1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/namei.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * Some corrections by tytso. 10 */ 11 12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 13 * lookup logic. 14 */ 15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 16 */ 17 18 #include <linux/init.h> 19 #include <linux/export.h> 20 #include <linux/kernel.h> 21 #include <linux/slab.h> 22 #include <linux/fs.h> 23 #include <linux/namei.h> 24 #include <linux/pagemap.h> 25 #include <linux/fsnotify.h> 26 #include <linux/personality.h> 27 #include <linux/security.h> 28 #include <linux/ima.h> 29 #include <linux/syscalls.h> 30 #include <linux/mount.h> 31 #include <linux/audit.h> 32 #include <linux/capability.h> 33 #include <linux/file.h> 34 #include <linux/fcntl.h> 35 #include <linux/device_cgroup.h> 36 #include <linux/fs_struct.h> 37 #include <linux/posix_acl.h> 38 #include <linux/hash.h> 39 #include <linux/bitops.h> 40 #include <linux/init_task.h> 41 #include <linux/uaccess.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* [Feb-1997 T. Schoebel-Theuer] 47 * Fundamental changes in the pathname lookup mechanisms (namei) 48 * were necessary because of omirr. The reason is that omirr needs 49 * to know the _real_ pathname, not the user-supplied one, in case 50 * of symlinks (and also when transname replacements occur). 51 * 52 * The new code replaces the old recursive symlink resolution with 53 * an iterative one (in case of non-nested symlink chains). It does 54 * this with calls to <fs>_follow_link(). 55 * As a side effect, dir_namei(), _namei() and follow_link() are now 56 * replaced with a single function lookup_dentry() that can handle all 57 * the special cases of the former code. 58 * 59 * With the new dcache, the pathname is stored at each inode, at least as 60 * long as the refcount of the inode is positive. As a side effect, the 61 * size of the dcache depends on the inode cache and thus is dynamic. 62 * 63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 64 * resolution to correspond with current state of the code. 65 * 66 * Note that the symlink resolution is not *completely* iterative. 67 * There is still a significant amount of tail- and mid- recursion in 68 * the algorithm. Also, note that <fs>_readlink() is not used in 69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 70 * may return different results than <fs>_follow_link(). Many virtual 71 * filesystems (including /proc) exhibit this behavior. 72 */ 73 74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 76 * and the name already exists in form of a symlink, try to create the new 77 * name indicated by the symlink. The old code always complained that the 78 * name already exists, due to not following the symlink even if its target 79 * is nonexistent. The new semantics affects also mknod() and link() when 80 * the name is a symlink pointing to a non-existent name. 81 * 82 * I don't know which semantics is the right one, since I have no access 83 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 85 * "old" one. Personally, I think the new semantics is much more logical. 86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 87 * file does succeed in both HP-UX and SunOs, but not in Solaris 88 * and in the old Linux semantics. 89 */ 90 91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 92 * semantics. See the comments in "open_namei" and "do_link" below. 93 * 94 * [10-Sep-98 Alan Modra] Another symlink change. 95 */ 96 97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 98 * inside the path - always follow. 99 * in the last component in creation/removal/renaming - never follow. 100 * if LOOKUP_FOLLOW passed - follow. 101 * if the pathname has trailing slashes - follow. 102 * otherwise - don't follow. 103 * (applied in that order). 104 * 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 107 * During the 2.4 we need to fix the userland stuff depending on it - 108 * hopefully we will be able to get rid of that wart in 2.5. So far only 109 * XEmacs seems to be relying on it... 110 */ 111 /* 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 114 * any extra contention... 115 */ 116 117 /* In order to reduce some races, while at the same time doing additional 118 * checking and hopefully speeding things up, we copy filenames to the 119 * kernel data space before using them.. 120 * 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 122 * PATH_MAX includes the nul terminator --RR. 123 */ 124 125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 126 127 struct filename * 128 getname_flags(const char __user *filename, int flags, int *empty) 129 { 130 struct filename *result; 131 char *kname; 132 int len; 133 134 result = audit_reusename(filename); 135 if (result) 136 return result; 137 138 result = __getname(); 139 if (unlikely(!result)) 140 return ERR_PTR(-ENOMEM); 141 142 /* 143 * First, try to embed the struct filename inside the names_cache 144 * allocation 145 */ 146 kname = (char *)result->iname; 147 result->name = kname; 148 149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 150 if (unlikely(len < 0)) { 151 __putname(result); 152 return ERR_PTR(len); 153 } 154 155 /* 156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 157 * separate struct filename so we can dedicate the entire 158 * names_cache allocation for the pathname, and re-do the copy from 159 * userland. 160 */ 161 if (unlikely(len == EMBEDDED_NAME_MAX)) { 162 const size_t size = offsetof(struct filename, iname[1]); 163 kname = (char *)result; 164 165 /* 166 * size is chosen that way we to guarantee that 167 * result->iname[0] is within the same object and that 168 * kname can't be equal to result->iname, no matter what. 169 */ 170 result = kzalloc(size, GFP_KERNEL); 171 if (unlikely(!result)) { 172 __putname(kname); 173 return ERR_PTR(-ENOMEM); 174 } 175 result->name = kname; 176 len = strncpy_from_user(kname, filename, PATH_MAX); 177 if (unlikely(len < 0)) { 178 __putname(kname); 179 kfree(result); 180 return ERR_PTR(len); 181 } 182 if (unlikely(len == PATH_MAX)) { 183 __putname(kname); 184 kfree(result); 185 return ERR_PTR(-ENAMETOOLONG); 186 } 187 } 188 189 result->refcnt = 1; 190 /* The empty path is special. */ 191 if (unlikely(!len)) { 192 if (empty) 193 *empty = 1; 194 if (!(flags & LOOKUP_EMPTY)) { 195 putname(result); 196 return ERR_PTR(-ENOENT); 197 } 198 } 199 200 result->uptr = filename; 201 result->aname = NULL; 202 audit_getname(result); 203 return result; 204 } 205 206 struct filename * 207 getname(const char __user * filename) 208 { 209 return getname_flags(filename, 0, NULL); 210 } 211 212 struct filename * 213 getname_kernel(const char * filename) 214 { 215 struct filename *result; 216 int len = strlen(filename) + 1; 217 218 result = __getname(); 219 if (unlikely(!result)) 220 return ERR_PTR(-ENOMEM); 221 222 if (len <= EMBEDDED_NAME_MAX) { 223 result->name = (char *)result->iname; 224 } else if (len <= PATH_MAX) { 225 const size_t size = offsetof(struct filename, iname[1]); 226 struct filename *tmp; 227 228 tmp = kmalloc(size, GFP_KERNEL); 229 if (unlikely(!tmp)) { 230 __putname(result); 231 return ERR_PTR(-ENOMEM); 232 } 233 tmp->name = (char *)result; 234 result = tmp; 235 } else { 236 __putname(result); 237 return ERR_PTR(-ENAMETOOLONG); 238 } 239 memcpy((char *)result->name, filename, len); 240 result->uptr = NULL; 241 result->aname = NULL; 242 result->refcnt = 1; 243 audit_getname(result); 244 245 return result; 246 } 247 248 void putname(struct filename *name) 249 { 250 BUG_ON(name->refcnt <= 0); 251 252 if (--name->refcnt > 0) 253 return; 254 255 if (name->name != name->iname) { 256 __putname(name->name); 257 kfree(name); 258 } else 259 __putname(name); 260 } 261 262 /** 263 * check_acl - perform ACL permission checking 264 * @mnt_userns: user namespace of the mount the inode was found from 265 * @inode: inode to check permissions on 266 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 267 * 268 * This function performs the ACL permission checking. Since this function 269 * retrieve POSIX acls it needs to know whether it is called from a blocking or 270 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 271 * 272 * If the inode has been found through an idmapped mount the user namespace of 273 * the vfsmount must be passed through @mnt_userns. This function will then take 274 * care to map the inode according to @mnt_userns before checking permissions. 275 * On non-idmapped mounts or if permission checking is to be performed on the 276 * raw inode simply passs init_user_ns. 277 */ 278 static int check_acl(struct user_namespace *mnt_userns, 279 struct inode *inode, int mask) 280 { 281 #ifdef CONFIG_FS_POSIX_ACL 282 struct posix_acl *acl; 283 284 if (mask & MAY_NOT_BLOCK) { 285 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 286 if (!acl) 287 return -EAGAIN; 288 /* no ->get_acl() calls in RCU mode... */ 289 if (is_uncached_acl(acl)) 290 return -ECHILD; 291 return posix_acl_permission(mnt_userns, inode, acl, mask); 292 } 293 294 acl = get_acl(inode, ACL_TYPE_ACCESS); 295 if (IS_ERR(acl)) 296 return PTR_ERR(acl); 297 if (acl) { 298 int error = posix_acl_permission(mnt_userns, inode, acl, mask); 299 posix_acl_release(acl); 300 return error; 301 } 302 #endif 303 304 return -EAGAIN; 305 } 306 307 /** 308 * acl_permission_check - perform basic UNIX permission checking 309 * @mnt_userns: user namespace of the mount the inode was found from 310 * @inode: inode to check permissions on 311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 312 * 313 * This function performs the basic UNIX permission checking. Since this 314 * function may retrieve POSIX acls it needs to know whether it is called from a 315 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit. 316 * 317 * If the inode has been found through an idmapped mount the user namespace of 318 * the vfsmount must be passed through @mnt_userns. This function will then take 319 * care to map the inode according to @mnt_userns before checking permissions. 320 * On non-idmapped mounts or if permission checking is to be performed on the 321 * raw inode simply passs init_user_ns. 322 */ 323 static int acl_permission_check(struct user_namespace *mnt_userns, 324 struct inode *inode, int mask) 325 { 326 unsigned int mode = inode->i_mode; 327 kuid_t i_uid; 328 329 /* Are we the owner? If so, ACL's don't matter */ 330 i_uid = i_uid_into_mnt(mnt_userns, inode); 331 if (likely(uid_eq(current_fsuid(), i_uid))) { 332 mask &= 7; 333 mode >>= 6; 334 return (mask & ~mode) ? -EACCES : 0; 335 } 336 337 /* Do we have ACL's? */ 338 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 339 int error = check_acl(mnt_userns, inode, mask); 340 if (error != -EAGAIN) 341 return error; 342 } 343 344 /* Only RWX matters for group/other mode bits */ 345 mask &= 7; 346 347 /* 348 * Are the group permissions different from 349 * the other permissions in the bits we care 350 * about? Need to check group ownership if so. 351 */ 352 if (mask & (mode ^ (mode >> 3))) { 353 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 354 if (in_group_p(kgid)) 355 mode >>= 3; 356 } 357 358 /* Bits in 'mode' clear that we require? */ 359 return (mask & ~mode) ? -EACCES : 0; 360 } 361 362 /** 363 * generic_permission - check for access rights on a Posix-like filesystem 364 * @mnt_userns: user namespace of the mount the inode was found from 365 * @inode: inode to check access rights for 366 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, 367 * %MAY_NOT_BLOCK ...) 368 * 369 * Used to check for read/write/execute permissions on a file. 370 * We use "fsuid" for this, letting us set arbitrary permissions 371 * for filesystem access without changing the "normal" uids which 372 * are used for other things. 373 * 374 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 375 * request cannot be satisfied (eg. requires blocking or too much complexity). 376 * It would then be called again in ref-walk mode. 377 * 378 * If the inode has been found through an idmapped mount the user namespace of 379 * the vfsmount must be passed through @mnt_userns. This function will then take 380 * care to map the inode according to @mnt_userns before checking permissions. 381 * On non-idmapped mounts or if permission checking is to be performed on the 382 * raw inode simply passs init_user_ns. 383 */ 384 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode, 385 int mask) 386 { 387 int ret; 388 389 /* 390 * Do the basic permission checks. 391 */ 392 ret = acl_permission_check(mnt_userns, inode, mask); 393 if (ret != -EACCES) 394 return ret; 395 396 if (S_ISDIR(inode->i_mode)) { 397 /* DACs are overridable for directories */ 398 if (!(mask & MAY_WRITE)) 399 if (capable_wrt_inode_uidgid(mnt_userns, inode, 400 CAP_DAC_READ_SEARCH)) 401 return 0; 402 if (capable_wrt_inode_uidgid(mnt_userns, inode, 403 CAP_DAC_OVERRIDE)) 404 return 0; 405 return -EACCES; 406 } 407 408 /* 409 * Searching includes executable on directories, else just read. 410 */ 411 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 412 if (mask == MAY_READ) 413 if (capable_wrt_inode_uidgid(mnt_userns, inode, 414 CAP_DAC_READ_SEARCH)) 415 return 0; 416 /* 417 * Read/write DACs are always overridable. 418 * Executable DACs are overridable when there is 419 * at least one exec bit set. 420 */ 421 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 422 if (capable_wrt_inode_uidgid(mnt_userns, inode, 423 CAP_DAC_OVERRIDE)) 424 return 0; 425 426 return -EACCES; 427 } 428 EXPORT_SYMBOL(generic_permission); 429 430 /** 431 * do_inode_permission - UNIX permission checking 432 * @mnt_userns: user namespace of the mount the inode was found from 433 * @inode: inode to check permissions on 434 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...) 435 * 436 * We _really_ want to just do "generic_permission()" without 437 * even looking at the inode->i_op values. So we keep a cache 438 * flag in inode->i_opflags, that says "this has not special 439 * permission function, use the fast case". 440 */ 441 static inline int do_inode_permission(struct user_namespace *mnt_userns, 442 struct inode *inode, int mask) 443 { 444 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 445 if (likely(inode->i_op->permission)) 446 return inode->i_op->permission(mnt_userns, inode, mask); 447 448 /* This gets set once for the inode lifetime */ 449 spin_lock(&inode->i_lock); 450 inode->i_opflags |= IOP_FASTPERM; 451 spin_unlock(&inode->i_lock); 452 } 453 return generic_permission(mnt_userns, inode, mask); 454 } 455 456 /** 457 * sb_permission - Check superblock-level permissions 458 * @sb: Superblock of inode to check permission on 459 * @inode: Inode to check permission on 460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 461 * 462 * Separate out file-system wide checks from inode-specific permission checks. 463 */ 464 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 465 { 466 if (unlikely(mask & MAY_WRITE)) { 467 umode_t mode = inode->i_mode; 468 469 /* Nobody gets write access to a read-only fs. */ 470 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 471 return -EROFS; 472 } 473 return 0; 474 } 475 476 /** 477 * inode_permission - Check for access rights to a given inode 478 * @mnt_userns: User namespace of the mount the inode was found from 479 * @inode: Inode to check permission on 480 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 481 * 482 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 483 * this, letting us set arbitrary permissions for filesystem access without 484 * changing the "normal" UIDs which are used for other things. 485 * 486 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 487 */ 488 int inode_permission(struct user_namespace *mnt_userns, 489 struct inode *inode, int mask) 490 { 491 int retval; 492 493 retval = sb_permission(inode->i_sb, inode, mask); 494 if (retval) 495 return retval; 496 497 if (unlikely(mask & MAY_WRITE)) { 498 /* 499 * Nobody gets write access to an immutable file. 500 */ 501 if (IS_IMMUTABLE(inode)) 502 return -EPERM; 503 504 /* 505 * Updating mtime will likely cause i_uid and i_gid to be 506 * written back improperly if their true value is unknown 507 * to the vfs. 508 */ 509 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 510 return -EACCES; 511 } 512 513 retval = do_inode_permission(mnt_userns, inode, mask); 514 if (retval) 515 return retval; 516 517 retval = devcgroup_inode_permission(inode, mask); 518 if (retval) 519 return retval; 520 521 return security_inode_permission(inode, mask); 522 } 523 EXPORT_SYMBOL(inode_permission); 524 525 /** 526 * path_get - get a reference to a path 527 * @path: path to get the reference to 528 * 529 * Given a path increment the reference count to the dentry and the vfsmount. 530 */ 531 void path_get(const struct path *path) 532 { 533 mntget(path->mnt); 534 dget(path->dentry); 535 } 536 EXPORT_SYMBOL(path_get); 537 538 /** 539 * path_put - put a reference to a path 540 * @path: path to put the reference to 541 * 542 * Given a path decrement the reference count to the dentry and the vfsmount. 543 */ 544 void path_put(const struct path *path) 545 { 546 dput(path->dentry); 547 mntput(path->mnt); 548 } 549 EXPORT_SYMBOL(path_put); 550 551 #define EMBEDDED_LEVELS 2 552 struct nameidata { 553 struct path path; 554 struct qstr last; 555 struct path root; 556 struct inode *inode; /* path.dentry.d_inode */ 557 unsigned int flags; 558 unsigned seq, m_seq, r_seq; 559 int last_type; 560 unsigned depth; 561 int total_link_count; 562 struct saved { 563 struct path link; 564 struct delayed_call done; 565 const char *name; 566 unsigned seq; 567 } *stack, internal[EMBEDDED_LEVELS]; 568 struct filename *name; 569 struct nameidata *saved; 570 unsigned root_seq; 571 int dfd; 572 kuid_t dir_uid; 573 umode_t dir_mode; 574 } __randomize_layout; 575 576 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name) 577 { 578 struct nameidata *old = current->nameidata; 579 p->stack = p->internal; 580 p->dfd = dfd; 581 p->name = name; 582 p->total_link_count = old ? old->total_link_count : 0; 583 p->saved = old; 584 current->nameidata = p; 585 } 586 587 static void restore_nameidata(void) 588 { 589 struct nameidata *now = current->nameidata, *old = now->saved; 590 591 current->nameidata = old; 592 if (old) 593 old->total_link_count = now->total_link_count; 594 if (now->stack != now->internal) 595 kfree(now->stack); 596 } 597 598 static bool nd_alloc_stack(struct nameidata *nd) 599 { 600 struct saved *p; 601 602 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved), 603 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL); 604 if (unlikely(!p)) 605 return false; 606 memcpy(p, nd->internal, sizeof(nd->internal)); 607 nd->stack = p; 608 return true; 609 } 610 611 /** 612 * path_connected - Verify that a dentry is below mnt.mnt_root 613 * 614 * Rename can sometimes move a file or directory outside of a bind 615 * mount, path_connected allows those cases to be detected. 616 */ 617 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry) 618 { 619 struct super_block *sb = mnt->mnt_sb; 620 621 /* Bind mounts can have disconnected paths */ 622 if (mnt->mnt_root == sb->s_root) 623 return true; 624 625 return is_subdir(dentry, mnt->mnt_root); 626 } 627 628 static void drop_links(struct nameidata *nd) 629 { 630 int i = nd->depth; 631 while (i--) { 632 struct saved *last = nd->stack + i; 633 do_delayed_call(&last->done); 634 clear_delayed_call(&last->done); 635 } 636 } 637 638 static void terminate_walk(struct nameidata *nd) 639 { 640 drop_links(nd); 641 if (!(nd->flags & LOOKUP_RCU)) { 642 int i; 643 path_put(&nd->path); 644 for (i = 0; i < nd->depth; i++) 645 path_put(&nd->stack[i].link); 646 if (nd->flags & LOOKUP_ROOT_GRABBED) { 647 path_put(&nd->root); 648 nd->flags &= ~LOOKUP_ROOT_GRABBED; 649 } 650 } else { 651 nd->flags &= ~LOOKUP_RCU; 652 rcu_read_unlock(); 653 } 654 nd->depth = 0; 655 } 656 657 /* path_put is needed afterwards regardless of success or failure */ 658 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq) 659 { 660 int res = __legitimize_mnt(path->mnt, mseq); 661 if (unlikely(res)) { 662 if (res > 0) 663 path->mnt = NULL; 664 path->dentry = NULL; 665 return false; 666 } 667 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) { 668 path->dentry = NULL; 669 return false; 670 } 671 return !read_seqcount_retry(&path->dentry->d_seq, seq); 672 } 673 674 static inline bool legitimize_path(struct nameidata *nd, 675 struct path *path, unsigned seq) 676 { 677 return __legitimize_path(path, seq, nd->m_seq); 678 } 679 680 static bool legitimize_links(struct nameidata *nd) 681 { 682 int i; 683 if (unlikely(nd->flags & LOOKUP_CACHED)) { 684 drop_links(nd); 685 nd->depth = 0; 686 return false; 687 } 688 for (i = 0; i < nd->depth; i++) { 689 struct saved *last = nd->stack + i; 690 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) { 691 drop_links(nd); 692 nd->depth = i + 1; 693 return false; 694 } 695 } 696 return true; 697 } 698 699 static bool legitimize_root(struct nameidata *nd) 700 { 701 /* 702 * For scoped-lookups (where nd->root has been zeroed), we need to 703 * restart the whole lookup from scratch -- because set_root() is wrong 704 * for these lookups (nd->dfd is the root, not the filesystem root). 705 */ 706 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED)) 707 return false; 708 /* Nothing to do if nd->root is zero or is managed by the VFS user. */ 709 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT)) 710 return true; 711 nd->flags |= LOOKUP_ROOT_GRABBED; 712 return legitimize_path(nd, &nd->root, nd->root_seq); 713 } 714 715 /* 716 * Path walking has 2 modes, rcu-walk and ref-walk (see 717 * Documentation/filesystems/path-lookup.txt). In situations when we can't 718 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 719 * normal reference counts on dentries and vfsmounts to transition to ref-walk 720 * mode. Refcounts are grabbed at the last known good point before rcu-walk 721 * got stuck, so ref-walk may continue from there. If this is not successful 722 * (eg. a seqcount has changed), then failure is returned and it's up to caller 723 * to restart the path walk from the beginning in ref-walk mode. 724 */ 725 726 /** 727 * try_to_unlazy - try to switch to ref-walk mode. 728 * @nd: nameidata pathwalk data 729 * Returns: true on success, false on failure 730 * 731 * try_to_unlazy attempts to legitimize the current nd->path and nd->root 732 * for ref-walk mode. 733 * Must be called from rcu-walk context. 734 * Nothing should touch nameidata between try_to_unlazy() failure and 735 * terminate_walk(). 736 */ 737 static bool try_to_unlazy(struct nameidata *nd) 738 { 739 struct dentry *parent = nd->path.dentry; 740 741 BUG_ON(!(nd->flags & LOOKUP_RCU)); 742 743 nd->flags &= ~LOOKUP_RCU; 744 if (unlikely(!legitimize_links(nd))) 745 goto out1; 746 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq))) 747 goto out; 748 if (unlikely(!legitimize_root(nd))) 749 goto out; 750 rcu_read_unlock(); 751 BUG_ON(nd->inode != parent->d_inode); 752 return true; 753 754 out1: 755 nd->path.mnt = NULL; 756 nd->path.dentry = NULL; 757 out: 758 rcu_read_unlock(); 759 return false; 760 } 761 762 /** 763 * try_to_unlazy_next - try to switch to ref-walk mode. 764 * @nd: nameidata pathwalk data 765 * @dentry: next dentry to step into 766 * @seq: seq number to check @dentry against 767 * Returns: true on success, false on failure 768 * 769 * Similar to to try_to_unlazy(), but here we have the next dentry already 770 * picked by rcu-walk and want to legitimize that in addition to the current 771 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context. 772 * Nothing should touch nameidata between try_to_unlazy_next() failure and 773 * terminate_walk(). 774 */ 775 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq) 776 { 777 BUG_ON(!(nd->flags & LOOKUP_RCU)); 778 779 nd->flags &= ~LOOKUP_RCU; 780 if (unlikely(!legitimize_links(nd))) 781 goto out2; 782 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq))) 783 goto out2; 784 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref))) 785 goto out1; 786 787 /* 788 * We need to move both the parent and the dentry from the RCU domain 789 * to be properly refcounted. And the sequence number in the dentry 790 * validates *both* dentry counters, since we checked the sequence 791 * number of the parent after we got the child sequence number. So we 792 * know the parent must still be valid if the child sequence number is 793 */ 794 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) 795 goto out; 796 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 797 goto out_dput; 798 /* 799 * Sequence counts matched. Now make sure that the root is 800 * still valid and get it if required. 801 */ 802 if (unlikely(!legitimize_root(nd))) 803 goto out_dput; 804 rcu_read_unlock(); 805 return true; 806 807 out2: 808 nd->path.mnt = NULL; 809 out1: 810 nd->path.dentry = NULL; 811 out: 812 rcu_read_unlock(); 813 return false; 814 out_dput: 815 rcu_read_unlock(); 816 dput(dentry); 817 return false; 818 } 819 820 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 821 { 822 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) 823 return dentry->d_op->d_revalidate(dentry, flags); 824 else 825 return 1; 826 } 827 828 /** 829 * complete_walk - successful completion of path walk 830 * @nd: pointer nameidata 831 * 832 * If we had been in RCU mode, drop out of it and legitimize nd->path. 833 * Revalidate the final result, unless we'd already done that during 834 * the path walk or the filesystem doesn't ask for it. Return 0 on 835 * success, -error on failure. In case of failure caller does not 836 * need to drop nd->path. 837 */ 838 static int complete_walk(struct nameidata *nd) 839 { 840 struct dentry *dentry = nd->path.dentry; 841 int status; 842 843 if (nd->flags & LOOKUP_RCU) { 844 /* 845 * We don't want to zero nd->root for scoped-lookups or 846 * externally-managed nd->root. 847 */ 848 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED))) 849 nd->root.mnt = NULL; 850 nd->flags &= ~LOOKUP_CACHED; 851 if (!try_to_unlazy(nd)) 852 return -ECHILD; 853 } 854 855 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 856 /* 857 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't 858 * ever step outside the root during lookup" and should already 859 * be guaranteed by the rest of namei, we want to avoid a namei 860 * BUG resulting in userspace being given a path that was not 861 * scoped within the root at some point during the lookup. 862 * 863 * So, do a final sanity-check to make sure that in the 864 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED) 865 * we won't silently return an fd completely outside of the 866 * requested root to userspace. 867 * 868 * Userspace could move the path outside the root after this 869 * check, but as discussed elsewhere this is not a concern (the 870 * resolved file was inside the root at some point). 871 */ 872 if (!path_is_under(&nd->path, &nd->root)) 873 return -EXDEV; 874 } 875 876 if (likely(!(nd->flags & LOOKUP_JUMPED))) 877 return 0; 878 879 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 880 return 0; 881 882 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 883 if (status > 0) 884 return 0; 885 886 if (!status) 887 status = -ESTALE; 888 889 return status; 890 } 891 892 static int set_root(struct nameidata *nd) 893 { 894 struct fs_struct *fs = current->fs; 895 896 /* 897 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we 898 * still have to ensure it doesn't happen because it will cause a breakout 899 * from the dirfd. 900 */ 901 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED)) 902 return -ENOTRECOVERABLE; 903 904 if (nd->flags & LOOKUP_RCU) { 905 unsigned seq; 906 907 do { 908 seq = read_seqcount_begin(&fs->seq); 909 nd->root = fs->root; 910 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq); 911 } while (read_seqcount_retry(&fs->seq, seq)); 912 } else { 913 get_fs_root(fs, &nd->root); 914 nd->flags |= LOOKUP_ROOT_GRABBED; 915 } 916 return 0; 917 } 918 919 static int nd_jump_root(struct nameidata *nd) 920 { 921 if (unlikely(nd->flags & LOOKUP_BENEATH)) 922 return -EXDEV; 923 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 924 /* Absolute path arguments to path_init() are allowed. */ 925 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt) 926 return -EXDEV; 927 } 928 if (!nd->root.mnt) { 929 int error = set_root(nd); 930 if (error) 931 return error; 932 } 933 if (nd->flags & LOOKUP_RCU) { 934 struct dentry *d; 935 nd->path = nd->root; 936 d = nd->path.dentry; 937 nd->inode = d->d_inode; 938 nd->seq = nd->root_seq; 939 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq))) 940 return -ECHILD; 941 } else { 942 path_put(&nd->path); 943 nd->path = nd->root; 944 path_get(&nd->path); 945 nd->inode = nd->path.dentry->d_inode; 946 } 947 nd->flags |= LOOKUP_JUMPED; 948 return 0; 949 } 950 951 /* 952 * Helper to directly jump to a known parsed path from ->get_link, 953 * caller must have taken a reference to path beforehand. 954 */ 955 int nd_jump_link(struct path *path) 956 { 957 int error = -ELOOP; 958 struct nameidata *nd = current->nameidata; 959 960 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS)) 961 goto err; 962 963 error = -EXDEV; 964 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) { 965 if (nd->path.mnt != path->mnt) 966 goto err; 967 } 968 /* Not currently safe for scoped-lookups. */ 969 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) 970 goto err; 971 972 path_put(&nd->path); 973 nd->path = *path; 974 nd->inode = nd->path.dentry->d_inode; 975 nd->flags |= LOOKUP_JUMPED; 976 return 0; 977 978 err: 979 path_put(path); 980 return error; 981 } 982 983 static inline void put_link(struct nameidata *nd) 984 { 985 struct saved *last = nd->stack + --nd->depth; 986 do_delayed_call(&last->done); 987 if (!(nd->flags & LOOKUP_RCU)) 988 path_put(&last->link); 989 } 990 991 int sysctl_protected_symlinks __read_mostly = 0; 992 int sysctl_protected_hardlinks __read_mostly = 0; 993 int sysctl_protected_fifos __read_mostly; 994 int sysctl_protected_regular __read_mostly; 995 996 /** 997 * may_follow_link - Check symlink following for unsafe situations 998 * @nd: nameidata pathwalk data 999 * 1000 * In the case of the sysctl_protected_symlinks sysctl being enabled, 1001 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 1002 * in a sticky world-writable directory. This is to protect privileged 1003 * processes from failing races against path names that may change out 1004 * from under them by way of other users creating malicious symlinks. 1005 * It will permit symlinks to be followed only when outside a sticky 1006 * world-writable directory, or when the uid of the symlink and follower 1007 * match, or when the directory owner matches the symlink's owner. 1008 * 1009 * Returns 0 if following the symlink is allowed, -ve on error. 1010 */ 1011 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode) 1012 { 1013 struct user_namespace *mnt_userns; 1014 kuid_t i_uid; 1015 1016 if (!sysctl_protected_symlinks) 1017 return 0; 1018 1019 mnt_userns = mnt_user_ns(nd->path.mnt); 1020 i_uid = i_uid_into_mnt(mnt_userns, inode); 1021 /* Allowed if owner and follower match. */ 1022 if (uid_eq(current_cred()->fsuid, i_uid)) 1023 return 0; 1024 1025 /* Allowed if parent directory not sticky and world-writable. */ 1026 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 1027 return 0; 1028 1029 /* Allowed if parent directory and link owner match. */ 1030 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid)) 1031 return 0; 1032 1033 if (nd->flags & LOOKUP_RCU) 1034 return -ECHILD; 1035 1036 audit_inode(nd->name, nd->stack[0].link.dentry, 0); 1037 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link"); 1038 return -EACCES; 1039 } 1040 1041 /** 1042 * safe_hardlink_source - Check for safe hardlink conditions 1043 * @mnt_userns: user namespace of the mount the inode was found from 1044 * @inode: the source inode to hardlink from 1045 * 1046 * Return false if at least one of the following conditions: 1047 * - inode is not a regular file 1048 * - inode is setuid 1049 * - inode is setgid and group-exec 1050 * - access failure for read and write 1051 * 1052 * Otherwise returns true. 1053 */ 1054 static bool safe_hardlink_source(struct user_namespace *mnt_userns, 1055 struct inode *inode) 1056 { 1057 umode_t mode = inode->i_mode; 1058 1059 /* Special files should not get pinned to the filesystem. */ 1060 if (!S_ISREG(mode)) 1061 return false; 1062 1063 /* Setuid files should not get pinned to the filesystem. */ 1064 if (mode & S_ISUID) 1065 return false; 1066 1067 /* Executable setgid files should not get pinned to the filesystem. */ 1068 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 1069 return false; 1070 1071 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 1072 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE)) 1073 return false; 1074 1075 return true; 1076 } 1077 1078 /** 1079 * may_linkat - Check permissions for creating a hardlink 1080 * @mnt_userns: user namespace of the mount the inode was found from 1081 * @link: the source to hardlink from 1082 * 1083 * Block hardlink when all of: 1084 * - sysctl_protected_hardlinks enabled 1085 * - fsuid does not match inode 1086 * - hardlink source is unsafe (see safe_hardlink_source() above) 1087 * - not CAP_FOWNER in a namespace with the inode owner uid mapped 1088 * 1089 * If the inode has been found through an idmapped mount the user namespace of 1090 * the vfsmount must be passed through @mnt_userns. This function will then take 1091 * care to map the inode according to @mnt_userns before checking permissions. 1092 * On non-idmapped mounts or if permission checking is to be performed on the 1093 * raw inode simply passs init_user_ns. 1094 * 1095 * Returns 0 if successful, -ve on error. 1096 */ 1097 int may_linkat(struct user_namespace *mnt_userns, struct path *link) 1098 { 1099 struct inode *inode = link->dentry->d_inode; 1100 1101 /* Inode writeback is not safe when the uid or gid are invalid. */ 1102 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 1103 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 1104 return -EOVERFLOW; 1105 1106 if (!sysctl_protected_hardlinks) 1107 return 0; 1108 1109 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 1110 * otherwise, it must be a safe source. 1111 */ 1112 if (safe_hardlink_source(mnt_userns, inode) || 1113 inode_owner_or_capable(mnt_userns, inode)) 1114 return 0; 1115 1116 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat"); 1117 return -EPERM; 1118 } 1119 1120 /** 1121 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory 1122 * should be allowed, or not, on files that already 1123 * exist. 1124 * @mnt_userns: user namespace of the mount the inode was found from 1125 * @dir_mode: mode bits of directory 1126 * @dir_uid: owner of directory 1127 * @inode: the inode of the file to open 1128 * 1129 * Block an O_CREAT open of a FIFO (or a regular file) when: 1130 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled 1131 * - the file already exists 1132 * - we are in a sticky directory 1133 * - we don't own the file 1134 * - the owner of the directory doesn't own the file 1135 * - the directory is world writable 1136 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2 1137 * the directory doesn't have to be world writable: being group writable will 1138 * be enough. 1139 * 1140 * If the inode has been found through an idmapped mount the user namespace of 1141 * the vfsmount must be passed through @mnt_userns. This function will then take 1142 * care to map the inode according to @mnt_userns before checking permissions. 1143 * On non-idmapped mounts or if permission checking is to be performed on the 1144 * raw inode simply passs init_user_ns. 1145 * 1146 * Returns 0 if the open is allowed, -ve on error. 1147 */ 1148 static int may_create_in_sticky(struct user_namespace *mnt_userns, 1149 struct nameidata *nd, struct inode *const inode) 1150 { 1151 umode_t dir_mode = nd->dir_mode; 1152 kuid_t dir_uid = nd->dir_uid; 1153 1154 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) || 1155 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) || 1156 likely(!(dir_mode & S_ISVTX)) || 1157 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) || 1158 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) 1159 return 0; 1160 1161 if (likely(dir_mode & 0002) || 1162 (dir_mode & 0020 && 1163 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) || 1164 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) { 1165 const char *operation = S_ISFIFO(inode->i_mode) ? 1166 "sticky_create_fifo" : 1167 "sticky_create_regular"; 1168 audit_log_path_denied(AUDIT_ANOM_CREAT, operation); 1169 return -EACCES; 1170 } 1171 return 0; 1172 } 1173 1174 /* 1175 * follow_up - Find the mountpoint of path's vfsmount 1176 * 1177 * Given a path, find the mountpoint of its source file system. 1178 * Replace @path with the path of the mountpoint in the parent mount. 1179 * Up is towards /. 1180 * 1181 * Return 1 if we went up a level and 0 if we were already at the 1182 * root. 1183 */ 1184 int follow_up(struct path *path) 1185 { 1186 struct mount *mnt = real_mount(path->mnt); 1187 struct mount *parent; 1188 struct dentry *mountpoint; 1189 1190 read_seqlock_excl(&mount_lock); 1191 parent = mnt->mnt_parent; 1192 if (parent == mnt) { 1193 read_sequnlock_excl(&mount_lock); 1194 return 0; 1195 } 1196 mntget(&parent->mnt); 1197 mountpoint = dget(mnt->mnt_mountpoint); 1198 read_sequnlock_excl(&mount_lock); 1199 dput(path->dentry); 1200 path->dentry = mountpoint; 1201 mntput(path->mnt); 1202 path->mnt = &parent->mnt; 1203 return 1; 1204 } 1205 EXPORT_SYMBOL(follow_up); 1206 1207 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root, 1208 struct path *path, unsigned *seqp) 1209 { 1210 while (mnt_has_parent(m)) { 1211 struct dentry *mountpoint = m->mnt_mountpoint; 1212 1213 m = m->mnt_parent; 1214 if (unlikely(root->dentry == mountpoint && 1215 root->mnt == &m->mnt)) 1216 break; 1217 if (mountpoint != m->mnt.mnt_root) { 1218 path->mnt = &m->mnt; 1219 path->dentry = mountpoint; 1220 *seqp = read_seqcount_begin(&mountpoint->d_seq); 1221 return true; 1222 } 1223 } 1224 return false; 1225 } 1226 1227 static bool choose_mountpoint(struct mount *m, const struct path *root, 1228 struct path *path) 1229 { 1230 bool found; 1231 1232 rcu_read_lock(); 1233 while (1) { 1234 unsigned seq, mseq = read_seqbegin(&mount_lock); 1235 1236 found = choose_mountpoint_rcu(m, root, path, &seq); 1237 if (unlikely(!found)) { 1238 if (!read_seqretry(&mount_lock, mseq)) 1239 break; 1240 } else { 1241 if (likely(__legitimize_path(path, seq, mseq))) 1242 break; 1243 rcu_read_unlock(); 1244 path_put(path); 1245 rcu_read_lock(); 1246 } 1247 } 1248 rcu_read_unlock(); 1249 return found; 1250 } 1251 1252 /* 1253 * Perform an automount 1254 * - return -EISDIR to tell follow_managed() to stop and return the path we 1255 * were called with. 1256 */ 1257 static int follow_automount(struct path *path, int *count, unsigned lookup_flags) 1258 { 1259 struct dentry *dentry = path->dentry; 1260 1261 /* We don't want to mount if someone's just doing a stat - 1262 * unless they're stat'ing a directory and appended a '/' to 1263 * the name. 1264 * 1265 * We do, however, want to mount if someone wants to open or 1266 * create a file of any type under the mountpoint, wants to 1267 * traverse through the mountpoint or wants to open the 1268 * mounted directory. Also, autofs may mark negative dentries 1269 * as being automount points. These will need the attentions 1270 * of the daemon to instantiate them before they can be used. 1271 */ 1272 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1273 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1274 dentry->d_inode) 1275 return -EISDIR; 1276 1277 if (count && (*count)++ >= MAXSYMLINKS) 1278 return -ELOOP; 1279 1280 return finish_automount(dentry->d_op->d_automount(path), path); 1281 } 1282 1283 /* 1284 * mount traversal - out-of-line part. One note on ->d_flags accesses - 1285 * dentries are pinned but not locked here, so negative dentry can go 1286 * positive right under us. Use of smp_load_acquire() provides a barrier 1287 * sufficient for ->d_inode and ->d_flags consistency. 1288 */ 1289 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped, 1290 int *count, unsigned lookup_flags) 1291 { 1292 struct vfsmount *mnt = path->mnt; 1293 bool need_mntput = false; 1294 int ret = 0; 1295 1296 while (flags & DCACHE_MANAGED_DENTRY) { 1297 /* Allow the filesystem to manage the transit without i_mutex 1298 * being held. */ 1299 if (flags & DCACHE_MANAGE_TRANSIT) { 1300 ret = path->dentry->d_op->d_manage(path, false); 1301 flags = smp_load_acquire(&path->dentry->d_flags); 1302 if (ret < 0) 1303 break; 1304 } 1305 1306 if (flags & DCACHE_MOUNTED) { // something's mounted on it.. 1307 struct vfsmount *mounted = lookup_mnt(path); 1308 if (mounted) { // ... in our namespace 1309 dput(path->dentry); 1310 if (need_mntput) 1311 mntput(path->mnt); 1312 path->mnt = mounted; 1313 path->dentry = dget(mounted->mnt_root); 1314 // here we know it's positive 1315 flags = path->dentry->d_flags; 1316 need_mntput = true; 1317 continue; 1318 } 1319 } 1320 1321 if (!(flags & DCACHE_NEED_AUTOMOUNT)) 1322 break; 1323 1324 // uncovered automount point 1325 ret = follow_automount(path, count, lookup_flags); 1326 flags = smp_load_acquire(&path->dentry->d_flags); 1327 if (ret < 0) 1328 break; 1329 } 1330 1331 if (ret == -EISDIR) 1332 ret = 0; 1333 // possible if you race with several mount --move 1334 if (need_mntput && path->mnt == mnt) 1335 mntput(path->mnt); 1336 if (!ret && unlikely(d_flags_negative(flags))) 1337 ret = -ENOENT; 1338 *jumped = need_mntput; 1339 return ret; 1340 } 1341 1342 static inline int traverse_mounts(struct path *path, bool *jumped, 1343 int *count, unsigned lookup_flags) 1344 { 1345 unsigned flags = smp_load_acquire(&path->dentry->d_flags); 1346 1347 /* fastpath */ 1348 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) { 1349 *jumped = false; 1350 if (unlikely(d_flags_negative(flags))) 1351 return -ENOENT; 1352 return 0; 1353 } 1354 return __traverse_mounts(path, flags, jumped, count, lookup_flags); 1355 } 1356 1357 int follow_down_one(struct path *path) 1358 { 1359 struct vfsmount *mounted; 1360 1361 mounted = lookup_mnt(path); 1362 if (mounted) { 1363 dput(path->dentry); 1364 mntput(path->mnt); 1365 path->mnt = mounted; 1366 path->dentry = dget(mounted->mnt_root); 1367 return 1; 1368 } 1369 return 0; 1370 } 1371 EXPORT_SYMBOL(follow_down_one); 1372 1373 /* 1374 * Follow down to the covering mount currently visible to userspace. At each 1375 * point, the filesystem owning that dentry may be queried as to whether the 1376 * caller is permitted to proceed or not. 1377 */ 1378 int follow_down(struct path *path) 1379 { 1380 struct vfsmount *mnt = path->mnt; 1381 bool jumped; 1382 int ret = traverse_mounts(path, &jumped, NULL, 0); 1383 1384 if (path->mnt != mnt) 1385 mntput(mnt); 1386 return ret; 1387 } 1388 EXPORT_SYMBOL(follow_down); 1389 1390 /* 1391 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1392 * we meet a managed dentry that would need blocking. 1393 */ 1394 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1395 struct inode **inode, unsigned *seqp) 1396 { 1397 struct dentry *dentry = path->dentry; 1398 unsigned int flags = dentry->d_flags; 1399 1400 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) 1401 return true; 1402 1403 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1404 return false; 1405 1406 for (;;) { 1407 /* 1408 * Don't forget we might have a non-mountpoint managed dentry 1409 * that wants to block transit. 1410 */ 1411 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) { 1412 int res = dentry->d_op->d_manage(path, true); 1413 if (res) 1414 return res == -EISDIR; 1415 flags = dentry->d_flags; 1416 } 1417 1418 if (flags & DCACHE_MOUNTED) { 1419 struct mount *mounted = __lookup_mnt(path->mnt, dentry); 1420 if (mounted) { 1421 path->mnt = &mounted->mnt; 1422 dentry = path->dentry = mounted->mnt.mnt_root; 1423 nd->flags |= LOOKUP_JUMPED; 1424 *seqp = read_seqcount_begin(&dentry->d_seq); 1425 *inode = dentry->d_inode; 1426 /* 1427 * We don't need to re-check ->d_seq after this 1428 * ->d_inode read - there will be an RCU delay 1429 * between mount hash removal and ->mnt_root 1430 * becoming unpinned. 1431 */ 1432 flags = dentry->d_flags; 1433 continue; 1434 } 1435 if (read_seqretry(&mount_lock, nd->m_seq)) 1436 return false; 1437 } 1438 return !(flags & DCACHE_NEED_AUTOMOUNT); 1439 } 1440 } 1441 1442 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry, 1443 struct path *path, struct inode **inode, 1444 unsigned int *seqp) 1445 { 1446 bool jumped; 1447 int ret; 1448 1449 path->mnt = nd->path.mnt; 1450 path->dentry = dentry; 1451 if (nd->flags & LOOKUP_RCU) { 1452 unsigned int seq = *seqp; 1453 if (unlikely(!*inode)) 1454 return -ENOENT; 1455 if (likely(__follow_mount_rcu(nd, path, inode, seqp))) 1456 return 0; 1457 if (!try_to_unlazy_next(nd, dentry, seq)) 1458 return -ECHILD; 1459 // *path might've been clobbered by __follow_mount_rcu() 1460 path->mnt = nd->path.mnt; 1461 path->dentry = dentry; 1462 } 1463 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags); 1464 if (jumped) { 1465 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1466 ret = -EXDEV; 1467 else 1468 nd->flags |= LOOKUP_JUMPED; 1469 } 1470 if (unlikely(ret)) { 1471 dput(path->dentry); 1472 if (path->mnt != nd->path.mnt) 1473 mntput(path->mnt); 1474 } else { 1475 *inode = d_backing_inode(path->dentry); 1476 *seqp = 0; /* out of RCU mode, so the value doesn't matter */ 1477 } 1478 return ret; 1479 } 1480 1481 /* 1482 * This looks up the name in dcache and possibly revalidates the found dentry. 1483 * NULL is returned if the dentry does not exist in the cache. 1484 */ 1485 static struct dentry *lookup_dcache(const struct qstr *name, 1486 struct dentry *dir, 1487 unsigned int flags) 1488 { 1489 struct dentry *dentry = d_lookup(dir, name); 1490 if (dentry) { 1491 int error = d_revalidate(dentry, flags); 1492 if (unlikely(error <= 0)) { 1493 if (!error) 1494 d_invalidate(dentry); 1495 dput(dentry); 1496 return ERR_PTR(error); 1497 } 1498 } 1499 return dentry; 1500 } 1501 1502 /* 1503 * Parent directory has inode locked exclusive. This is one 1504 * and only case when ->lookup() gets called on non in-lookup 1505 * dentries - as the matter of fact, this only gets called 1506 * when directory is guaranteed to have no in-lookup children 1507 * at all. 1508 */ 1509 static struct dentry *__lookup_hash(const struct qstr *name, 1510 struct dentry *base, unsigned int flags) 1511 { 1512 struct dentry *dentry = lookup_dcache(name, base, flags); 1513 struct dentry *old; 1514 struct inode *dir = base->d_inode; 1515 1516 if (dentry) 1517 return dentry; 1518 1519 /* Don't create child dentry for a dead directory. */ 1520 if (unlikely(IS_DEADDIR(dir))) 1521 return ERR_PTR(-ENOENT); 1522 1523 dentry = d_alloc(base, name); 1524 if (unlikely(!dentry)) 1525 return ERR_PTR(-ENOMEM); 1526 1527 old = dir->i_op->lookup(dir, dentry, flags); 1528 if (unlikely(old)) { 1529 dput(dentry); 1530 dentry = old; 1531 } 1532 return dentry; 1533 } 1534 1535 static struct dentry *lookup_fast(struct nameidata *nd, 1536 struct inode **inode, 1537 unsigned *seqp) 1538 { 1539 struct dentry *dentry, *parent = nd->path.dentry; 1540 int status = 1; 1541 1542 /* 1543 * Rename seqlock is not required here because in the off chance 1544 * of a false negative due to a concurrent rename, the caller is 1545 * going to fall back to non-racy lookup. 1546 */ 1547 if (nd->flags & LOOKUP_RCU) { 1548 unsigned seq; 1549 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1550 if (unlikely(!dentry)) { 1551 if (!try_to_unlazy(nd)) 1552 return ERR_PTR(-ECHILD); 1553 return NULL; 1554 } 1555 1556 /* 1557 * This sequence count validates that the inode matches 1558 * the dentry name information from lookup. 1559 */ 1560 *inode = d_backing_inode(dentry); 1561 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) 1562 return ERR_PTR(-ECHILD); 1563 1564 /* 1565 * This sequence count validates that the parent had no 1566 * changes while we did the lookup of the dentry above. 1567 * 1568 * The memory barrier in read_seqcount_begin of child is 1569 * enough, we can use __read_seqcount_retry here. 1570 */ 1571 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq))) 1572 return ERR_PTR(-ECHILD); 1573 1574 *seqp = seq; 1575 status = d_revalidate(dentry, nd->flags); 1576 if (likely(status > 0)) 1577 return dentry; 1578 if (!try_to_unlazy_next(nd, dentry, seq)) 1579 return ERR_PTR(-ECHILD); 1580 if (status == -ECHILD) 1581 /* we'd been told to redo it in non-rcu mode */ 1582 status = d_revalidate(dentry, nd->flags); 1583 } else { 1584 dentry = __d_lookup(parent, &nd->last); 1585 if (unlikely(!dentry)) 1586 return NULL; 1587 status = d_revalidate(dentry, nd->flags); 1588 } 1589 if (unlikely(status <= 0)) { 1590 if (!status) 1591 d_invalidate(dentry); 1592 dput(dentry); 1593 return ERR_PTR(status); 1594 } 1595 return dentry; 1596 } 1597 1598 /* Fast lookup failed, do it the slow way */ 1599 static struct dentry *__lookup_slow(const struct qstr *name, 1600 struct dentry *dir, 1601 unsigned int flags) 1602 { 1603 struct dentry *dentry, *old; 1604 struct inode *inode = dir->d_inode; 1605 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1606 1607 /* Don't go there if it's already dead */ 1608 if (unlikely(IS_DEADDIR(inode))) 1609 return ERR_PTR(-ENOENT); 1610 again: 1611 dentry = d_alloc_parallel(dir, name, &wq); 1612 if (IS_ERR(dentry)) 1613 return dentry; 1614 if (unlikely(!d_in_lookup(dentry))) { 1615 int error = d_revalidate(dentry, flags); 1616 if (unlikely(error <= 0)) { 1617 if (!error) { 1618 d_invalidate(dentry); 1619 dput(dentry); 1620 goto again; 1621 } 1622 dput(dentry); 1623 dentry = ERR_PTR(error); 1624 } 1625 } else { 1626 old = inode->i_op->lookup(inode, dentry, flags); 1627 d_lookup_done(dentry); 1628 if (unlikely(old)) { 1629 dput(dentry); 1630 dentry = old; 1631 } 1632 } 1633 return dentry; 1634 } 1635 1636 static struct dentry *lookup_slow(const struct qstr *name, 1637 struct dentry *dir, 1638 unsigned int flags) 1639 { 1640 struct inode *inode = dir->d_inode; 1641 struct dentry *res; 1642 inode_lock_shared(inode); 1643 res = __lookup_slow(name, dir, flags); 1644 inode_unlock_shared(inode); 1645 return res; 1646 } 1647 1648 static inline int may_lookup(struct user_namespace *mnt_userns, 1649 struct nameidata *nd) 1650 { 1651 if (nd->flags & LOOKUP_RCU) { 1652 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1653 if (err != -ECHILD || !try_to_unlazy(nd)) 1654 return err; 1655 } 1656 return inode_permission(mnt_userns, nd->inode, MAY_EXEC); 1657 } 1658 1659 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq) 1660 { 1661 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) 1662 return -ELOOP; 1663 1664 if (likely(nd->depth != EMBEDDED_LEVELS)) 1665 return 0; 1666 if (likely(nd->stack != nd->internal)) 1667 return 0; 1668 if (likely(nd_alloc_stack(nd))) 1669 return 0; 1670 1671 if (nd->flags & LOOKUP_RCU) { 1672 // we need to grab link before we do unlazy. And we can't skip 1673 // unlazy even if we fail to grab the link - cleanup needs it 1674 bool grabbed_link = legitimize_path(nd, link, seq); 1675 1676 if (!try_to_unlazy(nd) != 0 || !grabbed_link) 1677 return -ECHILD; 1678 1679 if (nd_alloc_stack(nd)) 1680 return 0; 1681 } 1682 return -ENOMEM; 1683 } 1684 1685 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4}; 1686 1687 static const char *pick_link(struct nameidata *nd, struct path *link, 1688 struct inode *inode, unsigned seq, int flags) 1689 { 1690 struct saved *last; 1691 const char *res; 1692 int error = reserve_stack(nd, link, seq); 1693 1694 if (unlikely(error)) { 1695 if (!(nd->flags & LOOKUP_RCU)) 1696 path_put(link); 1697 return ERR_PTR(error); 1698 } 1699 last = nd->stack + nd->depth++; 1700 last->link = *link; 1701 clear_delayed_call(&last->done); 1702 last->seq = seq; 1703 1704 if (flags & WALK_TRAILING) { 1705 error = may_follow_link(nd, inode); 1706 if (unlikely(error)) 1707 return ERR_PTR(error); 1708 } 1709 1710 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) || 1711 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW)) 1712 return ERR_PTR(-ELOOP); 1713 1714 if (!(nd->flags & LOOKUP_RCU)) { 1715 touch_atime(&last->link); 1716 cond_resched(); 1717 } else if (atime_needs_update(&last->link, inode)) { 1718 if (!try_to_unlazy(nd)) 1719 return ERR_PTR(-ECHILD); 1720 touch_atime(&last->link); 1721 } 1722 1723 error = security_inode_follow_link(link->dentry, inode, 1724 nd->flags & LOOKUP_RCU); 1725 if (unlikely(error)) 1726 return ERR_PTR(error); 1727 1728 res = READ_ONCE(inode->i_link); 1729 if (!res) { 1730 const char * (*get)(struct dentry *, struct inode *, 1731 struct delayed_call *); 1732 get = inode->i_op->get_link; 1733 if (nd->flags & LOOKUP_RCU) { 1734 res = get(NULL, inode, &last->done); 1735 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd)) 1736 res = get(link->dentry, inode, &last->done); 1737 } else { 1738 res = get(link->dentry, inode, &last->done); 1739 } 1740 if (!res) 1741 goto all_done; 1742 if (IS_ERR(res)) 1743 return res; 1744 } 1745 if (*res == '/') { 1746 error = nd_jump_root(nd); 1747 if (unlikely(error)) 1748 return ERR_PTR(error); 1749 while (unlikely(*++res == '/')) 1750 ; 1751 } 1752 if (*res) 1753 return res; 1754 all_done: // pure jump 1755 put_link(nd); 1756 return NULL; 1757 } 1758 1759 /* 1760 * Do we need to follow links? We _really_ want to be able 1761 * to do this check without having to look at inode->i_op, 1762 * so we keep a cache of "no, this doesn't need follow_link" 1763 * for the common case. 1764 */ 1765 static const char *step_into(struct nameidata *nd, int flags, 1766 struct dentry *dentry, struct inode *inode, unsigned seq) 1767 { 1768 struct path path; 1769 int err = handle_mounts(nd, dentry, &path, &inode, &seq); 1770 1771 if (err < 0) 1772 return ERR_PTR(err); 1773 if (likely(!d_is_symlink(path.dentry)) || 1774 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) || 1775 (flags & WALK_NOFOLLOW)) { 1776 /* not a symlink or should not follow */ 1777 if (!(nd->flags & LOOKUP_RCU)) { 1778 dput(nd->path.dentry); 1779 if (nd->path.mnt != path.mnt) 1780 mntput(nd->path.mnt); 1781 } 1782 nd->path = path; 1783 nd->inode = inode; 1784 nd->seq = seq; 1785 return NULL; 1786 } 1787 if (nd->flags & LOOKUP_RCU) { 1788 /* make sure that d_is_symlink above matches inode */ 1789 if (read_seqcount_retry(&path.dentry->d_seq, seq)) 1790 return ERR_PTR(-ECHILD); 1791 } else { 1792 if (path.mnt == nd->path.mnt) 1793 mntget(path.mnt); 1794 } 1795 return pick_link(nd, &path, inode, seq, flags); 1796 } 1797 1798 static struct dentry *follow_dotdot_rcu(struct nameidata *nd, 1799 struct inode **inodep, 1800 unsigned *seqp) 1801 { 1802 struct dentry *parent, *old; 1803 1804 if (path_equal(&nd->path, &nd->root)) 1805 goto in_root; 1806 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1807 struct path path; 1808 unsigned seq; 1809 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt), 1810 &nd->root, &path, &seq)) 1811 goto in_root; 1812 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1813 return ERR_PTR(-ECHILD); 1814 nd->path = path; 1815 nd->inode = path.dentry->d_inode; 1816 nd->seq = seq; 1817 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1818 return ERR_PTR(-ECHILD); 1819 /* we know that mountpoint was pinned */ 1820 } 1821 old = nd->path.dentry; 1822 parent = old->d_parent; 1823 *inodep = parent->d_inode; 1824 *seqp = read_seqcount_begin(&parent->d_seq); 1825 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq))) 1826 return ERR_PTR(-ECHILD); 1827 if (unlikely(!path_connected(nd->path.mnt, parent))) 1828 return ERR_PTR(-ECHILD); 1829 return parent; 1830 in_root: 1831 if (unlikely(read_seqretry(&mount_lock, nd->m_seq))) 1832 return ERR_PTR(-ECHILD); 1833 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1834 return ERR_PTR(-ECHILD); 1835 return NULL; 1836 } 1837 1838 static struct dentry *follow_dotdot(struct nameidata *nd, 1839 struct inode **inodep, 1840 unsigned *seqp) 1841 { 1842 struct dentry *parent; 1843 1844 if (path_equal(&nd->path, &nd->root)) 1845 goto in_root; 1846 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) { 1847 struct path path; 1848 1849 if (!choose_mountpoint(real_mount(nd->path.mnt), 1850 &nd->root, &path)) 1851 goto in_root; 1852 path_put(&nd->path); 1853 nd->path = path; 1854 nd->inode = path.dentry->d_inode; 1855 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) 1856 return ERR_PTR(-EXDEV); 1857 } 1858 /* rare case of legitimate dget_parent()... */ 1859 parent = dget_parent(nd->path.dentry); 1860 if (unlikely(!path_connected(nd->path.mnt, parent))) { 1861 dput(parent); 1862 return ERR_PTR(-ENOENT); 1863 } 1864 *seqp = 0; 1865 *inodep = parent->d_inode; 1866 return parent; 1867 1868 in_root: 1869 if (unlikely(nd->flags & LOOKUP_BENEATH)) 1870 return ERR_PTR(-EXDEV); 1871 dget(nd->path.dentry); 1872 return NULL; 1873 } 1874 1875 static const char *handle_dots(struct nameidata *nd, int type) 1876 { 1877 if (type == LAST_DOTDOT) { 1878 const char *error = NULL; 1879 struct dentry *parent; 1880 struct inode *inode; 1881 unsigned seq; 1882 1883 if (!nd->root.mnt) { 1884 error = ERR_PTR(set_root(nd)); 1885 if (error) 1886 return error; 1887 } 1888 if (nd->flags & LOOKUP_RCU) 1889 parent = follow_dotdot_rcu(nd, &inode, &seq); 1890 else 1891 parent = follow_dotdot(nd, &inode, &seq); 1892 if (IS_ERR(parent)) 1893 return ERR_CAST(parent); 1894 if (unlikely(!parent)) 1895 error = step_into(nd, WALK_NOFOLLOW, 1896 nd->path.dentry, nd->inode, nd->seq); 1897 else 1898 error = step_into(nd, WALK_NOFOLLOW, 1899 parent, inode, seq); 1900 if (unlikely(error)) 1901 return error; 1902 1903 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) { 1904 /* 1905 * If there was a racing rename or mount along our 1906 * path, then we can't be sure that ".." hasn't jumped 1907 * above nd->root (and so userspace should retry or use 1908 * some fallback). 1909 */ 1910 smp_rmb(); 1911 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))) 1912 return ERR_PTR(-EAGAIN); 1913 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))) 1914 return ERR_PTR(-EAGAIN); 1915 } 1916 } 1917 return NULL; 1918 } 1919 1920 static const char *walk_component(struct nameidata *nd, int flags) 1921 { 1922 struct dentry *dentry; 1923 struct inode *inode; 1924 unsigned seq; 1925 /* 1926 * "." and ".." are special - ".." especially so because it has 1927 * to be able to know about the current root directory and 1928 * parent relationships. 1929 */ 1930 if (unlikely(nd->last_type != LAST_NORM)) { 1931 if (!(flags & WALK_MORE) && nd->depth) 1932 put_link(nd); 1933 return handle_dots(nd, nd->last_type); 1934 } 1935 dentry = lookup_fast(nd, &inode, &seq); 1936 if (IS_ERR(dentry)) 1937 return ERR_CAST(dentry); 1938 if (unlikely(!dentry)) { 1939 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags); 1940 if (IS_ERR(dentry)) 1941 return ERR_CAST(dentry); 1942 } 1943 if (!(flags & WALK_MORE) && nd->depth) 1944 put_link(nd); 1945 return step_into(nd, flags, dentry, inode, seq); 1946 } 1947 1948 /* 1949 * We can do the critical dentry name comparison and hashing 1950 * operations one word at a time, but we are limited to: 1951 * 1952 * - Architectures with fast unaligned word accesses. We could 1953 * do a "get_unaligned()" if this helps and is sufficiently 1954 * fast. 1955 * 1956 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1957 * do not trap on the (extremely unlikely) case of a page 1958 * crossing operation. 1959 * 1960 * - Furthermore, we need an efficient 64-bit compile for the 1961 * 64-bit case in order to generate the "number of bytes in 1962 * the final mask". Again, that could be replaced with a 1963 * efficient population count instruction or similar. 1964 */ 1965 #ifdef CONFIG_DCACHE_WORD_ACCESS 1966 1967 #include <asm/word-at-a-time.h> 1968 1969 #ifdef HASH_MIX 1970 1971 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */ 1972 1973 #elif defined(CONFIG_64BIT) 1974 /* 1975 * Register pressure in the mixing function is an issue, particularly 1976 * on 32-bit x86, but almost any function requires one state value and 1977 * one temporary. Instead, use a function designed for two state values 1978 * and no temporaries. 1979 * 1980 * This function cannot create a collision in only two iterations, so 1981 * we have two iterations to achieve avalanche. In those two iterations, 1982 * we have six layers of mixing, which is enough to spread one bit's 1983 * influence out to 2^6 = 64 state bits. 1984 * 1985 * Rotate constants are scored by considering either 64 one-bit input 1986 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the 1987 * probability of that delta causing a change to each of the 128 output 1988 * bits, using a sample of random initial states. 1989 * 1990 * The Shannon entropy of the computed probabilities is then summed 1991 * to produce a score. Ideally, any input change has a 50% chance of 1992 * toggling any given output bit. 1993 * 1994 * Mixing scores (in bits) for (12,45): 1995 * Input delta: 1-bit 2-bit 1996 * 1 round: 713.3 42542.6 1997 * 2 rounds: 2753.7 140389.8 1998 * 3 rounds: 5954.1 233458.2 1999 * 4 rounds: 7862.6 256672.2 2000 * Perfect: 8192 258048 2001 * (64*128) (64*63/2 * 128) 2002 */ 2003 #define HASH_MIX(x, y, a) \ 2004 ( x ^= (a), \ 2005 y ^= x, x = rol64(x,12),\ 2006 x += y, y = rol64(y,45),\ 2007 y *= 9 ) 2008 2009 /* 2010 * Fold two longs into one 32-bit hash value. This must be fast, but 2011 * latency isn't quite as critical, as there is a fair bit of additional 2012 * work done before the hash value is used. 2013 */ 2014 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2015 { 2016 y ^= x * GOLDEN_RATIO_64; 2017 y *= GOLDEN_RATIO_64; 2018 return y >> 32; 2019 } 2020 2021 #else /* 32-bit case */ 2022 2023 /* 2024 * Mixing scores (in bits) for (7,20): 2025 * Input delta: 1-bit 2-bit 2026 * 1 round: 330.3 9201.6 2027 * 2 rounds: 1246.4 25475.4 2028 * 3 rounds: 1907.1 31295.1 2029 * 4 rounds: 2042.3 31718.6 2030 * Perfect: 2048 31744 2031 * (32*64) (32*31/2 * 64) 2032 */ 2033 #define HASH_MIX(x, y, a) \ 2034 ( x ^= (a), \ 2035 y ^= x, x = rol32(x, 7),\ 2036 x += y, y = rol32(y,20),\ 2037 y *= 9 ) 2038 2039 static inline unsigned int fold_hash(unsigned long x, unsigned long y) 2040 { 2041 /* Use arch-optimized multiply if one exists */ 2042 return __hash_32(y ^ __hash_32(x)); 2043 } 2044 2045 #endif 2046 2047 /* 2048 * Return the hash of a string of known length. This is carfully 2049 * designed to match hash_name(), which is the more critical function. 2050 * In particular, we must end by hashing a final word containing 0..7 2051 * payload bytes, to match the way that hash_name() iterates until it 2052 * finds the delimiter after the name. 2053 */ 2054 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2055 { 2056 unsigned long a, x = 0, y = (unsigned long)salt; 2057 2058 for (;;) { 2059 if (!len) 2060 goto done; 2061 a = load_unaligned_zeropad(name); 2062 if (len < sizeof(unsigned long)) 2063 break; 2064 HASH_MIX(x, y, a); 2065 name += sizeof(unsigned long); 2066 len -= sizeof(unsigned long); 2067 } 2068 x ^= a & bytemask_from_count(len); 2069 done: 2070 return fold_hash(x, y); 2071 } 2072 EXPORT_SYMBOL(full_name_hash); 2073 2074 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2075 u64 hashlen_string(const void *salt, const char *name) 2076 { 2077 unsigned long a = 0, x = 0, y = (unsigned long)salt; 2078 unsigned long adata, mask, len; 2079 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2080 2081 len = 0; 2082 goto inside; 2083 2084 do { 2085 HASH_MIX(x, y, a); 2086 len += sizeof(unsigned long); 2087 inside: 2088 a = load_unaligned_zeropad(name+len); 2089 } while (!has_zero(a, &adata, &constants)); 2090 2091 adata = prep_zero_mask(a, adata, &constants); 2092 mask = create_zero_mask(adata); 2093 x ^= a & zero_bytemask(mask); 2094 2095 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2096 } 2097 EXPORT_SYMBOL(hashlen_string); 2098 2099 /* 2100 * Calculate the length and hash of the path component, and 2101 * return the "hash_len" as the result. 2102 */ 2103 static inline u64 hash_name(const void *salt, const char *name) 2104 { 2105 unsigned long a = 0, b, x = 0, y = (unsigned long)salt; 2106 unsigned long adata, bdata, mask, len; 2107 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 2108 2109 len = 0; 2110 goto inside; 2111 2112 do { 2113 HASH_MIX(x, y, a); 2114 len += sizeof(unsigned long); 2115 inside: 2116 a = load_unaligned_zeropad(name+len); 2117 b = a ^ REPEAT_BYTE('/'); 2118 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 2119 2120 adata = prep_zero_mask(a, adata, &constants); 2121 bdata = prep_zero_mask(b, bdata, &constants); 2122 mask = create_zero_mask(adata | bdata); 2123 x ^= a & zero_bytemask(mask); 2124 2125 return hashlen_create(fold_hash(x, y), len + find_zero(mask)); 2126 } 2127 2128 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */ 2129 2130 /* Return the hash of a string of known length */ 2131 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len) 2132 { 2133 unsigned long hash = init_name_hash(salt); 2134 while (len--) 2135 hash = partial_name_hash((unsigned char)*name++, hash); 2136 return end_name_hash(hash); 2137 } 2138 EXPORT_SYMBOL(full_name_hash); 2139 2140 /* Return the "hash_len" (hash and length) of a null-terminated string */ 2141 u64 hashlen_string(const void *salt, const char *name) 2142 { 2143 unsigned long hash = init_name_hash(salt); 2144 unsigned long len = 0, c; 2145 2146 c = (unsigned char)*name; 2147 while (c) { 2148 len++; 2149 hash = partial_name_hash(c, hash); 2150 c = (unsigned char)name[len]; 2151 } 2152 return hashlen_create(end_name_hash(hash), len); 2153 } 2154 EXPORT_SYMBOL(hashlen_string); 2155 2156 /* 2157 * We know there's a real path component here of at least 2158 * one character. 2159 */ 2160 static inline u64 hash_name(const void *salt, const char *name) 2161 { 2162 unsigned long hash = init_name_hash(salt); 2163 unsigned long len = 0, c; 2164 2165 c = (unsigned char)*name; 2166 do { 2167 len++; 2168 hash = partial_name_hash(c, hash); 2169 c = (unsigned char)name[len]; 2170 } while (c && c != '/'); 2171 return hashlen_create(end_name_hash(hash), len); 2172 } 2173 2174 #endif 2175 2176 /* 2177 * Name resolution. 2178 * This is the basic name resolution function, turning a pathname into 2179 * the final dentry. We expect 'base' to be positive and a directory. 2180 * 2181 * Returns 0 and nd will have valid dentry and mnt on success. 2182 * Returns error and drops reference to input namei data on failure. 2183 */ 2184 static int link_path_walk(const char *name, struct nameidata *nd) 2185 { 2186 int depth = 0; // depth <= nd->depth 2187 int err; 2188 2189 nd->last_type = LAST_ROOT; 2190 nd->flags |= LOOKUP_PARENT; 2191 if (IS_ERR(name)) 2192 return PTR_ERR(name); 2193 while (*name=='/') 2194 name++; 2195 if (!*name) { 2196 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy 2197 return 0; 2198 } 2199 2200 /* At this point we know we have a real path component. */ 2201 for(;;) { 2202 struct user_namespace *mnt_userns; 2203 const char *link; 2204 u64 hash_len; 2205 int type; 2206 2207 mnt_userns = mnt_user_ns(nd->path.mnt); 2208 err = may_lookup(mnt_userns, nd); 2209 if (err) 2210 return err; 2211 2212 hash_len = hash_name(nd->path.dentry, name); 2213 2214 type = LAST_NORM; 2215 if (name[0] == '.') switch (hashlen_len(hash_len)) { 2216 case 2: 2217 if (name[1] == '.') { 2218 type = LAST_DOTDOT; 2219 nd->flags |= LOOKUP_JUMPED; 2220 } 2221 break; 2222 case 1: 2223 type = LAST_DOT; 2224 } 2225 if (likely(type == LAST_NORM)) { 2226 struct dentry *parent = nd->path.dentry; 2227 nd->flags &= ~LOOKUP_JUMPED; 2228 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 2229 struct qstr this = { { .hash_len = hash_len }, .name = name }; 2230 err = parent->d_op->d_hash(parent, &this); 2231 if (err < 0) 2232 return err; 2233 hash_len = this.hash_len; 2234 name = this.name; 2235 } 2236 } 2237 2238 nd->last.hash_len = hash_len; 2239 nd->last.name = name; 2240 nd->last_type = type; 2241 2242 name += hashlen_len(hash_len); 2243 if (!*name) 2244 goto OK; 2245 /* 2246 * If it wasn't NUL, we know it was '/'. Skip that 2247 * slash, and continue until no more slashes. 2248 */ 2249 do { 2250 name++; 2251 } while (unlikely(*name == '/')); 2252 if (unlikely(!*name)) { 2253 OK: 2254 /* pathname or trailing symlink, done */ 2255 if (!depth) { 2256 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode); 2257 nd->dir_mode = nd->inode->i_mode; 2258 nd->flags &= ~LOOKUP_PARENT; 2259 return 0; 2260 } 2261 /* last component of nested symlink */ 2262 name = nd->stack[--depth].name; 2263 link = walk_component(nd, 0); 2264 } else { 2265 /* not the last component */ 2266 link = walk_component(nd, WALK_MORE); 2267 } 2268 if (unlikely(link)) { 2269 if (IS_ERR(link)) 2270 return PTR_ERR(link); 2271 /* a symlink to follow */ 2272 nd->stack[depth++].name = name; 2273 name = link; 2274 continue; 2275 } 2276 if (unlikely(!d_can_lookup(nd->path.dentry))) { 2277 if (nd->flags & LOOKUP_RCU) { 2278 if (!try_to_unlazy(nd)) 2279 return -ECHILD; 2280 } 2281 return -ENOTDIR; 2282 } 2283 } 2284 } 2285 2286 /* must be paired with terminate_walk() */ 2287 static const char *path_init(struct nameidata *nd, unsigned flags) 2288 { 2289 int error; 2290 const char *s = nd->name->name; 2291 2292 /* LOOKUP_CACHED requires RCU, ask caller to retry */ 2293 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED) 2294 return ERR_PTR(-EAGAIN); 2295 2296 if (!*s) 2297 flags &= ~LOOKUP_RCU; 2298 if (flags & LOOKUP_RCU) 2299 rcu_read_lock(); 2300 2301 nd->flags = flags | LOOKUP_JUMPED; 2302 nd->depth = 0; 2303 2304 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount); 2305 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount); 2306 smp_rmb(); 2307 2308 if (flags & LOOKUP_ROOT) { 2309 struct dentry *root = nd->root.dentry; 2310 struct inode *inode = root->d_inode; 2311 if (*s && unlikely(!d_can_lookup(root))) 2312 return ERR_PTR(-ENOTDIR); 2313 nd->path = nd->root; 2314 nd->inode = inode; 2315 if (flags & LOOKUP_RCU) { 2316 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2317 nd->root_seq = nd->seq; 2318 } else { 2319 path_get(&nd->path); 2320 } 2321 return s; 2322 } 2323 2324 nd->root.mnt = NULL; 2325 nd->path.mnt = NULL; 2326 nd->path.dentry = NULL; 2327 2328 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */ 2329 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) { 2330 error = nd_jump_root(nd); 2331 if (unlikely(error)) 2332 return ERR_PTR(error); 2333 return s; 2334 } 2335 2336 /* Relative pathname -- get the starting-point it is relative to. */ 2337 if (nd->dfd == AT_FDCWD) { 2338 if (flags & LOOKUP_RCU) { 2339 struct fs_struct *fs = current->fs; 2340 unsigned seq; 2341 2342 do { 2343 seq = read_seqcount_begin(&fs->seq); 2344 nd->path = fs->pwd; 2345 nd->inode = nd->path.dentry->d_inode; 2346 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 2347 } while (read_seqcount_retry(&fs->seq, seq)); 2348 } else { 2349 get_fs_pwd(current->fs, &nd->path); 2350 nd->inode = nd->path.dentry->d_inode; 2351 } 2352 } else { 2353 /* Caller must check execute permissions on the starting path component */ 2354 struct fd f = fdget_raw(nd->dfd); 2355 struct dentry *dentry; 2356 2357 if (!f.file) 2358 return ERR_PTR(-EBADF); 2359 2360 dentry = f.file->f_path.dentry; 2361 2362 if (*s && unlikely(!d_can_lookup(dentry))) { 2363 fdput(f); 2364 return ERR_PTR(-ENOTDIR); 2365 } 2366 2367 nd->path = f.file->f_path; 2368 if (flags & LOOKUP_RCU) { 2369 nd->inode = nd->path.dentry->d_inode; 2370 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 2371 } else { 2372 path_get(&nd->path); 2373 nd->inode = nd->path.dentry->d_inode; 2374 } 2375 fdput(f); 2376 } 2377 2378 /* For scoped-lookups we need to set the root to the dirfd as well. */ 2379 if (flags & LOOKUP_IS_SCOPED) { 2380 nd->root = nd->path; 2381 if (flags & LOOKUP_RCU) { 2382 nd->root_seq = nd->seq; 2383 } else { 2384 path_get(&nd->root); 2385 nd->flags |= LOOKUP_ROOT_GRABBED; 2386 } 2387 } 2388 return s; 2389 } 2390 2391 static inline const char *lookup_last(struct nameidata *nd) 2392 { 2393 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2394 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2395 2396 return walk_component(nd, WALK_TRAILING); 2397 } 2398 2399 static int handle_lookup_down(struct nameidata *nd) 2400 { 2401 if (!(nd->flags & LOOKUP_RCU)) 2402 dget(nd->path.dentry); 2403 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, 2404 nd->path.dentry, nd->inode, nd->seq)); 2405 } 2406 2407 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2408 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path) 2409 { 2410 const char *s = path_init(nd, flags); 2411 int err; 2412 2413 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) { 2414 err = handle_lookup_down(nd); 2415 if (unlikely(err < 0)) 2416 s = ERR_PTR(err); 2417 } 2418 2419 while (!(err = link_path_walk(s, nd)) && 2420 (s = lookup_last(nd)) != NULL) 2421 ; 2422 if (!err) 2423 err = complete_walk(nd); 2424 2425 if (!err && nd->flags & LOOKUP_DIRECTORY) 2426 if (!d_can_lookup(nd->path.dentry)) 2427 err = -ENOTDIR; 2428 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) { 2429 err = handle_lookup_down(nd); 2430 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please... 2431 } 2432 if (!err) { 2433 *path = nd->path; 2434 nd->path.mnt = NULL; 2435 nd->path.dentry = NULL; 2436 } 2437 terminate_walk(nd); 2438 return err; 2439 } 2440 2441 int filename_lookup(int dfd, struct filename *name, unsigned flags, 2442 struct path *path, struct path *root) 2443 { 2444 int retval; 2445 struct nameidata nd; 2446 if (IS_ERR(name)) 2447 return PTR_ERR(name); 2448 if (unlikely(root)) { 2449 nd.root = *root; 2450 flags |= LOOKUP_ROOT; 2451 } 2452 set_nameidata(&nd, dfd, name); 2453 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path); 2454 if (unlikely(retval == -ECHILD)) 2455 retval = path_lookupat(&nd, flags, path); 2456 if (unlikely(retval == -ESTALE)) 2457 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path); 2458 2459 if (likely(!retval)) 2460 audit_inode(name, path->dentry, 2461 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0); 2462 restore_nameidata(); 2463 putname(name); 2464 return retval; 2465 } 2466 2467 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2468 static int path_parentat(struct nameidata *nd, unsigned flags, 2469 struct path *parent) 2470 { 2471 const char *s = path_init(nd, flags); 2472 int err = link_path_walk(s, nd); 2473 if (!err) 2474 err = complete_walk(nd); 2475 if (!err) { 2476 *parent = nd->path; 2477 nd->path.mnt = NULL; 2478 nd->path.dentry = NULL; 2479 } 2480 terminate_walk(nd); 2481 return err; 2482 } 2483 2484 static struct filename *filename_parentat(int dfd, struct filename *name, 2485 unsigned int flags, struct path *parent, 2486 struct qstr *last, int *type) 2487 { 2488 int retval; 2489 struct nameidata nd; 2490 2491 if (IS_ERR(name)) 2492 return name; 2493 set_nameidata(&nd, dfd, name); 2494 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent); 2495 if (unlikely(retval == -ECHILD)) 2496 retval = path_parentat(&nd, flags, parent); 2497 if (unlikely(retval == -ESTALE)) 2498 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent); 2499 if (likely(!retval)) { 2500 *last = nd.last; 2501 *type = nd.last_type; 2502 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT); 2503 } else { 2504 putname(name); 2505 name = ERR_PTR(retval); 2506 } 2507 restore_nameidata(); 2508 return name; 2509 } 2510 2511 /* does lookup, returns the object with parent locked */ 2512 struct dentry *kern_path_locked(const char *name, struct path *path) 2513 { 2514 struct filename *filename; 2515 struct dentry *d; 2516 struct qstr last; 2517 int type; 2518 2519 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path, 2520 &last, &type); 2521 if (IS_ERR(filename)) 2522 return ERR_CAST(filename); 2523 if (unlikely(type != LAST_NORM)) { 2524 path_put(path); 2525 putname(filename); 2526 return ERR_PTR(-EINVAL); 2527 } 2528 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 2529 d = __lookup_hash(&last, path->dentry, 0); 2530 if (IS_ERR(d)) { 2531 inode_unlock(path->dentry->d_inode); 2532 path_put(path); 2533 } 2534 putname(filename); 2535 return d; 2536 } 2537 2538 int kern_path(const char *name, unsigned int flags, struct path *path) 2539 { 2540 return filename_lookup(AT_FDCWD, getname_kernel(name), 2541 flags, path, NULL); 2542 } 2543 EXPORT_SYMBOL(kern_path); 2544 2545 /** 2546 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2547 * @dentry: pointer to dentry of the base directory 2548 * @mnt: pointer to vfs mount of the base directory 2549 * @name: pointer to file name 2550 * @flags: lookup flags 2551 * @path: pointer to struct path to fill 2552 */ 2553 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2554 const char *name, unsigned int flags, 2555 struct path *path) 2556 { 2557 struct path root = {.mnt = mnt, .dentry = dentry}; 2558 /* the first argument of filename_lookup() is ignored with root */ 2559 return filename_lookup(AT_FDCWD, getname_kernel(name), 2560 flags , path, &root); 2561 } 2562 EXPORT_SYMBOL(vfs_path_lookup); 2563 2564 static int lookup_one_len_common(const char *name, struct dentry *base, 2565 int len, struct qstr *this) 2566 { 2567 this->name = name; 2568 this->len = len; 2569 this->hash = full_name_hash(base, name, len); 2570 if (!len) 2571 return -EACCES; 2572 2573 if (unlikely(name[0] == '.')) { 2574 if (len < 2 || (len == 2 && name[1] == '.')) 2575 return -EACCES; 2576 } 2577 2578 while (len--) { 2579 unsigned int c = *(const unsigned char *)name++; 2580 if (c == '/' || c == '\0') 2581 return -EACCES; 2582 } 2583 /* 2584 * See if the low-level filesystem might want 2585 * to use its own hash.. 2586 */ 2587 if (base->d_flags & DCACHE_OP_HASH) { 2588 int err = base->d_op->d_hash(base, this); 2589 if (err < 0) 2590 return err; 2591 } 2592 2593 return inode_permission(&init_user_ns, base->d_inode, MAY_EXEC); 2594 } 2595 2596 /** 2597 * try_lookup_one_len - filesystem helper to lookup single pathname component 2598 * @name: pathname component to lookup 2599 * @base: base directory to lookup from 2600 * @len: maximum length @len should be interpreted to 2601 * 2602 * Look up a dentry by name in the dcache, returning NULL if it does not 2603 * currently exist. The function does not try to create a dentry. 2604 * 2605 * Note that this routine is purely a helper for filesystem usage and should 2606 * not be called by generic code. 2607 * 2608 * The caller must hold base->i_mutex. 2609 */ 2610 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len) 2611 { 2612 struct qstr this; 2613 int err; 2614 2615 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2616 2617 err = lookup_one_len_common(name, base, len, &this); 2618 if (err) 2619 return ERR_PTR(err); 2620 2621 return lookup_dcache(&this, base, 0); 2622 } 2623 EXPORT_SYMBOL(try_lookup_one_len); 2624 2625 /** 2626 * lookup_one_len - filesystem helper to lookup single pathname component 2627 * @name: pathname component to lookup 2628 * @base: base directory to lookup from 2629 * @len: maximum length @len should be interpreted to 2630 * 2631 * Note that this routine is purely a helper for filesystem usage and should 2632 * not be called by generic code. 2633 * 2634 * The caller must hold base->i_mutex. 2635 */ 2636 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2637 { 2638 struct dentry *dentry; 2639 struct qstr this; 2640 int err; 2641 2642 WARN_ON_ONCE(!inode_is_locked(base->d_inode)); 2643 2644 err = lookup_one_len_common(name, base, len, &this); 2645 if (err) 2646 return ERR_PTR(err); 2647 2648 dentry = lookup_dcache(&this, base, 0); 2649 return dentry ? dentry : __lookup_slow(&this, base, 0); 2650 } 2651 EXPORT_SYMBOL(lookup_one_len); 2652 2653 /** 2654 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component 2655 * @name: pathname component to lookup 2656 * @base: base directory to lookup from 2657 * @len: maximum length @len should be interpreted to 2658 * 2659 * Note that this routine is purely a helper for filesystem usage and should 2660 * not be called by generic code. 2661 * 2662 * Unlike lookup_one_len, it should be called without the parent 2663 * i_mutex held, and will take the i_mutex itself if necessary. 2664 */ 2665 struct dentry *lookup_one_len_unlocked(const char *name, 2666 struct dentry *base, int len) 2667 { 2668 struct qstr this; 2669 int err; 2670 struct dentry *ret; 2671 2672 err = lookup_one_len_common(name, base, len, &this); 2673 if (err) 2674 return ERR_PTR(err); 2675 2676 ret = lookup_dcache(&this, base, 0); 2677 if (!ret) 2678 ret = lookup_slow(&this, base, 0); 2679 return ret; 2680 } 2681 EXPORT_SYMBOL(lookup_one_len_unlocked); 2682 2683 /* 2684 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT) 2685 * on negatives. Returns known positive or ERR_PTR(); that's what 2686 * most of the users want. Note that pinned negative with unlocked parent 2687 * _can_ become positive at any time, so callers of lookup_one_len_unlocked() 2688 * need to be very careful; pinned positives have ->d_inode stable, so 2689 * this one avoids such problems. 2690 */ 2691 struct dentry *lookup_positive_unlocked(const char *name, 2692 struct dentry *base, int len) 2693 { 2694 struct dentry *ret = lookup_one_len_unlocked(name, base, len); 2695 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) { 2696 dput(ret); 2697 ret = ERR_PTR(-ENOENT); 2698 } 2699 return ret; 2700 } 2701 EXPORT_SYMBOL(lookup_positive_unlocked); 2702 2703 #ifdef CONFIG_UNIX98_PTYS 2704 int path_pts(struct path *path) 2705 { 2706 /* Find something mounted on "pts" in the same directory as 2707 * the input path. 2708 */ 2709 struct dentry *parent = dget_parent(path->dentry); 2710 struct dentry *child; 2711 struct qstr this = QSTR_INIT("pts", 3); 2712 2713 if (unlikely(!path_connected(path->mnt, parent))) { 2714 dput(parent); 2715 return -ENOENT; 2716 } 2717 dput(path->dentry); 2718 path->dentry = parent; 2719 child = d_hash_and_lookup(parent, &this); 2720 if (!child) 2721 return -ENOENT; 2722 2723 path->dentry = child; 2724 dput(parent); 2725 follow_down(path); 2726 return 0; 2727 } 2728 #endif 2729 2730 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2731 struct path *path, int *empty) 2732 { 2733 return filename_lookup(dfd, getname_flags(name, flags, empty), 2734 flags, path, NULL); 2735 } 2736 EXPORT_SYMBOL(user_path_at_empty); 2737 2738 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, 2739 struct inode *inode) 2740 { 2741 kuid_t fsuid = current_fsuid(); 2742 2743 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid)) 2744 return 0; 2745 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid)) 2746 return 0; 2747 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER); 2748 } 2749 EXPORT_SYMBOL(__check_sticky); 2750 2751 /* 2752 * Check whether we can remove a link victim from directory dir, check 2753 * whether the type of victim is right. 2754 * 1. We can't do it if dir is read-only (done in permission()) 2755 * 2. We should have write and exec permissions on dir 2756 * 3. We can't remove anything from append-only dir 2757 * 4. We can't do anything with immutable dir (done in permission()) 2758 * 5. If the sticky bit on dir is set we should either 2759 * a. be owner of dir, or 2760 * b. be owner of victim, or 2761 * c. have CAP_FOWNER capability 2762 * 6. If the victim is append-only or immutable we can't do antyhing with 2763 * links pointing to it. 2764 * 7. If the victim has an unknown uid or gid we can't change the inode. 2765 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2766 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2767 * 10. We can't remove a root or mountpoint. 2768 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by 2769 * nfs_async_unlink(). 2770 */ 2771 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir, 2772 struct dentry *victim, bool isdir) 2773 { 2774 struct inode *inode = d_backing_inode(victim); 2775 int error; 2776 2777 if (d_is_negative(victim)) 2778 return -ENOENT; 2779 BUG_ON(!inode); 2780 2781 BUG_ON(victim->d_parent->d_inode != dir); 2782 2783 /* Inode writeback is not safe when the uid or gid are invalid. */ 2784 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) || 2785 !gid_valid(i_gid_into_mnt(mnt_userns, inode))) 2786 return -EOVERFLOW; 2787 2788 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2789 2790 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2791 if (error) 2792 return error; 2793 if (IS_APPEND(dir)) 2794 return -EPERM; 2795 2796 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) || 2797 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || 2798 HAS_UNMAPPED_ID(mnt_userns, inode)) 2799 return -EPERM; 2800 if (isdir) { 2801 if (!d_is_dir(victim)) 2802 return -ENOTDIR; 2803 if (IS_ROOT(victim)) 2804 return -EBUSY; 2805 } else if (d_is_dir(victim)) 2806 return -EISDIR; 2807 if (IS_DEADDIR(dir)) 2808 return -ENOENT; 2809 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2810 return -EBUSY; 2811 return 0; 2812 } 2813 2814 /* Check whether we can create an object with dentry child in directory 2815 * dir. 2816 * 1. We can't do it if child already exists (open has special treatment for 2817 * this case, but since we are inlined it's OK) 2818 * 2. We can't do it if dir is read-only (done in permission()) 2819 * 3. We can't do it if the fs can't represent the fsuid or fsgid. 2820 * 4. We should have write and exec permissions on dir 2821 * 5. We can't do it if dir is immutable (done in permission()) 2822 */ 2823 static inline int may_create(struct user_namespace *mnt_userns, 2824 struct inode *dir, struct dentry *child) 2825 { 2826 struct user_namespace *s_user_ns; 2827 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2828 if (child->d_inode) 2829 return -EEXIST; 2830 if (IS_DEADDIR(dir)) 2831 return -ENOENT; 2832 s_user_ns = dir->i_sb->s_user_ns; 2833 if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) || 2834 !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns))) 2835 return -EOVERFLOW; 2836 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 2837 } 2838 2839 /* 2840 * p1 and p2 should be directories on the same fs. 2841 */ 2842 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2843 { 2844 struct dentry *p; 2845 2846 if (p1 == p2) { 2847 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2848 return NULL; 2849 } 2850 2851 mutex_lock(&p1->d_sb->s_vfs_rename_mutex); 2852 2853 p = d_ancestor(p2, p1); 2854 if (p) { 2855 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT); 2856 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD); 2857 return p; 2858 } 2859 2860 p = d_ancestor(p1, p2); 2861 if (p) { 2862 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2863 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD); 2864 return p; 2865 } 2866 2867 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT); 2868 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2); 2869 return NULL; 2870 } 2871 EXPORT_SYMBOL(lock_rename); 2872 2873 void unlock_rename(struct dentry *p1, struct dentry *p2) 2874 { 2875 inode_unlock(p1->d_inode); 2876 if (p1 != p2) { 2877 inode_unlock(p2->d_inode); 2878 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex); 2879 } 2880 } 2881 EXPORT_SYMBOL(unlock_rename); 2882 2883 /** 2884 * vfs_create - create new file 2885 * @mnt_userns: user namespace of the mount the inode was found from 2886 * @dir: inode of @dentry 2887 * @dentry: pointer to dentry of the base directory 2888 * @mode: mode of the new file 2889 * @want_excl: whether the file must not yet exist 2890 * 2891 * Create a new file. 2892 * 2893 * If the inode has been found through an idmapped mount the user namespace of 2894 * the vfsmount must be passed through @mnt_userns. This function will then take 2895 * care to map the inode according to @mnt_userns before checking permissions. 2896 * On non-idmapped mounts or if permission checking is to be performed on the 2897 * raw inode simply passs init_user_ns. 2898 */ 2899 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2900 struct dentry *dentry, umode_t mode, bool want_excl) 2901 { 2902 int error = may_create(mnt_userns, dir, dentry); 2903 if (error) 2904 return error; 2905 2906 if (!dir->i_op->create) 2907 return -EACCES; /* shouldn't it be ENOSYS? */ 2908 mode &= S_IALLUGO; 2909 mode |= S_IFREG; 2910 error = security_inode_create(dir, dentry, mode); 2911 if (error) 2912 return error; 2913 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl); 2914 if (!error) 2915 fsnotify_create(dir, dentry); 2916 return error; 2917 } 2918 EXPORT_SYMBOL(vfs_create); 2919 2920 int vfs_mkobj(struct dentry *dentry, umode_t mode, 2921 int (*f)(struct dentry *, umode_t, void *), 2922 void *arg) 2923 { 2924 struct inode *dir = dentry->d_parent->d_inode; 2925 int error = may_create(&init_user_ns, dir, dentry); 2926 if (error) 2927 return error; 2928 2929 mode &= S_IALLUGO; 2930 mode |= S_IFREG; 2931 error = security_inode_create(dir, dentry, mode); 2932 if (error) 2933 return error; 2934 error = f(dentry, mode, arg); 2935 if (!error) 2936 fsnotify_create(dir, dentry); 2937 return error; 2938 } 2939 EXPORT_SYMBOL(vfs_mkobj); 2940 2941 bool may_open_dev(const struct path *path) 2942 { 2943 return !(path->mnt->mnt_flags & MNT_NODEV) && 2944 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV); 2945 } 2946 2947 static int may_open(struct user_namespace *mnt_userns, const struct path *path, 2948 int acc_mode, int flag) 2949 { 2950 struct dentry *dentry = path->dentry; 2951 struct inode *inode = dentry->d_inode; 2952 int error; 2953 2954 if (!inode) 2955 return -ENOENT; 2956 2957 switch (inode->i_mode & S_IFMT) { 2958 case S_IFLNK: 2959 return -ELOOP; 2960 case S_IFDIR: 2961 if (acc_mode & MAY_WRITE) 2962 return -EISDIR; 2963 if (acc_mode & MAY_EXEC) 2964 return -EACCES; 2965 break; 2966 case S_IFBLK: 2967 case S_IFCHR: 2968 if (!may_open_dev(path)) 2969 return -EACCES; 2970 fallthrough; 2971 case S_IFIFO: 2972 case S_IFSOCK: 2973 if (acc_mode & MAY_EXEC) 2974 return -EACCES; 2975 flag &= ~O_TRUNC; 2976 break; 2977 case S_IFREG: 2978 if ((acc_mode & MAY_EXEC) && path_noexec(path)) 2979 return -EACCES; 2980 break; 2981 } 2982 2983 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode); 2984 if (error) 2985 return error; 2986 2987 /* 2988 * An append-only file must be opened in append mode for writing. 2989 */ 2990 if (IS_APPEND(inode)) { 2991 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2992 return -EPERM; 2993 if (flag & O_TRUNC) 2994 return -EPERM; 2995 } 2996 2997 /* O_NOATIME can only be set by the owner or superuser */ 2998 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode)) 2999 return -EPERM; 3000 3001 return 0; 3002 } 3003 3004 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp) 3005 { 3006 const struct path *path = &filp->f_path; 3007 struct inode *inode = path->dentry->d_inode; 3008 int error = get_write_access(inode); 3009 if (error) 3010 return error; 3011 /* 3012 * Refuse to truncate files with mandatory locks held on them. 3013 */ 3014 error = locks_verify_locked(filp); 3015 if (!error) 3016 error = security_path_truncate(path); 3017 if (!error) { 3018 error = do_truncate(mnt_userns, path->dentry, 0, 3019 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 3020 filp); 3021 } 3022 put_write_access(inode); 3023 return error; 3024 } 3025 3026 static inline int open_to_namei_flags(int flag) 3027 { 3028 if ((flag & O_ACCMODE) == 3) 3029 flag--; 3030 return flag; 3031 } 3032 3033 static int may_o_create(struct user_namespace *mnt_userns, 3034 const struct path *dir, struct dentry *dentry, 3035 umode_t mode) 3036 { 3037 struct user_namespace *s_user_ns; 3038 int error = security_path_mknod(dir, dentry, mode, 0); 3039 if (error) 3040 return error; 3041 3042 s_user_ns = dir->dentry->d_sb->s_user_ns; 3043 if (!kuid_has_mapping(s_user_ns, fsuid_into_mnt(mnt_userns)) || 3044 !kgid_has_mapping(s_user_ns, fsgid_into_mnt(mnt_userns))) 3045 return -EOVERFLOW; 3046 3047 error = inode_permission(mnt_userns, dir->dentry->d_inode, 3048 MAY_WRITE | MAY_EXEC); 3049 if (error) 3050 return error; 3051 3052 return security_inode_create(dir->dentry->d_inode, dentry, mode); 3053 } 3054 3055 /* 3056 * Attempt to atomically look up, create and open a file from a negative 3057 * dentry. 3058 * 3059 * Returns 0 if successful. The file will have been created and attached to 3060 * @file by the filesystem calling finish_open(). 3061 * 3062 * If the file was looked up only or didn't need creating, FMODE_OPENED won't 3063 * be set. The caller will need to perform the open themselves. @path will 3064 * have been updated to point to the new dentry. This may be negative. 3065 * 3066 * Returns an error code otherwise. 3067 */ 3068 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry, 3069 struct file *file, 3070 int open_flag, umode_t mode) 3071 { 3072 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 3073 struct inode *dir = nd->path.dentry->d_inode; 3074 int error; 3075 3076 if (nd->flags & LOOKUP_DIRECTORY) 3077 open_flag |= O_DIRECTORY; 3078 3079 file->f_path.dentry = DENTRY_NOT_SET; 3080 file->f_path.mnt = nd->path.mnt; 3081 error = dir->i_op->atomic_open(dir, dentry, file, 3082 open_to_namei_flags(open_flag), mode); 3083 d_lookup_done(dentry); 3084 if (!error) { 3085 if (file->f_mode & FMODE_OPENED) { 3086 if (unlikely(dentry != file->f_path.dentry)) { 3087 dput(dentry); 3088 dentry = dget(file->f_path.dentry); 3089 } 3090 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 3091 error = -EIO; 3092 } else { 3093 if (file->f_path.dentry) { 3094 dput(dentry); 3095 dentry = file->f_path.dentry; 3096 } 3097 if (unlikely(d_is_negative(dentry))) 3098 error = -ENOENT; 3099 } 3100 } 3101 if (error) { 3102 dput(dentry); 3103 dentry = ERR_PTR(error); 3104 } 3105 return dentry; 3106 } 3107 3108 /* 3109 * Look up and maybe create and open the last component. 3110 * 3111 * Must be called with parent locked (exclusive in O_CREAT case). 3112 * 3113 * Returns 0 on success, that is, if 3114 * the file was successfully atomically created (if necessary) and opened, or 3115 * the file was not completely opened at this time, though lookups and 3116 * creations were performed. 3117 * These case are distinguished by presence of FMODE_OPENED on file->f_mode. 3118 * In the latter case dentry returned in @path might be negative if O_CREAT 3119 * hadn't been specified. 3120 * 3121 * An error code is returned on failure. 3122 */ 3123 static struct dentry *lookup_open(struct nameidata *nd, struct file *file, 3124 const struct open_flags *op, 3125 bool got_write) 3126 { 3127 struct user_namespace *mnt_userns; 3128 struct dentry *dir = nd->path.dentry; 3129 struct inode *dir_inode = dir->d_inode; 3130 int open_flag = op->open_flag; 3131 struct dentry *dentry; 3132 int error, create_error = 0; 3133 umode_t mode = op->mode; 3134 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 3135 3136 if (unlikely(IS_DEADDIR(dir_inode))) 3137 return ERR_PTR(-ENOENT); 3138 3139 file->f_mode &= ~FMODE_CREATED; 3140 dentry = d_lookup(dir, &nd->last); 3141 for (;;) { 3142 if (!dentry) { 3143 dentry = d_alloc_parallel(dir, &nd->last, &wq); 3144 if (IS_ERR(dentry)) 3145 return dentry; 3146 } 3147 if (d_in_lookup(dentry)) 3148 break; 3149 3150 error = d_revalidate(dentry, nd->flags); 3151 if (likely(error > 0)) 3152 break; 3153 if (error) 3154 goto out_dput; 3155 d_invalidate(dentry); 3156 dput(dentry); 3157 dentry = NULL; 3158 } 3159 if (dentry->d_inode) { 3160 /* Cached positive dentry: will open in f_op->open */ 3161 return dentry; 3162 } 3163 3164 /* 3165 * Checking write permission is tricky, bacuse we don't know if we are 3166 * going to actually need it: O_CREAT opens should work as long as the 3167 * file exists. But checking existence breaks atomicity. The trick is 3168 * to check access and if not granted clear O_CREAT from the flags. 3169 * 3170 * Another problem is returing the "right" error value (e.g. for an 3171 * O_EXCL open we want to return EEXIST not EROFS). 3172 */ 3173 if (unlikely(!got_write)) 3174 open_flag &= ~O_TRUNC; 3175 mnt_userns = mnt_user_ns(nd->path.mnt); 3176 if (open_flag & O_CREAT) { 3177 if (open_flag & O_EXCL) 3178 open_flag &= ~O_TRUNC; 3179 if (!IS_POSIXACL(dir->d_inode)) 3180 mode &= ~current_umask(); 3181 if (likely(got_write)) 3182 create_error = may_o_create(mnt_userns, &nd->path, 3183 dentry, mode); 3184 else 3185 create_error = -EROFS; 3186 } 3187 if (create_error) 3188 open_flag &= ~O_CREAT; 3189 if (dir_inode->i_op->atomic_open) { 3190 dentry = atomic_open(nd, dentry, file, open_flag, mode); 3191 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT)) 3192 dentry = ERR_PTR(create_error); 3193 return dentry; 3194 } 3195 3196 if (d_in_lookup(dentry)) { 3197 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry, 3198 nd->flags); 3199 d_lookup_done(dentry); 3200 if (unlikely(res)) { 3201 if (IS_ERR(res)) { 3202 error = PTR_ERR(res); 3203 goto out_dput; 3204 } 3205 dput(dentry); 3206 dentry = res; 3207 } 3208 } 3209 3210 /* Negative dentry, just create the file */ 3211 if (!dentry->d_inode && (open_flag & O_CREAT)) { 3212 file->f_mode |= FMODE_CREATED; 3213 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE); 3214 if (!dir_inode->i_op->create) { 3215 error = -EACCES; 3216 goto out_dput; 3217 } 3218 3219 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry, 3220 mode, open_flag & O_EXCL); 3221 if (error) 3222 goto out_dput; 3223 } 3224 if (unlikely(create_error) && !dentry->d_inode) { 3225 error = create_error; 3226 goto out_dput; 3227 } 3228 return dentry; 3229 3230 out_dput: 3231 dput(dentry); 3232 return ERR_PTR(error); 3233 } 3234 3235 static const char *open_last_lookups(struct nameidata *nd, 3236 struct file *file, const struct open_flags *op) 3237 { 3238 struct dentry *dir = nd->path.dentry; 3239 int open_flag = op->open_flag; 3240 bool got_write = false; 3241 unsigned seq; 3242 struct inode *inode; 3243 struct dentry *dentry; 3244 const char *res; 3245 3246 nd->flags |= op->intent; 3247 3248 if (nd->last_type != LAST_NORM) { 3249 if (nd->depth) 3250 put_link(nd); 3251 return handle_dots(nd, nd->last_type); 3252 } 3253 3254 if (!(open_flag & O_CREAT)) { 3255 if (nd->last.name[nd->last.len]) 3256 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 3257 /* we _can_ be in RCU mode here */ 3258 dentry = lookup_fast(nd, &inode, &seq); 3259 if (IS_ERR(dentry)) 3260 return ERR_CAST(dentry); 3261 if (likely(dentry)) 3262 goto finish_lookup; 3263 3264 BUG_ON(nd->flags & LOOKUP_RCU); 3265 } else { 3266 /* create side of things */ 3267 if (nd->flags & LOOKUP_RCU) { 3268 if (!try_to_unlazy(nd)) 3269 return ERR_PTR(-ECHILD); 3270 } 3271 audit_inode(nd->name, dir, AUDIT_INODE_PARENT); 3272 /* trailing slashes? */ 3273 if (unlikely(nd->last.name[nd->last.len])) 3274 return ERR_PTR(-EISDIR); 3275 } 3276 3277 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3278 got_write = !mnt_want_write(nd->path.mnt); 3279 /* 3280 * do _not_ fail yet - we might not need that or fail with 3281 * a different error; let lookup_open() decide; we'll be 3282 * dropping this one anyway. 3283 */ 3284 } 3285 if (open_flag & O_CREAT) 3286 inode_lock(dir->d_inode); 3287 else 3288 inode_lock_shared(dir->d_inode); 3289 dentry = lookup_open(nd, file, op, got_write); 3290 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED)) 3291 fsnotify_create(dir->d_inode, dentry); 3292 if (open_flag & O_CREAT) 3293 inode_unlock(dir->d_inode); 3294 else 3295 inode_unlock_shared(dir->d_inode); 3296 3297 if (got_write) 3298 mnt_drop_write(nd->path.mnt); 3299 3300 if (IS_ERR(dentry)) 3301 return ERR_CAST(dentry); 3302 3303 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) { 3304 dput(nd->path.dentry); 3305 nd->path.dentry = dentry; 3306 return NULL; 3307 } 3308 3309 finish_lookup: 3310 if (nd->depth) 3311 put_link(nd); 3312 res = step_into(nd, WALK_TRAILING, dentry, inode, seq); 3313 if (unlikely(res)) 3314 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3315 return res; 3316 } 3317 3318 /* 3319 * Handle the last step of open() 3320 */ 3321 static int do_open(struct nameidata *nd, 3322 struct file *file, const struct open_flags *op) 3323 { 3324 struct user_namespace *mnt_userns; 3325 int open_flag = op->open_flag; 3326 bool do_truncate; 3327 int acc_mode; 3328 int error; 3329 3330 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) { 3331 error = complete_walk(nd); 3332 if (error) 3333 return error; 3334 } 3335 if (!(file->f_mode & FMODE_CREATED)) 3336 audit_inode(nd->name, nd->path.dentry, 0); 3337 mnt_userns = mnt_user_ns(nd->path.mnt); 3338 if (open_flag & O_CREAT) { 3339 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED)) 3340 return -EEXIST; 3341 if (d_is_dir(nd->path.dentry)) 3342 return -EISDIR; 3343 error = may_create_in_sticky(mnt_userns, nd, 3344 d_backing_inode(nd->path.dentry)); 3345 if (unlikely(error)) 3346 return error; 3347 } 3348 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3349 return -ENOTDIR; 3350 3351 do_truncate = false; 3352 acc_mode = op->acc_mode; 3353 if (file->f_mode & FMODE_CREATED) { 3354 /* Don't check for write permission, don't truncate */ 3355 open_flag &= ~O_TRUNC; 3356 acc_mode = 0; 3357 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) { 3358 error = mnt_want_write(nd->path.mnt); 3359 if (error) 3360 return error; 3361 do_truncate = true; 3362 } 3363 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag); 3364 if (!error && !(file->f_mode & FMODE_OPENED)) 3365 error = vfs_open(&nd->path, file); 3366 if (!error) 3367 error = ima_file_check(file, op->acc_mode); 3368 if (!error && do_truncate) 3369 error = handle_truncate(mnt_userns, file); 3370 if (unlikely(error > 0)) { 3371 WARN_ON(1); 3372 error = -EINVAL; 3373 } 3374 if (do_truncate) 3375 mnt_drop_write(nd->path.mnt); 3376 return error; 3377 } 3378 3379 /** 3380 * vfs_tmpfile - create tmpfile 3381 * @mnt_userns: user namespace of the mount the inode was found from 3382 * @dentry: pointer to dentry of the base directory 3383 * @mode: mode of the new tmpfile 3384 * @open_flags: flags 3385 * 3386 * Create a temporary file. 3387 * 3388 * If the inode has been found through an idmapped mount the user namespace of 3389 * the vfsmount must be passed through @mnt_userns. This function will then take 3390 * care to map the inode according to @mnt_userns before checking permissions. 3391 * On non-idmapped mounts or if permission checking is to be performed on the 3392 * raw inode simply passs init_user_ns. 3393 */ 3394 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns, 3395 struct dentry *dentry, umode_t mode, int open_flag) 3396 { 3397 struct dentry *child = NULL; 3398 struct inode *dir = dentry->d_inode; 3399 struct inode *inode; 3400 int error; 3401 3402 /* we want directory to be writable */ 3403 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 3404 if (error) 3405 goto out_err; 3406 error = -EOPNOTSUPP; 3407 if (!dir->i_op->tmpfile) 3408 goto out_err; 3409 error = -ENOMEM; 3410 child = d_alloc(dentry, &slash_name); 3411 if (unlikely(!child)) 3412 goto out_err; 3413 error = dir->i_op->tmpfile(mnt_userns, dir, child, mode); 3414 if (error) 3415 goto out_err; 3416 error = -ENOENT; 3417 inode = child->d_inode; 3418 if (unlikely(!inode)) 3419 goto out_err; 3420 if (!(open_flag & O_EXCL)) { 3421 spin_lock(&inode->i_lock); 3422 inode->i_state |= I_LINKABLE; 3423 spin_unlock(&inode->i_lock); 3424 } 3425 ima_post_create_tmpfile(mnt_userns, inode); 3426 return child; 3427 3428 out_err: 3429 dput(child); 3430 return ERR_PTR(error); 3431 } 3432 EXPORT_SYMBOL(vfs_tmpfile); 3433 3434 static int do_tmpfile(struct nameidata *nd, unsigned flags, 3435 const struct open_flags *op, 3436 struct file *file) 3437 { 3438 struct user_namespace *mnt_userns; 3439 struct dentry *child; 3440 struct path path; 3441 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path); 3442 if (unlikely(error)) 3443 return error; 3444 error = mnt_want_write(path.mnt); 3445 if (unlikely(error)) 3446 goto out; 3447 mnt_userns = mnt_user_ns(path.mnt); 3448 child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag); 3449 error = PTR_ERR(child); 3450 if (IS_ERR(child)) 3451 goto out2; 3452 dput(path.dentry); 3453 path.dentry = child; 3454 audit_inode(nd->name, child, 0); 3455 /* Don't check for other permissions, the inode was just created */ 3456 error = may_open(mnt_userns, &path, 0, op->open_flag); 3457 if (!error) 3458 error = vfs_open(&path, file); 3459 out2: 3460 mnt_drop_write(path.mnt); 3461 out: 3462 path_put(&path); 3463 return error; 3464 } 3465 3466 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file) 3467 { 3468 struct path path; 3469 int error = path_lookupat(nd, flags, &path); 3470 if (!error) { 3471 audit_inode(nd->name, path.dentry, 0); 3472 error = vfs_open(&path, file); 3473 path_put(&path); 3474 } 3475 return error; 3476 } 3477 3478 static struct file *path_openat(struct nameidata *nd, 3479 const struct open_flags *op, unsigned flags) 3480 { 3481 struct file *file; 3482 int error; 3483 3484 file = alloc_empty_file(op->open_flag, current_cred()); 3485 if (IS_ERR(file)) 3486 return file; 3487 3488 if (unlikely(file->f_flags & __O_TMPFILE)) { 3489 error = do_tmpfile(nd, flags, op, file); 3490 } else if (unlikely(file->f_flags & O_PATH)) { 3491 error = do_o_path(nd, flags, file); 3492 } else { 3493 const char *s = path_init(nd, flags); 3494 while (!(error = link_path_walk(s, nd)) && 3495 (s = open_last_lookups(nd, file, op)) != NULL) 3496 ; 3497 if (!error) 3498 error = do_open(nd, file, op); 3499 terminate_walk(nd); 3500 } 3501 if (likely(!error)) { 3502 if (likely(file->f_mode & FMODE_OPENED)) 3503 return file; 3504 WARN_ON(1); 3505 error = -EINVAL; 3506 } 3507 fput(file); 3508 if (error == -EOPENSTALE) { 3509 if (flags & LOOKUP_RCU) 3510 error = -ECHILD; 3511 else 3512 error = -ESTALE; 3513 } 3514 return ERR_PTR(error); 3515 } 3516 3517 struct file *do_filp_open(int dfd, struct filename *pathname, 3518 const struct open_flags *op) 3519 { 3520 struct nameidata nd; 3521 int flags = op->lookup_flags; 3522 struct file *filp; 3523 3524 set_nameidata(&nd, dfd, pathname); 3525 filp = path_openat(&nd, op, flags | LOOKUP_RCU); 3526 if (unlikely(filp == ERR_PTR(-ECHILD))) 3527 filp = path_openat(&nd, op, flags); 3528 if (unlikely(filp == ERR_PTR(-ESTALE))) 3529 filp = path_openat(&nd, op, flags | LOOKUP_REVAL); 3530 restore_nameidata(); 3531 return filp; 3532 } 3533 3534 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3535 const char *name, const struct open_flags *op) 3536 { 3537 struct nameidata nd; 3538 struct file *file; 3539 struct filename *filename; 3540 int flags = op->lookup_flags | LOOKUP_ROOT; 3541 3542 nd.root.mnt = mnt; 3543 nd.root.dentry = dentry; 3544 3545 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3546 return ERR_PTR(-ELOOP); 3547 3548 filename = getname_kernel(name); 3549 if (IS_ERR(filename)) 3550 return ERR_CAST(filename); 3551 3552 set_nameidata(&nd, -1, filename); 3553 file = path_openat(&nd, op, flags | LOOKUP_RCU); 3554 if (unlikely(file == ERR_PTR(-ECHILD))) 3555 file = path_openat(&nd, op, flags); 3556 if (unlikely(file == ERR_PTR(-ESTALE))) 3557 file = path_openat(&nd, op, flags | LOOKUP_REVAL); 3558 restore_nameidata(); 3559 putname(filename); 3560 return file; 3561 } 3562 3563 static struct dentry *filename_create(int dfd, struct filename *name, 3564 struct path *path, unsigned int lookup_flags) 3565 { 3566 struct dentry *dentry = ERR_PTR(-EEXIST); 3567 struct qstr last; 3568 int type; 3569 int err2; 3570 int error; 3571 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3572 3573 /* 3574 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3575 * other flags passed in are ignored! 3576 */ 3577 lookup_flags &= LOOKUP_REVAL; 3578 3579 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type); 3580 if (IS_ERR(name)) 3581 return ERR_CAST(name); 3582 3583 /* 3584 * Yucky last component or no last component at all? 3585 * (foo/., foo/.., /////) 3586 */ 3587 if (unlikely(type != LAST_NORM)) 3588 goto out; 3589 3590 /* don't fail immediately if it's r/o, at least try to report other errors */ 3591 err2 = mnt_want_write(path->mnt); 3592 /* 3593 * Do the final lookup. 3594 */ 3595 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3596 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT); 3597 dentry = __lookup_hash(&last, path->dentry, lookup_flags); 3598 if (IS_ERR(dentry)) 3599 goto unlock; 3600 3601 error = -EEXIST; 3602 if (d_is_positive(dentry)) 3603 goto fail; 3604 3605 /* 3606 * Special case - lookup gave negative, but... we had foo/bar/ 3607 * From the vfs_mknod() POV we just have a negative dentry - 3608 * all is fine. Let's be bastards - you had / on the end, you've 3609 * been asking for (non-existent) directory. -ENOENT for you. 3610 */ 3611 if (unlikely(!is_dir && last.name[last.len])) { 3612 error = -ENOENT; 3613 goto fail; 3614 } 3615 if (unlikely(err2)) { 3616 error = err2; 3617 goto fail; 3618 } 3619 putname(name); 3620 return dentry; 3621 fail: 3622 dput(dentry); 3623 dentry = ERR_PTR(error); 3624 unlock: 3625 inode_unlock(path->dentry->d_inode); 3626 if (!err2) 3627 mnt_drop_write(path->mnt); 3628 out: 3629 path_put(path); 3630 putname(name); 3631 return dentry; 3632 } 3633 3634 struct dentry *kern_path_create(int dfd, const char *pathname, 3635 struct path *path, unsigned int lookup_flags) 3636 { 3637 return filename_create(dfd, getname_kernel(pathname), 3638 path, lookup_flags); 3639 } 3640 EXPORT_SYMBOL(kern_path_create); 3641 3642 void done_path_create(struct path *path, struct dentry *dentry) 3643 { 3644 dput(dentry); 3645 inode_unlock(path->dentry->d_inode); 3646 mnt_drop_write(path->mnt); 3647 path_put(path); 3648 } 3649 EXPORT_SYMBOL(done_path_create); 3650 3651 inline struct dentry *user_path_create(int dfd, const char __user *pathname, 3652 struct path *path, unsigned int lookup_flags) 3653 { 3654 return filename_create(dfd, getname(pathname), path, lookup_flags); 3655 } 3656 EXPORT_SYMBOL(user_path_create); 3657 3658 /** 3659 * vfs_mknod - create device node or file 3660 * @mnt_userns: user namespace of the mount the inode was found from 3661 * @dir: inode of @dentry 3662 * @dentry: pointer to dentry of the base directory 3663 * @mode: mode of the new device node or file 3664 * @dev: device number of device to create 3665 * 3666 * Create a device node or file. 3667 * 3668 * If the inode has been found through an idmapped mount the user namespace of 3669 * the vfsmount must be passed through @mnt_userns. This function will then take 3670 * care to map the inode according to @mnt_userns before checking permissions. 3671 * On non-idmapped mounts or if permission checking is to be performed on the 3672 * raw inode simply passs init_user_ns. 3673 */ 3674 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 3675 struct dentry *dentry, umode_t mode, dev_t dev) 3676 { 3677 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV; 3678 int error = may_create(mnt_userns, dir, dentry); 3679 3680 if (error) 3681 return error; 3682 3683 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout && 3684 !capable(CAP_MKNOD)) 3685 return -EPERM; 3686 3687 if (!dir->i_op->mknod) 3688 return -EPERM; 3689 3690 error = devcgroup_inode_mknod(mode, dev); 3691 if (error) 3692 return error; 3693 3694 error = security_inode_mknod(dir, dentry, mode, dev); 3695 if (error) 3696 return error; 3697 3698 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev); 3699 if (!error) 3700 fsnotify_create(dir, dentry); 3701 return error; 3702 } 3703 EXPORT_SYMBOL(vfs_mknod); 3704 3705 static int may_mknod(umode_t mode) 3706 { 3707 switch (mode & S_IFMT) { 3708 case S_IFREG: 3709 case S_IFCHR: 3710 case S_IFBLK: 3711 case S_IFIFO: 3712 case S_IFSOCK: 3713 case 0: /* zero mode translates to S_IFREG */ 3714 return 0; 3715 case S_IFDIR: 3716 return -EPERM; 3717 default: 3718 return -EINVAL; 3719 } 3720 } 3721 3722 static long do_mknodat(int dfd, const char __user *filename, umode_t mode, 3723 unsigned int dev) 3724 { 3725 struct user_namespace *mnt_userns; 3726 struct dentry *dentry; 3727 struct path path; 3728 int error; 3729 unsigned int lookup_flags = 0; 3730 3731 error = may_mknod(mode); 3732 if (error) 3733 return error; 3734 retry: 3735 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3736 if (IS_ERR(dentry)) 3737 return PTR_ERR(dentry); 3738 3739 if (!IS_POSIXACL(path.dentry->d_inode)) 3740 mode &= ~current_umask(); 3741 error = security_path_mknod(&path, dentry, mode, dev); 3742 if (error) 3743 goto out; 3744 3745 mnt_userns = mnt_user_ns(path.mnt); 3746 switch (mode & S_IFMT) { 3747 case 0: case S_IFREG: 3748 error = vfs_create(mnt_userns, path.dentry->d_inode, 3749 dentry, mode, true); 3750 if (!error) 3751 ima_post_path_mknod(mnt_userns, dentry); 3752 break; 3753 case S_IFCHR: case S_IFBLK: 3754 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3755 dentry, mode, new_decode_dev(dev)); 3756 break; 3757 case S_IFIFO: case S_IFSOCK: 3758 error = vfs_mknod(mnt_userns, path.dentry->d_inode, 3759 dentry, mode, 0); 3760 break; 3761 } 3762 out: 3763 done_path_create(&path, dentry); 3764 if (retry_estale(error, lookup_flags)) { 3765 lookup_flags |= LOOKUP_REVAL; 3766 goto retry; 3767 } 3768 return error; 3769 } 3770 3771 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3772 unsigned int, dev) 3773 { 3774 return do_mknodat(dfd, filename, mode, dev); 3775 } 3776 3777 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3778 { 3779 return do_mknodat(AT_FDCWD, filename, mode, dev); 3780 } 3781 3782 /** 3783 * vfs_mkdir - create directory 3784 * @mnt_userns: user namespace of the mount the inode was found from 3785 * @dir: inode of @dentry 3786 * @dentry: pointer to dentry of the base directory 3787 * @mode: mode of the new directory 3788 * 3789 * Create a directory. 3790 * 3791 * If the inode has been found through an idmapped mount the user namespace of 3792 * the vfsmount must be passed through @mnt_userns. This function will then take 3793 * care to map the inode according to @mnt_userns before checking permissions. 3794 * On non-idmapped mounts or if permission checking is to be performed on the 3795 * raw inode simply passs init_user_ns. 3796 */ 3797 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 3798 struct dentry *dentry, umode_t mode) 3799 { 3800 int error = may_create(mnt_userns, dir, dentry); 3801 unsigned max_links = dir->i_sb->s_max_links; 3802 3803 if (error) 3804 return error; 3805 3806 if (!dir->i_op->mkdir) 3807 return -EPERM; 3808 3809 mode &= (S_IRWXUGO|S_ISVTX); 3810 error = security_inode_mkdir(dir, dentry, mode); 3811 if (error) 3812 return error; 3813 3814 if (max_links && dir->i_nlink >= max_links) 3815 return -EMLINK; 3816 3817 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode); 3818 if (!error) 3819 fsnotify_mkdir(dir, dentry); 3820 return error; 3821 } 3822 EXPORT_SYMBOL(vfs_mkdir); 3823 3824 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode) 3825 { 3826 struct dentry *dentry; 3827 struct path path; 3828 int error; 3829 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3830 3831 retry: 3832 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3833 if (IS_ERR(dentry)) 3834 return PTR_ERR(dentry); 3835 3836 if (!IS_POSIXACL(path.dentry->d_inode)) 3837 mode &= ~current_umask(); 3838 error = security_path_mkdir(&path, dentry, mode); 3839 if (!error) { 3840 struct user_namespace *mnt_userns; 3841 mnt_userns = mnt_user_ns(path.mnt); 3842 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry, 3843 mode); 3844 } 3845 done_path_create(&path, dentry); 3846 if (retry_estale(error, lookup_flags)) { 3847 lookup_flags |= LOOKUP_REVAL; 3848 goto retry; 3849 } 3850 return error; 3851 } 3852 3853 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3854 { 3855 return do_mkdirat(dfd, pathname, mode); 3856 } 3857 3858 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3859 { 3860 return do_mkdirat(AT_FDCWD, pathname, mode); 3861 } 3862 3863 /** 3864 * vfs_rmdir - remove directory 3865 * @mnt_userns: user namespace of the mount the inode was found from 3866 * @dir: inode of @dentry 3867 * @dentry: pointer to dentry of the base directory 3868 * 3869 * Remove a directory. 3870 * 3871 * If the inode has been found through an idmapped mount the user namespace of 3872 * the vfsmount must be passed through @mnt_userns. This function will then take 3873 * care to map the inode according to @mnt_userns before checking permissions. 3874 * On non-idmapped mounts or if permission checking is to be performed on the 3875 * raw inode simply passs init_user_ns. 3876 */ 3877 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir, 3878 struct dentry *dentry) 3879 { 3880 int error = may_delete(mnt_userns, dir, dentry, 1); 3881 3882 if (error) 3883 return error; 3884 3885 if (!dir->i_op->rmdir) 3886 return -EPERM; 3887 3888 dget(dentry); 3889 inode_lock(dentry->d_inode); 3890 3891 error = -EBUSY; 3892 if (is_local_mountpoint(dentry)) 3893 goto out; 3894 3895 error = security_inode_rmdir(dir, dentry); 3896 if (error) 3897 goto out; 3898 3899 error = dir->i_op->rmdir(dir, dentry); 3900 if (error) 3901 goto out; 3902 3903 shrink_dcache_parent(dentry); 3904 dentry->d_inode->i_flags |= S_DEAD; 3905 dont_mount(dentry); 3906 detach_mounts(dentry); 3907 fsnotify_rmdir(dir, dentry); 3908 3909 out: 3910 inode_unlock(dentry->d_inode); 3911 dput(dentry); 3912 if (!error) 3913 d_delete(dentry); 3914 return error; 3915 } 3916 EXPORT_SYMBOL(vfs_rmdir); 3917 3918 long do_rmdir(int dfd, struct filename *name) 3919 { 3920 struct user_namespace *mnt_userns; 3921 int error = 0; 3922 struct dentry *dentry; 3923 struct path path; 3924 struct qstr last; 3925 int type; 3926 unsigned int lookup_flags = 0; 3927 retry: 3928 name = filename_parentat(dfd, name, lookup_flags, 3929 &path, &last, &type); 3930 if (IS_ERR(name)) 3931 return PTR_ERR(name); 3932 3933 switch (type) { 3934 case LAST_DOTDOT: 3935 error = -ENOTEMPTY; 3936 goto exit1; 3937 case LAST_DOT: 3938 error = -EINVAL; 3939 goto exit1; 3940 case LAST_ROOT: 3941 error = -EBUSY; 3942 goto exit1; 3943 } 3944 3945 error = mnt_want_write(path.mnt); 3946 if (error) 3947 goto exit1; 3948 3949 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 3950 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 3951 error = PTR_ERR(dentry); 3952 if (IS_ERR(dentry)) 3953 goto exit2; 3954 if (!dentry->d_inode) { 3955 error = -ENOENT; 3956 goto exit3; 3957 } 3958 error = security_path_rmdir(&path, dentry); 3959 if (error) 3960 goto exit3; 3961 mnt_userns = mnt_user_ns(path.mnt); 3962 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry); 3963 exit3: 3964 dput(dentry); 3965 exit2: 3966 inode_unlock(path.dentry->d_inode); 3967 mnt_drop_write(path.mnt); 3968 exit1: 3969 path_put(&path); 3970 if (retry_estale(error, lookup_flags)) { 3971 lookup_flags |= LOOKUP_REVAL; 3972 goto retry; 3973 } 3974 putname(name); 3975 return error; 3976 } 3977 3978 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3979 { 3980 return do_rmdir(AT_FDCWD, getname(pathname)); 3981 } 3982 3983 /** 3984 * vfs_unlink - unlink a filesystem object 3985 * @mnt_userns: user namespace of the mount the inode was found from 3986 * @dir: parent directory 3987 * @dentry: victim 3988 * @delegated_inode: returns victim inode, if the inode is delegated. 3989 * 3990 * The caller must hold dir->i_mutex. 3991 * 3992 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3993 * return a reference to the inode in delegated_inode. The caller 3994 * should then break the delegation on that inode and retry. Because 3995 * breaking a delegation may take a long time, the caller should drop 3996 * dir->i_mutex before doing so. 3997 * 3998 * Alternatively, a caller may pass NULL for delegated_inode. This may 3999 * be appropriate for callers that expect the underlying filesystem not 4000 * to be NFS exported. 4001 * 4002 * If the inode has been found through an idmapped mount the user namespace of 4003 * the vfsmount must be passed through @mnt_userns. This function will then take 4004 * care to map the inode according to @mnt_userns before checking permissions. 4005 * On non-idmapped mounts or if permission checking is to be performed on the 4006 * raw inode simply passs init_user_ns. 4007 */ 4008 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir, 4009 struct dentry *dentry, struct inode **delegated_inode) 4010 { 4011 struct inode *target = dentry->d_inode; 4012 int error = may_delete(mnt_userns, dir, dentry, 0); 4013 4014 if (error) 4015 return error; 4016 4017 if (!dir->i_op->unlink) 4018 return -EPERM; 4019 4020 inode_lock(target); 4021 if (is_local_mountpoint(dentry)) 4022 error = -EBUSY; 4023 else { 4024 error = security_inode_unlink(dir, dentry); 4025 if (!error) { 4026 error = try_break_deleg(target, delegated_inode); 4027 if (error) 4028 goto out; 4029 error = dir->i_op->unlink(dir, dentry); 4030 if (!error) { 4031 dont_mount(dentry); 4032 detach_mounts(dentry); 4033 fsnotify_unlink(dir, dentry); 4034 } 4035 } 4036 } 4037 out: 4038 inode_unlock(target); 4039 4040 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 4041 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 4042 fsnotify_link_count(target); 4043 d_delete(dentry); 4044 } 4045 4046 return error; 4047 } 4048 EXPORT_SYMBOL(vfs_unlink); 4049 4050 /* 4051 * Make sure that the actual truncation of the file will occur outside its 4052 * directory's i_mutex. Truncate can take a long time if there is a lot of 4053 * writeout happening, and we don't want to prevent access to the directory 4054 * while waiting on the I/O. 4055 */ 4056 long do_unlinkat(int dfd, struct filename *name) 4057 { 4058 int error; 4059 struct dentry *dentry; 4060 struct path path; 4061 struct qstr last; 4062 int type; 4063 struct inode *inode = NULL; 4064 struct inode *delegated_inode = NULL; 4065 unsigned int lookup_flags = 0; 4066 retry: 4067 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type); 4068 if (IS_ERR(name)) 4069 return PTR_ERR(name); 4070 4071 error = -EISDIR; 4072 if (type != LAST_NORM) 4073 goto exit1; 4074 4075 error = mnt_want_write(path.mnt); 4076 if (error) 4077 goto exit1; 4078 retry_deleg: 4079 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT); 4080 dentry = __lookup_hash(&last, path.dentry, lookup_flags); 4081 error = PTR_ERR(dentry); 4082 if (!IS_ERR(dentry)) { 4083 struct user_namespace *mnt_userns; 4084 4085 /* Why not before? Because we want correct error value */ 4086 if (last.name[last.len]) 4087 goto slashes; 4088 inode = dentry->d_inode; 4089 if (d_is_negative(dentry)) 4090 goto slashes; 4091 ihold(inode); 4092 error = security_path_unlink(&path, dentry); 4093 if (error) 4094 goto exit2; 4095 mnt_userns = mnt_user_ns(path.mnt); 4096 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry, 4097 &delegated_inode); 4098 exit2: 4099 dput(dentry); 4100 } 4101 inode_unlock(path.dentry->d_inode); 4102 if (inode) 4103 iput(inode); /* truncate the inode here */ 4104 inode = NULL; 4105 if (delegated_inode) { 4106 error = break_deleg_wait(&delegated_inode); 4107 if (!error) 4108 goto retry_deleg; 4109 } 4110 mnt_drop_write(path.mnt); 4111 exit1: 4112 path_put(&path); 4113 if (retry_estale(error, lookup_flags)) { 4114 lookup_flags |= LOOKUP_REVAL; 4115 inode = NULL; 4116 goto retry; 4117 } 4118 putname(name); 4119 return error; 4120 4121 slashes: 4122 if (d_is_negative(dentry)) 4123 error = -ENOENT; 4124 else if (d_is_dir(dentry)) 4125 error = -EISDIR; 4126 else 4127 error = -ENOTDIR; 4128 goto exit2; 4129 } 4130 4131 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 4132 { 4133 if ((flag & ~AT_REMOVEDIR) != 0) 4134 return -EINVAL; 4135 4136 if (flag & AT_REMOVEDIR) 4137 return do_rmdir(dfd, getname(pathname)); 4138 return do_unlinkat(dfd, getname(pathname)); 4139 } 4140 4141 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 4142 { 4143 return do_unlinkat(AT_FDCWD, getname(pathname)); 4144 } 4145 4146 /** 4147 * vfs_symlink - create symlink 4148 * @mnt_userns: user namespace of the mount the inode was found from 4149 * @dir: inode of @dentry 4150 * @dentry: pointer to dentry of the base directory 4151 * @oldname: name of the file to link to 4152 * 4153 * Create a symlink. 4154 * 4155 * If the inode has been found through an idmapped mount the user namespace of 4156 * the vfsmount must be passed through @mnt_userns. This function will then take 4157 * care to map the inode according to @mnt_userns before checking permissions. 4158 * On non-idmapped mounts or if permission checking is to be performed on the 4159 * raw inode simply passs init_user_ns. 4160 */ 4161 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 4162 struct dentry *dentry, const char *oldname) 4163 { 4164 int error = may_create(mnt_userns, dir, dentry); 4165 4166 if (error) 4167 return error; 4168 4169 if (!dir->i_op->symlink) 4170 return -EPERM; 4171 4172 error = security_inode_symlink(dir, dentry, oldname); 4173 if (error) 4174 return error; 4175 4176 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname); 4177 if (!error) 4178 fsnotify_create(dir, dentry); 4179 return error; 4180 } 4181 EXPORT_SYMBOL(vfs_symlink); 4182 4183 static long do_symlinkat(const char __user *oldname, int newdfd, 4184 const char __user *newname) 4185 { 4186 int error; 4187 struct filename *from; 4188 struct dentry *dentry; 4189 struct path path; 4190 unsigned int lookup_flags = 0; 4191 4192 from = getname(oldname); 4193 if (IS_ERR(from)) 4194 return PTR_ERR(from); 4195 retry: 4196 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 4197 error = PTR_ERR(dentry); 4198 if (IS_ERR(dentry)) 4199 goto out_putname; 4200 4201 error = security_path_symlink(&path, dentry, from->name); 4202 if (!error) { 4203 struct user_namespace *mnt_userns; 4204 4205 mnt_userns = mnt_user_ns(path.mnt); 4206 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry, 4207 from->name); 4208 } 4209 done_path_create(&path, dentry); 4210 if (retry_estale(error, lookup_flags)) { 4211 lookup_flags |= LOOKUP_REVAL; 4212 goto retry; 4213 } 4214 out_putname: 4215 putname(from); 4216 return error; 4217 } 4218 4219 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 4220 int, newdfd, const char __user *, newname) 4221 { 4222 return do_symlinkat(oldname, newdfd, newname); 4223 } 4224 4225 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 4226 { 4227 return do_symlinkat(oldname, AT_FDCWD, newname); 4228 } 4229 4230 /** 4231 * vfs_link - create a new link 4232 * @old_dentry: object to be linked 4233 * @mnt_userns: the user namespace of the mount 4234 * @dir: new parent 4235 * @new_dentry: where to create the new link 4236 * @delegated_inode: returns inode needing a delegation break 4237 * 4238 * The caller must hold dir->i_mutex 4239 * 4240 * If vfs_link discovers a delegation on the to-be-linked file in need 4241 * of breaking, it will return -EWOULDBLOCK and return a reference to the 4242 * inode in delegated_inode. The caller should then break the delegation 4243 * and retry. Because breaking a delegation may take a long time, the 4244 * caller should drop the i_mutex before doing so. 4245 * 4246 * Alternatively, a caller may pass NULL for delegated_inode. This may 4247 * be appropriate for callers that expect the underlying filesystem not 4248 * to be NFS exported. 4249 * 4250 * If the inode has been found through an idmapped mount the user namespace of 4251 * the vfsmount must be passed through @mnt_userns. This function will then take 4252 * care to map the inode according to @mnt_userns before checking permissions. 4253 * On non-idmapped mounts or if permission checking is to be performed on the 4254 * raw inode simply passs init_user_ns. 4255 */ 4256 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns, 4257 struct inode *dir, struct dentry *new_dentry, 4258 struct inode **delegated_inode) 4259 { 4260 struct inode *inode = old_dentry->d_inode; 4261 unsigned max_links = dir->i_sb->s_max_links; 4262 int error; 4263 4264 if (!inode) 4265 return -ENOENT; 4266 4267 error = may_create(mnt_userns, dir, new_dentry); 4268 if (error) 4269 return error; 4270 4271 if (dir->i_sb != inode->i_sb) 4272 return -EXDEV; 4273 4274 /* 4275 * A link to an append-only or immutable file cannot be created. 4276 */ 4277 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4278 return -EPERM; 4279 /* 4280 * Updating the link count will likely cause i_uid and i_gid to 4281 * be writen back improperly if their true value is unknown to 4282 * the vfs. 4283 */ 4284 if (HAS_UNMAPPED_ID(mnt_userns, inode)) 4285 return -EPERM; 4286 if (!dir->i_op->link) 4287 return -EPERM; 4288 if (S_ISDIR(inode->i_mode)) 4289 return -EPERM; 4290 4291 error = security_inode_link(old_dentry, dir, new_dentry); 4292 if (error) 4293 return error; 4294 4295 inode_lock(inode); 4296 /* Make sure we don't allow creating hardlink to an unlinked file */ 4297 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 4298 error = -ENOENT; 4299 else if (max_links && inode->i_nlink >= max_links) 4300 error = -EMLINK; 4301 else { 4302 error = try_break_deleg(inode, delegated_inode); 4303 if (!error) 4304 error = dir->i_op->link(old_dentry, dir, new_dentry); 4305 } 4306 4307 if (!error && (inode->i_state & I_LINKABLE)) { 4308 spin_lock(&inode->i_lock); 4309 inode->i_state &= ~I_LINKABLE; 4310 spin_unlock(&inode->i_lock); 4311 } 4312 inode_unlock(inode); 4313 if (!error) 4314 fsnotify_link(dir, inode, new_dentry); 4315 return error; 4316 } 4317 EXPORT_SYMBOL(vfs_link); 4318 4319 /* 4320 * Hardlinks are often used in delicate situations. We avoid 4321 * security-related surprises by not following symlinks on the 4322 * newname. --KAB 4323 * 4324 * We don't follow them on the oldname either to be compatible 4325 * with linux 2.0, and to avoid hard-linking to directories 4326 * and other special files. --ADM 4327 */ 4328 static int do_linkat(int olddfd, const char __user *oldname, int newdfd, 4329 const char __user *newname, int flags) 4330 { 4331 struct user_namespace *mnt_userns; 4332 struct dentry *new_dentry; 4333 struct path old_path, new_path; 4334 struct inode *delegated_inode = NULL; 4335 int how = 0; 4336 int error; 4337 4338 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4339 return -EINVAL; 4340 /* 4341 * To use null names we require CAP_DAC_READ_SEARCH 4342 * This ensures that not everyone will be able to create 4343 * handlink using the passed filedescriptor. 4344 */ 4345 if (flags & AT_EMPTY_PATH) { 4346 if (!capable(CAP_DAC_READ_SEARCH)) 4347 return -ENOENT; 4348 how = LOOKUP_EMPTY; 4349 } 4350 4351 if (flags & AT_SYMLINK_FOLLOW) 4352 how |= LOOKUP_FOLLOW; 4353 retry: 4354 error = user_path_at(olddfd, oldname, how, &old_path); 4355 if (error) 4356 return error; 4357 4358 new_dentry = user_path_create(newdfd, newname, &new_path, 4359 (how & LOOKUP_REVAL)); 4360 error = PTR_ERR(new_dentry); 4361 if (IS_ERR(new_dentry)) 4362 goto out; 4363 4364 error = -EXDEV; 4365 if (old_path.mnt != new_path.mnt) 4366 goto out_dput; 4367 mnt_userns = mnt_user_ns(new_path.mnt); 4368 error = may_linkat(mnt_userns, &old_path); 4369 if (unlikely(error)) 4370 goto out_dput; 4371 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4372 if (error) 4373 goto out_dput; 4374 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode, 4375 new_dentry, &delegated_inode); 4376 out_dput: 4377 done_path_create(&new_path, new_dentry); 4378 if (delegated_inode) { 4379 error = break_deleg_wait(&delegated_inode); 4380 if (!error) { 4381 path_put(&old_path); 4382 goto retry; 4383 } 4384 } 4385 if (retry_estale(error, how)) { 4386 path_put(&old_path); 4387 how |= LOOKUP_REVAL; 4388 goto retry; 4389 } 4390 out: 4391 path_put(&old_path); 4392 4393 return error; 4394 } 4395 4396 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4397 int, newdfd, const char __user *, newname, int, flags) 4398 { 4399 return do_linkat(olddfd, oldname, newdfd, newname, flags); 4400 } 4401 4402 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4403 { 4404 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4405 } 4406 4407 /** 4408 * vfs_rename - rename a filesystem object 4409 * @old_mnt_userns: old user namespace of the mount the inode was found from 4410 * @old_dir: parent of source 4411 * @old_dentry: source 4412 * @new_mnt_userns: new user namespace of the mount the inode was found from 4413 * @new_dir: parent of destination 4414 * @new_dentry: destination 4415 * @delegated_inode: returns an inode needing a delegation break 4416 * @flags: rename flags 4417 * 4418 * The caller must hold multiple mutexes--see lock_rename()). 4419 * 4420 * If vfs_rename discovers a delegation in need of breaking at either 4421 * the source or destination, it will return -EWOULDBLOCK and return a 4422 * reference to the inode in delegated_inode. The caller should then 4423 * break the delegation and retry. Because breaking a delegation may 4424 * take a long time, the caller should drop all locks before doing 4425 * so. 4426 * 4427 * Alternatively, a caller may pass NULL for delegated_inode. This may 4428 * be appropriate for callers that expect the underlying filesystem not 4429 * to be NFS exported. 4430 * 4431 * The worst of all namespace operations - renaming directory. "Perverted" 4432 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4433 * Problems: 4434 * 4435 * a) we can get into loop creation. 4436 * b) race potential - two innocent renames can create a loop together. 4437 * That's where 4.4 screws up. Current fix: serialization on 4438 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4439 * story. 4440 * c) we have to lock _four_ objects - parents and victim (if it exists), 4441 * and source (if it is not a directory). 4442 * And that - after we got ->i_mutex on parents (until then we don't know 4443 * whether the target exists). Solution: try to be smart with locking 4444 * order for inodes. We rely on the fact that tree topology may change 4445 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4446 * move will be locked. Thus we can rank directories by the tree 4447 * (ancestors first) and rank all non-directories after them. 4448 * That works since everybody except rename does "lock parent, lookup, 4449 * lock child" and rename is under ->s_vfs_rename_mutex. 4450 * HOWEVER, it relies on the assumption that any object with ->lookup() 4451 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4452 * we'd better make sure that there's no link(2) for them. 4453 * d) conversion from fhandle to dentry may come in the wrong moment - when 4454 * we are removing the target. Solution: we will have to grab ->i_mutex 4455 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4456 * ->i_mutex on parents, which works but leads to some truly excessive 4457 * locking]. 4458 */ 4459 int vfs_rename(struct renamedata *rd) 4460 { 4461 int error; 4462 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir; 4463 struct dentry *old_dentry = rd->old_dentry; 4464 struct dentry *new_dentry = rd->new_dentry; 4465 struct inode **delegated_inode = rd->delegated_inode; 4466 unsigned int flags = rd->flags; 4467 bool is_dir = d_is_dir(old_dentry); 4468 struct inode *source = old_dentry->d_inode; 4469 struct inode *target = new_dentry->d_inode; 4470 bool new_is_dir = false; 4471 unsigned max_links = new_dir->i_sb->s_max_links; 4472 struct name_snapshot old_name; 4473 4474 if (source == target) 4475 return 0; 4476 4477 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir); 4478 if (error) 4479 return error; 4480 4481 if (!target) { 4482 error = may_create(rd->new_mnt_userns, new_dir, new_dentry); 4483 } else { 4484 new_is_dir = d_is_dir(new_dentry); 4485 4486 if (!(flags & RENAME_EXCHANGE)) 4487 error = may_delete(rd->new_mnt_userns, new_dir, 4488 new_dentry, is_dir); 4489 else 4490 error = may_delete(rd->new_mnt_userns, new_dir, 4491 new_dentry, new_is_dir); 4492 } 4493 if (error) 4494 return error; 4495 4496 if (!old_dir->i_op->rename) 4497 return -EPERM; 4498 4499 /* 4500 * If we are going to change the parent - check write permissions, 4501 * we'll need to flip '..'. 4502 */ 4503 if (new_dir != old_dir) { 4504 if (is_dir) { 4505 error = inode_permission(rd->old_mnt_userns, source, 4506 MAY_WRITE); 4507 if (error) 4508 return error; 4509 } 4510 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4511 error = inode_permission(rd->new_mnt_userns, target, 4512 MAY_WRITE); 4513 if (error) 4514 return error; 4515 } 4516 } 4517 4518 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4519 flags); 4520 if (error) 4521 return error; 4522 4523 take_dentry_name_snapshot(&old_name, old_dentry); 4524 dget(new_dentry); 4525 if (!is_dir || (flags & RENAME_EXCHANGE)) 4526 lock_two_nondirectories(source, target); 4527 else if (target) 4528 inode_lock(target); 4529 4530 error = -EBUSY; 4531 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4532 goto out; 4533 4534 if (max_links && new_dir != old_dir) { 4535 error = -EMLINK; 4536 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4537 goto out; 4538 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4539 old_dir->i_nlink >= max_links) 4540 goto out; 4541 } 4542 if (!is_dir) { 4543 error = try_break_deleg(source, delegated_inode); 4544 if (error) 4545 goto out; 4546 } 4547 if (target && !new_is_dir) { 4548 error = try_break_deleg(target, delegated_inode); 4549 if (error) 4550 goto out; 4551 } 4552 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry, 4553 new_dir, new_dentry, flags); 4554 if (error) 4555 goto out; 4556 4557 if (!(flags & RENAME_EXCHANGE) && target) { 4558 if (is_dir) { 4559 shrink_dcache_parent(new_dentry); 4560 target->i_flags |= S_DEAD; 4561 } 4562 dont_mount(new_dentry); 4563 detach_mounts(new_dentry); 4564 } 4565 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4566 if (!(flags & RENAME_EXCHANGE)) 4567 d_move(old_dentry, new_dentry); 4568 else 4569 d_exchange(old_dentry, new_dentry); 4570 } 4571 out: 4572 if (!is_dir || (flags & RENAME_EXCHANGE)) 4573 unlock_two_nondirectories(source, target); 4574 else if (target) 4575 inode_unlock(target); 4576 dput(new_dentry); 4577 if (!error) { 4578 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir, 4579 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4580 if (flags & RENAME_EXCHANGE) { 4581 fsnotify_move(new_dir, old_dir, &old_dentry->d_name, 4582 new_is_dir, NULL, new_dentry); 4583 } 4584 } 4585 release_dentry_name_snapshot(&old_name); 4586 4587 return error; 4588 } 4589 EXPORT_SYMBOL(vfs_rename); 4590 4591 int do_renameat2(int olddfd, struct filename *from, int newdfd, 4592 struct filename *to, unsigned int flags) 4593 { 4594 struct renamedata rd; 4595 struct dentry *old_dentry, *new_dentry; 4596 struct dentry *trap; 4597 struct path old_path, new_path; 4598 struct qstr old_last, new_last; 4599 int old_type, new_type; 4600 struct inode *delegated_inode = NULL; 4601 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET; 4602 bool should_retry = false; 4603 int error = -EINVAL; 4604 4605 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4606 goto put_both; 4607 4608 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4609 (flags & RENAME_EXCHANGE)) 4610 goto put_both; 4611 4612 if (flags & RENAME_EXCHANGE) 4613 target_flags = 0; 4614 4615 retry: 4616 from = filename_parentat(olddfd, from, lookup_flags, &old_path, 4617 &old_last, &old_type); 4618 if (IS_ERR(from)) { 4619 error = PTR_ERR(from); 4620 goto put_new; 4621 } 4622 4623 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last, 4624 &new_type); 4625 if (IS_ERR(to)) { 4626 error = PTR_ERR(to); 4627 goto exit1; 4628 } 4629 4630 error = -EXDEV; 4631 if (old_path.mnt != new_path.mnt) 4632 goto exit2; 4633 4634 error = -EBUSY; 4635 if (old_type != LAST_NORM) 4636 goto exit2; 4637 4638 if (flags & RENAME_NOREPLACE) 4639 error = -EEXIST; 4640 if (new_type != LAST_NORM) 4641 goto exit2; 4642 4643 error = mnt_want_write(old_path.mnt); 4644 if (error) 4645 goto exit2; 4646 4647 retry_deleg: 4648 trap = lock_rename(new_path.dentry, old_path.dentry); 4649 4650 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags); 4651 error = PTR_ERR(old_dentry); 4652 if (IS_ERR(old_dentry)) 4653 goto exit3; 4654 /* source must exist */ 4655 error = -ENOENT; 4656 if (d_is_negative(old_dentry)) 4657 goto exit4; 4658 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags); 4659 error = PTR_ERR(new_dentry); 4660 if (IS_ERR(new_dentry)) 4661 goto exit4; 4662 error = -EEXIST; 4663 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4664 goto exit5; 4665 if (flags & RENAME_EXCHANGE) { 4666 error = -ENOENT; 4667 if (d_is_negative(new_dentry)) 4668 goto exit5; 4669 4670 if (!d_is_dir(new_dentry)) { 4671 error = -ENOTDIR; 4672 if (new_last.name[new_last.len]) 4673 goto exit5; 4674 } 4675 } 4676 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4677 if (!d_is_dir(old_dentry)) { 4678 error = -ENOTDIR; 4679 if (old_last.name[old_last.len]) 4680 goto exit5; 4681 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len]) 4682 goto exit5; 4683 } 4684 /* source should not be ancestor of target */ 4685 error = -EINVAL; 4686 if (old_dentry == trap) 4687 goto exit5; 4688 /* target should not be an ancestor of source */ 4689 if (!(flags & RENAME_EXCHANGE)) 4690 error = -ENOTEMPTY; 4691 if (new_dentry == trap) 4692 goto exit5; 4693 4694 error = security_path_rename(&old_path, old_dentry, 4695 &new_path, new_dentry, flags); 4696 if (error) 4697 goto exit5; 4698 4699 rd.old_dir = old_path.dentry->d_inode; 4700 rd.old_dentry = old_dentry; 4701 rd.old_mnt_userns = mnt_user_ns(old_path.mnt); 4702 rd.new_dir = new_path.dentry->d_inode; 4703 rd.new_dentry = new_dentry; 4704 rd.new_mnt_userns = mnt_user_ns(new_path.mnt); 4705 rd.delegated_inode = &delegated_inode; 4706 rd.flags = flags; 4707 error = vfs_rename(&rd); 4708 exit5: 4709 dput(new_dentry); 4710 exit4: 4711 dput(old_dentry); 4712 exit3: 4713 unlock_rename(new_path.dentry, old_path.dentry); 4714 if (delegated_inode) { 4715 error = break_deleg_wait(&delegated_inode); 4716 if (!error) 4717 goto retry_deleg; 4718 } 4719 mnt_drop_write(old_path.mnt); 4720 exit2: 4721 if (retry_estale(error, lookup_flags)) 4722 should_retry = true; 4723 path_put(&new_path); 4724 exit1: 4725 path_put(&old_path); 4726 if (should_retry) { 4727 should_retry = false; 4728 lookup_flags |= LOOKUP_REVAL; 4729 goto retry; 4730 } 4731 put_both: 4732 if (!IS_ERR(from)) 4733 putname(from); 4734 put_new: 4735 if (!IS_ERR(to)) 4736 putname(to); 4737 return error; 4738 } 4739 4740 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4741 int, newdfd, const char __user *, newname, unsigned int, flags) 4742 { 4743 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4744 flags); 4745 } 4746 4747 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4748 int, newdfd, const char __user *, newname) 4749 { 4750 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname), 4751 0); 4752 } 4753 4754 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4755 { 4756 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD, 4757 getname(newname), 0); 4758 } 4759 4760 int readlink_copy(char __user *buffer, int buflen, const char *link) 4761 { 4762 int len = PTR_ERR(link); 4763 if (IS_ERR(link)) 4764 goto out; 4765 4766 len = strlen(link); 4767 if (len > (unsigned) buflen) 4768 len = buflen; 4769 if (copy_to_user(buffer, link, len)) 4770 len = -EFAULT; 4771 out: 4772 return len; 4773 } 4774 4775 /** 4776 * vfs_readlink - copy symlink body into userspace buffer 4777 * @dentry: dentry on which to get symbolic link 4778 * @buffer: user memory pointer 4779 * @buflen: size of buffer 4780 * 4781 * Does not touch atime. That's up to the caller if necessary 4782 * 4783 * Does not call security hook. 4784 */ 4785 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4786 { 4787 struct inode *inode = d_inode(dentry); 4788 DEFINE_DELAYED_CALL(done); 4789 const char *link; 4790 int res; 4791 4792 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) { 4793 if (unlikely(inode->i_op->readlink)) 4794 return inode->i_op->readlink(dentry, buffer, buflen); 4795 4796 if (!d_is_symlink(dentry)) 4797 return -EINVAL; 4798 4799 spin_lock(&inode->i_lock); 4800 inode->i_opflags |= IOP_DEFAULT_READLINK; 4801 spin_unlock(&inode->i_lock); 4802 } 4803 4804 link = READ_ONCE(inode->i_link); 4805 if (!link) { 4806 link = inode->i_op->get_link(dentry, inode, &done); 4807 if (IS_ERR(link)) 4808 return PTR_ERR(link); 4809 } 4810 res = readlink_copy(buffer, buflen, link); 4811 do_delayed_call(&done); 4812 return res; 4813 } 4814 EXPORT_SYMBOL(vfs_readlink); 4815 4816 /** 4817 * vfs_get_link - get symlink body 4818 * @dentry: dentry on which to get symbolic link 4819 * @done: caller needs to free returned data with this 4820 * 4821 * Calls security hook and i_op->get_link() on the supplied inode. 4822 * 4823 * It does not touch atime. That's up to the caller if necessary. 4824 * 4825 * Does not work on "special" symlinks like /proc/$$/fd/N 4826 */ 4827 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done) 4828 { 4829 const char *res = ERR_PTR(-EINVAL); 4830 struct inode *inode = d_inode(dentry); 4831 4832 if (d_is_symlink(dentry)) { 4833 res = ERR_PTR(security_inode_readlink(dentry)); 4834 if (!res) 4835 res = inode->i_op->get_link(dentry, inode, done); 4836 } 4837 return res; 4838 } 4839 EXPORT_SYMBOL(vfs_get_link); 4840 4841 /* get the link contents into pagecache */ 4842 const char *page_get_link(struct dentry *dentry, struct inode *inode, 4843 struct delayed_call *callback) 4844 { 4845 char *kaddr; 4846 struct page *page; 4847 struct address_space *mapping = inode->i_mapping; 4848 4849 if (!dentry) { 4850 page = find_get_page(mapping, 0); 4851 if (!page) 4852 return ERR_PTR(-ECHILD); 4853 if (!PageUptodate(page)) { 4854 put_page(page); 4855 return ERR_PTR(-ECHILD); 4856 } 4857 } else { 4858 page = read_mapping_page(mapping, 0, NULL); 4859 if (IS_ERR(page)) 4860 return (char*)page; 4861 } 4862 set_delayed_call(callback, page_put_link, page); 4863 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM); 4864 kaddr = page_address(page); 4865 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1); 4866 return kaddr; 4867 } 4868 4869 EXPORT_SYMBOL(page_get_link); 4870 4871 void page_put_link(void *arg) 4872 { 4873 put_page(arg); 4874 } 4875 EXPORT_SYMBOL(page_put_link); 4876 4877 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4878 { 4879 DEFINE_DELAYED_CALL(done); 4880 int res = readlink_copy(buffer, buflen, 4881 page_get_link(dentry, d_inode(dentry), 4882 &done)); 4883 do_delayed_call(&done); 4884 return res; 4885 } 4886 EXPORT_SYMBOL(page_readlink); 4887 4888 /* 4889 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4890 */ 4891 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4892 { 4893 struct address_space *mapping = inode->i_mapping; 4894 struct page *page; 4895 void *fsdata; 4896 int err; 4897 unsigned int flags = 0; 4898 if (nofs) 4899 flags |= AOP_FLAG_NOFS; 4900 4901 retry: 4902 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4903 flags, &page, &fsdata); 4904 if (err) 4905 goto fail; 4906 4907 memcpy(page_address(page), symname, len-1); 4908 4909 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4910 page, fsdata); 4911 if (err < 0) 4912 goto fail; 4913 if (err < len-1) 4914 goto retry; 4915 4916 mark_inode_dirty(inode); 4917 return 0; 4918 fail: 4919 return err; 4920 } 4921 EXPORT_SYMBOL(__page_symlink); 4922 4923 int page_symlink(struct inode *inode, const char *symname, int len) 4924 { 4925 return __page_symlink(inode, symname, len, 4926 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS)); 4927 } 4928 EXPORT_SYMBOL(page_symlink); 4929 4930 const struct inode_operations page_symlink_inode_operations = { 4931 .get_link = page_get_link, 4932 }; 4933 EXPORT_SYMBOL(page_symlink_inode_operations); 4934