1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/mpage.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains functions related to preparing and submitting BIOs which contain 8 * multiple pagecache pages. 9 * 10 * 15May2002 Andrew Morton 11 * Initial version 12 * 27Jun2002 axboe@suse.de 13 * use bio_add_page() to build bio's just the right size 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/mm.h> 19 #include <linux/kdev_t.h> 20 #include <linux/gfp.h> 21 #include <linux/bio.h> 22 #include <linux/fs.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/highmem.h> 26 #include <linux/prefetch.h> 27 #include <linux/mpage.h> 28 #include <linux/mm_inline.h> 29 #include <linux/writeback.h> 30 #include <linux/backing-dev.h> 31 #include <linux/pagevec.h> 32 #include <linux/cleancache.h> 33 #include "internal.h" 34 35 /* 36 * I/O completion handler for multipage BIOs. 37 * 38 * The mpage code never puts partial pages into a BIO (except for end-of-file). 39 * If a page does not map to a contiguous run of blocks then it simply falls 40 * back to block_read_full_page(). 41 * 42 * Why is this? If a page's completion depends on a number of different BIOs 43 * which can complete in any order (or at the same time) then determining the 44 * status of that page is hard. See end_buffer_async_read() for the details. 45 * There is no point in duplicating all that complexity. 46 */ 47 static void mpage_end_io(struct bio *bio) 48 { 49 struct bio_vec *bv; 50 int i; 51 52 bio_for_each_segment_all(bv, bio, i) { 53 struct page *page = bv->bv_page; 54 page_endio(page, bio_op(bio), 55 blk_status_to_errno(bio->bi_status)); 56 } 57 58 bio_put(bio); 59 } 60 61 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio) 62 { 63 bio->bi_end_io = mpage_end_io; 64 bio_set_op_attrs(bio, op, op_flags); 65 guard_bio_eod(op, bio); 66 submit_bio(bio); 67 return NULL; 68 } 69 70 static struct bio * 71 mpage_alloc(struct block_device *bdev, 72 sector_t first_sector, int nr_vecs, 73 gfp_t gfp_flags) 74 { 75 struct bio *bio; 76 77 /* Restrict the given (page cache) mask for slab allocations */ 78 gfp_flags &= GFP_KERNEL; 79 bio = bio_alloc(gfp_flags, nr_vecs); 80 81 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 82 while (!bio && (nr_vecs /= 2)) 83 bio = bio_alloc(gfp_flags, nr_vecs); 84 } 85 86 if (bio) { 87 bio_set_dev(bio, bdev); 88 bio->bi_iter.bi_sector = first_sector; 89 } 90 return bio; 91 } 92 93 /* 94 * support function for mpage_readpages. The fs supplied get_block might 95 * return an up to date buffer. This is used to map that buffer into 96 * the page, which allows readpage to avoid triggering a duplicate call 97 * to get_block. 98 * 99 * The idea is to avoid adding buffers to pages that don't already have 100 * them. So when the buffer is up to date and the page size == block size, 101 * this marks the page up to date instead of adding new buffers. 102 */ 103 static void 104 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 105 { 106 struct inode *inode = page->mapping->host; 107 struct buffer_head *page_bh, *head; 108 int block = 0; 109 110 if (!page_has_buffers(page)) { 111 /* 112 * don't make any buffers if there is only one buffer on 113 * the page and the page just needs to be set up to date 114 */ 115 if (inode->i_blkbits == PAGE_SHIFT && 116 buffer_uptodate(bh)) { 117 SetPageUptodate(page); 118 return; 119 } 120 create_empty_buffers(page, i_blocksize(inode), 0); 121 } 122 head = page_buffers(page); 123 page_bh = head; 124 do { 125 if (block == page_block) { 126 page_bh->b_state = bh->b_state; 127 page_bh->b_bdev = bh->b_bdev; 128 page_bh->b_blocknr = bh->b_blocknr; 129 break; 130 } 131 page_bh = page_bh->b_this_page; 132 block++; 133 } while (page_bh != head); 134 } 135 136 struct mpage_readpage_args { 137 struct bio *bio; 138 struct page *page; 139 unsigned int nr_pages; 140 bool is_readahead; 141 sector_t last_block_in_bio; 142 struct buffer_head map_bh; 143 unsigned long first_logical_block; 144 get_block_t *get_block; 145 }; 146 147 /* 148 * This is the worker routine which does all the work of mapping the disk 149 * blocks and constructs largest possible bios, submits them for IO if the 150 * blocks are not contiguous on the disk. 151 * 152 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 153 * represent the validity of its disk mapping and to decide when to do the next 154 * get_block() call. 155 */ 156 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args) 157 { 158 struct page *page = args->page; 159 struct inode *inode = page->mapping->host; 160 const unsigned blkbits = inode->i_blkbits; 161 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 162 const unsigned blocksize = 1 << blkbits; 163 struct buffer_head *map_bh = &args->map_bh; 164 sector_t block_in_file; 165 sector_t last_block; 166 sector_t last_block_in_file; 167 sector_t blocks[MAX_BUF_PER_PAGE]; 168 unsigned page_block; 169 unsigned first_hole = blocks_per_page; 170 struct block_device *bdev = NULL; 171 int length; 172 int fully_mapped = 1; 173 int op_flags; 174 unsigned nblocks; 175 unsigned relative_block; 176 gfp_t gfp; 177 178 if (args->is_readahead) { 179 op_flags = REQ_RAHEAD; 180 gfp = readahead_gfp_mask(page->mapping); 181 } else { 182 op_flags = 0; 183 gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 184 } 185 186 if (page_has_buffers(page)) 187 goto confused; 188 189 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 190 last_block = block_in_file + args->nr_pages * blocks_per_page; 191 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 192 if (last_block > last_block_in_file) 193 last_block = last_block_in_file; 194 page_block = 0; 195 196 /* 197 * Map blocks using the result from the previous get_blocks call first. 198 */ 199 nblocks = map_bh->b_size >> blkbits; 200 if (buffer_mapped(map_bh) && 201 block_in_file > args->first_logical_block && 202 block_in_file < (args->first_logical_block + nblocks)) { 203 unsigned map_offset = block_in_file - args->first_logical_block; 204 unsigned last = nblocks - map_offset; 205 206 for (relative_block = 0; ; relative_block++) { 207 if (relative_block == last) { 208 clear_buffer_mapped(map_bh); 209 break; 210 } 211 if (page_block == blocks_per_page) 212 break; 213 blocks[page_block] = map_bh->b_blocknr + map_offset + 214 relative_block; 215 page_block++; 216 block_in_file++; 217 } 218 bdev = map_bh->b_bdev; 219 } 220 221 /* 222 * Then do more get_blocks calls until we are done with this page. 223 */ 224 map_bh->b_page = page; 225 while (page_block < blocks_per_page) { 226 map_bh->b_state = 0; 227 map_bh->b_size = 0; 228 229 if (block_in_file < last_block) { 230 map_bh->b_size = (last_block-block_in_file) << blkbits; 231 if (args->get_block(inode, block_in_file, map_bh, 0)) 232 goto confused; 233 args->first_logical_block = block_in_file; 234 } 235 236 if (!buffer_mapped(map_bh)) { 237 fully_mapped = 0; 238 if (first_hole == blocks_per_page) 239 first_hole = page_block; 240 page_block++; 241 block_in_file++; 242 continue; 243 } 244 245 /* some filesystems will copy data into the page during 246 * the get_block call, in which case we don't want to 247 * read it again. map_buffer_to_page copies the data 248 * we just collected from get_block into the page's buffers 249 * so readpage doesn't have to repeat the get_block call 250 */ 251 if (buffer_uptodate(map_bh)) { 252 map_buffer_to_page(page, map_bh, page_block); 253 goto confused; 254 } 255 256 if (first_hole != blocks_per_page) 257 goto confused; /* hole -> non-hole */ 258 259 /* Contiguous blocks? */ 260 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 261 goto confused; 262 nblocks = map_bh->b_size >> blkbits; 263 for (relative_block = 0; ; relative_block++) { 264 if (relative_block == nblocks) { 265 clear_buffer_mapped(map_bh); 266 break; 267 } else if (page_block == blocks_per_page) 268 break; 269 blocks[page_block] = map_bh->b_blocknr+relative_block; 270 page_block++; 271 block_in_file++; 272 } 273 bdev = map_bh->b_bdev; 274 } 275 276 if (first_hole != blocks_per_page) { 277 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); 278 if (first_hole == 0) { 279 SetPageUptodate(page); 280 unlock_page(page); 281 goto out; 282 } 283 } else if (fully_mapped) { 284 SetPageMappedToDisk(page); 285 } 286 287 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 288 cleancache_get_page(page) == 0) { 289 SetPageUptodate(page); 290 goto confused; 291 } 292 293 /* 294 * This page will go to BIO. Do we need to send this BIO off first? 295 */ 296 if (args->bio && (args->last_block_in_bio != blocks[0] - 1)) 297 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 298 299 alloc_new: 300 if (args->bio == NULL) { 301 if (first_hole == blocks_per_page) { 302 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 303 page)) 304 goto out; 305 } 306 args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 307 min_t(int, args->nr_pages, 308 BIO_MAX_PAGES), 309 gfp); 310 if (args->bio == NULL) 311 goto confused; 312 } 313 314 length = first_hole << blkbits; 315 if (bio_add_page(args->bio, page, length, 0) < length) { 316 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 317 goto alloc_new; 318 } 319 320 relative_block = block_in_file - args->first_logical_block; 321 nblocks = map_bh->b_size >> blkbits; 322 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 323 (first_hole != blocks_per_page)) 324 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 325 else 326 args->last_block_in_bio = blocks[blocks_per_page - 1]; 327 out: 328 return args->bio; 329 330 confused: 331 if (args->bio) 332 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 333 if (!PageUptodate(page)) 334 block_read_full_page(page, args->get_block); 335 else 336 unlock_page(page); 337 goto out; 338 } 339 340 /** 341 * mpage_readpages - populate an address space with some pages & start reads against them 342 * @mapping: the address_space 343 * @pages: The address of a list_head which contains the target pages. These 344 * pages have their ->index populated and are otherwise uninitialised. 345 * The page at @pages->prev has the lowest file offset, and reads should be 346 * issued in @pages->prev to @pages->next order. 347 * @nr_pages: The number of pages at *@pages 348 * @get_block: The filesystem's block mapper function. 349 * 350 * This function walks the pages and the blocks within each page, building and 351 * emitting large BIOs. 352 * 353 * If anything unusual happens, such as: 354 * 355 * - encountering a page which has buffers 356 * - encountering a page which has a non-hole after a hole 357 * - encountering a page with non-contiguous blocks 358 * 359 * then this code just gives up and calls the buffer_head-based read function. 360 * It does handle a page which has holes at the end - that is a common case: 361 * the end-of-file on blocksize < PAGE_SIZE setups. 362 * 363 * BH_Boundary explanation: 364 * 365 * There is a problem. The mpage read code assembles several pages, gets all 366 * their disk mappings, and then submits them all. That's fine, but obtaining 367 * the disk mappings may require I/O. Reads of indirect blocks, for example. 368 * 369 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 370 * submitted in the following order: 371 * 372 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 373 * 374 * because the indirect block has to be read to get the mappings of blocks 375 * 13,14,15,16. Obviously, this impacts performance. 376 * 377 * So what we do it to allow the filesystem's get_block() function to set 378 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 379 * after this one will require I/O against a block which is probably close to 380 * this one. So you should push what I/O you have currently accumulated. 381 * 382 * This all causes the disk requests to be issued in the correct order. 383 */ 384 int 385 mpage_readpages(struct address_space *mapping, struct list_head *pages, 386 unsigned nr_pages, get_block_t get_block) 387 { 388 struct mpage_readpage_args args = { 389 .get_block = get_block, 390 .is_readahead = true, 391 }; 392 unsigned page_idx; 393 394 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 395 struct page *page = lru_to_page(pages); 396 397 prefetchw(&page->flags); 398 list_del(&page->lru); 399 if (!add_to_page_cache_lru(page, mapping, 400 page->index, 401 readahead_gfp_mask(mapping))) { 402 args.page = page; 403 args.nr_pages = nr_pages - page_idx; 404 args.bio = do_mpage_readpage(&args); 405 } 406 put_page(page); 407 } 408 BUG_ON(!list_empty(pages)); 409 if (args.bio) 410 mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio); 411 return 0; 412 } 413 EXPORT_SYMBOL(mpage_readpages); 414 415 /* 416 * This isn't called much at all 417 */ 418 int mpage_readpage(struct page *page, get_block_t get_block) 419 { 420 struct mpage_readpage_args args = { 421 .page = page, 422 .nr_pages = 1, 423 .get_block = get_block, 424 }; 425 426 args.bio = do_mpage_readpage(&args); 427 if (args.bio) 428 mpage_bio_submit(REQ_OP_READ, 0, args.bio); 429 return 0; 430 } 431 EXPORT_SYMBOL(mpage_readpage); 432 433 /* 434 * Writing is not so simple. 435 * 436 * If the page has buffers then they will be used for obtaining the disk 437 * mapping. We only support pages which are fully mapped-and-dirty, with a 438 * special case for pages which are unmapped at the end: end-of-file. 439 * 440 * If the page has no buffers (preferred) then the page is mapped here. 441 * 442 * If all blocks are found to be contiguous then the page can go into the 443 * BIO. Otherwise fall back to the mapping's writepage(). 444 * 445 * FIXME: This code wants an estimate of how many pages are still to be 446 * written, so it can intelligently allocate a suitably-sized BIO. For now, 447 * just allocate full-size (16-page) BIOs. 448 */ 449 450 struct mpage_data { 451 struct bio *bio; 452 sector_t last_block_in_bio; 453 get_block_t *get_block; 454 unsigned use_writepage; 455 }; 456 457 /* 458 * We have our BIO, so we can now mark the buffers clean. Make 459 * sure to only clean buffers which we know we'll be writing. 460 */ 461 static void clean_buffers(struct page *page, unsigned first_unmapped) 462 { 463 unsigned buffer_counter = 0; 464 struct buffer_head *bh, *head; 465 if (!page_has_buffers(page)) 466 return; 467 head = page_buffers(page); 468 bh = head; 469 470 do { 471 if (buffer_counter++ == first_unmapped) 472 break; 473 clear_buffer_dirty(bh); 474 bh = bh->b_this_page; 475 } while (bh != head); 476 477 /* 478 * we cannot drop the bh if the page is not uptodate or a concurrent 479 * readpage would fail to serialize with the bh and it would read from 480 * disk before we reach the platter. 481 */ 482 if (buffer_heads_over_limit && PageUptodate(page)) 483 try_to_free_buffers(page); 484 } 485 486 /* 487 * For situations where we want to clean all buffers attached to a page. 488 * We don't need to calculate how many buffers are attached to the page, 489 * we just need to specify a number larger than the maximum number of buffers. 490 */ 491 void clean_page_buffers(struct page *page) 492 { 493 clean_buffers(page, ~0U); 494 } 495 496 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 497 void *data) 498 { 499 struct mpage_data *mpd = data; 500 struct bio *bio = mpd->bio; 501 struct address_space *mapping = page->mapping; 502 struct inode *inode = page->mapping->host; 503 const unsigned blkbits = inode->i_blkbits; 504 unsigned long end_index; 505 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 506 sector_t last_block; 507 sector_t block_in_file; 508 sector_t blocks[MAX_BUF_PER_PAGE]; 509 unsigned page_block; 510 unsigned first_unmapped = blocks_per_page; 511 struct block_device *bdev = NULL; 512 int boundary = 0; 513 sector_t boundary_block = 0; 514 struct block_device *boundary_bdev = NULL; 515 int length; 516 struct buffer_head map_bh; 517 loff_t i_size = i_size_read(inode); 518 int ret = 0; 519 int op_flags = wbc_to_write_flags(wbc); 520 521 if (page_has_buffers(page)) { 522 struct buffer_head *head = page_buffers(page); 523 struct buffer_head *bh = head; 524 525 /* If they're all mapped and dirty, do it */ 526 page_block = 0; 527 do { 528 BUG_ON(buffer_locked(bh)); 529 if (!buffer_mapped(bh)) { 530 /* 531 * unmapped dirty buffers are created by 532 * __set_page_dirty_buffers -> mmapped data 533 */ 534 if (buffer_dirty(bh)) 535 goto confused; 536 if (first_unmapped == blocks_per_page) 537 first_unmapped = page_block; 538 continue; 539 } 540 541 if (first_unmapped != blocks_per_page) 542 goto confused; /* hole -> non-hole */ 543 544 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 545 goto confused; 546 if (page_block) { 547 if (bh->b_blocknr != blocks[page_block-1] + 1) 548 goto confused; 549 } 550 blocks[page_block++] = bh->b_blocknr; 551 boundary = buffer_boundary(bh); 552 if (boundary) { 553 boundary_block = bh->b_blocknr; 554 boundary_bdev = bh->b_bdev; 555 } 556 bdev = bh->b_bdev; 557 } while ((bh = bh->b_this_page) != head); 558 559 if (first_unmapped) 560 goto page_is_mapped; 561 562 /* 563 * Page has buffers, but they are all unmapped. The page was 564 * created by pagein or read over a hole which was handled by 565 * block_read_full_page(). If this address_space is also 566 * using mpage_readpages then this can rarely happen. 567 */ 568 goto confused; 569 } 570 571 /* 572 * The page has no buffers: map it to disk 573 */ 574 BUG_ON(!PageUptodate(page)); 575 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 576 last_block = (i_size - 1) >> blkbits; 577 map_bh.b_page = page; 578 for (page_block = 0; page_block < blocks_per_page; ) { 579 580 map_bh.b_state = 0; 581 map_bh.b_size = 1 << blkbits; 582 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 583 goto confused; 584 if (buffer_new(&map_bh)) 585 clean_bdev_bh_alias(&map_bh); 586 if (buffer_boundary(&map_bh)) { 587 boundary_block = map_bh.b_blocknr; 588 boundary_bdev = map_bh.b_bdev; 589 } 590 if (page_block) { 591 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 592 goto confused; 593 } 594 blocks[page_block++] = map_bh.b_blocknr; 595 boundary = buffer_boundary(&map_bh); 596 bdev = map_bh.b_bdev; 597 if (block_in_file == last_block) 598 break; 599 block_in_file++; 600 } 601 BUG_ON(page_block == 0); 602 603 first_unmapped = page_block; 604 605 page_is_mapped: 606 end_index = i_size >> PAGE_SHIFT; 607 if (page->index >= end_index) { 608 /* 609 * The page straddles i_size. It must be zeroed out on each 610 * and every writepage invocation because it may be mmapped. 611 * "A file is mapped in multiples of the page size. For a file 612 * that is not a multiple of the page size, the remaining memory 613 * is zeroed when mapped, and writes to that region are not 614 * written out to the file." 615 */ 616 unsigned offset = i_size & (PAGE_SIZE - 1); 617 618 if (page->index > end_index || !offset) 619 goto confused; 620 zero_user_segment(page, offset, PAGE_SIZE); 621 } 622 623 /* 624 * This page will go to BIO. Do we need to send this BIO off first? 625 */ 626 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 627 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 628 629 alloc_new: 630 if (bio == NULL) { 631 if (first_unmapped == blocks_per_page) { 632 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 633 page, wbc)) 634 goto out; 635 } 636 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 637 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH); 638 if (bio == NULL) 639 goto confused; 640 641 wbc_init_bio(wbc, bio); 642 bio->bi_write_hint = inode->i_write_hint; 643 } 644 645 /* 646 * Must try to add the page before marking the buffer clean or 647 * the confused fail path above (OOM) will be very confused when 648 * it finds all bh marked clean (i.e. it will not write anything) 649 */ 650 wbc_account_io(wbc, page, PAGE_SIZE); 651 length = first_unmapped << blkbits; 652 if (bio_add_page(bio, page, length, 0) < length) { 653 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 654 goto alloc_new; 655 } 656 657 clean_buffers(page, first_unmapped); 658 659 BUG_ON(PageWriteback(page)); 660 set_page_writeback(page); 661 unlock_page(page); 662 if (boundary || (first_unmapped != blocks_per_page)) { 663 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 664 if (boundary_block) { 665 write_boundary_block(boundary_bdev, 666 boundary_block, 1 << blkbits); 667 } 668 } else { 669 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 670 } 671 goto out; 672 673 confused: 674 if (bio) 675 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 676 677 if (mpd->use_writepage) { 678 ret = mapping->a_ops->writepage(page, wbc); 679 } else { 680 ret = -EAGAIN; 681 goto out; 682 } 683 /* 684 * The caller has a ref on the inode, so *mapping is stable 685 */ 686 mapping_set_error(mapping, ret); 687 out: 688 mpd->bio = bio; 689 return ret; 690 } 691 692 /** 693 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 694 * @mapping: address space structure to write 695 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 696 * @get_block: the filesystem's block mapper function. 697 * If this is NULL then use a_ops->writepage. Otherwise, go 698 * direct-to-BIO. 699 * 700 * This is a library function, which implements the writepages() 701 * address_space_operation. 702 * 703 * If a page is already under I/O, generic_writepages() skips it, even 704 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 705 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 706 * and msync() need to guarantee that all the data which was dirty at the time 707 * the call was made get new I/O started against them. If wbc->sync_mode is 708 * WB_SYNC_ALL then we were called for data integrity and we must wait for 709 * existing IO to complete. 710 */ 711 int 712 mpage_writepages(struct address_space *mapping, 713 struct writeback_control *wbc, get_block_t get_block) 714 { 715 struct blk_plug plug; 716 int ret; 717 718 blk_start_plug(&plug); 719 720 if (!get_block) 721 ret = generic_writepages(mapping, wbc); 722 else { 723 struct mpage_data mpd = { 724 .bio = NULL, 725 .last_block_in_bio = 0, 726 .get_block = get_block, 727 .use_writepage = 1, 728 }; 729 730 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 731 if (mpd.bio) { 732 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 733 REQ_SYNC : 0); 734 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 735 } 736 } 737 blk_finish_plug(&plug); 738 return ret; 739 } 740 EXPORT_SYMBOL(mpage_writepages); 741 742 int mpage_writepage(struct page *page, get_block_t get_block, 743 struct writeback_control *wbc) 744 { 745 struct mpage_data mpd = { 746 .bio = NULL, 747 .last_block_in_bio = 0, 748 .get_block = get_block, 749 .use_writepage = 0, 750 }; 751 int ret = __mpage_writepage(page, wbc, &mpd); 752 if (mpd.bio) { 753 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 754 REQ_SYNC : 0); 755 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 756 } 757 return ret; 758 } 759 EXPORT_SYMBOL(mpage_writepage); 760