xref: /openbmc/linux/fs/mpage.c (revision a1e58bbd)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	akpm@zip.com.au
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/bio.h>
20 #include <linux/fs.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/highmem.h>
24 #include <linux/prefetch.h>
25 #include <linux/mpage.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 
30 /*
31  * I/O completion handler for multipage BIOs.
32  *
33  * The mpage code never puts partial pages into a BIO (except for end-of-file).
34  * If a page does not map to a contiguous run of blocks then it simply falls
35  * back to block_read_full_page().
36  *
37  * Why is this?  If a page's completion depends on a number of different BIOs
38  * which can complete in any order (or at the same time) then determining the
39  * status of that page is hard.  See end_buffer_async_read() for the details.
40  * There is no point in duplicating all that complexity.
41  */
42 static void mpage_end_io_read(struct bio *bio, int err)
43 {
44 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
46 
47 	do {
48 		struct page *page = bvec->bv_page;
49 
50 		if (--bvec >= bio->bi_io_vec)
51 			prefetchw(&bvec->bv_page->flags);
52 
53 		if (uptodate) {
54 			SetPageUptodate(page);
55 		} else {
56 			ClearPageUptodate(page);
57 			SetPageError(page);
58 		}
59 		unlock_page(page);
60 	} while (bvec >= bio->bi_io_vec);
61 	bio_put(bio);
62 }
63 
64 static void mpage_end_io_write(struct bio *bio, int err)
65 {
66 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
67 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
68 
69 	do {
70 		struct page *page = bvec->bv_page;
71 
72 		if (--bvec >= bio->bi_io_vec)
73 			prefetchw(&bvec->bv_page->flags);
74 
75 		if (!uptodate){
76 			SetPageError(page);
77 			if (page->mapping)
78 				set_bit(AS_EIO, &page->mapping->flags);
79 		}
80 		end_page_writeback(page);
81 	} while (bvec >= bio->bi_io_vec);
82 	bio_put(bio);
83 }
84 
85 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
86 {
87 	bio->bi_end_io = mpage_end_io_read;
88 	if (rw == WRITE)
89 		bio->bi_end_io = mpage_end_io_write;
90 	submit_bio(rw, bio);
91 	return NULL;
92 }
93 
94 static struct bio *
95 mpage_alloc(struct block_device *bdev,
96 		sector_t first_sector, int nr_vecs,
97 		gfp_t gfp_flags)
98 {
99 	struct bio *bio;
100 
101 	bio = bio_alloc(gfp_flags, nr_vecs);
102 
103 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
104 		while (!bio && (nr_vecs /= 2))
105 			bio = bio_alloc(gfp_flags, nr_vecs);
106 	}
107 
108 	if (bio) {
109 		bio->bi_bdev = bdev;
110 		bio->bi_sector = first_sector;
111 	}
112 	return bio;
113 }
114 
115 /*
116  * support function for mpage_readpages.  The fs supplied get_block might
117  * return an up to date buffer.  This is used to map that buffer into
118  * the page, which allows readpage to avoid triggering a duplicate call
119  * to get_block.
120  *
121  * The idea is to avoid adding buffers to pages that don't already have
122  * them.  So when the buffer is up to date and the page size == block size,
123  * this marks the page up to date instead of adding new buffers.
124  */
125 static void
126 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
127 {
128 	struct inode *inode = page->mapping->host;
129 	struct buffer_head *page_bh, *head;
130 	int block = 0;
131 
132 	if (!page_has_buffers(page)) {
133 		/*
134 		 * don't make any buffers if there is only one buffer on
135 		 * the page and the page just needs to be set up to date
136 		 */
137 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
138 		    buffer_uptodate(bh)) {
139 			SetPageUptodate(page);
140 			return;
141 		}
142 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
143 	}
144 	head = page_buffers(page);
145 	page_bh = head;
146 	do {
147 		if (block == page_block) {
148 			page_bh->b_state = bh->b_state;
149 			page_bh->b_bdev = bh->b_bdev;
150 			page_bh->b_blocknr = bh->b_blocknr;
151 			break;
152 		}
153 		page_bh = page_bh->b_this_page;
154 		block++;
155 	} while (page_bh != head);
156 }
157 
158 /*
159  * This is the worker routine which does all the work of mapping the disk
160  * blocks and constructs largest possible bios, submits them for IO if the
161  * blocks are not contiguous on the disk.
162  *
163  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
164  * represent the validity of its disk mapping and to decide when to do the next
165  * get_block() call.
166  */
167 static struct bio *
168 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
169 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
170 		unsigned long *first_logical_block, get_block_t get_block)
171 {
172 	struct inode *inode = page->mapping->host;
173 	const unsigned blkbits = inode->i_blkbits;
174 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
175 	const unsigned blocksize = 1 << blkbits;
176 	sector_t block_in_file;
177 	sector_t last_block;
178 	sector_t last_block_in_file;
179 	sector_t blocks[MAX_BUF_PER_PAGE];
180 	unsigned page_block;
181 	unsigned first_hole = blocks_per_page;
182 	struct block_device *bdev = NULL;
183 	int length;
184 	int fully_mapped = 1;
185 	unsigned nblocks;
186 	unsigned relative_block;
187 
188 	if (page_has_buffers(page))
189 		goto confused;
190 
191 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
192 	last_block = block_in_file + nr_pages * blocks_per_page;
193 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
194 	if (last_block > last_block_in_file)
195 		last_block = last_block_in_file;
196 	page_block = 0;
197 
198 	/*
199 	 * Map blocks using the result from the previous get_blocks call first.
200 	 */
201 	nblocks = map_bh->b_size >> blkbits;
202 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
203 			block_in_file < (*first_logical_block + nblocks)) {
204 		unsigned map_offset = block_in_file - *first_logical_block;
205 		unsigned last = nblocks - map_offset;
206 
207 		for (relative_block = 0; ; relative_block++) {
208 			if (relative_block == last) {
209 				clear_buffer_mapped(map_bh);
210 				break;
211 			}
212 			if (page_block == blocks_per_page)
213 				break;
214 			blocks[page_block] = map_bh->b_blocknr + map_offset +
215 						relative_block;
216 			page_block++;
217 			block_in_file++;
218 		}
219 		bdev = map_bh->b_bdev;
220 	}
221 
222 	/*
223 	 * Then do more get_blocks calls until we are done with this page.
224 	 */
225 	map_bh->b_page = page;
226 	while (page_block < blocks_per_page) {
227 		map_bh->b_state = 0;
228 		map_bh->b_size = 0;
229 
230 		if (block_in_file < last_block) {
231 			map_bh->b_size = (last_block-block_in_file) << blkbits;
232 			if (get_block(inode, block_in_file, map_bh, 0))
233 				goto confused;
234 			*first_logical_block = block_in_file;
235 		}
236 
237 		if (!buffer_mapped(map_bh)) {
238 			fully_mapped = 0;
239 			if (first_hole == blocks_per_page)
240 				first_hole = page_block;
241 			page_block++;
242 			block_in_file++;
243 			clear_buffer_mapped(map_bh);
244 			continue;
245 		}
246 
247 		/* some filesystems will copy data into the page during
248 		 * the get_block call, in which case we don't want to
249 		 * read it again.  map_buffer_to_page copies the data
250 		 * we just collected from get_block into the page's buffers
251 		 * so readpage doesn't have to repeat the get_block call
252 		 */
253 		if (buffer_uptodate(map_bh)) {
254 			map_buffer_to_page(page, map_bh, page_block);
255 			goto confused;
256 		}
257 
258 		if (first_hole != blocks_per_page)
259 			goto confused;		/* hole -> non-hole */
260 
261 		/* Contiguous blocks? */
262 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
263 			goto confused;
264 		nblocks = map_bh->b_size >> blkbits;
265 		for (relative_block = 0; ; relative_block++) {
266 			if (relative_block == nblocks) {
267 				clear_buffer_mapped(map_bh);
268 				break;
269 			} else if (page_block == blocks_per_page)
270 				break;
271 			blocks[page_block] = map_bh->b_blocknr+relative_block;
272 			page_block++;
273 			block_in_file++;
274 		}
275 		bdev = map_bh->b_bdev;
276 	}
277 
278 	if (first_hole != blocks_per_page) {
279 		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
280 		if (first_hole == 0) {
281 			SetPageUptodate(page);
282 			unlock_page(page);
283 			goto out;
284 		}
285 	} else if (fully_mapped) {
286 		SetPageMappedToDisk(page);
287 	}
288 
289 	/*
290 	 * This page will go to BIO.  Do we need to send this BIO off first?
291 	 */
292 	if (bio && (*last_block_in_bio != blocks[0] - 1))
293 		bio = mpage_bio_submit(READ, bio);
294 
295 alloc_new:
296 	if (bio == NULL) {
297 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
298 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
299 				GFP_KERNEL);
300 		if (bio == NULL)
301 			goto confused;
302 	}
303 
304 	length = first_hole << blkbits;
305 	if (bio_add_page(bio, page, length, 0) < length) {
306 		bio = mpage_bio_submit(READ, bio);
307 		goto alloc_new;
308 	}
309 
310 	if (buffer_boundary(map_bh) || (first_hole != blocks_per_page))
311 		bio = mpage_bio_submit(READ, bio);
312 	else
313 		*last_block_in_bio = blocks[blocks_per_page - 1];
314 out:
315 	return bio;
316 
317 confused:
318 	if (bio)
319 		bio = mpage_bio_submit(READ, bio);
320 	if (!PageUptodate(page))
321 	        block_read_full_page(page, get_block);
322 	else
323 		unlock_page(page);
324 	goto out;
325 }
326 
327 /**
328  * mpage_readpages - populate an address space with some pages & start reads against them
329  * @mapping: the address_space
330  * @pages: The address of a list_head which contains the target pages.  These
331  *   pages have their ->index populated and are otherwise uninitialised.
332  *   The page at @pages->prev has the lowest file offset, and reads should be
333  *   issued in @pages->prev to @pages->next order.
334  * @nr_pages: The number of pages at *@pages
335  * @get_block: The filesystem's block mapper function.
336  *
337  * This function walks the pages and the blocks within each page, building and
338  * emitting large BIOs.
339  *
340  * If anything unusual happens, such as:
341  *
342  * - encountering a page which has buffers
343  * - encountering a page which has a non-hole after a hole
344  * - encountering a page with non-contiguous blocks
345  *
346  * then this code just gives up and calls the buffer_head-based read function.
347  * It does handle a page which has holes at the end - that is a common case:
348  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
349  *
350  * BH_Boundary explanation:
351  *
352  * There is a problem.  The mpage read code assembles several pages, gets all
353  * their disk mappings, and then submits them all.  That's fine, but obtaining
354  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
355  *
356  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
357  * submitted in the following order:
358  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
359  *
360  * because the indirect block has to be read to get the mappings of blocks
361  * 13,14,15,16.  Obviously, this impacts performance.
362  *
363  * So what we do it to allow the filesystem's get_block() function to set
364  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
365  * after this one will require I/O against a block which is probably close to
366  * this one.  So you should push what I/O you have currently accumulated.
367  *
368  * This all causes the disk requests to be issued in the correct order.
369  */
370 int
371 mpage_readpages(struct address_space *mapping, struct list_head *pages,
372 				unsigned nr_pages, get_block_t get_block)
373 {
374 	struct bio *bio = NULL;
375 	unsigned page_idx;
376 	sector_t last_block_in_bio = 0;
377 	struct buffer_head map_bh;
378 	unsigned long first_logical_block = 0;
379 
380 	clear_buffer_mapped(&map_bh);
381 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
382 		struct page *page = list_entry(pages->prev, struct page, lru);
383 
384 		prefetchw(&page->flags);
385 		list_del(&page->lru);
386 		if (!add_to_page_cache_lru(page, mapping,
387 					page->index, GFP_KERNEL)) {
388 			bio = do_mpage_readpage(bio, page,
389 					nr_pages - page_idx,
390 					&last_block_in_bio, &map_bh,
391 					&first_logical_block,
392 					get_block);
393 		}
394 		page_cache_release(page);
395 	}
396 	BUG_ON(!list_empty(pages));
397 	if (bio)
398 		mpage_bio_submit(READ, bio);
399 	return 0;
400 }
401 EXPORT_SYMBOL(mpage_readpages);
402 
403 /*
404  * This isn't called much at all
405  */
406 int mpage_readpage(struct page *page, get_block_t get_block)
407 {
408 	struct bio *bio = NULL;
409 	sector_t last_block_in_bio = 0;
410 	struct buffer_head map_bh;
411 	unsigned long first_logical_block = 0;
412 
413 	clear_buffer_mapped(&map_bh);
414 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
415 			&map_bh, &first_logical_block, get_block);
416 	if (bio)
417 		mpage_bio_submit(READ, bio);
418 	return 0;
419 }
420 EXPORT_SYMBOL(mpage_readpage);
421 
422 /*
423  * Writing is not so simple.
424  *
425  * If the page has buffers then they will be used for obtaining the disk
426  * mapping.  We only support pages which are fully mapped-and-dirty, with a
427  * special case for pages which are unmapped at the end: end-of-file.
428  *
429  * If the page has no buffers (preferred) then the page is mapped here.
430  *
431  * If all blocks are found to be contiguous then the page can go into the
432  * BIO.  Otherwise fall back to the mapping's writepage().
433  *
434  * FIXME: This code wants an estimate of how many pages are still to be
435  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
436  * just allocate full-size (16-page) BIOs.
437  */
438 struct mpage_data {
439 	struct bio *bio;
440 	sector_t last_block_in_bio;
441 	get_block_t *get_block;
442 	unsigned use_writepage;
443 };
444 
445 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
446 			     void *data)
447 {
448 	struct mpage_data *mpd = data;
449 	struct bio *bio = mpd->bio;
450 	struct address_space *mapping = page->mapping;
451 	struct inode *inode = page->mapping->host;
452 	const unsigned blkbits = inode->i_blkbits;
453 	unsigned long end_index;
454 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
455 	sector_t last_block;
456 	sector_t block_in_file;
457 	sector_t blocks[MAX_BUF_PER_PAGE];
458 	unsigned page_block;
459 	unsigned first_unmapped = blocks_per_page;
460 	struct block_device *bdev = NULL;
461 	int boundary = 0;
462 	sector_t boundary_block = 0;
463 	struct block_device *boundary_bdev = NULL;
464 	int length;
465 	struct buffer_head map_bh;
466 	loff_t i_size = i_size_read(inode);
467 	int ret = 0;
468 
469 	if (page_has_buffers(page)) {
470 		struct buffer_head *head = page_buffers(page);
471 		struct buffer_head *bh = head;
472 
473 		/* If they're all mapped and dirty, do it */
474 		page_block = 0;
475 		do {
476 			BUG_ON(buffer_locked(bh));
477 			if (!buffer_mapped(bh)) {
478 				/*
479 				 * unmapped dirty buffers are created by
480 				 * __set_page_dirty_buffers -> mmapped data
481 				 */
482 				if (buffer_dirty(bh))
483 					goto confused;
484 				if (first_unmapped == blocks_per_page)
485 					first_unmapped = page_block;
486 				continue;
487 			}
488 
489 			if (first_unmapped != blocks_per_page)
490 				goto confused;	/* hole -> non-hole */
491 
492 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
493 				goto confused;
494 			if (page_block) {
495 				if (bh->b_blocknr != blocks[page_block-1] + 1)
496 					goto confused;
497 			}
498 			blocks[page_block++] = bh->b_blocknr;
499 			boundary = buffer_boundary(bh);
500 			if (boundary) {
501 				boundary_block = bh->b_blocknr;
502 				boundary_bdev = bh->b_bdev;
503 			}
504 			bdev = bh->b_bdev;
505 		} while ((bh = bh->b_this_page) != head);
506 
507 		if (first_unmapped)
508 			goto page_is_mapped;
509 
510 		/*
511 		 * Page has buffers, but they are all unmapped. The page was
512 		 * created by pagein or read over a hole which was handled by
513 		 * block_read_full_page().  If this address_space is also
514 		 * using mpage_readpages then this can rarely happen.
515 		 */
516 		goto confused;
517 	}
518 
519 	/*
520 	 * The page has no buffers: map it to disk
521 	 */
522 	BUG_ON(!PageUptodate(page));
523 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
524 	last_block = (i_size - 1) >> blkbits;
525 	map_bh.b_page = page;
526 	for (page_block = 0; page_block < blocks_per_page; ) {
527 
528 		map_bh.b_state = 0;
529 		map_bh.b_size = 1 << blkbits;
530 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
531 			goto confused;
532 		if (buffer_new(&map_bh))
533 			unmap_underlying_metadata(map_bh.b_bdev,
534 						map_bh.b_blocknr);
535 		if (buffer_boundary(&map_bh)) {
536 			boundary_block = map_bh.b_blocknr;
537 			boundary_bdev = map_bh.b_bdev;
538 		}
539 		if (page_block) {
540 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
541 				goto confused;
542 		}
543 		blocks[page_block++] = map_bh.b_blocknr;
544 		boundary = buffer_boundary(&map_bh);
545 		bdev = map_bh.b_bdev;
546 		if (block_in_file == last_block)
547 			break;
548 		block_in_file++;
549 	}
550 	BUG_ON(page_block == 0);
551 
552 	first_unmapped = page_block;
553 
554 page_is_mapped:
555 	end_index = i_size >> PAGE_CACHE_SHIFT;
556 	if (page->index >= end_index) {
557 		/*
558 		 * The page straddles i_size.  It must be zeroed out on each
559 		 * and every writepage invokation because it may be mmapped.
560 		 * "A file is mapped in multiples of the page size.  For a file
561 		 * that is not a multiple of the page size, the remaining memory
562 		 * is zeroed when mapped, and writes to that region are not
563 		 * written out to the file."
564 		 */
565 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
566 
567 		if (page->index > end_index || !offset)
568 			goto confused;
569 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
570 	}
571 
572 	/*
573 	 * This page will go to BIO.  Do we need to send this BIO off first?
574 	 */
575 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
576 		bio = mpage_bio_submit(WRITE, bio);
577 
578 alloc_new:
579 	if (bio == NULL) {
580 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
581 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
582 		if (bio == NULL)
583 			goto confused;
584 	}
585 
586 	/*
587 	 * Must try to add the page before marking the buffer clean or
588 	 * the confused fail path above (OOM) will be very confused when
589 	 * it finds all bh marked clean (i.e. it will not write anything)
590 	 */
591 	length = first_unmapped << blkbits;
592 	if (bio_add_page(bio, page, length, 0) < length) {
593 		bio = mpage_bio_submit(WRITE, bio);
594 		goto alloc_new;
595 	}
596 
597 	/*
598 	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
599 	 * sure to only clean buffers which we know we'll be writing.
600 	 */
601 	if (page_has_buffers(page)) {
602 		struct buffer_head *head = page_buffers(page);
603 		struct buffer_head *bh = head;
604 		unsigned buffer_counter = 0;
605 
606 		do {
607 			if (buffer_counter++ == first_unmapped)
608 				break;
609 			clear_buffer_dirty(bh);
610 			bh = bh->b_this_page;
611 		} while (bh != head);
612 
613 		/*
614 		 * we cannot drop the bh if the page is not uptodate
615 		 * or a concurrent readpage would fail to serialize with the bh
616 		 * and it would read from disk before we reach the platter.
617 		 */
618 		if (buffer_heads_over_limit && PageUptodate(page))
619 			try_to_free_buffers(page);
620 	}
621 
622 	BUG_ON(PageWriteback(page));
623 	set_page_writeback(page);
624 	unlock_page(page);
625 	if (boundary || (first_unmapped != blocks_per_page)) {
626 		bio = mpage_bio_submit(WRITE, bio);
627 		if (boundary_block) {
628 			write_boundary_block(boundary_bdev,
629 					boundary_block, 1 << blkbits);
630 		}
631 	} else {
632 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
633 	}
634 	goto out;
635 
636 confused:
637 	if (bio)
638 		bio = mpage_bio_submit(WRITE, bio);
639 
640 	if (mpd->use_writepage) {
641 		ret = mapping->a_ops->writepage(page, wbc);
642 	} else {
643 		ret = -EAGAIN;
644 		goto out;
645 	}
646 	/*
647 	 * The caller has a ref on the inode, so *mapping is stable
648 	 */
649 	mapping_set_error(mapping, ret);
650 out:
651 	mpd->bio = bio;
652 	return ret;
653 }
654 
655 /**
656  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
657  * @mapping: address space structure to write
658  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
659  * @get_block: the filesystem's block mapper function.
660  *             If this is NULL then use a_ops->writepage.  Otherwise, go
661  *             direct-to-BIO.
662  *
663  * This is a library function, which implements the writepages()
664  * address_space_operation.
665  *
666  * If a page is already under I/O, generic_writepages() skips it, even
667  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
668  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
669  * and msync() need to guarantee that all the data which was dirty at the time
670  * the call was made get new I/O started against them.  If wbc->sync_mode is
671  * WB_SYNC_ALL then we were called for data integrity and we must wait for
672  * existing IO to complete.
673  */
674 int
675 mpage_writepages(struct address_space *mapping,
676 		struct writeback_control *wbc, get_block_t get_block)
677 {
678 	int ret;
679 
680 	if (!get_block)
681 		ret = generic_writepages(mapping, wbc);
682 	else {
683 		struct mpage_data mpd = {
684 			.bio = NULL,
685 			.last_block_in_bio = 0,
686 			.get_block = get_block,
687 			.use_writepage = 1,
688 		};
689 
690 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
691 		if (mpd.bio)
692 			mpage_bio_submit(WRITE, mpd.bio);
693 	}
694 	return ret;
695 }
696 EXPORT_SYMBOL(mpage_writepages);
697 
698 int mpage_writepage(struct page *page, get_block_t get_block,
699 	struct writeback_control *wbc)
700 {
701 	struct mpage_data mpd = {
702 		.bio = NULL,
703 		.last_block_in_bio = 0,
704 		.get_block = get_block,
705 		.use_writepage = 0,
706 	};
707 	int ret = __mpage_writepage(page, wbc, &mpd);
708 	if (mpd.bio)
709 		mpage_bio_submit(WRITE, mpd.bio);
710 	return ret;
711 }
712 EXPORT_SYMBOL(mpage_writepage);
713