xref: /openbmc/linux/fs/mpage.c (revision d2ba09c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include <linux/cleancache.h>
33 #include "internal.h"
34 
35 /*
36  * I/O completion handler for multipage BIOs.
37  *
38  * The mpage code never puts partial pages into a BIO (except for end-of-file).
39  * If a page does not map to a contiguous run of blocks then it simply falls
40  * back to block_read_full_page().
41  *
42  * Why is this?  If a page's completion depends on a number of different BIOs
43  * which can complete in any order (or at the same time) then determining the
44  * status of that page is hard.  See end_buffer_async_read() for the details.
45  * There is no point in duplicating all that complexity.
46  */
47 static void mpage_end_io(struct bio *bio)
48 {
49 	struct bio_vec *bv;
50 	int i;
51 
52 	bio_for_each_segment_all(bv, bio, i) {
53 		struct page *page = bv->bv_page;
54 		page_endio(page, op_is_write(bio_op(bio)),
55 				blk_status_to_errno(bio->bi_status));
56 	}
57 
58 	bio_put(bio);
59 }
60 
61 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
62 {
63 	bio->bi_end_io = mpage_end_io;
64 	bio_set_op_attrs(bio, op, op_flags);
65 	guard_bio_eod(op, bio);
66 	submit_bio(bio);
67 	return NULL;
68 }
69 
70 static struct bio *
71 mpage_alloc(struct block_device *bdev,
72 		sector_t first_sector, int nr_vecs,
73 		gfp_t gfp_flags)
74 {
75 	struct bio *bio;
76 
77 	/* Restrict the given (page cache) mask for slab allocations */
78 	gfp_flags &= GFP_KERNEL;
79 	bio = bio_alloc(gfp_flags, nr_vecs);
80 
81 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
82 		while (!bio && (nr_vecs /= 2))
83 			bio = bio_alloc(gfp_flags, nr_vecs);
84 	}
85 
86 	if (bio) {
87 		bio_set_dev(bio, bdev);
88 		bio->bi_iter.bi_sector = first_sector;
89 	}
90 	return bio;
91 }
92 
93 /*
94  * support function for mpage_readpages.  The fs supplied get_block might
95  * return an up to date buffer.  This is used to map that buffer into
96  * the page, which allows readpage to avoid triggering a duplicate call
97  * to get_block.
98  *
99  * The idea is to avoid adding buffers to pages that don't already have
100  * them.  So when the buffer is up to date and the page size == block size,
101  * this marks the page up to date instead of adding new buffers.
102  */
103 static void
104 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
105 {
106 	struct inode *inode = page->mapping->host;
107 	struct buffer_head *page_bh, *head;
108 	int block = 0;
109 
110 	if (!page_has_buffers(page)) {
111 		/*
112 		 * don't make any buffers if there is only one buffer on
113 		 * the page and the page just needs to be set up to date
114 		 */
115 		if (inode->i_blkbits == PAGE_SHIFT &&
116 		    buffer_uptodate(bh)) {
117 			SetPageUptodate(page);
118 			return;
119 		}
120 		create_empty_buffers(page, i_blocksize(inode), 0);
121 	}
122 	head = page_buffers(page);
123 	page_bh = head;
124 	do {
125 		if (block == page_block) {
126 			page_bh->b_state = bh->b_state;
127 			page_bh->b_bdev = bh->b_bdev;
128 			page_bh->b_blocknr = bh->b_blocknr;
129 			break;
130 		}
131 		page_bh = page_bh->b_this_page;
132 		block++;
133 	} while (page_bh != head);
134 }
135 
136 /*
137  * This is the worker routine which does all the work of mapping the disk
138  * blocks and constructs largest possible bios, submits them for IO if the
139  * blocks are not contiguous on the disk.
140  *
141  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
142  * represent the validity of its disk mapping and to decide when to do the next
143  * get_block() call.
144  */
145 static struct bio *
146 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
147 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
148 		unsigned long *first_logical_block, get_block_t get_block,
149 		gfp_t gfp)
150 {
151 	struct inode *inode = page->mapping->host;
152 	const unsigned blkbits = inode->i_blkbits;
153 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
154 	const unsigned blocksize = 1 << blkbits;
155 	sector_t block_in_file;
156 	sector_t last_block;
157 	sector_t last_block_in_file;
158 	sector_t blocks[MAX_BUF_PER_PAGE];
159 	unsigned page_block;
160 	unsigned first_hole = blocks_per_page;
161 	struct block_device *bdev = NULL;
162 	int length;
163 	int fully_mapped = 1;
164 	unsigned nblocks;
165 	unsigned relative_block;
166 
167 	if (page_has_buffers(page))
168 		goto confused;
169 
170 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
171 	last_block = block_in_file + nr_pages * blocks_per_page;
172 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
173 	if (last_block > last_block_in_file)
174 		last_block = last_block_in_file;
175 	page_block = 0;
176 
177 	/*
178 	 * Map blocks using the result from the previous get_blocks call first.
179 	 */
180 	nblocks = map_bh->b_size >> blkbits;
181 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
182 			block_in_file < (*first_logical_block + nblocks)) {
183 		unsigned map_offset = block_in_file - *first_logical_block;
184 		unsigned last = nblocks - map_offset;
185 
186 		for (relative_block = 0; ; relative_block++) {
187 			if (relative_block == last) {
188 				clear_buffer_mapped(map_bh);
189 				break;
190 			}
191 			if (page_block == blocks_per_page)
192 				break;
193 			blocks[page_block] = map_bh->b_blocknr + map_offset +
194 						relative_block;
195 			page_block++;
196 			block_in_file++;
197 		}
198 		bdev = map_bh->b_bdev;
199 	}
200 
201 	/*
202 	 * Then do more get_blocks calls until we are done with this page.
203 	 */
204 	map_bh->b_page = page;
205 	while (page_block < blocks_per_page) {
206 		map_bh->b_state = 0;
207 		map_bh->b_size = 0;
208 
209 		if (block_in_file < last_block) {
210 			map_bh->b_size = (last_block-block_in_file) << blkbits;
211 			if (get_block(inode, block_in_file, map_bh, 0))
212 				goto confused;
213 			*first_logical_block = block_in_file;
214 		}
215 
216 		if (!buffer_mapped(map_bh)) {
217 			fully_mapped = 0;
218 			if (first_hole == blocks_per_page)
219 				first_hole = page_block;
220 			page_block++;
221 			block_in_file++;
222 			continue;
223 		}
224 
225 		/* some filesystems will copy data into the page during
226 		 * the get_block call, in which case we don't want to
227 		 * read it again.  map_buffer_to_page copies the data
228 		 * we just collected from get_block into the page's buffers
229 		 * so readpage doesn't have to repeat the get_block call
230 		 */
231 		if (buffer_uptodate(map_bh)) {
232 			map_buffer_to_page(page, map_bh, page_block);
233 			goto confused;
234 		}
235 
236 		if (first_hole != blocks_per_page)
237 			goto confused;		/* hole -> non-hole */
238 
239 		/* Contiguous blocks? */
240 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
241 			goto confused;
242 		nblocks = map_bh->b_size >> blkbits;
243 		for (relative_block = 0; ; relative_block++) {
244 			if (relative_block == nblocks) {
245 				clear_buffer_mapped(map_bh);
246 				break;
247 			} else if (page_block == blocks_per_page)
248 				break;
249 			blocks[page_block] = map_bh->b_blocknr+relative_block;
250 			page_block++;
251 			block_in_file++;
252 		}
253 		bdev = map_bh->b_bdev;
254 	}
255 
256 	if (first_hole != blocks_per_page) {
257 		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
258 		if (first_hole == 0) {
259 			SetPageUptodate(page);
260 			unlock_page(page);
261 			goto out;
262 		}
263 	} else if (fully_mapped) {
264 		SetPageMappedToDisk(page);
265 	}
266 
267 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
268 	    cleancache_get_page(page) == 0) {
269 		SetPageUptodate(page);
270 		goto confused;
271 	}
272 
273 	/*
274 	 * This page will go to BIO.  Do we need to send this BIO off first?
275 	 */
276 	if (bio && (*last_block_in_bio != blocks[0] - 1))
277 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
278 
279 alloc_new:
280 	if (bio == NULL) {
281 		if (first_hole == blocks_per_page) {
282 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
283 								page))
284 				goto out;
285 		}
286 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
287 				min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
288 		if (bio == NULL)
289 			goto confused;
290 	}
291 
292 	length = first_hole << blkbits;
293 	if (bio_add_page(bio, page, length, 0) < length) {
294 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
295 		goto alloc_new;
296 	}
297 
298 	relative_block = block_in_file - *first_logical_block;
299 	nblocks = map_bh->b_size >> blkbits;
300 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
301 	    (first_hole != blocks_per_page))
302 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
303 	else
304 		*last_block_in_bio = blocks[blocks_per_page - 1];
305 out:
306 	return bio;
307 
308 confused:
309 	if (bio)
310 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
311 	if (!PageUptodate(page))
312 	        block_read_full_page(page, get_block);
313 	else
314 		unlock_page(page);
315 	goto out;
316 }
317 
318 /**
319  * mpage_readpages - populate an address space with some pages & start reads against them
320  * @mapping: the address_space
321  * @pages: The address of a list_head which contains the target pages.  These
322  *   pages have their ->index populated and are otherwise uninitialised.
323  *   The page at @pages->prev has the lowest file offset, and reads should be
324  *   issued in @pages->prev to @pages->next order.
325  * @nr_pages: The number of pages at *@pages
326  * @get_block: The filesystem's block mapper function.
327  *
328  * This function walks the pages and the blocks within each page, building and
329  * emitting large BIOs.
330  *
331  * If anything unusual happens, such as:
332  *
333  * - encountering a page which has buffers
334  * - encountering a page which has a non-hole after a hole
335  * - encountering a page with non-contiguous blocks
336  *
337  * then this code just gives up and calls the buffer_head-based read function.
338  * It does handle a page which has holes at the end - that is a common case:
339  * the end-of-file on blocksize < PAGE_SIZE setups.
340  *
341  * BH_Boundary explanation:
342  *
343  * There is a problem.  The mpage read code assembles several pages, gets all
344  * their disk mappings, and then submits them all.  That's fine, but obtaining
345  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
346  *
347  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
348  * submitted in the following order:
349  *
350  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
351  *
352  * because the indirect block has to be read to get the mappings of blocks
353  * 13,14,15,16.  Obviously, this impacts performance.
354  *
355  * So what we do it to allow the filesystem's get_block() function to set
356  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
357  * after this one will require I/O against a block which is probably close to
358  * this one.  So you should push what I/O you have currently accumulated.
359  *
360  * This all causes the disk requests to be issued in the correct order.
361  */
362 int
363 mpage_readpages(struct address_space *mapping, struct list_head *pages,
364 				unsigned nr_pages, get_block_t get_block)
365 {
366 	struct bio *bio = NULL;
367 	unsigned page_idx;
368 	sector_t last_block_in_bio = 0;
369 	struct buffer_head map_bh;
370 	unsigned long first_logical_block = 0;
371 	gfp_t gfp = readahead_gfp_mask(mapping);
372 
373 	map_bh.b_state = 0;
374 	map_bh.b_size = 0;
375 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
376 		struct page *page = lru_to_page(pages);
377 
378 		prefetchw(&page->flags);
379 		list_del(&page->lru);
380 		if (!add_to_page_cache_lru(page, mapping,
381 					page->index,
382 					gfp)) {
383 			bio = do_mpage_readpage(bio, page,
384 					nr_pages - page_idx,
385 					&last_block_in_bio, &map_bh,
386 					&first_logical_block,
387 					get_block, gfp);
388 		}
389 		put_page(page);
390 	}
391 	BUG_ON(!list_empty(pages));
392 	if (bio)
393 		mpage_bio_submit(REQ_OP_READ, 0, bio);
394 	return 0;
395 }
396 EXPORT_SYMBOL(mpage_readpages);
397 
398 /*
399  * This isn't called much at all
400  */
401 int mpage_readpage(struct page *page, get_block_t get_block)
402 {
403 	struct bio *bio = NULL;
404 	sector_t last_block_in_bio = 0;
405 	struct buffer_head map_bh;
406 	unsigned long first_logical_block = 0;
407 	gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
408 
409 	map_bh.b_state = 0;
410 	map_bh.b_size = 0;
411 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
412 			&map_bh, &first_logical_block, get_block, gfp);
413 	if (bio)
414 		mpage_bio_submit(REQ_OP_READ, 0, bio);
415 	return 0;
416 }
417 EXPORT_SYMBOL(mpage_readpage);
418 
419 /*
420  * Writing is not so simple.
421  *
422  * If the page has buffers then they will be used for obtaining the disk
423  * mapping.  We only support pages which are fully mapped-and-dirty, with a
424  * special case for pages which are unmapped at the end: end-of-file.
425  *
426  * If the page has no buffers (preferred) then the page is mapped here.
427  *
428  * If all blocks are found to be contiguous then the page can go into the
429  * BIO.  Otherwise fall back to the mapping's writepage().
430  *
431  * FIXME: This code wants an estimate of how many pages are still to be
432  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
433  * just allocate full-size (16-page) BIOs.
434  */
435 
436 struct mpage_data {
437 	struct bio *bio;
438 	sector_t last_block_in_bio;
439 	get_block_t *get_block;
440 	unsigned use_writepage;
441 };
442 
443 /*
444  * We have our BIO, so we can now mark the buffers clean.  Make
445  * sure to only clean buffers which we know we'll be writing.
446  */
447 static void clean_buffers(struct page *page, unsigned first_unmapped)
448 {
449 	unsigned buffer_counter = 0;
450 	struct buffer_head *bh, *head;
451 	if (!page_has_buffers(page))
452 		return;
453 	head = page_buffers(page);
454 	bh = head;
455 
456 	do {
457 		if (buffer_counter++ == first_unmapped)
458 			break;
459 		clear_buffer_dirty(bh);
460 		bh = bh->b_this_page;
461 	} while (bh != head);
462 
463 	/*
464 	 * we cannot drop the bh if the page is not uptodate or a concurrent
465 	 * readpage would fail to serialize with the bh and it would read from
466 	 * disk before we reach the platter.
467 	 */
468 	if (buffer_heads_over_limit && PageUptodate(page))
469 		try_to_free_buffers(page);
470 }
471 
472 /*
473  * For situations where we want to clean all buffers attached to a page.
474  * We don't need to calculate how many buffers are attached to the page,
475  * we just need to specify a number larger than the maximum number of buffers.
476  */
477 void clean_page_buffers(struct page *page)
478 {
479 	clean_buffers(page, ~0U);
480 }
481 
482 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
483 		      void *data)
484 {
485 	struct mpage_data *mpd = data;
486 	struct bio *bio = mpd->bio;
487 	struct address_space *mapping = page->mapping;
488 	struct inode *inode = page->mapping->host;
489 	const unsigned blkbits = inode->i_blkbits;
490 	unsigned long end_index;
491 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
492 	sector_t last_block;
493 	sector_t block_in_file;
494 	sector_t blocks[MAX_BUF_PER_PAGE];
495 	unsigned page_block;
496 	unsigned first_unmapped = blocks_per_page;
497 	struct block_device *bdev = NULL;
498 	int boundary = 0;
499 	sector_t boundary_block = 0;
500 	struct block_device *boundary_bdev = NULL;
501 	int length;
502 	struct buffer_head map_bh;
503 	loff_t i_size = i_size_read(inode);
504 	int ret = 0;
505 	int op_flags = wbc_to_write_flags(wbc);
506 
507 	if (page_has_buffers(page)) {
508 		struct buffer_head *head = page_buffers(page);
509 		struct buffer_head *bh = head;
510 
511 		/* If they're all mapped and dirty, do it */
512 		page_block = 0;
513 		do {
514 			BUG_ON(buffer_locked(bh));
515 			if (!buffer_mapped(bh)) {
516 				/*
517 				 * unmapped dirty buffers are created by
518 				 * __set_page_dirty_buffers -> mmapped data
519 				 */
520 				if (buffer_dirty(bh))
521 					goto confused;
522 				if (first_unmapped == blocks_per_page)
523 					first_unmapped = page_block;
524 				continue;
525 			}
526 
527 			if (first_unmapped != blocks_per_page)
528 				goto confused;	/* hole -> non-hole */
529 
530 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
531 				goto confused;
532 			if (page_block) {
533 				if (bh->b_blocknr != blocks[page_block-1] + 1)
534 					goto confused;
535 			}
536 			blocks[page_block++] = bh->b_blocknr;
537 			boundary = buffer_boundary(bh);
538 			if (boundary) {
539 				boundary_block = bh->b_blocknr;
540 				boundary_bdev = bh->b_bdev;
541 			}
542 			bdev = bh->b_bdev;
543 		} while ((bh = bh->b_this_page) != head);
544 
545 		if (first_unmapped)
546 			goto page_is_mapped;
547 
548 		/*
549 		 * Page has buffers, but they are all unmapped. The page was
550 		 * created by pagein or read over a hole which was handled by
551 		 * block_read_full_page().  If this address_space is also
552 		 * using mpage_readpages then this can rarely happen.
553 		 */
554 		goto confused;
555 	}
556 
557 	/*
558 	 * The page has no buffers: map it to disk
559 	 */
560 	BUG_ON(!PageUptodate(page));
561 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
562 	last_block = (i_size - 1) >> blkbits;
563 	map_bh.b_page = page;
564 	for (page_block = 0; page_block < blocks_per_page; ) {
565 
566 		map_bh.b_state = 0;
567 		map_bh.b_size = 1 << blkbits;
568 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
569 			goto confused;
570 		if (buffer_new(&map_bh))
571 			clean_bdev_bh_alias(&map_bh);
572 		if (buffer_boundary(&map_bh)) {
573 			boundary_block = map_bh.b_blocknr;
574 			boundary_bdev = map_bh.b_bdev;
575 		}
576 		if (page_block) {
577 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
578 				goto confused;
579 		}
580 		blocks[page_block++] = map_bh.b_blocknr;
581 		boundary = buffer_boundary(&map_bh);
582 		bdev = map_bh.b_bdev;
583 		if (block_in_file == last_block)
584 			break;
585 		block_in_file++;
586 	}
587 	BUG_ON(page_block == 0);
588 
589 	first_unmapped = page_block;
590 
591 page_is_mapped:
592 	end_index = i_size >> PAGE_SHIFT;
593 	if (page->index >= end_index) {
594 		/*
595 		 * The page straddles i_size.  It must be zeroed out on each
596 		 * and every writepage invocation because it may be mmapped.
597 		 * "A file is mapped in multiples of the page size.  For a file
598 		 * that is not a multiple of the page size, the remaining memory
599 		 * is zeroed when mapped, and writes to that region are not
600 		 * written out to the file."
601 		 */
602 		unsigned offset = i_size & (PAGE_SIZE - 1);
603 
604 		if (page->index > end_index || !offset)
605 			goto confused;
606 		zero_user_segment(page, offset, PAGE_SIZE);
607 	}
608 
609 	/*
610 	 * This page will go to BIO.  Do we need to send this BIO off first?
611 	 */
612 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
613 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
614 
615 alloc_new:
616 	if (bio == NULL) {
617 		if (first_unmapped == blocks_per_page) {
618 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
619 								page, wbc))
620 				goto out;
621 		}
622 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
623 				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
624 		if (bio == NULL)
625 			goto confused;
626 
627 		wbc_init_bio(wbc, bio);
628 		bio->bi_write_hint = inode->i_write_hint;
629 	}
630 
631 	/*
632 	 * Must try to add the page before marking the buffer clean or
633 	 * the confused fail path above (OOM) will be very confused when
634 	 * it finds all bh marked clean (i.e. it will not write anything)
635 	 */
636 	wbc_account_io(wbc, page, PAGE_SIZE);
637 	length = first_unmapped << blkbits;
638 	if (bio_add_page(bio, page, length, 0) < length) {
639 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
640 		goto alloc_new;
641 	}
642 
643 	clean_buffers(page, first_unmapped);
644 
645 	BUG_ON(PageWriteback(page));
646 	set_page_writeback(page);
647 	unlock_page(page);
648 	if (boundary || (first_unmapped != blocks_per_page)) {
649 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
650 		if (boundary_block) {
651 			write_boundary_block(boundary_bdev,
652 					boundary_block, 1 << blkbits);
653 		}
654 	} else {
655 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
656 	}
657 	goto out;
658 
659 confused:
660 	if (bio)
661 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
662 
663 	if (mpd->use_writepage) {
664 		ret = mapping->a_ops->writepage(page, wbc);
665 	} else {
666 		ret = -EAGAIN;
667 		goto out;
668 	}
669 	/*
670 	 * The caller has a ref on the inode, so *mapping is stable
671 	 */
672 	mapping_set_error(mapping, ret);
673 out:
674 	mpd->bio = bio;
675 	return ret;
676 }
677 
678 /**
679  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
680  * @mapping: address space structure to write
681  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
682  * @get_block: the filesystem's block mapper function.
683  *             If this is NULL then use a_ops->writepage.  Otherwise, go
684  *             direct-to-BIO.
685  *
686  * This is a library function, which implements the writepages()
687  * address_space_operation.
688  *
689  * If a page is already under I/O, generic_writepages() skips it, even
690  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
691  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
692  * and msync() need to guarantee that all the data which was dirty at the time
693  * the call was made get new I/O started against them.  If wbc->sync_mode is
694  * WB_SYNC_ALL then we were called for data integrity and we must wait for
695  * existing IO to complete.
696  */
697 int
698 mpage_writepages(struct address_space *mapping,
699 		struct writeback_control *wbc, get_block_t get_block)
700 {
701 	struct blk_plug plug;
702 	int ret;
703 
704 	blk_start_plug(&plug);
705 
706 	if (!get_block)
707 		ret = generic_writepages(mapping, wbc);
708 	else {
709 		struct mpage_data mpd = {
710 			.bio = NULL,
711 			.last_block_in_bio = 0,
712 			.get_block = get_block,
713 			.use_writepage = 1,
714 		};
715 
716 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
717 		if (mpd.bio) {
718 			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
719 				  REQ_SYNC : 0);
720 			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
721 		}
722 	}
723 	blk_finish_plug(&plug);
724 	return ret;
725 }
726 EXPORT_SYMBOL(mpage_writepages);
727 
728 int mpage_writepage(struct page *page, get_block_t get_block,
729 	struct writeback_control *wbc)
730 {
731 	struct mpage_data mpd = {
732 		.bio = NULL,
733 		.last_block_in_bio = 0,
734 		.get_block = get_block,
735 		.use_writepage = 0,
736 	};
737 	int ret = __mpage_writepage(page, wbc, &mpd);
738 	if (mpd.bio) {
739 		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
740 			  REQ_SYNC : 0);
741 		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
742 	}
743 	return ret;
744 }
745 EXPORT_SYMBOL(mpage_writepage);
746