1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/mpage.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains functions related to preparing and submitting BIOs which contain 8 * multiple pagecache pages. 9 * 10 * 15May2002 Andrew Morton 11 * Initial version 12 * 27Jun2002 axboe@suse.de 13 * use bio_add_page() to build bio's just the right size 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/mm.h> 19 #include <linux/kdev_t.h> 20 #include <linux/gfp.h> 21 #include <linux/bio.h> 22 #include <linux/fs.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/highmem.h> 26 #include <linux/prefetch.h> 27 #include <linux/mpage.h> 28 #include <linux/mm_inline.h> 29 #include <linux/writeback.h> 30 #include <linux/backing-dev.h> 31 #include <linux/pagevec.h> 32 #include <linux/cleancache.h> 33 #include "internal.h" 34 35 /* 36 * I/O completion handler for multipage BIOs. 37 * 38 * The mpage code never puts partial pages into a BIO (except for end-of-file). 39 * If a page does not map to a contiguous run of blocks then it simply falls 40 * back to block_read_full_page(). 41 * 42 * Why is this? If a page's completion depends on a number of different BIOs 43 * which can complete in any order (or at the same time) then determining the 44 * status of that page is hard. See end_buffer_async_read() for the details. 45 * There is no point in duplicating all that complexity. 46 */ 47 static void mpage_end_io(struct bio *bio) 48 { 49 struct bio_vec *bv; 50 int i; 51 struct bvec_iter_all iter_all; 52 53 bio_for_each_segment_all(bv, bio, i, iter_all) { 54 struct page *page = bv->bv_page; 55 page_endio(page, bio_op(bio), 56 blk_status_to_errno(bio->bi_status)); 57 } 58 59 bio_put(bio); 60 } 61 62 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio) 63 { 64 bio->bi_end_io = mpage_end_io; 65 bio_set_op_attrs(bio, op, op_flags); 66 guard_bio_eod(op, bio); 67 submit_bio(bio); 68 return NULL; 69 } 70 71 static struct bio * 72 mpage_alloc(struct block_device *bdev, 73 sector_t first_sector, int nr_vecs, 74 gfp_t gfp_flags) 75 { 76 struct bio *bio; 77 78 /* Restrict the given (page cache) mask for slab allocations */ 79 gfp_flags &= GFP_KERNEL; 80 bio = bio_alloc(gfp_flags, nr_vecs); 81 82 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 83 while (!bio && (nr_vecs /= 2)) 84 bio = bio_alloc(gfp_flags, nr_vecs); 85 } 86 87 if (bio) { 88 bio_set_dev(bio, bdev); 89 bio->bi_iter.bi_sector = first_sector; 90 } 91 return bio; 92 } 93 94 /* 95 * support function for mpage_readpages. The fs supplied get_block might 96 * return an up to date buffer. This is used to map that buffer into 97 * the page, which allows readpage to avoid triggering a duplicate call 98 * to get_block. 99 * 100 * The idea is to avoid adding buffers to pages that don't already have 101 * them. So when the buffer is up to date and the page size == block size, 102 * this marks the page up to date instead of adding new buffers. 103 */ 104 static void 105 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 106 { 107 struct inode *inode = page->mapping->host; 108 struct buffer_head *page_bh, *head; 109 int block = 0; 110 111 if (!page_has_buffers(page)) { 112 /* 113 * don't make any buffers if there is only one buffer on 114 * the page and the page just needs to be set up to date 115 */ 116 if (inode->i_blkbits == PAGE_SHIFT && 117 buffer_uptodate(bh)) { 118 SetPageUptodate(page); 119 return; 120 } 121 create_empty_buffers(page, i_blocksize(inode), 0); 122 } 123 head = page_buffers(page); 124 page_bh = head; 125 do { 126 if (block == page_block) { 127 page_bh->b_state = bh->b_state; 128 page_bh->b_bdev = bh->b_bdev; 129 page_bh->b_blocknr = bh->b_blocknr; 130 break; 131 } 132 page_bh = page_bh->b_this_page; 133 block++; 134 } while (page_bh != head); 135 } 136 137 struct mpage_readpage_args { 138 struct bio *bio; 139 struct page *page; 140 unsigned int nr_pages; 141 bool is_readahead; 142 sector_t last_block_in_bio; 143 struct buffer_head map_bh; 144 unsigned long first_logical_block; 145 get_block_t *get_block; 146 }; 147 148 /* 149 * This is the worker routine which does all the work of mapping the disk 150 * blocks and constructs largest possible bios, submits them for IO if the 151 * blocks are not contiguous on the disk. 152 * 153 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 154 * represent the validity of its disk mapping and to decide when to do the next 155 * get_block() call. 156 */ 157 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args) 158 { 159 struct page *page = args->page; 160 struct inode *inode = page->mapping->host; 161 const unsigned blkbits = inode->i_blkbits; 162 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 163 const unsigned blocksize = 1 << blkbits; 164 struct buffer_head *map_bh = &args->map_bh; 165 sector_t block_in_file; 166 sector_t last_block; 167 sector_t last_block_in_file; 168 sector_t blocks[MAX_BUF_PER_PAGE]; 169 unsigned page_block; 170 unsigned first_hole = blocks_per_page; 171 struct block_device *bdev = NULL; 172 int length; 173 int fully_mapped = 1; 174 int op_flags; 175 unsigned nblocks; 176 unsigned relative_block; 177 gfp_t gfp; 178 179 if (args->is_readahead) { 180 op_flags = REQ_RAHEAD; 181 gfp = readahead_gfp_mask(page->mapping); 182 } else { 183 op_flags = 0; 184 gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 185 } 186 187 if (page_has_buffers(page)) 188 goto confused; 189 190 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 191 last_block = block_in_file + args->nr_pages * blocks_per_page; 192 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 193 if (last_block > last_block_in_file) 194 last_block = last_block_in_file; 195 page_block = 0; 196 197 /* 198 * Map blocks using the result from the previous get_blocks call first. 199 */ 200 nblocks = map_bh->b_size >> blkbits; 201 if (buffer_mapped(map_bh) && 202 block_in_file > args->first_logical_block && 203 block_in_file < (args->first_logical_block + nblocks)) { 204 unsigned map_offset = block_in_file - args->first_logical_block; 205 unsigned last = nblocks - map_offset; 206 207 for (relative_block = 0; ; relative_block++) { 208 if (relative_block == last) { 209 clear_buffer_mapped(map_bh); 210 break; 211 } 212 if (page_block == blocks_per_page) 213 break; 214 blocks[page_block] = map_bh->b_blocknr + map_offset + 215 relative_block; 216 page_block++; 217 block_in_file++; 218 } 219 bdev = map_bh->b_bdev; 220 } 221 222 /* 223 * Then do more get_blocks calls until we are done with this page. 224 */ 225 map_bh->b_page = page; 226 while (page_block < blocks_per_page) { 227 map_bh->b_state = 0; 228 map_bh->b_size = 0; 229 230 if (block_in_file < last_block) { 231 map_bh->b_size = (last_block-block_in_file) << blkbits; 232 if (args->get_block(inode, block_in_file, map_bh, 0)) 233 goto confused; 234 args->first_logical_block = block_in_file; 235 } 236 237 if (!buffer_mapped(map_bh)) { 238 fully_mapped = 0; 239 if (first_hole == blocks_per_page) 240 first_hole = page_block; 241 page_block++; 242 block_in_file++; 243 continue; 244 } 245 246 /* some filesystems will copy data into the page during 247 * the get_block call, in which case we don't want to 248 * read it again. map_buffer_to_page copies the data 249 * we just collected from get_block into the page's buffers 250 * so readpage doesn't have to repeat the get_block call 251 */ 252 if (buffer_uptodate(map_bh)) { 253 map_buffer_to_page(page, map_bh, page_block); 254 goto confused; 255 } 256 257 if (first_hole != blocks_per_page) 258 goto confused; /* hole -> non-hole */ 259 260 /* Contiguous blocks? */ 261 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 262 goto confused; 263 nblocks = map_bh->b_size >> blkbits; 264 for (relative_block = 0; ; relative_block++) { 265 if (relative_block == nblocks) { 266 clear_buffer_mapped(map_bh); 267 break; 268 } else if (page_block == blocks_per_page) 269 break; 270 blocks[page_block] = map_bh->b_blocknr+relative_block; 271 page_block++; 272 block_in_file++; 273 } 274 bdev = map_bh->b_bdev; 275 } 276 277 if (first_hole != blocks_per_page) { 278 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); 279 if (first_hole == 0) { 280 SetPageUptodate(page); 281 unlock_page(page); 282 goto out; 283 } 284 } else if (fully_mapped) { 285 SetPageMappedToDisk(page); 286 } 287 288 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 289 cleancache_get_page(page) == 0) { 290 SetPageUptodate(page); 291 goto confused; 292 } 293 294 /* 295 * This page will go to BIO. Do we need to send this BIO off first? 296 */ 297 if (args->bio && (args->last_block_in_bio != blocks[0] - 1)) 298 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 299 300 alloc_new: 301 if (args->bio == NULL) { 302 if (first_hole == blocks_per_page) { 303 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 304 page)) 305 goto out; 306 } 307 args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 308 min_t(int, args->nr_pages, 309 BIO_MAX_PAGES), 310 gfp); 311 if (args->bio == NULL) 312 goto confused; 313 } 314 315 length = first_hole << blkbits; 316 if (bio_add_page(args->bio, page, length, 0) < length) { 317 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 318 goto alloc_new; 319 } 320 321 relative_block = block_in_file - args->first_logical_block; 322 nblocks = map_bh->b_size >> blkbits; 323 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 324 (first_hole != blocks_per_page)) 325 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 326 else 327 args->last_block_in_bio = blocks[blocks_per_page - 1]; 328 out: 329 return args->bio; 330 331 confused: 332 if (args->bio) 333 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 334 if (!PageUptodate(page)) 335 block_read_full_page(page, args->get_block); 336 else 337 unlock_page(page); 338 goto out; 339 } 340 341 /** 342 * mpage_readpages - populate an address space with some pages & start reads against them 343 * @mapping: the address_space 344 * @pages: The address of a list_head which contains the target pages. These 345 * pages have their ->index populated and are otherwise uninitialised. 346 * The page at @pages->prev has the lowest file offset, and reads should be 347 * issued in @pages->prev to @pages->next order. 348 * @nr_pages: The number of pages at *@pages 349 * @get_block: The filesystem's block mapper function. 350 * 351 * This function walks the pages and the blocks within each page, building and 352 * emitting large BIOs. 353 * 354 * If anything unusual happens, such as: 355 * 356 * - encountering a page which has buffers 357 * - encountering a page which has a non-hole after a hole 358 * - encountering a page with non-contiguous blocks 359 * 360 * then this code just gives up and calls the buffer_head-based read function. 361 * It does handle a page which has holes at the end - that is a common case: 362 * the end-of-file on blocksize < PAGE_SIZE setups. 363 * 364 * BH_Boundary explanation: 365 * 366 * There is a problem. The mpage read code assembles several pages, gets all 367 * their disk mappings, and then submits them all. That's fine, but obtaining 368 * the disk mappings may require I/O. Reads of indirect blocks, for example. 369 * 370 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 371 * submitted in the following order: 372 * 373 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 374 * 375 * because the indirect block has to be read to get the mappings of blocks 376 * 13,14,15,16. Obviously, this impacts performance. 377 * 378 * So what we do it to allow the filesystem's get_block() function to set 379 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 380 * after this one will require I/O against a block which is probably close to 381 * this one. So you should push what I/O you have currently accumulated. 382 * 383 * This all causes the disk requests to be issued in the correct order. 384 */ 385 int 386 mpage_readpages(struct address_space *mapping, struct list_head *pages, 387 unsigned nr_pages, get_block_t get_block) 388 { 389 struct mpage_readpage_args args = { 390 .get_block = get_block, 391 .is_readahead = true, 392 }; 393 unsigned page_idx; 394 395 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 396 struct page *page = lru_to_page(pages); 397 398 prefetchw(&page->flags); 399 list_del(&page->lru); 400 if (!add_to_page_cache_lru(page, mapping, 401 page->index, 402 readahead_gfp_mask(mapping))) { 403 args.page = page; 404 args.nr_pages = nr_pages - page_idx; 405 args.bio = do_mpage_readpage(&args); 406 } 407 put_page(page); 408 } 409 BUG_ON(!list_empty(pages)); 410 if (args.bio) 411 mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio); 412 return 0; 413 } 414 EXPORT_SYMBOL(mpage_readpages); 415 416 /* 417 * This isn't called much at all 418 */ 419 int mpage_readpage(struct page *page, get_block_t get_block) 420 { 421 struct mpage_readpage_args args = { 422 .page = page, 423 .nr_pages = 1, 424 .get_block = get_block, 425 }; 426 427 args.bio = do_mpage_readpage(&args); 428 if (args.bio) 429 mpage_bio_submit(REQ_OP_READ, 0, args.bio); 430 return 0; 431 } 432 EXPORT_SYMBOL(mpage_readpage); 433 434 /* 435 * Writing is not so simple. 436 * 437 * If the page has buffers then they will be used for obtaining the disk 438 * mapping. We only support pages which are fully mapped-and-dirty, with a 439 * special case for pages which are unmapped at the end: end-of-file. 440 * 441 * If the page has no buffers (preferred) then the page is mapped here. 442 * 443 * If all blocks are found to be contiguous then the page can go into the 444 * BIO. Otherwise fall back to the mapping's writepage(). 445 * 446 * FIXME: This code wants an estimate of how many pages are still to be 447 * written, so it can intelligently allocate a suitably-sized BIO. For now, 448 * just allocate full-size (16-page) BIOs. 449 */ 450 451 struct mpage_data { 452 struct bio *bio; 453 sector_t last_block_in_bio; 454 get_block_t *get_block; 455 unsigned use_writepage; 456 }; 457 458 /* 459 * We have our BIO, so we can now mark the buffers clean. Make 460 * sure to only clean buffers which we know we'll be writing. 461 */ 462 static void clean_buffers(struct page *page, unsigned first_unmapped) 463 { 464 unsigned buffer_counter = 0; 465 struct buffer_head *bh, *head; 466 if (!page_has_buffers(page)) 467 return; 468 head = page_buffers(page); 469 bh = head; 470 471 do { 472 if (buffer_counter++ == first_unmapped) 473 break; 474 clear_buffer_dirty(bh); 475 bh = bh->b_this_page; 476 } while (bh != head); 477 478 /* 479 * we cannot drop the bh if the page is not uptodate or a concurrent 480 * readpage would fail to serialize with the bh and it would read from 481 * disk before we reach the platter. 482 */ 483 if (buffer_heads_over_limit && PageUptodate(page)) 484 try_to_free_buffers(page); 485 } 486 487 /* 488 * For situations where we want to clean all buffers attached to a page. 489 * We don't need to calculate how many buffers are attached to the page, 490 * we just need to specify a number larger than the maximum number of buffers. 491 */ 492 void clean_page_buffers(struct page *page) 493 { 494 clean_buffers(page, ~0U); 495 } 496 497 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 498 void *data) 499 { 500 struct mpage_data *mpd = data; 501 struct bio *bio = mpd->bio; 502 struct address_space *mapping = page->mapping; 503 struct inode *inode = page->mapping->host; 504 const unsigned blkbits = inode->i_blkbits; 505 unsigned long end_index; 506 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 507 sector_t last_block; 508 sector_t block_in_file; 509 sector_t blocks[MAX_BUF_PER_PAGE]; 510 unsigned page_block; 511 unsigned first_unmapped = blocks_per_page; 512 struct block_device *bdev = NULL; 513 int boundary = 0; 514 sector_t boundary_block = 0; 515 struct block_device *boundary_bdev = NULL; 516 int length; 517 struct buffer_head map_bh; 518 loff_t i_size = i_size_read(inode); 519 int ret = 0; 520 int op_flags = wbc_to_write_flags(wbc); 521 522 if (page_has_buffers(page)) { 523 struct buffer_head *head = page_buffers(page); 524 struct buffer_head *bh = head; 525 526 /* If they're all mapped and dirty, do it */ 527 page_block = 0; 528 do { 529 BUG_ON(buffer_locked(bh)); 530 if (!buffer_mapped(bh)) { 531 /* 532 * unmapped dirty buffers are created by 533 * __set_page_dirty_buffers -> mmapped data 534 */ 535 if (buffer_dirty(bh)) 536 goto confused; 537 if (first_unmapped == blocks_per_page) 538 first_unmapped = page_block; 539 continue; 540 } 541 542 if (first_unmapped != blocks_per_page) 543 goto confused; /* hole -> non-hole */ 544 545 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 546 goto confused; 547 if (page_block) { 548 if (bh->b_blocknr != blocks[page_block-1] + 1) 549 goto confused; 550 } 551 blocks[page_block++] = bh->b_blocknr; 552 boundary = buffer_boundary(bh); 553 if (boundary) { 554 boundary_block = bh->b_blocknr; 555 boundary_bdev = bh->b_bdev; 556 } 557 bdev = bh->b_bdev; 558 } while ((bh = bh->b_this_page) != head); 559 560 if (first_unmapped) 561 goto page_is_mapped; 562 563 /* 564 * Page has buffers, but they are all unmapped. The page was 565 * created by pagein or read over a hole which was handled by 566 * block_read_full_page(). If this address_space is also 567 * using mpage_readpages then this can rarely happen. 568 */ 569 goto confused; 570 } 571 572 /* 573 * The page has no buffers: map it to disk 574 */ 575 BUG_ON(!PageUptodate(page)); 576 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 577 last_block = (i_size - 1) >> blkbits; 578 map_bh.b_page = page; 579 for (page_block = 0; page_block < blocks_per_page; ) { 580 581 map_bh.b_state = 0; 582 map_bh.b_size = 1 << blkbits; 583 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 584 goto confused; 585 if (buffer_new(&map_bh)) 586 clean_bdev_bh_alias(&map_bh); 587 if (buffer_boundary(&map_bh)) { 588 boundary_block = map_bh.b_blocknr; 589 boundary_bdev = map_bh.b_bdev; 590 } 591 if (page_block) { 592 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 593 goto confused; 594 } 595 blocks[page_block++] = map_bh.b_blocknr; 596 boundary = buffer_boundary(&map_bh); 597 bdev = map_bh.b_bdev; 598 if (block_in_file == last_block) 599 break; 600 block_in_file++; 601 } 602 BUG_ON(page_block == 0); 603 604 first_unmapped = page_block; 605 606 page_is_mapped: 607 end_index = i_size >> PAGE_SHIFT; 608 if (page->index >= end_index) { 609 /* 610 * The page straddles i_size. It must be zeroed out on each 611 * and every writepage invocation because it may be mmapped. 612 * "A file is mapped in multiples of the page size. For a file 613 * that is not a multiple of the page size, the remaining memory 614 * is zeroed when mapped, and writes to that region are not 615 * written out to the file." 616 */ 617 unsigned offset = i_size & (PAGE_SIZE - 1); 618 619 if (page->index > end_index || !offset) 620 goto confused; 621 zero_user_segment(page, offset, PAGE_SIZE); 622 } 623 624 /* 625 * This page will go to BIO. Do we need to send this BIO off first? 626 */ 627 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 628 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 629 630 alloc_new: 631 if (bio == NULL) { 632 if (first_unmapped == blocks_per_page) { 633 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 634 page, wbc)) 635 goto out; 636 } 637 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 638 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH); 639 if (bio == NULL) 640 goto confused; 641 642 wbc_init_bio(wbc, bio); 643 bio->bi_write_hint = inode->i_write_hint; 644 } 645 646 /* 647 * Must try to add the page before marking the buffer clean or 648 * the confused fail path above (OOM) will be very confused when 649 * it finds all bh marked clean (i.e. it will not write anything) 650 */ 651 wbc_account_io(wbc, page, PAGE_SIZE); 652 length = first_unmapped << blkbits; 653 if (bio_add_page(bio, page, length, 0) < length) { 654 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 655 goto alloc_new; 656 } 657 658 clean_buffers(page, first_unmapped); 659 660 BUG_ON(PageWriteback(page)); 661 set_page_writeback(page); 662 unlock_page(page); 663 if (boundary || (first_unmapped != blocks_per_page)) { 664 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 665 if (boundary_block) { 666 write_boundary_block(boundary_bdev, 667 boundary_block, 1 << blkbits); 668 } 669 } else { 670 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 671 } 672 goto out; 673 674 confused: 675 if (bio) 676 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 677 678 if (mpd->use_writepage) { 679 ret = mapping->a_ops->writepage(page, wbc); 680 } else { 681 ret = -EAGAIN; 682 goto out; 683 } 684 /* 685 * The caller has a ref on the inode, so *mapping is stable 686 */ 687 mapping_set_error(mapping, ret); 688 out: 689 mpd->bio = bio; 690 return ret; 691 } 692 693 /** 694 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 695 * @mapping: address space structure to write 696 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 697 * @get_block: the filesystem's block mapper function. 698 * If this is NULL then use a_ops->writepage. Otherwise, go 699 * direct-to-BIO. 700 * 701 * This is a library function, which implements the writepages() 702 * address_space_operation. 703 * 704 * If a page is already under I/O, generic_writepages() skips it, even 705 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 706 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 707 * and msync() need to guarantee that all the data which was dirty at the time 708 * the call was made get new I/O started against them. If wbc->sync_mode is 709 * WB_SYNC_ALL then we were called for data integrity and we must wait for 710 * existing IO to complete. 711 */ 712 int 713 mpage_writepages(struct address_space *mapping, 714 struct writeback_control *wbc, get_block_t get_block) 715 { 716 struct blk_plug plug; 717 int ret; 718 719 blk_start_plug(&plug); 720 721 if (!get_block) 722 ret = generic_writepages(mapping, wbc); 723 else { 724 struct mpage_data mpd = { 725 .bio = NULL, 726 .last_block_in_bio = 0, 727 .get_block = get_block, 728 .use_writepage = 1, 729 }; 730 731 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 732 if (mpd.bio) { 733 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 734 REQ_SYNC : 0); 735 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 736 } 737 } 738 blk_finish_plug(&plug); 739 return ret; 740 } 741 EXPORT_SYMBOL(mpage_writepages); 742 743 int mpage_writepage(struct page *page, get_block_t get_block, 744 struct writeback_control *wbc) 745 { 746 struct mpage_data mpd = { 747 .bio = NULL, 748 .last_block_in_bio = 0, 749 .get_block = get_block, 750 .use_writepage = 0, 751 }; 752 int ret = __mpage_writepage(page, wbc, &mpd); 753 if (mpd.bio) { 754 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 755 REQ_SYNC : 0); 756 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 757 } 758 return ret; 759 } 760 EXPORT_SYMBOL(mpage_writepage); 761