1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 Andrew Morton 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/gfp.h> 20 #include <linux/bio.h> 21 #include <linux/fs.h> 22 #include <linux/buffer_head.h> 23 #include <linux/blkdev.h> 24 #include <linux/highmem.h> 25 #include <linux/prefetch.h> 26 #include <linux/mpage.h> 27 #include <linux/mm_inline.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/cleancache.h> 32 #include "internal.h" 33 34 /* 35 * I/O completion handler for multipage BIOs. 36 * 37 * The mpage code never puts partial pages into a BIO (except for end-of-file). 38 * If a page does not map to a contiguous run of blocks then it simply falls 39 * back to block_read_full_page(). 40 * 41 * Why is this? If a page's completion depends on a number of different BIOs 42 * which can complete in any order (or at the same time) then determining the 43 * status of that page is hard. See end_buffer_async_read() for the details. 44 * There is no point in duplicating all that complexity. 45 */ 46 static void mpage_end_io(struct bio *bio) 47 { 48 struct bio_vec *bv; 49 int i; 50 51 bio_for_each_segment_all(bv, bio, i) { 52 struct page *page = bv->bv_page; 53 page_endio(page, op_is_write(bio_op(bio)), bio->bi_error); 54 } 55 56 bio_put(bio); 57 } 58 59 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio) 60 { 61 bio->bi_end_io = mpage_end_io; 62 bio_set_op_attrs(bio, op, op_flags); 63 guard_bio_eod(op, bio); 64 submit_bio(bio); 65 return NULL; 66 } 67 68 static struct bio * 69 mpage_alloc(struct block_device *bdev, 70 sector_t first_sector, int nr_vecs, 71 gfp_t gfp_flags) 72 { 73 struct bio *bio; 74 75 /* Restrict the given (page cache) mask for slab allocations */ 76 gfp_flags &= GFP_KERNEL; 77 bio = bio_alloc(gfp_flags, nr_vecs); 78 79 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 80 while (!bio && (nr_vecs /= 2)) 81 bio = bio_alloc(gfp_flags, nr_vecs); 82 } 83 84 if (bio) { 85 bio->bi_bdev = bdev; 86 bio->bi_iter.bi_sector = first_sector; 87 } 88 return bio; 89 } 90 91 /* 92 * support function for mpage_readpages. The fs supplied get_block might 93 * return an up to date buffer. This is used to map that buffer into 94 * the page, which allows readpage to avoid triggering a duplicate call 95 * to get_block. 96 * 97 * The idea is to avoid adding buffers to pages that don't already have 98 * them. So when the buffer is up to date and the page size == block size, 99 * this marks the page up to date instead of adding new buffers. 100 */ 101 static void 102 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 103 { 104 struct inode *inode = page->mapping->host; 105 struct buffer_head *page_bh, *head; 106 int block = 0; 107 108 if (!page_has_buffers(page)) { 109 /* 110 * don't make any buffers if there is only one buffer on 111 * the page and the page just needs to be set up to date 112 */ 113 if (inode->i_blkbits == PAGE_SHIFT && 114 buffer_uptodate(bh)) { 115 SetPageUptodate(page); 116 return; 117 } 118 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 119 } 120 head = page_buffers(page); 121 page_bh = head; 122 do { 123 if (block == page_block) { 124 page_bh->b_state = bh->b_state; 125 page_bh->b_bdev = bh->b_bdev; 126 page_bh->b_blocknr = bh->b_blocknr; 127 break; 128 } 129 page_bh = page_bh->b_this_page; 130 block++; 131 } while (page_bh != head); 132 } 133 134 /* 135 * This is the worker routine which does all the work of mapping the disk 136 * blocks and constructs largest possible bios, submits them for IO if the 137 * blocks are not contiguous on the disk. 138 * 139 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 140 * represent the validity of its disk mapping and to decide when to do the next 141 * get_block() call. 142 */ 143 static struct bio * 144 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 145 sector_t *last_block_in_bio, struct buffer_head *map_bh, 146 unsigned long *first_logical_block, get_block_t get_block, 147 gfp_t gfp) 148 { 149 struct inode *inode = page->mapping->host; 150 const unsigned blkbits = inode->i_blkbits; 151 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 152 const unsigned blocksize = 1 << blkbits; 153 sector_t block_in_file; 154 sector_t last_block; 155 sector_t last_block_in_file; 156 sector_t blocks[MAX_BUF_PER_PAGE]; 157 unsigned page_block; 158 unsigned first_hole = blocks_per_page; 159 struct block_device *bdev = NULL; 160 int length; 161 int fully_mapped = 1; 162 unsigned nblocks; 163 unsigned relative_block; 164 165 if (page_has_buffers(page)) 166 goto confused; 167 168 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 169 last_block = block_in_file + nr_pages * blocks_per_page; 170 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 171 if (last_block > last_block_in_file) 172 last_block = last_block_in_file; 173 page_block = 0; 174 175 /* 176 * Map blocks using the result from the previous get_blocks call first. 177 */ 178 nblocks = map_bh->b_size >> blkbits; 179 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 180 block_in_file < (*first_logical_block + nblocks)) { 181 unsigned map_offset = block_in_file - *first_logical_block; 182 unsigned last = nblocks - map_offset; 183 184 for (relative_block = 0; ; relative_block++) { 185 if (relative_block == last) { 186 clear_buffer_mapped(map_bh); 187 break; 188 } 189 if (page_block == blocks_per_page) 190 break; 191 blocks[page_block] = map_bh->b_blocknr + map_offset + 192 relative_block; 193 page_block++; 194 block_in_file++; 195 } 196 bdev = map_bh->b_bdev; 197 } 198 199 /* 200 * Then do more get_blocks calls until we are done with this page. 201 */ 202 map_bh->b_page = page; 203 while (page_block < blocks_per_page) { 204 map_bh->b_state = 0; 205 map_bh->b_size = 0; 206 207 if (block_in_file < last_block) { 208 map_bh->b_size = (last_block-block_in_file) << blkbits; 209 if (get_block(inode, block_in_file, map_bh, 0)) 210 goto confused; 211 *first_logical_block = block_in_file; 212 } 213 214 if (!buffer_mapped(map_bh)) { 215 fully_mapped = 0; 216 if (first_hole == blocks_per_page) 217 first_hole = page_block; 218 page_block++; 219 block_in_file++; 220 continue; 221 } 222 223 /* some filesystems will copy data into the page during 224 * the get_block call, in which case we don't want to 225 * read it again. map_buffer_to_page copies the data 226 * we just collected from get_block into the page's buffers 227 * so readpage doesn't have to repeat the get_block call 228 */ 229 if (buffer_uptodate(map_bh)) { 230 map_buffer_to_page(page, map_bh, page_block); 231 goto confused; 232 } 233 234 if (first_hole != blocks_per_page) 235 goto confused; /* hole -> non-hole */ 236 237 /* Contiguous blocks? */ 238 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 239 goto confused; 240 nblocks = map_bh->b_size >> blkbits; 241 for (relative_block = 0; ; relative_block++) { 242 if (relative_block == nblocks) { 243 clear_buffer_mapped(map_bh); 244 break; 245 } else if (page_block == blocks_per_page) 246 break; 247 blocks[page_block] = map_bh->b_blocknr+relative_block; 248 page_block++; 249 block_in_file++; 250 } 251 bdev = map_bh->b_bdev; 252 } 253 254 if (first_hole != blocks_per_page) { 255 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); 256 if (first_hole == 0) { 257 SetPageUptodate(page); 258 unlock_page(page); 259 goto out; 260 } 261 } else if (fully_mapped) { 262 SetPageMappedToDisk(page); 263 } 264 265 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 266 cleancache_get_page(page) == 0) { 267 SetPageUptodate(page); 268 goto confused; 269 } 270 271 /* 272 * This page will go to BIO. Do we need to send this BIO off first? 273 */ 274 if (bio && (*last_block_in_bio != blocks[0] - 1)) 275 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 276 277 alloc_new: 278 if (bio == NULL) { 279 if (first_hole == blocks_per_page) { 280 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 281 page)) 282 goto out; 283 } 284 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 285 min_t(int, nr_pages, BIO_MAX_PAGES), gfp); 286 if (bio == NULL) 287 goto confused; 288 } 289 290 length = first_hole << blkbits; 291 if (bio_add_page(bio, page, length, 0) < length) { 292 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 293 goto alloc_new; 294 } 295 296 relative_block = block_in_file - *first_logical_block; 297 nblocks = map_bh->b_size >> blkbits; 298 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 299 (first_hole != blocks_per_page)) 300 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 301 else 302 *last_block_in_bio = blocks[blocks_per_page - 1]; 303 out: 304 return bio; 305 306 confused: 307 if (bio) 308 bio = mpage_bio_submit(REQ_OP_READ, 0, bio); 309 if (!PageUptodate(page)) 310 block_read_full_page(page, get_block); 311 else 312 unlock_page(page); 313 goto out; 314 } 315 316 /** 317 * mpage_readpages - populate an address space with some pages & start reads against them 318 * @mapping: the address_space 319 * @pages: The address of a list_head which contains the target pages. These 320 * pages have their ->index populated and are otherwise uninitialised. 321 * The page at @pages->prev has the lowest file offset, and reads should be 322 * issued in @pages->prev to @pages->next order. 323 * @nr_pages: The number of pages at *@pages 324 * @get_block: The filesystem's block mapper function. 325 * 326 * This function walks the pages and the blocks within each page, building and 327 * emitting large BIOs. 328 * 329 * If anything unusual happens, such as: 330 * 331 * - encountering a page which has buffers 332 * - encountering a page which has a non-hole after a hole 333 * - encountering a page with non-contiguous blocks 334 * 335 * then this code just gives up and calls the buffer_head-based read function. 336 * It does handle a page which has holes at the end - that is a common case: 337 * the end-of-file on blocksize < PAGE_SIZE setups. 338 * 339 * BH_Boundary explanation: 340 * 341 * There is a problem. The mpage read code assembles several pages, gets all 342 * their disk mappings, and then submits them all. That's fine, but obtaining 343 * the disk mappings may require I/O. Reads of indirect blocks, for example. 344 * 345 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 346 * submitted in the following order: 347 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 348 * 349 * because the indirect block has to be read to get the mappings of blocks 350 * 13,14,15,16. Obviously, this impacts performance. 351 * 352 * So what we do it to allow the filesystem's get_block() function to set 353 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 354 * after this one will require I/O against a block which is probably close to 355 * this one. So you should push what I/O you have currently accumulated. 356 * 357 * This all causes the disk requests to be issued in the correct order. 358 */ 359 int 360 mpage_readpages(struct address_space *mapping, struct list_head *pages, 361 unsigned nr_pages, get_block_t get_block) 362 { 363 struct bio *bio = NULL; 364 unsigned page_idx; 365 sector_t last_block_in_bio = 0; 366 struct buffer_head map_bh; 367 unsigned long first_logical_block = 0; 368 gfp_t gfp = readahead_gfp_mask(mapping); 369 370 map_bh.b_state = 0; 371 map_bh.b_size = 0; 372 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 373 struct page *page = lru_to_page(pages); 374 375 prefetchw(&page->flags); 376 list_del(&page->lru); 377 if (!add_to_page_cache_lru(page, mapping, 378 page->index, 379 gfp)) { 380 bio = do_mpage_readpage(bio, page, 381 nr_pages - page_idx, 382 &last_block_in_bio, &map_bh, 383 &first_logical_block, 384 get_block, gfp); 385 } 386 put_page(page); 387 } 388 BUG_ON(!list_empty(pages)); 389 if (bio) 390 mpage_bio_submit(REQ_OP_READ, 0, bio); 391 return 0; 392 } 393 EXPORT_SYMBOL(mpage_readpages); 394 395 /* 396 * This isn't called much at all 397 */ 398 int mpage_readpage(struct page *page, get_block_t get_block) 399 { 400 struct bio *bio = NULL; 401 sector_t last_block_in_bio = 0; 402 struct buffer_head map_bh; 403 unsigned long first_logical_block = 0; 404 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 405 406 map_bh.b_state = 0; 407 map_bh.b_size = 0; 408 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 409 &map_bh, &first_logical_block, get_block, gfp); 410 if (bio) 411 mpage_bio_submit(REQ_OP_READ, 0, bio); 412 return 0; 413 } 414 EXPORT_SYMBOL(mpage_readpage); 415 416 /* 417 * Writing is not so simple. 418 * 419 * If the page has buffers then they will be used for obtaining the disk 420 * mapping. We only support pages which are fully mapped-and-dirty, with a 421 * special case for pages which are unmapped at the end: end-of-file. 422 * 423 * If the page has no buffers (preferred) then the page is mapped here. 424 * 425 * If all blocks are found to be contiguous then the page can go into the 426 * BIO. Otherwise fall back to the mapping's writepage(). 427 * 428 * FIXME: This code wants an estimate of how many pages are still to be 429 * written, so it can intelligently allocate a suitably-sized BIO. For now, 430 * just allocate full-size (16-page) BIOs. 431 */ 432 433 struct mpage_data { 434 struct bio *bio; 435 sector_t last_block_in_bio; 436 get_block_t *get_block; 437 unsigned use_writepage; 438 }; 439 440 /* 441 * We have our BIO, so we can now mark the buffers clean. Make 442 * sure to only clean buffers which we know we'll be writing. 443 */ 444 static void clean_buffers(struct page *page, unsigned first_unmapped) 445 { 446 unsigned buffer_counter = 0; 447 struct buffer_head *bh, *head; 448 if (!page_has_buffers(page)) 449 return; 450 head = page_buffers(page); 451 bh = head; 452 453 do { 454 if (buffer_counter++ == first_unmapped) 455 break; 456 clear_buffer_dirty(bh); 457 bh = bh->b_this_page; 458 } while (bh != head); 459 460 /* 461 * we cannot drop the bh if the page is not uptodate or a concurrent 462 * readpage would fail to serialize with the bh and it would read from 463 * disk before we reach the platter. 464 */ 465 if (buffer_heads_over_limit && PageUptodate(page)) 466 try_to_free_buffers(page); 467 } 468 469 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 470 void *data) 471 { 472 struct mpage_data *mpd = data; 473 struct bio *bio = mpd->bio; 474 struct address_space *mapping = page->mapping; 475 struct inode *inode = page->mapping->host; 476 const unsigned blkbits = inode->i_blkbits; 477 unsigned long end_index; 478 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 479 sector_t last_block; 480 sector_t block_in_file; 481 sector_t blocks[MAX_BUF_PER_PAGE]; 482 unsigned page_block; 483 unsigned first_unmapped = blocks_per_page; 484 struct block_device *bdev = NULL; 485 int boundary = 0; 486 sector_t boundary_block = 0; 487 struct block_device *boundary_bdev = NULL; 488 int length; 489 struct buffer_head map_bh; 490 loff_t i_size = i_size_read(inode); 491 int ret = 0; 492 int op_flags = wbc_to_write_flags(wbc); 493 494 if (page_has_buffers(page)) { 495 struct buffer_head *head = page_buffers(page); 496 struct buffer_head *bh = head; 497 498 /* If they're all mapped and dirty, do it */ 499 page_block = 0; 500 do { 501 BUG_ON(buffer_locked(bh)); 502 if (!buffer_mapped(bh)) { 503 /* 504 * unmapped dirty buffers are created by 505 * __set_page_dirty_buffers -> mmapped data 506 */ 507 if (buffer_dirty(bh)) 508 goto confused; 509 if (first_unmapped == blocks_per_page) 510 first_unmapped = page_block; 511 continue; 512 } 513 514 if (first_unmapped != blocks_per_page) 515 goto confused; /* hole -> non-hole */ 516 517 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 518 goto confused; 519 if (page_block) { 520 if (bh->b_blocknr != blocks[page_block-1] + 1) 521 goto confused; 522 } 523 blocks[page_block++] = bh->b_blocknr; 524 boundary = buffer_boundary(bh); 525 if (boundary) { 526 boundary_block = bh->b_blocknr; 527 boundary_bdev = bh->b_bdev; 528 } 529 bdev = bh->b_bdev; 530 } while ((bh = bh->b_this_page) != head); 531 532 if (first_unmapped) 533 goto page_is_mapped; 534 535 /* 536 * Page has buffers, but they are all unmapped. The page was 537 * created by pagein or read over a hole which was handled by 538 * block_read_full_page(). If this address_space is also 539 * using mpage_readpages then this can rarely happen. 540 */ 541 goto confused; 542 } 543 544 /* 545 * The page has no buffers: map it to disk 546 */ 547 BUG_ON(!PageUptodate(page)); 548 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 549 last_block = (i_size - 1) >> blkbits; 550 map_bh.b_page = page; 551 for (page_block = 0; page_block < blocks_per_page; ) { 552 553 map_bh.b_state = 0; 554 map_bh.b_size = 1 << blkbits; 555 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 556 goto confused; 557 if (buffer_new(&map_bh)) 558 clean_bdev_bh_alias(&map_bh); 559 if (buffer_boundary(&map_bh)) { 560 boundary_block = map_bh.b_blocknr; 561 boundary_bdev = map_bh.b_bdev; 562 } 563 if (page_block) { 564 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 565 goto confused; 566 } 567 blocks[page_block++] = map_bh.b_blocknr; 568 boundary = buffer_boundary(&map_bh); 569 bdev = map_bh.b_bdev; 570 if (block_in_file == last_block) 571 break; 572 block_in_file++; 573 } 574 BUG_ON(page_block == 0); 575 576 first_unmapped = page_block; 577 578 page_is_mapped: 579 end_index = i_size >> PAGE_SHIFT; 580 if (page->index >= end_index) { 581 /* 582 * The page straddles i_size. It must be zeroed out on each 583 * and every writepage invocation because it may be mmapped. 584 * "A file is mapped in multiples of the page size. For a file 585 * that is not a multiple of the page size, the remaining memory 586 * is zeroed when mapped, and writes to that region are not 587 * written out to the file." 588 */ 589 unsigned offset = i_size & (PAGE_SIZE - 1); 590 591 if (page->index > end_index || !offset) 592 goto confused; 593 zero_user_segment(page, offset, PAGE_SIZE); 594 } 595 596 /* 597 * This page will go to BIO. Do we need to send this BIO off first? 598 */ 599 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 600 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 601 602 alloc_new: 603 if (bio == NULL) { 604 if (first_unmapped == blocks_per_page) { 605 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 606 page, wbc)) { 607 clean_buffers(page, first_unmapped); 608 goto out; 609 } 610 } 611 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 612 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH); 613 if (bio == NULL) 614 goto confused; 615 616 wbc_init_bio(wbc, bio); 617 } 618 619 /* 620 * Must try to add the page before marking the buffer clean or 621 * the confused fail path above (OOM) will be very confused when 622 * it finds all bh marked clean (i.e. it will not write anything) 623 */ 624 wbc_account_io(wbc, page, PAGE_SIZE); 625 length = first_unmapped << blkbits; 626 if (bio_add_page(bio, page, length, 0) < length) { 627 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 628 goto alloc_new; 629 } 630 631 clean_buffers(page, first_unmapped); 632 633 BUG_ON(PageWriteback(page)); 634 set_page_writeback(page); 635 unlock_page(page); 636 if (boundary || (first_unmapped != blocks_per_page)) { 637 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 638 if (boundary_block) { 639 write_boundary_block(boundary_bdev, 640 boundary_block, 1 << blkbits); 641 } 642 } else { 643 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 644 } 645 goto out; 646 647 confused: 648 if (bio) 649 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 650 651 if (mpd->use_writepage) { 652 ret = mapping->a_ops->writepage(page, wbc); 653 } else { 654 ret = -EAGAIN; 655 goto out; 656 } 657 /* 658 * The caller has a ref on the inode, so *mapping is stable 659 */ 660 mapping_set_error(mapping, ret); 661 out: 662 mpd->bio = bio; 663 return ret; 664 } 665 666 /** 667 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 668 * @mapping: address space structure to write 669 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 670 * @get_block: the filesystem's block mapper function. 671 * If this is NULL then use a_ops->writepage. Otherwise, go 672 * direct-to-BIO. 673 * 674 * This is a library function, which implements the writepages() 675 * address_space_operation. 676 * 677 * If a page is already under I/O, generic_writepages() skips it, even 678 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 679 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 680 * and msync() need to guarantee that all the data which was dirty at the time 681 * the call was made get new I/O started against them. If wbc->sync_mode is 682 * WB_SYNC_ALL then we were called for data integrity and we must wait for 683 * existing IO to complete. 684 */ 685 int 686 mpage_writepages(struct address_space *mapping, 687 struct writeback_control *wbc, get_block_t get_block) 688 { 689 struct blk_plug plug; 690 int ret; 691 692 blk_start_plug(&plug); 693 694 if (!get_block) 695 ret = generic_writepages(mapping, wbc); 696 else { 697 struct mpage_data mpd = { 698 .bio = NULL, 699 .last_block_in_bio = 0, 700 .get_block = get_block, 701 .use_writepage = 1, 702 }; 703 704 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 705 if (mpd.bio) { 706 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 707 REQ_SYNC : 0); 708 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 709 } 710 } 711 blk_finish_plug(&plug); 712 return ret; 713 } 714 EXPORT_SYMBOL(mpage_writepages); 715 716 int mpage_writepage(struct page *page, get_block_t get_block, 717 struct writeback_control *wbc) 718 { 719 struct mpage_data mpd = { 720 .bio = NULL, 721 .last_block_in_bio = 0, 722 .get_block = get_block, 723 .use_writepage = 0, 724 }; 725 int ret = __mpage_writepage(page, wbc, &mpd); 726 if (mpd.bio) { 727 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 728 REQ_SYNC : 0); 729 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 730 } 731 return ret; 732 } 733 EXPORT_SYMBOL(mpage_writepage); 734