xref: /openbmc/linux/fs/mpage.c (revision aac5987a)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/mm_inline.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/cleancache.h>
32 #include "internal.h"
33 
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_page().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
46 static void mpage_end_io(struct bio *bio)
47 {
48 	struct bio_vec *bv;
49 	int i;
50 
51 	bio_for_each_segment_all(bv, bio, i) {
52 		struct page *page = bv->bv_page;
53 		page_endio(page, op_is_write(bio_op(bio)), bio->bi_error);
54 	}
55 
56 	bio_put(bio);
57 }
58 
59 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
60 {
61 	bio->bi_end_io = mpage_end_io;
62 	bio_set_op_attrs(bio, op, op_flags);
63 	guard_bio_eod(op, bio);
64 	submit_bio(bio);
65 	return NULL;
66 }
67 
68 static struct bio *
69 mpage_alloc(struct block_device *bdev,
70 		sector_t first_sector, int nr_vecs,
71 		gfp_t gfp_flags)
72 {
73 	struct bio *bio;
74 
75 	/* Restrict the given (page cache) mask for slab allocations */
76 	gfp_flags &= GFP_KERNEL;
77 	bio = bio_alloc(gfp_flags, nr_vecs);
78 
79 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
80 		while (!bio && (nr_vecs /= 2))
81 			bio = bio_alloc(gfp_flags, nr_vecs);
82 	}
83 
84 	if (bio) {
85 		bio->bi_bdev = bdev;
86 		bio->bi_iter.bi_sector = first_sector;
87 	}
88 	return bio;
89 }
90 
91 /*
92  * support function for mpage_readpages.  The fs supplied get_block might
93  * return an up to date buffer.  This is used to map that buffer into
94  * the page, which allows readpage to avoid triggering a duplicate call
95  * to get_block.
96  *
97  * The idea is to avoid adding buffers to pages that don't already have
98  * them.  So when the buffer is up to date and the page size == block size,
99  * this marks the page up to date instead of adding new buffers.
100  */
101 static void
102 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
103 {
104 	struct inode *inode = page->mapping->host;
105 	struct buffer_head *page_bh, *head;
106 	int block = 0;
107 
108 	if (!page_has_buffers(page)) {
109 		/*
110 		 * don't make any buffers if there is only one buffer on
111 		 * the page and the page just needs to be set up to date
112 		 */
113 		if (inode->i_blkbits == PAGE_SHIFT &&
114 		    buffer_uptodate(bh)) {
115 			SetPageUptodate(page);
116 			return;
117 		}
118 		create_empty_buffers(page, i_blocksize(inode), 0);
119 	}
120 	head = page_buffers(page);
121 	page_bh = head;
122 	do {
123 		if (block == page_block) {
124 			page_bh->b_state = bh->b_state;
125 			page_bh->b_bdev = bh->b_bdev;
126 			page_bh->b_blocknr = bh->b_blocknr;
127 			break;
128 		}
129 		page_bh = page_bh->b_this_page;
130 		block++;
131 	} while (page_bh != head);
132 }
133 
134 /*
135  * This is the worker routine which does all the work of mapping the disk
136  * blocks and constructs largest possible bios, submits them for IO if the
137  * blocks are not contiguous on the disk.
138  *
139  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
140  * represent the validity of its disk mapping and to decide when to do the next
141  * get_block() call.
142  */
143 static struct bio *
144 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
145 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
146 		unsigned long *first_logical_block, get_block_t get_block,
147 		gfp_t gfp)
148 {
149 	struct inode *inode = page->mapping->host;
150 	const unsigned blkbits = inode->i_blkbits;
151 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
152 	const unsigned blocksize = 1 << blkbits;
153 	sector_t block_in_file;
154 	sector_t last_block;
155 	sector_t last_block_in_file;
156 	sector_t blocks[MAX_BUF_PER_PAGE];
157 	unsigned page_block;
158 	unsigned first_hole = blocks_per_page;
159 	struct block_device *bdev = NULL;
160 	int length;
161 	int fully_mapped = 1;
162 	unsigned nblocks;
163 	unsigned relative_block;
164 
165 	if (page_has_buffers(page))
166 		goto confused;
167 
168 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
169 	last_block = block_in_file + nr_pages * blocks_per_page;
170 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
171 	if (last_block > last_block_in_file)
172 		last_block = last_block_in_file;
173 	page_block = 0;
174 
175 	/*
176 	 * Map blocks using the result from the previous get_blocks call first.
177 	 */
178 	nblocks = map_bh->b_size >> blkbits;
179 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
180 			block_in_file < (*first_logical_block + nblocks)) {
181 		unsigned map_offset = block_in_file - *first_logical_block;
182 		unsigned last = nblocks - map_offset;
183 
184 		for (relative_block = 0; ; relative_block++) {
185 			if (relative_block == last) {
186 				clear_buffer_mapped(map_bh);
187 				break;
188 			}
189 			if (page_block == blocks_per_page)
190 				break;
191 			blocks[page_block] = map_bh->b_blocknr + map_offset +
192 						relative_block;
193 			page_block++;
194 			block_in_file++;
195 		}
196 		bdev = map_bh->b_bdev;
197 	}
198 
199 	/*
200 	 * Then do more get_blocks calls until we are done with this page.
201 	 */
202 	map_bh->b_page = page;
203 	while (page_block < blocks_per_page) {
204 		map_bh->b_state = 0;
205 		map_bh->b_size = 0;
206 
207 		if (block_in_file < last_block) {
208 			map_bh->b_size = (last_block-block_in_file) << blkbits;
209 			if (get_block(inode, block_in_file, map_bh, 0))
210 				goto confused;
211 			*first_logical_block = block_in_file;
212 		}
213 
214 		if (!buffer_mapped(map_bh)) {
215 			fully_mapped = 0;
216 			if (first_hole == blocks_per_page)
217 				first_hole = page_block;
218 			page_block++;
219 			block_in_file++;
220 			continue;
221 		}
222 
223 		/* some filesystems will copy data into the page during
224 		 * the get_block call, in which case we don't want to
225 		 * read it again.  map_buffer_to_page copies the data
226 		 * we just collected from get_block into the page's buffers
227 		 * so readpage doesn't have to repeat the get_block call
228 		 */
229 		if (buffer_uptodate(map_bh)) {
230 			map_buffer_to_page(page, map_bh, page_block);
231 			goto confused;
232 		}
233 
234 		if (first_hole != blocks_per_page)
235 			goto confused;		/* hole -> non-hole */
236 
237 		/* Contiguous blocks? */
238 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
239 			goto confused;
240 		nblocks = map_bh->b_size >> blkbits;
241 		for (relative_block = 0; ; relative_block++) {
242 			if (relative_block == nblocks) {
243 				clear_buffer_mapped(map_bh);
244 				break;
245 			} else if (page_block == blocks_per_page)
246 				break;
247 			blocks[page_block] = map_bh->b_blocknr+relative_block;
248 			page_block++;
249 			block_in_file++;
250 		}
251 		bdev = map_bh->b_bdev;
252 	}
253 
254 	if (first_hole != blocks_per_page) {
255 		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
256 		if (first_hole == 0) {
257 			SetPageUptodate(page);
258 			unlock_page(page);
259 			goto out;
260 		}
261 	} else if (fully_mapped) {
262 		SetPageMappedToDisk(page);
263 	}
264 
265 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
266 	    cleancache_get_page(page) == 0) {
267 		SetPageUptodate(page);
268 		goto confused;
269 	}
270 
271 	/*
272 	 * This page will go to BIO.  Do we need to send this BIO off first?
273 	 */
274 	if (bio && (*last_block_in_bio != blocks[0] - 1))
275 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
276 
277 alloc_new:
278 	if (bio == NULL) {
279 		if (first_hole == blocks_per_page) {
280 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
281 								page))
282 				goto out;
283 		}
284 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
285 				min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
286 		if (bio == NULL)
287 			goto confused;
288 	}
289 
290 	length = first_hole << blkbits;
291 	if (bio_add_page(bio, page, length, 0) < length) {
292 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
293 		goto alloc_new;
294 	}
295 
296 	relative_block = block_in_file - *first_logical_block;
297 	nblocks = map_bh->b_size >> blkbits;
298 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
299 	    (first_hole != blocks_per_page))
300 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
301 	else
302 		*last_block_in_bio = blocks[blocks_per_page - 1];
303 out:
304 	return bio;
305 
306 confused:
307 	if (bio)
308 		bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
309 	if (!PageUptodate(page))
310 	        block_read_full_page(page, get_block);
311 	else
312 		unlock_page(page);
313 	goto out;
314 }
315 
316 /**
317  * mpage_readpages - populate an address space with some pages & start reads against them
318  * @mapping: the address_space
319  * @pages: The address of a list_head which contains the target pages.  These
320  *   pages have their ->index populated and are otherwise uninitialised.
321  *   The page at @pages->prev has the lowest file offset, and reads should be
322  *   issued in @pages->prev to @pages->next order.
323  * @nr_pages: The number of pages at *@pages
324  * @get_block: The filesystem's block mapper function.
325  *
326  * This function walks the pages and the blocks within each page, building and
327  * emitting large BIOs.
328  *
329  * If anything unusual happens, such as:
330  *
331  * - encountering a page which has buffers
332  * - encountering a page which has a non-hole after a hole
333  * - encountering a page with non-contiguous blocks
334  *
335  * then this code just gives up and calls the buffer_head-based read function.
336  * It does handle a page which has holes at the end - that is a common case:
337  * the end-of-file on blocksize < PAGE_SIZE setups.
338  *
339  * BH_Boundary explanation:
340  *
341  * There is a problem.  The mpage read code assembles several pages, gets all
342  * their disk mappings, and then submits them all.  That's fine, but obtaining
343  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
344  *
345  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
346  * submitted in the following order:
347  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
348  *
349  * because the indirect block has to be read to get the mappings of blocks
350  * 13,14,15,16.  Obviously, this impacts performance.
351  *
352  * So what we do it to allow the filesystem's get_block() function to set
353  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
354  * after this one will require I/O against a block which is probably close to
355  * this one.  So you should push what I/O you have currently accumulated.
356  *
357  * This all causes the disk requests to be issued in the correct order.
358  */
359 int
360 mpage_readpages(struct address_space *mapping, struct list_head *pages,
361 				unsigned nr_pages, get_block_t get_block)
362 {
363 	struct bio *bio = NULL;
364 	unsigned page_idx;
365 	sector_t last_block_in_bio = 0;
366 	struct buffer_head map_bh;
367 	unsigned long first_logical_block = 0;
368 	gfp_t gfp = readahead_gfp_mask(mapping);
369 
370 	map_bh.b_state = 0;
371 	map_bh.b_size = 0;
372 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
373 		struct page *page = lru_to_page(pages);
374 
375 		prefetchw(&page->flags);
376 		list_del(&page->lru);
377 		if (!add_to_page_cache_lru(page, mapping,
378 					page->index,
379 					gfp)) {
380 			bio = do_mpage_readpage(bio, page,
381 					nr_pages - page_idx,
382 					&last_block_in_bio, &map_bh,
383 					&first_logical_block,
384 					get_block, gfp);
385 		}
386 		put_page(page);
387 	}
388 	BUG_ON(!list_empty(pages));
389 	if (bio)
390 		mpage_bio_submit(REQ_OP_READ, 0, bio);
391 	return 0;
392 }
393 EXPORT_SYMBOL(mpage_readpages);
394 
395 /*
396  * This isn't called much at all
397  */
398 int mpage_readpage(struct page *page, get_block_t get_block)
399 {
400 	struct bio *bio = NULL;
401 	sector_t last_block_in_bio = 0;
402 	struct buffer_head map_bh;
403 	unsigned long first_logical_block = 0;
404 	gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
405 
406 	map_bh.b_state = 0;
407 	map_bh.b_size = 0;
408 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
409 			&map_bh, &first_logical_block, get_block, gfp);
410 	if (bio)
411 		mpage_bio_submit(REQ_OP_READ, 0, bio);
412 	return 0;
413 }
414 EXPORT_SYMBOL(mpage_readpage);
415 
416 /*
417  * Writing is not so simple.
418  *
419  * If the page has buffers then they will be used for obtaining the disk
420  * mapping.  We only support pages which are fully mapped-and-dirty, with a
421  * special case for pages which are unmapped at the end: end-of-file.
422  *
423  * If the page has no buffers (preferred) then the page is mapped here.
424  *
425  * If all blocks are found to be contiguous then the page can go into the
426  * BIO.  Otherwise fall back to the mapping's writepage().
427  *
428  * FIXME: This code wants an estimate of how many pages are still to be
429  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
430  * just allocate full-size (16-page) BIOs.
431  */
432 
433 struct mpage_data {
434 	struct bio *bio;
435 	sector_t last_block_in_bio;
436 	get_block_t *get_block;
437 	unsigned use_writepage;
438 };
439 
440 /*
441  * We have our BIO, so we can now mark the buffers clean.  Make
442  * sure to only clean buffers which we know we'll be writing.
443  */
444 static void clean_buffers(struct page *page, unsigned first_unmapped)
445 {
446 	unsigned buffer_counter = 0;
447 	struct buffer_head *bh, *head;
448 	if (!page_has_buffers(page))
449 		return;
450 	head = page_buffers(page);
451 	bh = head;
452 
453 	do {
454 		if (buffer_counter++ == first_unmapped)
455 			break;
456 		clear_buffer_dirty(bh);
457 		bh = bh->b_this_page;
458 	} while (bh != head);
459 
460 	/*
461 	 * we cannot drop the bh if the page is not uptodate or a concurrent
462 	 * readpage would fail to serialize with the bh and it would read from
463 	 * disk before we reach the platter.
464 	 */
465 	if (buffer_heads_over_limit && PageUptodate(page))
466 		try_to_free_buffers(page);
467 }
468 
469 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
470 		      void *data)
471 {
472 	struct mpage_data *mpd = data;
473 	struct bio *bio = mpd->bio;
474 	struct address_space *mapping = page->mapping;
475 	struct inode *inode = page->mapping->host;
476 	const unsigned blkbits = inode->i_blkbits;
477 	unsigned long end_index;
478 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
479 	sector_t last_block;
480 	sector_t block_in_file;
481 	sector_t blocks[MAX_BUF_PER_PAGE];
482 	unsigned page_block;
483 	unsigned first_unmapped = blocks_per_page;
484 	struct block_device *bdev = NULL;
485 	int boundary = 0;
486 	sector_t boundary_block = 0;
487 	struct block_device *boundary_bdev = NULL;
488 	int length;
489 	struct buffer_head map_bh;
490 	loff_t i_size = i_size_read(inode);
491 	int ret = 0;
492 	int op_flags = wbc_to_write_flags(wbc);
493 
494 	if (page_has_buffers(page)) {
495 		struct buffer_head *head = page_buffers(page);
496 		struct buffer_head *bh = head;
497 
498 		/* If they're all mapped and dirty, do it */
499 		page_block = 0;
500 		do {
501 			BUG_ON(buffer_locked(bh));
502 			if (!buffer_mapped(bh)) {
503 				/*
504 				 * unmapped dirty buffers are created by
505 				 * __set_page_dirty_buffers -> mmapped data
506 				 */
507 				if (buffer_dirty(bh))
508 					goto confused;
509 				if (first_unmapped == blocks_per_page)
510 					first_unmapped = page_block;
511 				continue;
512 			}
513 
514 			if (first_unmapped != blocks_per_page)
515 				goto confused;	/* hole -> non-hole */
516 
517 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
518 				goto confused;
519 			if (page_block) {
520 				if (bh->b_blocknr != blocks[page_block-1] + 1)
521 					goto confused;
522 			}
523 			blocks[page_block++] = bh->b_blocknr;
524 			boundary = buffer_boundary(bh);
525 			if (boundary) {
526 				boundary_block = bh->b_blocknr;
527 				boundary_bdev = bh->b_bdev;
528 			}
529 			bdev = bh->b_bdev;
530 		} while ((bh = bh->b_this_page) != head);
531 
532 		if (first_unmapped)
533 			goto page_is_mapped;
534 
535 		/*
536 		 * Page has buffers, but they are all unmapped. The page was
537 		 * created by pagein or read over a hole which was handled by
538 		 * block_read_full_page().  If this address_space is also
539 		 * using mpage_readpages then this can rarely happen.
540 		 */
541 		goto confused;
542 	}
543 
544 	/*
545 	 * The page has no buffers: map it to disk
546 	 */
547 	BUG_ON(!PageUptodate(page));
548 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
549 	last_block = (i_size - 1) >> blkbits;
550 	map_bh.b_page = page;
551 	for (page_block = 0; page_block < blocks_per_page; ) {
552 
553 		map_bh.b_state = 0;
554 		map_bh.b_size = 1 << blkbits;
555 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
556 			goto confused;
557 		if (buffer_new(&map_bh))
558 			clean_bdev_bh_alias(&map_bh);
559 		if (buffer_boundary(&map_bh)) {
560 			boundary_block = map_bh.b_blocknr;
561 			boundary_bdev = map_bh.b_bdev;
562 		}
563 		if (page_block) {
564 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
565 				goto confused;
566 		}
567 		blocks[page_block++] = map_bh.b_blocknr;
568 		boundary = buffer_boundary(&map_bh);
569 		bdev = map_bh.b_bdev;
570 		if (block_in_file == last_block)
571 			break;
572 		block_in_file++;
573 	}
574 	BUG_ON(page_block == 0);
575 
576 	first_unmapped = page_block;
577 
578 page_is_mapped:
579 	end_index = i_size >> PAGE_SHIFT;
580 	if (page->index >= end_index) {
581 		/*
582 		 * The page straddles i_size.  It must be zeroed out on each
583 		 * and every writepage invocation because it may be mmapped.
584 		 * "A file is mapped in multiples of the page size.  For a file
585 		 * that is not a multiple of the page size, the remaining memory
586 		 * is zeroed when mapped, and writes to that region are not
587 		 * written out to the file."
588 		 */
589 		unsigned offset = i_size & (PAGE_SIZE - 1);
590 
591 		if (page->index > end_index || !offset)
592 			goto confused;
593 		zero_user_segment(page, offset, PAGE_SIZE);
594 	}
595 
596 	/*
597 	 * This page will go to BIO.  Do we need to send this BIO off first?
598 	 */
599 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
600 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
601 
602 alloc_new:
603 	if (bio == NULL) {
604 		if (first_unmapped == blocks_per_page) {
605 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
606 								page, wbc)) {
607 				clean_buffers(page, first_unmapped);
608 				goto out;
609 			}
610 		}
611 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
612 				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
613 		if (bio == NULL)
614 			goto confused;
615 
616 		wbc_init_bio(wbc, bio);
617 	}
618 
619 	/*
620 	 * Must try to add the page before marking the buffer clean or
621 	 * the confused fail path above (OOM) will be very confused when
622 	 * it finds all bh marked clean (i.e. it will not write anything)
623 	 */
624 	wbc_account_io(wbc, page, PAGE_SIZE);
625 	length = first_unmapped << blkbits;
626 	if (bio_add_page(bio, page, length, 0) < length) {
627 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
628 		goto alloc_new;
629 	}
630 
631 	clean_buffers(page, first_unmapped);
632 
633 	BUG_ON(PageWriteback(page));
634 	set_page_writeback(page);
635 	unlock_page(page);
636 	if (boundary || (first_unmapped != blocks_per_page)) {
637 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
638 		if (boundary_block) {
639 			write_boundary_block(boundary_bdev,
640 					boundary_block, 1 << blkbits);
641 		}
642 	} else {
643 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
644 	}
645 	goto out;
646 
647 confused:
648 	if (bio)
649 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
650 
651 	if (mpd->use_writepage) {
652 		ret = mapping->a_ops->writepage(page, wbc);
653 	} else {
654 		ret = -EAGAIN;
655 		goto out;
656 	}
657 	/*
658 	 * The caller has a ref on the inode, so *mapping is stable
659 	 */
660 	mapping_set_error(mapping, ret);
661 out:
662 	mpd->bio = bio;
663 	return ret;
664 }
665 
666 /**
667  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
668  * @mapping: address space structure to write
669  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
670  * @get_block: the filesystem's block mapper function.
671  *             If this is NULL then use a_ops->writepage.  Otherwise, go
672  *             direct-to-BIO.
673  *
674  * This is a library function, which implements the writepages()
675  * address_space_operation.
676  *
677  * If a page is already under I/O, generic_writepages() skips it, even
678  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
679  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
680  * and msync() need to guarantee that all the data which was dirty at the time
681  * the call was made get new I/O started against them.  If wbc->sync_mode is
682  * WB_SYNC_ALL then we were called for data integrity and we must wait for
683  * existing IO to complete.
684  */
685 int
686 mpage_writepages(struct address_space *mapping,
687 		struct writeback_control *wbc, get_block_t get_block)
688 {
689 	struct blk_plug plug;
690 	int ret;
691 
692 	blk_start_plug(&plug);
693 
694 	if (!get_block)
695 		ret = generic_writepages(mapping, wbc);
696 	else {
697 		struct mpage_data mpd = {
698 			.bio = NULL,
699 			.last_block_in_bio = 0,
700 			.get_block = get_block,
701 			.use_writepage = 1,
702 		};
703 
704 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
705 		if (mpd.bio) {
706 			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
707 				  REQ_SYNC : 0);
708 			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
709 		}
710 	}
711 	blk_finish_plug(&plug);
712 	return ret;
713 }
714 EXPORT_SYMBOL(mpage_writepages);
715 
716 int mpage_writepage(struct page *page, get_block_t get_block,
717 	struct writeback_control *wbc)
718 {
719 	struct mpage_data mpd = {
720 		.bio = NULL,
721 		.last_block_in_bio = 0,
722 		.get_block = get_block,
723 		.use_writepage = 0,
724 	};
725 	int ret = __mpage_writepage(page, wbc, &mpd);
726 	if (mpd.bio) {
727 		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
728 			  REQ_SYNC : 0);
729 		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
730 	}
731 	return ret;
732 }
733 EXPORT_SYMBOL(mpage_writepage);
734