1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 Andrew Morton 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/gfp.h> 20 #include <linux/bio.h> 21 #include <linux/fs.h> 22 #include <linux/buffer_head.h> 23 #include <linux/blkdev.h> 24 #include <linux/highmem.h> 25 #include <linux/prefetch.h> 26 #include <linux/mpage.h> 27 #include <linux/mm_inline.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/cleancache.h> 32 #include "internal.h" 33 34 /* 35 * I/O completion handler for multipage BIOs. 36 * 37 * The mpage code never puts partial pages into a BIO (except for end-of-file). 38 * If a page does not map to a contiguous run of blocks then it simply falls 39 * back to block_read_full_page(). 40 * 41 * Why is this? If a page's completion depends on a number of different BIOs 42 * which can complete in any order (or at the same time) then determining the 43 * status of that page is hard. See end_buffer_async_read() for the details. 44 * There is no point in duplicating all that complexity. 45 */ 46 static void mpage_end_io(struct bio *bio) 47 { 48 struct bio_vec *bv; 49 int i; 50 51 bio_for_each_segment_all(bv, bio, i) { 52 struct page *page = bv->bv_page; 53 page_endio(page, op_is_write(bio_op(bio)), 54 blk_status_to_errno(bio->bi_status)); 55 } 56 57 bio_put(bio); 58 } 59 60 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio) 61 { 62 bio->bi_end_io = mpage_end_io; 63 bio_set_op_attrs(bio, op, op_flags); 64 guard_bio_eod(op, bio); 65 submit_bio(bio); 66 return NULL; 67 } 68 69 static struct bio * 70 mpage_alloc(struct block_device *bdev, 71 sector_t first_sector, int nr_vecs, 72 gfp_t gfp_flags) 73 { 74 struct bio *bio; 75 76 /* Restrict the given (page cache) mask for slab allocations */ 77 gfp_flags &= GFP_KERNEL; 78 bio = bio_alloc(gfp_flags, nr_vecs); 79 80 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 81 while (!bio && (nr_vecs /= 2)) 82 bio = bio_alloc(gfp_flags, nr_vecs); 83 } 84 85 if (bio) { 86 bio_set_dev(bio, bdev); 87 bio->bi_iter.bi_sector = first_sector; 88 } 89 return bio; 90 } 91 92 /* 93 * support function for mpage_readpages. The fs supplied get_block might 94 * return an up to date buffer. This is used to map that buffer into 95 * the page, which allows readpage to avoid triggering a duplicate call 96 * to get_block. 97 * 98 * The idea is to avoid adding buffers to pages that don't already have 99 * them. So when the buffer is up to date and the page size == block size, 100 * this marks the page up to date instead of adding new buffers. 101 */ 102 static void 103 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 104 { 105 struct inode *inode = page->mapping->host; 106 struct buffer_head *page_bh, *head; 107 int block = 0; 108 109 if (!page_has_buffers(page)) { 110 /* 111 * don't make any buffers if there is only one buffer on 112 * the page and the page just needs to be set up to date 113 */ 114 if (inode->i_blkbits == PAGE_SHIFT && 115 buffer_uptodate(bh)) { 116 SetPageUptodate(page); 117 return; 118 } 119 create_empty_buffers(page, i_blocksize(inode), 0); 120 } 121 head = page_buffers(page); 122 page_bh = head; 123 do { 124 if (block == page_block) { 125 page_bh->b_state = bh->b_state; 126 page_bh->b_bdev = bh->b_bdev; 127 page_bh->b_blocknr = bh->b_blocknr; 128 break; 129 } 130 page_bh = page_bh->b_this_page; 131 block++; 132 } while (page_bh != head); 133 } 134 135 /* 136 * This is the worker routine which does all the work of mapping the disk 137 * blocks and constructs largest possible bios, submits them for IO if the 138 * blocks are not contiguous on the disk. 139 * 140 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 141 * represent the validity of its disk mapping and to decide when to do the next 142 * get_block() call. 143 */ 144 static struct bio * 145 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 146 sector_t *last_block_in_bio, struct buffer_head *map_bh, 147 unsigned long *first_logical_block, get_block_t get_block, 148 gfp_t gfp) 149 { 150 struct inode *inode = page->mapping->host; 151 const unsigned blkbits = inode->i_blkbits; 152 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 153 const unsigned blocksize = 1 << blkbits; 154 sector_t block_in_file; 155 sector_t last_block; 156 sector_t last_block_in_file; 157 sector_t blocks[MAX_BUF_PER_PAGE]; 158 unsigned page_block; 159 unsigned first_hole = blocks_per_page; 160 struct block_device *bdev = NULL; 161 int length; 162 int fully_mapped = 1; 163 unsigned nblocks; 164 unsigned relative_block; 165 166 if (page_has_buffers(page)) 167 goto confused; 168 169 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 170 last_block = block_in_file + nr_pages * blocks_per_page; 171 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 172 if (last_block > last_block_in_file) 173 last_block = last_block_in_file; 174 page_block = 0; 175 176 /* 177 * Map blocks using the result from the previous get_blocks call first. 178 */ 179 nblocks = map_bh->b_size >> blkbits; 180 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 181 block_in_file < (*first_logical_block + nblocks)) { 182 unsigned map_offset = block_in_file - *first_logical_block; 183 unsigned last = nblocks - map_offset; 184 185 for (relative_block = 0; ; relative_block++) { 186 if (relative_block == last) { 187 clear_buffer_mapped(map_bh); 188 break; 189 } 190 if (page_block == blocks_per_page) 191 break; 192 blocks[page_block] = map_bh->b_blocknr + map_offset + 193 relative_block; 194 page_block++; 195 block_in_file++; 196 } 197 bdev = map_bh->b_bdev; 198 } 199 200 /* 201 * Then do more get_blocks calls until we are done with this page. 202 */ 203 map_bh->b_page = page; 204 while (page_block < blocks_per_page) { 205 map_bh->b_state = 0; 206 map_bh->b_size = 0; 207 208 if (block_in_file < last_block) { 209 map_bh->b_size = (last_block-block_in_file) << blkbits; 210 if (get_block(inode, block_in_file, map_bh, 0)) 211 goto confused; 212 *first_logical_block = block_in_file; 213 } 214 215 if (!buffer_mapped(map_bh)) { 216 fully_mapped = 0; 217 if (first_hole == blocks_per_page) 218 first_hole = page_block; 219 page_block++; 220 block_in_file++; 221 continue; 222 } 223 224 /* some filesystems will copy data into the page during 225 * the get_block call, in which case we don't want to 226 * read it again. map_buffer_to_page copies the data 227 * we just collected from get_block into the page's buffers 228 * so readpage doesn't have to repeat the get_block call 229 */ 230 if (buffer_uptodate(map_bh)) { 231 map_buffer_to_page(page, map_bh, page_block); 232 goto confused; 233 } 234 235 if (first_hole != blocks_per_page) 236 goto confused; /* hole -> non-hole */ 237 238 /* Contiguous blocks? */ 239 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 240 goto confused; 241 nblocks = map_bh->b_size >> blkbits; 242 for (relative_block = 0; ; relative_block++) { 243 if (relative_block == nblocks) { 244 clear_buffer_mapped(map_bh); 245 break; 246 } else if (page_block == blocks_per_page) 247 break; 248 blocks[page_block] = map_bh->b_blocknr+relative_block; 249 page_block++; 250 block_in_file++; 251 } 252 bdev = map_bh->b_bdev; 253 } 254 255 if (first_hole != blocks_per_page) { 256 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); 257 if (first_hole == 0) { 258 SetPageUptodate(page); 259 unlock_page(page); 260 goto out; 261 } 262 } else if (fully_mapped) { 263 SetPageMappedToDisk(page); 264 } 265 266 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 267 cleancache_get_page(page) == 0) { 268 SetPageUptodate(page); 269 goto confused; 270 } 271 272 /* 273 * This page will go to BIO. Do we need to send this BIO off first? 274 */ 275 if (bio && (*last_block_in_bio != blocks[0] - 1)) 276 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 277 278 alloc_new: 279 if (bio == NULL) { 280 if (first_hole == blocks_per_page) { 281 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 282 page)) 283 goto out; 284 } 285 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 286 min_t(int, nr_pages, BIO_MAX_PAGES), gfp); 287 if (bio == NULL) 288 goto confused; 289 } 290 291 length = first_hole << blkbits; 292 if (bio_add_page(bio, page, length, 0) < length) { 293 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 294 goto alloc_new; 295 } 296 297 relative_block = block_in_file - *first_logical_block; 298 nblocks = map_bh->b_size >> blkbits; 299 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 300 (first_hole != blocks_per_page)) 301 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 302 else 303 *last_block_in_bio = blocks[blocks_per_page - 1]; 304 out: 305 return bio; 306 307 confused: 308 if (bio) 309 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 310 if (!PageUptodate(page)) 311 block_read_full_page(page, get_block); 312 else 313 unlock_page(page); 314 goto out; 315 } 316 317 /** 318 * mpage_readpages - populate an address space with some pages & start reads against them 319 * @mapping: the address_space 320 * @pages: The address of a list_head which contains the target pages. These 321 * pages have their ->index populated and are otherwise uninitialised. 322 * The page at @pages->prev has the lowest file offset, and reads should be 323 * issued in @pages->prev to @pages->next order. 324 * @nr_pages: The number of pages at *@pages 325 * @get_block: The filesystem's block mapper function. 326 * 327 * This function walks the pages and the blocks within each page, building and 328 * emitting large BIOs. 329 * 330 * If anything unusual happens, such as: 331 * 332 * - encountering a page which has buffers 333 * - encountering a page which has a non-hole after a hole 334 * - encountering a page with non-contiguous blocks 335 * 336 * then this code just gives up and calls the buffer_head-based read function. 337 * It does handle a page which has holes at the end - that is a common case: 338 * the end-of-file on blocksize < PAGE_SIZE setups. 339 * 340 * BH_Boundary explanation: 341 * 342 * There is a problem. The mpage read code assembles several pages, gets all 343 * their disk mappings, and then submits them all. That's fine, but obtaining 344 * the disk mappings may require I/O. Reads of indirect blocks, for example. 345 * 346 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 347 * submitted in the following order: 348 * 349 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 350 * 351 * because the indirect block has to be read to get the mappings of blocks 352 * 13,14,15,16. Obviously, this impacts performance. 353 * 354 * So what we do it to allow the filesystem's get_block() function to set 355 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 356 * after this one will require I/O against a block which is probably close to 357 * this one. So you should push what I/O you have currently accumulated. 358 * 359 * This all causes the disk requests to be issued in the correct order. 360 */ 361 int 362 mpage_readpages(struct address_space *mapping, struct list_head *pages, 363 unsigned nr_pages, get_block_t get_block) 364 { 365 struct bio *bio = NULL; 366 unsigned page_idx; 367 sector_t last_block_in_bio = 0; 368 struct buffer_head map_bh; 369 unsigned long first_logical_block = 0; 370 gfp_t gfp = readahead_gfp_mask(mapping); 371 372 map_bh.b_state = 0; 373 map_bh.b_size = 0; 374 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 375 struct page *page = lru_to_page(pages); 376 377 prefetchw(&page->flags); 378 list_del(&page->lru); 379 if (!add_to_page_cache_lru(page, mapping, 380 page->index, 381 gfp)) { 382 bio = do_mpage_readpage(bio, page, 383 nr_pages - page_idx, 384 &last_block_in_bio, &map_bh, 385 &first_logical_block, 386 get_block, gfp); 387 } 388 put_page(page); 389 } 390 BUG_ON(!list_empty(pages)); 391 if (bio) 392 mpage_bio_submit(REQ_OP_READ, 0, bio); 393 return 0; 394 } 395 EXPORT_SYMBOL(mpage_readpages); 396 397 /* 398 * This isn't called much at all 399 */ 400 int mpage_readpage(struct page *page, get_block_t get_block) 401 { 402 struct bio *bio = NULL; 403 sector_t last_block_in_bio = 0; 404 struct buffer_head map_bh; 405 unsigned long first_logical_block = 0; 406 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 407 408 map_bh.b_state = 0; 409 map_bh.b_size = 0; 410 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 411 &map_bh, &first_logical_block, get_block, gfp); 412 if (bio) 413 mpage_bio_submit(REQ_OP_READ, 0, bio); 414 return 0; 415 } 416 EXPORT_SYMBOL(mpage_readpage); 417 418 /* 419 * Writing is not so simple. 420 * 421 * If the page has buffers then they will be used for obtaining the disk 422 * mapping. We only support pages which are fully mapped-and-dirty, with a 423 * special case for pages which are unmapped at the end: end-of-file. 424 * 425 * If the page has no buffers (preferred) then the page is mapped here. 426 * 427 * If all blocks are found to be contiguous then the page can go into the 428 * BIO. Otherwise fall back to the mapping's writepage(). 429 * 430 * FIXME: This code wants an estimate of how many pages are still to be 431 * written, so it can intelligently allocate a suitably-sized BIO. For now, 432 * just allocate full-size (16-page) BIOs. 433 */ 434 435 struct mpage_data { 436 struct bio *bio; 437 sector_t last_block_in_bio; 438 get_block_t *get_block; 439 unsigned use_writepage; 440 }; 441 442 /* 443 * We have our BIO, so we can now mark the buffers clean. Make 444 * sure to only clean buffers which we know we'll be writing. 445 */ 446 static void clean_buffers(struct page *page, unsigned first_unmapped) 447 { 448 unsigned buffer_counter = 0; 449 struct buffer_head *bh, *head; 450 if (!page_has_buffers(page)) 451 return; 452 head = page_buffers(page); 453 bh = head; 454 455 do { 456 if (buffer_counter++ == first_unmapped) 457 break; 458 clear_buffer_dirty(bh); 459 bh = bh->b_this_page; 460 } while (bh != head); 461 462 /* 463 * we cannot drop the bh if the page is not uptodate or a concurrent 464 * readpage would fail to serialize with the bh and it would read from 465 * disk before we reach the platter. 466 */ 467 if (buffer_heads_over_limit && PageUptodate(page)) 468 try_to_free_buffers(page); 469 } 470 471 /* 472 * For situations where we want to clean all buffers attached to a page. 473 * We don't need to calculate how many buffers are attached to the page, 474 * we just need to specify a number larger than the maximum number of buffers. 475 */ 476 void clean_page_buffers(struct page *page) 477 { 478 clean_buffers(page, ~0U); 479 } 480 481 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 482 void *data) 483 { 484 struct mpage_data *mpd = data; 485 struct bio *bio = mpd->bio; 486 struct address_space *mapping = page->mapping; 487 struct inode *inode = page->mapping->host; 488 const unsigned blkbits = inode->i_blkbits; 489 unsigned long end_index; 490 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 491 sector_t last_block; 492 sector_t block_in_file; 493 sector_t blocks[MAX_BUF_PER_PAGE]; 494 unsigned page_block; 495 unsigned first_unmapped = blocks_per_page; 496 struct block_device *bdev = NULL; 497 int boundary = 0; 498 sector_t boundary_block = 0; 499 struct block_device *boundary_bdev = NULL; 500 int length; 501 struct buffer_head map_bh; 502 loff_t i_size = i_size_read(inode); 503 int ret = 0; 504 int op_flags = wbc_to_write_flags(wbc); 505 506 if (page_has_buffers(page)) { 507 struct buffer_head *head = page_buffers(page); 508 struct buffer_head *bh = head; 509 510 /* If they're all mapped and dirty, do it */ 511 page_block = 0; 512 do { 513 BUG_ON(buffer_locked(bh)); 514 if (!buffer_mapped(bh)) { 515 /* 516 * unmapped dirty buffers are created by 517 * __set_page_dirty_buffers -> mmapped data 518 */ 519 if (buffer_dirty(bh)) 520 goto confused; 521 if (first_unmapped == blocks_per_page) 522 first_unmapped = page_block; 523 continue; 524 } 525 526 if (first_unmapped != blocks_per_page) 527 goto confused; /* hole -> non-hole */ 528 529 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 530 goto confused; 531 if (page_block) { 532 if (bh->b_blocknr != blocks[page_block-1] + 1) 533 goto confused; 534 } 535 blocks[page_block++] = bh->b_blocknr; 536 boundary = buffer_boundary(bh); 537 if (boundary) { 538 boundary_block = bh->b_blocknr; 539 boundary_bdev = bh->b_bdev; 540 } 541 bdev = bh->b_bdev; 542 } while ((bh = bh->b_this_page) != head); 543 544 if (first_unmapped) 545 goto page_is_mapped; 546 547 /* 548 * Page has buffers, but they are all unmapped. The page was 549 * created by pagein or read over a hole which was handled by 550 * block_read_full_page(). If this address_space is also 551 * using mpage_readpages then this can rarely happen. 552 */ 553 goto confused; 554 } 555 556 /* 557 * The page has no buffers: map it to disk 558 */ 559 BUG_ON(!PageUptodate(page)); 560 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 561 last_block = (i_size - 1) >> blkbits; 562 map_bh.b_page = page; 563 for (page_block = 0; page_block < blocks_per_page; ) { 564 565 map_bh.b_state = 0; 566 map_bh.b_size = 1 << blkbits; 567 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 568 goto confused; 569 if (buffer_new(&map_bh)) 570 clean_bdev_bh_alias(&map_bh); 571 if (buffer_boundary(&map_bh)) { 572 boundary_block = map_bh.b_blocknr; 573 boundary_bdev = map_bh.b_bdev; 574 } 575 if (page_block) { 576 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 577 goto confused; 578 } 579 blocks[page_block++] = map_bh.b_blocknr; 580 boundary = buffer_boundary(&map_bh); 581 bdev = map_bh.b_bdev; 582 if (block_in_file == last_block) 583 break; 584 block_in_file++; 585 } 586 BUG_ON(page_block == 0); 587 588 first_unmapped = page_block; 589 590 page_is_mapped: 591 end_index = i_size >> PAGE_SHIFT; 592 if (page->index >= end_index) { 593 /* 594 * The page straddles i_size. It must be zeroed out on each 595 * and every writepage invocation because it may be mmapped. 596 * "A file is mapped in multiples of the page size. For a file 597 * that is not a multiple of the page size, the remaining memory 598 * is zeroed when mapped, and writes to that region are not 599 * written out to the file." 600 */ 601 unsigned offset = i_size & (PAGE_SIZE - 1); 602 603 if (page->index > end_index || !offset) 604 goto confused; 605 zero_user_segment(page, offset, PAGE_SIZE); 606 } 607 608 /* 609 * This page will go to BIO. Do we need to send this BIO off first? 610 */ 611 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 612 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 613 614 alloc_new: 615 if (bio == NULL) { 616 if (first_unmapped == blocks_per_page) { 617 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 618 page, wbc)) 619 goto out; 620 } 621 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 622 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH); 623 if (bio == NULL) 624 goto confused; 625 626 wbc_init_bio(wbc, bio); 627 bio->bi_write_hint = inode->i_write_hint; 628 } 629 630 /* 631 * Must try to add the page before marking the buffer clean or 632 * the confused fail path above (OOM) will be very confused when 633 * it finds all bh marked clean (i.e. it will not write anything) 634 */ 635 wbc_account_io(wbc, page, PAGE_SIZE); 636 length = first_unmapped << blkbits; 637 if (bio_add_page(bio, page, length, 0) < length) { 638 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 639 goto alloc_new; 640 } 641 642 clean_buffers(page, first_unmapped); 643 644 BUG_ON(PageWriteback(page)); 645 set_page_writeback(page); 646 unlock_page(page); 647 if (boundary || (first_unmapped != blocks_per_page)) { 648 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 649 if (boundary_block) { 650 write_boundary_block(boundary_bdev, 651 boundary_block, 1 << blkbits); 652 } 653 } else { 654 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 655 } 656 goto out; 657 658 confused: 659 if (bio) 660 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 661 662 if (mpd->use_writepage) { 663 ret = mapping->a_ops->writepage(page, wbc); 664 } else { 665 ret = -EAGAIN; 666 goto out; 667 } 668 /* 669 * The caller has a ref on the inode, so *mapping is stable 670 */ 671 mapping_set_error(mapping, ret); 672 out: 673 mpd->bio = bio; 674 return ret; 675 } 676 677 /** 678 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 679 * @mapping: address space structure to write 680 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 681 * @get_block: the filesystem's block mapper function. 682 * If this is NULL then use a_ops->writepage. Otherwise, go 683 * direct-to-BIO. 684 * 685 * This is a library function, which implements the writepages() 686 * address_space_operation. 687 * 688 * If a page is already under I/O, generic_writepages() skips it, even 689 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 690 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 691 * and msync() need to guarantee that all the data which was dirty at the time 692 * the call was made get new I/O started against them. If wbc->sync_mode is 693 * WB_SYNC_ALL then we were called for data integrity and we must wait for 694 * existing IO to complete. 695 */ 696 int 697 mpage_writepages(struct address_space *mapping, 698 struct writeback_control *wbc, get_block_t get_block) 699 { 700 struct blk_plug plug; 701 int ret; 702 703 blk_start_plug(&plug); 704 705 if (!get_block) 706 ret = generic_writepages(mapping, wbc); 707 else { 708 struct mpage_data mpd = { 709 .bio = NULL, 710 .last_block_in_bio = 0, 711 .get_block = get_block, 712 .use_writepage = 1, 713 }; 714 715 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 716 if (mpd.bio) { 717 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 718 REQ_SYNC : 0); 719 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 720 } 721 } 722 blk_finish_plug(&plug); 723 return ret; 724 } 725 EXPORT_SYMBOL(mpage_writepages); 726 727 int mpage_writepage(struct page *page, get_block_t get_block, 728 struct writeback_control *wbc) 729 { 730 struct mpage_data mpd = { 731 .bio = NULL, 732 .last_block_in_bio = 0, 733 .get_block = get_block, 734 .use_writepage = 0, 735 }; 736 int ret = __mpage_writepage(page, wbc, &mpd); 737 if (mpd.bio) { 738 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 739 REQ_SYNC : 0); 740 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 741 } 742 return ret; 743 } 744 EXPORT_SYMBOL(mpage_writepage); 745