xref: /openbmc/linux/fs/namei.c (revision 179dd8c0)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 	struct path	path;
498 	struct qstr	last;
499 	struct path	root;
500 	struct inode	*inode; /* path.dentry.d_inode */
501 	unsigned int	flags;
502 	unsigned	seq, m_seq;
503 	int		last_type;
504 	unsigned	depth;
505 	int		total_link_count;
506 	struct saved {
507 		struct path link;
508 		void *cookie;
509 		const char *name;
510 		struct inode *inode;
511 		unsigned seq;
512 	} *stack, internal[EMBEDDED_LEVELS];
513 	struct filename	*name;
514 	struct nameidata *saved;
515 	unsigned	root_seq;
516 	int		dfd;
517 };
518 
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 	struct nameidata *old = current->nameidata;
522 	p->stack = p->internal;
523 	p->dfd = dfd;
524 	p->name = name;
525 	p->total_link_count = old ? old->total_link_count : 0;
526 	p->saved = old;
527 	current->nameidata = p;
528 }
529 
530 static void restore_nameidata(void)
531 {
532 	struct nameidata *now = current->nameidata, *old = now->saved;
533 
534 	current->nameidata = old;
535 	if (old)
536 		old->total_link_count = now->total_link_count;
537 	if (now->stack != now->internal) {
538 		kfree(now->stack);
539 		now->stack = now->internal;
540 	}
541 }
542 
543 static int __nd_alloc_stack(struct nameidata *nd)
544 {
545 	struct saved *p;
546 
547 	if (nd->flags & LOOKUP_RCU) {
548 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 				  GFP_ATOMIC);
550 		if (unlikely(!p))
551 			return -ECHILD;
552 	} else {
553 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 				  GFP_KERNEL);
555 		if (unlikely(!p))
556 			return -ENOMEM;
557 	}
558 	memcpy(p, nd->internal, sizeof(nd->internal));
559 	nd->stack = p;
560 	return 0;
561 }
562 
563 static inline int nd_alloc_stack(struct nameidata *nd)
564 {
565 	if (likely(nd->depth != EMBEDDED_LEVELS))
566 		return 0;
567 	if (likely(nd->stack != nd->internal))
568 		return 0;
569 	return __nd_alloc_stack(nd);
570 }
571 
572 static void drop_links(struct nameidata *nd)
573 {
574 	int i = nd->depth;
575 	while (i--) {
576 		struct saved *last = nd->stack + i;
577 		struct inode *inode = last->inode;
578 		if (last->cookie && inode->i_op->put_link) {
579 			inode->i_op->put_link(inode, last->cookie);
580 			last->cookie = NULL;
581 		}
582 	}
583 }
584 
585 static void terminate_walk(struct nameidata *nd)
586 {
587 	drop_links(nd);
588 	if (!(nd->flags & LOOKUP_RCU)) {
589 		int i;
590 		path_put(&nd->path);
591 		for (i = 0; i < nd->depth; i++)
592 			path_put(&nd->stack[i].link);
593 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
594 			path_put(&nd->root);
595 			nd->root.mnt = NULL;
596 		}
597 	} else {
598 		nd->flags &= ~LOOKUP_RCU;
599 		if (!(nd->flags & LOOKUP_ROOT))
600 			nd->root.mnt = NULL;
601 		rcu_read_unlock();
602 	}
603 	nd->depth = 0;
604 }
605 
606 /* path_put is needed afterwards regardless of success or failure */
607 static bool legitimize_path(struct nameidata *nd,
608 			    struct path *path, unsigned seq)
609 {
610 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
611 	if (unlikely(res)) {
612 		if (res > 0)
613 			path->mnt = NULL;
614 		path->dentry = NULL;
615 		return false;
616 	}
617 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623 
624 static bool legitimize_links(struct nameidata *nd)
625 {
626 	int i;
627 	for (i = 0; i < nd->depth; i++) {
628 		struct saved *last = nd->stack + i;
629 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
630 			drop_links(nd);
631 			nd->depth = i + 1;
632 			return false;
633 		}
634 	}
635 	return true;
636 }
637 
638 /*
639  * Path walking has 2 modes, rcu-walk and ref-walk (see
640  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
641  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
642  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
643  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
644  * got stuck, so ref-walk may continue from there. If this is not successful
645  * (eg. a seqcount has changed), then failure is returned and it's up to caller
646  * to restart the path walk from the beginning in ref-walk mode.
647  */
648 
649 /**
650  * unlazy_walk - try to switch to ref-walk mode.
651  * @nd: nameidata pathwalk data
652  * @dentry: child of nd->path.dentry or NULL
653  * @seq: seq number to check dentry against
654  * Returns: 0 on success, -ECHILD on failure
655  *
656  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
657  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
658  * @nd or NULL.  Must be called from rcu-walk context.
659  * Nothing should touch nameidata between unlazy_walk() failure and
660  * terminate_walk().
661  */
662 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
663 {
664 	struct dentry *parent = nd->path.dentry;
665 
666 	BUG_ON(!(nd->flags & LOOKUP_RCU));
667 
668 	nd->flags &= ~LOOKUP_RCU;
669 	if (unlikely(!legitimize_links(nd)))
670 		goto out2;
671 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
672 		goto out2;
673 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
674 		goto out1;
675 
676 	/*
677 	 * For a negative lookup, the lookup sequence point is the parents
678 	 * sequence point, and it only needs to revalidate the parent dentry.
679 	 *
680 	 * For a positive lookup, we need to move both the parent and the
681 	 * dentry from the RCU domain to be properly refcounted. And the
682 	 * sequence number in the dentry validates *both* dentry counters,
683 	 * since we checked the sequence number of the parent after we got
684 	 * the child sequence number. So we know the parent must still
685 	 * be valid if the child sequence number is still valid.
686 	 */
687 	if (!dentry) {
688 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
689 			goto out;
690 		BUG_ON(nd->inode != parent->d_inode);
691 	} else {
692 		if (!lockref_get_not_dead(&dentry->d_lockref))
693 			goto out;
694 		if (read_seqcount_retry(&dentry->d_seq, seq))
695 			goto drop_dentry;
696 	}
697 
698 	/*
699 	 * Sequence counts matched. Now make sure that the root is
700 	 * still valid and get it if required.
701 	 */
702 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
703 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
704 			rcu_read_unlock();
705 			dput(dentry);
706 			return -ECHILD;
707 		}
708 	}
709 
710 	rcu_read_unlock();
711 	return 0;
712 
713 drop_dentry:
714 	rcu_read_unlock();
715 	dput(dentry);
716 	goto drop_root_mnt;
717 out2:
718 	nd->path.mnt = NULL;
719 out1:
720 	nd->path.dentry = NULL;
721 out:
722 	rcu_read_unlock();
723 drop_root_mnt:
724 	if (!(nd->flags & LOOKUP_ROOT))
725 		nd->root.mnt = NULL;
726 	return -ECHILD;
727 }
728 
729 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
730 {
731 	if (unlikely(!legitimize_path(nd, link, seq))) {
732 		drop_links(nd);
733 		nd->depth = 0;
734 		nd->flags &= ~LOOKUP_RCU;
735 		nd->path.mnt = NULL;
736 		nd->path.dentry = NULL;
737 		if (!(nd->flags & LOOKUP_ROOT))
738 			nd->root.mnt = NULL;
739 		rcu_read_unlock();
740 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
741 		return 0;
742 	}
743 	path_put(link);
744 	return -ECHILD;
745 }
746 
747 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
748 {
749 	return dentry->d_op->d_revalidate(dentry, flags);
750 }
751 
752 /**
753  * complete_walk - successful completion of path walk
754  * @nd:  pointer nameidata
755  *
756  * If we had been in RCU mode, drop out of it and legitimize nd->path.
757  * Revalidate the final result, unless we'd already done that during
758  * the path walk or the filesystem doesn't ask for it.  Return 0 on
759  * success, -error on failure.  In case of failure caller does not
760  * need to drop nd->path.
761  */
762 static int complete_walk(struct nameidata *nd)
763 {
764 	struct dentry *dentry = nd->path.dentry;
765 	int status;
766 
767 	if (nd->flags & LOOKUP_RCU) {
768 		if (!(nd->flags & LOOKUP_ROOT))
769 			nd->root.mnt = NULL;
770 		if (unlikely(unlazy_walk(nd, NULL, 0)))
771 			return -ECHILD;
772 	}
773 
774 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
775 		return 0;
776 
777 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
778 		return 0;
779 
780 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
781 	if (status > 0)
782 		return 0;
783 
784 	if (!status)
785 		status = -ESTALE;
786 
787 	return status;
788 }
789 
790 static void set_root(struct nameidata *nd)
791 {
792 	get_fs_root(current->fs, &nd->root);
793 }
794 
795 static void set_root_rcu(struct nameidata *nd)
796 {
797 	struct fs_struct *fs = current->fs;
798 	unsigned seq;
799 
800 	do {
801 		seq = read_seqcount_begin(&fs->seq);
802 		nd->root = fs->root;
803 		nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
804 	} while (read_seqcount_retry(&fs->seq, seq));
805 }
806 
807 static void path_put_conditional(struct path *path, struct nameidata *nd)
808 {
809 	dput(path->dentry);
810 	if (path->mnt != nd->path.mnt)
811 		mntput(path->mnt);
812 }
813 
814 static inline void path_to_nameidata(const struct path *path,
815 					struct nameidata *nd)
816 {
817 	if (!(nd->flags & LOOKUP_RCU)) {
818 		dput(nd->path.dentry);
819 		if (nd->path.mnt != path->mnt)
820 			mntput(nd->path.mnt);
821 	}
822 	nd->path.mnt = path->mnt;
823 	nd->path.dentry = path->dentry;
824 }
825 
826 /*
827  * Helper to directly jump to a known parsed path from ->follow_link,
828  * caller must have taken a reference to path beforehand.
829  */
830 void nd_jump_link(struct path *path)
831 {
832 	struct nameidata *nd = current->nameidata;
833 	path_put(&nd->path);
834 
835 	nd->path = *path;
836 	nd->inode = nd->path.dentry->d_inode;
837 	nd->flags |= LOOKUP_JUMPED;
838 }
839 
840 static inline void put_link(struct nameidata *nd)
841 {
842 	struct saved *last = nd->stack + --nd->depth;
843 	struct inode *inode = last->inode;
844 	if (last->cookie && inode->i_op->put_link)
845 		inode->i_op->put_link(inode, last->cookie);
846 	if (!(nd->flags & LOOKUP_RCU))
847 		path_put(&last->link);
848 }
849 
850 int sysctl_protected_symlinks __read_mostly = 0;
851 int sysctl_protected_hardlinks __read_mostly = 0;
852 
853 /**
854  * may_follow_link - Check symlink following for unsafe situations
855  * @nd: nameidata pathwalk data
856  *
857  * In the case of the sysctl_protected_symlinks sysctl being enabled,
858  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
859  * in a sticky world-writable directory. This is to protect privileged
860  * processes from failing races against path names that may change out
861  * from under them by way of other users creating malicious symlinks.
862  * It will permit symlinks to be followed only when outside a sticky
863  * world-writable directory, or when the uid of the symlink and follower
864  * match, or when the directory owner matches the symlink's owner.
865  *
866  * Returns 0 if following the symlink is allowed, -ve on error.
867  */
868 static inline int may_follow_link(struct nameidata *nd)
869 {
870 	const struct inode *inode;
871 	const struct inode *parent;
872 
873 	if (!sysctl_protected_symlinks)
874 		return 0;
875 
876 	/* Allowed if owner and follower match. */
877 	inode = nd->stack[0].inode;
878 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
879 		return 0;
880 
881 	/* Allowed if parent directory not sticky and world-writable. */
882 	parent = nd->path.dentry->d_inode;
883 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
884 		return 0;
885 
886 	/* Allowed if parent directory and link owner match. */
887 	if (uid_eq(parent->i_uid, inode->i_uid))
888 		return 0;
889 
890 	if (nd->flags & LOOKUP_RCU)
891 		return -ECHILD;
892 
893 	audit_log_link_denied("follow_link", &nd->stack[0].link);
894 	return -EACCES;
895 }
896 
897 /**
898  * safe_hardlink_source - Check for safe hardlink conditions
899  * @inode: the source inode to hardlink from
900  *
901  * Return false if at least one of the following conditions:
902  *    - inode is not a regular file
903  *    - inode is setuid
904  *    - inode is setgid and group-exec
905  *    - access failure for read and write
906  *
907  * Otherwise returns true.
908  */
909 static bool safe_hardlink_source(struct inode *inode)
910 {
911 	umode_t mode = inode->i_mode;
912 
913 	/* Special files should not get pinned to the filesystem. */
914 	if (!S_ISREG(mode))
915 		return false;
916 
917 	/* Setuid files should not get pinned to the filesystem. */
918 	if (mode & S_ISUID)
919 		return false;
920 
921 	/* Executable setgid files should not get pinned to the filesystem. */
922 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
923 		return false;
924 
925 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
926 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
927 		return false;
928 
929 	return true;
930 }
931 
932 /**
933  * may_linkat - Check permissions for creating a hardlink
934  * @link: the source to hardlink from
935  *
936  * Block hardlink when all of:
937  *  - sysctl_protected_hardlinks enabled
938  *  - fsuid does not match inode
939  *  - hardlink source is unsafe (see safe_hardlink_source() above)
940  *  - not CAP_FOWNER
941  *
942  * Returns 0 if successful, -ve on error.
943  */
944 static int may_linkat(struct path *link)
945 {
946 	const struct cred *cred;
947 	struct inode *inode;
948 
949 	if (!sysctl_protected_hardlinks)
950 		return 0;
951 
952 	cred = current_cred();
953 	inode = link->dentry->d_inode;
954 
955 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
956 	 * otherwise, it must be a safe source.
957 	 */
958 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
959 	    capable(CAP_FOWNER))
960 		return 0;
961 
962 	audit_log_link_denied("linkat", link);
963 	return -EPERM;
964 }
965 
966 static __always_inline
967 const char *get_link(struct nameidata *nd)
968 {
969 	struct saved *last = nd->stack + nd->depth - 1;
970 	struct dentry *dentry = last->link.dentry;
971 	struct inode *inode = last->inode;
972 	int error;
973 	const char *res;
974 
975 	if (!(nd->flags & LOOKUP_RCU)) {
976 		touch_atime(&last->link);
977 		cond_resched();
978 	} else if (atime_needs_update(&last->link, inode)) {
979 		if (unlikely(unlazy_walk(nd, NULL, 0)))
980 			return ERR_PTR(-ECHILD);
981 		touch_atime(&last->link);
982 	}
983 
984 	error = security_inode_follow_link(dentry, inode,
985 					   nd->flags & LOOKUP_RCU);
986 	if (unlikely(error))
987 		return ERR_PTR(error);
988 
989 	nd->last_type = LAST_BIND;
990 	res = inode->i_link;
991 	if (!res) {
992 		if (nd->flags & LOOKUP_RCU) {
993 			if (unlikely(unlazy_walk(nd, NULL, 0)))
994 				return ERR_PTR(-ECHILD);
995 		}
996 		res = inode->i_op->follow_link(dentry, &last->cookie);
997 		if (IS_ERR_OR_NULL(res)) {
998 			last->cookie = NULL;
999 			return res;
1000 		}
1001 	}
1002 	if (*res == '/') {
1003 		if (nd->flags & LOOKUP_RCU) {
1004 			struct dentry *d;
1005 			if (!nd->root.mnt)
1006 				set_root_rcu(nd);
1007 			nd->path = nd->root;
1008 			d = nd->path.dentry;
1009 			nd->inode = d->d_inode;
1010 			nd->seq = nd->root_seq;
1011 			if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1012 				return ERR_PTR(-ECHILD);
1013 		} else {
1014 			if (!nd->root.mnt)
1015 				set_root(nd);
1016 			path_put(&nd->path);
1017 			nd->path = nd->root;
1018 			path_get(&nd->root);
1019 			nd->inode = nd->path.dentry->d_inode;
1020 		}
1021 		nd->flags |= LOOKUP_JUMPED;
1022 		while (unlikely(*++res == '/'))
1023 			;
1024 	}
1025 	if (!*res)
1026 		res = NULL;
1027 	return res;
1028 }
1029 
1030 /*
1031  * follow_up - Find the mountpoint of path's vfsmount
1032  *
1033  * Given a path, find the mountpoint of its source file system.
1034  * Replace @path with the path of the mountpoint in the parent mount.
1035  * Up is towards /.
1036  *
1037  * Return 1 if we went up a level and 0 if we were already at the
1038  * root.
1039  */
1040 int follow_up(struct path *path)
1041 {
1042 	struct mount *mnt = real_mount(path->mnt);
1043 	struct mount *parent;
1044 	struct dentry *mountpoint;
1045 
1046 	read_seqlock_excl(&mount_lock);
1047 	parent = mnt->mnt_parent;
1048 	if (parent == mnt) {
1049 		read_sequnlock_excl(&mount_lock);
1050 		return 0;
1051 	}
1052 	mntget(&parent->mnt);
1053 	mountpoint = dget(mnt->mnt_mountpoint);
1054 	read_sequnlock_excl(&mount_lock);
1055 	dput(path->dentry);
1056 	path->dentry = mountpoint;
1057 	mntput(path->mnt);
1058 	path->mnt = &parent->mnt;
1059 	return 1;
1060 }
1061 EXPORT_SYMBOL(follow_up);
1062 
1063 /*
1064  * Perform an automount
1065  * - return -EISDIR to tell follow_managed() to stop and return the path we
1066  *   were called with.
1067  */
1068 static int follow_automount(struct path *path, struct nameidata *nd,
1069 			    bool *need_mntput)
1070 {
1071 	struct vfsmount *mnt;
1072 	int err;
1073 
1074 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1075 		return -EREMOTE;
1076 
1077 	/* We don't want to mount if someone's just doing a stat -
1078 	 * unless they're stat'ing a directory and appended a '/' to
1079 	 * the name.
1080 	 *
1081 	 * We do, however, want to mount if someone wants to open or
1082 	 * create a file of any type under the mountpoint, wants to
1083 	 * traverse through the mountpoint or wants to open the
1084 	 * mounted directory.  Also, autofs may mark negative dentries
1085 	 * as being automount points.  These will need the attentions
1086 	 * of the daemon to instantiate them before they can be used.
1087 	 */
1088 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1089 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1090 	    path->dentry->d_inode)
1091 		return -EISDIR;
1092 
1093 	nd->total_link_count++;
1094 	if (nd->total_link_count >= 40)
1095 		return -ELOOP;
1096 
1097 	mnt = path->dentry->d_op->d_automount(path);
1098 	if (IS_ERR(mnt)) {
1099 		/*
1100 		 * The filesystem is allowed to return -EISDIR here to indicate
1101 		 * it doesn't want to automount.  For instance, autofs would do
1102 		 * this so that its userspace daemon can mount on this dentry.
1103 		 *
1104 		 * However, we can only permit this if it's a terminal point in
1105 		 * the path being looked up; if it wasn't then the remainder of
1106 		 * the path is inaccessible and we should say so.
1107 		 */
1108 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1109 			return -EREMOTE;
1110 		return PTR_ERR(mnt);
1111 	}
1112 
1113 	if (!mnt) /* mount collision */
1114 		return 0;
1115 
1116 	if (!*need_mntput) {
1117 		/* lock_mount() may release path->mnt on error */
1118 		mntget(path->mnt);
1119 		*need_mntput = true;
1120 	}
1121 	err = finish_automount(mnt, path);
1122 
1123 	switch (err) {
1124 	case -EBUSY:
1125 		/* Someone else made a mount here whilst we were busy */
1126 		return 0;
1127 	case 0:
1128 		path_put(path);
1129 		path->mnt = mnt;
1130 		path->dentry = dget(mnt->mnt_root);
1131 		return 0;
1132 	default:
1133 		return err;
1134 	}
1135 
1136 }
1137 
1138 /*
1139  * Handle a dentry that is managed in some way.
1140  * - Flagged for transit management (autofs)
1141  * - Flagged as mountpoint
1142  * - Flagged as automount point
1143  *
1144  * This may only be called in refwalk mode.
1145  *
1146  * Serialization is taken care of in namespace.c
1147  */
1148 static int follow_managed(struct path *path, struct nameidata *nd)
1149 {
1150 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1151 	unsigned managed;
1152 	bool need_mntput = false;
1153 	int ret = 0;
1154 
1155 	/* Given that we're not holding a lock here, we retain the value in a
1156 	 * local variable for each dentry as we look at it so that we don't see
1157 	 * the components of that value change under us */
1158 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1159 	       managed &= DCACHE_MANAGED_DENTRY,
1160 	       unlikely(managed != 0)) {
1161 		/* Allow the filesystem to manage the transit without i_mutex
1162 		 * being held. */
1163 		if (managed & DCACHE_MANAGE_TRANSIT) {
1164 			BUG_ON(!path->dentry->d_op);
1165 			BUG_ON(!path->dentry->d_op->d_manage);
1166 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1167 			if (ret < 0)
1168 				break;
1169 		}
1170 
1171 		/* Transit to a mounted filesystem. */
1172 		if (managed & DCACHE_MOUNTED) {
1173 			struct vfsmount *mounted = lookup_mnt(path);
1174 			if (mounted) {
1175 				dput(path->dentry);
1176 				if (need_mntput)
1177 					mntput(path->mnt);
1178 				path->mnt = mounted;
1179 				path->dentry = dget(mounted->mnt_root);
1180 				need_mntput = true;
1181 				continue;
1182 			}
1183 
1184 			/* Something is mounted on this dentry in another
1185 			 * namespace and/or whatever was mounted there in this
1186 			 * namespace got unmounted before lookup_mnt() could
1187 			 * get it */
1188 		}
1189 
1190 		/* Handle an automount point */
1191 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1192 			ret = follow_automount(path, nd, &need_mntput);
1193 			if (ret < 0)
1194 				break;
1195 			continue;
1196 		}
1197 
1198 		/* We didn't change the current path point */
1199 		break;
1200 	}
1201 
1202 	if (need_mntput && path->mnt == mnt)
1203 		mntput(path->mnt);
1204 	if (ret == -EISDIR)
1205 		ret = 0;
1206 	if (need_mntput)
1207 		nd->flags |= LOOKUP_JUMPED;
1208 	if (unlikely(ret < 0))
1209 		path_put_conditional(path, nd);
1210 	return ret;
1211 }
1212 
1213 int follow_down_one(struct path *path)
1214 {
1215 	struct vfsmount *mounted;
1216 
1217 	mounted = lookup_mnt(path);
1218 	if (mounted) {
1219 		dput(path->dentry);
1220 		mntput(path->mnt);
1221 		path->mnt = mounted;
1222 		path->dentry = dget(mounted->mnt_root);
1223 		return 1;
1224 	}
1225 	return 0;
1226 }
1227 EXPORT_SYMBOL(follow_down_one);
1228 
1229 static inline int managed_dentry_rcu(struct dentry *dentry)
1230 {
1231 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1232 		dentry->d_op->d_manage(dentry, true) : 0;
1233 }
1234 
1235 /*
1236  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1237  * we meet a managed dentry that would need blocking.
1238  */
1239 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1240 			       struct inode **inode, unsigned *seqp)
1241 {
1242 	for (;;) {
1243 		struct mount *mounted;
1244 		/*
1245 		 * Don't forget we might have a non-mountpoint managed dentry
1246 		 * that wants to block transit.
1247 		 */
1248 		switch (managed_dentry_rcu(path->dentry)) {
1249 		case -ECHILD:
1250 		default:
1251 			return false;
1252 		case -EISDIR:
1253 			return true;
1254 		case 0:
1255 			break;
1256 		}
1257 
1258 		if (!d_mountpoint(path->dentry))
1259 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1260 
1261 		mounted = __lookup_mnt(path->mnt, path->dentry);
1262 		if (!mounted)
1263 			break;
1264 		path->mnt = &mounted->mnt;
1265 		path->dentry = mounted->mnt.mnt_root;
1266 		nd->flags |= LOOKUP_JUMPED;
1267 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1268 		/*
1269 		 * Update the inode too. We don't need to re-check the
1270 		 * dentry sequence number here after this d_inode read,
1271 		 * because a mount-point is always pinned.
1272 		 */
1273 		*inode = path->dentry->d_inode;
1274 	}
1275 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1276 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1277 }
1278 
1279 static int follow_dotdot_rcu(struct nameidata *nd)
1280 {
1281 	struct inode *inode = nd->inode;
1282 	if (!nd->root.mnt)
1283 		set_root_rcu(nd);
1284 
1285 	while (1) {
1286 		if (path_equal(&nd->path, &nd->root))
1287 			break;
1288 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1289 			struct dentry *old = nd->path.dentry;
1290 			struct dentry *parent = old->d_parent;
1291 			unsigned seq;
1292 
1293 			inode = parent->d_inode;
1294 			seq = read_seqcount_begin(&parent->d_seq);
1295 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1296 				return -ECHILD;
1297 			nd->path.dentry = parent;
1298 			nd->seq = seq;
1299 			break;
1300 		} else {
1301 			struct mount *mnt = real_mount(nd->path.mnt);
1302 			struct mount *mparent = mnt->mnt_parent;
1303 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1304 			struct inode *inode2 = mountpoint->d_inode;
1305 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1306 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1307 				return -ECHILD;
1308 			if (&mparent->mnt == nd->path.mnt)
1309 				break;
1310 			/* we know that mountpoint was pinned */
1311 			nd->path.dentry = mountpoint;
1312 			nd->path.mnt = &mparent->mnt;
1313 			inode = inode2;
1314 			nd->seq = seq;
1315 		}
1316 	}
1317 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1318 		struct mount *mounted;
1319 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1320 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1321 			return -ECHILD;
1322 		if (!mounted)
1323 			break;
1324 		nd->path.mnt = &mounted->mnt;
1325 		nd->path.dentry = mounted->mnt.mnt_root;
1326 		inode = nd->path.dentry->d_inode;
1327 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1328 	}
1329 	nd->inode = inode;
1330 	return 0;
1331 }
1332 
1333 /*
1334  * Follow down to the covering mount currently visible to userspace.  At each
1335  * point, the filesystem owning that dentry may be queried as to whether the
1336  * caller is permitted to proceed or not.
1337  */
1338 int follow_down(struct path *path)
1339 {
1340 	unsigned managed;
1341 	int ret;
1342 
1343 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1344 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1345 		/* Allow the filesystem to manage the transit without i_mutex
1346 		 * being held.
1347 		 *
1348 		 * We indicate to the filesystem if someone is trying to mount
1349 		 * something here.  This gives autofs the chance to deny anyone
1350 		 * other than its daemon the right to mount on its
1351 		 * superstructure.
1352 		 *
1353 		 * The filesystem may sleep at this point.
1354 		 */
1355 		if (managed & DCACHE_MANAGE_TRANSIT) {
1356 			BUG_ON(!path->dentry->d_op);
1357 			BUG_ON(!path->dentry->d_op->d_manage);
1358 			ret = path->dentry->d_op->d_manage(
1359 				path->dentry, false);
1360 			if (ret < 0)
1361 				return ret == -EISDIR ? 0 : ret;
1362 		}
1363 
1364 		/* Transit to a mounted filesystem. */
1365 		if (managed & DCACHE_MOUNTED) {
1366 			struct vfsmount *mounted = lookup_mnt(path);
1367 			if (!mounted)
1368 				break;
1369 			dput(path->dentry);
1370 			mntput(path->mnt);
1371 			path->mnt = mounted;
1372 			path->dentry = dget(mounted->mnt_root);
1373 			continue;
1374 		}
1375 
1376 		/* Don't handle automount points here */
1377 		break;
1378 	}
1379 	return 0;
1380 }
1381 EXPORT_SYMBOL(follow_down);
1382 
1383 /*
1384  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1385  */
1386 static void follow_mount(struct path *path)
1387 {
1388 	while (d_mountpoint(path->dentry)) {
1389 		struct vfsmount *mounted = lookup_mnt(path);
1390 		if (!mounted)
1391 			break;
1392 		dput(path->dentry);
1393 		mntput(path->mnt);
1394 		path->mnt = mounted;
1395 		path->dentry = dget(mounted->mnt_root);
1396 	}
1397 }
1398 
1399 static void follow_dotdot(struct nameidata *nd)
1400 {
1401 	if (!nd->root.mnt)
1402 		set_root(nd);
1403 
1404 	while(1) {
1405 		struct dentry *old = nd->path.dentry;
1406 
1407 		if (nd->path.dentry == nd->root.dentry &&
1408 		    nd->path.mnt == nd->root.mnt) {
1409 			break;
1410 		}
1411 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1412 			/* rare case of legitimate dget_parent()... */
1413 			nd->path.dentry = dget_parent(nd->path.dentry);
1414 			dput(old);
1415 			break;
1416 		}
1417 		if (!follow_up(&nd->path))
1418 			break;
1419 	}
1420 	follow_mount(&nd->path);
1421 	nd->inode = nd->path.dentry->d_inode;
1422 }
1423 
1424 /*
1425  * This looks up the name in dcache, possibly revalidates the old dentry and
1426  * allocates a new one if not found or not valid.  In the need_lookup argument
1427  * returns whether i_op->lookup is necessary.
1428  *
1429  * dir->d_inode->i_mutex must be held
1430  */
1431 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1432 				    unsigned int flags, bool *need_lookup)
1433 {
1434 	struct dentry *dentry;
1435 	int error;
1436 
1437 	*need_lookup = false;
1438 	dentry = d_lookup(dir, name);
1439 	if (dentry) {
1440 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1441 			error = d_revalidate(dentry, flags);
1442 			if (unlikely(error <= 0)) {
1443 				if (error < 0) {
1444 					dput(dentry);
1445 					return ERR_PTR(error);
1446 				} else {
1447 					d_invalidate(dentry);
1448 					dput(dentry);
1449 					dentry = NULL;
1450 				}
1451 			}
1452 		}
1453 	}
1454 
1455 	if (!dentry) {
1456 		dentry = d_alloc(dir, name);
1457 		if (unlikely(!dentry))
1458 			return ERR_PTR(-ENOMEM);
1459 
1460 		*need_lookup = true;
1461 	}
1462 	return dentry;
1463 }
1464 
1465 /*
1466  * Call i_op->lookup on the dentry.  The dentry must be negative and
1467  * unhashed.
1468  *
1469  * dir->d_inode->i_mutex must be held
1470  */
1471 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1472 				  unsigned int flags)
1473 {
1474 	struct dentry *old;
1475 
1476 	/* Don't create child dentry for a dead directory. */
1477 	if (unlikely(IS_DEADDIR(dir))) {
1478 		dput(dentry);
1479 		return ERR_PTR(-ENOENT);
1480 	}
1481 
1482 	old = dir->i_op->lookup(dir, dentry, flags);
1483 	if (unlikely(old)) {
1484 		dput(dentry);
1485 		dentry = old;
1486 	}
1487 	return dentry;
1488 }
1489 
1490 static struct dentry *__lookup_hash(struct qstr *name,
1491 		struct dentry *base, unsigned int flags)
1492 {
1493 	bool need_lookup;
1494 	struct dentry *dentry;
1495 
1496 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1497 	if (!need_lookup)
1498 		return dentry;
1499 
1500 	return lookup_real(base->d_inode, dentry, flags);
1501 }
1502 
1503 /*
1504  *  It's more convoluted than I'd like it to be, but... it's still fairly
1505  *  small and for now I'd prefer to have fast path as straight as possible.
1506  *  It _is_ time-critical.
1507  */
1508 static int lookup_fast(struct nameidata *nd,
1509 		       struct path *path, struct inode **inode,
1510 		       unsigned *seqp)
1511 {
1512 	struct vfsmount *mnt = nd->path.mnt;
1513 	struct dentry *dentry, *parent = nd->path.dentry;
1514 	int need_reval = 1;
1515 	int status = 1;
1516 	int err;
1517 
1518 	/*
1519 	 * Rename seqlock is not required here because in the off chance
1520 	 * of a false negative due to a concurrent rename, we're going to
1521 	 * do the non-racy lookup, below.
1522 	 */
1523 	if (nd->flags & LOOKUP_RCU) {
1524 		unsigned seq;
1525 		bool negative;
1526 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1527 		if (!dentry)
1528 			goto unlazy;
1529 
1530 		/*
1531 		 * This sequence count validates that the inode matches
1532 		 * the dentry name information from lookup.
1533 		 */
1534 		*inode = d_backing_inode(dentry);
1535 		negative = d_is_negative(dentry);
1536 		if (read_seqcount_retry(&dentry->d_seq, seq))
1537 			return -ECHILD;
1538 		if (negative)
1539 			return -ENOENT;
1540 
1541 		/*
1542 		 * This sequence count validates that the parent had no
1543 		 * changes while we did the lookup of the dentry above.
1544 		 *
1545 		 * The memory barrier in read_seqcount_begin of child is
1546 		 *  enough, we can use __read_seqcount_retry here.
1547 		 */
1548 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1549 			return -ECHILD;
1550 
1551 		*seqp = seq;
1552 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1553 			status = d_revalidate(dentry, nd->flags);
1554 			if (unlikely(status <= 0)) {
1555 				if (status != -ECHILD)
1556 					need_reval = 0;
1557 				goto unlazy;
1558 			}
1559 		}
1560 		path->mnt = mnt;
1561 		path->dentry = dentry;
1562 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1563 			return 0;
1564 unlazy:
1565 		if (unlazy_walk(nd, dentry, seq))
1566 			return -ECHILD;
1567 	} else {
1568 		dentry = __d_lookup(parent, &nd->last);
1569 	}
1570 
1571 	if (unlikely(!dentry))
1572 		goto need_lookup;
1573 
1574 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1575 		status = d_revalidate(dentry, nd->flags);
1576 	if (unlikely(status <= 0)) {
1577 		if (status < 0) {
1578 			dput(dentry);
1579 			return status;
1580 		}
1581 		d_invalidate(dentry);
1582 		dput(dentry);
1583 		goto need_lookup;
1584 	}
1585 
1586 	if (unlikely(d_is_negative(dentry))) {
1587 		dput(dentry);
1588 		return -ENOENT;
1589 	}
1590 	path->mnt = mnt;
1591 	path->dentry = dentry;
1592 	err = follow_managed(path, nd);
1593 	if (likely(!err))
1594 		*inode = d_backing_inode(path->dentry);
1595 	return err;
1596 
1597 need_lookup:
1598 	return 1;
1599 }
1600 
1601 /* Fast lookup failed, do it the slow way */
1602 static int lookup_slow(struct nameidata *nd, struct path *path)
1603 {
1604 	struct dentry *dentry, *parent;
1605 
1606 	parent = nd->path.dentry;
1607 	BUG_ON(nd->inode != parent->d_inode);
1608 
1609 	mutex_lock(&parent->d_inode->i_mutex);
1610 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1611 	mutex_unlock(&parent->d_inode->i_mutex);
1612 	if (IS_ERR(dentry))
1613 		return PTR_ERR(dentry);
1614 	path->mnt = nd->path.mnt;
1615 	path->dentry = dentry;
1616 	return follow_managed(path, nd);
1617 }
1618 
1619 static inline int may_lookup(struct nameidata *nd)
1620 {
1621 	if (nd->flags & LOOKUP_RCU) {
1622 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1623 		if (err != -ECHILD)
1624 			return err;
1625 		if (unlazy_walk(nd, NULL, 0))
1626 			return -ECHILD;
1627 	}
1628 	return inode_permission(nd->inode, MAY_EXEC);
1629 }
1630 
1631 static inline int handle_dots(struct nameidata *nd, int type)
1632 {
1633 	if (type == LAST_DOTDOT) {
1634 		if (nd->flags & LOOKUP_RCU) {
1635 			return follow_dotdot_rcu(nd);
1636 		} else
1637 			follow_dotdot(nd);
1638 	}
1639 	return 0;
1640 }
1641 
1642 static int pick_link(struct nameidata *nd, struct path *link,
1643 		     struct inode *inode, unsigned seq)
1644 {
1645 	int error;
1646 	struct saved *last;
1647 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1648 		path_to_nameidata(link, nd);
1649 		return -ELOOP;
1650 	}
1651 	if (!(nd->flags & LOOKUP_RCU)) {
1652 		if (link->mnt == nd->path.mnt)
1653 			mntget(link->mnt);
1654 	}
1655 	error = nd_alloc_stack(nd);
1656 	if (unlikely(error)) {
1657 		if (error == -ECHILD) {
1658 			if (unlikely(unlazy_link(nd, link, seq)))
1659 				return -ECHILD;
1660 			error = nd_alloc_stack(nd);
1661 		}
1662 		if (error) {
1663 			path_put(link);
1664 			return error;
1665 		}
1666 	}
1667 
1668 	last = nd->stack + nd->depth++;
1669 	last->link = *link;
1670 	last->cookie = NULL;
1671 	last->inode = inode;
1672 	last->seq = seq;
1673 	return 1;
1674 }
1675 
1676 /*
1677  * Do we need to follow links? We _really_ want to be able
1678  * to do this check without having to look at inode->i_op,
1679  * so we keep a cache of "no, this doesn't need follow_link"
1680  * for the common case.
1681  */
1682 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1683 				     int follow,
1684 				     struct inode *inode, unsigned seq)
1685 {
1686 	if (likely(!d_is_symlink(link->dentry)))
1687 		return 0;
1688 	if (!follow)
1689 		return 0;
1690 	return pick_link(nd, link, inode, seq);
1691 }
1692 
1693 enum {WALK_GET = 1, WALK_PUT = 2};
1694 
1695 static int walk_component(struct nameidata *nd, int flags)
1696 {
1697 	struct path path;
1698 	struct inode *inode;
1699 	unsigned seq;
1700 	int err;
1701 	/*
1702 	 * "." and ".." are special - ".." especially so because it has
1703 	 * to be able to know about the current root directory and
1704 	 * parent relationships.
1705 	 */
1706 	if (unlikely(nd->last_type != LAST_NORM)) {
1707 		err = handle_dots(nd, nd->last_type);
1708 		if (flags & WALK_PUT)
1709 			put_link(nd);
1710 		return err;
1711 	}
1712 	err = lookup_fast(nd, &path, &inode, &seq);
1713 	if (unlikely(err)) {
1714 		if (err < 0)
1715 			return err;
1716 
1717 		err = lookup_slow(nd, &path);
1718 		if (err < 0)
1719 			return err;
1720 
1721 		inode = d_backing_inode(path.dentry);
1722 		seq = 0;	/* we are already out of RCU mode */
1723 		err = -ENOENT;
1724 		if (d_is_negative(path.dentry))
1725 			goto out_path_put;
1726 	}
1727 
1728 	if (flags & WALK_PUT)
1729 		put_link(nd);
1730 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1731 	if (unlikely(err))
1732 		return err;
1733 	path_to_nameidata(&path, nd);
1734 	nd->inode = inode;
1735 	nd->seq = seq;
1736 	return 0;
1737 
1738 out_path_put:
1739 	path_to_nameidata(&path, nd);
1740 	return err;
1741 }
1742 
1743 /*
1744  * We can do the critical dentry name comparison and hashing
1745  * operations one word at a time, but we are limited to:
1746  *
1747  * - Architectures with fast unaligned word accesses. We could
1748  *   do a "get_unaligned()" if this helps and is sufficiently
1749  *   fast.
1750  *
1751  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1752  *   do not trap on the (extremely unlikely) case of a page
1753  *   crossing operation.
1754  *
1755  * - Furthermore, we need an efficient 64-bit compile for the
1756  *   64-bit case in order to generate the "number of bytes in
1757  *   the final mask". Again, that could be replaced with a
1758  *   efficient population count instruction or similar.
1759  */
1760 #ifdef CONFIG_DCACHE_WORD_ACCESS
1761 
1762 #include <asm/word-at-a-time.h>
1763 
1764 #ifdef CONFIG_64BIT
1765 
1766 static inline unsigned int fold_hash(unsigned long hash)
1767 {
1768 	return hash_64(hash, 32);
1769 }
1770 
1771 #else	/* 32-bit case */
1772 
1773 #define fold_hash(x) (x)
1774 
1775 #endif
1776 
1777 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1778 {
1779 	unsigned long a, mask;
1780 	unsigned long hash = 0;
1781 
1782 	for (;;) {
1783 		a = load_unaligned_zeropad(name);
1784 		if (len < sizeof(unsigned long))
1785 			break;
1786 		hash += a;
1787 		hash *= 9;
1788 		name += sizeof(unsigned long);
1789 		len -= sizeof(unsigned long);
1790 		if (!len)
1791 			goto done;
1792 	}
1793 	mask = bytemask_from_count(len);
1794 	hash += mask & a;
1795 done:
1796 	return fold_hash(hash);
1797 }
1798 EXPORT_SYMBOL(full_name_hash);
1799 
1800 /*
1801  * Calculate the length and hash of the path component, and
1802  * return the "hash_len" as the result.
1803  */
1804 static inline u64 hash_name(const char *name)
1805 {
1806 	unsigned long a, b, adata, bdata, mask, hash, len;
1807 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1808 
1809 	hash = a = 0;
1810 	len = -sizeof(unsigned long);
1811 	do {
1812 		hash = (hash + a) * 9;
1813 		len += sizeof(unsigned long);
1814 		a = load_unaligned_zeropad(name+len);
1815 		b = a ^ REPEAT_BYTE('/');
1816 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1817 
1818 	adata = prep_zero_mask(a, adata, &constants);
1819 	bdata = prep_zero_mask(b, bdata, &constants);
1820 
1821 	mask = create_zero_mask(adata | bdata);
1822 
1823 	hash += a & zero_bytemask(mask);
1824 	len += find_zero(mask);
1825 	return hashlen_create(fold_hash(hash), len);
1826 }
1827 
1828 #else
1829 
1830 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1831 {
1832 	unsigned long hash = init_name_hash();
1833 	while (len--)
1834 		hash = partial_name_hash(*name++, hash);
1835 	return end_name_hash(hash);
1836 }
1837 EXPORT_SYMBOL(full_name_hash);
1838 
1839 /*
1840  * We know there's a real path component here of at least
1841  * one character.
1842  */
1843 static inline u64 hash_name(const char *name)
1844 {
1845 	unsigned long hash = init_name_hash();
1846 	unsigned long len = 0, c;
1847 
1848 	c = (unsigned char)*name;
1849 	do {
1850 		len++;
1851 		hash = partial_name_hash(c, hash);
1852 		c = (unsigned char)name[len];
1853 	} while (c && c != '/');
1854 	return hashlen_create(end_name_hash(hash), len);
1855 }
1856 
1857 #endif
1858 
1859 /*
1860  * Name resolution.
1861  * This is the basic name resolution function, turning a pathname into
1862  * the final dentry. We expect 'base' to be positive and a directory.
1863  *
1864  * Returns 0 and nd will have valid dentry and mnt on success.
1865  * Returns error and drops reference to input namei data on failure.
1866  */
1867 static int link_path_walk(const char *name, struct nameidata *nd)
1868 {
1869 	int err;
1870 
1871 	while (*name=='/')
1872 		name++;
1873 	if (!*name)
1874 		return 0;
1875 
1876 	/* At this point we know we have a real path component. */
1877 	for(;;) {
1878 		u64 hash_len;
1879 		int type;
1880 
1881 		err = may_lookup(nd);
1882  		if (err)
1883 			return err;
1884 
1885 		hash_len = hash_name(name);
1886 
1887 		type = LAST_NORM;
1888 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1889 			case 2:
1890 				if (name[1] == '.') {
1891 					type = LAST_DOTDOT;
1892 					nd->flags |= LOOKUP_JUMPED;
1893 				}
1894 				break;
1895 			case 1:
1896 				type = LAST_DOT;
1897 		}
1898 		if (likely(type == LAST_NORM)) {
1899 			struct dentry *parent = nd->path.dentry;
1900 			nd->flags &= ~LOOKUP_JUMPED;
1901 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1902 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1903 				err = parent->d_op->d_hash(parent, &this);
1904 				if (err < 0)
1905 					return err;
1906 				hash_len = this.hash_len;
1907 				name = this.name;
1908 			}
1909 		}
1910 
1911 		nd->last.hash_len = hash_len;
1912 		nd->last.name = name;
1913 		nd->last_type = type;
1914 
1915 		name += hashlen_len(hash_len);
1916 		if (!*name)
1917 			goto OK;
1918 		/*
1919 		 * If it wasn't NUL, we know it was '/'. Skip that
1920 		 * slash, and continue until no more slashes.
1921 		 */
1922 		do {
1923 			name++;
1924 		} while (unlikely(*name == '/'));
1925 		if (unlikely(!*name)) {
1926 OK:
1927 			/* pathname body, done */
1928 			if (!nd->depth)
1929 				return 0;
1930 			name = nd->stack[nd->depth - 1].name;
1931 			/* trailing symlink, done */
1932 			if (!name)
1933 				return 0;
1934 			/* last component of nested symlink */
1935 			err = walk_component(nd, WALK_GET | WALK_PUT);
1936 		} else {
1937 			err = walk_component(nd, WALK_GET);
1938 		}
1939 		if (err < 0)
1940 			return err;
1941 
1942 		if (err) {
1943 			const char *s = get_link(nd);
1944 
1945 			if (unlikely(IS_ERR(s)))
1946 				return PTR_ERR(s);
1947 			err = 0;
1948 			if (unlikely(!s)) {
1949 				/* jumped */
1950 				put_link(nd);
1951 			} else {
1952 				nd->stack[nd->depth - 1].name = name;
1953 				name = s;
1954 				continue;
1955 			}
1956 		}
1957 		if (unlikely(!d_can_lookup(nd->path.dentry)))
1958 			return -ENOTDIR;
1959 	}
1960 }
1961 
1962 static const char *path_init(struct nameidata *nd, unsigned flags)
1963 {
1964 	int retval = 0;
1965 	const char *s = nd->name->name;
1966 
1967 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1968 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1969 	nd->depth = 0;
1970 	nd->total_link_count = 0;
1971 	if (flags & LOOKUP_ROOT) {
1972 		struct dentry *root = nd->root.dentry;
1973 		struct inode *inode = root->d_inode;
1974 		if (*s) {
1975 			if (!d_can_lookup(root))
1976 				return ERR_PTR(-ENOTDIR);
1977 			retval = inode_permission(inode, MAY_EXEC);
1978 			if (retval)
1979 				return ERR_PTR(retval);
1980 		}
1981 		nd->path = nd->root;
1982 		nd->inode = inode;
1983 		if (flags & LOOKUP_RCU) {
1984 			rcu_read_lock();
1985 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1986 			nd->root_seq = nd->seq;
1987 			nd->m_seq = read_seqbegin(&mount_lock);
1988 		} else {
1989 			path_get(&nd->path);
1990 		}
1991 		return s;
1992 	}
1993 
1994 	nd->root.mnt = NULL;
1995 
1996 	nd->m_seq = read_seqbegin(&mount_lock);
1997 	if (*s == '/') {
1998 		if (flags & LOOKUP_RCU) {
1999 			rcu_read_lock();
2000 			set_root_rcu(nd);
2001 			nd->seq = nd->root_seq;
2002 		} else {
2003 			set_root(nd);
2004 			path_get(&nd->root);
2005 		}
2006 		nd->path = nd->root;
2007 	} else if (nd->dfd == AT_FDCWD) {
2008 		if (flags & LOOKUP_RCU) {
2009 			struct fs_struct *fs = current->fs;
2010 			unsigned seq;
2011 
2012 			rcu_read_lock();
2013 
2014 			do {
2015 				seq = read_seqcount_begin(&fs->seq);
2016 				nd->path = fs->pwd;
2017 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2018 			} while (read_seqcount_retry(&fs->seq, seq));
2019 		} else {
2020 			get_fs_pwd(current->fs, &nd->path);
2021 		}
2022 	} else {
2023 		/* Caller must check execute permissions on the starting path component */
2024 		struct fd f = fdget_raw(nd->dfd);
2025 		struct dentry *dentry;
2026 
2027 		if (!f.file)
2028 			return ERR_PTR(-EBADF);
2029 
2030 		dentry = f.file->f_path.dentry;
2031 
2032 		if (*s) {
2033 			if (!d_can_lookup(dentry)) {
2034 				fdput(f);
2035 				return ERR_PTR(-ENOTDIR);
2036 			}
2037 		}
2038 
2039 		nd->path = f.file->f_path;
2040 		if (flags & LOOKUP_RCU) {
2041 			rcu_read_lock();
2042 			nd->inode = nd->path.dentry->d_inode;
2043 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2044 		} else {
2045 			path_get(&nd->path);
2046 			nd->inode = nd->path.dentry->d_inode;
2047 		}
2048 		fdput(f);
2049 		return s;
2050 	}
2051 
2052 	nd->inode = nd->path.dentry->d_inode;
2053 	if (!(flags & LOOKUP_RCU))
2054 		return s;
2055 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2056 		return s;
2057 	if (!(nd->flags & LOOKUP_ROOT))
2058 		nd->root.mnt = NULL;
2059 	rcu_read_unlock();
2060 	return ERR_PTR(-ECHILD);
2061 }
2062 
2063 static const char *trailing_symlink(struct nameidata *nd)
2064 {
2065 	const char *s;
2066 	int error = may_follow_link(nd);
2067 	if (unlikely(error))
2068 		return ERR_PTR(error);
2069 	nd->flags |= LOOKUP_PARENT;
2070 	nd->stack[0].name = NULL;
2071 	s = get_link(nd);
2072 	return s ? s : "";
2073 }
2074 
2075 static inline int lookup_last(struct nameidata *nd)
2076 {
2077 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2078 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2079 
2080 	nd->flags &= ~LOOKUP_PARENT;
2081 	return walk_component(nd,
2082 			nd->flags & LOOKUP_FOLLOW
2083 				? nd->depth
2084 					? WALK_PUT | WALK_GET
2085 					: WALK_GET
2086 				: 0);
2087 }
2088 
2089 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2090 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2091 {
2092 	const char *s = path_init(nd, flags);
2093 	int err;
2094 
2095 	if (IS_ERR(s))
2096 		return PTR_ERR(s);
2097 	while (!(err = link_path_walk(s, nd))
2098 		&& ((err = lookup_last(nd)) > 0)) {
2099 		s = trailing_symlink(nd);
2100 		if (IS_ERR(s)) {
2101 			err = PTR_ERR(s);
2102 			break;
2103 		}
2104 	}
2105 	if (!err)
2106 		err = complete_walk(nd);
2107 
2108 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2109 		if (!d_can_lookup(nd->path.dentry))
2110 			err = -ENOTDIR;
2111 	if (!err) {
2112 		*path = nd->path;
2113 		nd->path.mnt = NULL;
2114 		nd->path.dentry = NULL;
2115 	}
2116 	terminate_walk(nd);
2117 	return err;
2118 }
2119 
2120 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2121 			   struct path *path, struct path *root)
2122 {
2123 	int retval;
2124 	struct nameidata nd;
2125 	if (IS_ERR(name))
2126 		return PTR_ERR(name);
2127 	if (unlikely(root)) {
2128 		nd.root = *root;
2129 		flags |= LOOKUP_ROOT;
2130 	}
2131 	set_nameidata(&nd, dfd, name);
2132 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2133 	if (unlikely(retval == -ECHILD))
2134 		retval = path_lookupat(&nd, flags, path);
2135 	if (unlikely(retval == -ESTALE))
2136 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2137 
2138 	if (likely(!retval))
2139 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2140 	restore_nameidata();
2141 	putname(name);
2142 	return retval;
2143 }
2144 
2145 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2146 static int path_parentat(struct nameidata *nd, unsigned flags,
2147 				struct path *parent)
2148 {
2149 	const char *s = path_init(nd, flags);
2150 	int err;
2151 	if (IS_ERR(s))
2152 		return PTR_ERR(s);
2153 	err = link_path_walk(s, nd);
2154 	if (!err)
2155 		err = complete_walk(nd);
2156 	if (!err) {
2157 		*parent = nd->path;
2158 		nd->path.mnt = NULL;
2159 		nd->path.dentry = NULL;
2160 	}
2161 	terminate_walk(nd);
2162 	return err;
2163 }
2164 
2165 static struct filename *filename_parentat(int dfd, struct filename *name,
2166 				unsigned int flags, struct path *parent,
2167 				struct qstr *last, int *type)
2168 {
2169 	int retval;
2170 	struct nameidata nd;
2171 
2172 	if (IS_ERR(name))
2173 		return name;
2174 	set_nameidata(&nd, dfd, name);
2175 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2176 	if (unlikely(retval == -ECHILD))
2177 		retval = path_parentat(&nd, flags, parent);
2178 	if (unlikely(retval == -ESTALE))
2179 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2180 	if (likely(!retval)) {
2181 		*last = nd.last;
2182 		*type = nd.last_type;
2183 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2184 	} else {
2185 		putname(name);
2186 		name = ERR_PTR(retval);
2187 	}
2188 	restore_nameidata();
2189 	return name;
2190 }
2191 
2192 /* does lookup, returns the object with parent locked */
2193 struct dentry *kern_path_locked(const char *name, struct path *path)
2194 {
2195 	struct filename *filename;
2196 	struct dentry *d;
2197 	struct qstr last;
2198 	int type;
2199 
2200 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2201 				    &last, &type);
2202 	if (IS_ERR(filename))
2203 		return ERR_CAST(filename);
2204 	if (unlikely(type != LAST_NORM)) {
2205 		path_put(path);
2206 		putname(filename);
2207 		return ERR_PTR(-EINVAL);
2208 	}
2209 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2210 	d = __lookup_hash(&last, path->dentry, 0);
2211 	if (IS_ERR(d)) {
2212 		mutex_unlock(&path->dentry->d_inode->i_mutex);
2213 		path_put(path);
2214 	}
2215 	putname(filename);
2216 	return d;
2217 }
2218 
2219 int kern_path(const char *name, unsigned int flags, struct path *path)
2220 {
2221 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2222 			       flags, path, NULL);
2223 }
2224 EXPORT_SYMBOL(kern_path);
2225 
2226 /**
2227  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2228  * @dentry:  pointer to dentry of the base directory
2229  * @mnt: pointer to vfs mount of the base directory
2230  * @name: pointer to file name
2231  * @flags: lookup flags
2232  * @path: pointer to struct path to fill
2233  */
2234 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2235 		    const char *name, unsigned int flags,
2236 		    struct path *path)
2237 {
2238 	struct path root = {.mnt = mnt, .dentry = dentry};
2239 	/* the first argument of filename_lookup() is ignored with root */
2240 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2241 			       flags , path, &root);
2242 }
2243 EXPORT_SYMBOL(vfs_path_lookup);
2244 
2245 /**
2246  * lookup_one_len - filesystem helper to lookup single pathname component
2247  * @name:	pathname component to lookup
2248  * @base:	base directory to lookup from
2249  * @len:	maximum length @len should be interpreted to
2250  *
2251  * Note that this routine is purely a helper for filesystem usage and should
2252  * not be called by generic code.
2253  */
2254 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2255 {
2256 	struct qstr this;
2257 	unsigned int c;
2258 	int err;
2259 
2260 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2261 
2262 	this.name = name;
2263 	this.len = len;
2264 	this.hash = full_name_hash(name, len);
2265 	if (!len)
2266 		return ERR_PTR(-EACCES);
2267 
2268 	if (unlikely(name[0] == '.')) {
2269 		if (len < 2 || (len == 2 && name[1] == '.'))
2270 			return ERR_PTR(-EACCES);
2271 	}
2272 
2273 	while (len--) {
2274 		c = *(const unsigned char *)name++;
2275 		if (c == '/' || c == '\0')
2276 			return ERR_PTR(-EACCES);
2277 	}
2278 	/*
2279 	 * See if the low-level filesystem might want
2280 	 * to use its own hash..
2281 	 */
2282 	if (base->d_flags & DCACHE_OP_HASH) {
2283 		int err = base->d_op->d_hash(base, &this);
2284 		if (err < 0)
2285 			return ERR_PTR(err);
2286 	}
2287 
2288 	err = inode_permission(base->d_inode, MAY_EXEC);
2289 	if (err)
2290 		return ERR_PTR(err);
2291 
2292 	return __lookup_hash(&this, base, 0);
2293 }
2294 EXPORT_SYMBOL(lookup_one_len);
2295 
2296 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2297 		 struct path *path, int *empty)
2298 {
2299 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2300 			       flags, path, NULL);
2301 }
2302 EXPORT_SYMBOL(user_path_at_empty);
2303 
2304 /*
2305  * NB: most callers don't do anything directly with the reference to the
2306  *     to struct filename, but the nd->last pointer points into the name string
2307  *     allocated by getname. So we must hold the reference to it until all
2308  *     path-walking is complete.
2309  */
2310 static inline struct filename *
2311 user_path_parent(int dfd, const char __user *path,
2312 		 struct path *parent,
2313 		 struct qstr *last,
2314 		 int *type,
2315 		 unsigned int flags)
2316 {
2317 	/* only LOOKUP_REVAL is allowed in extra flags */
2318 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2319 				 parent, last, type);
2320 }
2321 
2322 /**
2323  * mountpoint_last - look up last component for umount
2324  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2325  * @path: pointer to container for result
2326  *
2327  * This is a special lookup_last function just for umount. In this case, we
2328  * need to resolve the path without doing any revalidation.
2329  *
2330  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2331  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2332  * in almost all cases, this lookup will be served out of the dcache. The only
2333  * cases where it won't are if nd->last refers to a symlink or the path is
2334  * bogus and it doesn't exist.
2335  *
2336  * Returns:
2337  * -error: if there was an error during lookup. This includes -ENOENT if the
2338  *         lookup found a negative dentry. The nd->path reference will also be
2339  *         put in this case.
2340  *
2341  * 0:      if we successfully resolved nd->path and found it to not to be a
2342  *         symlink that needs to be followed. "path" will also be populated.
2343  *         The nd->path reference will also be put.
2344  *
2345  * 1:      if we successfully resolved nd->last and found it to be a symlink
2346  *         that needs to be followed. "path" will be populated with the path
2347  *         to the link, and nd->path will *not* be put.
2348  */
2349 static int
2350 mountpoint_last(struct nameidata *nd, struct path *path)
2351 {
2352 	int error = 0;
2353 	struct dentry *dentry;
2354 	struct dentry *dir = nd->path.dentry;
2355 
2356 	/* If we're in rcuwalk, drop out of it to handle last component */
2357 	if (nd->flags & LOOKUP_RCU) {
2358 		if (unlazy_walk(nd, NULL, 0))
2359 			return -ECHILD;
2360 	}
2361 
2362 	nd->flags &= ~LOOKUP_PARENT;
2363 
2364 	if (unlikely(nd->last_type != LAST_NORM)) {
2365 		error = handle_dots(nd, nd->last_type);
2366 		if (error)
2367 			return error;
2368 		dentry = dget(nd->path.dentry);
2369 		goto done;
2370 	}
2371 
2372 	mutex_lock(&dir->d_inode->i_mutex);
2373 	dentry = d_lookup(dir, &nd->last);
2374 	if (!dentry) {
2375 		/*
2376 		 * No cached dentry. Mounted dentries are pinned in the cache,
2377 		 * so that means that this dentry is probably a symlink or the
2378 		 * path doesn't actually point to a mounted dentry.
2379 		 */
2380 		dentry = d_alloc(dir, &nd->last);
2381 		if (!dentry) {
2382 			mutex_unlock(&dir->d_inode->i_mutex);
2383 			return -ENOMEM;
2384 		}
2385 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2386 		if (IS_ERR(dentry)) {
2387 			mutex_unlock(&dir->d_inode->i_mutex);
2388 			return PTR_ERR(dentry);
2389 		}
2390 	}
2391 	mutex_unlock(&dir->d_inode->i_mutex);
2392 
2393 done:
2394 	if (d_is_negative(dentry)) {
2395 		dput(dentry);
2396 		return -ENOENT;
2397 	}
2398 	if (nd->depth)
2399 		put_link(nd);
2400 	path->dentry = dentry;
2401 	path->mnt = nd->path.mnt;
2402 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2403 				   d_backing_inode(dentry), 0);
2404 	if (unlikely(error))
2405 		return error;
2406 	mntget(path->mnt);
2407 	follow_mount(path);
2408 	return 0;
2409 }
2410 
2411 /**
2412  * path_mountpoint - look up a path to be umounted
2413  * @nameidata:	lookup context
2414  * @flags:	lookup flags
2415  * @path:	pointer to container for result
2416  *
2417  * Look up the given name, but don't attempt to revalidate the last component.
2418  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2419  */
2420 static int
2421 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2422 {
2423 	const char *s = path_init(nd, flags);
2424 	int err;
2425 	if (IS_ERR(s))
2426 		return PTR_ERR(s);
2427 	while (!(err = link_path_walk(s, nd)) &&
2428 		(err = mountpoint_last(nd, path)) > 0) {
2429 		s = trailing_symlink(nd);
2430 		if (IS_ERR(s)) {
2431 			err = PTR_ERR(s);
2432 			break;
2433 		}
2434 	}
2435 	terminate_walk(nd);
2436 	return err;
2437 }
2438 
2439 static int
2440 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2441 			unsigned int flags)
2442 {
2443 	struct nameidata nd;
2444 	int error;
2445 	if (IS_ERR(name))
2446 		return PTR_ERR(name);
2447 	set_nameidata(&nd, dfd, name);
2448 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2449 	if (unlikely(error == -ECHILD))
2450 		error = path_mountpoint(&nd, flags, path);
2451 	if (unlikely(error == -ESTALE))
2452 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2453 	if (likely(!error))
2454 		audit_inode(name, path->dentry, 0);
2455 	restore_nameidata();
2456 	putname(name);
2457 	return error;
2458 }
2459 
2460 /**
2461  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2462  * @dfd:	directory file descriptor
2463  * @name:	pathname from userland
2464  * @flags:	lookup flags
2465  * @path:	pointer to container to hold result
2466  *
2467  * A umount is a special case for path walking. We're not actually interested
2468  * in the inode in this situation, and ESTALE errors can be a problem. We
2469  * simply want track down the dentry and vfsmount attached at the mountpoint
2470  * and avoid revalidating the last component.
2471  *
2472  * Returns 0 and populates "path" on success.
2473  */
2474 int
2475 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2476 			struct path *path)
2477 {
2478 	return filename_mountpoint(dfd, getname(name), path, flags);
2479 }
2480 
2481 int
2482 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2483 			unsigned int flags)
2484 {
2485 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2486 }
2487 EXPORT_SYMBOL(kern_path_mountpoint);
2488 
2489 int __check_sticky(struct inode *dir, struct inode *inode)
2490 {
2491 	kuid_t fsuid = current_fsuid();
2492 
2493 	if (uid_eq(inode->i_uid, fsuid))
2494 		return 0;
2495 	if (uid_eq(dir->i_uid, fsuid))
2496 		return 0;
2497 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2498 }
2499 EXPORT_SYMBOL(__check_sticky);
2500 
2501 /*
2502  *	Check whether we can remove a link victim from directory dir, check
2503  *  whether the type of victim is right.
2504  *  1. We can't do it if dir is read-only (done in permission())
2505  *  2. We should have write and exec permissions on dir
2506  *  3. We can't remove anything from append-only dir
2507  *  4. We can't do anything with immutable dir (done in permission())
2508  *  5. If the sticky bit on dir is set we should either
2509  *	a. be owner of dir, or
2510  *	b. be owner of victim, or
2511  *	c. have CAP_FOWNER capability
2512  *  6. If the victim is append-only or immutable we can't do antyhing with
2513  *     links pointing to it.
2514  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2515  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2516  *  9. We can't remove a root or mountpoint.
2517  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2518  *     nfs_async_unlink().
2519  */
2520 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2521 {
2522 	struct inode *inode = d_backing_inode(victim);
2523 	int error;
2524 
2525 	if (d_is_negative(victim))
2526 		return -ENOENT;
2527 	BUG_ON(!inode);
2528 
2529 	BUG_ON(victim->d_parent->d_inode != dir);
2530 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2531 
2532 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2533 	if (error)
2534 		return error;
2535 	if (IS_APPEND(dir))
2536 		return -EPERM;
2537 
2538 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2539 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2540 		return -EPERM;
2541 	if (isdir) {
2542 		if (!d_is_dir(victim))
2543 			return -ENOTDIR;
2544 		if (IS_ROOT(victim))
2545 			return -EBUSY;
2546 	} else if (d_is_dir(victim))
2547 		return -EISDIR;
2548 	if (IS_DEADDIR(dir))
2549 		return -ENOENT;
2550 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2551 		return -EBUSY;
2552 	return 0;
2553 }
2554 
2555 /*	Check whether we can create an object with dentry child in directory
2556  *  dir.
2557  *  1. We can't do it if child already exists (open has special treatment for
2558  *     this case, but since we are inlined it's OK)
2559  *  2. We can't do it if dir is read-only (done in permission())
2560  *  3. We should have write and exec permissions on dir
2561  *  4. We can't do it if dir is immutable (done in permission())
2562  */
2563 static inline int may_create(struct inode *dir, struct dentry *child)
2564 {
2565 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2566 	if (child->d_inode)
2567 		return -EEXIST;
2568 	if (IS_DEADDIR(dir))
2569 		return -ENOENT;
2570 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2571 }
2572 
2573 /*
2574  * p1 and p2 should be directories on the same fs.
2575  */
2576 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2577 {
2578 	struct dentry *p;
2579 
2580 	if (p1 == p2) {
2581 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2582 		return NULL;
2583 	}
2584 
2585 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2586 
2587 	p = d_ancestor(p2, p1);
2588 	if (p) {
2589 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2590 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2591 		return p;
2592 	}
2593 
2594 	p = d_ancestor(p1, p2);
2595 	if (p) {
2596 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2597 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2598 		return p;
2599 	}
2600 
2601 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2602 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2603 	return NULL;
2604 }
2605 EXPORT_SYMBOL(lock_rename);
2606 
2607 void unlock_rename(struct dentry *p1, struct dentry *p2)
2608 {
2609 	mutex_unlock(&p1->d_inode->i_mutex);
2610 	if (p1 != p2) {
2611 		mutex_unlock(&p2->d_inode->i_mutex);
2612 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2613 	}
2614 }
2615 EXPORT_SYMBOL(unlock_rename);
2616 
2617 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2618 		bool want_excl)
2619 {
2620 	int error = may_create(dir, dentry);
2621 	if (error)
2622 		return error;
2623 
2624 	if (!dir->i_op->create)
2625 		return -EACCES;	/* shouldn't it be ENOSYS? */
2626 	mode &= S_IALLUGO;
2627 	mode |= S_IFREG;
2628 	error = security_inode_create(dir, dentry, mode);
2629 	if (error)
2630 		return error;
2631 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2632 	if (!error)
2633 		fsnotify_create(dir, dentry);
2634 	return error;
2635 }
2636 EXPORT_SYMBOL(vfs_create);
2637 
2638 static int may_open(struct path *path, int acc_mode, int flag)
2639 {
2640 	struct dentry *dentry = path->dentry;
2641 	struct inode *inode = dentry->d_inode;
2642 	int error;
2643 
2644 	/* O_PATH? */
2645 	if (!acc_mode)
2646 		return 0;
2647 
2648 	if (!inode)
2649 		return -ENOENT;
2650 
2651 	switch (inode->i_mode & S_IFMT) {
2652 	case S_IFLNK:
2653 		return -ELOOP;
2654 	case S_IFDIR:
2655 		if (acc_mode & MAY_WRITE)
2656 			return -EISDIR;
2657 		break;
2658 	case S_IFBLK:
2659 	case S_IFCHR:
2660 		if (path->mnt->mnt_flags & MNT_NODEV)
2661 			return -EACCES;
2662 		/*FALLTHRU*/
2663 	case S_IFIFO:
2664 	case S_IFSOCK:
2665 		flag &= ~O_TRUNC;
2666 		break;
2667 	}
2668 
2669 	error = inode_permission(inode, acc_mode);
2670 	if (error)
2671 		return error;
2672 
2673 	/*
2674 	 * An append-only file must be opened in append mode for writing.
2675 	 */
2676 	if (IS_APPEND(inode)) {
2677 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2678 			return -EPERM;
2679 		if (flag & O_TRUNC)
2680 			return -EPERM;
2681 	}
2682 
2683 	/* O_NOATIME can only be set by the owner or superuser */
2684 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2685 		return -EPERM;
2686 
2687 	return 0;
2688 }
2689 
2690 static int handle_truncate(struct file *filp)
2691 {
2692 	struct path *path = &filp->f_path;
2693 	struct inode *inode = path->dentry->d_inode;
2694 	int error = get_write_access(inode);
2695 	if (error)
2696 		return error;
2697 	/*
2698 	 * Refuse to truncate files with mandatory locks held on them.
2699 	 */
2700 	error = locks_verify_locked(filp);
2701 	if (!error)
2702 		error = security_path_truncate(path);
2703 	if (!error) {
2704 		error = do_truncate(path->dentry, 0,
2705 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2706 				    filp);
2707 	}
2708 	put_write_access(inode);
2709 	return error;
2710 }
2711 
2712 static inline int open_to_namei_flags(int flag)
2713 {
2714 	if ((flag & O_ACCMODE) == 3)
2715 		flag--;
2716 	return flag;
2717 }
2718 
2719 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2720 {
2721 	int error = security_path_mknod(dir, dentry, mode, 0);
2722 	if (error)
2723 		return error;
2724 
2725 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2726 	if (error)
2727 		return error;
2728 
2729 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2730 }
2731 
2732 /*
2733  * Attempt to atomically look up, create and open a file from a negative
2734  * dentry.
2735  *
2736  * Returns 0 if successful.  The file will have been created and attached to
2737  * @file by the filesystem calling finish_open().
2738  *
2739  * Returns 1 if the file was looked up only or didn't need creating.  The
2740  * caller will need to perform the open themselves.  @path will have been
2741  * updated to point to the new dentry.  This may be negative.
2742  *
2743  * Returns an error code otherwise.
2744  */
2745 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2746 			struct path *path, struct file *file,
2747 			const struct open_flags *op,
2748 			bool got_write, bool need_lookup,
2749 			int *opened)
2750 {
2751 	struct inode *dir =  nd->path.dentry->d_inode;
2752 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2753 	umode_t mode;
2754 	int error;
2755 	int acc_mode;
2756 	int create_error = 0;
2757 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2758 	bool excl;
2759 
2760 	BUG_ON(dentry->d_inode);
2761 
2762 	/* Don't create child dentry for a dead directory. */
2763 	if (unlikely(IS_DEADDIR(dir))) {
2764 		error = -ENOENT;
2765 		goto out;
2766 	}
2767 
2768 	mode = op->mode;
2769 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2770 		mode &= ~current_umask();
2771 
2772 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2773 	if (excl)
2774 		open_flag &= ~O_TRUNC;
2775 
2776 	/*
2777 	 * Checking write permission is tricky, bacuse we don't know if we are
2778 	 * going to actually need it: O_CREAT opens should work as long as the
2779 	 * file exists.  But checking existence breaks atomicity.  The trick is
2780 	 * to check access and if not granted clear O_CREAT from the flags.
2781 	 *
2782 	 * Another problem is returing the "right" error value (e.g. for an
2783 	 * O_EXCL open we want to return EEXIST not EROFS).
2784 	 */
2785 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2786 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2787 		if (!(open_flag & O_CREAT)) {
2788 			/*
2789 			 * No O_CREATE -> atomicity not a requirement -> fall
2790 			 * back to lookup + open
2791 			 */
2792 			goto no_open;
2793 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2794 			/* Fall back and fail with the right error */
2795 			create_error = -EROFS;
2796 			goto no_open;
2797 		} else {
2798 			/* No side effects, safe to clear O_CREAT */
2799 			create_error = -EROFS;
2800 			open_flag &= ~O_CREAT;
2801 		}
2802 	}
2803 
2804 	if (open_flag & O_CREAT) {
2805 		error = may_o_create(&nd->path, dentry, mode);
2806 		if (error) {
2807 			create_error = error;
2808 			if (open_flag & O_EXCL)
2809 				goto no_open;
2810 			open_flag &= ~O_CREAT;
2811 		}
2812 	}
2813 
2814 	if (nd->flags & LOOKUP_DIRECTORY)
2815 		open_flag |= O_DIRECTORY;
2816 
2817 	file->f_path.dentry = DENTRY_NOT_SET;
2818 	file->f_path.mnt = nd->path.mnt;
2819 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2820 				      opened);
2821 	if (error < 0) {
2822 		if (create_error && error == -ENOENT)
2823 			error = create_error;
2824 		goto out;
2825 	}
2826 
2827 	if (error) {	/* returned 1, that is */
2828 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2829 			error = -EIO;
2830 			goto out;
2831 		}
2832 		if (file->f_path.dentry) {
2833 			dput(dentry);
2834 			dentry = file->f_path.dentry;
2835 		}
2836 		if (*opened & FILE_CREATED)
2837 			fsnotify_create(dir, dentry);
2838 		if (!dentry->d_inode) {
2839 			WARN_ON(*opened & FILE_CREATED);
2840 			if (create_error) {
2841 				error = create_error;
2842 				goto out;
2843 			}
2844 		} else {
2845 			if (excl && !(*opened & FILE_CREATED)) {
2846 				error = -EEXIST;
2847 				goto out;
2848 			}
2849 		}
2850 		goto looked_up;
2851 	}
2852 
2853 	/*
2854 	 * We didn't have the inode before the open, so check open permission
2855 	 * here.
2856 	 */
2857 	acc_mode = op->acc_mode;
2858 	if (*opened & FILE_CREATED) {
2859 		WARN_ON(!(open_flag & O_CREAT));
2860 		fsnotify_create(dir, dentry);
2861 		acc_mode = MAY_OPEN;
2862 	}
2863 	error = may_open(&file->f_path, acc_mode, open_flag);
2864 	if (error)
2865 		fput(file);
2866 
2867 out:
2868 	dput(dentry);
2869 	return error;
2870 
2871 no_open:
2872 	if (need_lookup) {
2873 		dentry = lookup_real(dir, dentry, nd->flags);
2874 		if (IS_ERR(dentry))
2875 			return PTR_ERR(dentry);
2876 
2877 		if (create_error) {
2878 			int open_flag = op->open_flag;
2879 
2880 			error = create_error;
2881 			if ((open_flag & O_EXCL)) {
2882 				if (!dentry->d_inode)
2883 					goto out;
2884 			} else if (!dentry->d_inode) {
2885 				goto out;
2886 			} else if ((open_flag & O_TRUNC) &&
2887 				   d_is_reg(dentry)) {
2888 				goto out;
2889 			}
2890 			/* will fail later, go on to get the right error */
2891 		}
2892 	}
2893 looked_up:
2894 	path->dentry = dentry;
2895 	path->mnt = nd->path.mnt;
2896 	return 1;
2897 }
2898 
2899 /*
2900  * Look up and maybe create and open the last component.
2901  *
2902  * Must be called with i_mutex held on parent.
2903  *
2904  * Returns 0 if the file was successfully atomically created (if necessary) and
2905  * opened.  In this case the file will be returned attached to @file.
2906  *
2907  * Returns 1 if the file was not completely opened at this time, though lookups
2908  * and creations will have been performed and the dentry returned in @path will
2909  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2910  * specified then a negative dentry may be returned.
2911  *
2912  * An error code is returned otherwise.
2913  *
2914  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2915  * cleared otherwise prior to returning.
2916  */
2917 static int lookup_open(struct nameidata *nd, struct path *path,
2918 			struct file *file,
2919 			const struct open_flags *op,
2920 			bool got_write, int *opened)
2921 {
2922 	struct dentry *dir = nd->path.dentry;
2923 	struct inode *dir_inode = dir->d_inode;
2924 	struct dentry *dentry;
2925 	int error;
2926 	bool need_lookup;
2927 
2928 	*opened &= ~FILE_CREATED;
2929 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2930 	if (IS_ERR(dentry))
2931 		return PTR_ERR(dentry);
2932 
2933 	/* Cached positive dentry: will open in f_op->open */
2934 	if (!need_lookup && dentry->d_inode)
2935 		goto out_no_open;
2936 
2937 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2938 		return atomic_open(nd, dentry, path, file, op, got_write,
2939 				   need_lookup, opened);
2940 	}
2941 
2942 	if (need_lookup) {
2943 		BUG_ON(dentry->d_inode);
2944 
2945 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2946 		if (IS_ERR(dentry))
2947 			return PTR_ERR(dentry);
2948 	}
2949 
2950 	/* Negative dentry, just create the file */
2951 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2952 		umode_t mode = op->mode;
2953 		if (!IS_POSIXACL(dir->d_inode))
2954 			mode &= ~current_umask();
2955 		/*
2956 		 * This write is needed to ensure that a
2957 		 * rw->ro transition does not occur between
2958 		 * the time when the file is created and when
2959 		 * a permanent write count is taken through
2960 		 * the 'struct file' in finish_open().
2961 		 */
2962 		if (!got_write) {
2963 			error = -EROFS;
2964 			goto out_dput;
2965 		}
2966 		*opened |= FILE_CREATED;
2967 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2968 		if (error)
2969 			goto out_dput;
2970 		error = vfs_create(dir->d_inode, dentry, mode,
2971 				   nd->flags & LOOKUP_EXCL);
2972 		if (error)
2973 			goto out_dput;
2974 	}
2975 out_no_open:
2976 	path->dentry = dentry;
2977 	path->mnt = nd->path.mnt;
2978 	return 1;
2979 
2980 out_dput:
2981 	dput(dentry);
2982 	return error;
2983 }
2984 
2985 /*
2986  * Handle the last step of open()
2987  */
2988 static int do_last(struct nameidata *nd,
2989 		   struct file *file, const struct open_flags *op,
2990 		   int *opened)
2991 {
2992 	struct dentry *dir = nd->path.dentry;
2993 	int open_flag = op->open_flag;
2994 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2995 	bool got_write = false;
2996 	int acc_mode = op->acc_mode;
2997 	unsigned seq;
2998 	struct inode *inode;
2999 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3000 	struct path path;
3001 	bool retried = false;
3002 	int error;
3003 
3004 	nd->flags &= ~LOOKUP_PARENT;
3005 	nd->flags |= op->intent;
3006 
3007 	if (nd->last_type != LAST_NORM) {
3008 		error = handle_dots(nd, nd->last_type);
3009 		if (unlikely(error))
3010 			return error;
3011 		goto finish_open;
3012 	}
3013 
3014 	if (!(open_flag & O_CREAT)) {
3015 		if (nd->last.name[nd->last.len])
3016 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3017 		/* we _can_ be in RCU mode here */
3018 		error = lookup_fast(nd, &path, &inode, &seq);
3019 		if (likely(!error))
3020 			goto finish_lookup;
3021 
3022 		if (error < 0)
3023 			return error;
3024 
3025 		BUG_ON(nd->inode != dir->d_inode);
3026 	} else {
3027 		/* create side of things */
3028 		/*
3029 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3030 		 * has been cleared when we got to the last component we are
3031 		 * about to look up
3032 		 */
3033 		error = complete_walk(nd);
3034 		if (error)
3035 			return error;
3036 
3037 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3038 		/* trailing slashes? */
3039 		if (unlikely(nd->last.name[nd->last.len]))
3040 			return -EISDIR;
3041 	}
3042 
3043 retry_lookup:
3044 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3045 		error = mnt_want_write(nd->path.mnt);
3046 		if (!error)
3047 			got_write = true;
3048 		/*
3049 		 * do _not_ fail yet - we might not need that or fail with
3050 		 * a different error; let lookup_open() decide; we'll be
3051 		 * dropping this one anyway.
3052 		 */
3053 	}
3054 	mutex_lock(&dir->d_inode->i_mutex);
3055 	error = lookup_open(nd, &path, file, op, got_write, opened);
3056 	mutex_unlock(&dir->d_inode->i_mutex);
3057 
3058 	if (error <= 0) {
3059 		if (error)
3060 			goto out;
3061 
3062 		if ((*opened & FILE_CREATED) ||
3063 		    !S_ISREG(file_inode(file)->i_mode))
3064 			will_truncate = false;
3065 
3066 		audit_inode(nd->name, file->f_path.dentry, 0);
3067 		goto opened;
3068 	}
3069 
3070 	if (*opened & FILE_CREATED) {
3071 		/* Don't check for write permission, don't truncate */
3072 		open_flag &= ~O_TRUNC;
3073 		will_truncate = false;
3074 		acc_mode = MAY_OPEN;
3075 		path_to_nameidata(&path, nd);
3076 		goto finish_open_created;
3077 	}
3078 
3079 	/*
3080 	 * create/update audit record if it already exists.
3081 	 */
3082 	if (d_is_positive(path.dentry))
3083 		audit_inode(nd->name, path.dentry, 0);
3084 
3085 	/*
3086 	 * If atomic_open() acquired write access it is dropped now due to
3087 	 * possible mount and symlink following (this might be optimized away if
3088 	 * necessary...)
3089 	 */
3090 	if (got_write) {
3091 		mnt_drop_write(nd->path.mnt);
3092 		got_write = false;
3093 	}
3094 
3095 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3096 		path_to_nameidata(&path, nd);
3097 		return -EEXIST;
3098 	}
3099 
3100 	error = follow_managed(&path, nd);
3101 	if (unlikely(error < 0))
3102 		return error;
3103 
3104 	BUG_ON(nd->flags & LOOKUP_RCU);
3105 	inode = d_backing_inode(path.dentry);
3106 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3107 	if (unlikely(d_is_negative(path.dentry))) {
3108 		path_to_nameidata(&path, nd);
3109 		return -ENOENT;
3110 	}
3111 finish_lookup:
3112 	if (nd->depth)
3113 		put_link(nd);
3114 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3115 				   inode, seq);
3116 	if (unlikely(error))
3117 		return error;
3118 
3119 	if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3120 		path_to_nameidata(&path, nd);
3121 		return -ELOOP;
3122 	}
3123 
3124 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3125 		path_to_nameidata(&path, nd);
3126 	} else {
3127 		save_parent.dentry = nd->path.dentry;
3128 		save_parent.mnt = mntget(path.mnt);
3129 		nd->path.dentry = path.dentry;
3130 
3131 	}
3132 	nd->inode = inode;
3133 	nd->seq = seq;
3134 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3135 finish_open:
3136 	error = complete_walk(nd);
3137 	if (error) {
3138 		path_put(&save_parent);
3139 		return error;
3140 	}
3141 	audit_inode(nd->name, nd->path.dentry, 0);
3142 	error = -EISDIR;
3143 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3144 		goto out;
3145 	error = -ENOTDIR;
3146 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3147 		goto out;
3148 	if (!d_is_reg(nd->path.dentry))
3149 		will_truncate = false;
3150 
3151 	if (will_truncate) {
3152 		error = mnt_want_write(nd->path.mnt);
3153 		if (error)
3154 			goto out;
3155 		got_write = true;
3156 	}
3157 finish_open_created:
3158 	error = may_open(&nd->path, acc_mode, open_flag);
3159 	if (error)
3160 		goto out;
3161 
3162 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3163 	error = vfs_open(&nd->path, file, current_cred());
3164 	if (!error) {
3165 		*opened |= FILE_OPENED;
3166 	} else {
3167 		if (error == -EOPENSTALE)
3168 			goto stale_open;
3169 		goto out;
3170 	}
3171 opened:
3172 	error = open_check_o_direct(file);
3173 	if (error)
3174 		goto exit_fput;
3175 	error = ima_file_check(file, op->acc_mode, *opened);
3176 	if (error)
3177 		goto exit_fput;
3178 
3179 	if (will_truncate) {
3180 		error = handle_truncate(file);
3181 		if (error)
3182 			goto exit_fput;
3183 	}
3184 out:
3185 	if (got_write)
3186 		mnt_drop_write(nd->path.mnt);
3187 	path_put(&save_parent);
3188 	return error;
3189 
3190 exit_fput:
3191 	fput(file);
3192 	goto out;
3193 
3194 stale_open:
3195 	/* If no saved parent or already retried then can't retry */
3196 	if (!save_parent.dentry || retried)
3197 		goto out;
3198 
3199 	BUG_ON(save_parent.dentry != dir);
3200 	path_put(&nd->path);
3201 	nd->path = save_parent;
3202 	nd->inode = dir->d_inode;
3203 	save_parent.mnt = NULL;
3204 	save_parent.dentry = NULL;
3205 	if (got_write) {
3206 		mnt_drop_write(nd->path.mnt);
3207 		got_write = false;
3208 	}
3209 	retried = true;
3210 	goto retry_lookup;
3211 }
3212 
3213 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3214 		const struct open_flags *op,
3215 		struct file *file, int *opened)
3216 {
3217 	static const struct qstr name = QSTR_INIT("/", 1);
3218 	struct dentry *child;
3219 	struct inode *dir;
3220 	struct path path;
3221 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3222 	if (unlikely(error))
3223 		return error;
3224 	error = mnt_want_write(path.mnt);
3225 	if (unlikely(error))
3226 		goto out;
3227 	dir = path.dentry->d_inode;
3228 	/* we want directory to be writable */
3229 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3230 	if (error)
3231 		goto out2;
3232 	if (!dir->i_op->tmpfile) {
3233 		error = -EOPNOTSUPP;
3234 		goto out2;
3235 	}
3236 	child = d_alloc(path.dentry, &name);
3237 	if (unlikely(!child)) {
3238 		error = -ENOMEM;
3239 		goto out2;
3240 	}
3241 	dput(path.dentry);
3242 	path.dentry = child;
3243 	error = dir->i_op->tmpfile(dir, child, op->mode);
3244 	if (error)
3245 		goto out2;
3246 	audit_inode(nd->name, child, 0);
3247 	/* Don't check for other permissions, the inode was just created */
3248 	error = may_open(&path, MAY_OPEN, op->open_flag);
3249 	if (error)
3250 		goto out2;
3251 	file->f_path.mnt = path.mnt;
3252 	error = finish_open(file, child, NULL, opened);
3253 	if (error)
3254 		goto out2;
3255 	error = open_check_o_direct(file);
3256 	if (error) {
3257 		fput(file);
3258 	} else if (!(op->open_flag & O_EXCL)) {
3259 		struct inode *inode = file_inode(file);
3260 		spin_lock(&inode->i_lock);
3261 		inode->i_state |= I_LINKABLE;
3262 		spin_unlock(&inode->i_lock);
3263 	}
3264 out2:
3265 	mnt_drop_write(path.mnt);
3266 out:
3267 	path_put(&path);
3268 	return error;
3269 }
3270 
3271 static struct file *path_openat(struct nameidata *nd,
3272 			const struct open_flags *op, unsigned flags)
3273 {
3274 	const char *s;
3275 	struct file *file;
3276 	int opened = 0;
3277 	int error;
3278 
3279 	file = get_empty_filp();
3280 	if (IS_ERR(file))
3281 		return file;
3282 
3283 	file->f_flags = op->open_flag;
3284 
3285 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3286 		error = do_tmpfile(nd, flags, op, file, &opened);
3287 		goto out2;
3288 	}
3289 
3290 	s = path_init(nd, flags);
3291 	if (IS_ERR(s)) {
3292 		put_filp(file);
3293 		return ERR_CAST(s);
3294 	}
3295 	while (!(error = link_path_walk(s, nd)) &&
3296 		(error = do_last(nd, file, op, &opened)) > 0) {
3297 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3298 		s = trailing_symlink(nd);
3299 		if (IS_ERR(s)) {
3300 			error = PTR_ERR(s);
3301 			break;
3302 		}
3303 	}
3304 	terminate_walk(nd);
3305 out2:
3306 	if (!(opened & FILE_OPENED)) {
3307 		BUG_ON(!error);
3308 		put_filp(file);
3309 	}
3310 	if (unlikely(error)) {
3311 		if (error == -EOPENSTALE) {
3312 			if (flags & LOOKUP_RCU)
3313 				error = -ECHILD;
3314 			else
3315 				error = -ESTALE;
3316 		}
3317 		file = ERR_PTR(error);
3318 	}
3319 	return file;
3320 }
3321 
3322 struct file *do_filp_open(int dfd, struct filename *pathname,
3323 		const struct open_flags *op)
3324 {
3325 	struct nameidata nd;
3326 	int flags = op->lookup_flags;
3327 	struct file *filp;
3328 
3329 	set_nameidata(&nd, dfd, pathname);
3330 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3331 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3332 		filp = path_openat(&nd, op, flags);
3333 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3334 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3335 	restore_nameidata();
3336 	return filp;
3337 }
3338 
3339 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3340 		const char *name, const struct open_flags *op)
3341 {
3342 	struct nameidata nd;
3343 	struct file *file;
3344 	struct filename *filename;
3345 	int flags = op->lookup_flags | LOOKUP_ROOT;
3346 
3347 	nd.root.mnt = mnt;
3348 	nd.root.dentry = dentry;
3349 
3350 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3351 		return ERR_PTR(-ELOOP);
3352 
3353 	filename = getname_kernel(name);
3354 	if (unlikely(IS_ERR(filename)))
3355 		return ERR_CAST(filename);
3356 
3357 	set_nameidata(&nd, -1, filename);
3358 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3359 	if (unlikely(file == ERR_PTR(-ECHILD)))
3360 		file = path_openat(&nd, op, flags);
3361 	if (unlikely(file == ERR_PTR(-ESTALE)))
3362 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3363 	restore_nameidata();
3364 	putname(filename);
3365 	return file;
3366 }
3367 
3368 static struct dentry *filename_create(int dfd, struct filename *name,
3369 				struct path *path, unsigned int lookup_flags)
3370 {
3371 	struct dentry *dentry = ERR_PTR(-EEXIST);
3372 	struct qstr last;
3373 	int type;
3374 	int err2;
3375 	int error;
3376 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3377 
3378 	/*
3379 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3380 	 * other flags passed in are ignored!
3381 	 */
3382 	lookup_flags &= LOOKUP_REVAL;
3383 
3384 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3385 	if (IS_ERR(name))
3386 		return ERR_CAST(name);
3387 
3388 	/*
3389 	 * Yucky last component or no last component at all?
3390 	 * (foo/., foo/.., /////)
3391 	 */
3392 	if (unlikely(type != LAST_NORM))
3393 		goto out;
3394 
3395 	/* don't fail immediately if it's r/o, at least try to report other errors */
3396 	err2 = mnt_want_write(path->mnt);
3397 	/*
3398 	 * Do the final lookup.
3399 	 */
3400 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3401 	mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3402 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3403 	if (IS_ERR(dentry))
3404 		goto unlock;
3405 
3406 	error = -EEXIST;
3407 	if (d_is_positive(dentry))
3408 		goto fail;
3409 
3410 	/*
3411 	 * Special case - lookup gave negative, but... we had foo/bar/
3412 	 * From the vfs_mknod() POV we just have a negative dentry -
3413 	 * all is fine. Let's be bastards - you had / on the end, you've
3414 	 * been asking for (non-existent) directory. -ENOENT for you.
3415 	 */
3416 	if (unlikely(!is_dir && last.name[last.len])) {
3417 		error = -ENOENT;
3418 		goto fail;
3419 	}
3420 	if (unlikely(err2)) {
3421 		error = err2;
3422 		goto fail;
3423 	}
3424 	putname(name);
3425 	return dentry;
3426 fail:
3427 	dput(dentry);
3428 	dentry = ERR_PTR(error);
3429 unlock:
3430 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3431 	if (!err2)
3432 		mnt_drop_write(path->mnt);
3433 out:
3434 	path_put(path);
3435 	putname(name);
3436 	return dentry;
3437 }
3438 
3439 struct dentry *kern_path_create(int dfd, const char *pathname,
3440 				struct path *path, unsigned int lookup_flags)
3441 {
3442 	return filename_create(dfd, getname_kernel(pathname),
3443 				path, lookup_flags);
3444 }
3445 EXPORT_SYMBOL(kern_path_create);
3446 
3447 void done_path_create(struct path *path, struct dentry *dentry)
3448 {
3449 	dput(dentry);
3450 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3451 	mnt_drop_write(path->mnt);
3452 	path_put(path);
3453 }
3454 EXPORT_SYMBOL(done_path_create);
3455 
3456 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3457 				struct path *path, unsigned int lookup_flags)
3458 {
3459 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3460 }
3461 EXPORT_SYMBOL(user_path_create);
3462 
3463 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3464 {
3465 	int error = may_create(dir, dentry);
3466 
3467 	if (error)
3468 		return error;
3469 
3470 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3471 		return -EPERM;
3472 
3473 	if (!dir->i_op->mknod)
3474 		return -EPERM;
3475 
3476 	error = devcgroup_inode_mknod(mode, dev);
3477 	if (error)
3478 		return error;
3479 
3480 	error = security_inode_mknod(dir, dentry, mode, dev);
3481 	if (error)
3482 		return error;
3483 
3484 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3485 	if (!error)
3486 		fsnotify_create(dir, dentry);
3487 	return error;
3488 }
3489 EXPORT_SYMBOL(vfs_mknod);
3490 
3491 static int may_mknod(umode_t mode)
3492 {
3493 	switch (mode & S_IFMT) {
3494 	case S_IFREG:
3495 	case S_IFCHR:
3496 	case S_IFBLK:
3497 	case S_IFIFO:
3498 	case S_IFSOCK:
3499 	case 0: /* zero mode translates to S_IFREG */
3500 		return 0;
3501 	case S_IFDIR:
3502 		return -EPERM;
3503 	default:
3504 		return -EINVAL;
3505 	}
3506 }
3507 
3508 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3509 		unsigned, dev)
3510 {
3511 	struct dentry *dentry;
3512 	struct path path;
3513 	int error;
3514 	unsigned int lookup_flags = 0;
3515 
3516 	error = may_mknod(mode);
3517 	if (error)
3518 		return error;
3519 retry:
3520 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3521 	if (IS_ERR(dentry))
3522 		return PTR_ERR(dentry);
3523 
3524 	if (!IS_POSIXACL(path.dentry->d_inode))
3525 		mode &= ~current_umask();
3526 	error = security_path_mknod(&path, dentry, mode, dev);
3527 	if (error)
3528 		goto out;
3529 	switch (mode & S_IFMT) {
3530 		case 0: case S_IFREG:
3531 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3532 			break;
3533 		case S_IFCHR: case S_IFBLK:
3534 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3535 					new_decode_dev(dev));
3536 			break;
3537 		case S_IFIFO: case S_IFSOCK:
3538 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3539 			break;
3540 	}
3541 out:
3542 	done_path_create(&path, dentry);
3543 	if (retry_estale(error, lookup_flags)) {
3544 		lookup_flags |= LOOKUP_REVAL;
3545 		goto retry;
3546 	}
3547 	return error;
3548 }
3549 
3550 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3551 {
3552 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3553 }
3554 
3555 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3556 {
3557 	int error = may_create(dir, dentry);
3558 	unsigned max_links = dir->i_sb->s_max_links;
3559 
3560 	if (error)
3561 		return error;
3562 
3563 	if (!dir->i_op->mkdir)
3564 		return -EPERM;
3565 
3566 	mode &= (S_IRWXUGO|S_ISVTX);
3567 	error = security_inode_mkdir(dir, dentry, mode);
3568 	if (error)
3569 		return error;
3570 
3571 	if (max_links && dir->i_nlink >= max_links)
3572 		return -EMLINK;
3573 
3574 	error = dir->i_op->mkdir(dir, dentry, mode);
3575 	if (!error)
3576 		fsnotify_mkdir(dir, dentry);
3577 	return error;
3578 }
3579 EXPORT_SYMBOL(vfs_mkdir);
3580 
3581 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3582 {
3583 	struct dentry *dentry;
3584 	struct path path;
3585 	int error;
3586 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3587 
3588 retry:
3589 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3590 	if (IS_ERR(dentry))
3591 		return PTR_ERR(dentry);
3592 
3593 	if (!IS_POSIXACL(path.dentry->d_inode))
3594 		mode &= ~current_umask();
3595 	error = security_path_mkdir(&path, dentry, mode);
3596 	if (!error)
3597 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3598 	done_path_create(&path, dentry);
3599 	if (retry_estale(error, lookup_flags)) {
3600 		lookup_flags |= LOOKUP_REVAL;
3601 		goto retry;
3602 	}
3603 	return error;
3604 }
3605 
3606 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3607 {
3608 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3609 }
3610 
3611 /*
3612  * The dentry_unhash() helper will try to drop the dentry early: we
3613  * should have a usage count of 1 if we're the only user of this
3614  * dentry, and if that is true (possibly after pruning the dcache),
3615  * then we drop the dentry now.
3616  *
3617  * A low-level filesystem can, if it choses, legally
3618  * do a
3619  *
3620  *	if (!d_unhashed(dentry))
3621  *		return -EBUSY;
3622  *
3623  * if it cannot handle the case of removing a directory
3624  * that is still in use by something else..
3625  */
3626 void dentry_unhash(struct dentry *dentry)
3627 {
3628 	shrink_dcache_parent(dentry);
3629 	spin_lock(&dentry->d_lock);
3630 	if (dentry->d_lockref.count == 1)
3631 		__d_drop(dentry);
3632 	spin_unlock(&dentry->d_lock);
3633 }
3634 EXPORT_SYMBOL(dentry_unhash);
3635 
3636 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3637 {
3638 	int error = may_delete(dir, dentry, 1);
3639 
3640 	if (error)
3641 		return error;
3642 
3643 	if (!dir->i_op->rmdir)
3644 		return -EPERM;
3645 
3646 	dget(dentry);
3647 	mutex_lock(&dentry->d_inode->i_mutex);
3648 
3649 	error = -EBUSY;
3650 	if (is_local_mountpoint(dentry))
3651 		goto out;
3652 
3653 	error = security_inode_rmdir(dir, dentry);
3654 	if (error)
3655 		goto out;
3656 
3657 	shrink_dcache_parent(dentry);
3658 	error = dir->i_op->rmdir(dir, dentry);
3659 	if (error)
3660 		goto out;
3661 
3662 	dentry->d_inode->i_flags |= S_DEAD;
3663 	dont_mount(dentry);
3664 	detach_mounts(dentry);
3665 
3666 out:
3667 	mutex_unlock(&dentry->d_inode->i_mutex);
3668 	dput(dentry);
3669 	if (!error)
3670 		d_delete(dentry);
3671 	return error;
3672 }
3673 EXPORT_SYMBOL(vfs_rmdir);
3674 
3675 static long do_rmdir(int dfd, const char __user *pathname)
3676 {
3677 	int error = 0;
3678 	struct filename *name;
3679 	struct dentry *dentry;
3680 	struct path path;
3681 	struct qstr last;
3682 	int type;
3683 	unsigned int lookup_flags = 0;
3684 retry:
3685 	name = user_path_parent(dfd, pathname,
3686 				&path, &last, &type, lookup_flags);
3687 	if (IS_ERR(name))
3688 		return PTR_ERR(name);
3689 
3690 	switch (type) {
3691 	case LAST_DOTDOT:
3692 		error = -ENOTEMPTY;
3693 		goto exit1;
3694 	case LAST_DOT:
3695 		error = -EINVAL;
3696 		goto exit1;
3697 	case LAST_ROOT:
3698 		error = -EBUSY;
3699 		goto exit1;
3700 	}
3701 
3702 	error = mnt_want_write(path.mnt);
3703 	if (error)
3704 		goto exit1;
3705 
3706 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3707 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3708 	error = PTR_ERR(dentry);
3709 	if (IS_ERR(dentry))
3710 		goto exit2;
3711 	if (!dentry->d_inode) {
3712 		error = -ENOENT;
3713 		goto exit3;
3714 	}
3715 	error = security_path_rmdir(&path, dentry);
3716 	if (error)
3717 		goto exit3;
3718 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3719 exit3:
3720 	dput(dentry);
3721 exit2:
3722 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3723 	mnt_drop_write(path.mnt);
3724 exit1:
3725 	path_put(&path);
3726 	putname(name);
3727 	if (retry_estale(error, lookup_flags)) {
3728 		lookup_flags |= LOOKUP_REVAL;
3729 		goto retry;
3730 	}
3731 	return error;
3732 }
3733 
3734 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3735 {
3736 	return do_rmdir(AT_FDCWD, pathname);
3737 }
3738 
3739 /**
3740  * vfs_unlink - unlink a filesystem object
3741  * @dir:	parent directory
3742  * @dentry:	victim
3743  * @delegated_inode: returns victim inode, if the inode is delegated.
3744  *
3745  * The caller must hold dir->i_mutex.
3746  *
3747  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3748  * return a reference to the inode in delegated_inode.  The caller
3749  * should then break the delegation on that inode and retry.  Because
3750  * breaking a delegation may take a long time, the caller should drop
3751  * dir->i_mutex before doing so.
3752  *
3753  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3754  * be appropriate for callers that expect the underlying filesystem not
3755  * to be NFS exported.
3756  */
3757 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3758 {
3759 	struct inode *target = dentry->d_inode;
3760 	int error = may_delete(dir, dentry, 0);
3761 
3762 	if (error)
3763 		return error;
3764 
3765 	if (!dir->i_op->unlink)
3766 		return -EPERM;
3767 
3768 	mutex_lock(&target->i_mutex);
3769 	if (is_local_mountpoint(dentry))
3770 		error = -EBUSY;
3771 	else {
3772 		error = security_inode_unlink(dir, dentry);
3773 		if (!error) {
3774 			error = try_break_deleg(target, delegated_inode);
3775 			if (error)
3776 				goto out;
3777 			error = dir->i_op->unlink(dir, dentry);
3778 			if (!error) {
3779 				dont_mount(dentry);
3780 				detach_mounts(dentry);
3781 			}
3782 		}
3783 	}
3784 out:
3785 	mutex_unlock(&target->i_mutex);
3786 
3787 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3788 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3789 		fsnotify_link_count(target);
3790 		d_delete(dentry);
3791 	}
3792 
3793 	return error;
3794 }
3795 EXPORT_SYMBOL(vfs_unlink);
3796 
3797 /*
3798  * Make sure that the actual truncation of the file will occur outside its
3799  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3800  * writeout happening, and we don't want to prevent access to the directory
3801  * while waiting on the I/O.
3802  */
3803 static long do_unlinkat(int dfd, const char __user *pathname)
3804 {
3805 	int error;
3806 	struct filename *name;
3807 	struct dentry *dentry;
3808 	struct path path;
3809 	struct qstr last;
3810 	int type;
3811 	struct inode *inode = NULL;
3812 	struct inode *delegated_inode = NULL;
3813 	unsigned int lookup_flags = 0;
3814 retry:
3815 	name = user_path_parent(dfd, pathname,
3816 				&path, &last, &type, lookup_flags);
3817 	if (IS_ERR(name))
3818 		return PTR_ERR(name);
3819 
3820 	error = -EISDIR;
3821 	if (type != LAST_NORM)
3822 		goto exit1;
3823 
3824 	error = mnt_want_write(path.mnt);
3825 	if (error)
3826 		goto exit1;
3827 retry_deleg:
3828 	mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3829 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3830 	error = PTR_ERR(dentry);
3831 	if (!IS_ERR(dentry)) {
3832 		/* Why not before? Because we want correct error value */
3833 		if (last.name[last.len])
3834 			goto slashes;
3835 		inode = dentry->d_inode;
3836 		if (d_is_negative(dentry))
3837 			goto slashes;
3838 		ihold(inode);
3839 		error = security_path_unlink(&path, dentry);
3840 		if (error)
3841 			goto exit2;
3842 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3843 exit2:
3844 		dput(dentry);
3845 	}
3846 	mutex_unlock(&path.dentry->d_inode->i_mutex);
3847 	if (inode)
3848 		iput(inode);	/* truncate the inode here */
3849 	inode = NULL;
3850 	if (delegated_inode) {
3851 		error = break_deleg_wait(&delegated_inode);
3852 		if (!error)
3853 			goto retry_deleg;
3854 	}
3855 	mnt_drop_write(path.mnt);
3856 exit1:
3857 	path_put(&path);
3858 	putname(name);
3859 	if (retry_estale(error, lookup_flags)) {
3860 		lookup_flags |= LOOKUP_REVAL;
3861 		inode = NULL;
3862 		goto retry;
3863 	}
3864 	return error;
3865 
3866 slashes:
3867 	if (d_is_negative(dentry))
3868 		error = -ENOENT;
3869 	else if (d_is_dir(dentry))
3870 		error = -EISDIR;
3871 	else
3872 		error = -ENOTDIR;
3873 	goto exit2;
3874 }
3875 
3876 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3877 {
3878 	if ((flag & ~AT_REMOVEDIR) != 0)
3879 		return -EINVAL;
3880 
3881 	if (flag & AT_REMOVEDIR)
3882 		return do_rmdir(dfd, pathname);
3883 
3884 	return do_unlinkat(dfd, pathname);
3885 }
3886 
3887 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3888 {
3889 	return do_unlinkat(AT_FDCWD, pathname);
3890 }
3891 
3892 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3893 {
3894 	int error = may_create(dir, dentry);
3895 
3896 	if (error)
3897 		return error;
3898 
3899 	if (!dir->i_op->symlink)
3900 		return -EPERM;
3901 
3902 	error = security_inode_symlink(dir, dentry, oldname);
3903 	if (error)
3904 		return error;
3905 
3906 	error = dir->i_op->symlink(dir, dentry, oldname);
3907 	if (!error)
3908 		fsnotify_create(dir, dentry);
3909 	return error;
3910 }
3911 EXPORT_SYMBOL(vfs_symlink);
3912 
3913 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3914 		int, newdfd, const char __user *, newname)
3915 {
3916 	int error;
3917 	struct filename *from;
3918 	struct dentry *dentry;
3919 	struct path path;
3920 	unsigned int lookup_flags = 0;
3921 
3922 	from = getname(oldname);
3923 	if (IS_ERR(from))
3924 		return PTR_ERR(from);
3925 retry:
3926 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3927 	error = PTR_ERR(dentry);
3928 	if (IS_ERR(dentry))
3929 		goto out_putname;
3930 
3931 	error = security_path_symlink(&path, dentry, from->name);
3932 	if (!error)
3933 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3934 	done_path_create(&path, dentry);
3935 	if (retry_estale(error, lookup_flags)) {
3936 		lookup_flags |= LOOKUP_REVAL;
3937 		goto retry;
3938 	}
3939 out_putname:
3940 	putname(from);
3941 	return error;
3942 }
3943 
3944 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3945 {
3946 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3947 }
3948 
3949 /**
3950  * vfs_link - create a new link
3951  * @old_dentry:	object to be linked
3952  * @dir:	new parent
3953  * @new_dentry:	where to create the new link
3954  * @delegated_inode: returns inode needing a delegation break
3955  *
3956  * The caller must hold dir->i_mutex
3957  *
3958  * If vfs_link discovers a delegation on the to-be-linked file in need
3959  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3960  * inode in delegated_inode.  The caller should then break the delegation
3961  * and retry.  Because breaking a delegation may take a long time, the
3962  * caller should drop the i_mutex before doing so.
3963  *
3964  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3965  * be appropriate for callers that expect the underlying filesystem not
3966  * to be NFS exported.
3967  */
3968 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3969 {
3970 	struct inode *inode = old_dentry->d_inode;
3971 	unsigned max_links = dir->i_sb->s_max_links;
3972 	int error;
3973 
3974 	if (!inode)
3975 		return -ENOENT;
3976 
3977 	error = may_create(dir, new_dentry);
3978 	if (error)
3979 		return error;
3980 
3981 	if (dir->i_sb != inode->i_sb)
3982 		return -EXDEV;
3983 
3984 	/*
3985 	 * A link to an append-only or immutable file cannot be created.
3986 	 */
3987 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3988 		return -EPERM;
3989 	if (!dir->i_op->link)
3990 		return -EPERM;
3991 	if (S_ISDIR(inode->i_mode))
3992 		return -EPERM;
3993 
3994 	error = security_inode_link(old_dentry, dir, new_dentry);
3995 	if (error)
3996 		return error;
3997 
3998 	mutex_lock(&inode->i_mutex);
3999 	/* Make sure we don't allow creating hardlink to an unlinked file */
4000 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4001 		error =  -ENOENT;
4002 	else if (max_links && inode->i_nlink >= max_links)
4003 		error = -EMLINK;
4004 	else {
4005 		error = try_break_deleg(inode, delegated_inode);
4006 		if (!error)
4007 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4008 	}
4009 
4010 	if (!error && (inode->i_state & I_LINKABLE)) {
4011 		spin_lock(&inode->i_lock);
4012 		inode->i_state &= ~I_LINKABLE;
4013 		spin_unlock(&inode->i_lock);
4014 	}
4015 	mutex_unlock(&inode->i_mutex);
4016 	if (!error)
4017 		fsnotify_link(dir, inode, new_dentry);
4018 	return error;
4019 }
4020 EXPORT_SYMBOL(vfs_link);
4021 
4022 /*
4023  * Hardlinks are often used in delicate situations.  We avoid
4024  * security-related surprises by not following symlinks on the
4025  * newname.  --KAB
4026  *
4027  * We don't follow them on the oldname either to be compatible
4028  * with linux 2.0, and to avoid hard-linking to directories
4029  * and other special files.  --ADM
4030  */
4031 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4032 		int, newdfd, const char __user *, newname, int, flags)
4033 {
4034 	struct dentry *new_dentry;
4035 	struct path old_path, new_path;
4036 	struct inode *delegated_inode = NULL;
4037 	int how = 0;
4038 	int error;
4039 
4040 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4041 		return -EINVAL;
4042 	/*
4043 	 * To use null names we require CAP_DAC_READ_SEARCH
4044 	 * This ensures that not everyone will be able to create
4045 	 * handlink using the passed filedescriptor.
4046 	 */
4047 	if (flags & AT_EMPTY_PATH) {
4048 		if (!capable(CAP_DAC_READ_SEARCH))
4049 			return -ENOENT;
4050 		how = LOOKUP_EMPTY;
4051 	}
4052 
4053 	if (flags & AT_SYMLINK_FOLLOW)
4054 		how |= LOOKUP_FOLLOW;
4055 retry:
4056 	error = user_path_at(olddfd, oldname, how, &old_path);
4057 	if (error)
4058 		return error;
4059 
4060 	new_dentry = user_path_create(newdfd, newname, &new_path,
4061 					(how & LOOKUP_REVAL));
4062 	error = PTR_ERR(new_dentry);
4063 	if (IS_ERR(new_dentry))
4064 		goto out;
4065 
4066 	error = -EXDEV;
4067 	if (old_path.mnt != new_path.mnt)
4068 		goto out_dput;
4069 	error = may_linkat(&old_path);
4070 	if (unlikely(error))
4071 		goto out_dput;
4072 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4073 	if (error)
4074 		goto out_dput;
4075 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4076 out_dput:
4077 	done_path_create(&new_path, new_dentry);
4078 	if (delegated_inode) {
4079 		error = break_deleg_wait(&delegated_inode);
4080 		if (!error) {
4081 			path_put(&old_path);
4082 			goto retry;
4083 		}
4084 	}
4085 	if (retry_estale(error, how)) {
4086 		path_put(&old_path);
4087 		how |= LOOKUP_REVAL;
4088 		goto retry;
4089 	}
4090 out:
4091 	path_put(&old_path);
4092 
4093 	return error;
4094 }
4095 
4096 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4097 {
4098 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4099 }
4100 
4101 /**
4102  * vfs_rename - rename a filesystem object
4103  * @old_dir:	parent of source
4104  * @old_dentry:	source
4105  * @new_dir:	parent of destination
4106  * @new_dentry:	destination
4107  * @delegated_inode: returns an inode needing a delegation break
4108  * @flags:	rename flags
4109  *
4110  * The caller must hold multiple mutexes--see lock_rename()).
4111  *
4112  * If vfs_rename discovers a delegation in need of breaking at either
4113  * the source or destination, it will return -EWOULDBLOCK and return a
4114  * reference to the inode in delegated_inode.  The caller should then
4115  * break the delegation and retry.  Because breaking a delegation may
4116  * take a long time, the caller should drop all locks before doing
4117  * so.
4118  *
4119  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4120  * be appropriate for callers that expect the underlying filesystem not
4121  * to be NFS exported.
4122  *
4123  * The worst of all namespace operations - renaming directory. "Perverted"
4124  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4125  * Problems:
4126  *	a) we can get into loop creation.
4127  *	b) race potential - two innocent renames can create a loop together.
4128  *	   That's where 4.4 screws up. Current fix: serialization on
4129  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4130  *	   story.
4131  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4132  *	   and source (if it is not a directory).
4133  *	   And that - after we got ->i_mutex on parents (until then we don't know
4134  *	   whether the target exists).  Solution: try to be smart with locking
4135  *	   order for inodes.  We rely on the fact that tree topology may change
4136  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4137  *	   move will be locked.  Thus we can rank directories by the tree
4138  *	   (ancestors first) and rank all non-directories after them.
4139  *	   That works since everybody except rename does "lock parent, lookup,
4140  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4141  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4142  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4143  *	   we'd better make sure that there's no link(2) for them.
4144  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4145  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4146  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4147  *	   ->i_mutex on parents, which works but leads to some truly excessive
4148  *	   locking].
4149  */
4150 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4151 	       struct inode *new_dir, struct dentry *new_dentry,
4152 	       struct inode **delegated_inode, unsigned int flags)
4153 {
4154 	int error;
4155 	bool is_dir = d_is_dir(old_dentry);
4156 	const unsigned char *old_name;
4157 	struct inode *source = old_dentry->d_inode;
4158 	struct inode *target = new_dentry->d_inode;
4159 	bool new_is_dir = false;
4160 	unsigned max_links = new_dir->i_sb->s_max_links;
4161 
4162 	if (source == target)
4163 		return 0;
4164 
4165 	error = may_delete(old_dir, old_dentry, is_dir);
4166 	if (error)
4167 		return error;
4168 
4169 	if (!target) {
4170 		error = may_create(new_dir, new_dentry);
4171 	} else {
4172 		new_is_dir = d_is_dir(new_dentry);
4173 
4174 		if (!(flags & RENAME_EXCHANGE))
4175 			error = may_delete(new_dir, new_dentry, is_dir);
4176 		else
4177 			error = may_delete(new_dir, new_dentry, new_is_dir);
4178 	}
4179 	if (error)
4180 		return error;
4181 
4182 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4183 		return -EPERM;
4184 
4185 	if (flags && !old_dir->i_op->rename2)
4186 		return -EINVAL;
4187 
4188 	/*
4189 	 * If we are going to change the parent - check write permissions,
4190 	 * we'll need to flip '..'.
4191 	 */
4192 	if (new_dir != old_dir) {
4193 		if (is_dir) {
4194 			error = inode_permission(source, MAY_WRITE);
4195 			if (error)
4196 				return error;
4197 		}
4198 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4199 			error = inode_permission(target, MAY_WRITE);
4200 			if (error)
4201 				return error;
4202 		}
4203 	}
4204 
4205 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4206 				      flags);
4207 	if (error)
4208 		return error;
4209 
4210 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4211 	dget(new_dentry);
4212 	if (!is_dir || (flags & RENAME_EXCHANGE))
4213 		lock_two_nondirectories(source, target);
4214 	else if (target)
4215 		mutex_lock(&target->i_mutex);
4216 
4217 	error = -EBUSY;
4218 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4219 		goto out;
4220 
4221 	if (max_links && new_dir != old_dir) {
4222 		error = -EMLINK;
4223 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4224 			goto out;
4225 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4226 		    old_dir->i_nlink >= max_links)
4227 			goto out;
4228 	}
4229 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4230 		shrink_dcache_parent(new_dentry);
4231 	if (!is_dir) {
4232 		error = try_break_deleg(source, delegated_inode);
4233 		if (error)
4234 			goto out;
4235 	}
4236 	if (target && !new_is_dir) {
4237 		error = try_break_deleg(target, delegated_inode);
4238 		if (error)
4239 			goto out;
4240 	}
4241 	if (!old_dir->i_op->rename2) {
4242 		error = old_dir->i_op->rename(old_dir, old_dentry,
4243 					      new_dir, new_dentry);
4244 	} else {
4245 		WARN_ON(old_dir->i_op->rename != NULL);
4246 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4247 					       new_dir, new_dentry, flags);
4248 	}
4249 	if (error)
4250 		goto out;
4251 
4252 	if (!(flags & RENAME_EXCHANGE) && target) {
4253 		if (is_dir)
4254 			target->i_flags |= S_DEAD;
4255 		dont_mount(new_dentry);
4256 		detach_mounts(new_dentry);
4257 	}
4258 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4259 		if (!(flags & RENAME_EXCHANGE))
4260 			d_move(old_dentry, new_dentry);
4261 		else
4262 			d_exchange(old_dentry, new_dentry);
4263 	}
4264 out:
4265 	if (!is_dir || (flags & RENAME_EXCHANGE))
4266 		unlock_two_nondirectories(source, target);
4267 	else if (target)
4268 		mutex_unlock(&target->i_mutex);
4269 	dput(new_dentry);
4270 	if (!error) {
4271 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4272 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4273 		if (flags & RENAME_EXCHANGE) {
4274 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4275 				      new_is_dir, NULL, new_dentry);
4276 		}
4277 	}
4278 	fsnotify_oldname_free(old_name);
4279 
4280 	return error;
4281 }
4282 EXPORT_SYMBOL(vfs_rename);
4283 
4284 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4285 		int, newdfd, const char __user *, newname, unsigned int, flags)
4286 {
4287 	struct dentry *old_dentry, *new_dentry;
4288 	struct dentry *trap;
4289 	struct path old_path, new_path;
4290 	struct qstr old_last, new_last;
4291 	int old_type, new_type;
4292 	struct inode *delegated_inode = NULL;
4293 	struct filename *from;
4294 	struct filename *to;
4295 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4296 	bool should_retry = false;
4297 	int error;
4298 
4299 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4300 		return -EINVAL;
4301 
4302 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4303 	    (flags & RENAME_EXCHANGE))
4304 		return -EINVAL;
4305 
4306 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4307 		return -EPERM;
4308 
4309 	if (flags & RENAME_EXCHANGE)
4310 		target_flags = 0;
4311 
4312 retry:
4313 	from = user_path_parent(olddfd, oldname,
4314 				&old_path, &old_last, &old_type, lookup_flags);
4315 	if (IS_ERR(from)) {
4316 		error = PTR_ERR(from);
4317 		goto exit;
4318 	}
4319 
4320 	to = user_path_parent(newdfd, newname,
4321 				&new_path, &new_last, &new_type, lookup_flags);
4322 	if (IS_ERR(to)) {
4323 		error = PTR_ERR(to);
4324 		goto exit1;
4325 	}
4326 
4327 	error = -EXDEV;
4328 	if (old_path.mnt != new_path.mnt)
4329 		goto exit2;
4330 
4331 	error = -EBUSY;
4332 	if (old_type != LAST_NORM)
4333 		goto exit2;
4334 
4335 	if (flags & RENAME_NOREPLACE)
4336 		error = -EEXIST;
4337 	if (new_type != LAST_NORM)
4338 		goto exit2;
4339 
4340 	error = mnt_want_write(old_path.mnt);
4341 	if (error)
4342 		goto exit2;
4343 
4344 retry_deleg:
4345 	trap = lock_rename(new_path.dentry, old_path.dentry);
4346 
4347 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4348 	error = PTR_ERR(old_dentry);
4349 	if (IS_ERR(old_dentry))
4350 		goto exit3;
4351 	/* source must exist */
4352 	error = -ENOENT;
4353 	if (d_is_negative(old_dentry))
4354 		goto exit4;
4355 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4356 	error = PTR_ERR(new_dentry);
4357 	if (IS_ERR(new_dentry))
4358 		goto exit4;
4359 	error = -EEXIST;
4360 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4361 		goto exit5;
4362 	if (flags & RENAME_EXCHANGE) {
4363 		error = -ENOENT;
4364 		if (d_is_negative(new_dentry))
4365 			goto exit5;
4366 
4367 		if (!d_is_dir(new_dentry)) {
4368 			error = -ENOTDIR;
4369 			if (new_last.name[new_last.len])
4370 				goto exit5;
4371 		}
4372 	}
4373 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4374 	if (!d_is_dir(old_dentry)) {
4375 		error = -ENOTDIR;
4376 		if (old_last.name[old_last.len])
4377 			goto exit5;
4378 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4379 			goto exit5;
4380 	}
4381 	/* source should not be ancestor of target */
4382 	error = -EINVAL;
4383 	if (old_dentry == trap)
4384 		goto exit5;
4385 	/* target should not be an ancestor of source */
4386 	if (!(flags & RENAME_EXCHANGE))
4387 		error = -ENOTEMPTY;
4388 	if (new_dentry == trap)
4389 		goto exit5;
4390 
4391 	error = security_path_rename(&old_path, old_dentry,
4392 				     &new_path, new_dentry, flags);
4393 	if (error)
4394 		goto exit5;
4395 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4396 			   new_path.dentry->d_inode, new_dentry,
4397 			   &delegated_inode, flags);
4398 exit5:
4399 	dput(new_dentry);
4400 exit4:
4401 	dput(old_dentry);
4402 exit3:
4403 	unlock_rename(new_path.dentry, old_path.dentry);
4404 	if (delegated_inode) {
4405 		error = break_deleg_wait(&delegated_inode);
4406 		if (!error)
4407 			goto retry_deleg;
4408 	}
4409 	mnt_drop_write(old_path.mnt);
4410 exit2:
4411 	if (retry_estale(error, lookup_flags))
4412 		should_retry = true;
4413 	path_put(&new_path);
4414 	putname(to);
4415 exit1:
4416 	path_put(&old_path);
4417 	putname(from);
4418 	if (should_retry) {
4419 		should_retry = false;
4420 		lookup_flags |= LOOKUP_REVAL;
4421 		goto retry;
4422 	}
4423 exit:
4424 	return error;
4425 }
4426 
4427 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4428 		int, newdfd, const char __user *, newname)
4429 {
4430 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4431 }
4432 
4433 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4434 {
4435 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4436 }
4437 
4438 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4439 {
4440 	int error = may_create(dir, dentry);
4441 	if (error)
4442 		return error;
4443 
4444 	if (!dir->i_op->mknod)
4445 		return -EPERM;
4446 
4447 	return dir->i_op->mknod(dir, dentry,
4448 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4449 }
4450 EXPORT_SYMBOL(vfs_whiteout);
4451 
4452 int readlink_copy(char __user *buffer, int buflen, const char *link)
4453 {
4454 	int len = PTR_ERR(link);
4455 	if (IS_ERR(link))
4456 		goto out;
4457 
4458 	len = strlen(link);
4459 	if (len > (unsigned) buflen)
4460 		len = buflen;
4461 	if (copy_to_user(buffer, link, len))
4462 		len = -EFAULT;
4463 out:
4464 	return len;
4465 }
4466 EXPORT_SYMBOL(readlink_copy);
4467 
4468 /*
4469  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4470  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4471  * using) it for any given inode is up to filesystem.
4472  */
4473 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4474 {
4475 	void *cookie;
4476 	struct inode *inode = d_inode(dentry);
4477 	const char *link = inode->i_link;
4478 	int res;
4479 
4480 	if (!link) {
4481 		link = inode->i_op->follow_link(dentry, &cookie);
4482 		if (IS_ERR(link))
4483 			return PTR_ERR(link);
4484 	}
4485 	res = readlink_copy(buffer, buflen, link);
4486 	if (inode->i_op->put_link)
4487 		inode->i_op->put_link(inode, cookie);
4488 	return res;
4489 }
4490 EXPORT_SYMBOL(generic_readlink);
4491 
4492 /* get the link contents into pagecache */
4493 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4494 {
4495 	char *kaddr;
4496 	struct page *page;
4497 	struct address_space *mapping = dentry->d_inode->i_mapping;
4498 	page = read_mapping_page(mapping, 0, NULL);
4499 	if (IS_ERR(page))
4500 		return (char*)page;
4501 	*ppage = page;
4502 	kaddr = kmap(page);
4503 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4504 	return kaddr;
4505 }
4506 
4507 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4508 {
4509 	struct page *page = NULL;
4510 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4511 	if (page) {
4512 		kunmap(page);
4513 		page_cache_release(page);
4514 	}
4515 	return res;
4516 }
4517 EXPORT_SYMBOL(page_readlink);
4518 
4519 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4520 {
4521 	struct page *page = NULL;
4522 	char *res = page_getlink(dentry, &page);
4523 	if (!IS_ERR(res))
4524 		*cookie = page;
4525 	return res;
4526 }
4527 EXPORT_SYMBOL(page_follow_link_light);
4528 
4529 void page_put_link(struct inode *unused, void *cookie)
4530 {
4531 	struct page *page = cookie;
4532 	kunmap(page);
4533 	page_cache_release(page);
4534 }
4535 EXPORT_SYMBOL(page_put_link);
4536 
4537 /*
4538  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4539  */
4540 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4541 {
4542 	struct address_space *mapping = inode->i_mapping;
4543 	struct page *page;
4544 	void *fsdata;
4545 	int err;
4546 	char *kaddr;
4547 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4548 	if (nofs)
4549 		flags |= AOP_FLAG_NOFS;
4550 
4551 retry:
4552 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4553 				flags, &page, &fsdata);
4554 	if (err)
4555 		goto fail;
4556 
4557 	kaddr = kmap_atomic(page);
4558 	memcpy(kaddr, symname, len-1);
4559 	kunmap_atomic(kaddr);
4560 
4561 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4562 							page, fsdata);
4563 	if (err < 0)
4564 		goto fail;
4565 	if (err < len-1)
4566 		goto retry;
4567 
4568 	mark_inode_dirty(inode);
4569 	return 0;
4570 fail:
4571 	return err;
4572 }
4573 EXPORT_SYMBOL(__page_symlink);
4574 
4575 int page_symlink(struct inode *inode, const char *symname, int len)
4576 {
4577 	return __page_symlink(inode, symname, len,
4578 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4579 }
4580 EXPORT_SYMBOL(page_symlink);
4581 
4582 const struct inode_operations page_symlink_inode_operations = {
4583 	.readlink	= generic_readlink,
4584 	.follow_link	= page_follow_link_light,
4585 	.put_link	= page_put_link,
4586 };
4587 EXPORT_SYMBOL(page_symlink_inode_operations);
4588