1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/slab.h> 21 #include <linux/fs.h> 22 #include <linux/namei.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/ima.h> 28 #include <linux/syscalls.h> 29 #include <linux/mount.h> 30 #include <linux/audit.h> 31 #include <linux/capability.h> 32 #include <linux/file.h> 33 #include <linux/fcntl.h> 34 #include <linux/device_cgroup.h> 35 #include <linux/fs_struct.h> 36 #include <linux/posix_acl.h> 37 #include <linux/hash.h> 38 #include <asm/uaccess.h> 39 40 #include "internal.h" 41 #include "mount.h" 42 43 /* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108 /* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114 /* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename)) 123 124 struct filename * 125 getname_flags(const char __user *filename, int flags, int *empty) 126 { 127 struct filename *result, *err; 128 int len; 129 long max; 130 char *kname; 131 132 result = audit_reusename(filename); 133 if (result) 134 return result; 135 136 result = __getname(); 137 if (unlikely(!result)) 138 return ERR_PTR(-ENOMEM); 139 result->refcnt = 1; 140 141 /* 142 * First, try to embed the struct filename inside the names_cache 143 * allocation 144 */ 145 kname = (char *)result + sizeof(*result); 146 result->name = kname; 147 result->separate = false; 148 max = EMBEDDED_NAME_MAX; 149 150 recopy: 151 len = strncpy_from_user(kname, filename, max); 152 if (unlikely(len < 0)) { 153 err = ERR_PTR(len); 154 goto error; 155 } 156 157 /* 158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 159 * separate struct filename so we can dedicate the entire 160 * names_cache allocation for the pathname, and re-do the copy from 161 * userland. 162 */ 163 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) { 164 kname = (char *)result; 165 166 result = kzalloc(sizeof(*result), GFP_KERNEL); 167 if (!result) { 168 err = ERR_PTR(-ENOMEM); 169 result = (struct filename *)kname; 170 goto error; 171 } 172 result->name = kname; 173 result->separate = true; 174 result->refcnt = 1; 175 max = PATH_MAX; 176 goto recopy; 177 } 178 179 /* The empty path is special. */ 180 if (unlikely(!len)) { 181 if (empty) 182 *empty = 1; 183 err = ERR_PTR(-ENOENT); 184 if (!(flags & LOOKUP_EMPTY)) 185 goto error; 186 } 187 188 err = ERR_PTR(-ENAMETOOLONG); 189 if (unlikely(len >= PATH_MAX)) 190 goto error; 191 192 result->uptr = filename; 193 result->aname = NULL; 194 audit_getname(result); 195 return result; 196 197 error: 198 putname(result); 199 return err; 200 } 201 202 struct filename * 203 getname(const char __user * filename) 204 { 205 return getname_flags(filename, 0, NULL); 206 } 207 208 struct filename * 209 getname_kernel(const char * filename) 210 { 211 struct filename *result; 212 int len = strlen(filename) + 1; 213 214 result = __getname(); 215 if (unlikely(!result)) 216 return ERR_PTR(-ENOMEM); 217 218 if (len <= EMBEDDED_NAME_MAX) { 219 result->name = (char *)(result) + sizeof(*result); 220 result->separate = false; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 tmp->separate = true; 231 result = tmp; 232 } else { 233 __putname(result); 234 return ERR_PTR(-ENAMETOOLONG); 235 } 236 memcpy((char *)result->name, filename, len); 237 result->uptr = NULL; 238 result->aname = NULL; 239 result->refcnt = 1; 240 audit_getname(result); 241 242 return result; 243 } 244 245 void putname(struct filename *name) 246 { 247 BUG_ON(name->refcnt <= 0); 248 249 if (--name->refcnt > 0) 250 return; 251 252 if (name->separate) { 253 __putname(name->name); 254 kfree(name); 255 } else 256 __putname(name); 257 } 258 259 static int check_acl(struct inode *inode, int mask) 260 { 261 #ifdef CONFIG_FS_POSIX_ACL 262 struct posix_acl *acl; 263 264 if (mask & MAY_NOT_BLOCK) { 265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 266 if (!acl) 267 return -EAGAIN; 268 /* no ->get_acl() calls in RCU mode... */ 269 if (acl == ACL_NOT_CACHED) 270 return -ECHILD; 271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 272 } 273 274 acl = get_acl(inode, ACL_TYPE_ACCESS); 275 if (IS_ERR(acl)) 276 return PTR_ERR(acl); 277 if (acl) { 278 int error = posix_acl_permission(inode, acl, mask); 279 posix_acl_release(acl); 280 return error; 281 } 282 #endif 283 284 return -EAGAIN; 285 } 286 287 /* 288 * This does the basic permission checking 289 */ 290 static int acl_permission_check(struct inode *inode, int mask) 291 { 292 unsigned int mode = inode->i_mode; 293 294 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 295 mode >>= 6; 296 else { 297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 298 int error = check_acl(inode, mask); 299 if (error != -EAGAIN) 300 return error; 301 } 302 303 if (in_group_p(inode->i_gid)) 304 mode >>= 3; 305 } 306 307 /* 308 * If the DACs are ok we don't need any capability check. 309 */ 310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 311 return 0; 312 return -EACCES; 313 } 314 315 /** 316 * generic_permission - check for access rights on a Posix-like filesystem 317 * @inode: inode to check access rights for 318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 319 * 320 * Used to check for read/write/execute permissions on a file. 321 * We use "fsuid" for this, letting us set arbitrary permissions 322 * for filesystem access without changing the "normal" uids which 323 * are used for other things. 324 * 325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 326 * request cannot be satisfied (eg. requires blocking or too much complexity). 327 * It would then be called again in ref-walk mode. 328 */ 329 int generic_permission(struct inode *inode, int mask) 330 { 331 int ret; 332 333 /* 334 * Do the basic permission checks. 335 */ 336 ret = acl_permission_check(inode, mask); 337 if (ret != -EACCES) 338 return ret; 339 340 if (S_ISDIR(inode->i_mode)) { 341 /* DACs are overridable for directories */ 342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 343 return 0; 344 if (!(mask & MAY_WRITE)) 345 if (capable_wrt_inode_uidgid(inode, 346 CAP_DAC_READ_SEARCH)) 347 return 0; 348 return -EACCES; 349 } 350 /* 351 * Read/write DACs are always overridable. 352 * Executable DACs are overridable when there is 353 * at least one exec bit set. 354 */ 355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 357 return 0; 358 359 /* 360 * Searching includes executable on directories, else just read. 361 */ 362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 363 if (mask == MAY_READ) 364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 365 return 0; 366 367 return -EACCES; 368 } 369 EXPORT_SYMBOL(generic_permission); 370 371 /* 372 * We _really_ want to just do "generic_permission()" without 373 * even looking at the inode->i_op values. So we keep a cache 374 * flag in inode->i_opflags, that says "this has not special 375 * permission function, use the fast case". 376 */ 377 static inline int do_inode_permission(struct inode *inode, int mask) 378 { 379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 380 if (likely(inode->i_op->permission)) 381 return inode->i_op->permission(inode, mask); 382 383 /* This gets set once for the inode lifetime */ 384 spin_lock(&inode->i_lock); 385 inode->i_opflags |= IOP_FASTPERM; 386 spin_unlock(&inode->i_lock); 387 } 388 return generic_permission(inode, mask); 389 } 390 391 /** 392 * __inode_permission - Check for access rights to a given inode 393 * @inode: Inode to check permission on 394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 395 * 396 * Check for read/write/execute permissions on an inode. 397 * 398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 399 * 400 * This does not check for a read-only file system. You probably want 401 * inode_permission(). 402 */ 403 int __inode_permission(struct inode *inode, int mask) 404 { 405 int retval; 406 407 if (unlikely(mask & MAY_WRITE)) { 408 /* 409 * Nobody gets write access to an immutable file. 410 */ 411 if (IS_IMMUTABLE(inode)) 412 return -EACCES; 413 } 414 415 retval = do_inode_permission(inode, mask); 416 if (retval) 417 return retval; 418 419 retval = devcgroup_inode_permission(inode, mask); 420 if (retval) 421 return retval; 422 423 return security_inode_permission(inode, mask); 424 } 425 EXPORT_SYMBOL(__inode_permission); 426 427 /** 428 * sb_permission - Check superblock-level permissions 429 * @sb: Superblock of inode to check permission on 430 * @inode: Inode to check permission on 431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 432 * 433 * Separate out file-system wide checks from inode-specific permission checks. 434 */ 435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 436 { 437 if (unlikely(mask & MAY_WRITE)) { 438 umode_t mode = inode->i_mode; 439 440 /* Nobody gets write access to a read-only fs. */ 441 if ((sb->s_flags & MS_RDONLY) && 442 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 443 return -EROFS; 444 } 445 return 0; 446 } 447 448 /** 449 * inode_permission - Check for access rights to a given inode 450 * @inode: Inode to check permission on 451 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 452 * 453 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 454 * this, letting us set arbitrary permissions for filesystem access without 455 * changing the "normal" UIDs which are used for other things. 456 * 457 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 458 */ 459 int inode_permission(struct inode *inode, int mask) 460 { 461 int retval; 462 463 retval = sb_permission(inode->i_sb, inode, mask); 464 if (retval) 465 return retval; 466 return __inode_permission(inode, mask); 467 } 468 EXPORT_SYMBOL(inode_permission); 469 470 /** 471 * path_get - get a reference to a path 472 * @path: path to get the reference to 473 * 474 * Given a path increment the reference count to the dentry and the vfsmount. 475 */ 476 void path_get(const struct path *path) 477 { 478 mntget(path->mnt); 479 dget(path->dentry); 480 } 481 EXPORT_SYMBOL(path_get); 482 483 /** 484 * path_put - put a reference to a path 485 * @path: path to put the reference to 486 * 487 * Given a path decrement the reference count to the dentry and the vfsmount. 488 */ 489 void path_put(const struct path *path) 490 { 491 dput(path->dentry); 492 mntput(path->mnt); 493 } 494 EXPORT_SYMBOL(path_put); 495 496 struct nameidata { 497 struct path path; 498 struct qstr last; 499 struct path root; 500 struct inode *inode; /* path.dentry.d_inode */ 501 unsigned int flags; 502 unsigned seq, m_seq; 503 int last_type; 504 unsigned depth; 505 struct file *base; 506 char *saved_names[MAX_NESTED_LINKS + 1]; 507 }; 508 509 /* 510 * Path walking has 2 modes, rcu-walk and ref-walk (see 511 * Documentation/filesystems/path-lookup.txt). In situations when we can't 512 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 513 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 514 * mode. Refcounts are grabbed at the last known good point before rcu-walk 515 * got stuck, so ref-walk may continue from there. If this is not successful 516 * (eg. a seqcount has changed), then failure is returned and it's up to caller 517 * to restart the path walk from the beginning in ref-walk mode. 518 */ 519 520 /** 521 * unlazy_walk - try to switch to ref-walk mode. 522 * @nd: nameidata pathwalk data 523 * @dentry: child of nd->path.dentry or NULL 524 * Returns: 0 on success, -ECHILD on failure 525 * 526 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 527 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 528 * @nd or NULL. Must be called from rcu-walk context. 529 */ 530 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 531 { 532 struct fs_struct *fs = current->fs; 533 struct dentry *parent = nd->path.dentry; 534 535 BUG_ON(!(nd->flags & LOOKUP_RCU)); 536 537 /* 538 * After legitimizing the bastards, terminate_walk() 539 * will do the right thing for non-RCU mode, and all our 540 * subsequent exit cases should rcu_read_unlock() 541 * before returning. Do vfsmount first; if dentry 542 * can't be legitimized, just set nd->path.dentry to NULL 543 * and rely on dput(NULL) being a no-op. 544 */ 545 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 546 return -ECHILD; 547 nd->flags &= ~LOOKUP_RCU; 548 549 if (!lockref_get_not_dead(&parent->d_lockref)) { 550 nd->path.dentry = NULL; 551 goto out; 552 } 553 554 /* 555 * For a negative lookup, the lookup sequence point is the parents 556 * sequence point, and it only needs to revalidate the parent dentry. 557 * 558 * For a positive lookup, we need to move both the parent and the 559 * dentry from the RCU domain to be properly refcounted. And the 560 * sequence number in the dentry validates *both* dentry counters, 561 * since we checked the sequence number of the parent after we got 562 * the child sequence number. So we know the parent must still 563 * be valid if the child sequence number is still valid. 564 */ 565 if (!dentry) { 566 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 567 goto out; 568 BUG_ON(nd->inode != parent->d_inode); 569 } else { 570 if (!lockref_get_not_dead(&dentry->d_lockref)) 571 goto out; 572 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 573 goto drop_dentry; 574 } 575 576 /* 577 * Sequence counts matched. Now make sure that the root is 578 * still valid and get it if required. 579 */ 580 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 581 spin_lock(&fs->lock); 582 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 583 goto unlock_and_drop_dentry; 584 path_get(&nd->root); 585 spin_unlock(&fs->lock); 586 } 587 588 rcu_read_unlock(); 589 return 0; 590 591 unlock_and_drop_dentry: 592 spin_unlock(&fs->lock); 593 drop_dentry: 594 rcu_read_unlock(); 595 dput(dentry); 596 goto drop_root_mnt; 597 out: 598 rcu_read_unlock(); 599 drop_root_mnt: 600 if (!(nd->flags & LOOKUP_ROOT)) 601 nd->root.mnt = NULL; 602 return -ECHILD; 603 } 604 605 static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 606 { 607 return dentry->d_op->d_revalidate(dentry, flags); 608 } 609 610 /** 611 * complete_walk - successful completion of path walk 612 * @nd: pointer nameidata 613 * 614 * If we had been in RCU mode, drop out of it and legitimize nd->path. 615 * Revalidate the final result, unless we'd already done that during 616 * the path walk or the filesystem doesn't ask for it. Return 0 on 617 * success, -error on failure. In case of failure caller does not 618 * need to drop nd->path. 619 */ 620 static int complete_walk(struct nameidata *nd) 621 { 622 struct dentry *dentry = nd->path.dentry; 623 int status; 624 625 if (nd->flags & LOOKUP_RCU) { 626 nd->flags &= ~LOOKUP_RCU; 627 if (!(nd->flags & LOOKUP_ROOT)) 628 nd->root.mnt = NULL; 629 630 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 631 rcu_read_unlock(); 632 return -ECHILD; 633 } 634 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 635 rcu_read_unlock(); 636 mntput(nd->path.mnt); 637 return -ECHILD; 638 } 639 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 640 rcu_read_unlock(); 641 dput(dentry); 642 mntput(nd->path.mnt); 643 return -ECHILD; 644 } 645 rcu_read_unlock(); 646 } 647 648 if (likely(!(nd->flags & LOOKUP_JUMPED))) 649 return 0; 650 651 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 652 return 0; 653 654 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 655 if (status > 0) 656 return 0; 657 658 if (!status) 659 status = -ESTALE; 660 661 path_put(&nd->path); 662 return status; 663 } 664 665 static __always_inline void set_root(struct nameidata *nd) 666 { 667 get_fs_root(current->fs, &nd->root); 668 } 669 670 static int link_path_walk(const char *, struct nameidata *); 671 672 static __always_inline unsigned set_root_rcu(struct nameidata *nd) 673 { 674 struct fs_struct *fs = current->fs; 675 unsigned seq, res; 676 677 do { 678 seq = read_seqcount_begin(&fs->seq); 679 nd->root = fs->root; 680 res = __read_seqcount_begin(&nd->root.dentry->d_seq); 681 } while (read_seqcount_retry(&fs->seq, seq)); 682 return res; 683 } 684 685 static void path_put_conditional(struct path *path, struct nameidata *nd) 686 { 687 dput(path->dentry); 688 if (path->mnt != nd->path.mnt) 689 mntput(path->mnt); 690 } 691 692 static inline void path_to_nameidata(const struct path *path, 693 struct nameidata *nd) 694 { 695 if (!(nd->flags & LOOKUP_RCU)) { 696 dput(nd->path.dentry); 697 if (nd->path.mnt != path->mnt) 698 mntput(nd->path.mnt); 699 } 700 nd->path.mnt = path->mnt; 701 nd->path.dentry = path->dentry; 702 } 703 704 /* 705 * Helper to directly jump to a known parsed path from ->follow_link, 706 * caller must have taken a reference to path beforehand. 707 */ 708 void nd_jump_link(struct nameidata *nd, struct path *path) 709 { 710 path_put(&nd->path); 711 712 nd->path = *path; 713 nd->inode = nd->path.dentry->d_inode; 714 nd->flags |= LOOKUP_JUMPED; 715 } 716 717 void nd_set_link(struct nameidata *nd, char *path) 718 { 719 nd->saved_names[nd->depth] = path; 720 } 721 EXPORT_SYMBOL(nd_set_link); 722 723 char *nd_get_link(struct nameidata *nd) 724 { 725 return nd->saved_names[nd->depth]; 726 } 727 EXPORT_SYMBOL(nd_get_link); 728 729 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 730 { 731 struct inode *inode = link->dentry->d_inode; 732 if (inode->i_op->put_link) 733 inode->i_op->put_link(link->dentry, nd, cookie); 734 path_put(link); 735 } 736 737 int sysctl_protected_symlinks __read_mostly = 0; 738 int sysctl_protected_hardlinks __read_mostly = 0; 739 740 /** 741 * may_follow_link - Check symlink following for unsafe situations 742 * @link: The path of the symlink 743 * @nd: nameidata pathwalk data 744 * 745 * In the case of the sysctl_protected_symlinks sysctl being enabled, 746 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 747 * in a sticky world-writable directory. This is to protect privileged 748 * processes from failing races against path names that may change out 749 * from under them by way of other users creating malicious symlinks. 750 * It will permit symlinks to be followed only when outside a sticky 751 * world-writable directory, or when the uid of the symlink and follower 752 * match, or when the directory owner matches the symlink's owner. 753 * 754 * Returns 0 if following the symlink is allowed, -ve on error. 755 */ 756 static inline int may_follow_link(struct path *link, struct nameidata *nd) 757 { 758 const struct inode *inode; 759 const struct inode *parent; 760 761 if (!sysctl_protected_symlinks) 762 return 0; 763 764 /* Allowed if owner and follower match. */ 765 inode = link->dentry->d_inode; 766 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 767 return 0; 768 769 /* Allowed if parent directory not sticky and world-writable. */ 770 parent = nd->path.dentry->d_inode; 771 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 772 return 0; 773 774 /* Allowed if parent directory and link owner match. */ 775 if (uid_eq(parent->i_uid, inode->i_uid)) 776 return 0; 777 778 audit_log_link_denied("follow_link", link); 779 path_put_conditional(link, nd); 780 path_put(&nd->path); 781 return -EACCES; 782 } 783 784 /** 785 * safe_hardlink_source - Check for safe hardlink conditions 786 * @inode: the source inode to hardlink from 787 * 788 * Return false if at least one of the following conditions: 789 * - inode is not a regular file 790 * - inode is setuid 791 * - inode is setgid and group-exec 792 * - access failure for read and write 793 * 794 * Otherwise returns true. 795 */ 796 static bool safe_hardlink_source(struct inode *inode) 797 { 798 umode_t mode = inode->i_mode; 799 800 /* Special files should not get pinned to the filesystem. */ 801 if (!S_ISREG(mode)) 802 return false; 803 804 /* Setuid files should not get pinned to the filesystem. */ 805 if (mode & S_ISUID) 806 return false; 807 808 /* Executable setgid files should not get pinned to the filesystem. */ 809 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 810 return false; 811 812 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 813 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 814 return false; 815 816 return true; 817 } 818 819 /** 820 * may_linkat - Check permissions for creating a hardlink 821 * @link: the source to hardlink from 822 * 823 * Block hardlink when all of: 824 * - sysctl_protected_hardlinks enabled 825 * - fsuid does not match inode 826 * - hardlink source is unsafe (see safe_hardlink_source() above) 827 * - not CAP_FOWNER 828 * 829 * Returns 0 if successful, -ve on error. 830 */ 831 static int may_linkat(struct path *link) 832 { 833 const struct cred *cred; 834 struct inode *inode; 835 836 if (!sysctl_protected_hardlinks) 837 return 0; 838 839 cred = current_cred(); 840 inode = link->dentry->d_inode; 841 842 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 843 * otherwise, it must be a safe source. 844 */ 845 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 846 capable(CAP_FOWNER)) 847 return 0; 848 849 audit_log_link_denied("linkat", link); 850 return -EPERM; 851 } 852 853 static __always_inline int 854 follow_link(struct path *link, struct nameidata *nd, void **p) 855 { 856 struct dentry *dentry = link->dentry; 857 int error; 858 char *s; 859 860 BUG_ON(nd->flags & LOOKUP_RCU); 861 862 if (link->mnt == nd->path.mnt) 863 mntget(link->mnt); 864 865 error = -ELOOP; 866 if (unlikely(current->total_link_count >= 40)) 867 goto out_put_nd_path; 868 869 cond_resched(); 870 current->total_link_count++; 871 872 touch_atime(link); 873 nd_set_link(nd, NULL); 874 875 error = security_inode_follow_link(link->dentry, nd); 876 if (error) 877 goto out_put_nd_path; 878 879 nd->last_type = LAST_BIND; 880 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 881 error = PTR_ERR(*p); 882 if (IS_ERR(*p)) 883 goto out_put_nd_path; 884 885 error = 0; 886 s = nd_get_link(nd); 887 if (s) { 888 if (unlikely(IS_ERR(s))) { 889 path_put(&nd->path); 890 put_link(nd, link, *p); 891 return PTR_ERR(s); 892 } 893 if (*s == '/') { 894 if (!nd->root.mnt) 895 set_root(nd); 896 path_put(&nd->path); 897 nd->path = nd->root; 898 path_get(&nd->root); 899 nd->flags |= LOOKUP_JUMPED; 900 } 901 nd->inode = nd->path.dentry->d_inode; 902 error = link_path_walk(s, nd); 903 if (unlikely(error)) 904 put_link(nd, link, *p); 905 } 906 907 return error; 908 909 out_put_nd_path: 910 *p = NULL; 911 path_put(&nd->path); 912 path_put(link); 913 return error; 914 } 915 916 static int follow_up_rcu(struct path *path) 917 { 918 struct mount *mnt = real_mount(path->mnt); 919 struct mount *parent; 920 struct dentry *mountpoint; 921 922 parent = mnt->mnt_parent; 923 if (&parent->mnt == path->mnt) 924 return 0; 925 mountpoint = mnt->mnt_mountpoint; 926 path->dentry = mountpoint; 927 path->mnt = &parent->mnt; 928 return 1; 929 } 930 931 /* 932 * follow_up - Find the mountpoint of path's vfsmount 933 * 934 * Given a path, find the mountpoint of its source file system. 935 * Replace @path with the path of the mountpoint in the parent mount. 936 * Up is towards /. 937 * 938 * Return 1 if we went up a level and 0 if we were already at the 939 * root. 940 */ 941 int follow_up(struct path *path) 942 { 943 struct mount *mnt = real_mount(path->mnt); 944 struct mount *parent; 945 struct dentry *mountpoint; 946 947 read_seqlock_excl(&mount_lock); 948 parent = mnt->mnt_parent; 949 if (parent == mnt) { 950 read_sequnlock_excl(&mount_lock); 951 return 0; 952 } 953 mntget(&parent->mnt); 954 mountpoint = dget(mnt->mnt_mountpoint); 955 read_sequnlock_excl(&mount_lock); 956 dput(path->dentry); 957 path->dentry = mountpoint; 958 mntput(path->mnt); 959 path->mnt = &parent->mnt; 960 return 1; 961 } 962 EXPORT_SYMBOL(follow_up); 963 964 /* 965 * Perform an automount 966 * - return -EISDIR to tell follow_managed() to stop and return the path we 967 * were called with. 968 */ 969 static int follow_automount(struct path *path, unsigned flags, 970 bool *need_mntput) 971 { 972 struct vfsmount *mnt; 973 int err; 974 975 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 976 return -EREMOTE; 977 978 /* We don't want to mount if someone's just doing a stat - 979 * unless they're stat'ing a directory and appended a '/' to 980 * the name. 981 * 982 * We do, however, want to mount if someone wants to open or 983 * create a file of any type under the mountpoint, wants to 984 * traverse through the mountpoint or wants to open the 985 * mounted directory. Also, autofs may mark negative dentries 986 * as being automount points. These will need the attentions 987 * of the daemon to instantiate them before they can be used. 988 */ 989 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 990 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 991 path->dentry->d_inode) 992 return -EISDIR; 993 994 current->total_link_count++; 995 if (current->total_link_count >= 40) 996 return -ELOOP; 997 998 mnt = path->dentry->d_op->d_automount(path); 999 if (IS_ERR(mnt)) { 1000 /* 1001 * The filesystem is allowed to return -EISDIR here to indicate 1002 * it doesn't want to automount. For instance, autofs would do 1003 * this so that its userspace daemon can mount on this dentry. 1004 * 1005 * However, we can only permit this if it's a terminal point in 1006 * the path being looked up; if it wasn't then the remainder of 1007 * the path is inaccessible and we should say so. 1008 */ 1009 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 1010 return -EREMOTE; 1011 return PTR_ERR(mnt); 1012 } 1013 1014 if (!mnt) /* mount collision */ 1015 return 0; 1016 1017 if (!*need_mntput) { 1018 /* lock_mount() may release path->mnt on error */ 1019 mntget(path->mnt); 1020 *need_mntput = true; 1021 } 1022 err = finish_automount(mnt, path); 1023 1024 switch (err) { 1025 case -EBUSY: 1026 /* Someone else made a mount here whilst we were busy */ 1027 return 0; 1028 case 0: 1029 path_put(path); 1030 path->mnt = mnt; 1031 path->dentry = dget(mnt->mnt_root); 1032 return 0; 1033 default: 1034 return err; 1035 } 1036 1037 } 1038 1039 /* 1040 * Handle a dentry that is managed in some way. 1041 * - Flagged for transit management (autofs) 1042 * - Flagged as mountpoint 1043 * - Flagged as automount point 1044 * 1045 * This may only be called in refwalk mode. 1046 * 1047 * Serialization is taken care of in namespace.c 1048 */ 1049 static int follow_managed(struct path *path, unsigned flags) 1050 { 1051 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1052 unsigned managed; 1053 bool need_mntput = false; 1054 int ret = 0; 1055 1056 /* Given that we're not holding a lock here, we retain the value in a 1057 * local variable for each dentry as we look at it so that we don't see 1058 * the components of that value change under us */ 1059 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1060 managed &= DCACHE_MANAGED_DENTRY, 1061 unlikely(managed != 0)) { 1062 /* Allow the filesystem to manage the transit without i_mutex 1063 * being held. */ 1064 if (managed & DCACHE_MANAGE_TRANSIT) { 1065 BUG_ON(!path->dentry->d_op); 1066 BUG_ON(!path->dentry->d_op->d_manage); 1067 ret = path->dentry->d_op->d_manage(path->dentry, false); 1068 if (ret < 0) 1069 break; 1070 } 1071 1072 /* Transit to a mounted filesystem. */ 1073 if (managed & DCACHE_MOUNTED) { 1074 struct vfsmount *mounted = lookup_mnt(path); 1075 if (mounted) { 1076 dput(path->dentry); 1077 if (need_mntput) 1078 mntput(path->mnt); 1079 path->mnt = mounted; 1080 path->dentry = dget(mounted->mnt_root); 1081 need_mntput = true; 1082 continue; 1083 } 1084 1085 /* Something is mounted on this dentry in another 1086 * namespace and/or whatever was mounted there in this 1087 * namespace got unmounted before lookup_mnt() could 1088 * get it */ 1089 } 1090 1091 /* Handle an automount point */ 1092 if (managed & DCACHE_NEED_AUTOMOUNT) { 1093 ret = follow_automount(path, flags, &need_mntput); 1094 if (ret < 0) 1095 break; 1096 continue; 1097 } 1098 1099 /* We didn't change the current path point */ 1100 break; 1101 } 1102 1103 if (need_mntput && path->mnt == mnt) 1104 mntput(path->mnt); 1105 if (ret == -EISDIR) 1106 ret = 0; 1107 return ret < 0 ? ret : need_mntput; 1108 } 1109 1110 int follow_down_one(struct path *path) 1111 { 1112 struct vfsmount *mounted; 1113 1114 mounted = lookup_mnt(path); 1115 if (mounted) { 1116 dput(path->dentry); 1117 mntput(path->mnt); 1118 path->mnt = mounted; 1119 path->dentry = dget(mounted->mnt_root); 1120 return 1; 1121 } 1122 return 0; 1123 } 1124 EXPORT_SYMBOL(follow_down_one); 1125 1126 static inline int managed_dentry_rcu(struct dentry *dentry) 1127 { 1128 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1129 dentry->d_op->d_manage(dentry, true) : 0; 1130 } 1131 1132 /* 1133 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1134 * we meet a managed dentry that would need blocking. 1135 */ 1136 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1137 struct inode **inode) 1138 { 1139 for (;;) { 1140 struct mount *mounted; 1141 /* 1142 * Don't forget we might have a non-mountpoint managed dentry 1143 * that wants to block transit. 1144 */ 1145 switch (managed_dentry_rcu(path->dentry)) { 1146 case -ECHILD: 1147 default: 1148 return false; 1149 case -EISDIR: 1150 return true; 1151 case 0: 1152 break; 1153 } 1154 1155 if (!d_mountpoint(path->dentry)) 1156 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1157 1158 mounted = __lookup_mnt(path->mnt, path->dentry); 1159 if (!mounted) 1160 break; 1161 path->mnt = &mounted->mnt; 1162 path->dentry = mounted->mnt.mnt_root; 1163 nd->flags |= LOOKUP_JUMPED; 1164 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1165 /* 1166 * Update the inode too. We don't need to re-check the 1167 * dentry sequence number here after this d_inode read, 1168 * because a mount-point is always pinned. 1169 */ 1170 *inode = path->dentry->d_inode; 1171 } 1172 return !read_seqretry(&mount_lock, nd->m_seq) && 1173 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1174 } 1175 1176 static int follow_dotdot_rcu(struct nameidata *nd) 1177 { 1178 struct inode *inode = nd->inode; 1179 if (!nd->root.mnt) 1180 set_root_rcu(nd); 1181 1182 while (1) { 1183 if (nd->path.dentry == nd->root.dentry && 1184 nd->path.mnt == nd->root.mnt) { 1185 break; 1186 } 1187 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1188 struct dentry *old = nd->path.dentry; 1189 struct dentry *parent = old->d_parent; 1190 unsigned seq; 1191 1192 inode = parent->d_inode; 1193 seq = read_seqcount_begin(&parent->d_seq); 1194 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1195 goto failed; 1196 nd->path.dentry = parent; 1197 nd->seq = seq; 1198 break; 1199 } 1200 if (!follow_up_rcu(&nd->path)) 1201 break; 1202 inode = nd->path.dentry->d_inode; 1203 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1204 } 1205 while (d_mountpoint(nd->path.dentry)) { 1206 struct mount *mounted; 1207 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1208 if (!mounted) 1209 break; 1210 nd->path.mnt = &mounted->mnt; 1211 nd->path.dentry = mounted->mnt.mnt_root; 1212 inode = nd->path.dentry->d_inode; 1213 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1214 if (read_seqretry(&mount_lock, nd->m_seq)) 1215 goto failed; 1216 } 1217 nd->inode = inode; 1218 return 0; 1219 1220 failed: 1221 nd->flags &= ~LOOKUP_RCU; 1222 if (!(nd->flags & LOOKUP_ROOT)) 1223 nd->root.mnt = NULL; 1224 rcu_read_unlock(); 1225 return -ECHILD; 1226 } 1227 1228 /* 1229 * Follow down to the covering mount currently visible to userspace. At each 1230 * point, the filesystem owning that dentry may be queried as to whether the 1231 * caller is permitted to proceed or not. 1232 */ 1233 int follow_down(struct path *path) 1234 { 1235 unsigned managed; 1236 int ret; 1237 1238 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1239 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1240 /* Allow the filesystem to manage the transit without i_mutex 1241 * being held. 1242 * 1243 * We indicate to the filesystem if someone is trying to mount 1244 * something here. This gives autofs the chance to deny anyone 1245 * other than its daemon the right to mount on its 1246 * superstructure. 1247 * 1248 * The filesystem may sleep at this point. 1249 */ 1250 if (managed & DCACHE_MANAGE_TRANSIT) { 1251 BUG_ON(!path->dentry->d_op); 1252 BUG_ON(!path->dentry->d_op->d_manage); 1253 ret = path->dentry->d_op->d_manage( 1254 path->dentry, false); 1255 if (ret < 0) 1256 return ret == -EISDIR ? 0 : ret; 1257 } 1258 1259 /* Transit to a mounted filesystem. */ 1260 if (managed & DCACHE_MOUNTED) { 1261 struct vfsmount *mounted = lookup_mnt(path); 1262 if (!mounted) 1263 break; 1264 dput(path->dentry); 1265 mntput(path->mnt); 1266 path->mnt = mounted; 1267 path->dentry = dget(mounted->mnt_root); 1268 continue; 1269 } 1270 1271 /* Don't handle automount points here */ 1272 break; 1273 } 1274 return 0; 1275 } 1276 EXPORT_SYMBOL(follow_down); 1277 1278 /* 1279 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1280 */ 1281 static void follow_mount(struct path *path) 1282 { 1283 while (d_mountpoint(path->dentry)) { 1284 struct vfsmount *mounted = lookup_mnt(path); 1285 if (!mounted) 1286 break; 1287 dput(path->dentry); 1288 mntput(path->mnt); 1289 path->mnt = mounted; 1290 path->dentry = dget(mounted->mnt_root); 1291 } 1292 } 1293 1294 static void follow_dotdot(struct nameidata *nd) 1295 { 1296 if (!nd->root.mnt) 1297 set_root(nd); 1298 1299 while(1) { 1300 struct dentry *old = nd->path.dentry; 1301 1302 if (nd->path.dentry == nd->root.dentry && 1303 nd->path.mnt == nd->root.mnt) { 1304 break; 1305 } 1306 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1307 /* rare case of legitimate dget_parent()... */ 1308 nd->path.dentry = dget_parent(nd->path.dentry); 1309 dput(old); 1310 break; 1311 } 1312 if (!follow_up(&nd->path)) 1313 break; 1314 } 1315 follow_mount(&nd->path); 1316 nd->inode = nd->path.dentry->d_inode; 1317 } 1318 1319 /* 1320 * This looks up the name in dcache, possibly revalidates the old dentry and 1321 * allocates a new one if not found or not valid. In the need_lookup argument 1322 * returns whether i_op->lookup is necessary. 1323 * 1324 * dir->d_inode->i_mutex must be held 1325 */ 1326 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1327 unsigned int flags, bool *need_lookup) 1328 { 1329 struct dentry *dentry; 1330 int error; 1331 1332 *need_lookup = false; 1333 dentry = d_lookup(dir, name); 1334 if (dentry) { 1335 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1336 error = d_revalidate(dentry, flags); 1337 if (unlikely(error <= 0)) { 1338 if (error < 0) { 1339 dput(dentry); 1340 return ERR_PTR(error); 1341 } else { 1342 d_invalidate(dentry); 1343 dput(dentry); 1344 dentry = NULL; 1345 } 1346 } 1347 } 1348 } 1349 1350 if (!dentry) { 1351 dentry = d_alloc(dir, name); 1352 if (unlikely(!dentry)) 1353 return ERR_PTR(-ENOMEM); 1354 1355 *need_lookup = true; 1356 } 1357 return dentry; 1358 } 1359 1360 /* 1361 * Call i_op->lookup on the dentry. The dentry must be negative and 1362 * unhashed. 1363 * 1364 * dir->d_inode->i_mutex must be held 1365 */ 1366 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1367 unsigned int flags) 1368 { 1369 struct dentry *old; 1370 1371 /* Don't create child dentry for a dead directory. */ 1372 if (unlikely(IS_DEADDIR(dir))) { 1373 dput(dentry); 1374 return ERR_PTR(-ENOENT); 1375 } 1376 1377 old = dir->i_op->lookup(dir, dentry, flags); 1378 if (unlikely(old)) { 1379 dput(dentry); 1380 dentry = old; 1381 } 1382 return dentry; 1383 } 1384 1385 static struct dentry *__lookup_hash(struct qstr *name, 1386 struct dentry *base, unsigned int flags) 1387 { 1388 bool need_lookup; 1389 struct dentry *dentry; 1390 1391 dentry = lookup_dcache(name, base, flags, &need_lookup); 1392 if (!need_lookup) 1393 return dentry; 1394 1395 return lookup_real(base->d_inode, dentry, flags); 1396 } 1397 1398 /* 1399 * It's more convoluted than I'd like it to be, but... it's still fairly 1400 * small and for now I'd prefer to have fast path as straight as possible. 1401 * It _is_ time-critical. 1402 */ 1403 static int lookup_fast(struct nameidata *nd, 1404 struct path *path, struct inode **inode) 1405 { 1406 struct vfsmount *mnt = nd->path.mnt; 1407 struct dentry *dentry, *parent = nd->path.dentry; 1408 int need_reval = 1; 1409 int status = 1; 1410 int err; 1411 1412 /* 1413 * Rename seqlock is not required here because in the off chance 1414 * of a false negative due to a concurrent rename, we're going to 1415 * do the non-racy lookup, below. 1416 */ 1417 if (nd->flags & LOOKUP_RCU) { 1418 unsigned seq; 1419 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1420 if (!dentry) 1421 goto unlazy; 1422 1423 /* 1424 * This sequence count validates that the inode matches 1425 * the dentry name information from lookup. 1426 */ 1427 *inode = dentry->d_inode; 1428 if (read_seqcount_retry(&dentry->d_seq, seq)) 1429 return -ECHILD; 1430 1431 /* 1432 * This sequence count validates that the parent had no 1433 * changes while we did the lookup of the dentry above. 1434 * 1435 * The memory barrier in read_seqcount_begin of child is 1436 * enough, we can use __read_seqcount_retry here. 1437 */ 1438 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1439 return -ECHILD; 1440 nd->seq = seq; 1441 1442 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1443 status = d_revalidate(dentry, nd->flags); 1444 if (unlikely(status <= 0)) { 1445 if (status != -ECHILD) 1446 need_reval = 0; 1447 goto unlazy; 1448 } 1449 } 1450 path->mnt = mnt; 1451 path->dentry = dentry; 1452 if (likely(__follow_mount_rcu(nd, path, inode))) 1453 return 0; 1454 unlazy: 1455 if (unlazy_walk(nd, dentry)) 1456 return -ECHILD; 1457 } else { 1458 dentry = __d_lookup(parent, &nd->last); 1459 } 1460 1461 if (unlikely(!dentry)) 1462 goto need_lookup; 1463 1464 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1465 status = d_revalidate(dentry, nd->flags); 1466 if (unlikely(status <= 0)) { 1467 if (status < 0) { 1468 dput(dentry); 1469 return status; 1470 } 1471 d_invalidate(dentry); 1472 dput(dentry); 1473 goto need_lookup; 1474 } 1475 1476 path->mnt = mnt; 1477 path->dentry = dentry; 1478 err = follow_managed(path, nd->flags); 1479 if (unlikely(err < 0)) { 1480 path_put_conditional(path, nd); 1481 return err; 1482 } 1483 if (err) 1484 nd->flags |= LOOKUP_JUMPED; 1485 *inode = path->dentry->d_inode; 1486 return 0; 1487 1488 need_lookup: 1489 return 1; 1490 } 1491 1492 /* Fast lookup failed, do it the slow way */ 1493 static int lookup_slow(struct nameidata *nd, struct path *path) 1494 { 1495 struct dentry *dentry, *parent; 1496 int err; 1497 1498 parent = nd->path.dentry; 1499 BUG_ON(nd->inode != parent->d_inode); 1500 1501 mutex_lock(&parent->d_inode->i_mutex); 1502 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1503 mutex_unlock(&parent->d_inode->i_mutex); 1504 if (IS_ERR(dentry)) 1505 return PTR_ERR(dentry); 1506 path->mnt = nd->path.mnt; 1507 path->dentry = dentry; 1508 err = follow_managed(path, nd->flags); 1509 if (unlikely(err < 0)) { 1510 path_put_conditional(path, nd); 1511 return err; 1512 } 1513 if (err) 1514 nd->flags |= LOOKUP_JUMPED; 1515 return 0; 1516 } 1517 1518 static inline int may_lookup(struct nameidata *nd) 1519 { 1520 if (nd->flags & LOOKUP_RCU) { 1521 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1522 if (err != -ECHILD) 1523 return err; 1524 if (unlazy_walk(nd, NULL)) 1525 return -ECHILD; 1526 } 1527 return inode_permission(nd->inode, MAY_EXEC); 1528 } 1529 1530 static inline int handle_dots(struct nameidata *nd, int type) 1531 { 1532 if (type == LAST_DOTDOT) { 1533 if (nd->flags & LOOKUP_RCU) { 1534 if (follow_dotdot_rcu(nd)) 1535 return -ECHILD; 1536 } else 1537 follow_dotdot(nd); 1538 } 1539 return 0; 1540 } 1541 1542 static void terminate_walk(struct nameidata *nd) 1543 { 1544 if (!(nd->flags & LOOKUP_RCU)) { 1545 path_put(&nd->path); 1546 } else { 1547 nd->flags &= ~LOOKUP_RCU; 1548 if (!(nd->flags & LOOKUP_ROOT)) 1549 nd->root.mnt = NULL; 1550 rcu_read_unlock(); 1551 } 1552 } 1553 1554 /* 1555 * Do we need to follow links? We _really_ want to be able 1556 * to do this check without having to look at inode->i_op, 1557 * so we keep a cache of "no, this doesn't need follow_link" 1558 * for the common case. 1559 */ 1560 static inline int should_follow_link(struct dentry *dentry, int follow) 1561 { 1562 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1563 } 1564 1565 static inline int walk_component(struct nameidata *nd, struct path *path, 1566 int follow) 1567 { 1568 struct inode *inode; 1569 int err; 1570 /* 1571 * "." and ".." are special - ".." especially so because it has 1572 * to be able to know about the current root directory and 1573 * parent relationships. 1574 */ 1575 if (unlikely(nd->last_type != LAST_NORM)) 1576 return handle_dots(nd, nd->last_type); 1577 err = lookup_fast(nd, path, &inode); 1578 if (unlikely(err)) { 1579 if (err < 0) 1580 goto out_err; 1581 1582 err = lookup_slow(nd, path); 1583 if (err < 0) 1584 goto out_err; 1585 1586 inode = path->dentry->d_inode; 1587 } 1588 err = -ENOENT; 1589 if (!inode || d_is_negative(path->dentry)) 1590 goto out_path_put; 1591 1592 if (should_follow_link(path->dentry, follow)) { 1593 if (nd->flags & LOOKUP_RCU) { 1594 if (unlikely(unlazy_walk(nd, path->dentry))) { 1595 err = -ECHILD; 1596 goto out_err; 1597 } 1598 } 1599 BUG_ON(inode != path->dentry->d_inode); 1600 return 1; 1601 } 1602 path_to_nameidata(path, nd); 1603 nd->inode = inode; 1604 return 0; 1605 1606 out_path_put: 1607 path_to_nameidata(path, nd); 1608 out_err: 1609 terminate_walk(nd); 1610 return err; 1611 } 1612 1613 /* 1614 * This limits recursive symlink follows to 8, while 1615 * limiting consecutive symlinks to 40. 1616 * 1617 * Without that kind of total limit, nasty chains of consecutive 1618 * symlinks can cause almost arbitrarily long lookups. 1619 */ 1620 static inline int nested_symlink(struct path *path, struct nameidata *nd) 1621 { 1622 int res; 1623 1624 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1625 path_put_conditional(path, nd); 1626 path_put(&nd->path); 1627 return -ELOOP; 1628 } 1629 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1630 1631 nd->depth++; 1632 current->link_count++; 1633 1634 do { 1635 struct path link = *path; 1636 void *cookie; 1637 1638 res = follow_link(&link, nd, &cookie); 1639 if (res) 1640 break; 1641 res = walk_component(nd, path, LOOKUP_FOLLOW); 1642 put_link(nd, &link, cookie); 1643 } while (res > 0); 1644 1645 current->link_count--; 1646 nd->depth--; 1647 return res; 1648 } 1649 1650 /* 1651 * We can do the critical dentry name comparison and hashing 1652 * operations one word at a time, but we are limited to: 1653 * 1654 * - Architectures with fast unaligned word accesses. We could 1655 * do a "get_unaligned()" if this helps and is sufficiently 1656 * fast. 1657 * 1658 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1659 * do not trap on the (extremely unlikely) case of a page 1660 * crossing operation. 1661 * 1662 * - Furthermore, we need an efficient 64-bit compile for the 1663 * 64-bit case in order to generate the "number of bytes in 1664 * the final mask". Again, that could be replaced with a 1665 * efficient population count instruction or similar. 1666 */ 1667 #ifdef CONFIG_DCACHE_WORD_ACCESS 1668 1669 #include <asm/word-at-a-time.h> 1670 1671 #ifdef CONFIG_64BIT 1672 1673 static inline unsigned int fold_hash(unsigned long hash) 1674 { 1675 return hash_64(hash, 32); 1676 } 1677 1678 #else /* 32-bit case */ 1679 1680 #define fold_hash(x) (x) 1681 1682 #endif 1683 1684 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1685 { 1686 unsigned long a, mask; 1687 unsigned long hash = 0; 1688 1689 for (;;) { 1690 a = load_unaligned_zeropad(name); 1691 if (len < sizeof(unsigned long)) 1692 break; 1693 hash += a; 1694 hash *= 9; 1695 name += sizeof(unsigned long); 1696 len -= sizeof(unsigned long); 1697 if (!len) 1698 goto done; 1699 } 1700 mask = bytemask_from_count(len); 1701 hash += mask & a; 1702 done: 1703 return fold_hash(hash); 1704 } 1705 EXPORT_SYMBOL(full_name_hash); 1706 1707 /* 1708 * Calculate the length and hash of the path component, and 1709 * return the "hash_len" as the result. 1710 */ 1711 static inline u64 hash_name(const char *name) 1712 { 1713 unsigned long a, b, adata, bdata, mask, hash, len; 1714 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1715 1716 hash = a = 0; 1717 len = -sizeof(unsigned long); 1718 do { 1719 hash = (hash + a) * 9; 1720 len += sizeof(unsigned long); 1721 a = load_unaligned_zeropad(name+len); 1722 b = a ^ REPEAT_BYTE('/'); 1723 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1724 1725 adata = prep_zero_mask(a, adata, &constants); 1726 bdata = prep_zero_mask(b, bdata, &constants); 1727 1728 mask = create_zero_mask(adata | bdata); 1729 1730 hash += a & zero_bytemask(mask); 1731 len += find_zero(mask); 1732 return hashlen_create(fold_hash(hash), len); 1733 } 1734 1735 #else 1736 1737 unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1738 { 1739 unsigned long hash = init_name_hash(); 1740 while (len--) 1741 hash = partial_name_hash(*name++, hash); 1742 return end_name_hash(hash); 1743 } 1744 EXPORT_SYMBOL(full_name_hash); 1745 1746 /* 1747 * We know there's a real path component here of at least 1748 * one character. 1749 */ 1750 static inline u64 hash_name(const char *name) 1751 { 1752 unsigned long hash = init_name_hash(); 1753 unsigned long len = 0, c; 1754 1755 c = (unsigned char)*name; 1756 do { 1757 len++; 1758 hash = partial_name_hash(c, hash); 1759 c = (unsigned char)name[len]; 1760 } while (c && c != '/'); 1761 return hashlen_create(end_name_hash(hash), len); 1762 } 1763 1764 #endif 1765 1766 /* 1767 * Name resolution. 1768 * This is the basic name resolution function, turning a pathname into 1769 * the final dentry. We expect 'base' to be positive and a directory. 1770 * 1771 * Returns 0 and nd will have valid dentry and mnt on success. 1772 * Returns error and drops reference to input namei data on failure. 1773 */ 1774 static int link_path_walk(const char *name, struct nameidata *nd) 1775 { 1776 struct path next; 1777 int err; 1778 1779 while (*name=='/') 1780 name++; 1781 if (!*name) 1782 return 0; 1783 1784 /* At this point we know we have a real path component. */ 1785 for(;;) { 1786 u64 hash_len; 1787 int type; 1788 1789 err = may_lookup(nd); 1790 if (err) 1791 break; 1792 1793 hash_len = hash_name(name); 1794 1795 type = LAST_NORM; 1796 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1797 case 2: 1798 if (name[1] == '.') { 1799 type = LAST_DOTDOT; 1800 nd->flags |= LOOKUP_JUMPED; 1801 } 1802 break; 1803 case 1: 1804 type = LAST_DOT; 1805 } 1806 if (likely(type == LAST_NORM)) { 1807 struct dentry *parent = nd->path.dentry; 1808 nd->flags &= ~LOOKUP_JUMPED; 1809 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1810 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1811 err = parent->d_op->d_hash(parent, &this); 1812 if (err < 0) 1813 break; 1814 hash_len = this.hash_len; 1815 name = this.name; 1816 } 1817 } 1818 1819 nd->last.hash_len = hash_len; 1820 nd->last.name = name; 1821 nd->last_type = type; 1822 1823 name += hashlen_len(hash_len); 1824 if (!*name) 1825 return 0; 1826 /* 1827 * If it wasn't NUL, we know it was '/'. Skip that 1828 * slash, and continue until no more slashes. 1829 */ 1830 do { 1831 name++; 1832 } while (unlikely(*name == '/')); 1833 if (!*name) 1834 return 0; 1835 1836 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1837 if (err < 0) 1838 return err; 1839 1840 if (err) { 1841 err = nested_symlink(&next, nd); 1842 if (err) 1843 return err; 1844 } 1845 if (!d_can_lookup(nd->path.dentry)) { 1846 err = -ENOTDIR; 1847 break; 1848 } 1849 } 1850 terminate_walk(nd); 1851 return err; 1852 } 1853 1854 static int path_init(int dfd, const char *name, unsigned int flags, 1855 struct nameidata *nd) 1856 { 1857 int retval = 0; 1858 1859 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1860 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 1861 nd->depth = 0; 1862 nd->base = NULL; 1863 if (flags & LOOKUP_ROOT) { 1864 struct dentry *root = nd->root.dentry; 1865 struct inode *inode = root->d_inode; 1866 if (*name) { 1867 if (!d_can_lookup(root)) 1868 return -ENOTDIR; 1869 retval = inode_permission(inode, MAY_EXEC); 1870 if (retval) 1871 return retval; 1872 } 1873 nd->path = nd->root; 1874 nd->inode = inode; 1875 if (flags & LOOKUP_RCU) { 1876 rcu_read_lock(); 1877 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1878 nd->m_seq = read_seqbegin(&mount_lock); 1879 } else { 1880 path_get(&nd->path); 1881 } 1882 goto done; 1883 } 1884 1885 nd->root.mnt = NULL; 1886 1887 nd->m_seq = read_seqbegin(&mount_lock); 1888 if (*name=='/') { 1889 if (flags & LOOKUP_RCU) { 1890 rcu_read_lock(); 1891 nd->seq = set_root_rcu(nd); 1892 } else { 1893 set_root(nd); 1894 path_get(&nd->root); 1895 } 1896 nd->path = nd->root; 1897 } else if (dfd == AT_FDCWD) { 1898 if (flags & LOOKUP_RCU) { 1899 struct fs_struct *fs = current->fs; 1900 unsigned seq; 1901 1902 rcu_read_lock(); 1903 1904 do { 1905 seq = read_seqcount_begin(&fs->seq); 1906 nd->path = fs->pwd; 1907 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1908 } while (read_seqcount_retry(&fs->seq, seq)); 1909 } else { 1910 get_fs_pwd(current->fs, &nd->path); 1911 } 1912 } else { 1913 /* Caller must check execute permissions on the starting path component */ 1914 struct fd f = fdget_raw(dfd); 1915 struct dentry *dentry; 1916 1917 if (!f.file) 1918 return -EBADF; 1919 1920 dentry = f.file->f_path.dentry; 1921 1922 if (*name) { 1923 if (!d_can_lookup(dentry)) { 1924 fdput(f); 1925 return -ENOTDIR; 1926 } 1927 } 1928 1929 nd->path = f.file->f_path; 1930 if (flags & LOOKUP_RCU) { 1931 if (f.flags & FDPUT_FPUT) 1932 nd->base = f.file; 1933 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1934 rcu_read_lock(); 1935 } else { 1936 path_get(&nd->path); 1937 fdput(f); 1938 } 1939 } 1940 1941 nd->inode = nd->path.dentry->d_inode; 1942 if (!(flags & LOOKUP_RCU)) 1943 goto done; 1944 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 1945 goto done; 1946 if (!(nd->flags & LOOKUP_ROOT)) 1947 nd->root.mnt = NULL; 1948 rcu_read_unlock(); 1949 return -ECHILD; 1950 done: 1951 current->total_link_count = 0; 1952 return link_path_walk(name, nd); 1953 } 1954 1955 static void path_cleanup(struct nameidata *nd) 1956 { 1957 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1958 path_put(&nd->root); 1959 nd->root.mnt = NULL; 1960 } 1961 if (unlikely(nd->base)) 1962 fput(nd->base); 1963 } 1964 1965 static inline int lookup_last(struct nameidata *nd, struct path *path) 1966 { 1967 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 1968 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 1969 1970 nd->flags &= ~LOOKUP_PARENT; 1971 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 1972 } 1973 1974 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1975 static int path_lookupat(int dfd, const char *name, 1976 unsigned int flags, struct nameidata *nd) 1977 { 1978 struct path path; 1979 int err; 1980 1981 /* 1982 * Path walking is largely split up into 2 different synchronisation 1983 * schemes, rcu-walk and ref-walk (explained in 1984 * Documentation/filesystems/path-lookup.txt). These share much of the 1985 * path walk code, but some things particularly setup, cleanup, and 1986 * following mounts are sufficiently divergent that functions are 1987 * duplicated. Typically there is a function foo(), and its RCU 1988 * analogue, foo_rcu(). 1989 * 1990 * -ECHILD is the error number of choice (just to avoid clashes) that 1991 * is returned if some aspect of an rcu-walk fails. Such an error must 1992 * be handled by restarting a traditional ref-walk (which will always 1993 * be able to complete). 1994 */ 1995 err = path_init(dfd, name, flags, nd); 1996 if (!err && !(flags & LOOKUP_PARENT)) { 1997 err = lookup_last(nd, &path); 1998 while (err > 0) { 1999 void *cookie; 2000 struct path link = path; 2001 err = may_follow_link(&link, nd); 2002 if (unlikely(err)) 2003 break; 2004 nd->flags |= LOOKUP_PARENT; 2005 err = follow_link(&link, nd, &cookie); 2006 if (err) 2007 break; 2008 err = lookup_last(nd, &path); 2009 put_link(nd, &link, cookie); 2010 } 2011 } 2012 2013 if (!err) 2014 err = complete_walk(nd); 2015 2016 if (!err && nd->flags & LOOKUP_DIRECTORY) { 2017 if (!d_can_lookup(nd->path.dentry)) { 2018 path_put(&nd->path); 2019 err = -ENOTDIR; 2020 } 2021 } 2022 2023 path_cleanup(nd); 2024 return err; 2025 } 2026 2027 static int filename_lookup(int dfd, struct filename *name, 2028 unsigned int flags, struct nameidata *nd) 2029 { 2030 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd); 2031 if (unlikely(retval == -ECHILD)) 2032 retval = path_lookupat(dfd, name->name, flags, nd); 2033 if (unlikely(retval == -ESTALE)) 2034 retval = path_lookupat(dfd, name->name, 2035 flags | LOOKUP_REVAL, nd); 2036 2037 if (likely(!retval)) 2038 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2039 return retval; 2040 } 2041 2042 static int do_path_lookup(int dfd, const char *name, 2043 unsigned int flags, struct nameidata *nd) 2044 { 2045 struct filename *filename = getname_kernel(name); 2046 int retval = PTR_ERR(filename); 2047 2048 if (!IS_ERR(filename)) { 2049 retval = filename_lookup(dfd, filename, flags, nd); 2050 putname(filename); 2051 } 2052 return retval; 2053 } 2054 2055 /* does lookup, returns the object with parent locked */ 2056 struct dentry *kern_path_locked(const char *name, struct path *path) 2057 { 2058 struct filename *filename = getname_kernel(name); 2059 struct nameidata nd; 2060 struct dentry *d; 2061 int err; 2062 2063 if (IS_ERR(filename)) 2064 return ERR_CAST(filename); 2065 2066 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd); 2067 if (err) { 2068 d = ERR_PTR(err); 2069 goto out; 2070 } 2071 if (nd.last_type != LAST_NORM) { 2072 path_put(&nd.path); 2073 d = ERR_PTR(-EINVAL); 2074 goto out; 2075 } 2076 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2077 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2078 if (IS_ERR(d)) { 2079 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2080 path_put(&nd.path); 2081 goto out; 2082 } 2083 *path = nd.path; 2084 out: 2085 putname(filename); 2086 return d; 2087 } 2088 2089 int kern_path(const char *name, unsigned int flags, struct path *path) 2090 { 2091 struct nameidata nd; 2092 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 2093 if (!res) 2094 *path = nd.path; 2095 return res; 2096 } 2097 EXPORT_SYMBOL(kern_path); 2098 2099 /** 2100 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2101 * @dentry: pointer to dentry of the base directory 2102 * @mnt: pointer to vfs mount of the base directory 2103 * @name: pointer to file name 2104 * @flags: lookup flags 2105 * @path: pointer to struct path to fill 2106 */ 2107 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2108 const char *name, unsigned int flags, 2109 struct path *path) 2110 { 2111 struct nameidata nd; 2112 int err; 2113 nd.root.dentry = dentry; 2114 nd.root.mnt = mnt; 2115 BUG_ON(flags & LOOKUP_PARENT); 2116 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ 2117 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); 2118 if (!err) 2119 *path = nd.path; 2120 return err; 2121 } 2122 EXPORT_SYMBOL(vfs_path_lookup); 2123 2124 /* 2125 * Restricted form of lookup. Doesn't follow links, single-component only, 2126 * needs parent already locked. Doesn't follow mounts. 2127 * SMP-safe. 2128 */ 2129 static struct dentry *lookup_hash(struct nameidata *nd) 2130 { 2131 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2132 } 2133 2134 /** 2135 * lookup_one_len - filesystem helper to lookup single pathname component 2136 * @name: pathname component to lookup 2137 * @base: base directory to lookup from 2138 * @len: maximum length @len should be interpreted to 2139 * 2140 * Note that this routine is purely a helper for filesystem usage and should 2141 * not be called by generic code. Also note that by using this function the 2142 * nameidata argument is passed to the filesystem methods and a filesystem 2143 * using this helper needs to be prepared for that. 2144 */ 2145 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2146 { 2147 struct qstr this; 2148 unsigned int c; 2149 int err; 2150 2151 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2152 2153 this.name = name; 2154 this.len = len; 2155 this.hash = full_name_hash(name, len); 2156 if (!len) 2157 return ERR_PTR(-EACCES); 2158 2159 if (unlikely(name[0] == '.')) { 2160 if (len < 2 || (len == 2 && name[1] == '.')) 2161 return ERR_PTR(-EACCES); 2162 } 2163 2164 while (len--) { 2165 c = *(const unsigned char *)name++; 2166 if (c == '/' || c == '\0') 2167 return ERR_PTR(-EACCES); 2168 } 2169 /* 2170 * See if the low-level filesystem might want 2171 * to use its own hash.. 2172 */ 2173 if (base->d_flags & DCACHE_OP_HASH) { 2174 int err = base->d_op->d_hash(base, &this); 2175 if (err < 0) 2176 return ERR_PTR(err); 2177 } 2178 2179 err = inode_permission(base->d_inode, MAY_EXEC); 2180 if (err) 2181 return ERR_PTR(err); 2182 2183 return __lookup_hash(&this, base, 0); 2184 } 2185 EXPORT_SYMBOL(lookup_one_len); 2186 2187 int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2188 struct path *path, int *empty) 2189 { 2190 struct nameidata nd; 2191 struct filename *tmp = getname_flags(name, flags, empty); 2192 int err = PTR_ERR(tmp); 2193 if (!IS_ERR(tmp)) { 2194 2195 BUG_ON(flags & LOOKUP_PARENT); 2196 2197 err = filename_lookup(dfd, tmp, flags, &nd); 2198 putname(tmp); 2199 if (!err) 2200 *path = nd.path; 2201 } 2202 return err; 2203 } 2204 2205 int user_path_at(int dfd, const char __user *name, unsigned flags, 2206 struct path *path) 2207 { 2208 return user_path_at_empty(dfd, name, flags, path, NULL); 2209 } 2210 EXPORT_SYMBOL(user_path_at); 2211 2212 /* 2213 * NB: most callers don't do anything directly with the reference to the 2214 * to struct filename, but the nd->last pointer points into the name string 2215 * allocated by getname. So we must hold the reference to it until all 2216 * path-walking is complete. 2217 */ 2218 static struct filename * 2219 user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2220 unsigned int flags) 2221 { 2222 struct filename *s = getname(path); 2223 int error; 2224 2225 /* only LOOKUP_REVAL is allowed in extra flags */ 2226 flags &= LOOKUP_REVAL; 2227 2228 if (IS_ERR(s)) 2229 return s; 2230 2231 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2232 if (error) { 2233 putname(s); 2234 return ERR_PTR(error); 2235 } 2236 2237 return s; 2238 } 2239 2240 /** 2241 * mountpoint_last - look up last component for umount 2242 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2243 * @path: pointer to container for result 2244 * 2245 * This is a special lookup_last function just for umount. In this case, we 2246 * need to resolve the path without doing any revalidation. 2247 * 2248 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2249 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2250 * in almost all cases, this lookup will be served out of the dcache. The only 2251 * cases where it won't are if nd->last refers to a symlink or the path is 2252 * bogus and it doesn't exist. 2253 * 2254 * Returns: 2255 * -error: if there was an error during lookup. This includes -ENOENT if the 2256 * lookup found a negative dentry. The nd->path reference will also be 2257 * put in this case. 2258 * 2259 * 0: if we successfully resolved nd->path and found it to not to be a 2260 * symlink that needs to be followed. "path" will also be populated. 2261 * The nd->path reference will also be put. 2262 * 2263 * 1: if we successfully resolved nd->last and found it to be a symlink 2264 * that needs to be followed. "path" will be populated with the path 2265 * to the link, and nd->path will *not* be put. 2266 */ 2267 static int 2268 mountpoint_last(struct nameidata *nd, struct path *path) 2269 { 2270 int error = 0; 2271 struct dentry *dentry; 2272 struct dentry *dir = nd->path.dentry; 2273 2274 /* If we're in rcuwalk, drop out of it to handle last component */ 2275 if (nd->flags & LOOKUP_RCU) { 2276 if (unlazy_walk(nd, NULL)) { 2277 error = -ECHILD; 2278 goto out; 2279 } 2280 } 2281 2282 nd->flags &= ~LOOKUP_PARENT; 2283 2284 if (unlikely(nd->last_type != LAST_NORM)) { 2285 error = handle_dots(nd, nd->last_type); 2286 if (error) 2287 goto out; 2288 dentry = dget(nd->path.dentry); 2289 goto done; 2290 } 2291 2292 mutex_lock(&dir->d_inode->i_mutex); 2293 dentry = d_lookup(dir, &nd->last); 2294 if (!dentry) { 2295 /* 2296 * No cached dentry. Mounted dentries are pinned in the cache, 2297 * so that means that this dentry is probably a symlink or the 2298 * path doesn't actually point to a mounted dentry. 2299 */ 2300 dentry = d_alloc(dir, &nd->last); 2301 if (!dentry) { 2302 error = -ENOMEM; 2303 mutex_unlock(&dir->d_inode->i_mutex); 2304 goto out; 2305 } 2306 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2307 error = PTR_ERR(dentry); 2308 if (IS_ERR(dentry)) { 2309 mutex_unlock(&dir->d_inode->i_mutex); 2310 goto out; 2311 } 2312 } 2313 mutex_unlock(&dir->d_inode->i_mutex); 2314 2315 done: 2316 if (!dentry->d_inode || d_is_negative(dentry)) { 2317 error = -ENOENT; 2318 dput(dentry); 2319 goto out; 2320 } 2321 path->dentry = dentry; 2322 path->mnt = nd->path.mnt; 2323 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2324 return 1; 2325 mntget(path->mnt); 2326 follow_mount(path); 2327 error = 0; 2328 out: 2329 terminate_walk(nd); 2330 return error; 2331 } 2332 2333 /** 2334 * path_mountpoint - look up a path to be umounted 2335 * @dfd: directory file descriptor to start walk from 2336 * @name: full pathname to walk 2337 * @path: pointer to container for result 2338 * @flags: lookup flags 2339 * 2340 * Look up the given name, but don't attempt to revalidate the last component. 2341 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2342 */ 2343 static int 2344 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags) 2345 { 2346 struct nameidata nd; 2347 int err; 2348 2349 err = path_init(dfd, name, flags, &nd); 2350 if (unlikely(err)) 2351 goto out; 2352 2353 err = mountpoint_last(&nd, path); 2354 while (err > 0) { 2355 void *cookie; 2356 struct path link = *path; 2357 err = may_follow_link(&link, &nd); 2358 if (unlikely(err)) 2359 break; 2360 nd.flags |= LOOKUP_PARENT; 2361 err = follow_link(&link, &nd, &cookie); 2362 if (err) 2363 break; 2364 err = mountpoint_last(&nd, path); 2365 put_link(&nd, &link, cookie); 2366 } 2367 out: 2368 path_cleanup(&nd); 2369 return err; 2370 } 2371 2372 static int 2373 filename_mountpoint(int dfd, struct filename *s, struct path *path, 2374 unsigned int flags) 2375 { 2376 int error; 2377 if (IS_ERR(s)) 2378 return PTR_ERR(s); 2379 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU); 2380 if (unlikely(error == -ECHILD)) 2381 error = path_mountpoint(dfd, s->name, path, flags); 2382 if (unlikely(error == -ESTALE)) 2383 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL); 2384 if (likely(!error)) 2385 audit_inode(s, path->dentry, 0); 2386 putname(s); 2387 return error; 2388 } 2389 2390 /** 2391 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2392 * @dfd: directory file descriptor 2393 * @name: pathname from userland 2394 * @flags: lookup flags 2395 * @path: pointer to container to hold result 2396 * 2397 * A umount is a special case for path walking. We're not actually interested 2398 * in the inode in this situation, and ESTALE errors can be a problem. We 2399 * simply want track down the dentry and vfsmount attached at the mountpoint 2400 * and avoid revalidating the last component. 2401 * 2402 * Returns 0 and populates "path" on success. 2403 */ 2404 int 2405 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2406 struct path *path) 2407 { 2408 return filename_mountpoint(dfd, getname(name), path, flags); 2409 } 2410 2411 int 2412 kern_path_mountpoint(int dfd, const char *name, struct path *path, 2413 unsigned int flags) 2414 { 2415 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2416 } 2417 EXPORT_SYMBOL(kern_path_mountpoint); 2418 2419 int __check_sticky(struct inode *dir, struct inode *inode) 2420 { 2421 kuid_t fsuid = current_fsuid(); 2422 2423 if (uid_eq(inode->i_uid, fsuid)) 2424 return 0; 2425 if (uid_eq(dir->i_uid, fsuid)) 2426 return 0; 2427 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2428 } 2429 EXPORT_SYMBOL(__check_sticky); 2430 2431 /* 2432 * Check whether we can remove a link victim from directory dir, check 2433 * whether the type of victim is right. 2434 * 1. We can't do it if dir is read-only (done in permission()) 2435 * 2. We should have write and exec permissions on dir 2436 * 3. We can't remove anything from append-only dir 2437 * 4. We can't do anything with immutable dir (done in permission()) 2438 * 5. If the sticky bit on dir is set we should either 2439 * a. be owner of dir, or 2440 * b. be owner of victim, or 2441 * c. have CAP_FOWNER capability 2442 * 6. If the victim is append-only or immutable we can't do antyhing with 2443 * links pointing to it. 2444 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2445 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2446 * 9. We can't remove a root or mountpoint. 2447 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2448 * nfs_async_unlink(). 2449 */ 2450 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2451 { 2452 struct inode *inode = victim->d_inode; 2453 int error; 2454 2455 if (d_is_negative(victim)) 2456 return -ENOENT; 2457 BUG_ON(!inode); 2458 2459 BUG_ON(victim->d_parent->d_inode != dir); 2460 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2461 2462 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2463 if (error) 2464 return error; 2465 if (IS_APPEND(dir)) 2466 return -EPERM; 2467 2468 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2469 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2470 return -EPERM; 2471 if (isdir) { 2472 if (!d_is_dir(victim)) 2473 return -ENOTDIR; 2474 if (IS_ROOT(victim)) 2475 return -EBUSY; 2476 } else if (d_is_dir(victim)) 2477 return -EISDIR; 2478 if (IS_DEADDIR(dir)) 2479 return -ENOENT; 2480 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2481 return -EBUSY; 2482 return 0; 2483 } 2484 2485 /* Check whether we can create an object with dentry child in directory 2486 * dir. 2487 * 1. We can't do it if child already exists (open has special treatment for 2488 * this case, but since we are inlined it's OK) 2489 * 2. We can't do it if dir is read-only (done in permission()) 2490 * 3. We should have write and exec permissions on dir 2491 * 4. We can't do it if dir is immutable (done in permission()) 2492 */ 2493 static inline int may_create(struct inode *dir, struct dentry *child) 2494 { 2495 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2496 if (child->d_inode) 2497 return -EEXIST; 2498 if (IS_DEADDIR(dir)) 2499 return -ENOENT; 2500 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2501 } 2502 2503 /* 2504 * p1 and p2 should be directories on the same fs. 2505 */ 2506 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2507 { 2508 struct dentry *p; 2509 2510 if (p1 == p2) { 2511 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2512 return NULL; 2513 } 2514 2515 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2516 2517 p = d_ancestor(p2, p1); 2518 if (p) { 2519 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2520 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2521 return p; 2522 } 2523 2524 p = d_ancestor(p1, p2); 2525 if (p) { 2526 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2527 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2528 return p; 2529 } 2530 2531 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2532 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2); 2533 return NULL; 2534 } 2535 EXPORT_SYMBOL(lock_rename); 2536 2537 void unlock_rename(struct dentry *p1, struct dentry *p2) 2538 { 2539 mutex_unlock(&p1->d_inode->i_mutex); 2540 if (p1 != p2) { 2541 mutex_unlock(&p2->d_inode->i_mutex); 2542 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2543 } 2544 } 2545 EXPORT_SYMBOL(unlock_rename); 2546 2547 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2548 bool want_excl) 2549 { 2550 int error = may_create(dir, dentry); 2551 if (error) 2552 return error; 2553 2554 if (!dir->i_op->create) 2555 return -EACCES; /* shouldn't it be ENOSYS? */ 2556 mode &= S_IALLUGO; 2557 mode |= S_IFREG; 2558 error = security_inode_create(dir, dentry, mode); 2559 if (error) 2560 return error; 2561 error = dir->i_op->create(dir, dentry, mode, want_excl); 2562 if (!error) 2563 fsnotify_create(dir, dentry); 2564 return error; 2565 } 2566 EXPORT_SYMBOL(vfs_create); 2567 2568 static int may_open(struct path *path, int acc_mode, int flag) 2569 { 2570 struct dentry *dentry = path->dentry; 2571 struct inode *inode = dentry->d_inode; 2572 int error; 2573 2574 /* O_PATH? */ 2575 if (!acc_mode) 2576 return 0; 2577 2578 if (!inode) 2579 return -ENOENT; 2580 2581 switch (inode->i_mode & S_IFMT) { 2582 case S_IFLNK: 2583 return -ELOOP; 2584 case S_IFDIR: 2585 if (acc_mode & MAY_WRITE) 2586 return -EISDIR; 2587 break; 2588 case S_IFBLK: 2589 case S_IFCHR: 2590 if (path->mnt->mnt_flags & MNT_NODEV) 2591 return -EACCES; 2592 /*FALLTHRU*/ 2593 case S_IFIFO: 2594 case S_IFSOCK: 2595 flag &= ~O_TRUNC; 2596 break; 2597 } 2598 2599 error = inode_permission(inode, acc_mode); 2600 if (error) 2601 return error; 2602 2603 /* 2604 * An append-only file must be opened in append mode for writing. 2605 */ 2606 if (IS_APPEND(inode)) { 2607 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2608 return -EPERM; 2609 if (flag & O_TRUNC) 2610 return -EPERM; 2611 } 2612 2613 /* O_NOATIME can only be set by the owner or superuser */ 2614 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2615 return -EPERM; 2616 2617 return 0; 2618 } 2619 2620 static int handle_truncate(struct file *filp) 2621 { 2622 struct path *path = &filp->f_path; 2623 struct inode *inode = path->dentry->d_inode; 2624 int error = get_write_access(inode); 2625 if (error) 2626 return error; 2627 /* 2628 * Refuse to truncate files with mandatory locks held on them. 2629 */ 2630 error = locks_verify_locked(filp); 2631 if (!error) 2632 error = security_path_truncate(path); 2633 if (!error) { 2634 error = do_truncate(path->dentry, 0, 2635 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2636 filp); 2637 } 2638 put_write_access(inode); 2639 return error; 2640 } 2641 2642 static inline int open_to_namei_flags(int flag) 2643 { 2644 if ((flag & O_ACCMODE) == 3) 2645 flag--; 2646 return flag; 2647 } 2648 2649 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2650 { 2651 int error = security_path_mknod(dir, dentry, mode, 0); 2652 if (error) 2653 return error; 2654 2655 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2656 if (error) 2657 return error; 2658 2659 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2660 } 2661 2662 /* 2663 * Attempt to atomically look up, create and open a file from a negative 2664 * dentry. 2665 * 2666 * Returns 0 if successful. The file will have been created and attached to 2667 * @file by the filesystem calling finish_open(). 2668 * 2669 * Returns 1 if the file was looked up only or didn't need creating. The 2670 * caller will need to perform the open themselves. @path will have been 2671 * updated to point to the new dentry. This may be negative. 2672 * 2673 * Returns an error code otherwise. 2674 */ 2675 static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2676 struct path *path, struct file *file, 2677 const struct open_flags *op, 2678 bool got_write, bool need_lookup, 2679 int *opened) 2680 { 2681 struct inode *dir = nd->path.dentry->d_inode; 2682 unsigned open_flag = open_to_namei_flags(op->open_flag); 2683 umode_t mode; 2684 int error; 2685 int acc_mode; 2686 int create_error = 0; 2687 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2688 bool excl; 2689 2690 BUG_ON(dentry->d_inode); 2691 2692 /* Don't create child dentry for a dead directory. */ 2693 if (unlikely(IS_DEADDIR(dir))) { 2694 error = -ENOENT; 2695 goto out; 2696 } 2697 2698 mode = op->mode; 2699 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2700 mode &= ~current_umask(); 2701 2702 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2703 if (excl) 2704 open_flag &= ~O_TRUNC; 2705 2706 /* 2707 * Checking write permission is tricky, bacuse we don't know if we are 2708 * going to actually need it: O_CREAT opens should work as long as the 2709 * file exists. But checking existence breaks atomicity. The trick is 2710 * to check access and if not granted clear O_CREAT from the flags. 2711 * 2712 * Another problem is returing the "right" error value (e.g. for an 2713 * O_EXCL open we want to return EEXIST not EROFS). 2714 */ 2715 if (((open_flag & (O_CREAT | O_TRUNC)) || 2716 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2717 if (!(open_flag & O_CREAT)) { 2718 /* 2719 * No O_CREATE -> atomicity not a requirement -> fall 2720 * back to lookup + open 2721 */ 2722 goto no_open; 2723 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2724 /* Fall back and fail with the right error */ 2725 create_error = -EROFS; 2726 goto no_open; 2727 } else { 2728 /* No side effects, safe to clear O_CREAT */ 2729 create_error = -EROFS; 2730 open_flag &= ~O_CREAT; 2731 } 2732 } 2733 2734 if (open_flag & O_CREAT) { 2735 error = may_o_create(&nd->path, dentry, mode); 2736 if (error) { 2737 create_error = error; 2738 if (open_flag & O_EXCL) 2739 goto no_open; 2740 open_flag &= ~O_CREAT; 2741 } 2742 } 2743 2744 if (nd->flags & LOOKUP_DIRECTORY) 2745 open_flag |= O_DIRECTORY; 2746 2747 file->f_path.dentry = DENTRY_NOT_SET; 2748 file->f_path.mnt = nd->path.mnt; 2749 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2750 opened); 2751 if (error < 0) { 2752 if (create_error && error == -ENOENT) 2753 error = create_error; 2754 goto out; 2755 } 2756 2757 if (error) { /* returned 1, that is */ 2758 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2759 error = -EIO; 2760 goto out; 2761 } 2762 if (file->f_path.dentry) { 2763 dput(dentry); 2764 dentry = file->f_path.dentry; 2765 } 2766 if (*opened & FILE_CREATED) 2767 fsnotify_create(dir, dentry); 2768 if (!dentry->d_inode) { 2769 WARN_ON(*opened & FILE_CREATED); 2770 if (create_error) { 2771 error = create_error; 2772 goto out; 2773 } 2774 } else { 2775 if (excl && !(*opened & FILE_CREATED)) { 2776 error = -EEXIST; 2777 goto out; 2778 } 2779 } 2780 goto looked_up; 2781 } 2782 2783 /* 2784 * We didn't have the inode before the open, so check open permission 2785 * here. 2786 */ 2787 acc_mode = op->acc_mode; 2788 if (*opened & FILE_CREATED) { 2789 WARN_ON(!(open_flag & O_CREAT)); 2790 fsnotify_create(dir, dentry); 2791 acc_mode = MAY_OPEN; 2792 } 2793 error = may_open(&file->f_path, acc_mode, open_flag); 2794 if (error) 2795 fput(file); 2796 2797 out: 2798 dput(dentry); 2799 return error; 2800 2801 no_open: 2802 if (need_lookup) { 2803 dentry = lookup_real(dir, dentry, nd->flags); 2804 if (IS_ERR(dentry)) 2805 return PTR_ERR(dentry); 2806 2807 if (create_error) { 2808 int open_flag = op->open_flag; 2809 2810 error = create_error; 2811 if ((open_flag & O_EXCL)) { 2812 if (!dentry->d_inode) 2813 goto out; 2814 } else if (!dentry->d_inode) { 2815 goto out; 2816 } else if ((open_flag & O_TRUNC) && 2817 d_is_reg(dentry)) { 2818 goto out; 2819 } 2820 /* will fail later, go on to get the right error */ 2821 } 2822 } 2823 looked_up: 2824 path->dentry = dentry; 2825 path->mnt = nd->path.mnt; 2826 return 1; 2827 } 2828 2829 /* 2830 * Look up and maybe create and open the last component. 2831 * 2832 * Must be called with i_mutex held on parent. 2833 * 2834 * Returns 0 if the file was successfully atomically created (if necessary) and 2835 * opened. In this case the file will be returned attached to @file. 2836 * 2837 * Returns 1 if the file was not completely opened at this time, though lookups 2838 * and creations will have been performed and the dentry returned in @path will 2839 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2840 * specified then a negative dentry may be returned. 2841 * 2842 * An error code is returned otherwise. 2843 * 2844 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2845 * cleared otherwise prior to returning. 2846 */ 2847 static int lookup_open(struct nameidata *nd, struct path *path, 2848 struct file *file, 2849 const struct open_flags *op, 2850 bool got_write, int *opened) 2851 { 2852 struct dentry *dir = nd->path.dentry; 2853 struct inode *dir_inode = dir->d_inode; 2854 struct dentry *dentry; 2855 int error; 2856 bool need_lookup; 2857 2858 *opened &= ~FILE_CREATED; 2859 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2860 if (IS_ERR(dentry)) 2861 return PTR_ERR(dentry); 2862 2863 /* Cached positive dentry: will open in f_op->open */ 2864 if (!need_lookup && dentry->d_inode) 2865 goto out_no_open; 2866 2867 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2868 return atomic_open(nd, dentry, path, file, op, got_write, 2869 need_lookup, opened); 2870 } 2871 2872 if (need_lookup) { 2873 BUG_ON(dentry->d_inode); 2874 2875 dentry = lookup_real(dir_inode, dentry, nd->flags); 2876 if (IS_ERR(dentry)) 2877 return PTR_ERR(dentry); 2878 } 2879 2880 /* Negative dentry, just create the file */ 2881 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2882 umode_t mode = op->mode; 2883 if (!IS_POSIXACL(dir->d_inode)) 2884 mode &= ~current_umask(); 2885 /* 2886 * This write is needed to ensure that a 2887 * rw->ro transition does not occur between 2888 * the time when the file is created and when 2889 * a permanent write count is taken through 2890 * the 'struct file' in finish_open(). 2891 */ 2892 if (!got_write) { 2893 error = -EROFS; 2894 goto out_dput; 2895 } 2896 *opened |= FILE_CREATED; 2897 error = security_path_mknod(&nd->path, dentry, mode, 0); 2898 if (error) 2899 goto out_dput; 2900 error = vfs_create(dir->d_inode, dentry, mode, 2901 nd->flags & LOOKUP_EXCL); 2902 if (error) 2903 goto out_dput; 2904 } 2905 out_no_open: 2906 path->dentry = dentry; 2907 path->mnt = nd->path.mnt; 2908 return 1; 2909 2910 out_dput: 2911 dput(dentry); 2912 return error; 2913 } 2914 2915 /* 2916 * Handle the last step of open() 2917 */ 2918 static int do_last(struct nameidata *nd, struct path *path, 2919 struct file *file, const struct open_flags *op, 2920 int *opened, struct filename *name) 2921 { 2922 struct dentry *dir = nd->path.dentry; 2923 int open_flag = op->open_flag; 2924 bool will_truncate = (open_flag & O_TRUNC) != 0; 2925 bool got_write = false; 2926 int acc_mode = op->acc_mode; 2927 struct inode *inode; 2928 bool symlink_ok = false; 2929 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2930 bool retried = false; 2931 int error; 2932 2933 nd->flags &= ~LOOKUP_PARENT; 2934 nd->flags |= op->intent; 2935 2936 if (nd->last_type != LAST_NORM) { 2937 error = handle_dots(nd, nd->last_type); 2938 if (error) 2939 return error; 2940 goto finish_open; 2941 } 2942 2943 if (!(open_flag & O_CREAT)) { 2944 if (nd->last.name[nd->last.len]) 2945 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2946 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2947 symlink_ok = true; 2948 /* we _can_ be in RCU mode here */ 2949 error = lookup_fast(nd, path, &inode); 2950 if (likely(!error)) 2951 goto finish_lookup; 2952 2953 if (error < 0) 2954 goto out; 2955 2956 BUG_ON(nd->inode != dir->d_inode); 2957 } else { 2958 /* create side of things */ 2959 /* 2960 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2961 * has been cleared when we got to the last component we are 2962 * about to look up 2963 */ 2964 error = complete_walk(nd); 2965 if (error) 2966 return error; 2967 2968 audit_inode(name, dir, LOOKUP_PARENT); 2969 error = -EISDIR; 2970 /* trailing slashes? */ 2971 if (nd->last.name[nd->last.len]) 2972 goto out; 2973 } 2974 2975 retry_lookup: 2976 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 2977 error = mnt_want_write(nd->path.mnt); 2978 if (!error) 2979 got_write = true; 2980 /* 2981 * do _not_ fail yet - we might not need that or fail with 2982 * a different error; let lookup_open() decide; we'll be 2983 * dropping this one anyway. 2984 */ 2985 } 2986 mutex_lock(&dir->d_inode->i_mutex); 2987 error = lookup_open(nd, path, file, op, got_write, opened); 2988 mutex_unlock(&dir->d_inode->i_mutex); 2989 2990 if (error <= 0) { 2991 if (error) 2992 goto out; 2993 2994 if ((*opened & FILE_CREATED) || 2995 !S_ISREG(file_inode(file)->i_mode)) 2996 will_truncate = false; 2997 2998 audit_inode(name, file->f_path.dentry, 0); 2999 goto opened; 3000 } 3001 3002 if (*opened & FILE_CREATED) { 3003 /* Don't check for write permission, don't truncate */ 3004 open_flag &= ~O_TRUNC; 3005 will_truncate = false; 3006 acc_mode = MAY_OPEN; 3007 path_to_nameidata(path, nd); 3008 goto finish_open_created; 3009 } 3010 3011 /* 3012 * create/update audit record if it already exists. 3013 */ 3014 if (d_is_positive(path->dentry)) 3015 audit_inode(name, path->dentry, 0); 3016 3017 /* 3018 * If atomic_open() acquired write access it is dropped now due to 3019 * possible mount and symlink following (this might be optimized away if 3020 * necessary...) 3021 */ 3022 if (got_write) { 3023 mnt_drop_write(nd->path.mnt); 3024 got_write = false; 3025 } 3026 3027 error = -EEXIST; 3028 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 3029 goto exit_dput; 3030 3031 error = follow_managed(path, nd->flags); 3032 if (error < 0) 3033 goto exit_dput; 3034 3035 if (error) 3036 nd->flags |= LOOKUP_JUMPED; 3037 3038 BUG_ON(nd->flags & LOOKUP_RCU); 3039 inode = path->dentry->d_inode; 3040 finish_lookup: 3041 /* we _can_ be in RCU mode here */ 3042 error = -ENOENT; 3043 if (!inode || d_is_negative(path->dentry)) { 3044 path_to_nameidata(path, nd); 3045 goto out; 3046 } 3047 3048 if (should_follow_link(path->dentry, !symlink_ok)) { 3049 if (nd->flags & LOOKUP_RCU) { 3050 if (unlikely(unlazy_walk(nd, path->dentry))) { 3051 error = -ECHILD; 3052 goto out; 3053 } 3054 } 3055 BUG_ON(inode != path->dentry->d_inode); 3056 return 1; 3057 } 3058 3059 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3060 path_to_nameidata(path, nd); 3061 } else { 3062 save_parent.dentry = nd->path.dentry; 3063 save_parent.mnt = mntget(path->mnt); 3064 nd->path.dentry = path->dentry; 3065 3066 } 3067 nd->inode = inode; 3068 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3069 finish_open: 3070 error = complete_walk(nd); 3071 if (error) { 3072 path_put(&save_parent); 3073 return error; 3074 } 3075 audit_inode(name, nd->path.dentry, 0); 3076 error = -EISDIR; 3077 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3078 goto out; 3079 error = -ENOTDIR; 3080 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3081 goto out; 3082 if (!S_ISREG(nd->inode->i_mode)) 3083 will_truncate = false; 3084 3085 if (will_truncate) { 3086 error = mnt_want_write(nd->path.mnt); 3087 if (error) 3088 goto out; 3089 got_write = true; 3090 } 3091 finish_open_created: 3092 error = may_open(&nd->path, acc_mode, open_flag); 3093 if (error) 3094 goto out; 3095 3096 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3097 error = vfs_open(&nd->path, file, current_cred()); 3098 if (!error) { 3099 *opened |= FILE_OPENED; 3100 } else { 3101 if (error == -EOPENSTALE) 3102 goto stale_open; 3103 goto out; 3104 } 3105 opened: 3106 error = open_check_o_direct(file); 3107 if (error) 3108 goto exit_fput; 3109 error = ima_file_check(file, op->acc_mode, *opened); 3110 if (error) 3111 goto exit_fput; 3112 3113 if (will_truncate) { 3114 error = handle_truncate(file); 3115 if (error) 3116 goto exit_fput; 3117 } 3118 out: 3119 if (got_write) 3120 mnt_drop_write(nd->path.mnt); 3121 path_put(&save_parent); 3122 terminate_walk(nd); 3123 return error; 3124 3125 exit_dput: 3126 path_put_conditional(path, nd); 3127 goto out; 3128 exit_fput: 3129 fput(file); 3130 goto out; 3131 3132 stale_open: 3133 /* If no saved parent or already retried then can't retry */ 3134 if (!save_parent.dentry || retried) 3135 goto out; 3136 3137 BUG_ON(save_parent.dentry != dir); 3138 path_put(&nd->path); 3139 nd->path = save_parent; 3140 nd->inode = dir->d_inode; 3141 save_parent.mnt = NULL; 3142 save_parent.dentry = NULL; 3143 if (got_write) { 3144 mnt_drop_write(nd->path.mnt); 3145 got_write = false; 3146 } 3147 retried = true; 3148 goto retry_lookup; 3149 } 3150 3151 static int do_tmpfile(int dfd, struct filename *pathname, 3152 struct nameidata *nd, int flags, 3153 const struct open_flags *op, 3154 struct file *file, int *opened) 3155 { 3156 static const struct qstr name = QSTR_INIT("/", 1); 3157 struct dentry *dentry, *child; 3158 struct inode *dir; 3159 int error = path_lookupat(dfd, pathname->name, 3160 flags | LOOKUP_DIRECTORY, nd); 3161 if (unlikely(error)) 3162 return error; 3163 error = mnt_want_write(nd->path.mnt); 3164 if (unlikely(error)) 3165 goto out; 3166 /* we want directory to be writable */ 3167 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3168 if (error) 3169 goto out2; 3170 dentry = nd->path.dentry; 3171 dir = dentry->d_inode; 3172 if (!dir->i_op->tmpfile) { 3173 error = -EOPNOTSUPP; 3174 goto out2; 3175 } 3176 child = d_alloc(dentry, &name); 3177 if (unlikely(!child)) { 3178 error = -ENOMEM; 3179 goto out2; 3180 } 3181 nd->flags &= ~LOOKUP_DIRECTORY; 3182 nd->flags |= op->intent; 3183 dput(nd->path.dentry); 3184 nd->path.dentry = child; 3185 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3186 if (error) 3187 goto out2; 3188 audit_inode(pathname, nd->path.dentry, 0); 3189 /* Don't check for other permissions, the inode was just created */ 3190 error = may_open(&nd->path, MAY_OPEN, op->open_flag); 3191 if (error) 3192 goto out2; 3193 file->f_path.mnt = nd->path.mnt; 3194 error = finish_open(file, nd->path.dentry, NULL, opened); 3195 if (error) 3196 goto out2; 3197 error = open_check_o_direct(file); 3198 if (error) { 3199 fput(file); 3200 } else if (!(op->open_flag & O_EXCL)) { 3201 struct inode *inode = file_inode(file); 3202 spin_lock(&inode->i_lock); 3203 inode->i_state |= I_LINKABLE; 3204 spin_unlock(&inode->i_lock); 3205 } 3206 out2: 3207 mnt_drop_write(nd->path.mnt); 3208 out: 3209 path_put(&nd->path); 3210 return error; 3211 } 3212 3213 static struct file *path_openat(int dfd, struct filename *pathname, 3214 struct nameidata *nd, const struct open_flags *op, int flags) 3215 { 3216 struct file *file; 3217 struct path path; 3218 int opened = 0; 3219 int error; 3220 3221 file = get_empty_filp(); 3222 if (IS_ERR(file)) 3223 return file; 3224 3225 file->f_flags = op->open_flag; 3226 3227 if (unlikely(file->f_flags & __O_TMPFILE)) { 3228 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3229 goto out; 3230 } 3231 3232 error = path_init(dfd, pathname->name, flags, nd); 3233 if (unlikely(error)) 3234 goto out; 3235 3236 error = do_last(nd, &path, file, op, &opened, pathname); 3237 while (unlikely(error > 0)) { /* trailing symlink */ 3238 struct path link = path; 3239 void *cookie; 3240 if (!(nd->flags & LOOKUP_FOLLOW)) { 3241 path_put_conditional(&path, nd); 3242 path_put(&nd->path); 3243 error = -ELOOP; 3244 break; 3245 } 3246 error = may_follow_link(&link, nd); 3247 if (unlikely(error)) 3248 break; 3249 nd->flags |= LOOKUP_PARENT; 3250 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3251 error = follow_link(&link, nd, &cookie); 3252 if (unlikely(error)) 3253 break; 3254 error = do_last(nd, &path, file, op, &opened, pathname); 3255 put_link(nd, &link, cookie); 3256 } 3257 out: 3258 path_cleanup(nd); 3259 if (!(opened & FILE_OPENED)) { 3260 BUG_ON(!error); 3261 put_filp(file); 3262 } 3263 if (unlikely(error)) { 3264 if (error == -EOPENSTALE) { 3265 if (flags & LOOKUP_RCU) 3266 error = -ECHILD; 3267 else 3268 error = -ESTALE; 3269 } 3270 file = ERR_PTR(error); 3271 } 3272 return file; 3273 } 3274 3275 struct file *do_filp_open(int dfd, struct filename *pathname, 3276 const struct open_flags *op) 3277 { 3278 struct nameidata nd; 3279 int flags = op->lookup_flags; 3280 struct file *filp; 3281 3282 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3283 if (unlikely(filp == ERR_PTR(-ECHILD))) 3284 filp = path_openat(dfd, pathname, &nd, op, flags); 3285 if (unlikely(filp == ERR_PTR(-ESTALE))) 3286 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3287 return filp; 3288 } 3289 3290 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3291 const char *name, const struct open_flags *op) 3292 { 3293 struct nameidata nd; 3294 struct file *file; 3295 struct filename *filename; 3296 int flags = op->lookup_flags | LOOKUP_ROOT; 3297 3298 nd.root.mnt = mnt; 3299 nd.root.dentry = dentry; 3300 3301 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3302 return ERR_PTR(-ELOOP); 3303 3304 filename = getname_kernel(name); 3305 if (unlikely(IS_ERR(filename))) 3306 return ERR_CAST(filename); 3307 3308 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU); 3309 if (unlikely(file == ERR_PTR(-ECHILD))) 3310 file = path_openat(-1, filename, &nd, op, flags); 3311 if (unlikely(file == ERR_PTR(-ESTALE))) 3312 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL); 3313 putname(filename); 3314 return file; 3315 } 3316 3317 static struct dentry *filename_create(int dfd, struct filename *name, 3318 struct path *path, unsigned int lookup_flags) 3319 { 3320 struct dentry *dentry = ERR_PTR(-EEXIST); 3321 struct nameidata nd; 3322 int err2; 3323 int error; 3324 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3325 3326 /* 3327 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3328 * other flags passed in are ignored! 3329 */ 3330 lookup_flags &= LOOKUP_REVAL; 3331 3332 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd); 3333 if (error) 3334 return ERR_PTR(error); 3335 3336 /* 3337 * Yucky last component or no last component at all? 3338 * (foo/., foo/.., /////) 3339 */ 3340 if (nd.last_type != LAST_NORM) 3341 goto out; 3342 nd.flags &= ~LOOKUP_PARENT; 3343 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3344 3345 /* don't fail immediately if it's r/o, at least try to report other errors */ 3346 err2 = mnt_want_write(nd.path.mnt); 3347 /* 3348 * Do the final lookup. 3349 */ 3350 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3351 dentry = lookup_hash(&nd); 3352 if (IS_ERR(dentry)) 3353 goto unlock; 3354 3355 error = -EEXIST; 3356 if (d_is_positive(dentry)) 3357 goto fail; 3358 3359 /* 3360 * Special case - lookup gave negative, but... we had foo/bar/ 3361 * From the vfs_mknod() POV we just have a negative dentry - 3362 * all is fine. Let's be bastards - you had / on the end, you've 3363 * been asking for (non-existent) directory. -ENOENT for you. 3364 */ 3365 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3366 error = -ENOENT; 3367 goto fail; 3368 } 3369 if (unlikely(err2)) { 3370 error = err2; 3371 goto fail; 3372 } 3373 *path = nd.path; 3374 return dentry; 3375 fail: 3376 dput(dentry); 3377 dentry = ERR_PTR(error); 3378 unlock: 3379 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3380 if (!err2) 3381 mnt_drop_write(nd.path.mnt); 3382 out: 3383 path_put(&nd.path); 3384 return dentry; 3385 } 3386 3387 struct dentry *kern_path_create(int dfd, const char *pathname, 3388 struct path *path, unsigned int lookup_flags) 3389 { 3390 struct filename *filename = getname_kernel(pathname); 3391 struct dentry *res; 3392 3393 if (IS_ERR(filename)) 3394 return ERR_CAST(filename); 3395 res = filename_create(dfd, filename, path, lookup_flags); 3396 putname(filename); 3397 return res; 3398 } 3399 EXPORT_SYMBOL(kern_path_create); 3400 3401 void done_path_create(struct path *path, struct dentry *dentry) 3402 { 3403 dput(dentry); 3404 mutex_unlock(&path->dentry->d_inode->i_mutex); 3405 mnt_drop_write(path->mnt); 3406 path_put(path); 3407 } 3408 EXPORT_SYMBOL(done_path_create); 3409 3410 struct dentry *user_path_create(int dfd, const char __user *pathname, 3411 struct path *path, unsigned int lookup_flags) 3412 { 3413 struct filename *tmp = getname(pathname); 3414 struct dentry *res; 3415 if (IS_ERR(tmp)) 3416 return ERR_CAST(tmp); 3417 res = filename_create(dfd, tmp, path, lookup_flags); 3418 putname(tmp); 3419 return res; 3420 } 3421 EXPORT_SYMBOL(user_path_create); 3422 3423 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3424 { 3425 int error = may_create(dir, dentry); 3426 3427 if (error) 3428 return error; 3429 3430 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3431 return -EPERM; 3432 3433 if (!dir->i_op->mknod) 3434 return -EPERM; 3435 3436 error = devcgroup_inode_mknod(mode, dev); 3437 if (error) 3438 return error; 3439 3440 error = security_inode_mknod(dir, dentry, mode, dev); 3441 if (error) 3442 return error; 3443 3444 error = dir->i_op->mknod(dir, dentry, mode, dev); 3445 if (!error) 3446 fsnotify_create(dir, dentry); 3447 return error; 3448 } 3449 EXPORT_SYMBOL(vfs_mknod); 3450 3451 static int may_mknod(umode_t mode) 3452 { 3453 switch (mode & S_IFMT) { 3454 case S_IFREG: 3455 case S_IFCHR: 3456 case S_IFBLK: 3457 case S_IFIFO: 3458 case S_IFSOCK: 3459 case 0: /* zero mode translates to S_IFREG */ 3460 return 0; 3461 case S_IFDIR: 3462 return -EPERM; 3463 default: 3464 return -EINVAL; 3465 } 3466 } 3467 3468 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3469 unsigned, dev) 3470 { 3471 struct dentry *dentry; 3472 struct path path; 3473 int error; 3474 unsigned int lookup_flags = 0; 3475 3476 error = may_mknod(mode); 3477 if (error) 3478 return error; 3479 retry: 3480 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3481 if (IS_ERR(dentry)) 3482 return PTR_ERR(dentry); 3483 3484 if (!IS_POSIXACL(path.dentry->d_inode)) 3485 mode &= ~current_umask(); 3486 error = security_path_mknod(&path, dentry, mode, dev); 3487 if (error) 3488 goto out; 3489 switch (mode & S_IFMT) { 3490 case 0: case S_IFREG: 3491 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3492 break; 3493 case S_IFCHR: case S_IFBLK: 3494 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3495 new_decode_dev(dev)); 3496 break; 3497 case S_IFIFO: case S_IFSOCK: 3498 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3499 break; 3500 } 3501 out: 3502 done_path_create(&path, dentry); 3503 if (retry_estale(error, lookup_flags)) { 3504 lookup_flags |= LOOKUP_REVAL; 3505 goto retry; 3506 } 3507 return error; 3508 } 3509 3510 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3511 { 3512 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3513 } 3514 3515 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3516 { 3517 int error = may_create(dir, dentry); 3518 unsigned max_links = dir->i_sb->s_max_links; 3519 3520 if (error) 3521 return error; 3522 3523 if (!dir->i_op->mkdir) 3524 return -EPERM; 3525 3526 mode &= (S_IRWXUGO|S_ISVTX); 3527 error = security_inode_mkdir(dir, dentry, mode); 3528 if (error) 3529 return error; 3530 3531 if (max_links && dir->i_nlink >= max_links) 3532 return -EMLINK; 3533 3534 error = dir->i_op->mkdir(dir, dentry, mode); 3535 if (!error) 3536 fsnotify_mkdir(dir, dentry); 3537 return error; 3538 } 3539 EXPORT_SYMBOL(vfs_mkdir); 3540 3541 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3542 { 3543 struct dentry *dentry; 3544 struct path path; 3545 int error; 3546 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3547 3548 retry: 3549 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3550 if (IS_ERR(dentry)) 3551 return PTR_ERR(dentry); 3552 3553 if (!IS_POSIXACL(path.dentry->d_inode)) 3554 mode &= ~current_umask(); 3555 error = security_path_mkdir(&path, dentry, mode); 3556 if (!error) 3557 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3558 done_path_create(&path, dentry); 3559 if (retry_estale(error, lookup_flags)) { 3560 lookup_flags |= LOOKUP_REVAL; 3561 goto retry; 3562 } 3563 return error; 3564 } 3565 3566 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3567 { 3568 return sys_mkdirat(AT_FDCWD, pathname, mode); 3569 } 3570 3571 /* 3572 * The dentry_unhash() helper will try to drop the dentry early: we 3573 * should have a usage count of 1 if we're the only user of this 3574 * dentry, and if that is true (possibly after pruning the dcache), 3575 * then we drop the dentry now. 3576 * 3577 * A low-level filesystem can, if it choses, legally 3578 * do a 3579 * 3580 * if (!d_unhashed(dentry)) 3581 * return -EBUSY; 3582 * 3583 * if it cannot handle the case of removing a directory 3584 * that is still in use by something else.. 3585 */ 3586 void dentry_unhash(struct dentry *dentry) 3587 { 3588 shrink_dcache_parent(dentry); 3589 spin_lock(&dentry->d_lock); 3590 if (dentry->d_lockref.count == 1) 3591 __d_drop(dentry); 3592 spin_unlock(&dentry->d_lock); 3593 } 3594 EXPORT_SYMBOL(dentry_unhash); 3595 3596 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3597 { 3598 int error = may_delete(dir, dentry, 1); 3599 3600 if (error) 3601 return error; 3602 3603 if (!dir->i_op->rmdir) 3604 return -EPERM; 3605 3606 dget(dentry); 3607 mutex_lock(&dentry->d_inode->i_mutex); 3608 3609 error = -EBUSY; 3610 if (is_local_mountpoint(dentry)) 3611 goto out; 3612 3613 error = security_inode_rmdir(dir, dentry); 3614 if (error) 3615 goto out; 3616 3617 shrink_dcache_parent(dentry); 3618 error = dir->i_op->rmdir(dir, dentry); 3619 if (error) 3620 goto out; 3621 3622 dentry->d_inode->i_flags |= S_DEAD; 3623 dont_mount(dentry); 3624 detach_mounts(dentry); 3625 3626 out: 3627 mutex_unlock(&dentry->d_inode->i_mutex); 3628 dput(dentry); 3629 if (!error) 3630 d_delete(dentry); 3631 return error; 3632 } 3633 EXPORT_SYMBOL(vfs_rmdir); 3634 3635 static long do_rmdir(int dfd, const char __user *pathname) 3636 { 3637 int error = 0; 3638 struct filename *name; 3639 struct dentry *dentry; 3640 struct nameidata nd; 3641 unsigned int lookup_flags = 0; 3642 retry: 3643 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3644 if (IS_ERR(name)) 3645 return PTR_ERR(name); 3646 3647 switch(nd.last_type) { 3648 case LAST_DOTDOT: 3649 error = -ENOTEMPTY; 3650 goto exit1; 3651 case LAST_DOT: 3652 error = -EINVAL; 3653 goto exit1; 3654 case LAST_ROOT: 3655 error = -EBUSY; 3656 goto exit1; 3657 } 3658 3659 nd.flags &= ~LOOKUP_PARENT; 3660 error = mnt_want_write(nd.path.mnt); 3661 if (error) 3662 goto exit1; 3663 3664 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3665 dentry = lookup_hash(&nd); 3666 error = PTR_ERR(dentry); 3667 if (IS_ERR(dentry)) 3668 goto exit2; 3669 if (!dentry->d_inode) { 3670 error = -ENOENT; 3671 goto exit3; 3672 } 3673 error = security_path_rmdir(&nd.path, dentry); 3674 if (error) 3675 goto exit3; 3676 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3677 exit3: 3678 dput(dentry); 3679 exit2: 3680 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3681 mnt_drop_write(nd.path.mnt); 3682 exit1: 3683 path_put(&nd.path); 3684 putname(name); 3685 if (retry_estale(error, lookup_flags)) { 3686 lookup_flags |= LOOKUP_REVAL; 3687 goto retry; 3688 } 3689 return error; 3690 } 3691 3692 SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3693 { 3694 return do_rmdir(AT_FDCWD, pathname); 3695 } 3696 3697 /** 3698 * vfs_unlink - unlink a filesystem object 3699 * @dir: parent directory 3700 * @dentry: victim 3701 * @delegated_inode: returns victim inode, if the inode is delegated. 3702 * 3703 * The caller must hold dir->i_mutex. 3704 * 3705 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3706 * return a reference to the inode in delegated_inode. The caller 3707 * should then break the delegation on that inode and retry. Because 3708 * breaking a delegation may take a long time, the caller should drop 3709 * dir->i_mutex before doing so. 3710 * 3711 * Alternatively, a caller may pass NULL for delegated_inode. This may 3712 * be appropriate for callers that expect the underlying filesystem not 3713 * to be NFS exported. 3714 */ 3715 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3716 { 3717 struct inode *target = dentry->d_inode; 3718 int error = may_delete(dir, dentry, 0); 3719 3720 if (error) 3721 return error; 3722 3723 if (!dir->i_op->unlink) 3724 return -EPERM; 3725 3726 mutex_lock(&target->i_mutex); 3727 if (is_local_mountpoint(dentry)) 3728 error = -EBUSY; 3729 else { 3730 error = security_inode_unlink(dir, dentry); 3731 if (!error) { 3732 error = try_break_deleg(target, delegated_inode); 3733 if (error) 3734 goto out; 3735 error = dir->i_op->unlink(dir, dentry); 3736 if (!error) { 3737 dont_mount(dentry); 3738 detach_mounts(dentry); 3739 } 3740 } 3741 } 3742 out: 3743 mutex_unlock(&target->i_mutex); 3744 3745 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3746 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3747 fsnotify_link_count(target); 3748 d_delete(dentry); 3749 } 3750 3751 return error; 3752 } 3753 EXPORT_SYMBOL(vfs_unlink); 3754 3755 /* 3756 * Make sure that the actual truncation of the file will occur outside its 3757 * directory's i_mutex. Truncate can take a long time if there is a lot of 3758 * writeout happening, and we don't want to prevent access to the directory 3759 * while waiting on the I/O. 3760 */ 3761 static long do_unlinkat(int dfd, const char __user *pathname) 3762 { 3763 int error; 3764 struct filename *name; 3765 struct dentry *dentry; 3766 struct nameidata nd; 3767 struct inode *inode = NULL; 3768 struct inode *delegated_inode = NULL; 3769 unsigned int lookup_flags = 0; 3770 retry: 3771 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3772 if (IS_ERR(name)) 3773 return PTR_ERR(name); 3774 3775 error = -EISDIR; 3776 if (nd.last_type != LAST_NORM) 3777 goto exit1; 3778 3779 nd.flags &= ~LOOKUP_PARENT; 3780 error = mnt_want_write(nd.path.mnt); 3781 if (error) 3782 goto exit1; 3783 retry_deleg: 3784 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3785 dentry = lookup_hash(&nd); 3786 error = PTR_ERR(dentry); 3787 if (!IS_ERR(dentry)) { 3788 /* Why not before? Because we want correct error value */ 3789 if (nd.last.name[nd.last.len]) 3790 goto slashes; 3791 inode = dentry->d_inode; 3792 if (d_is_negative(dentry)) 3793 goto slashes; 3794 ihold(inode); 3795 error = security_path_unlink(&nd.path, dentry); 3796 if (error) 3797 goto exit2; 3798 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3799 exit2: 3800 dput(dentry); 3801 } 3802 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3803 if (inode) 3804 iput(inode); /* truncate the inode here */ 3805 inode = NULL; 3806 if (delegated_inode) { 3807 error = break_deleg_wait(&delegated_inode); 3808 if (!error) 3809 goto retry_deleg; 3810 } 3811 mnt_drop_write(nd.path.mnt); 3812 exit1: 3813 path_put(&nd.path); 3814 putname(name); 3815 if (retry_estale(error, lookup_flags)) { 3816 lookup_flags |= LOOKUP_REVAL; 3817 inode = NULL; 3818 goto retry; 3819 } 3820 return error; 3821 3822 slashes: 3823 if (d_is_negative(dentry)) 3824 error = -ENOENT; 3825 else if (d_is_dir(dentry)) 3826 error = -EISDIR; 3827 else 3828 error = -ENOTDIR; 3829 goto exit2; 3830 } 3831 3832 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3833 { 3834 if ((flag & ~AT_REMOVEDIR) != 0) 3835 return -EINVAL; 3836 3837 if (flag & AT_REMOVEDIR) 3838 return do_rmdir(dfd, pathname); 3839 3840 return do_unlinkat(dfd, pathname); 3841 } 3842 3843 SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3844 { 3845 return do_unlinkat(AT_FDCWD, pathname); 3846 } 3847 3848 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3849 { 3850 int error = may_create(dir, dentry); 3851 3852 if (error) 3853 return error; 3854 3855 if (!dir->i_op->symlink) 3856 return -EPERM; 3857 3858 error = security_inode_symlink(dir, dentry, oldname); 3859 if (error) 3860 return error; 3861 3862 error = dir->i_op->symlink(dir, dentry, oldname); 3863 if (!error) 3864 fsnotify_create(dir, dentry); 3865 return error; 3866 } 3867 EXPORT_SYMBOL(vfs_symlink); 3868 3869 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3870 int, newdfd, const char __user *, newname) 3871 { 3872 int error; 3873 struct filename *from; 3874 struct dentry *dentry; 3875 struct path path; 3876 unsigned int lookup_flags = 0; 3877 3878 from = getname(oldname); 3879 if (IS_ERR(from)) 3880 return PTR_ERR(from); 3881 retry: 3882 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3883 error = PTR_ERR(dentry); 3884 if (IS_ERR(dentry)) 3885 goto out_putname; 3886 3887 error = security_path_symlink(&path, dentry, from->name); 3888 if (!error) 3889 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3890 done_path_create(&path, dentry); 3891 if (retry_estale(error, lookup_flags)) { 3892 lookup_flags |= LOOKUP_REVAL; 3893 goto retry; 3894 } 3895 out_putname: 3896 putname(from); 3897 return error; 3898 } 3899 3900 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3901 { 3902 return sys_symlinkat(oldname, AT_FDCWD, newname); 3903 } 3904 3905 /** 3906 * vfs_link - create a new link 3907 * @old_dentry: object to be linked 3908 * @dir: new parent 3909 * @new_dentry: where to create the new link 3910 * @delegated_inode: returns inode needing a delegation break 3911 * 3912 * The caller must hold dir->i_mutex 3913 * 3914 * If vfs_link discovers a delegation on the to-be-linked file in need 3915 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3916 * inode in delegated_inode. The caller should then break the delegation 3917 * and retry. Because breaking a delegation may take a long time, the 3918 * caller should drop the i_mutex before doing so. 3919 * 3920 * Alternatively, a caller may pass NULL for delegated_inode. This may 3921 * be appropriate for callers that expect the underlying filesystem not 3922 * to be NFS exported. 3923 */ 3924 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3925 { 3926 struct inode *inode = old_dentry->d_inode; 3927 unsigned max_links = dir->i_sb->s_max_links; 3928 int error; 3929 3930 if (!inode) 3931 return -ENOENT; 3932 3933 error = may_create(dir, new_dentry); 3934 if (error) 3935 return error; 3936 3937 if (dir->i_sb != inode->i_sb) 3938 return -EXDEV; 3939 3940 /* 3941 * A link to an append-only or immutable file cannot be created. 3942 */ 3943 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3944 return -EPERM; 3945 if (!dir->i_op->link) 3946 return -EPERM; 3947 if (S_ISDIR(inode->i_mode)) 3948 return -EPERM; 3949 3950 error = security_inode_link(old_dentry, dir, new_dentry); 3951 if (error) 3952 return error; 3953 3954 mutex_lock(&inode->i_mutex); 3955 /* Make sure we don't allow creating hardlink to an unlinked file */ 3956 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3957 error = -ENOENT; 3958 else if (max_links && inode->i_nlink >= max_links) 3959 error = -EMLINK; 3960 else { 3961 error = try_break_deleg(inode, delegated_inode); 3962 if (!error) 3963 error = dir->i_op->link(old_dentry, dir, new_dentry); 3964 } 3965 3966 if (!error && (inode->i_state & I_LINKABLE)) { 3967 spin_lock(&inode->i_lock); 3968 inode->i_state &= ~I_LINKABLE; 3969 spin_unlock(&inode->i_lock); 3970 } 3971 mutex_unlock(&inode->i_mutex); 3972 if (!error) 3973 fsnotify_link(dir, inode, new_dentry); 3974 return error; 3975 } 3976 EXPORT_SYMBOL(vfs_link); 3977 3978 /* 3979 * Hardlinks are often used in delicate situations. We avoid 3980 * security-related surprises by not following symlinks on the 3981 * newname. --KAB 3982 * 3983 * We don't follow them on the oldname either to be compatible 3984 * with linux 2.0, and to avoid hard-linking to directories 3985 * and other special files. --ADM 3986 */ 3987 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 3988 int, newdfd, const char __user *, newname, int, flags) 3989 { 3990 struct dentry *new_dentry; 3991 struct path old_path, new_path; 3992 struct inode *delegated_inode = NULL; 3993 int how = 0; 3994 int error; 3995 3996 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 3997 return -EINVAL; 3998 /* 3999 * To use null names we require CAP_DAC_READ_SEARCH 4000 * This ensures that not everyone will be able to create 4001 * handlink using the passed filedescriptor. 4002 */ 4003 if (flags & AT_EMPTY_PATH) { 4004 if (!capable(CAP_DAC_READ_SEARCH)) 4005 return -ENOENT; 4006 how = LOOKUP_EMPTY; 4007 } 4008 4009 if (flags & AT_SYMLINK_FOLLOW) 4010 how |= LOOKUP_FOLLOW; 4011 retry: 4012 error = user_path_at(olddfd, oldname, how, &old_path); 4013 if (error) 4014 return error; 4015 4016 new_dentry = user_path_create(newdfd, newname, &new_path, 4017 (how & LOOKUP_REVAL)); 4018 error = PTR_ERR(new_dentry); 4019 if (IS_ERR(new_dentry)) 4020 goto out; 4021 4022 error = -EXDEV; 4023 if (old_path.mnt != new_path.mnt) 4024 goto out_dput; 4025 error = may_linkat(&old_path); 4026 if (unlikely(error)) 4027 goto out_dput; 4028 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4029 if (error) 4030 goto out_dput; 4031 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4032 out_dput: 4033 done_path_create(&new_path, new_dentry); 4034 if (delegated_inode) { 4035 error = break_deleg_wait(&delegated_inode); 4036 if (!error) { 4037 path_put(&old_path); 4038 goto retry; 4039 } 4040 } 4041 if (retry_estale(error, how)) { 4042 path_put(&old_path); 4043 how |= LOOKUP_REVAL; 4044 goto retry; 4045 } 4046 out: 4047 path_put(&old_path); 4048 4049 return error; 4050 } 4051 4052 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4053 { 4054 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4055 } 4056 4057 /** 4058 * vfs_rename - rename a filesystem object 4059 * @old_dir: parent of source 4060 * @old_dentry: source 4061 * @new_dir: parent of destination 4062 * @new_dentry: destination 4063 * @delegated_inode: returns an inode needing a delegation break 4064 * @flags: rename flags 4065 * 4066 * The caller must hold multiple mutexes--see lock_rename()). 4067 * 4068 * If vfs_rename discovers a delegation in need of breaking at either 4069 * the source or destination, it will return -EWOULDBLOCK and return a 4070 * reference to the inode in delegated_inode. The caller should then 4071 * break the delegation and retry. Because breaking a delegation may 4072 * take a long time, the caller should drop all locks before doing 4073 * so. 4074 * 4075 * Alternatively, a caller may pass NULL for delegated_inode. This may 4076 * be appropriate for callers that expect the underlying filesystem not 4077 * to be NFS exported. 4078 * 4079 * The worst of all namespace operations - renaming directory. "Perverted" 4080 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4081 * Problems: 4082 * a) we can get into loop creation. 4083 * b) race potential - two innocent renames can create a loop together. 4084 * That's where 4.4 screws up. Current fix: serialization on 4085 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4086 * story. 4087 * c) we have to lock _four_ objects - parents and victim (if it exists), 4088 * and source (if it is not a directory). 4089 * And that - after we got ->i_mutex on parents (until then we don't know 4090 * whether the target exists). Solution: try to be smart with locking 4091 * order for inodes. We rely on the fact that tree topology may change 4092 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4093 * move will be locked. Thus we can rank directories by the tree 4094 * (ancestors first) and rank all non-directories after them. 4095 * That works since everybody except rename does "lock parent, lookup, 4096 * lock child" and rename is under ->s_vfs_rename_mutex. 4097 * HOWEVER, it relies on the assumption that any object with ->lookup() 4098 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4099 * we'd better make sure that there's no link(2) for them. 4100 * d) conversion from fhandle to dentry may come in the wrong moment - when 4101 * we are removing the target. Solution: we will have to grab ->i_mutex 4102 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4103 * ->i_mutex on parents, which works but leads to some truly excessive 4104 * locking]. 4105 */ 4106 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4107 struct inode *new_dir, struct dentry *new_dentry, 4108 struct inode **delegated_inode, unsigned int flags) 4109 { 4110 int error; 4111 bool is_dir = d_is_dir(old_dentry); 4112 const unsigned char *old_name; 4113 struct inode *source = old_dentry->d_inode; 4114 struct inode *target = new_dentry->d_inode; 4115 bool new_is_dir = false; 4116 unsigned max_links = new_dir->i_sb->s_max_links; 4117 4118 if (source == target) 4119 return 0; 4120 4121 error = may_delete(old_dir, old_dentry, is_dir); 4122 if (error) 4123 return error; 4124 4125 if (!target) { 4126 error = may_create(new_dir, new_dentry); 4127 } else { 4128 new_is_dir = d_is_dir(new_dentry); 4129 4130 if (!(flags & RENAME_EXCHANGE)) 4131 error = may_delete(new_dir, new_dentry, is_dir); 4132 else 4133 error = may_delete(new_dir, new_dentry, new_is_dir); 4134 } 4135 if (error) 4136 return error; 4137 4138 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4139 return -EPERM; 4140 4141 if (flags && !old_dir->i_op->rename2) 4142 return -EINVAL; 4143 4144 /* 4145 * If we are going to change the parent - check write permissions, 4146 * we'll need to flip '..'. 4147 */ 4148 if (new_dir != old_dir) { 4149 if (is_dir) { 4150 error = inode_permission(source, MAY_WRITE); 4151 if (error) 4152 return error; 4153 } 4154 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4155 error = inode_permission(target, MAY_WRITE); 4156 if (error) 4157 return error; 4158 } 4159 } 4160 4161 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4162 flags); 4163 if (error) 4164 return error; 4165 4166 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4167 dget(new_dentry); 4168 if (!is_dir || (flags & RENAME_EXCHANGE)) 4169 lock_two_nondirectories(source, target); 4170 else if (target) 4171 mutex_lock(&target->i_mutex); 4172 4173 error = -EBUSY; 4174 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4175 goto out; 4176 4177 if (max_links && new_dir != old_dir) { 4178 error = -EMLINK; 4179 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4180 goto out; 4181 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4182 old_dir->i_nlink >= max_links) 4183 goto out; 4184 } 4185 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4186 shrink_dcache_parent(new_dentry); 4187 if (!is_dir) { 4188 error = try_break_deleg(source, delegated_inode); 4189 if (error) 4190 goto out; 4191 } 4192 if (target && !new_is_dir) { 4193 error = try_break_deleg(target, delegated_inode); 4194 if (error) 4195 goto out; 4196 } 4197 if (!old_dir->i_op->rename2) { 4198 error = old_dir->i_op->rename(old_dir, old_dentry, 4199 new_dir, new_dentry); 4200 } else { 4201 WARN_ON(old_dir->i_op->rename != NULL); 4202 error = old_dir->i_op->rename2(old_dir, old_dentry, 4203 new_dir, new_dentry, flags); 4204 } 4205 if (error) 4206 goto out; 4207 4208 if (!(flags & RENAME_EXCHANGE) && target) { 4209 if (is_dir) 4210 target->i_flags |= S_DEAD; 4211 dont_mount(new_dentry); 4212 detach_mounts(new_dentry); 4213 } 4214 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4215 if (!(flags & RENAME_EXCHANGE)) 4216 d_move(old_dentry, new_dentry); 4217 else 4218 d_exchange(old_dentry, new_dentry); 4219 } 4220 out: 4221 if (!is_dir || (flags & RENAME_EXCHANGE)) 4222 unlock_two_nondirectories(source, target); 4223 else if (target) 4224 mutex_unlock(&target->i_mutex); 4225 dput(new_dentry); 4226 if (!error) { 4227 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4228 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4229 if (flags & RENAME_EXCHANGE) { 4230 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4231 new_is_dir, NULL, new_dentry); 4232 } 4233 } 4234 fsnotify_oldname_free(old_name); 4235 4236 return error; 4237 } 4238 EXPORT_SYMBOL(vfs_rename); 4239 4240 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4241 int, newdfd, const char __user *, newname, unsigned int, flags) 4242 { 4243 struct dentry *old_dir, *new_dir; 4244 struct dentry *old_dentry, *new_dentry; 4245 struct dentry *trap; 4246 struct nameidata oldnd, newnd; 4247 struct inode *delegated_inode = NULL; 4248 struct filename *from; 4249 struct filename *to; 4250 unsigned int lookup_flags = 0; 4251 bool should_retry = false; 4252 int error; 4253 4254 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4255 return -EINVAL; 4256 4257 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4258 (flags & RENAME_EXCHANGE)) 4259 return -EINVAL; 4260 4261 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4262 return -EPERM; 4263 4264 retry: 4265 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4266 if (IS_ERR(from)) { 4267 error = PTR_ERR(from); 4268 goto exit; 4269 } 4270 4271 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4272 if (IS_ERR(to)) { 4273 error = PTR_ERR(to); 4274 goto exit1; 4275 } 4276 4277 error = -EXDEV; 4278 if (oldnd.path.mnt != newnd.path.mnt) 4279 goto exit2; 4280 4281 old_dir = oldnd.path.dentry; 4282 error = -EBUSY; 4283 if (oldnd.last_type != LAST_NORM) 4284 goto exit2; 4285 4286 new_dir = newnd.path.dentry; 4287 if (flags & RENAME_NOREPLACE) 4288 error = -EEXIST; 4289 if (newnd.last_type != LAST_NORM) 4290 goto exit2; 4291 4292 error = mnt_want_write(oldnd.path.mnt); 4293 if (error) 4294 goto exit2; 4295 4296 oldnd.flags &= ~LOOKUP_PARENT; 4297 newnd.flags &= ~LOOKUP_PARENT; 4298 if (!(flags & RENAME_EXCHANGE)) 4299 newnd.flags |= LOOKUP_RENAME_TARGET; 4300 4301 retry_deleg: 4302 trap = lock_rename(new_dir, old_dir); 4303 4304 old_dentry = lookup_hash(&oldnd); 4305 error = PTR_ERR(old_dentry); 4306 if (IS_ERR(old_dentry)) 4307 goto exit3; 4308 /* source must exist */ 4309 error = -ENOENT; 4310 if (d_is_negative(old_dentry)) 4311 goto exit4; 4312 new_dentry = lookup_hash(&newnd); 4313 error = PTR_ERR(new_dentry); 4314 if (IS_ERR(new_dentry)) 4315 goto exit4; 4316 error = -EEXIST; 4317 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4318 goto exit5; 4319 if (flags & RENAME_EXCHANGE) { 4320 error = -ENOENT; 4321 if (d_is_negative(new_dentry)) 4322 goto exit5; 4323 4324 if (!d_is_dir(new_dentry)) { 4325 error = -ENOTDIR; 4326 if (newnd.last.name[newnd.last.len]) 4327 goto exit5; 4328 } 4329 } 4330 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4331 if (!d_is_dir(old_dentry)) { 4332 error = -ENOTDIR; 4333 if (oldnd.last.name[oldnd.last.len]) 4334 goto exit5; 4335 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len]) 4336 goto exit5; 4337 } 4338 /* source should not be ancestor of target */ 4339 error = -EINVAL; 4340 if (old_dentry == trap) 4341 goto exit5; 4342 /* target should not be an ancestor of source */ 4343 if (!(flags & RENAME_EXCHANGE)) 4344 error = -ENOTEMPTY; 4345 if (new_dentry == trap) 4346 goto exit5; 4347 4348 error = security_path_rename(&oldnd.path, old_dentry, 4349 &newnd.path, new_dentry, flags); 4350 if (error) 4351 goto exit5; 4352 error = vfs_rename(old_dir->d_inode, old_dentry, 4353 new_dir->d_inode, new_dentry, 4354 &delegated_inode, flags); 4355 exit5: 4356 dput(new_dentry); 4357 exit4: 4358 dput(old_dentry); 4359 exit3: 4360 unlock_rename(new_dir, old_dir); 4361 if (delegated_inode) { 4362 error = break_deleg_wait(&delegated_inode); 4363 if (!error) 4364 goto retry_deleg; 4365 } 4366 mnt_drop_write(oldnd.path.mnt); 4367 exit2: 4368 if (retry_estale(error, lookup_flags)) 4369 should_retry = true; 4370 path_put(&newnd.path); 4371 putname(to); 4372 exit1: 4373 path_put(&oldnd.path); 4374 putname(from); 4375 if (should_retry) { 4376 should_retry = false; 4377 lookup_flags |= LOOKUP_REVAL; 4378 goto retry; 4379 } 4380 exit: 4381 return error; 4382 } 4383 4384 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4385 int, newdfd, const char __user *, newname) 4386 { 4387 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4388 } 4389 4390 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4391 { 4392 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4393 } 4394 4395 int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4396 { 4397 int error = may_create(dir, dentry); 4398 if (error) 4399 return error; 4400 4401 if (!dir->i_op->mknod) 4402 return -EPERM; 4403 4404 return dir->i_op->mknod(dir, dentry, 4405 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4406 } 4407 EXPORT_SYMBOL(vfs_whiteout); 4408 4409 int readlink_copy(char __user *buffer, int buflen, const char *link) 4410 { 4411 int len = PTR_ERR(link); 4412 if (IS_ERR(link)) 4413 goto out; 4414 4415 len = strlen(link); 4416 if (len > (unsigned) buflen) 4417 len = buflen; 4418 if (copy_to_user(buffer, link, len)) 4419 len = -EFAULT; 4420 out: 4421 return len; 4422 } 4423 EXPORT_SYMBOL(readlink_copy); 4424 4425 /* 4426 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4427 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4428 * using) it for any given inode is up to filesystem. 4429 */ 4430 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4431 { 4432 struct nameidata nd; 4433 void *cookie; 4434 int res; 4435 4436 nd.depth = 0; 4437 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4438 if (IS_ERR(cookie)) 4439 return PTR_ERR(cookie); 4440 4441 res = readlink_copy(buffer, buflen, nd_get_link(&nd)); 4442 if (dentry->d_inode->i_op->put_link) 4443 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4444 return res; 4445 } 4446 EXPORT_SYMBOL(generic_readlink); 4447 4448 /* get the link contents into pagecache */ 4449 static char *page_getlink(struct dentry * dentry, struct page **ppage) 4450 { 4451 char *kaddr; 4452 struct page *page; 4453 struct address_space *mapping = dentry->d_inode->i_mapping; 4454 page = read_mapping_page(mapping, 0, NULL); 4455 if (IS_ERR(page)) 4456 return (char*)page; 4457 *ppage = page; 4458 kaddr = kmap(page); 4459 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4460 return kaddr; 4461 } 4462 4463 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4464 { 4465 struct page *page = NULL; 4466 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4467 if (page) { 4468 kunmap(page); 4469 page_cache_release(page); 4470 } 4471 return res; 4472 } 4473 EXPORT_SYMBOL(page_readlink); 4474 4475 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4476 { 4477 struct page *page = NULL; 4478 nd_set_link(nd, page_getlink(dentry, &page)); 4479 return page; 4480 } 4481 EXPORT_SYMBOL(page_follow_link_light); 4482 4483 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4484 { 4485 struct page *page = cookie; 4486 4487 if (page) { 4488 kunmap(page); 4489 page_cache_release(page); 4490 } 4491 } 4492 EXPORT_SYMBOL(page_put_link); 4493 4494 /* 4495 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4496 */ 4497 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4498 { 4499 struct address_space *mapping = inode->i_mapping; 4500 struct page *page; 4501 void *fsdata; 4502 int err; 4503 char *kaddr; 4504 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4505 if (nofs) 4506 flags |= AOP_FLAG_NOFS; 4507 4508 retry: 4509 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4510 flags, &page, &fsdata); 4511 if (err) 4512 goto fail; 4513 4514 kaddr = kmap_atomic(page); 4515 memcpy(kaddr, symname, len-1); 4516 kunmap_atomic(kaddr); 4517 4518 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4519 page, fsdata); 4520 if (err < 0) 4521 goto fail; 4522 if (err < len-1) 4523 goto retry; 4524 4525 mark_inode_dirty(inode); 4526 return 0; 4527 fail: 4528 return err; 4529 } 4530 EXPORT_SYMBOL(__page_symlink); 4531 4532 int page_symlink(struct inode *inode, const char *symname, int len) 4533 { 4534 return __page_symlink(inode, symname, len, 4535 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4536 } 4537 EXPORT_SYMBOL(page_symlink); 4538 4539 const struct inode_operations page_symlink_inode_operations = { 4540 .readlink = generic_readlink, 4541 .follow_link = page_follow_link_light, 4542 .put_link = page_put_link, 4543 }; 4544 EXPORT_SYMBOL(page_symlink_inode_operations); 4545