) 4522 error = dir->i_op->link(old_dentry, dir, new_dentry); 4523 } 4524 4525 if (!error && (inode->i_state & I_LINKABLE)) { 4526 spin_lock(&inode->i_lock); 4527 inode->i_state &= ~I_LINKABLE; 4528 spin_unlock(&inode->i_lock); 4529 } 4530 inode_unlock(inode); 4531 if (!error) 4532 fsnotify_link(dir, inode, new_dentry); 4533 return error; 4534 } 4535 EXPORT_SYMBOL(vfs_link); 4536 4537 /* 4538 * Hardlinks are often used in delicate situations. We avoid 4539 * security-related surprises by not following symlinks on the 4540 * newname. --KAB 4541 * 4542 * We don't follow them on the oldname either to be compatible 4543 * with linux 2.0, and to avoid hard-linking to directories 4544 * and other special files. --ADM 4545 */ 4546 int do_linkat(int olddfd, struct filename *old, int newdfd, 4547 struct filename *new, int flags) 4548 { 4549 struct mnt_idmap *idmap; 4550 struct dentry *new_dentry; 4551 struct path old_path, new_path; 4552 struct inode *delegated_inode = NULL; 4553 int how = 0; 4554 int error; 4555 4556 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) { 4557 error = -EINVAL; 4558 goto out_putnames; 4559 } 4560 /* 4561 * To use null names we require CAP_DAC_READ_SEARCH 4562 * This ensures that not everyone will be able to create 4563 * handlink using the passed filedescriptor. 4564 */ 4565 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) { 4566 error = -ENOENT; 4567 goto out_putnames; 4568 } 4569 4570 if (flags & AT_SYMLINK_FOLLOW) 4571 how |= LOOKUP_FOLLOW; 4572 retry: 4573 error = filename_lookup(olddfd, old, how, &old_path, NULL); 4574 if (error) 4575 goto out_putnames; 4576 4577 new_dentry = filename_create(newdfd, new, &new_path, 4578 (how & LOOKUP_REVAL)); 4579 error = PTR_ERR(new_dentry); 4580 if (IS_ERR(new_dentry)) 4581 goto out_putpath; 4582 4583 error = -EXDEV; 4584 if (old_path.mnt != new_path.mnt) 4585 goto out_dput; 4586 idmap = mnt_idmap(new_path.mnt); 4587 error = may_linkat(idmap, &old_path); 4588 if (unlikely(error)) 4589 goto out_dput; 4590 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4591 if (error) 4592 goto out_dput; 4593 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode, 4594 new_dentry, &delegated_inode); 4595 out_dput: 4596 done_path_create(&new_path, new_dentry); 4597 if (delegated_inode) { 4598 error = break_deleg_wait(&delegated_inode); 4599 if (!error) { 4600 path_put(&old_path); 4601 goto retry; 4602 } 4603 } 4604 if (retry_estale(error, how)) { 4605 path_put(&old_path); 4606 how |= LOOKUP_REVAL; 4607 goto retry; 4608 } 4609 out_putpath: 4610 path_put(&old_path); 4611 out_putnames: 4612 putname(old); 4613 putname(new); 4614 4615 return error; 4616 } 4617 4618 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4619 int, newdfd, const char __user *, newname, int, flags) 4620 { 4621 return do_linkat(olddfd, getname_uflags(oldname, flags), 4622 newdfd, getname(newname), flags); 4623 } 4624 4625 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4626 { 4627 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0); 4628 } 4629 4630 /** 4631 * vfs_rename - rename a filesystem object 4632 * @rd: pointer to &struct renamedata info 4633 * 4634 * The caller must hold multiple mutexes--see lock_rename()). 4635 * 4636 * If vfs_rename discovers a delegation in need of breaking at either 4637 * the source or destination, it will return -EWOULDBLOCK and return a 4638 * reference to the inode in delegated_inode. The caller should then 4639 * break the delegation and retry. Because breaking a delegation may 4640 * take a long time, the caller should drop all locks before doing 4641 * so. 4642 * 4643 * Alternatively, a caller may pass NULL for delegated_inode. This may 4644 * be appropriate for callers that expect the underlying filesystem not 4645 * to be NFS exported. 4646 * 4647 * The worst of all namespace operations - renaming directory. "Perverted" 4648 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4649 * Problems: 4650 * 4651 * a) we can get into loop creation. 4652 * b) race potential - two innocent renames can create a loop together. 4653 * That's where 4.4 screws up. Current fix: serialization on 4654 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4655 * story. 4656 * c) we have to lock _four_ objects - parents and victim (if it exists), 4657 * and source (if it is not a directory). 4658 * And that - after we got ->i_mutex on parents (until then we don't know 4659 * whether the target exists). Solution: try to be smart with locking 4660 * order for inodes. We rely on the fact that tree topology may change 4661 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4662 * move will be locked. Thus we can rank directories by the tree 4663 * (ancestors first) and rank all non-directories after them. 4664 * That works since everybody except rename does "lock parent, lookup, 4665 * lock child" and rename is under ->s_vfs_rename_mutex. 4666 * HOWEVER, it relies on the assumption that any object with ->lookup() 4667 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4668 * we'd better make sure that there's no link(2) for them. 4669 * d) conversion from fhandle to dentry may come in the wrong moment - when 4670 * we are removing the target. Solution: we will have to grab ->i_mutex 4671 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4672 * ->i_mutex on parents, which works but leads to some truly excessive 4673 * locking]. 4674 */ 4675 int vfs_rename(struct renamedata *rd) 4676 { 4677 int error; 4678 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4679 struct dentry *old_dentry = rd->old_dentry; 4680 struct dentry *new_dentry = rd->new_dentry; 4681 struct inode **delegated_inode = rd->delegated_inode; 4682 unsigned int flags = rd->flags; 4683 bool is_dir = d_is_dir(old_dentry); 4684 struct inode *source = old_dentry->d_inode; 4685 struct inode *target = new_dentry->d_inode; 4686 bool new_is_dir = false; 4687 unsigned max_links = new_dir->i_sb->s_max_links; 4688 struct name_snapshot old_name; 4689 4690 if (source == target) 4691 return 0; 4692 4693 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir); 4694 if (error) 4695 return error; 4696 4697 if (!target) { 4698 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry); 4699 } else { 4700 new_is_dir = d_is_dir(new_dentry); 4701 4702 if (!(flags & RENAME_EXCHANGE)) 4703 error = may_delete(rd->new_mnt_idmap, new_dir, 4704 new_dentry, is_dir); 4705 else 4706 error = may_delete(rd->new_mnt_idmap, new_dir, 4707 new_dentry, new_is_dir); 4708 } 4709 if (error) 4710 return error; 4711 4712 if (!old_dir->i_op->rename) 4713 return -EPERM; 4714 4715 /* 4716 * If we are going to change the parent - check write permissions, 4717 * we'll need to flip '..'. 4718 */ 4719 if (new_dir != old_dir) { 4720 if (is_dir) { 4721 error = inode_permission(rd->old_mnt_idmap, source, 4722 MAY_WRITE); 4723 if (error) 4724 return error; 4725 } 4726 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4727 error = inode_permission(rd->new_mnt_idmap, target, 4728 MAY_WRITE); 4729 if (error) 4730 return error; 4731 } 4732 } 4733 4734 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4735 flags); 4736 if (error) 4737 return error; 4738 4739 take_dentry_name_snapshot(&old_name, old_dentry); 4740 dget(new_dentry); 4741 if (!is_dir || (flags & RENAME_EXCHANGE)) 4742 lock_two_nondirectories(source, target); 4743 else if (target) 4744 inode_lock(target); 4745 4746 error = -EPERM; 4747 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target))) 4748 goto out; 4749 4750 error = -EBUSY; 4751 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4752 goto out; 4753 4754 if (max_links && new_dir != old_dir) { 4755 error = -EMLINK; 4756 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4757 goto out; 4758 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4759 old_dir->i_nlink >= max_links) 4760 goto out; 4761 } 4762 if (!is_dir) { 4763 error = try_break_deleg(source, delegated_inode); 4764 if (error) 4765 goto out; 4766 } 4767 if (target && !new_is_dir) { 4768 error = try_break_deleg(target, delegated_inode); 4769 if (error) 4770 goto out; 4771 } 4772 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry, 4773 new_dir, new_dentry, flags); 4774 if (error) 4775 goto out; 4776 4777 if (!(flags & RENAME_EXCHANGE) && target) { 4778 if (is_dir) { 4779 shrink_dcache_parent(new_dentry); 4780 target->i_flags |= S_DEAD; 4781 } 4782 dont_mount(new_dentry); 4783 detach_mounts(new_dentry); 4784 } 4785 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4786 if (!(flags & RENAME_EXCHANGE)) 4787 d_move(old_dentry, new_dentry); 4788 else 4789 d_exchange(old_dentry, new_dentry); 4790 } 4791 out: 4792 if (!is_dir || (flags & RENAME_EXCHANGE)) 4793 unlock_two_nondirectories(source, target); 4794 else if (target) 4795 inode_unlock(target); 4796 dput(new_dentry); 4797 if (!error) { 4798 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4799 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4800 if (flags & RENAME_EXCHANGE) { 4801 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4802 new_is_dir, NULL, new_dentry); 4803 } 4804 } 4805 release_dentry_name_snapshot(&old_name); 4806 4807 return error; 4808 } 4809 EXPORT_SYMBOL(vfs_rename); 4810 4811 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4812 struct filename *to, unsigned int flags) 4813 { 4814 struct renamedata rd; 4815 struct dentry *old_dentry, *new_dentry; 4816 struct dentry *trap; 4817 struct path old_path, new_path; 4818 struct qstr old_last, new_last; 4819 int old_type, new_type; 4820 struct inode *delegated_inode = NULL; 4821 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4822 bool should_retry = false; 4823 int error = -EINVAL; 4824 4825 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4826 goto put_names; 4827 4828 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4829 (flags & RENAME_EXCHANGE)) 4830 goto put_names; 4831 4832 if (flags & RENAME_EXCHANGE) 4833 target_flags = 0; 4834 4835 retry: 4836 error = filename_parentat(olddfd, from, lookup_flags, &old_path, 4837 &old_last, &old_type); 4838 if (error) 4839 goto put_names; 4840 4841 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4842 &new_type); 4843 if (error) 4844 goto exit1; 4845 4846 error = -EXDEV; 4847 if (old_path.mnt != new_path.mnt) 4848 goto exit2; 4849 4850 error = -EBUSY; 4851 if (old_type != LAST_NORM) 4852 goto exit2; 4853 4854 if (flags & RENAME_NOREPLACE) 4855 error = -EEXIST; 4856 if (new_type != LAST_NORM) 4857 goto exit2; 4858 4859 error = mnt_want_write(old_path.mnt); 4860 if (error) 4861 goto exit2; 4862 4863 retry_deleg: 4864 trap = lock_rename(new_path.dentry, old_path.dentry); 4865 4866 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4867 error = PTR_ERR(old_dentry); 4868 if (IS_ERR(old_dentry)) 4869 goto exit3; 4870 /* source must exist */ 4871 error = -ENOENT; 4872 if (d_is_negative(old_dentry)) 4873 goto exit4; 4874 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4875 error = PTR_ERR(new_dentry); 4876 if (IS_ERR(new_dentry)) 4877 goto exit4; 4878 error = -EEXIST; 4879 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4880 goto exit5; 4881 if (flags & RENAME_EXCHANGE) { 4882 error = -ENOENT; 4883 if (d_is_negative(new_dentry)) 4884 goto exit5; 4885 4886 if (!d_is_dir(new_dentry)) { 4887 error = -ENOTDIR; 4888 if (new_last.name[new_last.len]) 4889 goto exit5; 4890 } 4891 } 4892 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4893 if (!d_is_dir(old_dentry)) { 4894 error = -ENOTDIR; 4895 if (old_last.name[old_last.len]) 4896 goto exit5; 4897 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4898 goto exit5; 4899 } 4900 /* source should not be ancestor of target */ 4901 error = -EINVAL; 4902 if (old_dentry == trap) 4903 goto exit5; 4904 /* target should not be an ancestor of source */ 4905 if (!(flags & RENAME_EXCHANGE)) 4906 error = -ENOTEMPTY; 4907 if (new_dentry == trap) 4908 goto exit5; 4909 4910 error = security_path_rename(&old_path, old_dentry, 4911 &new_path, new_dentry, flags); 4912 if (error) 4913 goto exit5; 4914 4915 rd.old_dir = old_path.dentry->d_inode; 4916 rd.old_dentry = old_dentry; 4917 rd.old_mnt_idmap = mnt_idmap(old_path.mnt); 4918 rd.new_dir = new_path.dentry->d_inode; 4919 rd.new_dentry = new_dentry; 4920 rd.new_mnt_idmap = mnt_idmap(new_path.mnt); 4921 rd.delegated_inode = &delegated_inode; 4922 rd.flags = flags; 4923 error = vfs_rename(&rd); 4924 exit5: 4925 dput(new_dentry); 4926 exit4: 4927 dput(old_dentry); 4928 exit3: 4929 unlock_rename(new_path.dentry, old_path.dentry); 4930 if (delegated_inode) { 4931 error = break_deleg_wait(&delegated_inode); 4932 if (!error) 4933 goto retry_deleg; 4934 } 4935 mnt_drop_write(old_path.mnt); 4936 exit2: 4937 if (retry_estale(error, lookup_flags)) 4938 should_retry = true; 4939 path_put(&new_path); 4940 exit1: 4941 path_put(&old_path); 4942 if (should_retry) { 4943 should_retry = false; 4944 lookup_flags |= LOOKUP_REVAL; 4945 goto retry; 4946 } 4947 put_names: 4948 putname(from); 4949 putname(to); 4950 return error; 4951 } 4952 4953 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4954 int, newdfd, const char __user *, newname, unsigned int, flags) 4955 { 4956 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4957 flags); 4958 } 4959 4960 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4961 int, newdfd, const char __user *, newname) 4962 { 4963 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4964 0); 4965 } 4966 4967 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4968 { 4969 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4970 getname(newname), 0); 4971 } 4972 4973 int readlink_copy(char __user *buffer, int buflen, const char *link) 4974 { 4975 int len = PTR_ERR(link); 4976 if (IS_ERR(link)) 4977 goto out; 4978 4979 len = strlen(link); 4980 if (len > (unsigned) buflen) 4981 len = buflen; 4982 if (copy_to_user(buffer, link, len)) 4983 len = -EFAULT; 4984 out: 4985 return len; 4986 } 4987 4988 /** 4989 * vfs_readlink - copy symlink body into userspace buffer 4990 * @dentry: dentry on which to get symbolic link 4991 * @buffer: user memory pointer 4992 * @buflen: size of buffer 4993 * 4994 * Does not touch atime. That's up to the caller if necessary 4995 * 4996 * Does not call security hook. 4997 */ 4998 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4999 { 5000 struct inode *inode = d_inode(dentry); 5001 DEFINE_DELAYED_CALL(done); 5002 const char *link; 5003 int res; 5004 5005 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 5006 if (unlikely(inode->i_op->readlink)) 5007 return inode->i_op->readlink(dentry, buffer, buflen); 5008 5009 if (!d_is_symlink(dentry)) 5010 return -EINVAL; 5011 5012 spin_lock(&inode->i_lock); 5013 inode->i_opflags |= IOP_DEFAULT_READLINK; 5014 spin_unlock(&inode->i_lock); 5015 } 5016 5017 link = READ_ONCE(inode->i_link); 5018 if (!link) { 5019 link = inode->i_op->get_link(dentry, inode, &done); 5020 if (IS_ERR(link)) 5021 return PTR_ERR(link); 5022 } 5023 res = readlink_copy(buffer, buflen, link); 5024 do_delayed_call(&done); 5025 return res; 5026 } 5027 EXPORT_SYMBOL(vfs_readlink); 5028 5029 /** 5030 * vfs_get_link - get symlink body 5031 * @dentry: dentry on which to get symbolic link 5032 * @done: caller needs to free returned data with this 5033 * 5034 * Calls security hook and i_op->get_link() on the supplied inode. 5035 * 5036 * It does not touch atime. That's up to the caller if necessary. 5037 * 5038 * Does not work on "special" symlinks like /proc/$$/fd/N 5039 */ 5040 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 5041 { 5042 const char *res = ERR_PTR(-EINVAL); 5043 struct inode *inode = d_inode(dentry); 5044 5045 if (d_is_symlink(dentry)) { 5046 res = ERR_PTR(security_inode_readlink(dentry)); 5047 if (!res) 5048 res = inode->i_op->get_link(dentry, inode, done); 5049 } 5050 return res; 5051 } 5052 EXPORT_SYMBOL(vfs_get_link); 5053 5054 /* get the link contents into pagecache */ 5055 const char *page_get_link(struct dentry *dentry, struct inode *inode, 5056 struct delayed_call *callback) 5057 { 5058 char *kaddr; 5059 struct page *page; 5060 struct address_space *mapping = inode->i_mapping; 5061 5062 if (!dentry) { 5063 page = find_get_page(mapping, 0); 5064 if (!page) 5065 return ERR_PTR(-ECHILD); 5066 if (!PageUptodate(page)) { 5067 put_page(page); 5068 return ERR_PTR(-ECHILD); 5069 } 5070 } else { 5071 page = read_mapping_page(mapping, 0, NULL); 5072 if (IS_ERR(page)) 5073 return (char*)page; 5074 } 5075 set_delayed_call(callback, page_put_link, page); 5076 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 5077 kaddr = page_address(page); 5078 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 5079 return kaddr; 5080 } 5081 5082 EXPORT_SYMBOL(page_get_link); 5083 5084 void page_put_link(void *arg) 5085 { 5086 put_page(arg); 5087 } 5088 EXPORT_SYMBOL(page_put_link); 5089 5090 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 5091 { 5092 DEFINE_DELAYED_CALL(done); 5093 int res = readlink_copy(buffer, buflen, 5094 page_get_link(dentry, d_inode(dentry), 5095 &done)); 5096 do_delayed_call(&done); 5097 return res; 5098 } 5099 EXPORT_SYMBOL(page_readlink); 5100 5101 int page_symlink(struct inode *inode, const char *symname, int len) 5102 { 5103 struct address_space *mapping = inode->i_mapping; 5104 const struct address_space_operations *aops = mapping->a_ops; 5105 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS); 5106 struct page *page; 5107 void *fsdata = NULL; 5108 int err; 5109 unsigned int flags; 5110 5111 retry: 5112 if (nofs) 5113 flags = memalloc_nofs_save(); 5114 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata); 5115 if (nofs) 5116 memalloc_nofs_restore(flags); 5117 if (err) 5118 goto fail; 5119 5120 memcpy(page_address(page), symname, len-1); 5121 5122 err = aops->write_end(NULL, mapping, 0, len-1, len-1, 5123 page, fsdata); 5124 if (err < 0) 5125 goto fail; 5126 if (err < len-1) 5127 goto retry; 5128 5129 mark_inode_dirty(inode); 5130 return 0; 5131 fail: 5132 return err; 5133 } 5134 EXPORT_SYMBOL(page_symlink); 5135 5136 const struct inode_operations page_symlink_inode_operations = { 5137 .get_link = page_get_link, 5138 }; 5139 EXPORT_SYMBOL(page_symlink_inode_operations); 5140